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Chapter 1 

1.1 Abstract 

Breast cancer is responsible for a large portion of cancer-related deaths. Worldwide, incidence 

is increasing. Routinely-used treatments for breast cancer are invasive and are associated with 

a range of side-effects which may affect quality of life. Fucoidan, a marine bioactive 

compound, found primarily in brown seaweed, has various medicinal qualities. Among its 

bioactivities studied, it has potent anticancer activity. Despite numerous studies, the 

mechanism of action of fucoidan on cancer cells remains unclear. This project aims to shed 

light on the mechanism of action of fucoidan by studying its effect on the MCF7 breast cancer 

cell proteome. The IC50 obtained for fucoidan treated MCF7 cells was 0.2 mg/ml. Decrease in 

expression of XIAP and phosphorylation of ERK1/2 was observed, indicating a decrease in 

inhibition of apoptosis and increased sensitivity to apoptosis, respectively. Literature reports 

activation of several caspases, including caspase-3, in various cell lines after to fucoidan 

treatment. Taken together, with data from the current study it can be said that fucoidan 

treatment led to cell death by apoptosis. SILAC analysis identified over 2000 proteins with 

more than 1700 at 95% confidence. STRING analysis of enriched proteins revealed 19 cell 

death related proteins. However, SILAC results were ambiguous with regards to differential 

protein regulation and should be repeated with lower electrospray ionization flow rates, pair-

wise and single sample runs, and validation with Western blot analysis of various apoptosis 

related proteins and biochemical assays.  
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1.2 General introduction 

Conventional chemotherapy and radiotherapy have numerous adverse side effects and 

indiscriminately cause cell death i.e. these treatments kill both cancerous and non-cancerous 

cells. This demonstrates the need for the development of anti-cancer drugs or treatments which 

potentially only target cancerous cells. Fucoidan, a sulfated polysaccharide found mainly in 

brown algae has various biological activities including anti-inflammatory, anti-bacterial, anti-

viral and anti-cancer properties (Xue et al., 2012). The effect of fucoidan has been tested in 

vitro and in vivo in various cancerous cell lines (Fukahori et al., 2008). It has been found that 

fucoidan induces programmed cell death, or apoptosis, in cancerous cells, while having very 

little or no effect on the non-cancerous lines.  

Several studies have been conducted on the effect of fucoidan on the MCF7 breast cancer cell 

line and fucoidan was shown to stimulate apoptosis (Yamasaki-Miyamoto et al., 2009; Zhang 

et al., 2011; Zhang et al., 2013). A study of global protein expression in MCF7 breast cancer 

cells treated with fucoidan may assist in elucidating the pathways and proteins involved in 

apoptotic cell death. Chapter 2 reviews the anti-cancer effect of fucoidan and the potential of 

proteomics in elucidating its mode of action against breast cancer cells. Chapter 3 covers the 

research performed in this study including the methodology, results, discussion and concluding 

remarks. Materials used and suppliers are listed in the Appendix. 

 

1.3 Aims and objectives 

This study aimed to conduct a global proteome analysis of MCF7 breast cancer cells to examine 

total protein expression in response to fucoidan treatment (Chapter 3). Objectives included the 

(i) determination of the IC50 of fucoidan for MCF7 breast cancer cells, (ii) Western blot analysis 

of proteins related to apoptosis, (iii) establishment of light and heavy SILAC-labelled cell 
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populations of MCF7 cells, and (iv) evaluation of differential protein expression between 

untreated and treated samples. 
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Chapter 2 

Potential of proteomics in analysing the action of fucoidan in breast cancer 

2.1 Breast cancer 

Cancer is one of the leading causes of death worldwide with breast cancer having accounted 

for approximately 521 000 of 8.2 million cancer-related deaths in the year 2012 alone (Ferlay 

et al., 2013). Percentage incidence and mortality in females are summarized in Figure 1. Breast 

cancer is the leading cancer among South African women (Schlebusch et al., 2010; 

Buccimazza, 2015).  Findings of a comprehensive study of medical records from 1970 to 1997 

in different hospitals in South Africa on breast cancer incidence in South African females are 

shown in Table 1 (Vorobiof et al., 2001). Roughly half of breast cancer patients have presented 

at stages I and II, while the rest have presented with more advanced stages III and IV. It has 

also been estimated that in developed countries about half of the patients diagnosed at stages I 

and II have a 90% chance of a 5-year survival, whereas developing countries presented lower 

survival rates. Similar findings were reviewed by Jemal et al. (2010) and Unger-Saldaña 

(2014).  

Globally, breast cancer incidence is increasing (Ferlay et al., 2013). Developing countries, 

however, report higher occurrence of diagnosis in later stages of breast cancer (Unger-Saldaña, 

2014). Variability in incidence among different ethnicities has been reported. Vorobiof et al. 

(2001) observed higher incidence in white and Asian females, while black and coloured 

females more often presented at advanced stages of breast cancer. Socio-economic factors 

certainly play a role, however, the reasons for variability in incidence amongst difference 

ethnicities remains largely unexplained (Matatiele & Van den Heever, 2008). Age and sex have 

been identified as highest risk factors (DeSantis et al., 2013). While reported in males, breast 

cancer affects mainly women of around pre- and post-menopausal age.  
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Figure 1: Percentages of incidence and mortality rate of breast cancer in females (Ferlay et al., 2012). 

 

Table 1: Female breast cancer incidence in South Africa (Vorobiof et al., 2001). 

 No. % Crude ASIR Cumulative 

Risk 

Risk 

Asian Females 135 24.4 33.2 42.1 4.7 21 

Black Females 922 13.4 7.11 11.3 1.2 81 

Coloured Females 140 18.2 10.2 14.7 1.6 63 

White Females 1733 17.8 85.8 70.2 7.5 13 

 3785 16.5 18.5 25.1 2.8 36 

Abbreviations: ASIR, age-standardized incidence rate 
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2.2 Cancer treatments 

Most common treatments for breast cancer involve surgical removal of tumours followed by 

chemotherapy, radiotherapy or endocrine therapy (Eiermann et al., 2001). All treatments are 

associated with side-effects and health risks which negatively affect quality of life. 

Chemotherapeutic drugs and radiotherapy are both associated with systemic toxicities which 

may present as mild to severe (Remesh, 2012; Jagsi, 2014). While side-effects linked to 

hormonal treatment are generally considered mild, endocrine therapy has been associated with 

recurrent tumours at different sites, particularly cancers of the uterus or endometrium 

(Swerdlow & Jones, 2005; Thürlimann et al., 2005; Jones et al., 2012). The development of 

resistance to hormonal treatment is of concern, in particular patients with estrogen and 

progesterone receptor positive breast cancers (Sutherland, 2011). Furthermore, non-

compliance with administration of hormonal drugs results in poor prognosis (Kemp et al., 

2014).  

Adverse side-effects caused by current anticancer treatments are a wide-spread concern 

(Senthilkumar et al., 2013; Moghadamtousi et al., 2014). The discovery of alternative sources 

for anticancer drugs and chemotherapeutics as well as the development of new methods for 

cancer treatment are being explored. Increasing interest has been shown in using natural 

products and bioactive compounds from medicinal plants (Boopathy & Kathiresan, 2010; 

Moghadamtousi et al., 2014).  

 

2.3 Natural products as sources of anticancer drugs 

2.3.1 Bioactive compounds 

Bioactive compounds are produced by many organisms including plants, animals and bacteria. 

These compounds may be produced to stave off predation and infection, and as secondary 
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metabolites (Donia & Hamann, 2003). Bioactive compounds may be categorized into different 

groups, depending on the composition or structure of the compound, such as alkaloids, 

carbohydrates, peptides, polyketides, terpenes and phenolics (Mayer et al., 2011). Many 

antibiotics, anticancer drugs, anti-fungal agents and anti-bacterials have been developed from 

natural sources (Haefner, 2003; Lam, 2007) and drugs derived from natural plant products and 

their derivatives account for more than 50% of all drugs currently in clinical use (Boopathy & 

Kathiresan, 2010). Commercially available examples with anticancer activity include 

doxorubicin (amrubicin hydrochloride), taxol (paclitaxel) and estradiol (fulvestrant) (Lam, 

2007).  

 

2.3.2 Bioactive compounds of marine origin 

Research involving marine bioactive compounds has become increasingly widespread 

(Laurienzo, 2010; Vishchuk et al., 2011; Moghadamtousi et al., 2014) due to the discovery of 

novel marine sources and their compounds having potent bioactivity, showing potential to 

pioneer new medical treatments (Haefner, 2003). As a large percentage of the world’s surface 

is covered by water with an abundance of diverse marine organisms, marine environments are 

favourable as a source of bioactive compounds (Wijesekara et al., 2011). Marine bioactive 

compounds described in literature are largely secondary metabolites (Dixon, 2001; Manilal et 

al., 2010; Morya et al., 2012). These include polyphenolic compounds, alkaloids and 

polysaccharides (Boopathy & Kathiresan, 2010). Commercially available anticancer drugs 

sourced from marine environments are Yondelis, Halaven and Cytosar-U in soft tissue 

sarcoma, metastatic breast cancer and myeloid leukaemia, respectively (Martins et al., 2014). 

Interest in bioactive compounds from seaweeds is gaining momentum due to a range of potent 

bioactivities such as antibiotic, antiviral, anti-inflammatory, antioxidant, anti-coagulant and 
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anti-tumour (Kusaykin et al., 2006; Cumashi et al., 2007; Boopathy & Kathiresan, 2010; Boo 

et al., 2013). Algal bioactives are produced as secondary metabolites and do not appear to play 

a direct role in growth and development of the organism (Dixon, 2001; Morya et al., 2012).  

Numerous biologically active compounds from macroalgae have been extracted and studied. 

Red (Rhodophyceae), green (Chlorophyceae) and brown (Phaeophyceae) seaweeds are 

respectively known for the production of carrageenans, ulvans and fucans (Patel, 2012). The 

most prevalent bioactive polysaccharides in algae are the sulfated polysaccharides (Boopathy 

& Kathiresan, 2010). These are found in abundance in the cell walls of algae (Ale et al., 2011a) 

and are thought to function through the augmentation of the immune system (Donia & Hamann, 

2003). Sulfated polysaccharides are used as food additives, gelling agents (Rupérez et al., 

2002) and dietary supplements (Udani & Hesslink, 2012). Numerous studies have reported on 

its potential for diverse medicinal uses.  

 

2.3.3 Fucoidan mode of action 

Fucoidan is a complex sulfated polysaccharide found predominantly in brown macroalgae (Li 

et al., 2008; Morya et al., 2012). Numerous studies have shown that fucoidan has potent 

bioactive properties such as antiviral, antibacterial, anti-inflammatory and anticancer activities 

(Zhang et al., 2011; Morya et al., 2012). Promising findings have been reported by Xue et al. 

(2012) who studied the effect of fucoidan on animal breast cancer cells. Fucoidan was shown 

to induce apoptosis and inhibit cell growth in vitro. In vivo, angiogenesis and growth of tumour 

tissue were inhibited and lung metastasis was suppressed. Fucoidan bioactivities in different 

cell lines are summarised in Table 2 (Section 2.3.4, page 15). Numerous studies have shown 

that fucoidan treatment may decrease the expression of key proteins and markers in cancers 

(Aisa et al., 2005; Hyun et al., 2009; Kim et al., 2010; Xue et al., 2012).   
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In a study on human lymphoma HS-Sultan cells, Aisa et al. (2005) have determined that 

fucoidan stimulated caspase-dependent apoptosis. Western blot analysis of extracellular 

stimuli- responsive proteins involved in intracellular signalling pathways was performed. 

Targeted proteins were extracellular signal-regulated (ERK), glycogen synthase kinase (GSK), 

protein kinase B (PKB/Akt) and 38-kD mammalian mitogen-activated protein kinase (MAPK) 

homologous to HOG-1 (p38). Results showed decreased phosphorylation of ERK and GSK, 

but not of Akt or p38. Dephosphorylation of ERK (deactivation) and GSK (activation) have 

been described as being linked to induction of apoptosis (Song et al., 2002). The unaltered state 

of phosphorylation of Akt, an upstream regulator of GSK phosphorylation, revealed that GSK 

dephosphorylation must have been regulated by another protein in this regard (Aisa et al., 

2005). Though ERK was affected, p38, another MAPK protein, was not. It is unclear which 

apoptotic pathway was involved, but caspase-3 activation was confirmed induction of 

apoptosis as a result of fucoidan treatment. Above studies suggest that treatment with fucoidan 

results in apoptosis. 

Hyun et al. (2009) observed growth inhibition of HCT-15 human colon carcinoma cells when 

treated with fucoidan. Investigation of mechanism of apoptosis induction was conducted by 

Western blot analysis. In contrast to the results of previous studies, apoptosis was accompanied 

by increased phosphorylation of MAPK proteins, ERK and p38 over time. Phosphorylation of 

Akt was highest at 12 hours (h) but progressively decreased thereafter. Expression of anti-

apoptosis protein Bcl-2 decreased over time, while expression of proteins indicative of pro-

apoptosis (Bax) and DNA repair protein poly(ADP-ribose) polymerase (PARP) was evident 

after 12h. Caspase-9 and caspase-3 were activated as a result of fucoidan treatment signifying 

activation of apoptosis. Fucoidan response has been studied in HT-29 and HCT116 human 

colon cancer cells (Kim et al., 2010). Western blot analysis revealed an increase in DNA repair 

protein (PARP) cleavage with increasing fucoidan dose, an indication of apoptosis. 
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Furthermore, cleavage of caspases-8, -9, -7 and -3 increased, while inhibitors of the apoptosis 

protein family (XIAP and survivin) decreased with increasing fucoidan concentration. Analysis 

of mitochondrial proteins has shown an increase in cytoplasmic cytochrome C, Smac/Diablo, 

pro-apoptotic Bak and truncated Bid in HT-29 cells. Release of cytochrome C and Smac/Diablo 

from the mitochondria are signs of mitochondrial stress and consequently lead to apoptosis 

induction. Bak and t-Bid facilitate release of cytochrome C by increasing the mitochondrial 

membrane permeabilization. Death receptor analysis has shown increases in death receptors 

(Fas and DR5) and a death receptor ligand (TRAIL). The studies of Hyun et al. (2009) and 

Kim et al. (2010) are both indicative of apoptosis induction via both intrinsic and extrinsic 

apoptotic pathways. Xue et al. (2012) have investigated the effect of fucoidan on 4T1 mouse 

breast cancer cell lines. Expression of anti-apoptotic proteins Bcl-2 and survivin decreased due 

to fucoidan treatment as well as ERK and vascular endothelial growth factor (VEGF) (Xue et 

al., 2012). Mitochondrial cytochrome c decreased while cytosolic cytochrome c increased, 

indicative of mitochondrial membrane permeability and the initial stages of apoptotic induction 

via a mitochondrial pathway. Additionally, cleaved caspase-3 increased indicating apoptosis 

induction. 

Fucoidan was recently shown to enhance the anticancer activity of commonly used anticancer 

drugs such as cisplatin, tamoxifen and paclitaxel in vitro in MCF7 and MDA-MB-231 breast 

cancer cell lines (Zhang et al., 2013). The combination of fucoidan with anticancer drugs 

resulted in increased cytotoxicity, induction of apoptosis and cell cycle arrest as well as 

decreased expression of anti-apoptotic proteins, Bcl-xl and Mcl-1. Although fucoidan has 

potent apoptotic or growth inhibitory effects on cancerous cells, it exhibited no effect on non-

cancerous cells, including L929 non-cancerous mouse fibroblasts (Xue et al., 2012), MCF10A 

non-cancerous human mammary epithelial cells (Zhang et al., 2011) and Hs. 677.st. stomach 

fibroblasts (Kawamoto et al., 2006). Low toxicity are an ideal characteristic for the 
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development of a new anti-cancer drug or treatment (Queiroz et al., 2006; Xue et al., 2012) 

and has encouraged studies to elucidate the structure of fucoidan and its mechanism of action.  

 

2.3.4 Fucoidan structure and bioactivity 

Although present in marine invertebrates, fucoidan has mainly been isolated from brown 

macroalgae. The compound is present in cell walls and also extracellular matrix of algae (Li et 

al., 2008; Ale et al., 2011a). Various brown algae have been studied for fucoidan content in an 

attempt to clarify the structure and chemical composition (Li et al., 2008). Fucoidan is largely 

composed of ʟ-fucose and sulfates. Other constituents may be a combination of a variety 

monosaccharides such as galactose, mannose, xylose (Li et al., 2008), glucuronic acid (Lee et 

al., 2006) and protein, lending to structural complexity (Morya et al., 2012). The complex, 

heterogenous and branched nature of fucoidan has made it challenging to elucidate its structure, 

albeit limited success has been achieved with purified fucoidan of low molecular weight 

(Chevolot et al., 2001). Chevolot et al., (2001) explored purified low molecular weight 

fucoidan from Ascophyllum nodosum and Fucus vesiculosus and found through nuclear 

magnetic resonance (NMR) spectroscopy the compounds consisted of similar repeating 

disaccharide units (Figure 2). Fucoidan structure is composed of a homofucose backbone 

consisting of (1-3) or (1-4) linked α-ʟ-fucopyranose residues (Figure 3) (Cumashi et al., 2007). 

Fucopyranose residues have been reported to be substituted with 4-sulfate groups (Jiao et al., 

2011). The polysaccharide exists mainly as F-fucoidan and U-fucoidan. F-fucoidan represents 

most fucoidans extracted from seaweeds and consists predominantly of sulfated esters of ʟ-

fucose (Morya et al., 2012). U-fucoidan consists roughly of 20% glucuronic acid. Both forms 

may contain other sugars and even proteins, which make up less than 10% of the compound, 

while sulfated fucan remains the distinctive feature.  
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Figure 2: Fucoidan structure depicting repeating disaccharides in extracts from Ascophyllum nodosum 

and Fucus vesiculosus (Chevolot et al., 2001). 

 

Figure 3: Fucoidan structures found in brown seaweeds.  The homofucose backbone chains exist as I) 

(1→3)-linked α-ʟ-fucopyranose residue repeats, or II) alternating (1→3)- and (1→4)-linked α-ʟ-

fucopyranose residues (Cumashi et al., 2007). 

 

Bioactivity of fucoidan is largely governed by structure (Li et al., 2008). Structure is dependent 

on the source of fucoidan (Queiroz et al., 2006; Cumashi et al., 2007; Ale et al., 2011b). 

Variables include algal species, climate, and age of the organism at the time of extraction 

(Skriptsova et al., 2010; Duarte et al., 2001). It has also been found that the method of 

extraction of fucoidan from seaweeds could influence its structure and therefore its 
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functionality (Morya et al., 2012). Structural features attributing to bioactivity are degree of 

sulfation, monosaccharide composition, charge density, purity of fucoidan extract and 

molecular size (Ale et al., 2011a; Cumashi et al., 2007; Cho et al., 2011). Low molecular 

weight fucoidan has been reported to display significantly enhanced anticancer activity, 

endothelial cell migration and anticoagulant efficiency (Morya et al., 2012).  

Choi et al. (2009) investigated the effect of gamma irradiation on the molecular weight and 

anti-oxidant activity of seaweed polysaccharides, fucoidan and laminarin. As the gamma 

irradiation dose increased, the molecular weight decreased and antioxidant activity increased. 

In a similar study, Choi and Kim (2013) employed gamma irradiation at different doses to 

obtain low molecular weight fucoidan - each dose resulting in a different molecular weight - 

and examine the anticancer effect on different cancerous cell lines. It was shown that lower 

molecular weight fucoidan had increased cytotoxic activity and reduced cell transformation 

activity.  While the reason behind enhanced in vitro anticancer activity with smaller sized 

fucoidan molecules remains to be elucidated (Cho et al., 2011), an explanation for increased 

activity due to oversulfation may be linked to charge density facilitating association with the 

cell’s surface (Ale et al., 2011c). 

Fucoidan has demonstrated anticancer activity against numerous cancerous cell lines in vitro 

and in vivo studies. Table 2 presents a summary of these studies. A crude extract of fucoidan 

from Fucus vesiculosus is available commercially and has been widely used in assessing 

anticancer activity. Cell lines originating from several tissues including stomach (Kawamoto 

et al., 2006), lung (Ale et al., 2011b; Lee et al., 2012), colon (Hyun et al., 2009; Kim et al., 

2010), liver (Hayakawa & Nagamine, 2009), cervix (Zhang et al., 2011) and kidney (Fukahori 

et al., 2008) were studied. Fucoidan with different structures may have differential inhibitory 

effects on cell proliferation of various cancers (Cumashi et al., 2007). Different types of cancer 

cells have distinctive molecular and metabolic characteristics. The effect of fucoidan may 
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therefore also differ slightly depending on the cell and cancer type. This has been demonstrated 

by reports on fucoidan displaying varying degrees of bioactivity on various cancers using 

fucoidan from the same source (Fukahori et al., 2008; Kim et al., 2010). This has been noted 

on different and similar cancer cell types. 
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Table 2: Anticancer effect of fucoidan from in vitro and in vivo studies on various cancers. 

Cell line Type of cell / 

tissue 

Type of cancer Type 

of 

study 

Effect of fucoidan 

treatment 

Source of fucoidan Ref. 

HS-Sultan B lymphocyte Burkitt’s 

lymphoma 

in vitro Growth inhibition / 

apoptosis 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Aisa et al., 2005 

KMC-1 Bile duct Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

MCF7 Breast Invasive ductal 

carcinoma 

in vitro Growth inhibition, 

apoptosis 

Cladosiphon navae-

caledoniae, Undaria 

pinnatifida, 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Banafa et al., 2013, Mak  

et al., 2014, Yamasaki-

Miyamoto et al., 2009, 

Zhang  et al., 2011,  

Zhang et al., 2013 

MDA-MB-

231 

Breast Invasive ductal 

carcinoma 

in vitro Growth inhibition Cladosiphon navae-

caledoniae, 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Banafa et al., 2014, 

Zhang  et al., 2011,  

Zhang et al., 2013 

T-47D Breast Ductal carcinoma in vitro Growth inhibition Saccharina japonica, 

Undaria pinnatifida 

Vishchuk et al., 2011 
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4T1 Breast (mouse)  Carcinoma in vitro 

& in 

vivo 

Apoptosis Commercial (Sigma- 

Aldrich) Fucus 

vesiculosus 

Xue et al., 2012 

HeLa Cervix Uterine carcinoma in vitro Angiogenic activity & 

growth inhibition 

Cladosiphon novae-

caledoniae 

Zhang  et al., 2011 

HT-29 Colon Adenocarcinoma in vitro Apoptosis Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Kim et al., 2010 

HCT116 Colon Carcinoma in vitro Apoptosis Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Kim et al., 2010 

HCT-15 Colon Duke’s type C, 

adenocarcinoma 

in vitro Growth inhibition & 

Apoptosis 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Hyun et al., 2009 

WiDr Colon Adenocarcinoma in vitro Growth inhibition Undaria pinnatifida, 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Mak  et al., 2014 

LoVo Colon Adenocarcinoma in vitro Growth inhibition Undaria pinnatifida, 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Mak  et al., 2014 
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HT1080 Fibroblast Fibrosarcoma in vitro Invasion & growth 

inhibition 

Cladosiphon novae-

caledoniae 

Zhang  et al., 2011 

KMG-1 Gallbladder Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

KURU II Kidney Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

KURM Kidney Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

OSRC2 Kidney Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

Huh-6 Liver Blastoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

KIM-1 Liver Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

KYN-1 Liver Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

KYN-2 Liver Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

KYN-3 Liver Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 
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HAK-1A Liver Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

HAK-1 Liver Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

Hca-F Liver (mouse) Carcinoma in vitro Lymphangiogenesis 

inhibition and lymphatic 

metastasis 

Undaria pinnatifida Teng et al., 2015 

SMMC-

7721 

Liver Carcinoma in vitro Apoptosis Undaria pinnatifida Yang et al., 2013 

A549 Lung Carcinoma in vitro Apoptosis Commercial (Sigma-

Aldrich) Fucus 

vesiculosus, Undaria 

pinnatifida 

Lee et a., 2012, Mak  et 

al., 2014 

Malme-3M Lung Melanoma in vitro Growth inhibition Undaria pinnatifida, 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Mak  et al., 2014 

Lewis lung 

carcinoma 

Lung Carcinoma in vitro 

& in 

vivo 

Growth & metastasis 

inhibition 

Sargassum sp. & 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Ale et al., 2011a 
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Namalwa Lymphoblastoid Burkitt’s 

Lymphoma 

in vitro Enhanced efficacy of 

anticancer drug 

 Fucus evanescens Philchenkov et al., 2007 

MT4 Lymphocyte T-acute leukemia in vitro Enhanced efficacy of 

anticancer drug 

 Fucus evanescens Philchenkov et al., 2007 

KOC-5C Ovarian Carcinoma in vitro Growth inhibition Cladosiphon 

okamuranus tokida 

Fukahori et al., 2008 

U937 Pleura, pleural 

effusion, 

lymphocyte, 

myeloid 

Histiocytic 

lymphoma 

in vitro Apoptosis Commercial Fucus 

vesiculosus 

Park et al., 2013 

HL60 Peripheral blood 

leukocytes 

Leukemia in vitro Cell death Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Queiroz et al., 2006 

PC-3 Prostate Adenocarcinoma in vitro Apoptosis Undaria pinnatifida Boo et al., 2013 

SK-MEL-

28 

Skin Melanoma in vitro Growth inhibition Saccharina japonica, 

Undaria pinnatifida 

Vishchuk et al., 2011 

MC3 Salivary gland Mucoepidermoid 

Carcinoma 

in vitro Growth inhibition & 

Apoptosis 

Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Lee et al., 2013 

B-16 Skin (mouse) Melanoma in vitro Growth inhibition & 

Apoptosis 

Sargassum sp. & 

Commercial (Sigma-

Ale et al, 2011a, Ale et 

al., 2011b 
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Aldrich) Fucus 

vesiculosus 

AGS Stomach Gastric 

adenocarcinoma 

in vitro Apoptosis & Autophagy Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Park et al., 2011 

MKN45 Stomach Gastric 

adenocarcinoma 

in vitro Growth inhibition Cladosiphon 

okamuranus 

Kawamoto et al., 2006 

T24 Urinary bladder Transitional cell 

carcinoma 

in vitro Apoptosis Commercial (Sigma-

Aldrich) Fucus 

vesiculosus 

Park et al., 2014 

All cell lines are of human origin unless stated otherwise
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2.4 Proteomics approach to study cellular processes 

Proteomics involves the study of the proteome of a cell, tissue or biological sample. It allows 

for the proteins expressed at a given time for a specific set of biological and environmental 

conditions to be detected and identified (Ong & Mann, 2005). Initially, proteomics studies were 

limited to observations of up- and down-regulation as well as the presence and absence of 

proteins between samples using two-dimensional (2D) gel electrophoresis. Proteomics studies 

were limited to a sub-proteome level such as organelle proteomes and protein complexes, 

protein-protein interactions and post translation modifications (de Godoy et al., 2006).  

Development of mass spectrometry and associated proteomics techniques has enabled more 

extensive, high throughput quantitative study of proteins (Ong & Mann, 2005). Proteomics 

research has expanded to include the analysis of whole cell and tissue-protein extractions. 

Due to the ever-changing nature of proteomes – constant response to stimuli, protein cleavage 

and post-translational modifications – there is no strong correlation between the transcriptome 

and the proteome. The proteome is dynamic while the genome is static (Issaq, 2001). 

Proteomics may provide a more accurate and comprehensive indication as to the cellular 

functions carried out at a given time, compared to genomic studies (Wulfkuhle et al., 2002; 

Grønborg et al., 2006). Proteomics may be used for several applications such as identification 

of an entire proteome, protein expression profiling, protein network mapping and mapping of 

post-translational modifications (de Godoy et al., 2006; Chandramouli & Qian, 2009). 

Quantitative proteomics refer to the study of absolute and relative abundance to view global 

protein expression. Qualitative proteomics is used to ascertain protein abundance of specific 

target proteins between samples (Ong & Mann, 2005). Both quantitative and qualitative 

proteomics may therefore involve the study of the effect of certain treatments on protein 

expression. 
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2.4.1 Quantitative proteomic profiling 

Of the various techniques available for mass spectrometry based protein quantitation, isotopic 

labelling has become popular (Ong & Mann, 2005; Pütz et al., 2012). Labelling techniques 

developed for studying relative protein abundance include isotope-coded affinity tags (iCAT), 

stable isotope labelling of amino acids in cell culture (SILAC), isobaric tags for relative and 

absolute quantitation (iTRAQ) (McDonagh et al., 2012) and two-dimensional (2D) gel 

electrophoresis (Pütz et al., 2012). Two-dimensional (2D) gel electrophoresis, the only gel-

based technique, is losing popularity due to limitations in comparison with more recent 

labelling techniques. Limitations include low resolution and abundant proteins overshadowing 

less abundant proteins (Ong & Mann, 2005). However with labelling techniques like SILAC 

1D SDS-polyacrylamide gel electrophoresis (SDS-PAGE) may still be used to fractionate 

protein mixtures. 

The most popular high-throughput labelling methods are iTRAQ and SILAC because technical 

variation between samples and the number of mass spectrometry runs are reduced (Pütz et al., 

2012). SILAC exploits mass differences and is especially useful in determining differential 

protein expression patterns between two or more samples (Ong & Mann, 2005), for example 

between treated and untreated cell populations of the same cell line (Ong & Mann, 2006). This 

would serve to determine any changes in protein expression in reaction to a specific stimulant 

or substance and thus aid in examining and understanding the cell’s response to a particular 

stimulant (McDonagh et al., 2012). A key feature of SILAC is that labelling occurs in 

metabolically active cells through the incorporation of specialised light and heavy amino acids 

(Ong & Mann, 2006). Figure 4 depicts an example of a study on cancer development in a 

human cell culture model using multiple proteomic techniques (Pütz et al., 2012). In the study, 

malignant transformation of a primary human fibroblast cell line (BJ) occurred sequentially 

using retroviral vectors encoding for hTERT, SV40 early region and H-Ras to produce cell 
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lines BJ-T, BJ-TE and BJ-TER, respectively. Each cell line was then subjected to 2D-PAGE, 

iTRAQ and SILAC proteomics analysis. The most common and simplest workflow for analysis 

of complex protein mixtures involves tryptic digestion and chromatographic separation of most 

abundant peptides by mass spectrometry. Resultant tandem mass spectrometry data is searched 

against protein databases to identify peptides and compile a list of putative proteins (Ong & 

Mann, 2006; Cuomo et al., 2011). 

 

 

Figure 4: Multiple proteomic techniques utilized to determine the proteomics of cancer development 

in a human fibroblast cell line (adapted from Pütz et al., 2012). (A) Malignant transformation of a 

primary human fibroblast cell line by successive transduction with retroviral vectors. (B) 2D-PAGE 

workflow. (C) iTRAQ workflow. (D) SILAC workflow. 

 

Quantitative proteomics and mass spectrometry play a significant role in the study of disease 

biomarkers (Trinh et al., 2013). SILAC has become a popular technique for this due to its 

simplicity (Zhao et al., 2009). Studies on the effect of fucoidan on cancerous cells in vitro have 
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been limited to specific proteins expressed in specific pathways, especially apoptotic pathways 

(Aisa et al., 2005; Kim et al., 2010; Xue et al., 2012). A quantitative study on the effect of 

fucoidan on the entire MCF7 breast cancer cell proteome has yet to be explored. 

 

2.4.2 Stable isotope labelling of amino acids in cell culture  

SILAC involves the tagging of proteins on the basis of weight (Ong & Mann, 2006; Fenselau, 

2007).  It differs from other labelling techniques in that “tags” are incorporated in live cells 

during cellular growth and protein synthesis. Heavy amino acids are labelled with 2H, 13C 

and/or 15N stable isotopes (Ong, 2012). Arginine and lysine are most commonly used as tryptic 

cleavage of proteins occurs after these amino acids. This ensures that SILAC labels will be 

incorporated into each of the resulting peptides (Ong, 2012). Typically, two cell populations 

are established in cell culture medium containing dialyzed fetal bovine serum (FBS) and 

antibiotics (Figure 5). One population is supplemented with heavy-labelled amino acids and 

the other with light or normal amino acids. Full incorporation of amino acids requires sufficient 

culturing and is dependent on the growth rate and doubling time of the cell line in question 

(Ong & Mann, 2006). Subsequent to culture, cells are lysed and proteins extracted.  Light and 

heavy samples are mixed, subjected to tryptic digestion and resulting peptides analysed by 

mass spectrometry (Figure 5). SILAC is favoured as it reduces or even eliminates intra-

experimental variability introduced by human error and is a robust method for proteomics 

analysis (Ong, 2012). Mixing of samples prior to analysis reduces variability between mass 

spectrometry analyses (Lau et al., 2014). 
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Figure 5: Classical SILAC workflow illustrating culture of cells in light (left) and heavy (right) SILAC 

media and label incorporation over time (Ong, 2012). Label incorporation is followed by cell lysis, 

protein extraction, tryptic digestion and 1:1 mixing of light and heavy extractions for mass spectrometry 

analysis. 

 

2.4.3 Limitations 

Mass spectrometers are generally comprised of the ion source, mass analyser and the data 

processing unit (Yates et al., 2009). Ionisation techniques employed in mass spectrometry (MS) 

analysis include matrix-assisted laser desorption ionisation (MALDI) and electrospray 
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ionisation (ESI). Innovation of these soft ionisation techniques allowed for the use of MS to 

spread to biological sciences (Wilm, 2009). It afforded analysis of protein samples without the 

risk of considerable degradation of proteins (Yates et al., 2009). To ensure accurate results, 

molecular concentrations have to match the intensity of the ion signal given off by the mass 

spectrometer. Discrepancies between molecular concentrations and ion signal intensity may 

occur in both MALDI and ESI. This is unfavourable but can be prevented by understanding 

how ionisation occurs in each technique (Wilm, 2009).  

For MALDI, an acidic matrix is utilized and ionisation occurs through proton transfer from the 

matrix (Wilm, 2009). An ion suppression effect occurs when some molecules fail to ionise due 

to the presence of molecules having a high proton affinity. The discrepancy depends on the 

size of the peptides being analysed. Peptides larger than 3 kDa have high proton affinity and 

are not likely to be suppressed by other molecules. When analysing peptides below 3 kDa, a 

near identical standard should be used for comparison as peptides are likely to be suppressed. 

The accuracy of ESI is dependent on the flow rate at which it is operated. Ideally, low flow 

rates (i.e. 100 nL/min) should be used to most accurately reflect consistent molecular 

concentrations and mass spectral signal intensities (Wilm, 2009). ESI works by producing ions 

from droplets less than 1 µm in diameter. With high flow rates, droplets larger than 1 µm are 

produced resulting in the formation of highly charged secondary droplets. Primary and 

secondary droplets are hydrophilic and hydrophobic, respectively. Hydrophobic molecules 

have higher desolvation efficiency. High flow rates therefore results in an ion suppression 

effect in which the hydrophilic molecules are not detected (Wilm, 2009; Xie et al., 2011). 

It is important to note that not all electrospray ionised peptides will be fragmented or lead to 

successful protein identifications. In the presence of highly abundant peptides, low abundant 

peptides may not be detected by the mass spectrometer (de Godoy et al. 2006). Another 
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limitation lies in the way liquid chromatography-mass spectrometry (LC-MS) platforms 

analyse complex mixtures. Since peptides are randomly measured, reproducibility in repeat 

measurements of the same samples is reduced (de Godoy et al., 2006; Ong, 2012). 

 

Figure 6:  Characteristics of instrumentation and the related influences on proteome coverage (de 

Godoy et al., 2006). 

 

Achieving full coverage in quantitative proteomics is reliant on three independent but 

interconnecting characteristics of the mass spectrometer namely sensitivity, speed of 

sequencing and the dynamic range (Figure 6) (de Godoy et al., 2006). Sensitivity is dictated 

by the ability to detect low abundant peptides. The sensitivity in quantifying complex peptide 

mixtures is lower than for single peptides and is restricted if only a small or finite amount of 

material is available for analysis. Larger samples have an increased likelihood of detecting low 

abundant peptides (de Godoy et al., 2006). Speed of sequencing refers to the rate peptides are 

sequenced as they elute from the LC column. If sequencing does not occur rapidly, not all 

eluted peptides will be sequenced although the signal for the unsequenced peptides will still be 

detected. Therefore, peptides may be detected but downstream may not be identified. For 
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SILAC, this could mean that light and heavy peptide pairs are not detected during the same run 

(de Godoy et al., 2006). Dynamic range denotes the ability to differentiate between high and 

low abundance signals. A common limitation of dynamic range includes the inability to detect 

very low abundant signals in the presence of very high abundant signals (de Godoy et al., 2006; 

Mann & Kelleher, 2008).  

Separation science and fractionation minimize limitations of LC-MS and simplifying analysis 

(Issaq, 2001; de Godoy et al., 2006).  The use of a single separation technique will however 

not be successful in resolving a complex mixture of proteins. Multidimensional separation 

techniques yield more accurate results and the dynamic range of the protein sample is lowered 

(Reinders et al., 2006). This is especially evident in the analysis of proteins extracted from 

whole cell or tissue (Issaq, 2001).  It has been established that fractionation prior to MS analysis 

is beneficial in decreasing the burden on dynamic range and sequencing speed which in turn 

lower the burden on sensitivity (de Godoy et al., 2006). Common fractionation techniques for 

proteins and peptides are one-dimensional PAGE (1D PAGE) gels and reversed-phase 

chromatography, respectively. These techniques are chosen for their robustness and high 

resolution, and further fractionation is not necessary (de Godoy et al., 2006). While separation 

is advantageous in allowing full proteome coverage, caution is asserted against extensive 

fractionation as sampling of the same peptides may occur repeatedly. Also, sample usage and 

measurement time increases with each separation step. 

A limitation of particular concern in SILAC is the conversion of arginine residues to proline in 

culture (Ong & Mann, 2006). This could be circumvented by reducing the concentration of 

arginine added to the culture medium. Some cell lines are however negatively affected by 

arginine starvation (Van Hoof et al., 2007). In cases where less arginine is not an option, 

manual or mathematical experimental corrections can be made by addition of heavy proline 

peaks to heavy arginine peaks. This process is labour-intensive, particularly for large data sets 
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and may result in significantly reduced accuracy. Prevention of arginine to proline conversion 

or the compensation for this effect has been investigated through computational correction 

(Park et al., 2009). The addition of unlabelled proline to the SILAC media has also been 

investigated with favourable results compared to controls without the additional proline and 

was shown to be cell line independent (Lößner et al., 2011). 

Studies have successfully determined proteome changes in cells between non-cancerous and 

cancer cell lines and in cells as a result of specific treatment using SILAC (Edelmann et al., 

2014; Yang et al., 2015). Proteomics would thus be an ideal approach to study proteome 

changes in MCF7 cells in response to fucoidan treatment.  
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Chapter 3 

Investigating proteome changes in breast cancer cells in response to 

fucoidan 

3.1 Introduction 

Fucoidan is a complex sulfated polysaccharide extracted mainly from brown seaweeds (Morya 

et al., 2012). A range of bioactivities have been reported, including antibacterial, antiviral, anti-

inflammatory and anticancer properties.  The anticancer effect of fucoidan has been studied in 

many cancerous cell lines. The polysaccharide displayed potent apoptotic and growth 

inhibitory effects on cancerous cells, while having little to no effect on non-cancerous cell lines 

(Xue et al., 2012). Past research has been focused on the determination of the complex structure 

of fucoidan (Li et al., 2008) and understanding cellular processes as a result of fucoidan 

treatment (Fukahori et al., 2008; Kim et al., 2010). While the biochemical structure has only 

been partially elucidated (Chevolot et al., 2001), bioactivity has been largely attributed to the 

size, degree of sulfation and structure of the molecule (Morya et al., 2012).  The effect of 

fucoidan has been explored in several studies by Western blot analysis of proteins known to be 

up- or down-regulated in cancer (Kim et al., 2010; Xue et al., 2012). The mechanism of action 

remains unclear.   

Fucoidan displays potent anticancer activity against breast cancer cells and shows promise as 

an alternative to chemotherapeutic drugs and radiation therapy.  Breast cancer incidence is 

increasing (Ferlay et al., 2012), while current treatments are invasive and have undesirable side 

effects (Jones et al., 2012; Senthilkumar et al., 2013; Moghadamtousi et al., 2014). This study 

aimed to examine the global protein expression of MCF7 breast cancer cells treated with 

fucoidan. A global proteomic study may illuminate the cellular processes involved in 
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bioactivity and may provide invaluable insight in determining the mechanism of action of the 

polysaccharide. Materials used and suppliers are listed in the Appendix. 

 

3.2 Materials and methods 

3.2.1 Mammalian cell culture 

3.2.1.1 Culturing of human breast cancer cells 

Human breast cancer cells (MCF7, ATCC® #HTB-22™) were cultured in Dulbecco’s 

Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) supplemented with 10% fetal 

bovine serum (FBS) and penicillin/streptomycin (10 U/ml) in 25 cm2 flasks unless stated 

otherwise. Cells were cultured in a humidified incubator at 37°C with 5% CO2 atmosphere. 

Cryovials containing mammalian cells were retrieved from -150°C storage and partially 

thawed in a water bath at 37°C. Contents were transferred to a sterile 15 ml tube containing 5 

ml DMEM/F-12. Cells were collected by centrifugation (Sorvall® TC6 Benchtop centrifuge 

(DuPont) / rotor serial number H400) at 2000 rpm for 3 minutes, resuspended in 5 ml 

DMEM/F-12 media, transferred to a 25 cm2 flask and cultured. All harvesting of cells was done 

using a Sorvall® TC6 Benchtop centrifuge (DuPont) / rotor serial number H400 centrifuge at 

2000 rpm for 3 minutes unless stated otherwise. 

 

3.2.1.2 Trypsinization, counting and cryopreservation of cells 

Media were decanted from flasks when the cells reached 80-100% confluency. Cells were 

gently washed with 5 ml 1X PBS. A 3ml solution of Trypsin/EDTA (0.25%/0.02%) was added 

and the culture was incubated at 37°C for 2-3 minutes. Cells were viewed under a phase 

contrast microscope (Nikon, TMS-F No.301841) to inspect for cell detachment. Media (3 ml) 
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was added to inactivate trypsin. The mixture was transferred to a sterile 15 ml tube and cells 

were pelleted by centrifugation.  

Cell counts were determined by transferring a 10 μl mixture of cells and Trypan blue exclusion 

dye (1:1) to Countess chamber slides. Cells were electronically counted using the Countess 

Automated Cell Counter (Life Technologies). 

For cryopreservation, cell pellets were resuspended in DMEM media containing 10% DMSO. 

Aliquots of 1.5 ml were transferred to cryovials and stored at -150°C. 

 

3.2.1.3 Dose response of human breast cancer cells treated with fucoidan 

A working solution of crude fucoidan from Fucus vesiculosus (Sigma Aldrich Co.) was 

prepared in water at 5 mg/ml. Dilutions were prepared in water and UV sterilized using a 

Stratalinker® UV Crosslinker (Stratagene) for 5 minutes. Trypsinized MCF7 cells were seeded 

in triplicate into 96-well plates at a density of 1X104 cells per well to a final volume of 200 µl. 

Cells were cultured for 24 h, spent media was removed and cells were washed twice with 100 

µl 1X PBS. Fresh media was added to each well (140 µl) followed by 60 µl of fucoidan at 

different concentrations (0.1 mg/ml – 0.5 mg/ml). After 24 h of culture, media was removed, 

and 100 µl fresh media and 10 µl of WST-1 were added to each well. Absorbance was measured 

using a POLARstar Omega microplate reader (BMG Labtech) over a range of wavelengths 

(430 nm, 440 nm, 450 nm, 460 nm, 470 nm, 480 nm, 490 nm and a reference wavelength of 

610 nm). Absorbance readings were taken every 30 minutes over a period of 3 h and 30 minutes 

to determine the optimum wavelength and incubation time. The IC50 was assessed as the 

concentration that inhibited 50% of cell growth. Cell viability was calculated using the 

equation:  
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒−𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘
× 100 

 

 

 

 



 

45 
 

Statistical analysis of cell viability data was presented as mean ± SD. 

 

3.2.1.4 Protein extractions from human breast cancer cells treated with 

fucoidan 

Twelve 25 cm2 flasks were seeded and cells were cultured to 60-70% confluency. Cells were 

treated with 0.2 mg/ml fucoidan. The ratio between media and fucoidan (70:30 v/v) was the 

same as with dose response assays but in a final volume of 7 ml.   

MCF7 cells were treated for 0, 3, 6, 8, 24 and 48 h with fucoidan. Total protein was extracted 

from the cells following fucoidan treatments. At time of extraction, spent media was decanted 

with tubes and detached cells were pelleted by centrifugation. The supernatant was discarded. 

Cells were washed with 5 ml 1X PBS and pelleted by centrifugation. Cell pellets were 

resuspended in Cytobuster Protein Extraction Reagent and transferred to flasks.  Extractions 

were performed according the manufacturer’s instructions. Flasks were placed on a shaker for 

5 minutes at room temperature. After incubation, lysed cells were scraped and transferred to a 

1.5 ml tube. Cells were collected by centrifugation (Eppendorf Microcentrifuge 5417R) at 

16 000 g for 5 minutes at 4°C. Supernatants were analysed for protein content and stored at -

20°C. 

Protein quantification was performed using the Bicinchoninic Acid (BCA) Protein Assay 

according to the manufacturer’s 96-well assay protocol. Bovine serum albumin (BSA) 

standards ranging from 0.2-1 mg/ml in 0.2 mg/ml increments were prepared in the same buffer 

as protein samples. Blanks, standards and protein samples were added to separate wells 

followed by the BCA working solution (50:1 v/v ratio Bicinchoninic Acid Solution : Copper 

(II) Sulfate Pentahydrate 4% Solution). All assays were performed in triplicate. The 96-well 

plate was incubated at room temperature for 30 minutes and absorbance was measured at 562 
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nm using a POLARstar Omega microplate reader (BMG Labtech). A standard curve of the net 

absorbance vs. the protein concentration of each protein standard was plotted. The protein 

concentration was determined with the net absorbance standard curve equation. 

  

3.2.2 SDS-PAGE and immunoblotting 

One Dimensional Sodium Dodecyl Sulfate – Poly Acrylamide Gel Electrophoresis (1D SDS-

PAGE) gels were prepared using stock solutions for 12% (v/v) separating and 4% (v/v) 

stacking gels (Table 3). Preparation and electrophoresis was done using Bio-Rad Mini-

PROTEAN® Tetra Cell apparatus. 

 

Table 3: Stock solutions used for preparing SDS-PAGE gels. 

 12% Separating gel 4% Stacking gel 

1.5 M Tris-HCl pH 8.8 2.5 ml N/A 

0.5 M Tris-HCl pH 6.8 N/A 0.5 ml 

Acrylamide-Bis (40%) 3 ml 0.4 ml 

APS (10%) 0.05 ml 0.025 ml 

TEMED 0.01 ml 0.005 ml 

Distilled water 4.44 ml 3.07 ml 

TOTAL VOLUME 10 ml 4 ml 

 

The 12% (v/v) separating gel was poured between gel plates and overlaid with 1 ml 

isopropanol. Once the separating gel had solidified, the isopropanol was poured off and the gel 

washed with dH2O. The 4% (v/v) stacking gel solution was poured above the separating gel 
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and a 15-well comb was inserted. Once solidified, the comb was removed. The electrophoresis 

tank was filled with 1X SDS running buffer before loading of protein samples. Protein samples 

were diluted to 20 µg and transferred to sterile 0.6 ml Eppendorf tubes. Each sample was mixed 

with 5X Lane Marker Reducing Sample Buffer, incubated at 95°C for 4 minutes and cooled to 

room temperature.  A protein molecular weight marker and protein sample mixtures were 

loaded into separate wells of the SDS-PAGE gel. Electrophoresis was carried out at 90 V for 

120 minutes. 

Immunoblotting (Western blot analysis) was carried out using XIAP and Phospho ERK1/2 

antibodies. Protein samples were separated by 1D SDS-PAGE and transferred to a 

Polyvinylidene Difluoride (PVDF) membrane using a BioRad Mini TransBlot Cell. The semi-

dry transfer was conducted using BioRad conditions for 1 mini gel of mixed molecular weight, 

at 25 V and 1.3 A, for 15 minutes. The membrane was placed in blocking buffer for 1 h with 

shaking, washed in TBS-T and incubated overnight with shaking in primary antibody (1:2000) 

at 4°C. The membrane was washed in TBS-T and incubated in secondary antibody (1:4000) 

for 1 h at room temperature with shaking and washed in TBS-T before visualization.  Western 

Blots were visualized using the UVP BioSpectrum® Imaging System and Western blot 

substrate solution. 

For quantitative band analysis, densitometric analysis was performed using ImageJ 

densitometry software (Version 1.46r, National Institutes of Health, Bethesda, MD). Bands 

were quantified based on the relative signal intensities. The densitometry data for the band 

intensities were used to construct bar graphs. Fold change was calculated relative to the 0 h 

untreated samples. 
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3.2.3 SILAC culture 

3.2.3.1 SILAC media and labelling 

SILAC media was prepared according to manufacturer’s instructions. Briefly, the media was 

supplemented with dialyzed FBS and penicillin/streptomycin (10 U/ml). Dialyzed FBS is 

added because the small molecules quantities such as amino acids have been significantly 

reduced to allow for labelling with specific isotopically labelled amino acids. For light and 

heavy culture medium, 50 mg L-Lysine-2HCl and L-Arginine-HCl were added to 500 ml 

media resulting in concentrations of 0.46 mM and 0.47 mM, respectively. Media was filter-

sterilized using 0.22 µm filters and stored at 4°C. A flask of MCF7 cells was trypsinized and 

cells split into two 75 cm2 flasks, each containing 1.5x105 cells and cultured further in either 

light or heavy SILAC media (with regular changes) for 13 weeks to achieve full label 

incorporation. 

 

3.2.3.2 RIPA buffer protein extractions 

Following 13 weeks culture in SILAC medium, total protein extractions were carried out using 

Radio Immuno Precipitation Assay (RIPA) buffer containing 1 U/ml Benzonase nuclease. 

Floating or detached cells in media were harvested by centrifugation, the cell pellet washed 

with PBS and again harvested by centrifugation. Cell pellets were resuspended in RIPA buffer, 

transferred to flasks and kept on ice for 5 minutes with occasional swirling to ensure full 

coverage of the plate surface. The cell lysate was collected using a cell scraper. The cell debris 

was pelleted by centrifugation (Eppendorf Centrifuge 5417R) at 14000 g for 15 minutes and 

resulting supernatant transferred to a sterile 1.5 ml tube and stored at -20°C. 
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3.2.3.3 Protein quantification  

Quantification of protein samples cultured in SILAC media was performed using a Qubit® 

Protein Assay Kit and a Qubit® 2.0 Fluorometer (Life Technologies). This was performed 

according to the manufacturer’s specifications using 1 µl per sample for quantification.  

 

3.2.3.4 Determination of label incorporation efficiency 

Two duplicate 1D SDS-PAGE gels were prepared, each containing 30 µg heavy labelled 

protein samples extracted from untreated cells.  Gels were stained with Coomassie and 

destained in Destaining solution. Liquid chromatography-tandem mass spectrometry (LC-

MS/MS) analysis was conducted at the Centre for Proteomic and Genomics Research (CPGR) 

to determine labelling efficiency. 

 

3.2.3.5 Lysis of SILAC cultured cells and protein sample preparation 

The optimum length of culture time in SILAC media to achieve sufficient label incorporation 

was achieved as described in Section 3.2.3.1. Cells were cultured in SILAC media for 13 weeks 

(as determined by label incorporation experiment) and treated with 0.2 mg/ml fucoidan (IC50). 

The ratio between media and fucoidan (70:30 v/v) was the same as with dose response assays 

but in a final volume of 9 ml. Distilled water instead of fucoidan solution was added to 

untreated flasks. The SILAC culture included four biological replicas with four replicas per 

condition (Table 4).  
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Table 4: SILAC light and heavy treatments and repeats. 

Label Biological replicas Treated/ Untreated 

Light 1 Untreated 

Light 2 Untreated 

Light 3 Untreated 

Light 4 Untreated 

Light 1 Fucoidan treated 

Light 2 Fucoidan treated 

Light 3 Fucoidan treated 

Light 4 Fucoidan treated 

Heavy 1 Untreated 

Heavy 2 Untreated 

Heavy 3 Untreated 

Heavy 4 Untreated 

Heavy 1 Fucoidan treated 

Heavy 2 Fucoidan treated 

Heavy 3 Fucoidan treated 

Heavy 4 Fucoidan treated 

 

After 24 h of treatment, proteins were extracted with RIPA buffer and stored at -20°C. Protein 

quantification was performed using a Qubit® Protein Assay Kit and the Qubit® 2.0 

Fluorometer as the concentration of dithiothreitol (DTT) in the protein extraction buffer was 

too high to be compatible with the BCA and Bradford protein assays. Protein concentration 

was determined and 1D SDS-PAGE analysis was performed to assess protein quality. Western 

blot analysis was performed to determine equal loading and thus protein quantification 
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accuracy. Protein samples of biological replicas were mixed (as described in Table 5), 

separated by 1D SDS-PAGE and analysed by mass spectrometry at the CPGR. 

 

Table 5: SILAC protein extraction mixtures loaded onto SDS-PAGE gel for pair-wise comparisons 

by mass spectrometry. 

Biological 

replicas 

 Mixture 

1  Light / untreated Heavy / treated 

2  Light / untreated Heavy / treated 

3  Light / untreated Heavy / treated 

4  Light / untreated Heavy / treated 

1  Heavy / untreated Light / treated 

2  Heavy / untreated Light / treated 

3  Heavy / untreated Light / treated 

4  Heavy / untreated Light / treated 

 

3.2.3.6 Mass spectrometry quantitation and data analysis 

The SILAC labelled protein extraction mixtures were separated by SDS-PAGE and the protein 

bands were excised from the gel after staining using a scalpel. The gel fragments were cut into 

1 mm x 1 mm cubes, destained twice and dehydrated. Proteins were reduced, alkylated and 

washed. Gel pieces were dehydrated again and protein digested by rehydrating the gel pieces 

in 0.2 mg/ml trypsin prepared in 50 mM ambic. Gel pieces were kept on ice and digested. 

Extracts were transferred to a sterile tube. Samples were dried by vacuum centrifugation and 

the buffer replaced by Millipore ddH2O. Samples were dried again and resuspended in 0.1% 

formic acid (FA), 2.5% acetonitrile (ACN) prepared in analytical grade water for LC-MS 

analysis.  
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The LC−MS/MS analysis was conducted at the CPGR with a Q-Exactive quadrupole-Orbitrap 

mass spectrometer (Thermo Fisher Scientific, USA) coupled with a Dionex Ultimate 3000 

nano-HPLC system. The extracted peptides were dissolved in sample loading buffer (97.5% 

water, 2.5% ACN, 0.1% FA) and loaded on a C18 trap column (300 µm×5 mm×5 µm). 

Chromatographic separation was performed with a C18 column (75 µm×250 mm×3.5 µm). 

Solvent A consisted of water and 0.1% FA, while solvent B consisted of ACN and 0.1% FA. 

The multi-step linear gradient for peptide separation was generated at 400 nL/minute as 

follows: 3 minutes time change; gradient change with 1 - 6 % Solvent B; 72 minutes time 

change; gradient change with 6 – 18% Solvent B; 22 minutes time change; gradient change 

with 18 – 35% Solvent B; 0.1 minutes time change; gradient change with 35 – 80% Solvent B; 

10 minutes hold with 80% Solvent B; 10 minutes re-equilibration with 1% Solvent B. The mass 

spectrometer was operated in positive ion mode with a capillary temperature of 250°C. The 

applied electrospray voltage was 1.95 kV.  Details of data acquisition are presented in Table 6.   

 

Table 6: Parameters for mass spectrometry data acquisition. 

Full Scan  

Resolution  70,000 (@ m/z 200)  

AGC target value  3e6  

Scan range  320-1750 m/z 

Maximal injection time (ms)  125 

Data-dependent MS/MS  

Inclusion Off 

Resolution  17,500 (@ m/z 200)  

AGC target value  1e5  

Maximal injection time (ms)  50 

Loop Count 10 

Isolation window width (Da)  3 

NCE (%)  27 

Data-dependent Settings  

Underfill ratio (%)  1 

Charge exclusion  Charge states 1,6-8,>8 
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Peptide match  preferred  

Exclusion isotopes  on  

Dynamic exclusion (s)  90 

 

SILAC data analysis by MaxQuant quantitation was conducted by loading RAW files into 

MaxQuant (version 1.5.2.8). Labeling was assigned by setting the multiplicity to 2. Heavy 

labels were assigned as Arg10 and Lys6. Variable modification selections were acetylation (N-

term), deamidation (NQ) and oxidation (M), fixed modification selection was 

carbamidomethyl (C). Digestion was set to trypsin/p (cleavage even if followed by proline) 

with 2 missed cleavages. All other parameters were as per default settings except for the 

inclusion of the re-quantify setting; setting the threshold for false discovery rate (FDR) at the 

peptide spectrum match (PSM), peptide and protein levels to 1 (i.e. 100%); and setting a 

minimum number of peptides, razor + unique peptides and unique peptides all to 2. The 

peptides used for quantitation were also set to unique peptides only. Proteins were searched 

against the Uniprot Human reference proteome set (Taxon identifier 9606). 

The output from MaxQuant was uploaded to Scaffold Q+ (version Scaffold_4.4.0, Proteome 

Software Inc., Portland, OR) for quantitation of SILAC peptide and protein identifications. 

Peptide identifications were accepted if they could be established at greater than 9.0% 

probability to achieve an FDR less than 0.1% by the Scaffold Local FDR algorithm. Protein 

identifications were accepted if they could be established at greater than 27.0% probability to 

achieve an FDR less than 1.0% and contained at least 2 identified peptides.  Protein 

probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). 

Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. Acquired intensities in the 

experiment were globally normalized across all acquisition runs. Individual quantitative 

samples were normalized within each acquisition run. Intensities for each peptide identification 
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were normalized within the assigned protein. The reference channels were normalized to 

produce a 1:1 fold change. All normalization calculations were performed using medians to 

multiplicatively normalize data. Differentially expressed proteins were determined using Mann 

Whitney Test analysis. 

 

3.2.3.7 Functional, network and pathway analysis 

Identified proteins were analysed using Scaffold Q+S (version Scaffold_4.4.0, Proteome 

Software Inc., Portland, OR) and classified by Gene Ontology (GO) terms for molecular 

function, biological process and cellular component. Proteins with opposing trends between 

datasets were excluded from further analysis. Statistically significant enriched GO terms were 

identified using a web-based bioinformatics tool, the Database for Visualization and Integrated 

Discovery (DAVID) version 6.7 (http://david.abcc.ncifcrf.gov/) for gene enrichment. Official 

gene symbols of differentially regulated proteins were uploaded into DAVID and functional 

annotation analysis was conducted.  

The Search Tool for the Retrieval of Interacting Genes (STRING) version 10 (http://string-

db.org/) is a web-based database and was used to categorise likely protein interactions 

(Szklarczyk et al., 2014) for statistically significant differentially expressed proteins 

subsequent to DAVID analysis. Separate queries for differentially expressed proteins (up-

regulated and down-regulated) were mapped for gene network enrichment and p < 0.05 was 

considered significant for pathway analyses. Interaction analyses were carried out using a 

confidence score setting of 0.9. 
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3.3 Results 

3.3.1 Dose response of breast cancer cells treated with fucoidan 

Dose response is represented as percentage viability of MCF7 cells after 24 h treatment with 

different concentrations of fucoidan (Figure 7). Cell viability decreased with increasing 

fucoidan concentrations.  The concentration of fucoidan resulting in a 50% reduction in cell 

viability (IC50) was determined as 0.2 mg/ml. 

 

Figure 7: Percentage viability of MCF7 breast cancer cells after treatment with fucoidan. The data 

shown are the means ± SD of three experiments. 
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3.3.2 Protein quantification standard curve 

The BCA protein assay standard curve is presented in Figure 8, while the absorbance values 

for BSA standards are shown in Table 7. The R2 value for the standard curve was 0.981. Tables 

8 and 9 display the absorbance values for the protein samples and the calculated corresponding 

protein concentrations, respectively. Protein concentrations obtained ranged from 2.083 mg/ml 

– 3.327 mg/ml. 

 

Figure 8: Standard curve of BSA standards for BCA protein quantification assay. 

 

 

Table 7: Absorbance values of BSA standards. 

Absorbance BSA standards 

 1 2 3 4 5 

Ave 0.176 0.344 0.451 0.610 0.722 

Stdev 0.010 0.033 0.027 0.032 0.009 
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Table 8: Absorbance values for protein samples. 

Absorbance protein samples 

 0C 0T 3C 3T 6C 6T 8C 8T 24C 24T 48C 48T 

Ave 0.320 0.414 0.407 0.500 0.313 0.335 0.319 0.445 0.319 0.330 0.422 0.363 

Stdev 0.004 0.014 0.103 0.034 0.012 0.004 0.034 0.011 0.003 0.064 0.044 0.054 

 

 

Table 9: Protein concentrations calculated from standard curve and absorbance values. 

Protein sample concentrations (mg/ml) 

 0C 0T 3C 3T 6C 6T 8C 8T 24C 24T 48C 48T 

Ave 2.129 2.754 2.708 3.327 2.083 2.229 2.122 2.961 2.122 2.196 2.808 2.417 

 

3.3.3 Western blot analysis of MCF7 protein extracts 

MCF7 breast cancer cells were treated with fucoidan (0.2 mg/ml) and proteins were extracted 

at different time points. Control samples were not exposed to fucoidan. The MCF7 protein 

extractions were well separated by SDS-PAGE as seen by distinct bands (Figure 9). Subsequent 

Western blot analysis was performed with 2 antibodies: XIAP and Phospho ERK 1/2.  

 

11 

8h 

12 

24h 

13 

48h 

7 8 

0h 

9 

3h 

10 

6h 

3 

6h 

4 

8h 
6 

48h 

M 1 

0h 

2 

3h 

14.4 kDa 

35.0 kDa 

45.0 kDa 

66.2 kDa 

116.0 kDa 

18.4 kDa 

25.0 kDa 

Lanes 

Time 
5 

24h 

Figure 9: Coomassie-stained 1D SDS-PAGE acrylamide gel of total lysates produced from 

MCF7 cells. Twenty µg of protein was loaded per sample. Lanes M: molecular weight marker; 

Lanes 1-6: untreated cells; Lane 7: empty; Lanes 8-13: fucoidan treated cells. 
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3.3.3.1 XIAP Western blot analysis 

Protein lysates produced from fucoidan treated cells were investigated for XIAP expression 

using Western blot analysis. Lysates from untreated cells revealed a gradual increase in 

expression with a sharp increase between time points 8 h and 24 h and a decrease in expression 

at 48 h. In the lysates from treated cells the increase in XIAP expression occurred more rapidly 

with distinct bands at 3 h, 6 h, 8 h and 24 h (Figure 10A). Densitometric analysis of band signal 

intensities is shown as relative density (fold change) in Figure 10B. XIAP expression increased 

5-fold after 3 h of exposure with fucoidan and peaked at 6 h with >9-fold increase, followed 

by a gradual decrease over the next 42 h. Expression in untreated cells peaked at 24 h (19-fold 

increase).  
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Figure 10: Effect of fucoidan on XIAP expression in MCF7 breast cancer cells over 48h of 

exposure to fucoidan. (A) Western blot image. Lanes 1-6: untreated cells; Lane 7: empty; Lanes 

8-13: fucoidan treated cells. (B) Densitometric analysis of the relative density (fold change) of the 

signal intensities. 
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3.3.3.2 Phospho ERK1/2 Western blot analysis 

In untreated MCF7 cells, phosphorylation of ERK1/2 gradually increased 26-fold over 48 h 

(Figure 11). Phosphorylation in fucoidan treated samples peaked at 6 h (8 fold increase) 

followed by a gradual decrease over time (Figure 11A). Expression over the first 6 h was 

significantly higher than levels in control cells.  
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Figure 11: Effect of fucoidan on ERK1/2 expression in MCF7 breast cancer cells over 48h exposure 

to fucoidan. (A) Western blot image. Lanes 1-6: untreated cells; Lane 7: empty; Lanes 8-13: fucoidan 

treated cells. (B) Densitometric analysis of the relative density (fold changes) of the signal intensities. 
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3.3.4 SILAC protein quality and equal loading analysis 

SILAC isotope metabolic protein labelling was carried out over a period of 13 weeks as 

suggested by a pilot SILAC labelling experiment (Section 3.2.3.4). Protein concentrations of 

SILAC labelled protein extracts were in the range of 2.9 - 3.46 mg/ml. Separation by SDS-

PAGE revealed clear, distinct bands indicating good quality protein extracts (Figure 12A and 

12B).  

A.  
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Figure 12: Coomassie-stained 1D SDS-PAGE gels of (A) light and (B) heavy SILAC labelled 

protein extractions from MCF7 cells.  Twenty µg of protein was loaded per lane. Lane M: 

molecular weight marker; Lanes1-4: untreated samples; Lane 5, empty lane; Lanes 6-9, fucoidan 

treated samples. 
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Confirmation of protein quantification was performed by Western blot analysis with actin, a 

method commonly used as a loading control (Figures 13A and 13B). Western blot results 

display that SILAC protein loadings were near equal.  

 

A.  

 

B. 

 

 

3.3.5 SILAC mass spectrometry analysis 

Mass spectrometry SILAC protein analysis of light labelled fucoidan treated and heavy labelled 

untreated samples (Data Set 1) resulted in identification of 2098 proteins. Analysis of heavy 

treated and light untreated samples (Data Set 2) resulted in identification of 2155 proteins. Of 

these, 1704 and 1776 proteins, respectively, satisfied 95% confidence using Scaffold 4 Q + S 

Proteomics Software. Proteins were classified by GO terms for molecular function (Figure 14), 

biological process (Figure 15) and cellular component (Figure 16). 
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Figure 13: Actin Western blot analysis to investigate equal loading and accuracy of protein 

quantification. (A) Light-labelled SILAC proteins samples. (B) Heavy-labelled SILAC proteins 

samples. Lanes 1-4, untreated samples; lane 5, empty; lanes 6-9, fucoidan treated samples. 
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Figure 14: Functional classification of identified proteins using NCBI annotations based on universal 

Gene Ontology terms for molecular function. Protein classification is shown as percentage proteins 

expressed for each molecular function category for all identified proteins (adapted from Scaffold). 

 

 

 

Figure 15: Functional classification of identified proteins using NCBI annotations based on universal 

Gene Ontology terms for biological process. Protein classification is shown as percentage proteins 

expressed for each biological process category for all identified proteins (adapted from Scaffold). 
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Figure 16: Functional classification of identified proteins using NCBI annotations based on universal 

Gene Ontology terms for cell component. Protein classification is shown as percentage proteins 

expressed for each cellular component category for all identified proteins (adapted from Scaffold). 

 

Comparison between data sets revealed discrepancies in differentially regulated proteins (i.e. 

up-regulated in Data Set 1 and down-regulated in Data Set 2). Proteins which were similarly 

expressed in both data sets are listed in Table A1 (Appendix). This included a total of 392 

proteins of which 201 were up-regulated and 191 down-regulated.  

 

DAVID enrichment analysis revealed 233 proteins (130 up-regulated and 123 down-regulated) 

with an enrichment score above 1.3. A score above 1.3 concurs with a p-value of 0.05 (Huang 

et al., 2009). Subsequent STRING interaction analysis was carried out using the highest 

confidence level (0.9). Significance of pathways was considered for p < 0.05. Using STRING, 

analysis of biological processes for the up-regulated proteins revealed proteins associated with 

the positive regulation of processes such as cell cycle arrest, ubiquitin-protein ligase activity 

involved in proteasomal degradation and cellular catabolic process were observed. Moreover, 

among the up-regulated proteins were 19 proteins related to cell death (Figure 17). Of these, 
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18 were related to programmed cell death. For down-regulated proteins, proteins involved in 

positive regulation of intrinsic apoptotic pathway were observed. Figures of the up- and down-

regulated proteins involved in the cell cycle arrest (Figure A1), proteasomal degradation 

(Figure A2), cellular catabolic process (Figure A3) and the intrinsic apoptotic pathway (Figure 

A4) mentioned are shown in the Appendix. Functions of proteins, high-lighted by STRING for 

having biological processes which are connected to cell death, are presented in Table 10. 
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Figure 17: STRING analysis revealed 19 proteins (shown in red) associated with cell death (adapted 

from STRING). 
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Table 10: Functions of 19 cell death-associated proteins. 

Protein Function Refs 

DSP Involved in desmosomal cadherin-plakoglobin complex into 

plasma membrane domains and anchoring intermediate 

filaments to the desmosomes 

Rampazzo et 

al., 2002 

HTT Possible role in microtubule-mediated transport or vesicle 

function 

Gauthier et 

al., 2004 

ALDOC Glycolytic enzyme that catalyzes the reversible aldol cleavage 

of fructose-1,6-biphosphate and fructose 1-phosphate to 

dihydroxyacetone phosphate and either glyceraldehyde-3-

phosphate or glyceraldehyde, respectively 

Fujita et al., 

2014 

GPI Glycolytic enzyme, can function as tumor-secreted cytokine 

and angiogenic factor 

Knight et al., 

2014 

GAPDH Plays a role in glycolysis. Involved in several functions i.e. 

transcription, RNA transport, DNA replication and apoptosis 

Nicholls et 

al., 2012 

CSE1L Possible role in cell proliferation and apoptosis Lorenzato et 

al., 2012 

MYBBP1A May positively or negatively regulate transcription Mori et al., 

2012 

EIF4G2 May be involved in cap-dependent translation to IRES-

mediated translation during apoptosis, mitosis and viral 

infection. 

Ghosh & 

Lasko, 2015  

PRKDC Involved in repair of DNA double strand breaks and 

recombination 

Zhou et al., 

2014 

DDX5 Plays a role in transcriptional regulation Laurent et al., 

2011 

PPP2CA Phosphatase for dephosphorylation of the 20S proteasome Patil et al., 

2013 

PAK2 May play a role in the apoptotic process Marlin et al., 

2009 

PSMA5 Subunit of 20S proteasome complex Udeshi et al., 

2012 

PSMB4 Subunit of 20S proteasome complex Sánchez-

Lanzas et al., 

2014 

PSMB5 Subunit of 20S proteasome complex Vangata et 

al., 2014 

PSMB6 Subunit of 20S proteasome complex Sánchez-

Lanzas et al., 

2014 
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PSMC5 Subunit of 19S proteasome complex regulatory particle Ohnishi et al., 

2015 

GNB2L2 May be involved in recruitment, assembly and regulation of 

signalling molecules 

Chang et al., 

2001 

SQSTM1 Autophagosome cargo protein. Targets and binds to proteins 

for selective autophagy 

Zhang et al., 

2013a 
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3.4 Discussion 

Fucoidan has been shown to inhibit the growth of cancerous cells (Fukahori et al., 2008; Zhang 

et al., 2011; Mak et al., 2014) and display an apoptotic effect on various cancerous cell lines 

(Kim et al., 2010; Lee et al., 2012; Park et al., 2013) with no effect on non-cancerous cells 

(Kawamoto et al., 2006; Zhang et al., 2011; Xue et al., 2012). Several studies have been 

conducted on the effect of fucoidan on the mammalian MCF7 breast cancer cell line 

(Yamasaki-Miyamoto et al., 2002; Xue et al., 2012). The current study investigates the effects 

of fucoidan treatment on the MCF7 proteome. 

Bioactivity of fucoidan is said to be dependent on its structure and molecular weight, 

correlating with an increase in sulfate to fructose ratio and fucoidan polysaccharides of lower 

molecular weight (Cho et al., 2011). Although the biochemical structure of fucoidan has not 

yet been fully elucidated, several factors including species and age of algae, season of 

sampling, area of sampling and extraction method (Duarte et al., 2001; Skriptsova et al., 2010) 

have been reported to play a role in its complex structure. This study used a commercially 

available crude extract of fucoidan from Fucus vesiculosus with molecular weight ranging 

between 20-200 kDa purchased from Sigma-Aldrich. 

 

3.4.1 MCF7 cell viability in response to fucoidan treatment 

Colorimetric cell viability assays with tetrazolium salts are routinely used to investigate the 

effect of compounds on cellular activities of mammalian cells such as cell proliferation and 

cell death (Berridge et al., 2005). These assays assess the viability of in vitro cell cultures 

following exposure to test compounds. The tetrazolium salt WST-1 (4-[3-(4-Iodophenyl)-2-(4-

nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) was used to demonstrate cell viability 

of MCF7 cells in response to fucoidan treatment as described in Section 3.3.1 (page 55). WST-
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1 is composed of a tetrazole ring with four nitrogen atoms, surrounded by three aromatic groups 

that have phenyl moieties. One phenyl moiety is disulfonated, while another contains an iodine 

residue. Extracellular reduction of WST-1 occurs via electron transport across the plasma 

membrane by intracellular NADH (Berridge & Tan, 1998). Reduction of tetrazolium occurs 

via cleavage of the tetrazolium ring to form dark red formazan. Therefore, the amount of 

formazan produced is directly proportional to the number of viable cells.   

In this study, cell viability assays using the WST-1 cell proliferation reagent demonstrated a 

decrease in viability of MCF7 cells treated with fucoidan at all the fucoidan concentrations 

tested. The commercial fucoidan sample displayed an IC50 of 0.2 mg/ml for MCF7 cells is 

shown in Figure 7.  IC50 is defined as the concentration of a substance or drug which exhibits 

50% of the maximal inhibitory response (Sebaugh, 2011). The study by Banafa et al. (2013) 

also investigated the cytotoxic effects of fucoidan and found an inhibition of cell proliferation 

of close to 30% in MCF7 cells treated with fucoidan concentration of 0.2 mg/ml and 60% for 

0.3 mg/ml fucoidan concentration. Mak et al. (2014) reported an IC50 of 0.515 mg/ml for MCF7 

cells in response to commercial fucoidan treatment. The IC50 value of 0.2 mg/ml for fucoidan 

in MCF7 cells established in the current study is therefore in agreement with previous studies. 

 

3.4.2 Western blot analysis  

Protein extracted from MCF7 cells treated with 0.2mg/ml fucoidan (IC50) yielded 

concentrations ranging from 2.083 mg/ml – 3.327 mg/ml. Protein extracts were subjected to 

Western blot analysis to ascertain the effect of fucoidan treatment on expression of specific 

markers. Antibodies selected as markers were XIAP and Phospho ERK 1/2. These are markers 

for inhibition of apoptosis (Eckelman et al., 2006) and regulation of cell proliferation, 

respectively (Meloche & Pouysségur, 2007). Previous studies have reported down-regulation 
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of several anti-apoptotic or pro-survival proteins, while expression of proteins involved in 

apoptosis were up-regulated (Atashrazm et al., 2015). 

 

3.4.2.1 XIAP 

The inhibitor of apoptosis protein (IAP) family is important as members are pro-survival 

proteins which are able to inhibit apoptosis via intrinsic and extrinsic apoptotic pathways 

(Eckelman et al., 2006). XIAP expression was examined by Western blot analysis over time to 

establish if fucoidan treatment decreases its expression and therefore renders cells more 

susceptible to apoptosis. Untreated samples showed gradual increase in expression reaching a 

7-fold increase by 48 h (Figure 10). In the treated samples, expression peaked at 6 h (9-fold) 

followed by a steady decrease in expression. Expression of XIAP in the untreated samples 

indicated that cell survival mechanisms were in place and expression trends could be explained 

by cells competing for space and nutrients. In the treated samples, the increase in expression 

XIAP followed by a decrease indicate that cell death mechanisms were activated.  

Banafa et al. (2014) have reported that fucoidan induced apoptosis and down-regulated XIAP 

in MDA-MB-231 breast cancer cells. XIAP down-regulation has also been shown to sensitise 

cells to apoptosis via chemotherapeutic drugs in MCF7 cells (Lima et al., 2004) and gastric 

cancer cells (Tong et al., 2005). Park et al. (2013) examined the induction of apoptosis in 

human leukemia cells U937. XIAP showed a decrease in signal intensity with increasing 

concentration of fucoidan (20, 40, 60 and 80 µg/ml). Park et al. (2014) also observed a 

significant decrease in XIAP expression and an inhibition of proliferation in T24 human urinary 

bladder cancer cells with 100 and 150 µg/ml of fucoidan. 

Similar studies with bioactive compounds against a range of cancerous cells (Messmer et al., 

2001; Sasaki et al., 2000; Qiao et al., 2008) confirmed that XIAP down-regulation plays a role 
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in induction of apoptosis. Inhibition of caspase activity by IAP proteins may occur through 

either proteasomal degradation or enzymatic inhibition. Among the IAP proteins, X-linked 

inhibitor of apoptosis protein (XIAP) is the most extensively studied (Elmore, 2007). XIAP 

functions to inhibit apoptosis by direct interaction with caspase proteins (Eckelman et al., 

2006). The structure of XIAP consists of three baculoviral IAP repeat (BIR) domains and a 

ring domain. The BIR2 and BIR3 domains contain binding sites which participate in caspase 

inhibition. XIAP strongly inhibits caspase activity at the initiator and effector level. IAPs are 

often found to be overexpressed in cancerous cells (Eckelman et al., 2006; Galbán & Duckett, 

2010). 

   

3.4.2.2 Phospho ERK1/2 

Phosphorylated Extracellular Signal-Regulated Kinase 1 and 2 (Phospho ERK1/2), proteins in 

the mitogen-activated protein kinase (MAPK) cascade pathway, is implicated in downstream 

protein synthesis which plays a role in cell differentiation and proliferation (Lu & Xu, 2006; 

Roskoski, 2012). Inappropriate activation of ERK1/2 is a common occurrence in human 

cancers. Phosphorylation of ERK1/2 proteins was studied over time to determine the effect of 

0.2 mg/ml commercial fucoidan on activation of the MAPK cascade. In untreated cells, 

phosphorylation of ERK1/2 appeared to increase over time with high levels of phosphorylated 

ERK1/2 at 48 h. In contrast, phosphorylation in fucoidan treated samples was characterized by 

an increase over the first 6h followed by a decrease. This decrease may be due to 

dephosphorylation or degradation of ERK1/2 and thus a decrease in ERK1/2 activity, which 

has been associated with an increased sensitivity to apoptosis in cells (Lu & Xu, 2006). Results 

suggest that fucoidan inhibits inappropriate activation of the Phospho ERK1/2 cascade in 

cancerous MCF7 cells. Xue et al. (2012) also observed decreased expression of ERK1/2 with 
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increasing concentrations of fucoidan (Sigma-Aldrich) in 4T1 cells (mouse breast cancer).  

Aisa et al. (2005) observed the same effect for fucoidan from Sigma-Aldrich in HS-Sultan cells 

(human lymphoma).  In contrast, Zhang et al. (2011 and 2013) have shown that fucoidan 

extracted from Cladosiphon novae-caledoniae Kylin (820 µg/m and 200 µg/ml, respectively) 

resulted in phosphorylation of ERK1/2 in MCF7 breast cancer cells. However, apoptosis 

occurred regardless. They stated that activation of ERK1/2 may aid in the induction of 

apoptosis. ERK1/2-facilitated apoptosis has been reported but is not well-understood (Mebratu 

& Tesfaigzi, 2009). Hyun et al. (2009) also demonstrated activation of ERK1/2 by an increase 

in Phospho ERK1/2 over time with 100 µg/ml fucoidan. 

MAPK cascade proteins take part in extracellular signal transduction and phosphorylation of 

these proteins signifies activation of cascade. Aberrant regulation of the MAPK cascade may 

result in a range of diseases (Mebratu & Tesfaigzi, 2009) and up-regulation has been implicated 

in numerous cancers (Roskoski, 2012). Discrepancies in ERK activation in MCF7 cells (Zhang 

et al., 2011 and 2013) may be attributed to different fucoidan sources or pre-treatment of cells 

with N-acetyl-ʟ-cysteine (NAC), a reactive oxygen species (ROS) inhibitor. Studies have 

shown that treatment of cells with NAC influences protein expression of key proteins linked to 

apoptosis and survival, including, Mcl-1, p21, caspase-3 (Halasi et al., 2013) and Phospho 

ERK1/2 (Zhang et al., 2011a). NAC furthermore has a cyto-protective role, protecting cells 

against ROS-related toxicity (Zhang et al., 2011a). Both studies by Zhang et al. (2011 and 

2013) acknowledged a reduction in apoptosis in fucoidan treated cells as a result of NAC pre-

treatment compared to the control treated with fucoidan only. Furthermore, apoptosis induction 

regardless of ERK activation for fucoidan treatment could imply that ERK activation does not 

play a significant or essential role in fucoidan-induced apoptosis. ERK activation as seen in the 

study on HCT-15 colon cancer cells by Hyun et al. (2009) could be a cell line dependent 

response. 
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Caspase-3 is an enzyme that plays a key role in programmed cell death, or apoptosis (Plati et 

al., 2011). In a HCT-15 colon carcinoma cell line, Hyun et al. (2009) reported caspase-3 

activation after 24 and 48 h incubation with 100 µg/ml fucoidan. Xue et al. (2012) observed 

decreasing levels of pro-caspase-3 and increasing levels of cleaved caspase-3 with increasing 

concentrations of fucoidan in 4T1 cells, a mouse breast cancer cell line. Park et al. (2014) 

observed the same effect in T24 human urinary bladder cancer cells using 50, 100 and 150 

µg/ml fucoidan. Significant decreases in levels of pro-caspases-3, -8 and -9 were reported, 

while induction of caspase-3, -8 and -9 activities were evident with increasing concentrations 

of fucoidan. Decrease in levels of pro-caspases-3, -8 and -9 in conjunction with increases in 

levels caspases-3,-8 and -9 are indicative of caspase activation. In MCF7 cells, apoptosis 

induction has been shown through activation of caspase-8 (Banafa et al., 2013) as well as 

caspase-7 and -9 (Yamasaki-Miyamoto et al., 2009) suggestive of induction via the intrinsic 

and extrinsic pathways.  

Consequently, studies have shown that fucoidan does induce apoptosis via caspase activation 

in various cell lines as well as MCF7 breast cancer cells. Apoptosis, a form of programmed 

cell death, plays an important role in maintaining homeostasis by removing aging, defective 

and unnecessary cells. It is characterised by membrane blebbing (cell membrane protrusion) 

and DNA fragmentation (Portt et al., 2011). The controlled process is mediated by caspase 

activation and comprises of the extrinsic, intrinsic and the endoplasmic reticulum stress 

pathways. The extrinsic or death receptor signalling pathway is instigated by death receptors 

on the cell’s surface, whereas the intrinsic or mitochondrial signalling pathway occurs due to 

mitochondrial stress (Wong et al., 2011). Cysteine aspartic acid-specific proteases or caspases 

are a family of endoproteases mostly associated with apoptosis, with some implicated in 

inflammation. Caspases are expressed in an inactive form and are activated through cleavage 

at aspartic acid amino acid residues (Elmore, 2007), although initial activation occurs through 
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the formation of dimers with specific protein complexes (Eckelman et al., 2006). They may be 

classified as either initiator or effector caspases. The initiator caspases are activated early in 

apoptotic pathways, while the effector caspases are activated downstream in these pathways. 

As an effector caspase, activation of caspase-3 leads to several downstream processes including 

cell collapse, chromosomal degradation and expression of ligands for phagocytic recognition.  

 

3.4.3 SILAC mass spectrometry analysis 

SILAC labelling of MCF7 cells resulted in identification of more than 2000 proteins of which 

more than 1700 were identified at 95% confidence. Proteins were grouped by GO terms within 

molecular function, biological process and cellular component categories. Most common 

molecular functions were binding (approx. 35%) and catalytic activity (approx. 20%). 

Foremost biological processes were cellular (approx. 45%), metabolic (approx. 32.5-35%) and 

biological regulation (approx. 27.5-30%). Major cellular components noted were cytoplasm 

(approx. 42.5-45%), intracellular organelle (approx. 42.5-45%), organelle part (approx. 32.5-

35%), membrane (approx. 30-32.5%) and extracellular region (approx. 30-32.5%). 

Data sets generated for light labelled fucoidan treated / heavy labelled untreated and heavy 

labelled fucoidan treated / light labelled untreated MS analysis were largely not in agreement. 

Amongst replica experiments, only 392 out of over 2000 proteins were in agreement in terms 

of direction of expression (up- or down-regulation). Biological processes for up-regulated 

proteins indicate cell cycle arrest, proteasomal degradation and cellular catabolic processes. 

Cell cycle arrest is linked to an inhibition in cell proliferation and apoptotic cell death (Park et 

al., 2014) while proteasomal degradation and cellular catabolism show the cellular break down 

of proteins and cellular molecules. Together, the biological processes may be suggestive of 

growth inhibition and cell death. Biological processes for the down-regulated proteins indicate 
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down-regulation of the intrinsic apoptotic pathway. This, in conjunction with the up-regulated 

biological processes could suggest that the intrinsic apoptotic pathway is not utilized in favour 

of other apoptotic pathways. 

Nineteen up-regulated proteins were found to be associated with cell death although to date 

none have been studied with regards to fucoidan treatment. Although not linked to the 

regulation of specific proteasomal subunits, studies have found that fucoidan treatment leads 

to proteasomal degradation of certain proteins in several cell lines (Hsu et al., 2014; Kim et al., 

2014). Interestingly, of the 19 proteins, GAPDH, was shown in previous studies to be 

unaffected by fucoidan treatment and therefore was used as a standard or loading control (Lee 

et al., 2012; Banafa et al., 2013; Yang et al., 2013). Although SILAC is described as a robust 

and reproducible technique (Ong & Mann, 2006), the discrepancies in data has rendered the 

analysis inconclusive. While proteins associated with cell death were observed among the up-

regulated proteins, SILAC results need to be repeated to ensure reproducibility.  

A recent review has reported that labelled and label-free MS proteomics approaches do not 

out-perform each other and that overall accuracy of either approach is reliant on the 

experimental setup (Filiou et al., 2012). Concerns regarding SILAC include quantification of 

proteins only if identified in both samples of the pair-wise comparison. Stochastically occurring 

protein identifications could result in quantification not always taking place. A proteomic study 

on human lung cells in response to Copper oxide nanoparticles similarly reported only a total 

of 186 identified proteins which were in agreement between replica sample runs, although 

reasons for this effect were unexplained (Edelmann et al., 2014).  

Considering all results, it appears that fucoidan-mediated cell death in MCF7 cells occurs via 

the induction of apoptosis as observed by the down-regulation of apoptosis inhibitory protein, 

XIAP and cell survival promoting protein, ERK1/2. Although SILAC results did not confirm 
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expression of these proteins, proteins which were in agreement suggest that cell death 

mechanisms were up-regulated.  

 

3.5 Conclusion 

In conclusion, cell viability assays with WST-1 have shown that MCF7 cell death occurs as a 

result of fucoidan treatment. Decrease in expression of XIAP and phosphorylation of ERK1/2 

supports apoptosis activation. Fucoidan treatment resulted in apoptosis, however, the exact 

pathway or mechanism remains unclear. SILAC analysis was inconclusive as the vast majority 

of identified proteins were ambiguous, displaying opposing trends in regulation between data 

sets for many proteins.  

Future work includes a repeat of the SILAC study at lower flow rates. Both pair-wise detection 

of heavy and light labels as well as single sample analysis should be performed to determine 

accuracy of pair-wise analysis. Western blot analysis should be expanded to include caspases 

involved each of the apoptosis pathways and proteins associated with apoptosis to ascertain the 

exact apoptotic pathway involved and mechanism of action involved in fucoidan-mediated 

apoptosis. Expression analysis (qRT-PCR and Western blot) could be conducted on the up-

regulated proteins identified by STRING analysis for confirmation of differentially expression.  
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Appendix 1 

Materials and suppliers  

General materials and chemicals used are listed in Table A1. Antibodies used for 

immunoblotting techniques are listed in Table A2.  Reagents and solutions used for stable 

isotope labelling of amino acids in cell culture (SILAC) and in the study are listed in Table A3 

and Table A4, respectively.     

Table A1: Materials and suppliers. 

Materials Suppliers 

Acrylamide-Bis Solution (40%) Promega Corporation 

Ammonium Persulfate (APS) Sigma-Aldrich 

Benzonase Nuclease Sigma-Aldrich 

Bicinchoninic Acid Solution Sigma-Aldrich 

Bovine Serum Albumin (BSA) Roche 

Bradford Reagent Sigma-Aldrich 

Casein from Bovine Milk Sigma-Aldrich 

Cell Proliferation Reagent, WST-1 Roche 

Clarity™ Western ECL Substrate Bio-Rad 

Coomassie Brilliant Blue R250 Sigma-Aldrich 

Copper (II) Sulfate Pentahydrate 4% Solution Sigma-Aldrich 
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Cytobuster™ Protein Extraction Reagent Merck 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT) Roche 

Dulbecco’s Modified Eagle Medium (DMEM:F12), 

1:1 Mixture with 15mM HEPES, L-Glutamine 

Lonza 

 

Ethanol Kimix 

Fetal Bovine Serum The Scientific Group 

Fucoidan (Fucus vesiculosus) Sigma-Aldrich 

Glacial Acetic Acid Merck 

Glycine Merck 

Hydrochloric Acid Merck 

Hydroxyethyl piperazineethanesulfonic acid (HEPES) Sigma-Aldrich  

Isopropanol Merck 

5X Lane Marker Reducing Sample Buffer Thermo Scientific 

Penicillin/Streptomycin (5000 U/ml) Life Technologies 

Phosphate Buffered Saline (PBS) The Scientific Group 

Polyvinylidene Difluoride (PVDF) Membrane Bio-Rad 

Qubit® Protein Assay Kit Life Technologies 
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Sodium Chloride Merck 

Sodium Deoxycholate  Sigma-Aldrich 

Sodium Dodecyl Sulfate (SDS) Merck 

Sodium Hydroxide Merck 

N,N,N’,N’-Tetramethylethylenediamine (TEMED) Sigma-Aldrich 

Tris (hydroxymethyl) aminomethane (Tris) Merck 

Trypan Blue Exclusion Dye 0.4% Life Technologies 

Trypsin/EDTA The Scientific Group 

Tween® 20 Merck 

Unstained Protein Molecular Weight Marker Thermo Scientific 

Western Protein Standard Life Technologies 

 

Table A2: Antibodies used for Western blot analysis. 

Antibodies Suppliers 

Actin sc-1616 (HRP-conjugated) Santa Cruz Biotechnology 

Phospho-p44/42 MAPK (E1/2) (Thr202/Tyr204)  

(E10) (Mouse mAb) 

Cell Signaling Technology 

XIAP (2F1): sc-58537 (Mouse mAb)  Santa Cruz Biotechnology 
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Goat Anti-Mouse sc-2031 (HRP-conjugated) Santa Cruz Biotechnology 

Goat Anti-Rabbit sc-2004 (HRP-conjugated)  Santa Cruz Biotechnology 

 

Table A3: Media constituents used for stable isotope labelling of amino acids in cell culture (SILAC). 

Materials Suppliers 

L-Arginine-HCl Separations 

L-Arginine-HCl, 13C6, 15N4 Separations 

L-Lysine-2HCl Separations 

L-Lysine-2HCl, 13C6 Separations 

DMEM:F12 (1:1) Media for SILAC Separations 

Dialyzed Fetal Bovine Serum Separations 

 

Table A4: Solutions and recipes used in the study. 

Solutions Recipes 

7% Acetic acid 7% Acetic acid, made up with distilled water 

10% Ammonium 

Persulfate 

10% prepared in distilled water, filter sterilized and stored at -

20° 

Complete DMEM/F-12 

Media 

DMEM/F-12, 10% FBS, 1% Penstrep 
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Coomassie Stain 

Solution 

50% Ethanol, 0.05% Coomassie Brilliant Blue, 10% Acetic 

Acid, made up with distilled water 

Destaining Solution 5% Ethanol, 7% Acetic acid, made up with distilled water 

HEPES Solution 100 mM HEPES, pH 7.4 made up in distilled water 

RIPA Buffer 150 mM NaCl, 50 mM HEPES, pH 7.4, 0.5% Sodium 

Deoxycholate, 0.25% SDS, 100 mM DTT made up in distilled 

water 

5X SDS Running 

Buffer 

125 mM Tris, 0.96 M Glycine, 17 mM SDS, made up with 

distilled wate 

1X SDS Running 

Buffer 

Dilute 5X Running Buffer according to the dilution 1:5 (v/v) in 

distilled water 

SDS-PAGE Separating 

buffer 

1.5 M Tris, pH 8.8 made up in distilled water and autoclaved 

SDS-PAGE Stacking 

buffer 

0.5 M Tris, pH 6.8 made up in distilled water and autoclaved 

SILAC Complete Light 

Media 

SILAC DMEM/F12, 10% Dialyzed FBS, 1% Penstrep, 0.47 

mM L-Arginine-HCl, 0.46 mM L-Lysine-2HCl 

SILAC Complete 

Heavy Media 

SILAC DMEM/F12, 10% Dialyzed FBS, 1% Penstrep, 0.47 

mM L-Arginine-HCl, 13C6, 
15N4, 0.46 mM L-Lysine-2HCl, 13C6 

10X TBS 500 mM Tris, 150 mM NaCl, pH 7.4, made up with distilled 

water and autoclaved 
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1X TBS Dilute 10X TBS according to the dilution 1:10 (v/v) in distilled 

water 

TBS-Tween / Wash 

Buffer 

1X TBS, 0.1% Tween® 20, stored at 4°C 

1X Transfer Buffer 25 mM Tris, 192 mM Glycine, 20% Ethanol made up with 

distilled water, stored at 4°C 

1X TBS-Tween-Casein 

/ Blocking Buffer 

1% Casein Powder in TBS-Tween 
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Appendix 2 

Results 
Table A5: Differentially regulated proteins and corresponding trends. 

 Gene 

symbol 

Protein name Accession 

no. 

Molecular 

weight 

Up-regulated 

1 ARL6IP5 PRA1 family protein 3 O75915 22 kDa 

2 TCEA1 Transcription elongation factor A protein 1 P23193 34 kDa 

3 DLD Dihydrolipoyl dehydrogenase, mitochondrial P09622 

(+2) 

54 kDa 

4 MYBBP1

A 

Myb-binding protein 1A Q9BQG0 

(+1) 

149 kDa 

5 CCS Copper chaperone for superoxide dismutase O14618 29 kDa 

6 ANKRD3

0B 

Ankyrin repeat domain-containing protein 30B Q9BXX2 158 kDa 

7 GNPNAT

1 

Glucosamine 6-phosphate N-acetyltransferase Q96EK6 21 kDa 

8 FARSB Phenylalanine--tRNA ligase beta subunit  Q9NSD9 66 kDa 

9 FAF2 FAS-associated factor 2 Q96CS3 53 kDa 

10 ITPA Inosine triphosphate pyrophosphatase Q9BY32 

(+1) 

21 kDa 

11 PPP2CA Serine/threonine-protein phosphatase 2A catalytic 

subunit alpha isoform  

P67775 36 kDa 

12 PAK2 Serine/threonine-protein kinase PAK 2  Q13177 58 kDa 

13 GUSB Beta-glucuronidase P08236 

(+2) 

75 kDa 

14 GOLGA2 Golgin subfamily A member 2  Q08379 113 kDa 

15 CKMT1A Creatine kinase U-type, mitochondrial  P12532 47 kDa 

16 VASP Vasodilator-stimulated phosphoprotein  P50552 40 kDa 

17 AKR1C3 Aldo-keto reductase family 1 member C3  P42330 37 kDa 

18 EIF3G Eukaryotic translation initiation factor 3 subunit G O75821 36 kDa 
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19 AK2 Adenylate kinase 2, mitochondrial P54819 

(+1) 

26 kDa 

20 CAP1 Adenylyl cyclase-associated protein 1 Q01518 52 kDa 

21 PAFAH1

B3 

Platelet-activating factor acetylhydrolase IB 

subunit gamma 

Q15102 26 kDa 

22 C21orf33 ES1 protein homolog, mitochondrial P30042 28 kDa 

23 NAPG Gamma-soluble NSF attachment protein  Q99747 35 kDa 

24 PRKCSH Glucosidase 2 subunit beta  P14314 

(+1) 

59 kDa 

25 AP1B1 AP-1 complex subunit beta-1 Q10567 

(+2) 

105 kDa 

26 AP1G1 AP-1 complex subunit gamma-1 O43747 

(+1) 

91 kDa 

27 PSMB6 Proteasome subunit beta type-6 P28072 25 kDa 

28 ATP5J2 ATP synthase subunit f, mitochondrial P56134 

(+3) 

11 kDa 

29 RASIP1 Ras-interacting protein 1 Q5U651 103 kDa 

30 PGAM1 Phosphoglycerate mutase 1 P18669 29 kDa 

31 PNPO Pyridoxine-5'-phosphate oxidase Q9NVS9 

(+1) 

30 kDa 

32 RPL7 60S ribosomal protein L7 P18124 29 kDa 

33 PDXDC1 Pyridoxal-dependent decarboxylase domain-

containing protein 1 

Q6P996 

(+3) 

87 kDa 

34 GAPDH Glyceraldehyde-3-phosphate dehydrogenase  P04406 36 kDa 

35 RPS2 40S ribosomal protein S2  P15880 31 kDa 

36 EPCAM Epithelial cell adhesion molecule  P16422 35 kDa 

37 SYNGR2 Synaptogyrin-2  O43760 

(+1) 

25 kDa 

38 NOP56 Nucleolar protein 56  O00567 66 kDa 

39 PCNA Proliferating cell nuclear antigen P12004 29 kDa 

40 COPB1 Coatomer subunit beta  P53618 107 kDa 
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41 PSMC5 26S protease regulatory subunit 8 P62195 

(+1) 

46 kDa 

42 MCM2 DNA replication licensing factor MCM2  P49736 102 kDa 

43 ATP5B ATP synthase subunit beta, mitochondrial  P06576 57 kDa 

44 PBDC1 Protein PBDC1 Q9BVG4 26 kDa 

45 PSMA5 Proteasome subunit alpha type-5 P28066 26 kDa 

46 ISOC1 Isochorismatase domain-containing protein 1  Q96CN7 32 kDa 

47 NDUFB1

0 

NADH dehydrogenase [ubiquinone] 1 beta 

subcomplex subunit 10  

O96000 21 kDa 

48 REEP5 Receptor expression-enhancing protein 5 Q00765 21 kDa 

49 DDB1 DNA damage-binding protein 1 Q16531 127 kDa 

50 TRIM28 Transcription intermediary factor 1-beta  Q13263 89 kDa 

51 MYL6 Isoform Smooth muscle of Myosin light 

polypeptide 6 

P60660-2 17 kDa 

52 RPL10 60S ribosomal protein L10 P27635 25 kDa 

53 GRPEL1 GrpE protein homolog 1, mitochondrial  Q9HAV7 24 kDa 

54 GLRX3 Glutaredoxin-3  O76003 37 kDa 

55 PRPF19 Pre-mRNA-processing factor 19  Q9UMS4 55 kDa 

56 TXNDC1

2 

Thioredoxin domain-containing protein 12  O95881 19 kDa 

57 EIF1AX Eukaryotic translation initiation factor 1A, X-

chromosomal  

P47813 16 kDa 

58 RSU1 Ras suppressor protein 1  Q15404 32 kDa 

59 ATXN2L Isoform 6 of Ataxin-2-like protein  Q8WWM7

-6 

103 kDa 

60 GSR Glutathione reductase, mitochondrial  P00390 

(+4) 

56 kDa 

61 HEXB Beta-hexosaminidase subunit beta  P07686 63 kDa 

62 GMFB Glia maturation factor beta  P60983 17 kDa 

63 RPL22 60S ribosomal protein L22  P35268 15 kDa 
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64 TOMM40 Mitochondrial import receptor subunit TOM40 

homolog  

O96008 38 kDa 

65 DBN1 Drebrin  Q16643 

(+2) 

71 kDa 

66 RPN2 Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 2 

P04844 

(+1) 

69 kDa 

67 DNAJC3 DnaJ homolog subfamily C member 3  Q13217 58 kDa 

68 EEF1G Elongation factor 1-gamma  P26641 50 kDa 

69 AK4 Adenylate kinase 4, mitochondrial  P27144 25 kDa 

70 PDCD6 Programmed cell death protein 6  O75340 

(+1) 

22 kDa 

71 TMED2 Transmembrane emp24 domain-containing protein 

2  

Q15363 23 kDa 

72 PPP2R5D Serine/threonine-protein phosphatase 2A 56 kDa 

regulatory subunit delta isoform  

Q14738 

(+2) 

70 kDa 

73 CLDN3 Claudin-3  O15551 23 kDa 

74 RRBP1 Ribosome-binding protein 1  Q9P2E9 152 kDa 

75 CIRBP Cold-inducible RNA-binding protein  Q14011 19 kDa 

76 PRRC1 Protein PRRC1  Q96M27 47 kDa 

77 ATP6V1

C1 

V-type proton ATPase subunit C 1  P21283 44 kDa 

78 MAP7 Ensconsin  Q14244 

(+6) 

84 kDa 

79 UCHL5 Ubiquitin carboxyl-terminal hydrolase isozyme L5  Q9Y5K5 

(+3) 

38 kDa 

80 AKAP6 A-kinase anchor protein 6  Q13023 257 kDa 

81 EIF4G2 Eukaryotic translation initiation factor 4 gamma 2  P78344 

(+1) 

102 kDa 

82 ZYX Zyxin  Q15942 61 kDa 

83 TSG101 Tumor susceptibility gene 101 protein  Q99816 44 kDa 

84 HEATR6 HEAT repeat-containing protein 6  Q6AI08 129 kDa 

85 LASP1 LIM and SH3 domain protein 1  Q14847 30 kDa 
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86 ERP44 Endoplasmic reticulum resident protein 44  Q9BS26 47 kDa 

87 PSMB4 Proteasome subunit beta type-4  P28070 29 kDa 

88 FAM213

A 

Redox-regulatory protein FAM213A  Q9BRX8 

(+1) 

26 kDa 

89 TUFM Elongation factor Tu, mitochondrial  P49411 50 kDa 

90 ECHS1 Enoyl-CoA hydratase, mitochondrial  P30084 31 kDa 

91 DHX9 ATP-dependent RNA helicase A  Q08211 141 kDa 

92 ACLY ATP-citrate synthase  P53396 

(+2) 

121 kDa 

93 COX7A2 Cytochrome c oxidase subunit 7A2, mitochondrial  P14406 9 kDa 

94 LGALS3

BP 

Galectin-3-binding protein  Q08380 65 kDa 

95 TRANK1 TPR and ankyrin repeat-containing protein 1  O15050 336 kDa 

96 NOMO3 Nodal modulator 3  P69849 

(+4) 

134 kDa 

97 COPS6 COP9 signalosome complex subunit 6  Q7L5N1 36 kDa 

98 KLC1 Kinesin light chain 1  Q07866 

(+9) 

65 kDa 

99 DDX5 Probable ATP-dependent RNA helicase DDX5 P17844 69 kDa 

100 APMAP Adipocyte plasma membrane-associated protein  Q9HDC9 46 kDa 

101 VPS35 Vacuolar protein sorting-associated protein 35  Q96QK1 92 kDa 

102 PGM2 Phosphoglucomutase-2  Q96G03 68 kDa 

103 SMC1A Structural maintenance of chromosomes protein 

1A  

Q14683 143 kDa 

104 EIF3B Eukaryotic translation initiation factor 3 subunit B P55884 

(+1) 

92 kDa 

105 DPM1 Dolichol-phosphate mannosyltransferase subunit 1 O60762 30 kDa 

106 STARD1

0 

PCTP-like protein  Q9Y365 33 kDa 

107 FLNA Filamin-A P21333 

(+1) 

281 kDa 
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108 BCAM Basal cell adhesion molecule  P50895 67 kDa 

109 CLTC Clathrin heavy chain 1  Q00610 

(+1) 

192 kDa 

110 SUCLG2 Succinyl-CoA ligase [GDP-forming] subunit beta, 

mitochondrial  

Q96I99 47 kDa 

111 AGR3 Anterior gradient protein 3 homolog  Q8TD06 19 kDa 

112 LTA4H Leukotriene A-4 hydrolase  P09960 

(+1) 

69 kDa 

113 SRPRB Signal recognition particle receptor subunit beta  Q9Y5M8 30 kDa 

114 PHGDH D-3-phosphoglycerate dehydrogenase  O43175 57 kDa 

115 ETFA Electron transfer flavoprotein subunit alpha, 

mitochondrial  

P13804 35 kDa 

116 OAT Ornithine aminotransferase, mitochondrial  P04181 49 kDa 

117 PKM Pyruvate kinase PKM  P14618 58 kDa 

118 PCK2 Phosphoenolpyruvate carboxykinase [GTP], 

mitochondrial  

Q16822 71 kDa 

119 CSE1L Exportin-2  P55060 

(+1) 

110 kDa 

120 CAST Calpastatin  P20810 

(+8) 

77 kDa 

121 SIL1 Nucleotide exchange factor SIL1  Q9H173 52 kDa 

123 PTBP1 Polypyrimidine tract-binding protein 1  P26599 

(+2) 

57 kDa 

124 PPIC Peptidyl-prolyl cis-trans isomerase C  P45877 23 kDa 

125 RPS9 40S ribosomal protein S9  P46781 23 kDa 

126 ARL1 ADP-ribosylation factor-like protein 1  P40616 

(+1) 

20 kDa 

127 TPM2 Tropomyosin beta chain  P07951 33 kDa 

128 C12orf10 UPF0160 protein MYG1, mitochondrial  Q9HB07 42 kDa 

129 PABPC1 Polyadenylate-binding protein 1  P11940 71 kDa 

130 NDUFAF

2 

Mimitin, mitochondrial  Q8N183 20 kDa 
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131 MT-CO2 Cytochrome c oxidase subunit 2  P00403 26 kDa 

132 ALDOC Fructose-bisphosphate aldolase C  P09972 39 kDa 

133 PSMB5 Proteasome subunit beta type-5  P28074 28 kDa 

134 ACTBL2 Beta-actin-like protein 2  Q562R1 42 kDa 

135 ATP1A1 Sodium/potassium-transporting ATPase subunit 

alpha-1  

P05023 

(+1) 

113 kDa 

136 OBSCN Obscurin  Q5VST9 

(+2) 

868 kDa 

137 ARPC4 Actin-related protein 2/3 complex subunit 4  P59998 

(+2) 

20 kDa 

138 MACF1 Microtubule-actin cross-linking factor 1, isoforms 

1/2/3/5  

Q9UPN3 838 kDa 

139 TACSTD

2 

Tumor-associated calcium signal transducer 2  P09758 36 kDa 

140 RAB14 Ras-related protein Rab-14  P61106 24 kDa 

141 KPNA2 Importin subunit alpha-1  P52292 58 kDa 

142 LAMA1 Laminin subunit alpha-1  P25391 337 kDa 

143 GPI Glucose-6-phosphate isomerase  P06744 63 kDa 

144 TMEM20

5 

Transmembrane protein 205  Q6UW68 21 kDa 

145 CD63 CD63 antigen  P08962 

(+2) 

26 kDa 

146 SVIL Supervillin  O95425 

(+3) 

248 kDa 

147 RAB10 Ras-related protein Rab-10  P61026 23 kDa 

148 GAA Lysosomal alpha-glucosidase  P10253 105 kDa 

149 VCL Vinculin  P18206 

(+1) 

124 kDa 

150 KIAA132

4 

UPF0577 protein KIAA1324  Q6UXG2 

(+1) 

111 kDa 

151 OSM Oncostatin-M  P13725 28 kDa 

152 EIF4A1 Eukaryotic initiation factor 4A-I  P60842 46 kDa 
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153 FDPS Farnesyl pyrophosphate synthase  P14324 

(+1) 

48 kDa 

154 SHMT2 Serine hydroxymethyltransferase, mitochondrial  P34897 

(+1) 

56 kDa 

155 CHD7 Chromodomain-helicase-DNA-binding protein 7  Q9P2D1 336 kDa 

156 GNB2L1 Guanine nucleotide-binding protein subunit beta-

2-like 1  

P63244 35 kDa 

157 EIF3A Eukaryotic translation initiation factor 3 subunit A  Q14152 

(+1) 

167 kDa 

158 MLH3 DNA mismatch repair protein Mlh3  Q9UHC1 

(+1) 

164 kDa 

159 CDK5RA

P3 

CDK5 regulatory subunit-associated protein 3  Q96JB5 

(+1) 

57 kDa 

160 ARHGAP

1 

Rho GTPase-activating protein 1  Q07960 50 kDa 

161 S100PBP S100P-binding protein  Q96BU1 

(+1) 

46 kDa 

162 DPYSL2 Dihydropyrimidinase-related protein 2  Q16555 

(+1) 

62 kDa 

163 ARF5 ADP-ribosylation factor 5  P84085 21 kDa 

164 TMED10 Transmembrane emp24 domain-containing protein 

10  

P49755 25 kDa 

165 LDHA L-lactate dehydrogenase A chain  P00338 

(+1) 

37 kDa 

166 ISOC2 Isochorismatase domain-containing protein 2, 

mitochondrial  

Q96AB3 

(+1) 

22 kDa 

167 RAB25 Ras-related protein Rab-25  P57735 23 kDa 

168 CROCC Rootletin  Q5TZA2 229 kDa 

169 CLIC4 Chloride intracellular channel protein 4  Q9Y696 29 kDa 

170 TFRC Transferrin receptor protein 1  P02786 85 kDa 

171 MAT2B Methionine adenosyltransferase 2 subunit beta  Q9NZL9 

(+2) 

38 kDa 

 

 

 

 



 

100 
 

172 FAM186

A 

Protein FAM186A  A6NE01 263 kDa 

173 TMED10 Transmembrane emp24 domain-containing protein 

10  

P49755 25 kDa 

174 PLS3 Plastin-3  P13797 

(+2) 

71 kDa 

175 EIF3I Eukaryotic translation initiation factor 3 subunit I  Q13347 37 kDa 

176 CSRP1 Cysteine and glycine-rich protein 1  P21291 21 kDa 

177 JUP Junction plakoglobin  P14923 82 kDa 

178 MRPS35 28S ribosomal protein S35, mitochondrial  P82673 37 kDa 

179 PFKM ATP-dependent 6-phosphofructokinase, muscle 

type  

P08237 

(+1) 

85 kDa 

180 TIA1 Nucleolysin TIA-1 isoform p40  P31483 

(+3) 

43 kDa 

181 FAM83B Protein FAM83B  Q5T0W9 115 kDa 

182 DSP Desmoplakin  P15924 332 kDa 

183 SQSTM1 Sequestosome-1  Q13501 

(+1) 

48 kDa 

184 RTTN Rotatin  Q86VV8 

(+1) 

249 kDa 

185 QPRT Nicotinate-nucleotide pyrophosphorylase 

[carboxylating]  

Q15274 31 kDa 

186 KRT6A Keratin, type II cytoskeletal 6A  P02538 

(+1) 

60 kDa 

187 FILIP1 Filamin-A-interacting protein 1  Q7Z7B0 

(+1) 

138 kDa 

188 PIP4K2C Phosphatidylinositol 5-phosphate 4-kinase type-2 

gamma  

Q8TBX8 

(+2) 

47 kDa 

189 EHD1 EH domain-containing protein 1  Q9H4M9 61 kDa 

190 ABCF1 ATP-binding cassette sub-family F member 1  Q8NE71 

(+1) 

96 kDa 

191 IFT122 Intraflagellar transport protein 122 homolog  Q9HBG6 

(+8) 

142 kDa 
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192 SEC63 Translocation protein SEC63 homolog  Q9UGP8 88 kDa 

193 PRKDC DNA-dependent protein kinase catalytic subunit  P78527 

(+1) 

469 kDa 

194 POLR1C DNA-directed RNA polymerases I and III subunit 

RPAC1  

O15160 

(+1) 

39 kDa 

195 CCDC88

C 

Protein Daple  Q9P219 228 kDa 

196 ZSWIM8 Zinc finger SWIM domain-containing protein 8  A7E2V4 

(+4) 

197 kDa 

197 KCNG3 Potassium voltage-gated channel subfamily G 

member 3  

Q8TAE7 

(+1) 

50 kDa 

198 ZNF318 Zinc finger protein 318  Q5VUA4 251 kDa 

199 HTT Huntingtin  P42858 348 kDa 

200 PRPF8 Pre-mRNA-processing-splicing factor 8  Q6P2Q9 274 kDa 

201 MYO1B Unconventional myosin-Ib  O43795 

(+1) 

132 kDa 

Down-regulated 

1 PRDX2 Peroxiredoxin-2 P32119 22 kDa 

2 PTGES3 Prostaglandin E synthase 3 Q15185 (+1) 19 kDa 

3 COPS2 COP9 signalosome complex subunit 2 P61201 (+1) 52 kDa 

4 TOP1 DNA topoisomerase 1 P11387 91 kDa 

5 ACP1 Low molecular weight phosphotyrosine protein  

phosphatase 

P24666 18 kDa 

6 RPS21 40S ribosomal protein S21 P63220 9 kDa 

7 USP14 Ubiquitin carboxyl-terminal hydrolase 14 P54578 (+1) 56 kDa 

8 TPBG Trophoblast glycoprotein Q13641 46 kDa 

9 ABRACL Costars family protein ABRACL1 Q9P1F3 9 kDa 

10 SEC31A Isoform 7 of Protein transport protein Sec31A O94979-7 106 kDa 

11 TOM1L2 TOM1-like protein 2 Q6ZVM7 (+1) 56 kDa 
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12 HNRNPA

2B1 

Heterogeneous nuclear ribonucleoproteins A2/B1  P22626 37 kDa 

13 ALYREF THO complex subunit 4 Q86V81 27 kDa 

14 LRRC59 Leucine-rich repeat-containing protein 59  Q96AG4 35 kDa 

15 ELAVL1 Isoform 2 of ELAV-like protein 1  Q15717-2 39 kDa 

16 QARS Glutamine--tRNA ligase  P47897 

(+1) 

88 kDa 

17 COX5A Cytochrome c oxidase subunit 5A, mitochondrial P20674 17 kDa 

18 SYCP2 Synaptonemal complex protein 2 Q9BX26 176 kDa 

19 PNN Pinin Q9H307 82 kDa 

20 SH3GL1 Endophilin-A2 Q99961 41 kDa 

21 NCL Nucleolin P19338 77 kDa 

22 ETFB Electron transfer flavoprotein subunit beta  P38117 

(+1) 

28 kDa 

23 TMPO Lamina-associated polypeptide 2, isoforms 

beta/gamma 

P42167 51 kDa 

24 CAT Catalase P04040 60 kDa 

25 FIS1 Mitochondrial fission 1 protein Q9Y3D6 17 kDa 

26 ADK Isoform 3 of Adenosine kinase P55263-3 34 kDa 

27 TBCA Tubulin-specific chaperone A O75347 13 kDa 

28 UQCRB Cytochrome b-c1 complex subunit 7 P14927 14 kDa 

29 COMT Catechol O-methyltransferase P21964 

(+1) 

30 kDa 

30 DCXR L-xylulose reductase  Q7Z4W1 26 kDa 

31 RMDN1 Regulator of microtubule dynamics protein 1 Q96DB5 

(+1) 

36 kDa 

32 TRAPPC

3 

Trafficking protein particle complex subunit 3 O43617 20 kDa 

33 SMAP Small acidic protein O00193 20 kDa 

34 HSPB11 Intraflagellar transport protein 25 homolog Q9Y547 16 kDa 
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35 NME2 Isoform 3 of Nucleoside diphosphate kinase B P22392-2 30 kDa 

36 H2AFZ Histone H2A.Z P0C0S5 

(+1) 

14 kDa 

37 CNPY2 Protein canopy homolog 2 Q9Y2B0 21 kDa 

38 OGFR Opioid growth factor receptor Q9NZT2 

(+1) 

73 kDa 

39 S100A9 Protein S100-A9 P06702 13 kDa 

40 ILF3 Interleukin enhancer-binding factor 3 Q12906 

(+1) 

95 kDa 

41 SF3A3 Splicing factor 3A subunit 3 Q12874 59 kDa 

42 RBM25 RNA-binding protein 25 P49756 100 kDa 

43 LUC7L3 Luc7-like protein 3 O95232 51 kDa 

44 CYP8B1 7-alpha-hydroxycholest-4-en-3-one 12-alpha-

hydroxylase 

Q9UNU6 58 kDa 

45 PSME1 Proteasome activator complex subunit 1  Q06323 29 kDa 

46 TLN1 Talin-1 Q9Y490 270 kDa 

47 LRPAP1 Alpha-2-macroglobulin receptor-associated 

protein 

P30533 41 kDa 

48 DDX17 Probable ATP-dependent RNA helicase DDX17 Q92841 80 kDa 

49 CRK Adapter molecule crk P46108 

(+1) 

34 kDa 

50 LRIG3 Leucine-rich repeats and immunoglobulin-like 

domains protein 3  

Q6UXM1 123 kDa 

51 HIST1H4

A 

Histone H4  P62805 11 kDa 

52 LETM1 LETM1 and EF-hand domain-containing protein 

1, mitochondrial 

O95202 83 kDa 

53 CAPZA2 F-actin-capping protein subunit alpha-2 P47755 33 kDa 

54 CHTOP Chromatin target of PRMT1 protein Q9Y3Y2 

(+2) 

26 kDa 

55 COPE Coatomer subunit epsilon O14579 34 kDa 

56 CMPK1 UMP-CMP kinase  P30085 22 kDa 
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57 RBM14 RNA-binding protein 14 Q96PK6 69 kDa 

58 NEB Nebulin  P20929 

(+3) 

773 kDa 

59 TMPO Lamina-associated polypeptide 2, isoforms 

beta/gamma  

P42167 51 kDa 

60 HMGCL Hydroxymethylglutaryl-CoA lyase, mitochondrial  P35914 34 kDa 

61 PFDN2 Prefoldin subunit 2  Q9UHV9 17 kDa 

62 ZC3H15 Zinc finger CCCH domain-containing protein 15 Q8WU90 49 kDa 

63 AHNAK2 Protein AHNAK2  Q8IVF2 

(+1) 

617 kDa 

64 NAP1L4 Nucleosome assembly protein 1-like 4  Q99733 

(+1) 

43 kDa 

65 PTMA Prothymosin alpha  P06454 

(+1) 

12 kDa 

66 STX16 Isoform A of Syntaxin-16  O14662-2 35 kDa 

67 RPS26 40S ribosomal protein S26  P62854 13 kDa 

68 LYPLA2 Acyl-protein thioesterase 2  O95372 25 kDa 

69 ST13 Hsc70-interacting protein P50502 41 kDa 

70 PSMC1 26S protease regulatory subunit 4  P62191 49 kDa 

71 RBM8A RNA-binding protein 8A  Q9Y5S9 

(+1) 

20 kDa 

72 DNAJC8 DnaJ homolog subfamily C member 8 O75937 30 kDa 

73 RPL27A 60S ribosomal protein L27a  P46776 17 kDa 

74 LCN10 Epididymal-specific lipocalin-10 Q6JVE6 

(+1) 

21 kDa 

75 SOD1 Superoxide dismutase [Cu-Zn]  P00441 16 kDa 

76 SUB1 Activated RNA polymerase II transcriptional 

coactivator p15  

P53999 14 kDa 

77 SRSF5 Serine/arginine-rich splicing factor 5  Q13243 31 kDa 

78 PRKAR1

A 

cAMP-dependent protein kinase type I-alpha 

regulatory subunit  

P10644 

(+1) 

43 kDa 
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79 KHSRP Far upstream element-binding protein 2  Q92945 73 kDa 

80 RAN GTP-binding nuclear protein Ran  P62826 24 kDa 

81 SNRNP7

0 

U1 small nuclear ribonucleoprotein 70 kDa  P08621 52 kDa 

82 PPP2R2A Serine/threonine-protein phosphatase 2A 55 kDa 

regulatory subunit B alpha isoform  

P63151 

(+2) 

52 kDa 

83 SMNDC1 Survival of motor neuron-related-splicing factor 

30  

O75940 27 kDa 

84 LMNB1 Lamin-B1 P20700 66 kDa 

85 PARK7 Protein deglycase DJ-1  Q99497 20 kDa 

86 BID BH3-interacting domain death agonist  P55957 

(+1) 

22 kDa 

87 MTPN Myotrophin  P58546 13 kDa 

88 GOLPH3 Golgi phosphoprotein 3  Q9H4A6 34 kDa 

89 AK1 Adenylate kinase isoenzyme 1  P00568 22 kDa 

90 EIF4E Eukaryotic translation initiation factor 4E  P06730 

(+2) 

25 kDa 

91 BAHCC1 BAH and coiled-coil domain-containing protein 1 Q9P281 277 kDa 

92 SSB Lupus La protein  P05455 47 kDa 

93 SRSF1 Serine/arginine-rich splicing factor 1  Q07955 28 kDa 

94 KTN1 Kinectin  Q86UP2 

(+2) 

156 kDa 

95 CCDC6 Coiled-coil domain-containing protein 6  Q16204 53 kDa 

96 DCTPP1 dCTP pyrophosphatase 1  Q9H773 19 kDa 

97 PARP1 Poly [ADP-ribose] polymerase 1  P09874 113 kDa 

98 RBM39 RNA-binding protein 39  Q14498 

(+2) 

59 kDa 

99 SF1 Splicing factor 1  Q15637 

(+6) 

68 kDa 

100 NUP62 Nuclear pore glycoprotein p62  P37198 53 kDa 

 

 

 

 



 

106 
 

101 UBR4 E3 ubiquitin-protein ligase UBR4  Q5T4S7 

(+4) 

574 kDa 

102 HIST1H2

AG 

Histone H2A type  P0C0S8 

(+6) 

14 kDa 

103 CRIP2 Cysteine-rich protein 2  P52943 22 kDa 

104

105 

PPM1G Protein phosphatase 1G  O15355 59 kDa 

106 NSFL1C NSFL1 cofactor p47  Q9UNZ2 

(+2) 

41 kDa 

107 PRKAR2

A 

cAMP-dependent protein kinase type II-alpha 

regulatory subunit  

P13861 

(+1) 

46 kDa 

108 C7orf55 Isoform 2 of UPF0562 protein C7orf55  Q96HJ9-2 54 kDa 

109 DARS Aspartate--tRNA ligase, cytoplasmic  P14868 

(+1) 

57 kDa 

110 NUP205 Nuclear pore complex protein Nup205  Q92621 228 kDa 

111 COPA Coatomer subunit alpha  P53621 

(+1) 

138 kDa 

112 FXYD3 Isoform 3 of FXYD domain-containing ion 

transport regulator 3 

Q14802-3 15 kDa 

113 PAFAH1

B2 

Platelet-activating factor acetylhydrolase IB 

subunit beta  

P68402 26 kDa 

114 TOR1AIP

1 

Torsin-1A-interacting protein 1  Q5JTV8 

(+1) 

66 kDa 

115 SEC11A Signal peptidase complex catalytic subunit 

SEC11A  

P67812 

(+2) 

21 kDa 

116 POLR3A DNA-directed RNA polymerase III subunit RPC1  O14802 156 kDa 

117 AHSA1 Activator of 90 kDa heat shock protein ATPase 

homolog 1  

O95433 

(+1) 

38 kDa 

118 HMGB3 High mobility group protein B3  O15347 23 kDa 

119 ANP32E Acidic leucine-rich nuclear phosphoprotein 32 

family member E 

Q9BTT0 

(+1) 

31 kDa 

120 MLEC Malectin  Q14165 32 kDa 

121 PRDX4 Peroxiredoxin-4  Q13162 31 kDa 
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122 TXLNA Alpha-taxilin  P40222 62 kDa 

123 WBP11 WW domain-binding protein 11 Q9Y2W2 70 kDa 

124 PEBP1 Phosphatidylethanolamine-binding protein 1  P30086 21 kDa 

125 DNAJA1 DnaJ homolog subfamily A member 1  P31689 45 kDa 

126 ANP32A Acidic leucine-rich nuclear phosphoprotein 32 

family member A  

P39687 29 kDa 

127 CTNNBL

1 

Beta-catenin-like protein 1  Q8WYA6 

(+1) 

65 kDa 

128 RBBP7 Histone-binding protein RBBP7  Q16576 48 kDa 

129 PGP Phosphoglycolate phosphatase  A6NDG6 34 kDa 

130 RABL6 Rab-like protein 6  Q3YEC7 80 kDa 

131 BSG Basigin  P35613 

(+1) 

42 kDa 

132 SLC9A3

R1 

Na(+)/H(+) exchange regulatory cofactor NHE-

RF1  

O14745 39 kDa 

133 SH3BGR

L 

SH3 domain-binding glutamic acid-rich-like 

protein  

O75368 13 kDa 

134 TFAM Transcription factor A, mitochondrial  Q00059 

(+1) 

29 kDa 

135 KHDRBS

1 

KH domain-containing, RNA-binding, signal 

transduction-associated protein 1  

Q07666 

(+1) 

48 kDa 

136 SNRPA U1 small nuclear ribonucleoprotein A  P09012 31 kDa 

137 CSTF2 Cleavage stimulation factor subunit 2  P33240 

(+1) 

61 kDa 

138 REV1 DNA repair protein REV1  Q9UBZ9 

(+1) 

138 kDa 

139 RALA Ras-related protein Ral-A  P11233 24 kDa 

 MKI67 Antigen KI-67  P46013 

(+1) 

359 kDa 

140 CD9 CD9 antigen  P21926 25 kDa 

141 ATP1B3 Sodium/potassium-transporting ATPase subunit 

beta-3  

P54709 32 kDa 
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142 TRIM33 E3 ubiquitin-protein ligase TRIM33  Q9UPN9 

(+1) 

123 kDa 

143 TRPM6 Transient receptor potential cation channel 

subfamily M member 6  

Q9BX84 

(+2) 

232 kDa 

144 TIAM2 T-lymphoma invasion and metastasis-inducing 

protein 2  

Q8IVF5 

(+2) 

190 kDa 

145 BZRAP1 Peripheral-type benzodiazepine receptor-

associated protein 1  

O95153 

(+2) 

200 kDa 

146 SRSF3 Serine/arginine-rich splicing factor 3  P84103 

(+1) 

19 kDa 

147 CNTRL Centriolin  Q7Z7A1 

(+1) 

269 kDa 

148 MYO6 Isoform 6 of Unconventional myosin-VI  Q9UM54-

6 

149 kDa 

149 H1F0 Histone H1.0  P07305 21 kDa 

150 MCM5 DNA replication licensing factor MCM5  P33992 82 kDa 

151 MRTO4 mRNA turnover protein 4 homolog  Q9UKD2 28 kDa 

152 SF3B3 Splicing factor 3B subunit 3  Q15393 136 kDa 

153 PABPN1 Polyadenylate-binding protein 2  Q86U42 

(+1) 

33 kDa 

154 CPNE3 Copine-3  O75131 60 kDa 

155 INF2 Inverted formin-2  Q27J81 

(+1) 

136 kDa 

156 PDCD4 Programmed cell death protein 4  Q53EL6 

(+1) 

52 kDa 

157 TRIM5 Tripartite motif-containing protein 5  Q9C035 

(+3) 

56 kDa 

158 EFHD2 EF-hand domain-containing protein D2  Q96C19 27 kDa 

159 AFF2 AF4/FMR2 family member 2  P51816 

(+1) 

145 kDa 

160 BANF1 Barrier-to-autointegration factor  O75531 10 kDa 

161 ANK3 Ankyrin-3  Q12955 

(+4) 

480 kDa 
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162 ACSS3 Acyl-CoA synthetase short-chain family member 

3, mitochondrial  

Q9H6R3 75 kDa 

163 NUCKS1 Nuclear ubiquitous casein and cyclin-dependent 

kinase substrate 1  

Q9H1E3 27 kDa 

164 HERC1 Probable E3 ubiquitin-protein ligase HERC1  Q15751 532 kDa 

165 DCUN1D

1 

DCN1-like protein 1  Q96GG9 30 kDa 

166 PDS5A Sister chromatid cohesion protein PDS5 homolog 

A  

Q29RF7 151 kDa 

167 KIAA010

0 

Protein KIAA0100  Q14667 

(+1) 

254 kDa 

168 MUC16 Mucin-16  Q8WXI7 2353 kDa 

169 DCHS2 Protocadherin-23  Q6V1P9 322 kDa 

170 MAST4 Microtubule-associated serine/threonine-protein 

kinase 4  

O15021 

(+1) 

284 kDa 

171 ATAD3A ATPase family AAA domain-containing protein 

3A  

Q9NVI7 

(+1) 

71 kDa 

172 SPTBN4 Spectrin beta chain, non-erythrocytic 4  Q9H254 289 kDa 

173 DNAH1 Dynein heavy chain 1, axonemal  Q9P2D7 

(+2) 

494 kDa 

174 SEC31B Protein transport protein Sec31B  Q9NQW1 

(+1) 

129 kDa 

175 ARID2 AT-rich interactive domain-containing protein 2  Q68CP9 

(+1) 

197 kDa 

176 ZNF638 Zinc finger protein 638  Q14966 

(+2) 

221 kDa 

177 IBTK Inhibitor of Bruton tyrosine kinase  Q9P2D0 

(+1) 

151 kDa 

178 SIPA1L1 Signal-induced proliferation-associated 1-like 

protein 1  

O43166 

(+2) 

200 kDa 

179 FMR1 Fragile X mental retardation protein 1  Q06787 

(+8) 

71 kDa 

180 SZT2 Protein SZT2  Q5T011 

(+1) 

378 kDa 
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181 FAT4 Protocadherin Fat 4  Q6V0I7 

(+1) 

543 kDa 

182 UACA Uveal autoantigen with coiled-coil domains and 

ankyrin repeats  

Q9BZF9 

(+1) 

163 kDa 

183 KMT2D Histone-lysine N-methyltransferase 2D  O14686 

(+1) 

593 kDa 

184 DNAH11 Dynein heavy chain 11, axonemal  Q96DT5 520 kDa 

185 EFCAB5 EF-hand calcium-binding domain-containing 

protein 5  

A4FU69 

(+5) 

173 kDa 

186 NCAM2 Neural cell adhesion molecule 2  O15394 93 kDa 

187 ZNF236 Zinc finger protein 236  Q9UL36 

(+1) 

204 kDa 

188 SRPX Sushi repeat-containing protein SRPX  P78539 

(+4) 

52 kDa 

189 TACC3 Transforming acidic coiled-coil-containing protein 

3  

Q9Y6A5 90 kDa 

190 DNAJA3 DnaJ homolog subfamily A member 3, 

mitochondrial  

Q96EY1 

(+1) 

52 kDa 

191 PES1 Pescadillo homolog  O00541 

(+1) 

68 kDa 
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Figure A1: STRING analysis revealed 6 proteins (shown in red) associated with cell cycle arrest in up-

regulated proteins (adapted from STRING). 

 

 

 

 

 



 

112 
 

 

Figure A2: STRING analysis revealed 5 proteins (shown in red) associated with proteasomal 

degradation in up-regulated proteins (adapted from STRING). 
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Figure A3: STRING analysis revealed 9 proteins (shown in red) associated with cellular catabolic 

process in up-regulated proteins (adapted from STRING). 
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Figure A4: STRING analysis revealed 4 proteins (shown in red) associated with the intrinsic 

apoptotic pathway in down-regulated proteins (adapted from STRING). 
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