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Abstract 

In South Africa the green macroalga Ulva armoricana is the main species of macroalgae 

cultured.  The species is currently the largest aquaculture (2884.61 tonnes) product by weight 

with a corresponding capacity for biogas (CH4) production. We have shown that 

biotransformation of U. armoricana to Liquefied Petroleum Gas (LPG) is viable and 

economically feasible as a clean fuel.  pH toxicity tests showed that U. armoricana can be 

used as a health index, under potentially increased CO2 concentrations that can occur in 

IMTA carbon sequestration.  We have shown sporulation to be the morphological response to 

environmental stress, which is indicative of chlorophyll degradation and a reduction in the 

photosynthetic activity of the alga.  With the exception of Cadmium (Cd), the physico-

chemical values obtained and the dissolved nutrient/heavy metals uptake by the alga all fell 

within the FAO/WHO permissible standards.  Our Cd values therefore negate the use of these 

macroalgae for human consumption.  We have also shown that U. armoricana can be used in 

eco-monitoring by playing a significant role in wastewater filtration and bioaccumulation.  

Nutrient utilization and proximate composition results show that African mud catfish 

(Clarias gariepinus) grow well on a protein-enriched Ulva diet, suggesting that enriched 

Ulva has the potential to be a successful fish feed.  This thesis suggests among others, that 

South Africa could take advantage by being the first African country to propose specific 

standards for edible macroalgae as its successful research innovations and development 

provides a template for other African countries to further their aquaculture sectors.  

Additional benefits (bioremediation, ocean de-acidification through the capture of 

atmospheric and dissolved CO2 during growth to assist in climate change mitigation) from 

Ulva farming activities bode well for the aquaculture industry. 
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Chapter 1 

General Introduction and Literature Review 

 

1.1 Background 

 

Biofuel is a fuel produced through contemporary biological processes (such as agriculture 

and anaerobic digestion) rather than a fuel produced by geological processes such as those 

involved in the formation of fossil fuels (coal and petroleum) from prehistoric biological 

matter (Hammerschlag, 2006).  The first biofuel was derived from firewood, mainly for 

cooking and heating, during the evolution of early man (Sims et al., 2007).  The history of 

modern biofuels, however, can be traced to the first generation biofuels produced in the late 

1800’s.  These biofuels were derived directly from agricultural food products and included 

such crops as soybeans, corn, sugar cane/beet, wheat, cassava and sorghum (Prieler and 

Fischer, 2009; Kapazoglou et al., 2013). 

  

One of the first inventors in 1876 to make use of ethanol as a biofuel was the German 

engineer Nikolaus August Otto who built the first internal-combustion engine (Winter, 2009).  

Still later in 1896 the American industrialist Henry Ford developed and manufactured the 

first automobile that middle class Americans could afford, namely the Model T automobile 

that ran on ethanol derived from a corn product (Ford and Crowther, 1922; Lewis, 1976; Bak, 

2003; Ford, 2003; Howard, 2008).  Later in 1900 the German mechanical engineer Rudolf 

Christian Karl Diesel invented and built the diesel engine, which was powered by peanut oil 

(Damirbas, 2009).  With cheaper and more efficient fuel produced between 1903 and1926, 

Ford’s Model T automobile was designed to use a hemp-derived biofuel as a second 

generation biofuel.   
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Second generation biofuels, also known as advanced biofuels, were used as early as 1900 

(Specht, 2011).  These are fuels that have already been used and are no longer considered to 

be dependable feedstock or fit for human consumption (food).  Such fuels include: grasses 

like switch grass, myscanthus, and Indian grass; waste vegetable oil; municipal solid waste; 

human waste; and farm yard manure (Specht, 2011).  Although it was not common practice, 

vegetable oils, for example, were used in place of diesel fuel during the 1930s and 1940s 

(Sarker, 2012).  During World War II in particular, the high demand for biofuels was due to 

its increased use as an alternative fuel (Nag, 2007).  During this period, countries like 

Germany underwent a major fuel shortage, prompting the introduction of various other 

inventions such as the use of gasoline along with alcohol derived from potatoes (Nag, 2007).  

Eventually, petroleum entered the picture and proved to be the most logical fuel source, based 

on supply, price and efficiency, among other considerations (Albrecht and Hallen, 2011).  

While the two world wars were the periods when the various major technological changes 

took place and when biofuels were widely in use, the periods of peace allowed for cheap oil 

from the gulf countries and the Middle East to be imported to ease off the pressure (Nag, 

2007).        

 

It was not until the 1970s and 1980s that the idea of using biofuels was revisited in the USA.  

During this period the USA promulgated the Clean Air Act (of 1970) by the Environmental 

Protection Agency (EPA) (Hammes and Wills, 2005).  This Act allowed for more precise 

regulations of emissions standards for pollutants like sulphur dioxides, carbon monoxide, 

ozone, nitrogen oxides (NOx) and greenhouse gases.  This period set the stage for developing 

cleaner-burning fuels and minimum standards for fuel additives.  In addition, international 

pressures such as the 1973 - 1974 Arab oil embargo, the 1978 - 1979 Iranian Revolution, and 

 

 

 

 



3 

 

a serious fuel crisis during 1973 and 1979 (because of geopolitical conflict with the 

Organization of the Petroleum Exporting Countries (OPEC) making a heavy fuel cut in 

exports to the non-OPEC nations), served to drive petroleum prices up (Hammes and Wills, 

2005).  With petroleum prices increasing, nations began to look elsewhere for alternate fuel 

sources.  

 

With a steady increase in the human population and the associated increases in resource 

usage and requirements, renewable forms of energy to sustain increased production has 

become an inevitable challenge, and this has set the stage for the development of new 

biofuels.  By July 2015 it was estimated that the world’s population reached 7.3 billion 

people (United Nations Department of Economic and Social Affairs, 2015) all of whom 

require renewable resources for their existence.  This demand is set to increase as only about 

2.27 billion people worldwide currently have access to electricity (Bhattacharyya, 2006; Sims 

et al., 2007; International Energy Agency, 2011; United Nations Environment Programme, 

2012; World Energy Outlook, 2015).  The ongoing market demand and constant fuel 

shortages, the fluctuations and increases in the price of Liquefied Petroleum Gas (LPG) 

(Figure1.1) (United Nations Environment Programme, 2010), the diminishing life span of oil 

reserves, and the emissions of greenhouse gases, have all been some of the reasons presented 

for the new-found interest in the use of biofuels as alternate energy sources.  
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Figure 1.1: The consumption of Liquefied Petroleum Gas and the price of oil between 2001 

and 2013 (Source: www.lngworldnews.com). 

 

 

1.1.1 Macroalgae as an alternative fuel source 

Diverse literatures have addressed a wide range of issues regarding conventional biofuel 

production ranging from crops for production to ethical use.  The twentieth century saw 

investigations into a third generation biofuel derived from algae.  Algae production is 

showing promise as the next generation feedstock, capable of much higher yields with lower 

resource inputs than other feedstocks currently used for biofuel production (Duffy et al., 

2009).  The lists of fuels that can be derived from algae include biodiesel, butanol, gasoline, 

methane, ethanol, vegetable oil and jet fuel (Duffy et al., 2009). 

 

There are about 36,000 species of algae, with several species being exploited from the wild as 

the technology for their propagation is on the increase (Food and Agriculture Organization, 

2006; Millar, 2009; Ralph, 2012), although significant strides have been made more recently 

(Butterworth 2010; Carl et al., 2014).  In the last 50 years, about 100 macroalgal species from 

the genera Gracilaria, Euchema, Sachhraina, Laminaria, Undaria, Ulva, Chondrus, 
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Porphyra, Palmaria and Monostroma have been commercially cultivated (Zemke-White et 

al., 1999; Fleurence, 2004; Sahoo and Yarish, 2005; Bruton et al., 2009; Klaus et al., 2009; 

Mohammad et al., 2009; FAO, 2010; Paul and Tseng, 2012).  Currently over 92 % of the 

world’s macroalgae production comes from aquaculture species (Ozer et al., 2005; Chopin 

and Sawhney, 2009; Paul and Tseng, 2012). 

 

The idea of growing matter to produce fuel has been controversial (Biello 2013).  The 

production of algae for biofuel, however, does not require arable land needed for food 

production.  Such production entails little land resources and does not compete with food 

production.  In addition, algae can be grown on non-arable, nutrient-poor land that will not 

support conventional agriculture. Most commercial algal production is done in open waters.  

Furthermore, algae generally grow quickly at a large scale depending on species and can 

potentially generate up to 50 times more oil per acre than row crops like corn and soybeans, 

which produce vegetable oil (Duffy et al., 2009).  Macroalgae generally have less growing 

costs than microalgae due to the surface area per unit of algae and may yield up to 20 % 

extracted oil per kg of dry matter (Aresta et al., 2004).   

 

1.1.2 Global problem of increased CO2 

The earth’s radiative energy balance is undergoing changes due to the increase in greenhouse 

gases, primarily CO2 from fossil fuel combustion and from anthropogenic aerosols 

(Wuebbles et al., 2001).  The long term trend of increasing atmospheric CO2 has become a 

focal point in current research across atmospheric, terrestrial, and marine science disciplines 

(Le Treut et al., 2007).  It is an established phenomenon that CO2 emission is increasing 

geometrically in the atmosphere mainly through anthropogenic sources such as 

industrialization (Rapley, 2012).  CO2 emission is expected to rise by 20 billion tons/year by 
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2100 and will probably double by the next century (Philip et al., 2010; Rapley, 2012) if CO2 

emissions continue unabated.  The ongoing effects on global climate and the associated 

deleterious environmental effects that no doubt would result from such high carbon levels 

have led to much research interest.  The impact of increased CO2 may lead to deleterious 

environmental effects on the ecophysiology of aquatic ‘plants’ and the ecosystems they 

inhabit (Marchal et al., 2011).  Research have revealed that this expected increase in CO2 will 

increase global warming through green house gases (GHG) with more environmental 

consequences before the 2050 projected date (IPCC AR4 SYR, 2007; Marchal et al., 2011; 

Biron, 2012).   

 

1.1.3 CO2 Uptake in macroalgae 

As bioremediators, marine algae are significant components of the carbon cycle of coastal 

ecosystems.  Their responses to increased atmospheric CO2 are therefore of considerable 

importance (Zou and Gao, 2002).  Crops grown to produce biofuels take up a great deal of 

CO2, and this is seen as a positive justification.  Macroalgae grown for biofuel production, 

however, have a greater potential for reducing greenhouse gasses.  Macroalgae absorb 50 % 

of tissue CO2 (conversion of atmospheric CO2 during growth) (Berger et al., 1989; Mann and 

Lazier, 1991; Kativu, 2011) and produce CH4 as a clean fuel under anaerobic conditions 

(Andersson et al., 2009; FAO, 2009; Gouveia, 2011).  Macroalgae fix CO2 to create their 

biomass, thereby sequestering CO2 (Gao and McKinley, 1994).  Macroalgae are able to take 

up CO2 for growth in varying conditions, both in fresh or salt-water bodies, and are tolerant 

of a diverse range of pH conditions (International Energy Agency, 1994).  Macroalgae are 

capable of producing more biomass per square meter than any fast growing terrestrial plant 

and are the second-most cultured (Saccharina japonica) species of aquatic organisms after 

finfish (Briggs and Fung-Smith, 1993; Adams, 2011).  
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1.2 Macroalgae and their culture 

 

Macroalgae are currently the most significant aquatic ‘plants’ that have contributed to the 

development of aquaculture (FAO, 2010).  Presently 93.8 % of the total world macroalgae 

production is from aquaculture (FAO, 2011; 2012). Globally macroalgal biomass accounted 

for 23 % of the world aquaculture output in 2007 (FAO, 2012; Paul and Tseng, 2012) and 

represents close to half of the biomass of the world mariculture production (Chopin, 2007).  

Future supplies are even expected from countries without a tradition of macroalgae culture, 

these resulting due to improvements in culture techniques and genetically improved culture 

stock, and the development of improved culture techniques for new culture species (Tseng 

and Borowitzka, 2003). 

 

Macroalgae aquaculture occurs in about 31 countries and comprises about 221 commercially 

exploited species, including 145 species for food and 101 species for phycocolloid production 

(Dhargalkar and Verlecar, 2009; FAO, 2012).  The main genera of commercially exploited 

macroalgae include Gracilaria (and Gracilariopsis), Eucheuma (and Kappaphycus), 

Saccharina (previously Laminaria), Undaria, Ulva, Chondrus, Pyropia (previously 

Porphyra), Palmaria, Caulerpa and Monostroma (Zemke-White, et al., 1999; Fleurence, 

2004; Bruton et al., 2009; Klaus et al., 2009; Mohammad et al., 2009; Pia et al., 2009; FAO, 

2010b; Paul and Tseng, 2012).  Currently the most cultivated macroalga is the Eucheumoids, 

which accounts for over 60 % of the total cultured macroalgae, with species from the genera 

Pyropia, Kappaphycus, Undaria, Saccharina and Gracilaria making up 99 % of the balance 

of all macroalgae cultured (Barsanti and Gualtieri, 2006).   
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1.2.1 Macroalgae in fish nutrition 

As the global population continues to rise, the need for sustainable alternative sources of 

protein also increases (FAO, 2004a).  It has been estimated that the worldwide requirement 

for food will increase to 50 % by 2030 (Tidwell and Allen, 2001).  Juxtaposing the 

production input efficiencies of aquaculture against several fisheries and terrestrial 

agriculture systems, shows that non-fed aquaculture like macroalgal culture is amongst the 

world’s most efficient mass producer of protein (Costa-Pierce et al., 2011). 

 

Protein is the most expensive constituent of fish feed and global expenditure (7.05 million 

tonnes) exceeds US$1.12 billion (€1 billion) per annum (Hardy and Tacon, 2002; Hardy 

2006; World Ocean Review, 2013).  Fishmeal is a high-protein animal feed used extensively 

in aquaculture.  It is made of mainly wild fish stocks and is used to feed farmed fish.  The 

practice is considered unsustainable, as long as more fish is used in fishmeal and fish oil than 

is produced by farming (a calculation called FIFO).  The ability of fishmeal supply to meet 

future demands is a global concern, especially given that aquaculture production is growing 

at a steady rate of nearly 9 % per annum, a growth that is unmatched by the supply of 

fishmeal and fishoil from capture fisheries (FAO, 2009; 2012).  Macroalgae have the 

potential to replace a fraction of the demand for these ingredients, as they are relatively 

underexploited, contain comparatively high amounts of protein and can be cultured in a 

sustainable, environmentally-friendly manner that has the potential to increase their protein 

(Omega 3 lipids) contents.   

 

The nutritional properties of macroalgae are both unique and interesting (MacArtain et al., 

2007; Madhusudan et al., 2011; Sebaaly et al., 2012).  The biochemical quality and diversity 

of some macroalgae may have advantages with respect to fish nutrition, compared with some 
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microalgae and terrestrial crops as they contain all the essential amino acids (Brown et al., 

1997; Wong and Peter, 2000; Ortiz et al., 2006; Dawczynski et al., 2007).  Protein contents 

resported for macroalgae typically range from roughly 18 to 47 % (Černá,  2011; 

Samarakoon and Jeon 2012; Cyrus et al., 2014a).   

 

1.2.2 Macroalgae in sustainable aquaculture production 

Macroalgae have contributed to the development of fisheries and the aquaculture industry 

(FAO, 2010).  The world production has been dominated by macroalgae farmed in brackish 

and marine waters (FAO, 2003; 2012).  Macroalgae are among the fastest growing 

photosynthetic organisms and are available all year round in multitrophic aquaculture.  

Macroalgae produce more photosynthetic efficacy per square metre (6 – 8 %, average) than 

any fast growing terrestrial plant producing as much as 1.8 – 2.2 % more biomass than 

terrestrial crops (Halford and Karp, 2011).    Since 1970, the production of aquatic ‘plants’ 

(macroalgae and angiosperms) worldwide has increased consistently at a rate of 7.7 % per 

annum, with about 93.8 % of the total world macroalgal production being from cultivation 

(McHugh, 2001; FAO, 2003; 2009; 2010; 2011).  This figure is higher than any other group 

of marine organisms (FAO, 2010; 2012).  The production of macroalgae reached 19.9 million 

tonnes in 2010, of which aquaculture produced 19 million tonnes with a total market value 

estimated at US$5.7 billion (FAO, 2012).   

 

1.2.3 Macroalgae in Integrated MultiTrophic Aquaculture (IMTA) 

IMTA systems combine the cultivation of fed aquaculture species (e.g. finfish / shrimp) with 

that of organic extractive aquaculture species (e.g., shellfish) and inorganic extractive 

aquaculture species (e.g. macroalgae) for more balanced ecosystem management (Chopin and 

Robinson, 2004).  This method of polyculture comprises organisms from several trophic 
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levels in the same system under a manageable ecosystem in which each species utilizes the 

waste products or biomass generated by members from the other trophic level(s) (Nobre et 

al., 2010). An important factor to consider in IMTA design is that all of the individual 

components within this system must be marketable for the system to be commercially viable 

(Chopin et al., 2008).   

 

The general benefit from IMTA (reduction of nutrient release to the environment) is also true 

for integrated macroalgal culture.  Macroalgae act as bio-accumulators, bio-indicators and 

bio-detectors of pollutants (pesticides and heavy metals) such as Fe, Cu, Mn, Zn, Pb and 

more importantly Cd that reduces the rate of photosynthesis inducing a loss in pigment 

production as a result of the pigment reduction (Ho, 1990).  Macroalgae grown in fish and 

shellfish wastewater have been shown to have increased nitrogen content, resulting in value-

added seaweeds with often over 40 % protein dry weight content (Cohen and Neori, 1991; 

Lawrence and Shpigel, 2005; Hammer et al., 2006; Abreu et al., 2011).  IMTA with 

Glacilaria vermiculophylla productivity and nutrient removal performance of the macroalgae 

in a land based pilot scale system showed excellent quality feed for shellfish (Jones and 

Iwama, 1991; Feldman et al., 2000; Han et al., 2001; Newell et al., 2002).  Several studies 

have demonstrated the technical and economic feasibility of using macroalgae as biofilters 

for excess ammonium removal (90 % removal efficiency) and other inorganic nutrient in 

IMTA units (Cohen and Neori, 1991; Shpigel and Neori, 1996; Shpigel et al., 1997; Msuya, 

1998; Neori et al., 1998; Alieth, 2008).  These studies have shown that macroalgae have a 

positive impact on moderately eutrophic water by absorbing nutrients from the surrounding 

waters.    

 

 

 

 

 



11 

 

1.3 The genus Ulva 

 

Ulva is a cosmpolitan genus of green algae that has been used in aquaculture production 

(BenAri et al., 2014).  With the current technology and extensive available sea areas, 

requiring little to no terrestrial land, freshwater or fertilizers, Ulva production is set to expand 

rapidly and sustainably to the scale of agriculture (Radulovich et al., 2015).  

 

1.3.1 Taxonomy 

The green algal genus Ulva belongs to the order Ulvales, phylum Chlorophyta, family 

Ulvaceae, class Ulvophyceae (Hoek et al., 1995; Guiry and Guiry, 2013).  The genus was 

described by Linnaeus in 1753 (Guiry, 2013; Guiry and Guiry, 2013).  Members of the genus 

are distributed worldwide in all oceans and estuaries (Guiry and Guiry, 2015.  Ulva are thin 

flat green algae growing from a small discoid holdfast that may reach 18 cm or more in 

length, though generally much less, and up to 30 cm across.  Thalli are one cell thick, soft and 

translucent. Several taxonomic works have been done in the 60 – 70s on morphological and 

anatomical features, which created confusion for proper identification of Ulva species.  

However, the need to be exact and identify species based on individual molecular properties 

is inevitable (Prasad et al., 2009; Bast et al., 2014).  Nowadays phycologists utilize the 

genetic information in individual identification as used in RAPD – PCR technique to 

establish a unique paternity testing from DNA band profiles (Dutcher and Kapraun, 1994; 

Yong et al., 2000; Prasad et al., 2009).  According to Prasad et al. (2009) RAPD – PCR is 

useful in assessing the classification of wild populations, determining relationships between 

species with the genus Ulva and for developing individual fingerprints. 
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There are 8 families in the order Ulvales containing 24 genera and 175 species. The family 

Ulvaceae has 11 genera including Ulva (Hoek et al., 1995).  There are currently 557 species 

of Ulva listed in the AlgaeBase database including synonyms, of which only 100 are 

taxonomically accepted (Guiry and Guiry, 2015).  Recent research, however, has concluded 

that many species from the genus may show a high degree of phenotypic plasticity as well as 

ecotypic variation (Silva et al., 1996; Lobban and Harrison, 1997; Lee, 1999), which could 

explain some of the misconceptions in the taxonomic classification of specimens from the 

genus Ulva.  The taxonomy of the genus Ulva is therefore not stable and it is currently not 

possible to assign specimens of Ulva grown in aquaculture systems without molecular 

sequencing (Cyrus et al., 2014b).    

 

 

Morphological (e.g. size, branching, colour, texture) and anatomical (e.g. cell size, gradation 

of cell, cell size and shape) characteristics have mostly been used to identify species of Ulva 

(Critchley, 1993; Silva et al., 1996).  Consequently (due to their phenotypic plasticity) 

incorrect identification of several specimens has been inevitable (Lobban and Harrison, 

1997).  What complicates matters even further is that many cytological and morphological 

characters used in the identification of species are not always consistently applied 

(Steffensen, 1976; Bird et al., 1982; Tanner, 1986; Critchley, 1993; Woolcott and King, 

1999).   

 

Currently developmental patterns in culture, reproductive characteristics (e.g. development of 

both female and male gametangia and post fertilization events) and the inability of species to 

interbreed, have been used to separate species from another (Critchley, 1993; Guiry and 

Guiry, 2013).  However, some studies have shown that even these characteristics can vary 

across several different abiotic and biotic factors.  As with most taxonomic studies, molecular 
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data is proving far more useful in distinguishing between specimens of seemingly similar 

species, and the nuclear ribosomal DNA internal transcribed spacer (ITS) sequence is proving 

most useful for the accurate identification of species within the Chlorophyta (Hoek et al., 

1995; Blomster, 1998; Coat et al., 1998; Malta et al., 1999). 

 

1.3.2 Ecology, distribution and habitat 

Species from the genus Ulva are found in marine and estuarine habitats, and occur mostly 

from the upper to mid-intertidal zones, but also in the sub-tidal zone (South and Whittick, 

1987; Sze, 1993; Adams, 1994; Blomster et al., 1998; Lee, 1999).  A single species of 

freshwater Ulva, U. limnetica, has been recorded from the Ryukyu Islands, Japan (Ichihara et 

al., 2009).  Species of Ulva are generally epilithic, but may also be entirely epiphytic (e.g. U. 

rhacodes, Stegenga et al., 1997).  Most epilithic species, however, are often also found to be 

epiphytic, epizoic and free-living (Littler and Littler, 1999).  Species of Ulva are prolific 

where waters are rich in nutrients (around outfalls that introduce organic matter), and where 

wave action and herbivore densities are low (South and Whittick, 1987; Vermaat and Sand-

Jensen, 1987; Sze, 1993; Lee, 1999).  Temperature generally determines growth and 

reproduction and this in turn influences their biogeographical distribution (Littler and Littler, 

1999).  While many factors influence the local distribution of species, their tolerance of 

desiccation and temperature stress more notably determine their capacity to occur higher up 

the shore than most other species of macroalgae (Bolton, 1986; Vermaat and Sand-Jensen, 

1987; Breeman, 1988; Fong and Zedler, 1993; Poole and Raven, 1997; Fong et al., 1998). 

 

1.3.3 Life history  

The ability of species from the genus Ulva to dominate the intertidal zone is coupled with an 

affinity to grow opportunistically on a range of substrates; they are also green tide forming 
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species (Littler and littler, 1981; Niesenbaum, 1988).  Species from the Ulvales colonise 

substrates through the production of large numbers (10
5 

- 10
6
 per thallus per day) of 

microscopic free-swimming zoospores (Maggs and Callow, 2003).  The zoospores are 

naturally pyriform in shape and ~5 µm long with four anterior flagella (Figure 1.2) that 

disappear upon adhesion to a substrate (Hoek et al., 1995).  In the wild, individual specimens 

take about 4 months to reach maturity (Oza and Rao, 1977).  In warmer months or seasons, 

however, especially when farmed in high temperature media, production of zoospores and 

gametes increase (Niesenbaum, 1988).  

 

The life cycle of Ulva species is characterized by a free living diploid sporophyte and an 

identical-looking free living haploid gametophyte.  For this reason the life cycle it is often 

referred to as isomorphic and diplohaplontic because the two free living stages are 

morphologically identical (Searles, 1980; Tseng, 1987; Phillips, 1990).  The two free living 

generations are multicellular and reproduction is more often vegetative (Hoek et al., 1995) 

(Fig. 1.2).  Parthenogenesis (whereby gametes develop into parthenosporophytes) is also 

common amongst members from the family Ulvaceae (Hoek et al., 1995).  Under this 

scenario about 1 – 2 % of all gametes mature directly into gametophytes of the parent stock 

(Tanner, 1981, Park et al., 1998).   

 

Growth, reproduction and spore germination/sporulation anatomy is determined by ecological 

factors such as temperature, light intensity, tidal levels, nutrients and other endogenous 

factors necessary to complete its life cycle (Dring, 1988; Adey and Hayek, 2011; Agrawal, 

2012).  Spore release is often augmented by tidal regime (e.g. as observed in U. lobata) 

(Smith, 1947; Christie and Evans, 1962; DeBusk et al., 1986; Lüning, 1990; Lüning et al., 
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2008).  Still many species of Ulva can prolong the release, dispersal and viability of their 

spores and gametes (Reed et al., 1988; Duke et al., 1989; Pedersen and Borum, 1997). 

 

 

 

Figure 1.2:  The life cycle of the genus Ulva. (a, a’) Flat blade-like gametophytes. (b, b’) Division of 

the cell contents into biflagellated gametes; these are unequal, copulation being anisogamous. (c) 

Female gametes. (c’) Male gametes. (d) Anisogamous copulation. (e) Quadriflagellated planozygote. 

(f) Uniseriate filamentous germling of the sporophyte generation attached via branched rhizoids. (g) 

Tubular germling of the sporophyte generation. (h) Developed blade-like sporophyte (diploid). (i) 

Meiotic division of sporophyte cells to form haploid quadriflagellate zoids (meiospores). (j, j’) 

Quadriflagellated meiospores. (k, k’) Uniseriate filamentous germlings of the female and male 

gametophytes. (l, l’) Tubular germlings of the female and male gametophytes.  F! = fertilization; R! = 

reduction division (meiosis). Source: Hoek et al. (1995). 
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1.4 Commercial use and value of Ulva 

 

Species of Ulva were generally consumed as salads or in soups (FAO, 2002).  According to 

research, people living in areas where large quantities of macroalgae (including species of 

Ulva) were consumed were reported to have lived longer and had lower incidences of 

hypertension and arteriosclerosis (Tietze, 2004).  Globally Japan, Korea and China rank as 

the major producers as well as the principal consumers of Ulva (Abowei and Tawari, 2011).  

According to the FAO (2012), species of Ulva, like most vegetables, are among the healthiest 

foods on the planet, containing essential vitamins, minerals and antioxidants.  For example, 

natural U. lactuca comprises 3 – 27 % protein, 50 % sugar and starch, less than 1 % fat, is 11 

% water when dried, and is useful as roughage in the human digestive system (Alzaablawy, 

2005; Tacon et al., 2009).  Furthermore, many species of Ulva are high in iron, protein, 

iodine, aluminum, manganese and nickel, and contain vitamins A, B1, C, sodium, potassium, 

magnesium, calcium, soluble nitrogen, phosphorous, chloride, silicon, rubidium, strontium, 

barium, radium, cobalt, boron and various trace elements (Alzaablawy, 2005; White and 

Keleshian, 1994; FAO, 2003).  

 

1.4.1 Utilization as a feed 

An over dependence on fish meal and fish oil may have threatened the aquaculture industry 

(Naylor et al., 2001; Wijkström, 2009; FAO, 2011).  This realization has prompted 

investigation into other cheaper and non-human competing food ingredients as alternative 

feedstuffs for protein and energy sources in fish diets (Behnassi et al., 2011).   Macroalgae 

with a high protein level can readily be used in the production of fish feed.  Several research 

investigations have shown that 5 - 15 % Ulva meal can be included in the diets of fin fish 

(e.g. carp, mullet, channa, sea bream, sea bass, tilapia), shellfish (e.g. abalone, sea urchin, 
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shrimp) (Nakagawa et al., 1987; Hashim and Mat Saat, 1992; Hashim and Hassan, 1995; 

Mustafa et al., 1995; Wassef et al., 2001; Azad et al., 2002; Valente et al., 2006; Francis et 

al., 2008; Cruz-Suarez et al., 2009; Azad and Xiang, 2012) and farm animals (Ventura and 

Castarion, 1998; Heuze et al., 2016). 

 

1.4.1.1 Ulva monoculture 

Monoculture is the culture of a single species of fed or extractive aquatic organisms (fauna or 

flora) in a culture system of any intensity be it in any type of water body (fresh, brackish or 

marine). The environmental and economic consequences of monoculture are better 

understood when the organisms cultured are categorized into fed and extractive species 

(Chopin et al., 2001; Neori et al., 2004). Fed organisms such as fin and shellfish are 

nourished by man-made aquafeed.  Extractive organisms like macroalgae, as the name 

implies, extract their nourishment from the water body or from the cultured environment.  It 

has been estimated that the monoculture of U. lactuca, grown in an area of about 180,000 

km
2
 could produce enough protein for the entire world population (Plant life, 2010).  Paddle 

wheel ponds, which move suspended algae along raceways, can produce Ulva in large 

quantities (Chopin et al., 2008; Butterworth, 2010; Amosu et al., 2015).  The monoculture of 

Ulva species is mostly done for feed and prevalent in Asia, South America, South Africa and 

East Africa (Chopin et al., 1999; Buschmann et al., 2001; Tseng, 2001; Amosu et al., 2015).  

    

1.4.1.2 Polyculture 

Polyculture, as the name implies, is the culture of several species of aquatic fed or extractive 

organisms in the same water body.  Polyculture began in China more than 1000 years ago 

(NACA, 1989) and the practice has spread throughout Southeast Asia and into other parts of 

the world.  The polyculture of Ulva species began as early as 1991 in Israel in which the 
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macroalgae grew in fishpond effluents, sometimes culture alongside bivalves, abalone and 

macroalgivores (Neori, 1991; Shpigel and Neori, 1996).  Since then, several studies (e.g. 

Smith and Renard, 2002; Tseng and Borowitzka, 2003; Teas 2005; Abowei and Tawari 2011; 

Ihsan 2012; Boxman 2013) explored increasingly complex polyculture systems.  

 

Common to these studies is the improvement by the polyculture with Ulva in the quality of 

the water by adding O2, and removing excess CO2 and nutrients, improving the water quality 

so that recirculation into the fed component of the polyculture system is possible (Troell et 

al., 2003; Shpigel and Neori, 2007; Butterworth 2010; Kirkendale et al., 2010; Ihsan 2012; 

Nirmala et al., 2012).  

 

1.4.1.3 Macroalgae in Integrated MultiTrophic Aquaculture 

Macroalgae-based integrated aquaculture systems improve water quality and environmental 

conditions by extracting nutrients, and have the potential to yield additional profits from 

macroalgae production (National Academy of Agricultural Sciences 2003; Robertson-

Andersson, 2007; Abowei and Tawari 2011; Fakoya et al., 2011). Integrating optimal 

macroalgae species into an aquaculture system improves its sustainability and environmental 

friendliness.  Biofiltration by Ulva species adds to the assimilative capacity of the aquaculture 

environment (Troell et al., 1999; Chopin 2001; Neori et al., 2004; Troell, 2009; Ihsan 2012).  

For example, Ulva species for use in an integrated aquaculture system must involve 

consideration of both their economic value (e.g. marketable species) and their biofiltration 

capacity (e.g. nutrient uptake rate, growth rate, and tissue nitrogen concentration) (Nobre et 

al., 2010; Neori et al., 2004).  The choice of Ulva species depends on a comparison between 

the ecophysiological characteristics of the species and the environmental conditions present 

in the cultivation area (Kang et al., 2008).  
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1.4.2 Methanogenic potential  

Biomass, such as algae can generate biogas by anaerobic digestion, the degradation of 

organic material by bacteria in the absence of oxygen.  When the process is controlled in 

digesters the biogas (60 % methane) can be trapped and used to produce electricity, or 

compressed and used as a transport fuel just like compressed natural gas (Kelly, 2012).  

Methane production in species from the genus Ulva varies between 163 - 227 ml CH4 g
-1

 VS 

(Sludge volume) with similar properties and chemical composition as LPG (Habiq et al., 

1984; Briand and Morand, 1997; Bruhn et al., 2011).  Still other studies showed CH4 yields 

in the range of 180 - 330 ml CH4 g-
1
, which is comparable to the yields obtained for livestock 

manure or medium yield energy crops (Briand and Morand, 1997; Bruhn et al., 2011).   

 

The methanogenic potential of fresh and macerated U. lactuca yielded up to 271 ml of CH4 g
-

1
 VS, which was similar to the methane production from livestock manure and terrestrial 

agricultural crop (Bruhn et al., 2011).  Sarker et al. (2012), in an experiment using U. lactuca 

and the brown seaweed Laminaria digitata as a co-digester with cattle manure, found that U. 

lactuca yielded about 122 ml of CH4 g
-1

 VS.  This latter study demonstrated that Ulva species 

are interesting substrates for use as gaseous biofuels through anaerobic co-digestion. 

 

 1.5  Ulva cultivation techniques 

 

Species of Ulva are opportunistic in nature due to their simple life cycle (Budd and Pizzola 

2008; Prue, 2009; Romero 2009;  Carl et al., 2014), their ability to take up nutrients quickly 

(Santelices and Ugarte, 1987; Costa-Pierce et al. 2011, Klinger and Naylor 2012, Boxman, 

2013, Redmond et al. 2014), their competitiveness relative to other algal species (Burges 

Watson, 1999; Amosu el al., 2013), and their comparatively fast growth rate (Pádua et al., 
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2004; Critchley and Ohno, 1997; Ben Chekroun et al., 2013).  These characteristics make 

Ulva species suitable aquaculture candidates for large scale cultivation.  In nature, seasonality 

influences their growth, with summer production being higher due to higher water 

temperatures and higher light intensities (Menendez et al., 2001).  Increases in the market 

demand for species of Ulva as food and feedstock, and bioremediation of coastal effluent, 

have largely been the reason for studies into their cultivation (Darcy-Vrillon, 1993; Davies et 

al., 1997).  To produce a large quantity of biomass that is economically feasible and reliable 

in terms of quality and quantity, a clear understanding of the biology (growth, reproduction 

and recruitment), productivity and the environmental conditions necessary for optimum 

growth is of paramount importance (Lobban and Harrison, 1994). Depending on the growth 

responses (w.r.t. light, temperature, salinity, flow rate, pH, nutrient levels, etc.) different 

cultivation techniques have been employed for different species of Ulva (Lobban and 

Harrison, 1997; Raffaelli et al., 1998 Taylor et al., 2001; Raven and Taylor, 2003).   

 

1.5.1 Open water cultivation  

This is a seawater nutrient enriched method.  Here a porous cylinder containing fertilizer is 

placed in a basket or the basket is placed in a waste stream together with Ulva.  Several 

baskets are often strung together to form a raft. The fertilizer containers are replaced 

periodically (Bardach et al., 1972). 

 

1.5.2 Land-based or semi-closed cultivation 

The principal advantage of land-based or semi-closed cultivation is that overall control is 

possible through integration of all system components (living and non living components).  

Here the growth rate can be regulated by environmental parameters that include aeration, pH, 

epiphyte/grazer/stocking density, water flow rate, irradiance, salinity, temperature, nutrient 
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supply and carbon supply (Duke et al., 1989; Lüning, 1990; Critchley, 1993; Lobban and 

Harrison, 1994).  The fast growth rates and broad geographical distribution of Ulva species 

make them ideal candidates for bioremediation on land-based aquaculture facilities (Soto 

2009; Lawton et al., 2013; Cyrus et al., 2015).    Land-based or semi-closed cultivation 

systems can be well managed to prevent the problems (e.g. ability to withstand the strong 

drag forces of open oceans, exposed nature of the Open Ocean and economic challenges) 

associated with offshore Ulva mariculture (Shpigel and Neori, 1996, Troell et al., 2009).  

Some of the associated disadvantages to semi-closed cultivation include: available and 

suitable terrestrial land space; a capital intensive system characterized by available 

technology, water, pest and disease control; etc. (Lutz et al., 2009).  Epiphytic growth is 

probably the single greatest problem facing this type of Ulva cultivation technique (Ryther, 

1977; Fletcher, 1995).  

 

1.5.2.1 Pond cultivation 

Pond cultivation can be classified into intensive and non-intensive cultivation systems.  Non-

intensive ponds are basically out door, uncovered, and are often without an artificial water 

agitation system (such as aeration pipes), while intensive cultivation ponds are made of a 

hard surface (concrete, plastic, etc.) and have a water agitation system (Friedlander and Levy, 

1995; Capo et al., 1999).  The advantages of intensive culture methods include: high yield; 

the ability to have control over the operations; and the Ulva can act as biofilters for various 

effluents.  Some disadvantages, however, include their high operational costs (including the 

pumping of seawater) and the costs of fertilizers (Boyd, 1990; 1998; Friedlander and Levy, 

1995).  Apart from epiphyte growth, the major problems include the burial of algal thalli in 

low oxygen sediments, large temperature and salinity fluctuations in shallow ponds, and low 

water movement (Boyd, 1998; Oliveire et al., 2000). In such systems, Ulva ponds have been 
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used as bioreactors in which both nitrogen assimilation and denitrification processes occur 

simultaneously under low aeration regimes, with substantially lower operational costs that 

considerably offset the reduced Ulva yield (BenAri et al., 2014).  Filamentous species of 

Ulva are particularly ideal for pond cultivation because they are robust with high growth rates 

(Hayden et al., 2003; Msuya 2007; Carl et al., 2014).  

 

 1.5.2.2 Tank culture 

Tank cultivation is characterized by high yield, with its efficiency dependent on aeration, 

water quality, flow rate, etc. (Kepenyes and Váradi, 1984; Masser et al., 1999; Ozigbo et al., 

2014; Makkar et al., 2015).  Tanks are usually made from treated wood, concrete or PVC 

plastic, and fiberglass, with capacities ranging from a few hundred litres to several thousand 

cubic metres (Oliveire et al., 2000).  Even though this cultivation technique is a capitally 

intensive venture, the input is usually relatively quickly recovered if the system is well 

managed (Critchlery, 1993; Oliveire et al., 2000). 

 

In tank culture, the shape of the tank is very important as it is designed to influence water 

movement during aeration.  To this end, several research works have used species of Ulva to 

demonstrate various physicochemical characteristic in response to tank cultivation (Morgan 

and Simpson, 1981; Rosenberg and Ramus, 1982; Hanisak, 1983; Wallentinus, 1984; 

Thomas and Harrison, 1985; Duke et al., 1986; 1989; Lüning, 1990; Vandermeulen and 

Gordin, 1990; Critchley, 1993; Lobban and Harrison, 1994;  Jiménez et al., 1995; Braud and 

Amat, 1996; Flores-Moya et al., 1997; Dawes 1998; Stitt and Krapp, 1999; Talarico and 

Maranzana, 2000; Tisserat, 2001; Villares et al., 2002; Mata et al., 2003; Hong Yan et al., 

2008; Nagle et al., 2009;  Mata et al., 2010; Roleda et al., 2010;  Markelz et al., 2013).  Ulva 

culture tank shapes are generally either U-shaped (with flat or round floor) (Neori et al., 
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2003; Robertson-Andersson 2007) or V-shaped (with a tapered floor) (Critchley, 1993; 

Hanniffy and Kraan, 2006).  Aeration is provided by means of perforated PVC pipes secured 

to or embedded in the bottom of the tank (Figure: 1.3). 

 

 

 

 

 

 

 

 

 

Figure 1.3: U- (a-c) and V- (d; e) shaped tank configurations with differential aeration to aid 

with circulation (Source: Critchley, 1993). 

 

 

1.5.2.3 Raceways, spray cultivation and very high-high–intensive systems 

Raceway cultivation is based on the continuous flow of water.  Here the stocking density can 

be increased with greater flow rates.  Raceways can be hard surfaced or simply dug into the 

earth and lined with a plastic liner to prevent seepage.  The raceway usually consists of a 

double ended ‘D’ structure with a paddlewheel for circulation.  Raceways can be enriched 

with fertilizers (such as nitrogen phosphorus and inorganic salt).  Depending on the nutrients 

required by Ulva species, raceways have been used effectively in polyculture with shellfish 

(Lapointe et al., 1976; Ryther et al., 1978; Shpigel et al., 1997; Algae Energy, 2013). 

  

(a) (b) (c) 

(d) 
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In spray cultivation, Ulva thalliums are placed onto nets, which are then suspended over a 

box that collates the spray water before it is returned to a reservoir.  The disadvantages of 

spray cultivation are two-fold.  Firstly the soft, thin Ulva thallium form clumps on the nets 

resulting in self-shading (Littler and Littler 1980; Binzer and Sand-Jensen 2002).  Secondly 

the lack of a suitable medium prevents boundary layers (result in nitrogen deficiency) from 

having effective gaseous exchange (Lignell et al., 1987; Robledo and Garcia Reina, 1991; 

Haglund et al., 1991; Pickering et al., 1995; Salinas, 1999; Msuya and Neori, 2010). 

 

High light intensities generally increase Ulva production (Riccardi and Solidoro 1996; 

.Plettner et al., 2005; Rautenberger et al., 2015).  Consequently submerged light sources are 

used in addition to very powerful overhead light sources.  Epiphytes are reduced by using 

filters, and blue-green algae and diatom numbers are generally kept low by vigorous aeration, 

forcing the macroalgae to rub against each other (Bolton et al., 2008; Butterworth, 2010; 

Kirkendale et al., 2010; Sadek 2011).  An obvious drawback of such a system is the high cost 

making the cultivation system uneconomically viable for commercial-scale set up (Lignell et 

al., 1987). 

 

1.5.2.4 Polyculture 

Aquaculture, like several other industries, is an important industry worldwide that has been 

supporting human demands for feed/protein products for decades (Odum, 1974; Chopin and 

Yarish 1998; Naylor et al., 2001).  However, aquaculture production on an intensive scale has 

caused many aquatic problems associated with waste products from the aquaculture systems 

(Wu 1995; Chopin and Yarish 1998).  Modern intensive aquaculture requires high inputs of 

water, feeds, fertilizers and chemicals and inevitably produces considerable pollutants 

(United Nations Environment Programme, 2012).  It cannot be over emphasized that many 
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fish farming operations put enormous pressure on coastal habitats (Chopin and Yarish, 1999; 

Black, 2001; Naylor et al., 2001; Tacon et al., 2006). 

 

The current system that has taken favour among many aquaculture operations in the last 2 - 3 

decades is integrated aquaculture that specializes in the incorporation of Ulva and additional 

genera into polyculture of macroalgae operations where the macroalgae are farmed in 

wastewater (Noeri et al., 1991; Msuya, 2004; Rubino, 2008; Troell, 2009; Dean, 2010; Bruhn 

et al., 2011).  Macroalgal biofilter/production systems are being developed to reduce the 

environmental impact of marine fish-farm effluents in coastal ecosystems as part of an 

integrated aquaculture system.  Many algal cultivars have been considered as suitable 

biofilter organisms based on their species-specific physiological properties (e.g. resilience, 

nutrient uptake kinetics, economic value).  Species of Ulva have proven to be excellent 

candidates for biofiltration as they show efficient nutrient extraction properties, where the 

water from the culture system can be returned to the natural aquatic environment with 

approximately the same nutrient qualities (and even better under certain conditions) and 

temperature as the initial resource waters (Neori et al., 1998; Troell et al., 1997; 1999; Abreu 

et al., 2011). The significant potential of Ulva species as an addition to abalone farming 

operations have already proven successful in aquaculture operations using aeration or 

paddlewheel ponds in Israel and South Africa in which the macroalgae have proved effective 

due to the high costs associated with the production of macroalgae in aerated tank cultures 

(Neori et al., 2009; Bolton et al., 2006; Troell et al., 2006; Bolton et al., 2008; Robertson-

Andersson et al., 2008; Butterworth, 2010; Kirkendale et al., 2010).   
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1.6   Factors affecting Ulva cultivation  

 

1.6.1 Temperature 

As with other macroalgae, species of Ulva also respond to varying temperature regimes.  

More importantly, however, are the responses of the different life cycle stages to variable 

temperature and other physical factors.  Ulva intestinalis, for example, showed a good 

germling growth at comparatively high temperature (25 °C), but sporogenesis only occurred 

at 30 °C.  This implies that temperature increases may not generally promote zoosporangia 

formation in Ulva (Ruangchuay et al., 2012).  Altamirano et al. (2003) demonstrated that 

high temperatures in combination with a high dose of ultraviolet B radiation caused the death 

of the germlings.  This study showed that a growth-related temperature dependence of 

sensitivity to ultraviolet B radiation.  Similarly, in U. fasciata water temperatures < 20 °C 

favoured gamete formation and temperatures between 20 – 25 °C promoted zoospores 

formation (Kalita and Titlyanov, 2011).  In U. lactuca 16 °C and 19 °C are optimal for the 

growth of isolated fragments of attached and unattached thallium respectively (Kalita and 

Titlyanov, 2011).  Also in U. rotundata growth was photoinhibited at irradiances above 40 % 

sunlight at temperatures below 15 
o
C but not above 20 

o
C (Henley and Ramus, 1989). 

 

1.6.2 Light 

Light availability is a function of momentary, diurnal, seasonal and global changes both in 

irradiance and in spectral distribution (Talarico and Maranzana, 2000).  Light penetration 

shows great variation as a result of scattering and absorption by the atmosphere and depth of 

the aquatic system.  Light is an essential and uncontrollable growth determinant of Ulva in 

the aquatic environment, but can be manipulated in intensive culture system (Hanisak, 1983; 

Bidwell et al., 1985; Duke et al., 1986).  It is also a limiting factor that influences algal 
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development and various physiological responses (Duke et al., 1986; Lüning, 1990).  Species 

of Ulva respond and show different adaptations to varying light intensities that vary from 

geographical location and seasons (Roleda et al. 2006; Wiencke et al., 2006).  The features 

responsible for their survival tendencies include algal pigment ratio, activities of Calvin 

(Carbon reducing cycle) enzymes, Chlorophyll-a ratios, all of which increase with a decrease 

in light intensity (Reiskind et al., 1989).  Photosynthetic output is a direct function of light 

intensity (Stefels 2000; Binzer and Sand-Jensen 2002; Shuuluka  2011; Yang 2013).  Most 

species of Ulva are able to photoacclimatise within days to lower light levels and can 

maintain relatively good growth rates even if total irradiance is reduced slightly e.g. by self-

shading (Vandermeulen and Gordin, 1990; Altamirano et al., 2000b).  Ulva lactuca, for 

example, growing under lower illumination than in natural conditions contains high 

chlorophyll-a levels and showed higher photosynthetic rates at a lower rate of photon flux 

density, but have a lower maximal rate of photosynthesis (Israel et al., 1995). 

 

Light quality, duration and availability are known to affect Ulva biomass, photosynthesis and 

morphogenesis (Rosenberg and Ramus, 1984a; Lüning and Dring, 1985; Israel et al., 1993; 

Fillit, 1995).  Ulva lactuca growing under lower photon flux density than in natural 

conditions contains higher chlorophyll concentrations and show higher photosynthetic uptake 

of CO2 for starch production (Israel et al., 1995; Vergara et al., 1997).   

 

Photosynthetic light-response curves are widely reported for various Ulva species (Ramus, 

1978; Platt et al., 1980; Jimenez et al., 1998; Henley, 1993; Perez-Llorens et al., 1996; 

Rodrigues et al., 2000). Ulva lactuca growing in continuous low light possess a 

photosynthetic capacity in excess of photosynthetic performance and would benefit from 

short-term exposure to high light (Sand-Jensen, 1988).  Species of Ulva can use light energy 
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efficiently to drive photosynthesis at high irradiances, but they dissipate less energy as non-

radioactive processes (Mouget and Tremblin, 2002).  Also, the dark respiration is partially 

inhibited in the light in immersed U. lactuca (Zou et al., 2007) due to low photosynthetic 

activities in the abscent of light.   Ecologically, photosynthetic pigments stabilize chlorophyll 

- protein complexes to protect the organism against excessive light (Siefermann-Harms, 

1987; Humbeck et al., 1989; Marquardt, 1998; Demmig-Adams, 1990).  Light is also well 

recognized as an important factor in Ulva growth.  If Ulva is stocked at very high densities its 

growth is impeded due to self-shading (Bartoli et al., 2005).  Jiménez del Río et al. (1996) 

recommended that Ulva should not be stocked at densities greater than 1.5 grams of wet 

weight per litre.  

 

1.6.3 Aeration 

Aeration has a dual role of enhancing mass transfer and mixing. It maintains the alga in 

circulation and brings them to the surface where they are exposed to light for photosynthesis.  

Aeration has a secondary effect on growth by breaking down diffusive boundary layers at the 

surface of the thallium that would otherwise slow the uptake of nutrients and inorganic 

carbon (Hanisak and Ryther, 1984).  In addition, aeration introduces some CO2 from the 

atmosphere into the culture system to improve growth (Hanisak and Ryther, 1984; DeBusk et 

al., 1986; Vandermeulen and Gordin, 1990).  Aeration results in rotation, which causes 

abrasion of the thallium against the culture vessel; this may serve as a mechanism to control 

epiphytes (Hanisak and Ryther, 1984).  According to Bruhn et al. (2010) cultivation of U. 

lactuca in 1 m
2 

tanks and water exchange of 6 times per day can achieve a production 

potential of 4 kg m
-2

.   
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1.6.4 Salinity 

Salinity changes are considered to be an important factor limiting the growth of Ulva.  It is 

necessary to understand how Ulva responds and adapt to salinity stress as a result of osmotic 

pressure, fluctuating ionic balances and shortages of essential metabolites (Kirst, 1990; 

Parida and Das, 2005; Fan-Lu et al., 2006).  Ulva in intertidal zones are able to withstand 

relatively high changes in salinity (and temperature) over short periods of time (Stegenga et 

al., 1997; Shuuluka -  2011; Park et al., 2014).  These sudden changes have a dramatic effect 

on the algae’s growth.  Species of Ulva that naturally occur under such condition are adapted 

to salinity tolerances ranging from 3 ‰ to as much as 115 ‰ (Lobban and Harrison, 1997).  

The reason they are able to survive is because Ulva are able to regulate the amounts of 

dissolved internal salts, keeping their internal osmotic pressures somewhat higher than the 

surrounding medium, allowing them to maintain a constant turgor at higher salinities (Lobban 

and Harrison, 1997).  However, despite this adaptation, Ulva can be negatively affected by 

low salinity resulting in decreased growth rates and a defence mechanism to cope with the 

oxidative stress induced by salinities below 20 - 30 ‰ (Murthy et al., 1988; Friedlander, 

1992; Fan-Lu et al., 2006).   

 

 1.6.5 Carbon 

Carbon nutrition is an essential requirement for successful algal cultivation.  Carbon is 

converted to growth in macroalgae, which leads to increased CO2 concentration as a result of 

higher biological productivity with an envisaged increase in the photosynthetic storage and 

nutrient uptake from the process (Surif and Raven, 1989; Maberly, 1990; Gao et al., 1991; 

Levavasseur et al., 1991; Kubler et al., 1999; Stitt and Krapp, 1999; Ding-Hui and Kun-Shan, 

2002; Langdon et al., 2003;  Zou, 2005; HongYan et al., 2008; Roleda et al., 2010; Markelz 

et al., 2013).  Ulva utilize dissolved gaseous CO2 from the atmosphere (De Boer, 1981). 
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Upon entering the aqueous environment, atmospheric CO2 reacts with water leading to the 

formation of ionic forms of carbon (carbonic acid, bicarbonate, and carbonate) in equilibrium 

with CO2, as described in the equation by Falkowski and Raven (2007).  

H2O + CO2 ↔ H2CO3 ↔ H
+
 + HCO3- ↔ 2H

+
 + CO3

2-
 

 

However, depending on pH changes in the seawater (Bjork et al., 1993), the equilibrium 

shifts, with high concentrations of CO2 at lower pH and relatively more bicarbonate and 

carbonate at higher pH.  At pH 7.8 - 8.2, salinity 35 ‰, and water temperature of 25 
o
C for 

example, more than 95 % of inorganic carbon present is in the form of bicarbonate (Kremer, 

1981; Falkowski and Raven, 2007).  Elevated CO2 concentrations in air enhance 

photosynthesis of intertidal species of Ulva (Zou et al., 2007).  Ulva rigida, for example, 

having an efficient ability of HCO3- utilization, was found to have its photosynthesis 

saturated at the Ci (Intercellular CO2 concentration) concentration of seawater. In addition to 

growth and photosynthesis, increasing CO2 levels enhances the activity of nitrogen reductase 

(NR) in U. rigida (Björk et al., 1993). 

 

In dense biomass cultivation systems the Ulva depletes the dissolved inorganic carbon in the 

water, suffering from carbon malnutrition, consequently resulting in low rates of production 

(Bidwell et al., 1985; McLachlan et al., 1986; Jiménez et al., 1995).  Accelerated thallus 

disintegration at high CO2 concentrations under conditions of limited water exchange 

indicates additional CO2 effects on the life cycle of U. lactuca living in rock pools, while 

slight enhancement of photosynthetic performance and significantly elevated growth of the 

alga at increase CO2-concentrations (Olischläger et al., 2013).  The induced CO2 

concentrations in culture media have one of the most important economic impacts on Ulva 

production (Kübler  et al., 1999; Zou, 2005; Xu et al., 2010).  Higher growth in many aquatic 
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macrophytes, stimulated by induced CO2 concentration, usually lead to greater biological 

productivity with an expected increase in the photosynthetic storage of carbon (Morison and 

Lawlor 1999).  CO2 can be utilized for stimulating the growth of wild Ulva (Gordillo et al., 

2001) and possibilities also exist for promoting growth of cultured marine macroalgae.  

Increased CO2 levels in seawater have been shown to promote the photosynthetic activity of 

U. intestinalis Linnaeus (Pajusalu et al., 2013).  Elevated CO2 levels are suggested to 

promote the production of fast-growing filamentous species, which thus may indirectly 

enhance the effect of eutrophication in the shallow coastal brackish waters (Pajusalu et al., 

2013).  Most algae improve their growth and calcification from increased CO2; this observed 

effect can vary between strains of the same species and similar species of Ulva (Gao et al., 

1999; Kübler et al., 1999; Iglesias – Rodriguez et al., 2008; Langer et al., 2009; Riebesell et 

al., 2007). 

 

1.6.6 pH 

In most Ulva cultivation tanks, carbon nutrition can be controlled by pH-regulated additions 

of carbon.  The variables to control are the chemical form (bicarbonate or carbon dioxide) in 

which the carbon is added to the cultures and the pH set point at which it is added (Bidwell et 

al., 1985; Craigie and Shacklock, 1989; Amat and Braud, 1993; Demetropoulos and 

Langdon, 2004).  The use of extra carbon sources therefore represents a major operational 

cost of traditional Ulva cultivation systems (Braud and Amat, 1996). 

 

According to Drechsler and  Beer (1992) the photosynthetic performance observed in U. 

lactuca at lower pH largely followed that prediction, with a slight discrepancy probably 

reflecting a minor diffusion barrier to CO2 uptake.  Changes in carbon concentration can 

result in a shift in pH outside the normal neutral range.  In Ulva incubations, Menendez et al. 
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(2001) observed optimum photosynthesis between pH 6 and 7.5. At pH above 7.5, the 

photosynthetic rate declined rapidly while below 6 (12.30 %) this decline was less 

pronounced than above pH 8 (81.03 %); this difference may be related to the origin of the 

Ulva.  Therefore, it is important that in Ulva cultivation, hydrogen ion concentration must be 

managed at a range close to pH 7.5 – 8.5 (Nagle et al., 2009).   

 

1.6.7 Nitrogen 

After carbon, nitrogen is the most important growth factor for macroalgae and the uptake rate 

of the different N forms is affected by environmental conditions including light and 

temperature (Lapointe and Ryther, 1978; Valiela, 1984; Duke et al., 1989).  Nitrogen is 

available to macroalgae in three different forms; nitrite, nitrate and ammonium.  Ammonium 

is often taken up at higher rates than nitrate (D'Elia and DeBoer, 1978; Morgan and Simpson, 

1981; Wallentinus, 1984; Thomas and Harrison, 1985; Rees, 2003), despite the fact that 

nitrate is almost always the more abundant source of inorganic nitrogen in the aquatic 

environment (De Boer, 1981).  However, ammonium, which can be toxic for some 

macroalgae at concentrations above 30 – 50 μm, is the preferred form of nitrogen for Ulva 

(Shuuluka -  2011).  Light intensity, temperature fluctuation or changing stocking density 

generally does not affect nitrogen uptake (DeBusk et al., 1986; Duke et al., 1989; 

Vandermeulen and Gordin, 1990; Cohen and Neori, 1991; Lobban and Harrison, 1994). 

 

For high yield and high nitrogen content, U. lactuca for example, should be kept at stocking 

densities of 1 - 2 kg m
-2

 and at ammonia fluxes of about 0.5 moles m
-2

 d
-1

 (Neori et al., 1991).  

Nitrogen content of cultivated U. lactuca can be increased further, but at reduced yield, by 

increasing the stocking density to 4 or 6 kg m
-2

 (Neori et al., 1991).  Fast-growing 

cholorophyts like Ulva are usually characterized by high SA: V (surface area: volume), using 
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a high Nitrogen uptake/requirement to promote growth, possibly facilitating Nitrogen uptake 

even at low substrate concentrations (Hein et al., 1995; Pedersen and Borum, 1997).  

Ammonium uptake in green algae such as Ulva can be regulated by Nitrogen accumulation 

due to their high tissue-N properties over periods of excess availability (Rosenberg and 

Ramus, 1982; Fujita, 1985; Duke et al., 1989).    

 

1.6.8 Phosphorus 

Phosphorus in the form of orthophosphate ions is an important primary component of 

phosphate-related reactions, as well as Calvin cycle enzymes available to aquatic macroalgae 

(De Boer, 1981; Müller et al., 2005; Ghannoum and Conroy, 2007).  Naturally, the growth of 

macroalgae in most culture media is often determined by phosphorus in the water (Howarth, 

1988; Chopin et al. 1990a; Flores-Moya et al., 1997; Lobban and Harrison, 1997).  

According to Lee (2000) thallus discs of U. lactuca grown under different NaH2PO4 levels 

suggest that the phosphorous deficiency induction of between acid phosphatise (ACP) 

activity may be correlated to phosphorous availability.  The nitrogen-to-phosphorus (N:P) 

ratio is an important nutritional component for algal growth and the optimum ratio varies 

from species to species, and may provide a basis for competitive elimination and co-existence 

of algal species (Wu and Suen, 1985).   

 

According to Björnsäter and Wheeler (1990) the growth rates of Ulva decrease faster under 

phosphorus-limitation than during nitrogen-limitation.  The growth rates of U. fenestrate, for 

example, decrease faster under phosphorus-limitation than during nitrogen-limitation 

(Björnsäter and Wheeler, 1990).  Under these conditions, a NH4
+
 is often taken up by the alga 

at higher rates than nitrate (D'Elia and DeBoer, 1978; Haines and Wheeler, 1978; Hanisak 

and Harlin, 1978; Topinka, 1978; Morgan and Simpson, 1981; Wallentinus, 1984; Thomas 
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and Harrison, 1985; Rees, 2003).  However, sustainable growth is the preferred nitrogen form 

for Ulva and other species of macroalgae (Lobban and Harrison, 1994). 

 

Lee (2000) demonstrated the linear correlation between acid phosphatise (ACP) activity and 

intracellular Pi (oxyanion phosphate - Pi).  According to Lee (2000) total Phosphorus 

concentrations show that in U. lactuca, ACP activity can be an indicator of Phosphorus 

deficiency.  The increment on ACP activity in inorganic Pi-limited conditions suggests that 

ACP could be involved in polyphosphate degradation in U. lactuca, as has been suggested for 

some higher plants (Dewald et al., 1992; Duff et al., 1994).  The concentrations of 

intracellular polyphosphates in U. lactuca decrease after transfer to phosphorus-deficient 

conditions, indicating that the intracellular polyphosphates could be hydrolyzed to meet 

phosphorus requirements (Weich and Graneli, 1989).  In the case of U. lactuca, the activity of 

extracellular alkaline phosphatise (AP) increased during cultivation in a P-deficient medium 

(Weich and Graneli, 1989). 

 

1.6.9 Heavy metals 

Nutrient concentration at both macro and micro levels are important for growth 

improvements in macroalgae cultivation.  Although, macroalgae contains several trace 

elements (e.g. alganic acid, vitamins, auxins, gibberllins, cytokines and antibiotics) they 

naturally take up elements like Na, K, Ca, Mg, Cl, I and Br from the surrounding water 

bodies (Rafia et al., 2006).  The ability of macroalgae to accumulate metals depends on 

several factors such as the bioavailability of the metals in the surrounding water and their 

seasonal variations (Sanchez- Rodriguez et al., 2001; Villares et al., 2001; Lozano et al., 

2003).  The major metallic pollutants implicated in culture systems and coastal waters are Pb, 

Cr, Hg, U, Se, Zn, As, Cd, Au, Ag, Cu and Ni (Alya et al., 2004) of which Cd is highly 
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absorbed by Ulva (Farr, 2009).  Consequently species of Ulva have been used as biological 

indicators of heavy metal contamination (Ho, 1990; Villares et al., 2001; 2002; Mamboya 

2007; Rybak et al., 2012; Saeed and Moustafa 2013; Chakraborty et al., 2014).   

 

1.6.10 Water flow and movement 

It has long been known that high water motion increases algal photosynthetic rates through 

the filtration of inhibiters like OH ions (Gonen et al., 1995).  Water motion affects exchanges 

of nutrients and CO2 between the water column and the algal thallus.  This is so because 

water motion influences the algae’s boundary layer (Gonen et al., 1995).  The influence of 

water movement is crucial to culture technology systems for species like Ulva and other 

marine algae, since nutrient uptake is essential in the initial, early development of spore 

formation.  Ulva lactuca may well be one of the most advantaged algal species if wave 

velocities are high, dislodgment is low, and sun and wind exposure is relatively low or of 

short duration (Seaborn, 2014).  Ulva cultured in a flow-through system performs better than 

in a closed unit precisely because the former system ensures that both water and algae are in 

constant motion to maintain continuous exposure to light, water for nutrient uptake and gas 

exchange (Msuya, 2001; Mwandya, 2001; Butterworth, 2010). 

 

1.6.11 Stocking density 

Several studies have shown that stocking densities for species of Ulva have an important 

influence on the algae’s growth rates.  Very high stocking densities (> 6 kg.m
-2

) generally 

reduce aeration and result in improper circulation leading to reduced biomass production 

(DeBusk et al., 1986; Bartoli et al., 2005).  The optimal stocking density is therefore a 

function of light availability due to aeration (Vandermeulen, and Gordin 1990).  If the density 

is too high, the algae will be shaded.  Conversely, if the stocking density is too low, the algal 
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thalli will receive too much light and energy will be wasted (McLachlan, 1991; Msuya, 2004; 

Bruhn et al., 2011).  Mmochi et al. (2002) estimated that the optimal stocking density for U. 

fasciata and U. reticulate in their studies was 1 kg m
-2

.  Similarly many other studies have 

shown that the optimal stocking density for U. lactuca is also near 1 kg m
-2

 (Ryther et al., 

1984; Neori et al., 1991).  In still others studies, the optimal stocking density for U. lactuca was 

reported to be 4 kg m
-2

 (Bruhn et al., 2010). However, Jiménez del Río et al. (1996) 

recommended that Ulva should not be stocked at densities greater than 1.5 g of wet weight 

per litre.    It thus appears more likely that the stocking density is often also a function of the specific 

culture system the species is grown in. 

 

1.6.12 Seasonality 

Environmental factors (light intensity, temperature, nutrient supply, etc.), in conjunction with 

seasonality, influences the survival of macroalgae (Luning and Dieck, 1989; Duke et al., 

1989).  Macroalgae differ in their nutrient content in relation to the light environment and 

their photosynthetic efficiency (Gerard, 1988).  The relationship between nutrients such as 

carotenoids and Vitamin A has established that some carotenoids have proVitamin A activity, 

which can be transformed to Vitamin A in aquatic fauna (Carvalho, 1993).  These pigments 

in macroalgae provide an indication of the level of Nitrogen available in surrounding water.  

Research experiment by Vergara and Niell (1993), for example, showed that the proportion 

of pigmented and non-pigmented proteins vary with Nitrogen concentrations and light 

availability.  This phenomenon shows that macroalgae have the physiological mechanism to 

store Nitrogen for subsequent seasons when nutrients are possibly in short supply.   

 

In general, biomass of Ulva shows minimum values in winter and maximum values (200 and 

800 g dry weight (dw) per m
2
)  in late spring to early summer (Altamirano et al., 2000; 
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Viaroli et al., 2005; Martins et al., 2007; Perrot et al., 2014).  Altamirano et al. (2000) 

suggested that the metabolic stress due to UV-B radiation has little impact on the seasonal 

growth cycle of U. olivascens, for example, but has significant impact on the pigment 

concentrations and the internal carbon and nitrogen content.  In their studies the relative 

growth rate of U. olivascens was 68 % higher in spring and early summer than in mid-

summer.  In the same spring-to-summer period, photosynthetic pigment concentrations 

(chlorophyll a, chlorophyll b, and carotenoids) decreased by 70 - 80 %.  In U. lactuca, 

growth per incident photon (αg) can vary from 1 to 22 mmol C (mmol incident photon)
-1

, 

depending on the time of the year and level of shading (Geertz-Hansen and Sand-Jensen, 

1992).  In this regard, the αg is high under nutrient saturation and higher temperatures in 

August-September (Southern Hemisphere spring) and low during nutrient limitation and 

sporulation.     

 

1.7 South African Ulva culture 

 

In South Africa various macroalgae, notably brown macroalgae, have long been used 

commercially as feed for the abalone industry and as feedstock for the production of 

phycocolloids (Troell et al., 2006).  In the abalone industry, high-quality macroalgal protein 

extraction has been developed for incorporation to varying degrees into the formulated feeds 

Abfeed™ and Midae Meal™ (Anderson et al., 2003; Robertson-Andersson et al., 2006; 

Troell, et al., 2006).  Among African nations, South Africa is currently spearheading research 

innovations into macroalgae, and their use for the commercial production of the plant growth 

stimulants Kelpak®, Afrikelp®, and more recently Phloroglucinol® and Eckol® (Rengasamy 

et al., 2015).  Currently, Carraguard®, a non-spermicidal microbicide containing carrageenan 

(a red macroalgae derivative) has been clinically tested to be a promising product capable of 
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blocking the transmission of HIV/AIDS and lowering the risks of women in contracting the 

disease (Robertson- Andersson, 2007).  However, of all macroalgae in South Africa, species 

from the genus Ulva are the most promising from an energy point of view (Shipton and Britz, 

2007; Bolton et al., 2009; Bruton, et al., 2009; Department of Agriculture, Forestry and 

Fisheries  2011).   

 

1.7.1 Ulva culture and their commercial uses 

The cultivation of Ulva in South Africa started in the early 1990’s and has shown 

considerable success since then (Robertson-Andersson 2007).  Wild Coast Abalone
®
 farm 

(East coast province), Irvin & Johnson
Tm

 Cape Cultured Abalone mariculture farm (South 

coast province), and Abagold
®
 (West coast province) have cultivated most of the South 

Africa’s Ulva, making the country a world leader in Ulva cultivation (FAO (2011).   The 

Ulva species cultivated in South Africa comprise largely three species (Ulva armoricana, 

Ulva rigida and Ulva capensis ), with the free-floating U. armoricana grown more widely 

and forming an important feed source, particularly for integrated abalone (Haliotis midae L) 

farming (Robertson-Andersson et al, 2007; Department of Agriculture, Forestry and Fisheries  

2012; Cyrus et al., 2014a).    

 

In 2009, 2010 and 2011, Ulva production was 1900 tonnes, 2015 tonnes and 2884.61 tonnes 

respectively from only four species grown in flow-through integrated Ulva/abalone systems 

(Bolton et al., 2006; Robertson-Andersson et al., 2008; Department of Agriculture, Forestry 

and Fisheries, 2011b; 2012; FAO, 2012).  This industry has grown rapidly since then 

(Shuuluka,  2011).  The on-land integrated culture unit, with paddle wheel raceways, is widely 

viewed in South Africa as the preferred method of Ulva production for the industry 

(Robertson-Andersson, 2007).   
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The growth of Ulva and its culture in South Africa has been well researched (Robertson-

Andersson, 2003; Robertson-Andersson et al., 2007).  Cultivated Ulva widely are used as a 

food source for cultured abalone has generated a wealth of information about the alga’s 

growing conditions and its suitability as a food source.  Feeding trials have showed that 

abalone growth is greatly improved by Ulva specimens with a high protein content, which is 

attained by culturing the algae under high ammonia levels (Shuuluka et al., 2013).  Nutrient 

enriched Ulva have been shown to have comparatively high protein content of 36 – 44 % as 

opposed to their wild counterparts that have protein contents of only 3 – 24 % (Robertson-

Andersson, 2003; Robertson-Andersson et al., 2007).  Work on the south African abalone H. 

midae (e.g. Naidoo et al., 2006; Francis et al., 2008; Robertson-Andersson et al., 2011) and 

the sea urchin Tripneustes gratilla (e.g. Cyrus et al., 2012; 2014a; 2015) fed these higher 

protein enriched Ulva spp, whether fed a single diet of Ulva or in combination with other 

seaweeds or with formulated feed, showed that these protein enriched Ulva species out-

performed their wild or their non-nutrient enriched counterparts. 

  

1.7.2 Taxonomic concerns of Ulva culture 

The South African species of Ulva have been well studied along the west coast region.  The 

recent synonymy of the genus Enteromorpha with Ulva (which has nomenclatural priority) 

meant that the latter genus now comprises fifteen species in South Africa, namely: U. 

armoricana P.Dion, B.de Reviers & G.Coat, U. atroviridis Levring, U. compressa Linneaeus, 

U. capensis Areschoug, U. fasciata Delile, U. flexuosa Wulfen, U. intestinalis Linneaeus, U. 

linza Linneaeus, U. marginata (J.Agardh) Le Jolis, U. minima Vaucher, U. prolifera 

O.F.Müller, U. rigida C.Agardh, U. rhacodes (Holmes) Papenfuss and U. uncialis (Kützing) 

Montagne (Joska, 1992; Stegenga et al., 1997; Coat et al., 1998; Cyrus et al., 2014b; Dion et 

al.,1998; Guiry and Guiry, 2015).  Previously thought to be U. lactuca, molecular evidence 
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(L. Kandjengo & J.J. Bolton, unpublished data) has shown that the main species of Ulva 

grown in South Africa is the free-floating U. armoricana.  Other South African specimens 

reported to be “U. lactuca” are different from those reported from other parts of the world 

and will require an in depth (taxonomic and molecular) assessment to determine their 

taxonomic status (Cyrus et al., 2014b).   

 

The first molecular study of South Africa species of Ulva (see Kandjengo, 2003) revealed 

that there are more species of Ulva than previously reported.  This study suggested that some 

of these cryptic species may have been introduced into the country in the last decade.  The 

mis-identification of several species has resulted in a number of misconceptions.  Ulva 

lactuca is one such example (Stegenga et al., 1997) as we now know it to be genetically 

different to the European type specimen (Kandjengo, 2003; Cyrus et al., 2014b).   

 

The taxonomy of species from the genus Ulva is currently in flux.  Thus it is not possible 

currently to identify precisely species of Ulva in the various aquaculture systems across 

South Africa without any molecular sequencing (Cyrus et al., 2014b). “Ulva lactuca” is a 

name widely used in aquaculture studies around the world, and more than likely there are a 

number of species residing under this name.  The Ulva species grown in the current study 

has been identified by DNA sequencing to match the holotype of U. armoricana P.Dion, B.de 

Reviers & G.Coat, a member of the U. rigida complex (L. Kandjengo and JJ Bolton, 

unpublished data; Cyrus et al., 2014b).  Although U. armoricana is currently regarded as a 

heterotypic synonym of U. rigida (Brodie et al., 2007; Guiry and Guiry, 2015) South African 

aquaculture material identified as U. armoricana are not molecularly identical to material of 

U. rigida that occurs on South African seashores (J.J. Bolton, pers. comm.).  It will take a 
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while for the taxonomy of the genus Ulva to be properly sorted.  Until such time, we are 

obliged to use the name U. armoricana for the material grown in aquaculture systems.         

 

1.8   Aims of this study 

 

Biomass is the term for renewable energy from a plant source. Energy in this form is very 

commonly used throughout the world. Unfortunately the most popular form of this energy is 

the burning of trees for cooking and warmth. This process releases copious amounts of CO2 

into the atmosphere and is a major contributor to unhealthy air in the environment. 

Macroalgae are an important form of biomass with the production of more modern kinds of 

energy as methane (CH4) generation that could be used for fueling electric power plants. 

Macroalgae are currently the most significant aquatic ‘plant’ that has contributed to the 

development of the fisheries and the aquaculture industry both globally and locally in South 

Africa (FAO, 2010b).  Harvests from wild populations are generally affected by 

overexploitation and climatic change.  South Africa, for example, is listed as one of the top 

producers of wild stocks globally (FAO, 2014).  If the South African macroalgal industry 

continues to grow at the current rate, there will be a need to improve the cultivation of Ulva 

spp to increase productivity to meet the various industry demands. 

 

1.8.1 Rationale    

South Africa has the highest energy consumption per capita in Africa, with the total energy 

consumption in 2003 of 4230 Peta joule (PJ) (Department of Minerals and Energy (2004).  

As the natural reserves of oil-producing countries decline, it is of immense importance to 

look towards other sources of energy generation, particularly from renewable sources.  

Presently, the renewable contribution to South Africa’s energy supply is relatively limited 
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(Banks and Schäffler, 2006).  The country uses coal and crude oil, which together contributed 

in 2000 about 88 % (3720 PJ) of the energy (Mathu 2014).  However, South Africa has 

extensive coal reserves that are estimated to last for only one more century if used at current 

rates (Jeffrey, 2005).  Oil reserves are small and the country imports almost all its crude oil 

requirements (Ward and Walsh 2010).  South Africa thus has an energy-intensive economy 

and as a result, per capita CO2 (and other ‘greenhouse’ gas) emissions are amongst the 

highest in the world (Mwakasonda, 2007; Parker and Blodgett 2008; Department of National 

Treasury 2010).  With natural crude oil and other fossil fuel reserves declining, and the 

serious environmental pressures associated with these industries rising, industries have been 

forced to explore other renewable options for obtaining LPG.  

 

1.8.2 Objectives 

Among the goals of this study was to investigate the effect of physicochemical parameters 

(pH, oxygen, temperature, nutrients, and light quality) on the biomass production of Ulva 

used in aquaculture.  Due to their high starch contents, Ulva species have been shown to be 

prime candidates for biofuels production (Bruton et al., 2009).  This information should 

provide base-line data in the cultivation of Ulva to produce macroalgae for large-scale 

renewable energy production.  

 

This study also examined the survival ability of Ulva with respect to pH in determining the 

extent of physiological adaptation to increased CO2 levels.  The ability to withstand reduced 

or higher pH levels should reflect the extent to which Ulva can survive pH levels in both 

closed and flow-through aquaculture systems.  These physiological studies are of importance 

since increased inorganic CO2 can result to reduce the photosynthetic ability of Ulva species 

in closed, semi-closed and flow-through aquaculture systems.   
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South Africa currently ranks among the 20 highest contributors to CO2 emissions overall and 

produces approximately 2 % of the global GHG emissions, and yet has only 0.7 % of the 

world’s population (Banks and Schäffler, 2006).  Another part of this study was designed to 

measure the efficacy of different production outputs of Ulva cultivated under various 

treatment conditions.  Ultimately the aim was to demonstrate whether Ulva’s uptake of 

anthropogenic CO2 can be used as an effect carbon deposit.  

 

The following, more precise, objectives were the basis for the research conducted during the 

current study. 

 To evaluate the large scale production of Ulva cultivated in a flow-through system in 

order to investigate the relationships between environmental factors and growth, and 

to aid in the prediction of growth. 

 To identify the ideal culture conditions that promotes the optimum growth of Ulva. In 

this study we investigated the optimal testing of CO2 uptake via algae for biogas and 

biomass maximization for biomethane and its mitigation against coastal acidification.  

 To identify whether the widely cultured green macroalga Ulva armoricana might 

have a significant contribution to South Africa’s renewable energy supply. 

 

Through these objectives, this research will attempt to explain how Ulva grown under more 

environmentally friendly and high sustainable technology systems might be better used for 

transforming macroalgal biomass into potentially consumable products like renewable energy 

sources such as LPG.  By converting macroalgal biomass to useful fuel, it decreases our 

dependence on fossil fuels. 
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Chapter 2: Paper 1 

 

South African Seaweed Aquaculture: A sustainable development example for other 

African coastal countries 
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and Bolton J.J. 

(2013). South African Seaweed Aquaculture: A sustainable development example for other 

African coastal countries. African Journal of Agricultural Sciences 8(43): 5260-5271. 
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Abstract 

The green seaweed Ulva is one of South Africa’s most important aquaculture products, 

constituting an important feed source particularly for abalone (Haliotis midae L). Besides 

Ulva spp, Gracilaria spp are also cultivated.  Wild seaweed harvest in South Africa totals 

7,602 mt, compared to 2,015 mt of cultivated Ulva.  To mitigate for the reliance on wild 

harvesting, the South African seaweed aquaculture industry has grown rapidly over the past 

few decades.  On-land integrated culture units, with paddle-wheel raceways, are now widely 

viewed as the preferred method of production for the industry.  The success of seaweed 

aquaculture in South Africa is due to a number of natural and human (industrial) factors.  The 

development of the seaweed aquaculture industry has paralleled the growth of the abalone 

industry, and has been successful largely because of bilateral technology transfer and 

innovation between commercial abalone farms and research institutions.  In South Africa 

seaweeds have been used commercially as feedstock for phycocolloid production, for the 

production of abalone feed, and the production of Kelpak® and Afrikelp®, which are plant-

growth stimulants used in the agricultural sector.  Additionally, Ulva is being investigated for 

large-scale biogas production and utilized as a bioremediation tool and other benefits such as 

integrated aquaculture.  The South African seaweed industry provides a template that could 

be used by other coastal African nations to further their undeveloped aquaculture potential. 

 

Key words: Aquaculture, resources, seaweed, Ulva, South Africa   
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Introduction 

Fisheries and mariculture provide significant food and income for the world’s coastal 

countries, constituting the livelihoods of over 3 billion people (FAO, 2009; Smith et al., 

2010).  Fisheries rely upon renewable harvest from the aquatic environment, while 

aquaculture is the cultivation of desirable aquatic organisms in open, closed, or semi enclosed 

bodies of water (Lorenzen et al., 2001).  Aquaculture is currently the fastest growing primary 

industry (FAO, 2009) and with macroalgae aquaculture is larger than capture fisheries (FAO, 

2010a; 2012).  Active coastal aquaculture development with high production has been 

practiced in Asia, Europe and South America for several decades, whereas only minimal 

production has thus far been achieved in Africa (FAO, 2012).  Currently the African 

continent accounts for less than 1% of the annual total global aquaculture production (FAO, 

2010a; 2012) and the vast majority of Africa’s aquaculture is in fresh water.   

 

Macroalgae is currently the most significant aquatic plant that has contributed to the 

development of fisheries and the aquaculture industry (FAO, 2010b).  Since 1970, the 

production of aquatic plants (seaweed and angiosperm) worldwide has consistently increased 

at an annual rate of 7.7%; 93.8% of the total world macroalgae production is now from 

aquaculture (McHugh, 2001; FAO, 2003; 2009; 2010b; 2011), a higher figure than for any 

other group of marine organism.  Globally, the production of macroalgae  increased from 

11.66, 16.83 and 19.9 million mt in 2002, 2008 and 2010 respectively, while seaweed 

biomass accounted for 23% of the world aquaculture output in 2007 (FAO, 2012; Paul and 

Tseng, 2012).  In recent years the total global annual macroalgae harvest, produced by over 

30 countries, ranges from 3.1‒3.8 million mt (FAO, 2010b).  Aquaculture production of 

aquatic plants in 2008 was estimated at US$7.4 billion (99.6% quantity and 99.3% value) 

(FAO, 2009). 
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Even though Africa is the second largest continent and has a shoreline of about 30,000km, it 

has yet to contribute significantly to the development of the macroalgae  industry despite its 

rich seaweed diversity (FAO, 2002; 2010b).  Abalone farming in South Africa has developed 

rapidly and the country is now the largest producer outside Asia, partly achieved due to 

seaweed production.  From a macroalgae perspective, Eucheuma farming is well established 

in Zanzibar where commercial interests have assisted the establishment and development of 

the industry (FAO, 2014), making Tanzania the largest macroalgae producing country in 

Africa, and among the top ten producers and one of only a few countries around the world 

producing more than 8,000 mt of (Eucheuma) macroalgae per annum (FAO, 2014).  

 

Africa offers numerous aquaculture opportunities, including integrated macroalgae  

aquaculture production, which has been on the increase since 2001 (Table 1).  The African 

continent produced 133,000 mt of farmed seaweeds in 2014, with Tanzania (mainly 

Zanzibar), Madagascar, South Africa, Mozambique, and Namibia as the leading producers 

(FAO, 2014).  This paper examines the current status of seaweed aquaculture in South Africa, 

the philosophy behind the country’s achievements, prospects for the future, and the lessons 

for other African coastal countries.  
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Table 1: World aquaculture production of aquatic plants by producers in 2014 (FAO 2014).  

 

V = Value in USD 1 000 Q = Quantity 
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The South African Seaweed Industry  

South Africa has had a macroalgae industry for over 60 years.  The commercial exploitation 

of macroalgae in South Africa is based largely on beach-cast collecting and cutting of kelp. 

Harvesting of Ecklonia maxima (Osbeck) Papenfuss and Laminaria pallida Greville ex J. 

Agardh started in the 1940’s as a result of the scarcity of kelp during the Second World War 

(McHugh, 1987).  When supplies of agar from Japan became unavailable, various potential 

resources were identified.  However, commercial exploitation only began in the early 1950s 

(McHugh, 1987), followed by hand-picking of Gelidium sp. in the Eastern Cape since 1957. 

Most of this harvest was shipped to Europe, North America, and Asia for alginate extraction 

(Anderson et al., 1989).   South African kelps yield alginate concentrations of between 22 ‒ 

40% (Anderson et al., 1989).  Some trade figures showed that powdered kelp was also 

exported to Japan for use in formulated fish-feed (Zhang et al., 2004).  Since 1975, fresh ‒ 

wet kelp has been harvested from Concession Area 9 (Figure 1) along the west coast solely 

for the production of Kelpak®, which is a plant-growth stimulant
1
 and soil conditioner (Khan 

et al., 2009).   

 

Similar harvesting of fresh ‒ wet kelp in small quantities started in 1979 on the west coast 

and later on the south coast for the production of Afrikelp®, which is also a plant-growth 

stimulant.  This harvesting continues today (Anderson et al., 1989; 2003; Robertson-

Anderson et al. 2006; Troell, et al., 2006). 

 

                                                           
1
 Kelp contains active ingredients (cytokinins and auxins) that have been shown to improve the growth 

performance and efficacy of many food and agricultural crops (Troell et al., 2006). 
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Figure 1: Map of South Africa showing area of potential commercial macroalgae concession 

right areas (Anderson et al. 2003). 

 

The bulk of the fresh ‒ wet harvested kelp forms the major fresh feed ingredient for cultured 

abalone in South Africa.  The use of kelp for abalone feed has fluctuated since 2005 (Table 

2), but in 2010 a total of 5,542 mt of fresh kelp fronds were supplied to farmers (DAFF, 

2011a).  Despite the large quantities of kelp supplied for use as abalone feed (Ad libitum 

feeding method), some farmers also use formulated feeds, such as Abfeed™ and Midae 

Meal™, and some do not use kelp at all.  In 2010 commercial quantities of Gelidium were 

collected only from Concession Area 1; G. pristoides (Turner) Kuetzing comprises more than 

90% of the harvest. Abundant endemic species such as G. pristiodes, G. pteridifolium Norris, 

Hommersand & Fredericq and G. abbottiorum R. E. Norris have been harvested from Eastern 

Cape intertidal areas since the mid 1950s and have been identified for possible exploitation 

from other Concession Areas
2
 (viz. 1, 20, 21, 22 and 23).   

                                                           
2
 The coastline between the Orange and Mtamvuna Rivers is divided into 23 macroalgae rights areas. In each 

area, the rights to each group of seaweeds (e.g. kelp, Gelidium, or Gracilarioids) can be held by only one 
company, to prevent competitive overexploitation of these resources. Different companies may hold the rights 
to different resources in the same area(Figure 2). 
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Table 2: Annual yields of commercial macroalgae in South Africa, 2000-2010 

Year Gelidium (kg 

dry wt) 

Gracilaria (kg 

dry wt) 

Kelp Beach cast 

(kg dry wt) 

Kelp fronds 

harvest (kg fresh 

wt) 

Kelp fresh 

beach cast (kg 

fresh wt)  

Kelpak (kg 

fresh wt) 

2001 144 997 247 900 845 233 5 924 489 0 641 375 

2002 137 766 65 461 745 773 5 334 474 0 701 270 

2003 113 869 92 215 1 102 384 4 050 654 1 866 344 957 063 

2004 119 143 157 161 1 874 654 3 119 579 1 235 153 1 168 703 

2005 84 885 19 382 590 691 3 508 269 126 894 1 089 565 

2006 104 456 50 370 440 632 3 602 410 242 798 918 365 

2007 95 606 600 580 806 4 795 381  510 326 1 224 310 

2008 120 247 0 550 496 5 060 148 369 131 809 862 

2009 115 502 0 606 709 4 762 626 346 685 1 232 760 

2010 103 903 0 696 811 5 336 503 205 707 1 264 739 

Totals 1 140 374 633 089 8 034 189 45 494 533 4 903 038 10 008 012 

Kelp beach cast’ (column 4) refers to material that is collected in a semi-dry state, whereas ‘kelp fresh beach 

cast’ (column 6) refers to clean wet kelp fronds that, together with ‘kelp fronds harvest’ are supplied as abalone 

feed. ‘Kelp fresh beach cast’ was only recorded separately since 2003. Source: DAFF 2011a. 
 

Yields vary with demand from a few to about 120 mt dry weight annually.  The sheltered 

waters of Saldanha Bay (macroalgae Rights Area 17) and St Helena Bay (Areas 11 and 12 in 

parts) contain commercially viable amounts of Gracilarioids. Gracilaria gracilis (Stackhouse) 

Greville wash-ups from Saldanha Bay on the west coast were exported for extraction of agar.  

Although some Gracilaria cultivation was attempted in the 1990’s in Saldanha Bay and St 

Helena Bay, these commercial ventures failed (Anderson et al., 1989; 2003).  Only beach-

cast Gracilaria material may be collected commercially, because harvesting of the living 

beds is not sustainable. In Saldanha Bay, large yields (up to 2,000 mt dry weights in 1967) 

were obtained until the construction of the iron ore jetty and breakwater in 1974, after which 

yields fell dramatically (Anderson et al., 1989; 2003).  Occasional small wash-ups are 
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obtained in St Helena Bay.  Because total annual yields of Gracilarioids range from zero to a 

few hundred tonnes dry weight, this resource is regarded as unreliable (Anderson et al., 1989; 

2003). Accordingly, no gracilarioids have been collected commercially since 2007.  From the 

start of commercial seaweed exploitation in South Africa in the 1950’s, only six macroalgae 

genera (Ecklonia, Laminaria, Gracilaria, Gelidium, Gigartina and Porphyra) have been 

harvested, with most of this material being exported for use in the phycocolloid industry.  

Ulva has also been harvested in small amounts, but mostly for seaweed salt.  

 

Today seaweed aquaculture in South Africa started as an offshoot of the abalone (Haliotis 

midae L) farming industry in the 1990’s and has increased accordingly.  Within South Africa 

twelve macroalgae species are currently being exploited: Ulva sp., Porphyra sp., E. maxima, 

Laminaria pallida, Gracilaria gracilis, Gracilariopsis longissima (S. G. Gmelin) M. 

Steentoft, L. M. Irvine & W. F. Farnham, Gelidium abbottiorum, G. pteridifolium, G. 

pristoides, G. capense (S.G. Gmelin) P. C. Silva, and Plocamium corallorhiza (Turner) 

Harvey (ESS, 2005; Troell et al., 2006; Robertson-Andersson, 2007).  

 

South Africa’s macroalgae resources are well protected under the Marine Living Resources 

Act of 1998 and are conserved from a concessional perspective
3
 (Anderson et al., 1989; 

2003; GPR, 2005; Anderson et al., 2006).  In certain Concession Areas, limitations are placed 

on the quantity that can be harvested.  These sustainable limits are termed Maximum 

Sustainable Yields (MSY) and equate to 10% of the estimated kelp accessible (non-reserve) 

biomass, a value that was estimated to equal the annual mortality rate for the kelp E. maxima 

(Simons and Jarman, 1981).  A large amount of this harvested macroalgae is exported for the 

                                                           
3
 The macroalgaeresources are managed in terms of both a Total Applied Effort (TAE) and a Total Allowable 

Catch (TAC)  
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extraction of gums and 42.7% of the total harvest of fresh kelp fronds was supplied to 

abalone farmers as feed, this harvested kelp fetching a market value of R6 million (~ 

US$750 000) in 2010 (DAFF, 2012).  Within the 23 Concession Areas, currently 14 areas are 

for kelp rights (Figure 2); no commercial activity was reported in five of these areas (DAFF, 

2012).  

 

Figure 2: Maximum sustainable yield (MSY) of harvested kelp for all areas for 2010. 

 

Importance, uses and benefits 

Seaweed is produced (cultivated) in 25 countries globally, comprising 145 species used in 

food production and 101 species used in phycocolloid production (Dhargalkar and Verlecar, 

2009).  There are some commercial macroalgae  species being cultivated in each of the main 

genera, which includes Caulerpa, Chondrus, Eucheuma (and Kappaphycus), Gracilaria (and 

Gracilariopsis), Palmaria, Pyropia (formerly Porphyra), Monostroma, Saccharina (formerly 

Laminaria), Ulva and Undaria (Zemke-White et al., 1999; Fleurence 2004; Bruton et al., 

2009; Klaus et al., 2009; Mohammad and Chakrabarti, 2009; FAO, 2010b; Paul and Tseng, 

2012). 
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Agar and carrageenan are commercially valuable substances.  The best quality agar, and its 

associated derivative agarose, comes from red algae belonging to the family Gelidiaceae, 

while lower-quality agars are mainly found in other families, mainly the Gracilariaceae.  

Globally agarose is used extensively in gels for electrophoresis in molecular biology.  

Carrageenans are generally employed for their viscous properties in gelation, as stabilization 

of emulsions, in suspensions and foams, and in the control of crystal formation in dairy 

products and frozen foods.  

 

Macroalgae have been called the medical food of the 21st century (Khan and Satam, 2003). 

According to the World Health Organization (WHO) macroalgae are among the healthiest 

foods on the planet as they contain vitamins, over 90 minerals and many antioxidants (FAO, 

2003).  Historic evidence shows that seaweeds have been eaten by coastal communities of 

many countries since ancient times (FAO, 2002) and according to research, such 

communities who have historically consumed large quantities of seaweed, on average lived 

longer and had a lower incidence of hypertension and arteriosclerosis (Tietze, 2004). 

 

Macroalgae are also used in the manufacture of pharmaceuticals and cosmetic creams 

(Bhakuni and Rawat, 2005; Leonel, 2011; Lewis et al., 2011).  For example, Digenea spp 

(Rhodophyta) produce an effective vermifuge (kainic acid) (Smit, 2004).  Laminaria and 

Sargassum species have been used for the treatment of cancer (Khan and Satam, 2003).  

Anti-viral compounds discovered in Undaria spp have been used to inhibit the Herpes 

simplex virus (Barsanti and Gualtieri, 2006).  Research is now being carried out into using 

seaweed extracts to treat breast cancer and HIV (Schaeffer and Krylov, 200; Synytsya et al., 

2010).  Several calcareous species of Corallina have been used in bone-replacement therapy 

(Stein and Borden, 1984). Asparagopsis taxiformis and Sarconema spp. are used to control 
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and cure goiter while heparin, a seaweed extract, is used in cardiovascular surgery (Khan and 

Satam, 2003).  

 

Global seaweed trade 

Globally the macroalgae industry is estimated to have an annual value of some US$6 billion 

(McHugh, 2003) and the largest share of this is for food products.  Currently there are 42 

countries across the world with reports of commercial macroalgae activity (cultivation and 

harvesting) (Khan and Satam, 2003; Bixler and Porse, 2011).  The primary wild-harvested 

genera include Chondrus, Furcellaria, Gigartina, Sarcothalia, Mazzaella, Iridaea, 

Mastocarpus, and Tichocarpus (Bixler and Porse, 2011).  As already mentioned, macroalgae 

are an important food source, especially in Japan (FAO, 2003).  Popular macroalgae food 

stuffs include Wakame, Quandai-cai (Undaria pinnatifida), Nori  (Porphyra spp), Kombu or 

Haidai (Laminaria japonica), Hiziki (Hizikia fusiforme), Mozuku (Cladosiphon 

okamuranus), Sea grapes or Green caviar (Caulerpa lentillifera), Dulse (Palmaria palmata), 

Irish moss or Carrageenan moss (Chondrus crispus), Winged kelp (Alaria esculenta), Ogo, 

Ogonori or Sea moss (Gracilaria spp), Carola (Callophyllis variegata), Leafy sea lettuce 

(Ulva spp), Arame (Eisenia bicyclis), and Kanten (agar-agar).  Macroalgae products for 

human consumption contribute about US$ 5 billion of which nori is worth US$ 2 billion per 

annum (FAO, 2003).  

 

The production of macroalgae  and other aquatic algae reached 19.9 million mts in 2010, of 

which aquaculture produced 19 million mt. Japanese kelp was the most cultivated macroalgae  

species (5.1 million mt) in 2010 and most of it was grown in China (FAO, 2012).  Major 

macroalgae aquaculture production come from China, Indonesia, Philippines, North Korea, 

South Korea, Japan, Malaysia, Chile, India, and Tanzania  (Barsanti and Gualtieri, 2006, 
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Bixler and  Porse, 2011; FAO, 2010b; 2012).  The most cultivated macroalgae is the kelp 

Saccharina japonica, which accounts for over 60% of the total cultured macroalgae ; species 

from the genera Porphyra, Kappaphycus, Undaria, Eucheuma, and Gracilaria make up the 

majority of the remaining total (Barsanti and Gualtieri, 2006).   

 

High demand for carrageenan has similarly triggered the development of Kappaphycus 

alvarezii and Eucheuma denticulatum farming in several countries, the largest producers 

being the Philippines, Indonesia, Malaysia, Tanzania, Kiribati, Fiji, Kenya, and Madagascar 

(Bixler and Porse, 2011).  World carrageenan production exceeded 50,000 mt in 2009, with a 

value of over US$527 million (Bixler and Porse, 2011).  About 32,000 ‒ 39,000 mt of alginic 

acid per annum is extracted worldwide from approximately 50,000 mt (wet weight) annual 

production of kelp (Barsanti and Gualtieri, 2006).  Agar is relatively cheap, usually around 

US$18 per kg.   In 2009, about 86,100 mt of hydrocolloids were traded comprising 58% of 

carrageen, approximately 31% alginates, and approximately 11% agar (10,000 mt with a 

value of $175 million); the major genera included Ahnfeltiopsis, Gelidium, Gelidiella, 

Gracilaria, Pterocladiella and Pterocladia (Bixler and Porse, 2011). 

 

Africa regional seaweed aquaculture development 

The African continent comprises 29 coastal countries and five island nations, few of which 

are practicing some form of macroalgae aquaculture (Machena and Moehl, 2001).  However, 

the biogeographical features and shore characteristics in several of these countries suggest a 

high potential for macroalgae resources exploitation, culture and utilization. 
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West Africa 

Excluding Ghana (200 species), Senegal (241 species), and Sierra Leone (112 species), which 

have high macroalgae  diversities associated with upwelling events and rocky shores (Bolton 

et al., 2003), West Africa generally has a low macroalgae  diversity (John and Lawson, 

1991). Nigeria (49 species), Benin (16 species), Togo (37 species) and Guinea Bissau (12 

species) have coastlines characterized by sandy beaches and extensive mangroves, deltas, 

estuaries, and lagoons with correspondingly low algal diversity (John and Lawson, 1997).  

Recent research (Fakoya et al., 2011; Abowei and Tawari, 2011) has shown the potential of 

macroalgae resources for exploitation, culture and utilization for Nigeria but as yet, no 

targeted commercial harvesting and cultivation has commenced.                 

 

North Africa    

North Africa (Morocco – 197 species, Libya – 178 species, Tunisia – 87 species, Western 

Sahara – 81 species, Sudan – 18 species) has variable macroalgae species richness.  The 

Moroccan coast, however, has been most studied, due to its proximity to European countries 

(Gallardo et al., 1993) and this may explain the high species numbers.  None the less, 

Morocco has a well-established macroalgae industry based on the extraction of agar from 

wild Gelidium species.  Steps are also being taken to identify suitable protected natural sites 

for macroalgae cultivation, presumably with a view to cultivating Gracilaria to supplement 

the natural resources of Gelidium for agar production (FAO, 2003). 

 

East Africa 

The East African coastline is about 9500 km long and comprises the tropical coasts of 

Somalia (211 species), Kenya (403 species), Tanzania (428 species), Mozambique (243 

species) and Madagascar (207 species).  Macroalgae aquaculture is a recent development in 
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East Africa, occurring in all East African countries except Somalia.  Tanzania's aquaculture 

production has increased steadily to become the largest producer of aquaculture products in 

Africa (FAO, 2012). Eucheuma denticulatum (previously E. spinosum) and Kappa-phycus 

alvarezii (previously E. cottonii) have been farmed in the region since 1989.   These two 

species are found naturally in East Africa, and were previously collected from the wild for 

export to USA and Europe.  Although the species are found locally, the farmed strains are 

mainly imported from the Philippines (FAO, 2012).  Madagascar currently accounts for a 

very small proportion (about 4,000 mt of macroalgae per year) of global seaweed production, 

despite the fact that much of its 5,000 km coastline provides perfect conditions for 

macroalgae cultivation (FAO, 2012).  With assistance from commercial sources, macroalgae 

cultivation is proving to be promising in Mozambique (FAO, 2012).  This will make 

Mozambique only the fourth macroalgae producing nation in Africa (FAO, 2012). To support 

this industry and to promote aquaculture, the Mozambique government recently (2011) 

approved a decree establishing the marine aquaculture reserve.  Approximately 10,600 

hectares have been set aside for macroalgae aquaculture, potentially yielding 641,000 mt of 

seaweed (Nkutumula, 2011).  The macroalgae of Kenya are well-studied relative to other 

East African/Indian Ocean countries (Bolton et al., 2003).  However, Kenya does not present 

good prospects for a macroalgaeindustry. None of the pilot studies carried out have produced 

any promising results that would encourage investors to venture into macroalgae farming for 

Kenya. 

 

Southern Africa 

Namibia’s proximity to South Africa greatly influenced the documentation of the former 

country’s macroalgae resources.  Both countries have developed through technology sharing, 

but the macroalgae aquaculture industry in Namibia is still not as developed as in South 
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Africa.  The 196 macroalgae species of Namibia have been studied and documented 

(Engeldow, 1998; Rull Lluch, 1999; 2002; Engeldow and Bolton, 2003).  As in South Africa, 

Namibian macroalgae harvesting companies operate under a system of Concessions Areas. 

The industry provides employment opportunities for over 250 people in an area where job 

opportunities are severely lacking.  Investment in polyculture of macroalgae and crustaceans 

has also been promoted in Namibia (Hasan and Chakrabarti, 2009).  Of the 196 Namibian 

species of macroalgae, nine have shown potential use as animal feed supplements. Beach-cast 

Gracilaria is also collected and cultivation is being developed by a local company; the 

current market, however, is depressed.     

 

 The macroalgae of South Africa have been extensively detailed (Stegenga et al., 1997; De 

Clerck et al., 2005; Maneveldt et al., 2008).  The known macroalgae diversity of South 

Africa has increased from 547 species in 1984 to around 900 species in 2012, making the 

region one of the richest marine floras in the world, with a high level of endemism (Payne et 

al., 1989; Bolton, 1999; Bolton et al., 2003; Maneveldt et al., 2008; pers. obs.).  South 

African macroalgae aquaculture is focused on the abalone industry, particularly the abalone, 

Haliotis midae (Bolton et al., 2006; Troell et al., 2006).  By far the most cultivated 

macroalgae species is Ulva spp.  The aquaculture of Ulva spp occurs on many abalone farms 

(DAFF 2010) and here paddle-wheel raceways have proven to be the most suitable device for 

growing Ulva spp in large quantities (Chopin et al., 2008). 

 

The South African abalone aquaculture industry has grown rapidly over the past few decades 

along the west coast of South Africa where suitable rocky habitat exists (Troell et al., 2006).  

On-land integrated culture units, which use shallow raceways, are the preferred method of 

production for the abalone industry (Bolton et al., 2006).  There is growing evidence that 
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suggests a mixed diet of kelp and other macroalgae can induce growth rates that meet or 

exceed those attained with artificial feed (Naidoo et al., 2006; Dlaza et al., 2008; Francis et 

al., 2008; Robertson-Andersson et al., 2011).  Moreover, a natural diet can improve abalone 

quality and reduce parasite loads (Robertson-Andersson, 2003; Naidoo et al., 2006; Al-

Hafedh et al., 2012). 

 

Problems and prospects of macroalgae aquaculture in Africa 

Failures of some ill-conceived pilot projects (e.g. South-west Madagascar - De San, 2012) 

continue to remain a major constraint in convincing farmers and investors of the economic 

viability of macroalgae aquaculture in most African coastal countries.  Several other 

constraints have prolonged the development of the industry in many African countries, and 

these can be summarized as: weak economies; poor aquaculture development policies;  

inappropriate technologies; weak extension services; weak impact of research institutions; 

inadequate information management systems; limited coordination between research and 

production sectors; scanty reliable production statistics and the high value/cost of coastal 

land; and the associated competition for this land from other coastal industries (Troell et al., 

2011).  In the countries (South Africa, Tanzania, Madagascar, Mozambique, Namibia, 

Burkina Faso, Central Africa Republic and Senegal) where thriving macroalgae cultivation 

practices have been achieved, these industries provide a meaningful form of income for 

communities that might otherwise not be employable in the traditional sense (Troell et al., 

2011).   
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Lessons for other coastal nations  

The general benefit of integrated multitrophic aquaculture
4
 (IMTA) is the reduction of 

nutrient release to the environment (Neori et al., 2004; Bolton et al., 2009).  This 

phenomenon is also true for integrated macroalgae -abalone culture in South Africa.  The 

technical and economic feasibility of IMTA using macroalgae as biofilters is already well 

established in South Africa (Nobre et al., 2010).  Macroalgae  grown in abalone effluent have 

an increased nitrogen content (sometime as much as 40% protein dry weight content), 

resulting in value-added macroalgae of excellent quality to feed abalone (Naidoo et al., 2006; 

Robertson-Andersson, 2007; Robertson-Andersson et al., 2011).  Not only in South Africa 

but elsewhere, the increasing demand for abalone feed has seen the need for sustainable 

production of macroalgae in IMTA aquaculture with aquatic animals (Brzeski and Newkirk, 

1997; Troell et al., 1999; Buschmann et al., 2001), especially with abalone (Neori et al., 

1991; 1996; 1998; 2004; Bolton et al., 2009).  To improve macroalgae biomass estimations 

and to document the relative macroalgae distributions, GIS mapping and diver-based 

sampling of the resource is regularly undertaken in South Africa as a government 

requirement.  Monthly harvests of fresh kelp are routinely checked against the prescribed 

MSY as set in the annual permit conditions of all rights holders.  Visual inspections by South 

African government officials, and reports received from right-holders, show that the kelp 

resource is stable and healthy (DAFF, 2011a). 

 

Although the South African macroalgae sector is small in comparison to similar fisheries, it is 

currently worth US$3.7 million, generates approximately US$2 million
5
 per year, but 

nevertheless employs up to 400 people, the majority of whom are women who earn an 

                                                           
4
 Integrated Multitrophic Aquaculture (IMTA) is defined as an ecosystem based management approach that 

effectively mitigates the overabundance of nutrients introduced by fish farming. 
5
 1US$(US dollar) equals R9.55 (SA Rand) as at 22 May 2013. 
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average annual salary of US$ 5 000 (Payne et al., 1989; DAFF, 2011a; 2011b; DAFF, 2012).  

More importantly, high proportions (92%) of the employees in the sector are classified as 

historically disadvantaged persons
6
 (DAFF, 2011a). The South African aquaculture sector 

thus has an important local impact within previously disadvantaged coastal communities, 

where any increase in employment is valuable largely because such communities are 

generally characterized by high rates of unemployment (85.7%) and low skill levels (50%) 

(Nobre et al., 2010). 

 

South Africa is currently spearheading a number of other research innovations.  Research has 

shown that abalone farms incorporating an IMTA macroalgae-abalone system can 

significantly reduce their green-house gas (GHG) emissions (Nobre et al., 2010; Troell et al., 

2011).  Due to their high carbohydrate contents, macroalgae  can be fermented to CH4 

(biogas) and have subsequently been considered a potential CO2-neutral and renewable 

energy supply (Bartsch et al., 2008; Roesijadi et al., 2008; Bruhn et al., 2011; Chung et al., 

2011).  Furthermore, recent research findings have shown that Laminaria and Ulva species 

are important prospects from an energy point of view (Bruton et al., 2009; Klaus et al., 2009; 

Abowei and Tawari, 2011; Bruhn et al., 2011; Chanakya et al., 2012).  This important 

benchmarking knowledge could propel the commencement of research on macroalgae as a 

substitute for liquefied petroleum gas (LPG).   Aside from being a renewable resource and 

reducing CO2 emissions (especially if macroalgae cultivation is incorporated with a source of 

CO2 production), macroalgae cultivation could potentially have a major positive impact on 

global warming and ocean acidification. As a consequence of these findings, South Africa is 

                                                           
6
 Historically disadvantaged persons are persons so classified as underdeveloped populations targeted by the 

SA Government for accelerated development (www.polity.org.za/html/govdocs/rd/rdp2.html). 

.  
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currently investigating large-scale anaerobic digestion of macroalgae to methane as well as 

the local species of macroalgae potential for mitigation of ocean acidification.   

 

Conclusion 

Despite the fact that South Africa is currently not Africa’s highest macroalgae aquaculture 

producer, the country has the highest regional macroalgae diversity and one of the richest in 

the world.  As a third-world country with many first-world technologies, South Africa 

provides many important lessons for less developed coastal African nations.  The South 

African macroalgae aquaculture industry is well researched and has developed steadily due to 

the increasing demand for abalone feed that has seen the need for sustainable production of 

seaweed in IMTA.  The South African macroalgae aquaculture industry provides raw 

materials for other sectors of the economy, as well as the potential for bioremediation of both 

the atmospheric and aquatic environment. 
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Chapter 3: Paper 2 

 

Aquaculture benefits of macroalgae for green energy production and climate change 

mitigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Amosu A.O., Robertson-Andersson D.V., Kean E. and Maneveldt G.W. (2014).  Aquaculture 

benefits of macroalgae for green energy production and climate change mitigation.  
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Abstract 

It is an established fact that climate change caused by human-induced concentrations of 

greenhouse gases (GHG), especially CO2 emissions is increasing in the earth’s atmosphere 

and is the greatest challenge the world is currently facing. Algae play significant roles in 

normal functioning of the atmospheric environment and are important candidates for climate 

change mitigation.  Macroalgae (over 20 commercial seaweed species) are the second most 

cultured species of aquatic organisms after finfish. More than 92 % of the world’s 

macroalgae production comes from mariculture.  Macroalgae have a higher photosynthetic 

efficacy (6 – 8 %) than that of terrestrial plants (1.8 – 2.2 %).  An investigation into seaweed 

as a food source for the South African abalone (Haliotis midae L.) has led to an increased 

knowledge of its fisheries and aquaculture conditions.  Ulva spp are grown on a large scale in 

paddle wheel ponds and is currently South Africa’s largest aquaculture product.  Its growth 

rate, ease of harvesting, resistance to contamination by other algal species and minimal 

production loss make it preferable to microalgae and to other macroalgae for large scale 

renewable energy production and CO2 capturing systems.  Of all macroalgae, Ulva spp are 

exciting prospects in terms of energy efficiency.  Findings have further revealed that 

biotransformation of Ulva armoricana to Liquefied Petroleum Gas (LPG) is viable.  Large 

scale aquaculture production of Ulva spp is occurring in South Africa and biotransformation 

to LPG is possible and economically feasible with additional benefits from farming activities 

including bioremediation, ocean de-acidification, mineral-rich plant stimulants, and the 

capturing of atmospheric and dissolved CO2 during growth to assist in climate change 

mitigation. 

 

Index Terms — Aquaculture, climate change, CO2, green energy, mitigation, seaweed, South 

Africa, Ulva armoricana 

 

 

 

 



77 

 

Introduction 

The Earth’s radiative energy balance is undergoing change due to the increase in greenhouse 

gases, primarily CO2 from fossil fuel combustion, and from anthropogenic aerosols 

(Wuebbles and Jain, 2001).  The long term trend of increasing atmospheric CO2 has become 

a focal point in current research across atmospheric, terrestrial, and marine science 

disciplines.  An evolved understanding of how our current global climate is being and will be 

influenced by continuing increases in CO2 emissions and subsequent global warming, is 

required to predict how climate change will impact our livelihood and the future health of 

ecosystem integrity.  In response, several developed and developing nations like the EU, 

USA, Canada, Brazil, Argentina, Colombia, China, New Zealand and Japan have 

incorporated biofuel targets into their renewable energy policies in recent years (Steenblik, 

2007).  Meanwhile in Africa, South Africa was one of the very first countries to provide the 

necessary political will and desire to explore opportunities for a green economy, through the 

National Green Economy summit in  2010  (Tshangela and Roman, 2012).  South Africa 

emits approximately 400 million tons of CO2 annually, ranks among the 20 highest 

contributors to CO2 emissions overall, and produces approximately 2 % of global greenhouse 

gas (GHG) emissions, yet it has only 0.7 % of the world’s population, and produces 0.9 % of 

the world GDP (Douglas and Schaffler, 2006; Sinha et al., 2010; Khoza, 2012).  

 

Energy supply in South Africa is primarily coal-based.  South Africa is therefore a CO2 

intense economy, with the country’s major energy requirement sourced from fossil fuels 

(Douglas and Schaffler, 2006).  It is necessary, at an industrial scale, to shift the dependence 

on fossil fuel-based energy to that of renewable and sustainable practices (Douglas and 

Schaffler, 2006).  The seaweed aquaculture industry as a biomass source for the production of 

biomethane gas is feasible in South Africa and could help promote this needed shift.  The fact 
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that fossil fuel prices are increasing and that macroalgae production costs will inevitably fall 

as algal production expands (Douglas and Schaffler, 2006; Khoza, 2012), make large scale 

macroalgae cultivation financially feasible.  Unlike the first generation biofuels, macroalgae 

have additional advantages that make them environmentally sustainable.  The high oxygen 

(by-product of photosynthesis) amounts dissolved in the paddle ponds enable the water to be 

re-used for integrated polyculture with aquatic animals.   

 

Biomass energy is the conversion of biomass into useful forms of energy such as electricity, 

heat, and liquid fuels (Mckendry, 2002).  Macroalgae or seaweeds, undergo CO2 fixation to 

attain a high biomass production, and may assist in sequestering atmospheric sources of CO2.  

Of all macroalgae in South Africa, the algae Ulva spp are one of the most promising 

prospects from an energy point of view.  Ulva spp are grown on a large scale, and are 

currently South Africa’s largest aquaculture product (Shipton and Britz, 2007; Bolton et al., 

2009; Bruton et al., 2009; DAFF, 2011). 

 

Macroalgae are able to grow in varying conditions, both in fresh or salt-water bodies, and are 

tolerant of a diverse range of pH conditions (IEA, 1994).  There are about 36000 species of 

algae, and most species are exploited from the wild as the technology for their propagation is 

yet to be fully developed (FAO, 2006; Miller, 2009; Ralph, 2012), although significant strides 

have been made more recently.  Macroalgae are capable of producing more biomass per 

square meter than any fast growing terrestrial plant and are the second most cultured aquatic 

organisms after finfish (Briggs and Fung-Smith, 1993; Adams, 2011).  In the last 50 years, 

about 100 macroalgal species have been commercially cultivated from the genera Gracilaria, 

Euchema, Laminaria, Undaria, Ulva, Chondrus, Porphyra, Palmaria and Monostroma 

(Zemke-White and Ohno, 1999; Fleurence, 2004; Sahoo and Yarish, 2005; FAO, 2009; Klaus 
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et al., 2009; Mohammad and Chakrabarti, 2009; Paul and Tseng 2012).  Currently over 92 % 

of the world’s macroalgae production by weigtht comes from aquaculture species (Ozer, 

2005; Chopin and Sawhney, 2009; Paul and Tseng 2012).  Macroalgae aquaculture in South 

Africa started as an off shoot of the abalone (Haliotis midae L) farming industry (Troell et al., 

2006).  Since its inception in the 1990s, abalone aquaculture in South Africa has developed 

rapidly and the country is currently the second largest producer outside Asia (FAO, 2000; 

Troell et al., 2006).  This rapid development was partly achieved due to demand being driven 

by the decline of South African wild abalone collection due to poaching.  By 2006 several 

South African seaweed concession areas had harvested up to 99 % of their MSY (Troell et al., 

2006).  This lead the industry to explore alternative abalone feed.  One of the alternatives 

proposed were seaweeds cultivated in aquaculture effluent (Robertson-Andersson 2007).  

Since then over 2000 tons of Ulva spp. were cultivated as feed.   Researchers performed a 

strength, weaknesses, opportunities and threats (SWOT) analysis of the seaweed cultivation 

industry and stated that Ulva product diversification is needed to increase its potential in 

South Africa (Bolton et al., 2009).  The objective of this work was to investigate the potential 

for large scale anaerobic digestion of Ulva spp to produce methane gas from a readily 

available aquaculture product.  If the large scale production of biomethane proved 

environmentally and economically feasible and sustainable, it could serve as an alternative to 

the dwindling oil supply and help mitigate global CO2 emissions.  

 

Materials and Methods 

  

Biomass Production  

Ulva armoricana production experiments were carried out during winter at the Benguela 

Abalone Group aquaculture farm on the West Coast of South Africa in four 32 m X 8 m (180 
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m
3
) concrete paddle ponds, filled to approximately 0.55 m depth with unfiltered seawater on 

a flow through system.  Ponds received 2 volume exchanges per day.  The ponds set up were 

characterized as follows: 

  A – U. armoricana + standard seawater (control) 

  B – U. armoricana + nutrients added to improve growth (single fertilizer ratio) 

   C – U. armoricana + nutrients added to improve growth (double fertilizer ratio) 

   D – U. armoricana + nutrients added to improve growth (triple fertilizer ratio) 

   E – U. armoricana + nutrients added to improve growth (quadruple fertilizer ratio) 

   F – U. armoricana + nutrients added to improve growth (sextuple fertilizer ratio) 

   G – U. armoricana + nutrients added to improve growth (octuple fertilizer ratio)  

 

 

 

 

 

 

 

Figure 1:  Flow-through, paddle-wheel raceways are the preferred 

method for growing Ulva. 

 

Initial biomass of 500 kg/Ulva spp were stocked in each pond and growth rates were 

measured every 21 days (~3 weeks) for a period of 3 months.  The stocked Ulva spp in ponds 

B to G were fertilized (every 7 days in order to allow assimilation) with a mixture of 

(10:16:0) Maxipos® and Ammonium sulphite at 100g/kg providing both nitrogen and 

phosphorous respectively.  Fertilization was carried out in the evenings with the incoming 
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water turned off and the paddle wheel remaining in motion.  Four physico-chemical 

parameters were measured per hour for 24 hours and included temperature (Temp °C), pH, 

dissolved oxygen (DO, mgl
-1

) and light (µE m
-
² s

-1
).  The Waterproof CyberScan Series 300 

Dissolved Oxygen meter specially designed to measure oxygen and temperature 

simultaneously was used to detect DO and temperature values. pH was determined with the 

aid of a portable pH meter model 8414 (Wincom company Ltd) that also measures 

temperature at 0.1 °C.  Irradiance levels were measured using a Biospherical Instruments 

probe (QSP200). 

 

Wet to Dry Weight Ratios 

Samples were taken after 21 days, washed in distilled water to remove any impurities, 

weighed, and then oven dried for 3 days at 50 ˚C or until weight stopped decreasing.  Wet to 

dry weight ratios were calculated by the following equation: 

(Dwt/Wwt X 100) 

Wwt = wet weight,  

Dwt = dry weight 

 

Biogas Production 

1 kg of harvested samples of U. armoricana were prepared for biomethane analysis by rinsing 

in clean water and stored frozen at - 25 °C until analysis.  Samples were anaerobically 

digested in batch cultures for 25 days using the Matsui et al. (2006) methods of methane 

fermentation of macroalgal biomass. The analysis were done at an independent laboratory 

(Biogas Nord, Bielefeld, Germany. www.biogas – nord.com) using an X day bacterial 

digestion. 
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Statistical Analyses 

All data were analyzed statistically on graphpad prison V statistical software using one way  analysis 

of variance (ANOVA) followed by Duncan’s New Multiple Range Test (DNMRT) (Duncan, 

1955).  All tests were considered statistically significant at p ˂ 0.05. 

 

Results and Discussion  

Yield of Ulva differed substantially among treatments from one pond to another (Table 1).  

The lowest value was recorded in the control, which contained no fertilizer and also produced 

the least biomass with a 113 % increase at harvest due to the nutrient content of the seawater.  

A progressive increase in weight gain was seen with reference to fertilizer increase from one 

pond to another, with the highest weight being recorded in the quadruple fertilizer experiment 

of 691 % increase.  Yield differed substantially among treatments from one pond as a result 

of the previous week’s fertilization.  This result is consistent with other published works 

(Robertson-Andersson et al., 2007). Marine algae accumulate nutrients by means of a two 

stage process consisting firstly of a rapid and reversible physico-chemical process of 

adsorption on the surface of the algae, and then secondly of a slower metabolically arranged 

intracellular uptake (Garnham et al., 1992; Barreiro et al., 1993).  Thus the effects of a 

fertilization regime are often felt in the second growth period.  As this trial was performed in 

winter, periods of sunlight influenced growth, with higher growth rates being experienced 

towards spring (i.e. the end of the trial). Findings showed that Ulva growth rates are seasonal 

and so we can assume that production would increase in summer (Robertson-Andersson, 

2007).  These increases are slightly lower than those obtained using smaller tanks 

(Robertson-Andersson, 2007), however, the CAPEX and OPEX costs of the paddle ponds 

provide the greatest production per unit areas and is more efficient than any other type of 

farming (Hanisak, 1987; Sahoo and Yarish, 2005). 
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TABLE 1: Composition and biogas yield from Ulva armoricana 

Element Unit of Measure Biogas 

Methane (CH4) % 53 

CO2 %              47 

Hydrogen % 1 

H2S ppm (Vol) 325 

NH3 ppm (Vol) 75 

Water (H2O) Dew point, °C 3 

Gas yield Nm
3
 Biogas/t FM 77.4 

Gas yield Nm
3
 Biogas/t DM 691 

FM=fresh matter, DM= dry matter 

 

 

  

Figure 2: Comparative maximum and minimum values of physico-chemical parameters and 

gas yield.  Minimum values were recorded, during the dark phase (night), while maximum 

values were recorded during the light phase (day) excluding gas production values (just 

minimum and maximum values are illustrated). 

 

In aquaculture, biomass accumulation is generally dependent on both on external factors (pH, 

salinity, inorganic and organic complex molecules) and on physico-chemical parameters 

(temperature, light, dissolved oxygen and nutrients) that control the metabolic rate.  Figure 1 
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illustrates the maximum and minimum values of physico-chemical variables experienced in 

the ponds, the mean and standard deviation were as follows; temperature (17 ± 2.03), pH 

(6.53 ± 0.39), DO (8.07 ± 2.32), light (910 ± 2.32) there was no significant different (p ˂ 

0.05) in these variables across the different treatments.  Temp, pH, DO and light show a 

diurnal variation (Figure 2).  Similar ranges were previously reported on by (Matsui et al., 

2006) for Ulva spp production in similar systems.  Other research showed that Ulva lactuca 

could be cultured at 15– 20 °C and 400 – 1000 µEs
-1

m
-2

[(Bidwell et al., 1985; Sand Jensen 

and Gordon, 1984; Cohen and Neori, 1991).  The lower values of pH 5.65, DO 4.72 mgl
-1

 

and 0.0µEs
-1

m
-2 

were recorded during the dark phase at night when the biochemical activities 

was minimal due to the absence of sunlight and photosynthesis.  These values similarly agree 

with the results and findings of (Garnham et al., 1992).  Light range values in the pond were 

recorded as 0 – 1800 μEs
-1

m
-2

.  This result falls within the range of results reported in similar 

research (Xu and Lin, 2008).  The wet to dry weight for the samples was 36.48 ± 21.35; this 

figure is within the range noted in earlier research (Matsui et al., 2006).     

                                     

 

Table 2: Composition and biogas yield from Ulva armoricana. 

 

Element 
Unit of Measure Biogas 

Methane (CH
4
) % 53 

Carbon Dioxide (CO
2
) %  47 

Hydrogen (H2) % 1 

H
2
S ppm (Vol) 325 

NH
3
 ppm (Vol) 75 

Water Dew point, °C 3 

Gas yield Nm
3

 Biogas/t FM 77.4 

Gas yield Nm
3

 Biogas/t DM 691 

    FM=fresh matter, DM= dry matter 
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Biogas is primarily a mixture of methane (53 %) and CO2 (47 %); the CO2 was the initial 

atmospheric CO2 absorbed by Ulva during culture.  This result is comparable to 60 – 70 % 

for LPG (Table 2), but better than LPG on major harmful emission like CO2, hydrocarbon 

and nitrogen oxide (NOx) produced (Net technologies 2012).  The potential difference in the 

nutrient content of each pond (A to G) effects the biogas production with an optimum biogas 

output at sextuple fertilizer ratio (Ulva + nutrients added to improve growth) (Table 1). 

 

Conclusion 

 

Utilizing cultivated seaweed as a sustainable and renewable feedstock for biogas production 

would be a great advantage for South Africa and could potentially lead the way in renewable 

energy development.  Additional benefits from such projects might include: capturing 

industrially emitted CO2 to use for enhanced seaweed growth to mitigate climate change, 

decreasing ocean acidification through carbon sequestration, as well as uptake of excess 

nutrients from industrial and agricultural effluent discharges; and reducing coastal 

eutrophication.  All these practices ultimate support change towards more environmentally 

sound practices. 
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Chapter 4: Paper 3 

 

Biofiltering and uptake of dissolved nutrients by Ulva armoricana (Chlorophyta) in a 

land-based aquaculture system 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Amosu A.O., Robertson-Andersson, D.V., Kean E., Maneveldt G.W. and Cyster L. (2016). 

Biofiltering and uptake of dissolved nutrients by Ulva armoricana (Chlorophyta) in a land-

based aquaculture system. International Journal of Agriculture & Biology 18: 298-304.  
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Abstract 

 

An on-land flow-through cultivation system was designed for the macroalgal species Ulva 

armoricana (Chlorophyta) to reduce the environmental impact of aquaculture effluent in 

coastal ecosystems as part of an integrated aquaculture system.  The macroalgae was cultured 

in various enriched media at a stocking density of 500kg wet weight/pond.  Overall, U. 

armoricana was able to remove a greater percentage of inorganic nitrogen in the double 

fertilizer ratio.  The total dissolved phosphate was higher in standard seawater.  Ulva 

armoricana showed preference for bioaccumulation, with ranges as follows: zinc (9.908 – 

32.942 mg.kg
-1

); copper (1.893 – 5.927 mg.kg
-1

); cadmium (0.254 – 1.500 mg.kg
-1

); and lead 

(none detected). Apart from the presence of cadmium (Cd), the algal biomass produced at the 

end of the experiment was of a relatively good quality with limited heavy metal 

contamination so that U. armoricana could be successfully used as a plant stimulant but not 

as part of a feed formulation for livestock and for the food industry.  This study showed that 

U. armoricana can effectively be used as a biological filter for dissolved nutrient uptake from 

aquaculture effluents.  The prospect of better management practices, based on the utilization 

of Ulva mariculture designs, bodes well for the aquaculture industry. 

 

Key words:  Dissolved nutrients, fertilizer, heavy metals, Integrated Multitrophic 

Aquaculture (IMTA), macroalgae, Ulva armoricana 

 

 

 

 

 

http://academic.research.microsoft.com/Keyword/40153/stocking-density


93 

 

Introduction 

 

Global aquaculture production continues to improve at about 10% annually, outpacing 

terrestrial livestock production and capture fisheries (FAO, 2010).  However, the rapid 

development of intensive aquaculture along coastal areas throughout the world has raised 

increasing concerns on environmental degradation and specifically the impact of nutrient 

loading if these industrial production practices are not sustainably managed using the best 

available technology (BAT) (Haylor and Bland 2001; Pauly et al., 2003; Troell 2009; Zhou et 

al., 2006; Ihsan 2012).  Waste products from aquaculture activities consist mainly of CO2, 

nitrogen, phosphorus, and heavy metals. 

Aquaculture waste can result in pollution that contributes to the degradation of the 

environment through (organic and inorganic inputs) agro-allied and industrial activities that 

can lead to a substantial increase of organic matter and nutrient loading into adjacent water 

bodies.  Modern integrated aquaculture systems like (non-fed aquaculture) macroalgae-based 

aquaculture contribute to eco-monitoring by playing a significant role in coastal wastewater 

filtration and bioaccumulation (Costa-Pierce et al., 2011; Klinger and Naylor 2012; Boxman, 

2013; Redmond et al., 2014).  This is due largely to the ability of macroalgae to achieve high 

biomass and have a significant potential as nutrient bioremediators (Msuya and Neori 2002; 

Tyler and McGlathery, 2006; Marinho-Soriano et al., 2009; Winberg et al., 2011).    

In aquatic environments, nitrogen and phosphorus (major aquaculture contaminants), are the 

two most important nutrients that usually limit biomass production of macroalgae (Smith and 

Smith 1998; GESAMP 2001; UNEP and Gems Water 2006).  Nitrogenous compounds 

(NH4
+
, NO3

–
, and NO2

–
) have been indicted as a source of pollution in aquaculture effluent 

due to discharge of untreated non-point aquaculture run-off, animal waste and failed 

technology practices.  According to estimates, 78 kg N and 9.5 kg P per ton of fish are 
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released into water bodies per year.  This is because about 72% N and 70% P constituent of 

feed are not utilized in the fish physiology (Ackefors and Enell 1994; Chopin et al., 1999). 

In the past few decades, increasing emphasis have been placed on developing sustainable 

approaches to coastal aquaculture development of large-scale Integrated Multitrophic 

Aquaculture (IMTA) seaweed farming (Robertson-Andersson 2007; Smith et al., 2010; 

Redmond et al., 2014).  The integrated culture system provides mutual benefits for the 

cultured organisms and improves water quality of the aquaculture system.  Macroalgae take 

up inorganic nutrients for growth and can thus alleviate the seasonal nutrient depletion from 

aquaculture (Chopin et al., 2001; Neori et al., 2004).  Several aquaculture research and 

development efforts have shown the efficiency and benefits of integrating macroalgae in on-

land treatment systems for treating aquaculture waste effluents before being discharged into 

open water bodies (Buschmann et al., 1996; Neori 1996; Winberg et al., 2011; Dittert et al., 

2012; Renzi et al., 2014).  

Macroalgae have found applications in the removal of nutrients from effluent waters of 

sewage, industry and aquaculture farming (Neori et al., 2004; Robertson-Andersson 2007; 

Dittert et al., 2012; Redmond et al., 2014).  More recently, it has been demonstrated that 

using different dissolved CO2 concentrations in seawater has the potential to improve nutrient 

uptake, a possible solution to the problems associated with coastal eutrophication around the 

world (Zou and Gao 2009).  This is so because in the polyculture of integrated fauna and 

macroalgal mariculture, the wastes from one consumer become a resource for the other in the 

mutually beneficial system.  This integrated approach gives nutrient bioremediation efficacy, 

mutual benefits to co-cultured organisms, and results in a more stable aquaculture 

environment (Neori et al., 2000; Chopin et al., 2001).  

Tissue metal contents are also potential hazard prediction indices for organisms and the 

environment when natural concentrations are higher than the maximum standard 

 

 

 

 



95 

 

recommended by monitoring agencies (Ayers and Westcot 1994; Almela et al., 2002; 2006; 

Smith 2009; Sánchez-Bayo et al., 2011).   Macroalgae naturally take up elements like Na, K, 

Ca, Mg, Cl, I and Br from the surrounding water bodies.  The major metallic pollutants 

implicated in culture systems and coastal waters are Pb, Cr, Hg, U, Se, Zn, As, Cd, Au, Ag, 

Cu and Ni among which Cd is readily absorbed in a combined state with S, Cl and O and 

stored in the algal thalli (Komjarova  2009; Dittert et al., 2012; Renzi et al., 2014).  Green 

macroalgae (Chlorophyta) are known to be a significant biological indicator of heavy metal 

contamination in marine ecosystems (Nelson et al., 2010).   Various studies have 

demonstrated the use of green macroalgae from the genus Ulva as a bio-filter/monitor of 

coastal contamination because of their relatively simple morphology, high tissue 

bioaccumulation, and widespread distribution (Alkhalifa et al., 2012; Zoll and Schijf 2012; 

Renzi et al., 2014).   

In IMTA, bio-filtration processes easily remove considerable amounts of pollutants contained 

in the out flowing water, resulting in a reduced permissible discharge into open water bodies.  

The development of such systems requires the removal of solid compounds and dissolved 

metabolites contained in the outlet water of the systems.  The specific justification of this 

research has evolved from aquaculture's environmental consequences, and the nutrient 

enrichment of the outlet water systems associated with more general aquaculture practices. 

Aquaculture practices generally lead to high nutrient loading that can facilitate changes in the 

natural dynamics of water bodies and can lead to oxygen depletion, green tide (harmful algal 

blooms) events, eutrophication, fish kills, low productivity, increased risks of infectious 

diseases, and deterioration of the groundwater with serious consequences for human health, 

the environment and economic development (Van Alstyne et al., 2007; Nelson et al., 2010; 

DEC 2014; Redmond et al., 2014).  In this study, we investigated the nutrient uptake 

potential, efficiency and bioaccumulation potential of the green macroalga Ulva armoricana 
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in an outdoor, on-land flow-through paddle wheel system. The philosophy behind this part of 

the research was to: 1) deduce if the SA seaweed industry can produce macroalgae for direct 

human consumption; and 2) determine the implications for the abalone industry due to metal 

compounds in macroalgae. 

 

Materials and Methods 

 

Ulva Materials 

Ulva armoricana used in this experiment was sampled from the I & J Cultured Abalone farm 

(34
o
34′60 S; 19

o
21′0 E) and were transported to the research farm at Benguela Abalone 

Group (32°54'24'' S; 17°59'17'' E) on the West Coast of South Africa.  Samples were rinsed 

with filtered seawater and gently scrubbed to remove sediments and any epiphytes.  The 

specimens were then stabilized in a culture for 3-4 days (acclimatization) under a continuous 

flow of seawater pumped from the ocean (mean nutrient concentrations were 0.6 μM NH4
+
, 

0.5 μM NO3
–
, NO2

–
, and 0.7 μM PO4

3–
) and kept at 20 °C in concrete paddle ponds.  

 

Experimental Systems 

Macroalgae production experiments were carried out during winter in four 32 m X 8 m (180 

m
3
) concrete paddle ponds and filled to approximately 0.55 m depth with unfiltered seawater 

in a flow-through system (Figure 1).  Ponds received two volume exchanges per day.  The 

experimental treatments were as follows: 

  A - U. armoricana + standard seawater (control) 

  B - U. armoricana + nutrients added to improve growth (double fertilizer ratio) 

  C - U. armoricana + nutrients added to improve growth (quadruple fertilizer ratio)  
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Figure 1:  Flow-through, paddle-wheel raceways are the preferred 

method for growing Ulva. 

 

Initial Ulva biomass of 500 kg wet weight was stocked in each pond and growth rates were 

measured after 21 days.  The algae were fertilized (7 days before the experiment in order to 

allow assimilation) with a mixture of (10:16:0) Maxipos® and ammonium sulphite at 

100g/kg providing both nitrogen and phosphorous respectively (algae need N & P in a ratio: 

16 atoms of N for every 1 atom of P - Greenfield et al., 2012).  Fertilization was carried out 

in the evenings with the incoming water turned off and the paddle wheel remaining in 

motion.  The mean physico-chemical parameters measured during the experiment include 

temperature (17 °C), pH (6.53), and dissolved oxygen (8.07mg L
-1

). 

 

Water Sampling and Analysis 

Water samples were collected from 10:00am and every (intervals) hour thereafter for 24 h to 

determine the inorganic nutrients concentrations.  Four inorganic nutrients were measured 12 

times at different intervals and included Ammonium (NH4
+
), Nitrate (NO3

–
), Nitrite (NO2

–
), 

and phosphorus (PO4
3–

).  Analysis of the various inorganic nutrients Ammonium, Nitrate, 
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Nitrite and Phosphorus were determined using a Spectroquant® Pharo 300M.  The detailed 

chemical analysis methods were done photometrically based on the manufacturer’s manual – 

Merck KGaA, (Germany) www.merck-chemicals.com/test-kits, www.merck-

chemicals.com/photometry.  The amount of light (µE m
-
² s

-1
) was also recorded as irradiance 

levels and was measured using a Biospherical Instruments probe (QSP200).  Algal tissue 

metal content was determined every 21 days for 3 months.  The heavy metals tested for 

included cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb), using an Atomic Absorption 

Spectrophotometer (AAS), Unicam Atomic Absorption – M Series), Unicam Limited, U.K. 

 

Statistical Analysis 

The design of the experiment was completely randomized with three replications.  Apart from 

light and temperature data collected every hour, other inorganic nutrients were sampled every 

three hours for 24 hours.  For heavy metals, % N and % P significance differences were used 

to juxtapose with standards.  Data are presented as means ± standard deviation (SD).  All data 

were analyzed using GraphPad PrismV. 

 

Results  

 

Our findings show that nutrient availability followed the fertilizer ratio (Figure 2 to 7 and 

Table 1).  Availability of Ammonium (NH4
+
) showed a diurnal variation with the different 

treatments, the highest being observed during the day (0.18mg L
-1

) in the quadruple fertilizer 

ratio (12:00pm) and reducing with time, its lowest (0.04 mg L
-1

) value recorded at 6:00 pm 

(seawater), 6:00 pm and 4:00 am (double fertilizer ratio), and 10:00 pm (quadruple fertilizer 

ratio) respectively.  Nitrate (NO3
–
) was highest in the quadruple fertilizer ratio (8 mg L

-1
), 

with the lowest value (0.11 mg L
-1

) occurring at 10:00 pm and 10:00 pm in the double 
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fertilizer ratios. Nitrite (NO2
–
) was stable in the treatments and ranged from 0.01 – 0.02 mg L

-

1
, but was highest in the seawater control at 0.03 mg L

-1
 at 12.00pm.  Phosphorus (PO4

3–
) 

availability in the different treatments increased with day time and attained a peak (0.44 mg 

L
-1

) at 2:00 pm (quadruple fertilizer ratio), while the lowest value (0.06 mg L
-1

) was observed 

in the seawater control at 10:00 am.  Temperature in this study ranged between 14.1 – 20.7 

°C and was a function of the availability of day light, which showed a gradual decrease in 

photoperiod (0 – 1900 µE m
-
² s

-1
) with time (16:8 hr light : dark).  With regards to heavy 

metals, U. armoricana showed a preference for bioaccumulation, which ranged as follows: 

zinc (9.908 – 32.942 mg.kg
-1

); copper (1.893 – 5.927 mg.kg
-1

); cadmium (0.254 – 1.500 

mg.kg
-1

); and lead (none detectable).   The results also showed that U. armoricana’s 

assimilation affinity decreased as follows: double > quadruple > 0 (Table 1).   Apart from 

cadmium, heavy metal contamination levels in cultured U. armoricana showed safe uptake 

mechanisms in all fertilizer ratios compared to various local and international standards. 

 

 

 
 

Figure 2: Ammonium (NH4
+
) time graph for the different fertilizer 

ratios. 
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Figure 3: Nitrate (NO3
–
) time graph for the different fertilizer ratios. 

 
 

 

 

 
 

Figure 4: Nitrite (NO2
–
) time graph for the different fertilizer ratios. 
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Figure 5: Phosphorus (PO4
3–

) time graph for the different fertilizer ratios.  

 

 

 

 

 
 

Figure 6: The mean amount of light available over a 24 hour period for 

U. armoricana biomass production in the culture ponds from this 

study. 
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Figure 7: The mean temperature over a 24 hour period in the culture 

ponds from this study. 

 

 

 

Table 1: Heavy metals and nutrient composition in U. armoricana grown in the various 

experimental treatments. 

 

 
Heavy 

metals/Nutrient 

Experimental Treatments (Mean ± SD) Standards 
 

Seawater 

(0 fertilizer) 

 

Double 

fertilizer ratio 

 

Quadruple 

fertilizer ratio 

 

*SA 

Permissible 

Limit (mg.kg
-1

) 

(Lettuce) 

**FAO/WH

O 

Permissible 

Limit 

(mg.kg
-1

) 

Cd 0.639±0.023
a
 

 

1.166±0.360
b
 0.8451±0.566

b
 0.1 0.2 

Cu 4.619±1.193
a
 5.676±1.367

a
 4.687±1.148

a
 30.0 0.1 

Pb ND ND ND 0.5 0.3 

Zn 18.640±4.814
a
 20.244±2.011

a
 22.158±8.991

a
 40.0 .015-.030 

*** 
% N 2.122±0.862a 3.220±0.494

b
 2.350±1.039

b
 - GMP 

% P 1.789±0.082
a
 1.711±0.318

a
 1.700±0.269

a
 - 2200 

 

Means in the same row with the same superscript are not significantly different (p > 0.05),* South Africa 

Government Gazette, 9 September, 1994, metals in foodstuffs, cosmetics and disinfectants act, (Act no. 54 of 

1972), **FAO/WHO (2001) standard for seaweed/vegetable, 
***

Australia recommended leaf nutrient 

concentrations, GMP = Good manufacturing practices (GMP) must be followed (hygiene, low temperature, and 

disinfection) as in packaging gas. ND = None detected.  
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Discussion 

 

Aquaculture effluents are rich in NH4
+
 that could come from feed and nutrients in the inlet 

water.  Although NH4
+ 

concentrations > 2.0 mg L
-1

 can be detrimental (Lazur 2007), 

aquaculture effluents are highly suitable as a nutrient source for Ulva species.  Values of 

NH4
+
 in this study were comparatively low.  NH4

+ 
in winter is typically low due to the lower 

mean temperatures (fig. 6 & 7) and pH.  These results are consistent with those reported by 

Robertson-Andersson (2007).  Nitrate-nitrogen concentrations above 3 mg L
-1

 and any 

detectable amounts of total P (above 0.025mg L
-1

) may be indicative of pollution from 

fertilizers, manures or other nutrient-rich wastes (Cole et al., 2014).  Nitrogen and 

phosphorus are nutrients that may cause increased growth of aquatic plants and algae.  

Dissolved inorganic phosphorus (DIP) obtained in this study corroborated the outcome of a 

related experimental investigation by Robertson-Andersson (2007).  Nitrites from feed are 

not toxic to seaweed.  Several authors  have reported assimilation rates of NH4
+
 in the range 

of 50−90 μmol N g
−1 

DW h
−1 

among different Ulva species, and these species have been 

verified as successful biofilters of aquaculture wastewaters (Hernández et al., 2002;  Neori et 

al., 2003; Copertino et al., 2009; Cahill et al., 2010).  Nitrite results from enriched nutrients 

and there is evidence of nitrate uptake during the day (Potgieter 2005; Robertson-Andersson 

2007). The inorganic nutrients observed in this study were below the South African water 

quality guidelines for Ammonium (NH4
+
), Nitrate (NO3

–
), Nitrite (NO2

–
), and phosphorus 

(PO4
3–

) (DWAF 1996). 

Light intensity is well correlated with temperature, which is largely subject to diurnal and 

seasonal changes both in irradiance and photoperiodic systems.  This finding differs from 

those of Lüning (1993) and Kirk (1994) who showed that light intensity correlated with day 

length and not temperature.  Most outdoor culture systems research on Ulva showed that the 
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alga could readily be cultured at 15 – 20 °C and at 400 – 1000 µEs
-1

m
-2 

(Winberg et al., 2011; 

Corey et al., 2012; 2014).  These values are similar to the irradiance and photoperiod ranges 

found in the present study using U. armoricana.  This study showed that double fertilized U. 

armoricana had high Cd, Cu and Zn values, but that values for Cu, Pb and Zn were lower 

than the permissible South African limits for lettuce (Table 1).  Concentrations of Cd in all 

treatments were, however, higher than SA limits for lettuce.  This may be due to the rate of 

fertilizer application.  Only low/trace levels of Pb were found in seawater and in fertilized U. 

armoricana.  Apart from Pb that was not detected in all treatments, the other heavy metals 

had values higher than the FAO/WHO (2001) standard for seaweed/vegetable.  The main 

observation here seems to be that cultured U. armoricana at Benguela Abalone Group tended 

to have higher levels of heavy metals than Ulva from the unfertilized/seawater tanks.  This 

result is contrary to the findings of Shuuluka (2011). 

The Cd values in this research were higher than the maximum recommended level for Cd in 

the FAO/WHO (2001) standard for seaweed/vegetable, the South African limits for lettuce, 

the French limits for edible seaweeds (< 0.5 μgg
-1

 dw, Besada et al., 2009) and the Australian 

and New Zealand limits for edible seaweeds (0.2 μgg
-1 

dw, Almela et al., 2002; 2006; Besada 

et al., 2009).  The high Cd concentrations in the current study could well have originated 

from the unfiltered seawater and/or the fertilizer (Shuuluka 2011).  Irrespective of the source, 

our Cd values negate the use of these seaweeds for human consumption.  
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Conclusion 

 

As human health is directly affected by ingestion of vegetables, the biomonitoring of trace 

elements in macroalgae needs to be continually monitored because these algae are the main 

sources of food for humans in many parts of the world.  It is therefore of great importance 

that South Africa implements a continuous update of its seaweed safety monitoring by 

formulating a standard guideline and permissible limits of nutrients in macroalgae that must 

be strictly adhered to by all industries. 
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Chapter 5: Paper 4 

 

Environmental response and pH tolerance of induced CO2 in Ulva rigida (Chlorophyta) 

under controlled conditions 
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Abstract    

Macroalgal biomass can be manipulated by several different techniques to influence their 

functions.  Effect of increased CO2 levels on water pH and the corresponding physiological 

responses in the macroalgae Ulva rigida C.Agardh were tested under controlled conditions.   

pH toxicity experiment was conducted on U. rigida to determine morphological and 

physiological changes resulting from varied CO2 induced stress.  Our results show that 

increasing CO2 concentrations decreases water pH (4.71 - 6.67) as expected, causing a 

significant inhibition in growth, and leading to different sporulation responses. Furthermore, 

we show that U. rigida in flow through system showed a gradual degeneration in specific 

growth rate from day 7 at different rates until the end of experiment in the following 

sequence pH 7.20 > 8.20 > 7.50 > 7.80.  The treatment set at a pH of 7.20, yielded the 

greatest specific growth rate as well as having the greatest yield.  A stocking density of 5 g.l
-1

 

of seawater proved to be suitable for cultivation.  Our results show that pH toxicity response 

testing is a useful tool for assessing the health of macroalgae grown under aquaculture 

conditions under potentially increased CO2 concentrations that typically can occur in IMTA 

carbon sequestration of large scale Ulva cultivation.                                                                                                                              

 

Keywords:  CO2, macroalgae, pH, physiochemical characteristics s, sporulation, Ulva rigida 
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Introduction 

 

The world's oceans have retained about 125 billion tons of carbon (one quarter of the 500 

billion tons) emitted into the atmosphere mainly through anthropogenic sources such as 

industrialization (Rapley, 2012).  This figure is expected to rise by 20 billion tons/year by 

2100 and will probably double by the next century (Philip et al., 2010; Rapley, 2012).  The 

ongoing effects on global climate change and the associated deleterious environmental effects 

that no doubt would result from such high carbons levels has lead to much research interest 

into the impact of increased CO2 on the ecophysiology of aquatic plants and the ecosystems 

they inhabit.  As bioremediators, marine algae are significant components of the carbon cycle 

of coastal ecosystems and their responses to increased atmospheric CO2 are of considerable 

importance.  Growth in most aquatic plants is stimulated by increased CO2 concentrations, 

which leads to higher biological productivity with an envisaged increase in the photosynthetic 

storage and nutrient uptake from the process (Surif and Raven, 1989; Maberly, 1990; Gao et 

al., 1991; Levavasseur et al., 1991; Kubler et al., 1999; Stitt and Krapp, 1999; Ding-Hui and 

Kun-Shan, 2002; Langdon et al., 2003;  Zou, 2005; HongYan et al., 2008; Roleda et al., 

2010; Markelz et al., 2013).  Macroalgae grown in increased CO2 environments typically 

exhibit increased rates of photosynthesis and biomass production (Logothetis et al., 2004; 

Andersen et al., 2006; Cornelisen et al., 2007; Suarez-Alvarez et al., 2012). 

In the wild all aquatic plants use CO2 for photosynthesis, while some also use HCO3
-
 (Raven, 

1991a; b), macroalgae are important carbon sinks as they absorb carbon throughout their 

lives; they enhance their photosynthetic capacity through the diffusion of greater amounts of 

CO2 from the environment to the active site of rubisco, and depending on the pH, they utilize 

CO3
2-

 and HCO3
-
 as dissolved CO2 (Becker, 1994; Giordano et al., 2005).  Increased amounts 

of CO2 give rise to more H
+
 ions, thus lowering the pH. 
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The prolonged effects of increased CO2 concentration and the resulting lower pH are varied 

(HongYan et al., 2008).  This observed variation could be due to the availability of nutrients 

and or the methods of utilization by the marine algae since increase growth with high CO2 

will give rise to an increased nutrients demand under a normal seawater pH (Andria et al., 

1999).  Contrary to this Samesi et al. (2009) found that pH had significant effects on both the 

calcification and photosynthetic processes, with an increase in dissolved CO2 concentration 

closer to 26 Mu mol kg
-1

 (bubbling with air at 0.9 mbar CO2) resulting in a lower water pH, 

which resulted in 20 % less calcification in marine algae after 5 days of exposure.  Recent 

research has also showed CO2 to be a major limitation to large-scale algal biomass production 

and utilization, especially in closed systems (Ugoala et al., 2012).  In aquatic environments 

with very high CO2 concentrations, the pH can be as low as 4 - 6.  The required pH for 

optimum algae cultivation is, however, within the range 7.5 – 8.5 (Nagle et al., 2009).  Toxic 

effects from low pH values, which result in acidification, have been reported to both 

stimulate and reduce marine algal biomass (Berge et al., 2010). 

South African species of Ulva have been well studied and about fourteen species are 

currently known to occur along country’s west, south and east coast region (figure 1) due to 

merging of all Enteromorpha spp with Ulva (Joska, 1992; Stegenga et al., 1997; Cyrus et al., 

2014; J.J. Bolton, University of Cape Town, pers. comm).  Commercial cultivation of Ulva 

spp has long been carried out in South Africa where the algae have been used as biofilters in 

the local aquaculture industry, as feed for commercially farmed abalone, and more recently in 

efforts geared towards using CO2 to increase algal growth (Troell et al., 2006, Robertson-

Andersson, 2007, Amosu et al., 2013).  Several studies using algae have shown that super-

elevated atmospheric CO2 concentrations are not detrimental to fresh and marine micro- and 

macroalgae when using either a flow through or a recirculation system (Friedlander and 

Levy, 1995; Tisserat 2001; Andersen and Andersen, 2006; Gao et al., 2012).  However, 
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information about the physiological responses and the ability of macroalgae to withstand 

prolonged lowered pH as a result of increased CO2 concentrations is scarce.  Knowledge of 

the effects of elevated CO2 concentrations on macroalgal physiology are therefore necessary 

to be able to determine the actual pH at which growth in these algae is inhibited.  The aim of 

this study was to determine the survival of South African Ulva rigida C.Agardh under 

different pH scenarios resulting from varied CO2 concentrations in controlled laboratory 

conditions. 

 

Figure 1. Location where Ulva species occured along South Africa coast. 

 

Materials & Methods 

 

Experimental material  

A. Closed experiment - Ulva spp was collected at Simon’s town between latitude 34° 14’ S 

and longitude 18° 26’ E during low tide.  Ulva rigida was used as a test alga due to its 

availability, ability to grow in reduced light conditions, and the fact that it is widely used in 

the South African aquaculture industry (Boarder and Shpigel, 2001; Robertson-Andersson, 
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2003; Troell et al., 2006).  In the laboratory, thalli were cut into 1cm discs using a stainless 

steel cork borer (Figure 2a).  Filtered seawater used in the experiment was collected from the 

Research Aquarium (Sea point, Cape Town) and enriched seawater (EW) medium was 

prepared using a standard Provosoli protocol (Provosoli, 1968 – Appendix 1).  Glassware was 

sterilized in an autoclave before the commencement of the experiment and irradiation was 

provided by means of white fluorescent tubes at 16:8h (i.e light: dark) photoperiod.  

 

Culture in air bubbles containers 

The in situ survival response of U. rigida was carried out in a specialized temperature (15 ± 

0.1 °C) and light (60 µmol.m
-2

.s
-1

) controlled cold room.  Six discs (Figure 2a) were placed 

into each of 39 conical flasks (500 ml) filled with either enriched seawater (n = 18), or non-

enriched seawater (n=18) (Figure 2b) and control (n=3) mediums for a period of 7 days 

(Figure 3c).  The experiment was conducted in two phases.  In the first phase, the mediums 

were continuously pumped with CO2 in serial numbers of bubbles /second (s
-1

 ) as follows: 0 

s
-1

, 1 s
-1

, 2 s
-1

, 3 s
-1

, 4s
-1

, 5 s
-1

 and 6 s
-1

 (Figure 2c) to determine the sporulation response to 

varied CO2 concentrations.  The second phase was characterized by the setting up of high and 

low CO2 bubbling regimes run continuously for 48 hours with new thallium discs.  In the high 

bubbling regimes, CO2 was bubbled continuously to allow for constant movement and 

rotation of the discs. In the low bubbling regimes very little CO2 was bubbled without 

inducing any movement of the discs.  Both experimental treatments were run in triplicate (3) 

for both non-enriched seawater (SW) and enriched seawater (EW) at (1 bars) 10 l.min
-1

 CO2 

pressure gauge.  The growth media were replaced every day.  Water chemistry and ambient 

aerial light was measured daily and included salinity (‰), pH, temperature (°C), dissolved 

oxygen (DO, mg.l
-1

) and light (µmol.m
-2

.s
-1

).  The Waterproof CyberScan Series 300 (Eutech 

Instruments Pte Ltd, Singapore) - Dissolved Oxygen meter, specially designed to measure 
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oxygen and temperature simultaneously, was used to measure DO and temperature to 

determine consistency in the measurements.  pH was determined with the aid of a portable 

digital pH meter (model 8414, Hangzhou rock biological technology Co. LTD,) that also 

measureed temperature at 0.1 °C.  Salinity was determined with the aid of refractometer 

(S/Mill-E 0 ~ 100 ‰, ATAGO, Japan).  Irradiance levels were measured using a skye 

quantum sensor (Skye Instruments Ltd, UK). 

  

 

Figure 2: (a) Algal discs, (b) Ulva discs placed in different flasks with different bubbling 

regimes and (c) Co2 induced replicates of enriched and non enriched media. 

 

B. Flow through experiment - The experiments were conducted in flow-through seawater 

systems (~ 3 L.min
-1

 at Sea point research Aquarium) were water was delivered at a consisted 

flow rate into each individual rearing tank.  The experimental pH was regulated by injection 

of pure CO2 gas via an air stone which was controlled via a Tunze system (Tunze pH 

(a) (b) 

(c) 
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controller 7070/2- The Age of Aquariums, Germany).  Tanks were continuously bubbled with 

O2 to aid mixing and to maintain dissolved oxygen.  Vibrator propeller pumps was used to 

induce mixing and movement by SUNSUN New Design 24W Dual Propeller Circulation 

Pump (JVP-202A/B), Guangzhou Weierma Electrical Co., Ltd,  Zhejiang, China (Mainland).  

Seawater within the tanks was at pH 8.20 with two replicates. Water chemistry was measured 

with a YSI Professional Plus Multiparameter Water Quality Meter (YSI Incorporated, US).   

 

Culture in flow through media 

The second experiment was performed in three 111.1 L (85.3 cm X 28 cm X 46.5 cm) tanks, 

stocked at 5 g. l
−1

 specially designed for flow through culture of Ulva (figure 3).  The source 

of growth medium and nutrients were from provided from the unfiltered seawater at sea-point 

aquarium, which was the same as that used during the stock maintenance period with pH 

8.20. Seawater within the tanks was maintained at several pH levels (namely; 7.20, 7.50, 7.80 

and a control of 8.20), with three replicates each in the different treatments.   Light was 

provided at 92 µmol.m
-2

.s
-1

 and controlled by means of white fluorescent tubes attached to a 

controller, set to a 16:8 h (i.e light: dark) photoperiod.  A pH electrode measured the seawater 

pH, if the seawater pH moved above that of the set value (determined by set value on 

controller, which is done according to the required value) a magnetic valve was opened and 

CO2 from the cylinder is bubbled into the seawater via the air stone.  This then mixes with the 

surrounding water with the help of the circulating pumps; the magnetic valve continually 

opens and closes until the set pH value is acquired.  The one way valve is placed in the 

system to prevent water moving from the tank into the magnetic valve. O2 is continually 

pumped into the system via another air stone. 
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Figure 3: Flow through experimental design. 

 

 

Specific growth rate data acquisition 

The seaweed was harvested every 3 days for 16 days, blotted dry and weighed for restocking.  

Specific growth rate (SGR, %) was calculated as: 

 

SGR = (wt – wo) 100/t  

Where wo is the initial biomass and wt is the biomass after t culture days.  Biomass yield 

(fresh weight) was calculated as the difference between initial and final weights and 

expressed in units of g. l
−1

 day
−1

, based on the areas of the culture from Duke et al, (1986).  

 

Statistical analysis 

Two way ANOVA was used after data was examined for normality and meeting the 

assumptions of ANOVA to test the differences among treatments.  A significance level of p < 

0.05 was applied for statistically different data. All data were analyzed statistically in 

GraphPad Prism5.   
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Results 

 

Closed experiment - Our results show that, irrespective of the treatment (enriched vs. non-

enriched seawater) and the number of days from commencement of the experiment, the 

higher the CO2 concentration, the greater the degree of sporulation.  The high CO2 

concentration gave rise to low (acidity) pH, resulting in thalli disintegration, the process 

known as sporulation. Survival was therefore a function of the pH of the culture medium.  

Control thalli (zero CO2 bubbling) showed minor sporulation even after 7 days (Table 1).   

 

 

Table 1: Degree of sporulation in U. rigida under different CO2 consecutive numbers of 

bubbles per second. Empty cells represent no noticeable sporulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× = minor sporulation (one disc or spherical sporulate), ×× = moderate sporulation (more than one disc or 

sporulate), ××× = significant sporulation (5/6 discs turning pale), n = no algae in media 

 

Day Media CO2 consecutive numbers of bubbles (s
-1

) 

0 1 2 3 4 5 6 

1 

SW  

 

×  × × ×× ×× 

EW   × × × ×× 

2 

SW  

 

× × × × ×× ×× 

EW × × × × × ×× 

3 

SW  

 

× ×× ×× ×× ×× ×× 

EW × × × × ×× ×× 

4 

SW  

 

× × ×× ×× ×× ××× 

EW × × × × ×× ××× 

5 

SW  

 

× × ×× ×× ××× n 

EW × ×× ×× ×× ××× n 

6 

SW × × ×× ×× ××× n n 

EW × ×× ×× ×× ××× n n 

7 

SW × ×× ×× N n n n 

EW × 

 

×× ×× N n n n 
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Thalli under high CO2 concentrations sporulate sooner and expend their resources in a shorter 

period of time.  Initially (days 1 - 4), thalli grown in non-enriched seawater sporulated sooner 

(than those grown in enriched seawater) with an increase in CO2 concentration.  Towards the 

end of the experiment (days 5 - 7), there was a severe degree of sporulation irrespective of the 

treatments.  After 48 hours exposure, our results revealed that apart from salinity, which was 

within seawater range (for Simonstown) irrespective of the bubbling regime, pH and DO 

show a diurnal variation at the different bubbling regime with time (see Figure 4, 5 and 6). 

 

Figure 4: Salinity time graph of Co2 concentration in U. rigida. 
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Figure 5: Dissolved oxygen time graph of Co2 concentration in U. rigida. 

 

Figure 6: pH time graph of Co2 concentration in U. rigida. 

 

Graph key: High bobbling regimes for non-enriched seawater = High sw, High bobbling regimes for enriched 

seawater = High ew, Low bobbling regimes for non-enriched seawater = Low sw, Low bobbling regimes for 

enriched seawater = Low ew, Control = cnt. 
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The salinity values observed in the study fluctuate in the range between 36.6 – 39 ‰ despite 

the bubbling regime.  The lowest salinity (36.6 ‰) was observed in the low bubbling regime 

irrespective of the treatment and time of the day, while the highest salinity 39 ‰ were 

common in the high bubbling regime at the hours of 10h00, 14h00 and 16h00 of the days 

irrespective of the treatments.  This was likely due to the bubbling increasing evaporation 

resulting in increased salinity.  During this experiment DO was low at 8h00 and 16h00 in 

non-enriched seawater and decreased with time irrespective of the treatments forming a 

normal skewed curved (Figure 4), while in the control it decreases with time.  The control pH 

recorded was slightly higher (7.07) than neutral and normal (8.14) seawater throughout the 

study.  Values for both treatments remained slightly acidic irrespective of the treatment. At 

low pH (4.73 - 6.67) sporulation was not a function of nutrient availability (Figure 6). 

 

Flow through experiment - On the aspects of the flow through experiment, water chemistry 

revealed conducive physico-chemical parameters of Ulva rigida (Table 2). Dissolved Oxygen 

values in the tank were similar despite the addition of CO2.  The temperature of the growth 

media increased from 12°C at the beginning of experiment with a gradual increase of 0.10 °C 

to attain the maximum 16.9 °C at the end of cultivation.  The pressure result recorded in the 

study ranged from 101.85 to 103.54 KPa.  The salinity tolerance was narrow between 34.52 

to 35.27 ppt.  The salinity increased slightly in different treatment for 3rd day.  Total 

Dissolved Solids ranged from 34125 to 34710 TDS mg.L
-1

.   
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Table 2: Some physicochemical parameters of Ulva rigida cultured in flow through system. 

 

 Treatment 1  

(pH 8.20) 

Treatment 2  

(pH 7.20) 

Treatment 3  

(pH 7.50) 

Treatment 4  

(pH 7.80) 

pH 8.22 ± 0.10
a
 7.39 ±0.13

b
 7.61 ±0.15

c
 7.74 ±0.14

c
 

AT (mol kg
-1

) 2159 ± 32
a
 2127 ± 85

 a
 2160 ± 22

 a
 2169 ± 21

 a
 

Temperature 

(C) 

13.0± 0.7
a
 13.0±0.7

 a
 15.0±1.1

b
 15.1±1.2

 b
 

Salinity (‰) 34.8 ±0.2
 a
 34.8±0.2

 a
 35.1±0.1

 a
 35.1±0.1

 a
 

pCO2  (µatm) 232 ± 71
a
 1952 ± 673

b
 1192 ± 384

b
 860 ± 278

c
 

Ca
2+

 (mmol l
-1

) 10.4 ± 0.3
a
 10.9 ± 0.3

a
 11.3 ± 0.3

a
 11.1 ± 0.1

a
 

Mg
2+

 (mmol l
-1

) 46.9 ± 1.1
a
 45.7 ± 1.9

a
 52.5 ± 3.4

b
 50.8 ± 1.1

 b
 

Pressure (KPa) 102.91±0.420
a
 102.95±0.418

a
 102.42±0.318

a
 102.43±0.310

a
 

DO (mg l
-1

) 8.32± 0.344
a
 8.44±0.340

 a
 7.37±0.707

b
 7.65±0.378

b
 

SPC 52.89± 0.253
 a
 52.87±0.251

 a
 53.24±0.147

 a
 53.23±0.142

 a
 

TDS (mg l
-1

) 34382±160
 a
 34386±164.6

 a
 33600±5597

 b
 34607±96

a
 

 

Means in the same row having the same superscript are not significantly different (p > 0.05) 

 

Discussion 

 

Closed experiment - Little is known about the effects of elevated CO2 concentrations on Ulva 

cultivation. Our results therefore suggests that CO2 concentration more so than the growth 

medium (enriched vs. non-enriched) determines the degree of sporulation in U. rigida.  With 

the current knowledge, we can predict positive effects on growth, reproduction and variable 

effects (such as positive effect of increasing CO2 , while it adverse effect of decreasing pH 

(slightly acidic) as observed in our study) on biomass development (Harley et al., 2012;  

Roleda et al., 2012).  Although, Nordby (1977) reported that the optimum pH for sporulation 

lies between 8.0 and 8.5. Outside this range the rate of sporulation was found to decrease. 
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However earlier work conducted by Lersten and Voth (1960) found that a pH value of 

between 6.5 and 7.5 gave the highest degree of sporulation. These corroborate our findings of 

an acidic pH (4.73 - 6.67) range observed for sporulation.  The varied responses observed 

could be due to the fact that sporulation starts from a slightly acidic to a slightly alkaline state 

of water.   

As experienced in this study Ulva spp often show warning signs of impending sporulation for 

various environmental stresses (Beach et al., 1995; Kalita and Titlyanov, 2003; Kalita and 

Titlyanov, 2011).  Increased CO2 concentrations are proving to be one such a stress and here 

we have shown the increased degree of sporulation as a consequence of decreased pH 

resulting from increased CO2 concentrations.  The toxicity responses of Ulva spp. reported by 

various authors (e.g. Han and Choi, 2005; Han et al., 2007) support our findings. Our 

findings show that, at low pH (4.73- 6.67) sporulation is not a function of nutrient 

availability.  This may be reason why marine algae could survive at pH 7.9 – 8.4 as a result of 

high CO2 give rise to an increased nutrients demand as reported by Andria et al. (1999).  This 

result is in agreement with that of Han and Choi, (2005) that reported on sporulation 

inhibition in U. pertusa.  Naturally in the aquatic ecosystem, survival in macroalgae is 

function of water chemistry as been influenced by physico-chemical parameters that control 

the metabolic activities and chemical speciation of the contaminant.  These have been 

observed in this experiment. Observed sporulation (Table 1) was not linked to water 

chemistry (Figure 4, 5 and 6) in these variables at the different bubbling regime.   Similar 

ranges were previously reported on by Robertson-Andersson, (2007) for Ulva production in 

flow through systems. Continuous bubbling of CO2 to the experimental medium affected the 

pH values since CO2 supplied is dissolved, hydrated forming carbonic acid, and disintegrated 

to bicarbonate, releasing H+ ions and causing a decrease of pH, which has been reported in 

previous works (Samesi et al., 2009; Ugoala et al., 2012).  This was also revealed in our 
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present study where the low value of pH 4.73 was recorded in the non enriched medium at 

high (8h00 – early morning) bubbling regime, when the biochemical activities was minimal 

and about rising for photosynthesis activities.  The low pH experienced in both (enriched/non 

enriched) media supplied with CO2-enriched air may be caused not only by respiration but 

also by the continuous influx and dissolution of CO2 into the medium.  This shows a 

physiological and biochemical responses as reported in recent work with Ulvales in Ulva 

prolifera O.F.Müller  and Ulva linza Linnaeus  to Cadmium Stress (Jiang et al., 2013).  This 

value similarly agrees with the results and findings of Garnham et al. (1992).  pH values also 

vary significantly with time at different bubbling regime (Two-way ANOVA: F = 55.53, p < 

0.0001).  Other recent works showed that Ulva spp has survived at 15 – 20 °C and 60 

µmol.m
-2

. s
-1 

as observed in the present study (Ruangchuay et al., 2012; Jiang et al., 2013).  

Dissolved oxygen shows a diurnal trend, which could be as a result of photosynthesis 

response with time of the day.  The summary of result analysis conducted on DO varies 

significantly with time Table 3 (Two-way ANOVA: F = 7.041, p = 0.0001).  Macroalgae 

usually uptake CO2 via the C3 biochemical pathway with rubisco as the carboxylating 

enzyme a process that is competitively inhibited by dissolved Oxygen via photorespiration 

(Raven, 1989; 1997).  According to Choi et al. (2010) Growth decreased by low salinity and 

also at salinities greater than 25 ‰, which may lead to sporulation as a toxic effect of 

increased CO2 (Boyd 1998).  Salinity values vary significantly with time at different bubbling 

regimes (Two-way ANOVA: F = 17.93, p < 0.0001).   However, the salinity range of 36.6 - 

39 ‰ observed in this study are the osmotic consequence of the movement of water 

molecules along water-potential gradients, and the flow of ions along electrochemical 

gradients (Lobban and Harrison 1994).  The fluctuating salinity also corroborate Dickson et 

al. (1982) as they studied the responses of U. lactuca to salinity fluctuations and concluded 
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that changes in internal solute concentrations closely follow salinity fluctuations, reducing the 

changes in turgor pressure.  

Table 3:  Physico-chemical parameters analyzed on GraphPad PrismV 

Analyzed Salinity (‰) 

Source of Variation Df Sum-of-squares Mean square     % of total variation P value   F 

Interaction 16 10.75 0.6717 20.86  0.0003 3.598 

Treatment 4 18.05 4.513 35.04  P<0.0001 24.18 

Concentration with 

Time 

4 13.39 3.347 25.98  P<0.0001 17.93 

Residual 50 9.333 0.1867  

Analyzed Dissolved Oxygen (DO) 

Source of Variation Df Sum-of-squares Mean square     % of total variation P value   F 

Interaction 16 38.28 2.392 27.76  P<0.0001 10.77 

Treatment 4 82.24 20.56 59.64  P<0.0001 92.54 

Concentration with 

Time 

4 6.258 1.564 4.54  0.0001 7.041 

Residual 50 11.11 0.2222  

Analyzed Hydrogen ion concentration (pH) 

Source of Variation Df Sum-of-squares Mean square     % of total 

variation 

P value   F 

Interaction 16 1.171 0.07321 1.77  0.0025 2.838 

Treatment 4 57.83 14.46 87.60  P<0.0001 560.6 

Concentration with 

Time 

4 5.728 1.432 8.68  P<0.0001 55.53 

Residual 50 1.290 0.02579  

 

Flow through system - In the aquatic environment, survival in macroalgae is function of 

water chemistry as been influenced by physico-chemical parameters that control the 

biophysiological activities (Table 2).  Similar ranges were previously reported for Ulva 

production in flow through systems (Robertson-Andersson, 2007). Ulva rigida cultured in 

this flow through system show decreased yields after 1 week.  The gradual degeneration was 

noticed after day 4. Nikolaisen et al. (2011), in mass cultivation of Ulva lactuca found this 
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decrease leading to sporulation and reduction in biomass within few days of culture.  Despite 

this (pH 8.2) being within the optimum pH for algae cultivation (Björk et al., 1992; 

Robertson Andersson et al., 2008).  According to research, increasing stocking density above 

1 kg.m
-2

 decreases growth rate and yield (Neori et al., 1991; Bruhn et al., 2011; Nikolaisen et 

al., 2011).  Ryther et al. (1984) suggested the optimal stocking density of Ulva lactuca to be 

near 1 kg m
-2

.  However Prue, (2009) found that stocking densities of between 5 - 20 g of 

Ulva per litre along with the addition of the soluble fertilizer (Aquasol) at a rate of 87 g.l
-1

 of 

seawater was ideal for achieving a desired doubling of growth per week (Our stocking 

density of 5g.l
-1

, Ulva was well within this range and thus sporulation and subsequent 

degeneration were not due to stocking density. 

The biomass and yield of Ulva rigida ranged between 467 – 1433 g in sixteen days without 

enriched nutrient (Figure 7).  The growth rates of Ulva rigida observed in this study differs to 

some previously reported growth rates of Ulva lactuca and U. fasciata in outdoor flow-

through tanks (Lapointe and Tenore 1981; Neori et al., 1991) but similar to the results 

obtained by Corey et al. (2014).  However, some findings with Ulva cultivation have shown 

an array of disparities in the cultivation conditions.  For example, both Neori et al. (1998) and 

Robertson-Andersson et al. (2008) noted that as cultivation volume increased, total yield was 

reduced along with growth rates.  This supports our present findings in this research.  
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Figure 7: Biomass of Ulva rigida at different pH.  

 

 

Conclusion 

 

This work adds to baseline evidence for sporulation and toxicity tolerance of Ulva spp in a 

high-CO2 situation.  It has demonstrated that the response of Ulva rigida to increase CO2 

enrichment is complex and potentially multifactorial.  An in situ, ecosystem based approach, 

incorporating flexible and controlled conditions, provides more accurate insights into the 

responses of macroalgae, highlighting the importance of increase CO2 gradients as a valuable 

tool in the study of pH tolerance.  Elevated CO2 accumulates in the growth media 

increasingly affects marine photosynthetic processes in direct and/or indirect ways.  Different 

physiological processes are involved, whether or not macroalgae will benefit from increased 

CO2 remains controversial.  Low pH and/or increased CO2 can inhibit growth relative to the 

medium or the oxidation-reduction potential.  Sporulation is seen here as a morphological 

response to environmental stress in macroalgae.  Increased CO2 levels in production unit may 

 

 

 

 



132 

 

decrease pH and photosynthetic activity of macroalgae with influential effects on other 

physicochemical parameters under closed conditions.  In flow through system, despite 

sporulation in the majority of the treatments, the results show that Ulva rigida is able to 

tolerate a sustained low pH of 7.2.  This implies that in large scale cultivation systems CO2 

could be added and pH maintained at 7.2.  In addition, the application of soluble fertilizer 

could achieve a better growth and help prevent sporulation.  Therefore, it will be important to 

conduct future experiments on rates of fertilizer application at low pHs, as well as to follow 

the responses of multiple generations to elevated CO2 under conditions which simulate 

growth. 
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Appendix A: PROVASOLI'S ENRICHED SEAWATER (ES)  

 

 

 

 

 

 

 

 

 

 

 

 

Seawater is sterilized by filtration or autoclaving, enrichments assembled into a single 

solution, and added aseptically to the medium.  Mix 10 ml of each stock solution A - E and 

250 ml of each stock solution F and G and bring total volume to 1250 ml with distilled or 

deionized water. Add 20 ml of the above stock solution mixture to 1000 ml of filtered 

seawater to prepare full - strength medium. 

Source: Provasoli, L. (1968). Media and prospects for cultivation of marine algae. In Cultures 

and Collections of Algae (Watanabe, A. & Hattori, A., editors), 47 - 74. Japanese Society of 

Plant Physiology, Tokyo. 

 

ADDITIVE CONCENTRATION 

NaN03 (Stock A) 35g/100ml 

Na2 glycerophosphate (Stock B) 5g/100ml 

Vitamin B12 (Stock C) 1mg/100ml 

Thiamine (Stock D) 50mg/100ml 

Biotin (Stock E) 0.5ml/100ml 

Fe (as EDTA 1: molar) (Stock F) 

Fe (NH4)2 (SO4) + 6H2O 351mg/100ml 

Na2 EDTA 300mg/500ml 

P11 Trace metals (Stock G) 

H2BO3 1.14g/l 

FeO3 + 6H2O 49mg/l 

MnSO4 + 4H2O 164mg/l 

Zn SO4 + 7H2O 22 mg/l 

Ca SO4 + 7H2O 4.8 mg/l 

Na EDTA 1g/l 
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                                                        Chapter 6: Paper 5 

 

Comparative analysis of nutrient utilization and proximate composition of Ulva 

armoricana (Chlorophyta) and formulated feeds on the growth performance of African 

Mudcatfish Clarias gariepinus (Burchell) fingerlings 
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revision). Comparative analysis of nutrient utilization and proximate composition of Ulva 

armoricana (Chlorophyta) and formulated feeds on the growth performance of African 

Mudcatfish Clarias gariepinus (Burchell) fingerlings. Animal Nutrition and Feed 

Technology. 
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Abstract 

 

We evaluated the effects of feed fortification with different nitrogen content of Ulva 

armoricana on growth, nutrient utilization and proximate composition in Clarias gariepinus 

fingerlings using cultivated macroalgae as a protein substitute and feeding attractant. The fish 

were monitored in indoor hatchery for 21 days. The treatments were: {Commercial FeedX}, 

{35% crude protein diet (CD) + non enriched Ulva (NEU) (CD + NEU)}, {CD+ enriched 

Ulva (EU) (CD +EU)} and {Control CD)}. The fish grew well and utilized Ulva enriched 

diet (CD + NEU) with no losses iin the weight gain, % weight gain, specific growth rates and 

nitrogen metabolism, compared with the other diets. There was significant difference (p < 

0.05) in the food conversion ratio (FCR) and gross food conversion ratio (gFCR) across the 

experimental diets. The best FCR was noticed on fish fed diet CD (0.79 ± 2.39) followed by 

fish fed diet CD +EU (1.75 ± 1.34) indicating that the experimental fish utilized the enriched 

(CD +EU) diet better than non-enriched (CD + NEU) and the FeedX diets. This suggests that 

Ulva armoricana has the potential to be a successful feed stimulant if the diets include 

macroalgae grown with enriched nutrient. 

 

Key words:  Aquaculture, Clarias gariepinus, diet, growth, macroalgae, Ulva s armoricana  
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Introduction 

 

Aquaculture production has been sustained and rapid, between 8.8 - 10 %.a
-1

 per annum for 

over thirty years, while the take from wild fisheries has been essentially flat for the last 

decade (FAO, 2012a; 2014).  Over 300 aquatic spp are farmed worldwide for production in a 

variety of facilities of varying input intensities and technological sophistication, using fresh, 

brackish and marine water (FAO 2014).  Aquaculture remains one of the fastest-growing 

agro-industrial activities in the last four decades and is projected to outpace population 

growth (OECD/FAO 2013).  In fact, it is estimated that the worldwide requirement for food 

will increase up to 50 % by 2030 (Tidwell and Allen, 2001).  The most prominent species in 

aquaculture include: finfish, crustaceans and molluscs (FAO, 2014).  Finfish in particular has 

come under attack by environmentalists for its reliance on fishmeal and the wild fisheries and 

is seen as being unsustainable (Naylor et al., 2000; 2009; FAO 2012b; FUS 2012; Waite, et 

al., 2014).  As the global population continues to rise and the demand for aquaculture 

products rises, the need for sustainable, alternative sources of fish protein also increases.   

 

Protein is the most expensive constituent of fish feed and global expenditure exceeds (7.05 

million MT) €1bn per annum (Hardy and Tacon, 2002; Hardy 2006; WOR 2013).  In 2006 a 

global survey put aquaculture consumption of fishmeal at 3724 thousand tonnes (Tacon and 

Metian 2008).  Fishmeal is a high-protein animal feed used extensively in aquaculture but 

uses wild fish stocks to feed farmed fish and is an unsustainable feed resource.  The ability of 

fishmeal supply to meet future demand is a massive global concern – especially given that 

aquaculture production is growing at a rate of nearly 10 % per annum (FAO, 2009; 2012a; 

2013).  As natural wild fish stocks decline, the aquaculture industry faces a massive challenge 

to identify cost-effective and environmentally-friendly alternatives to fishmeal on which it is 

 

 

 

 



144 

 

so heavily reliant.  Macroalgae protein has the potential to provide a solution to this problem 

as it is relatively underexploited, contains high amounts of protein and can be cultured in a 

sustainable, environmentally-friendly manner.  Comparisons of production input efficiencies 

of aquaculture versus several fisheries and terrestrial agriculture systems shows that non-fed 

aquaculture (macroalgae; molluscs) are among the world’s most efficient mass producer of 

proteins (Costa –Pierce and Page, 2010; Costa-Pierce et al., 2011).  Certainly, the nutritional 

properties of macroalgae would make good candidates to serve as alternatives to fishmeal in 

fish/livestock feeds, with some macroalgae having protein levels as high as 47 % and 

considerable differences exist in the protein content of brown, green and red macroalgae 

(Samarakoon and Jeon 2012).  The functional biological properties of macroalgae protein 

make it an excellent candidate for a natural, sustainable alternative to fishmeal in aquaculture 

(Henry 2012). Macroalgae provide the deficient amino acids in fishmeal and most terrestrial 

crop such as lysine, methionine, threonine, and tryptophan (Li et al., 2008; Henry 2012), 

whereas analyses of the amino acid content of numerous algae have found that although there 

is significant variation, they generally contain all the essential amino acids (Rosell and 

Srivastava 1985; Wong and Peter 2000; Lourenço et al., 2002; Ortiz et al., 2006; Dawczynski 

et al., 2007).  

 

In South Africa, macroalgae have been used commercially as feedstock for phycocolloid 

production and the production of abalone feed (Troell et al., 2006).  Its aquaculture started as 

an off-shoot of the abalone (Haliotis midae L) farming industry, (Troell et al., 2006).  The 

capacity for large-scale production of macroalgae is feasible in South Africa (Amosu et al., 

2014; Robertson-Andersson et al., 2014) , together with the high-quality macroalgae protein 

feeds  developed as Abfeed™ and Midae Meal™ further enhances the future potential of 
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macroalgae (Anderson et al., 1989; 2003; Robertson-Andersson et al., 2006; Troell, et al., 

2006). 

 

The green macroalgae, Ulva armoricana L., (kandjengo and Bolton, unpubl.; Bolton et al., 

2013; Cyrus et al., 2014a) has been fed to abalone and feeding trials showed that abalone 

growth is greatly improved by high protein content, and this is attained by culturing the 

macroalgae with high levels of ammonia present (Naidoo et al., 2006; Robertson-Andersson 

et al., 2011; Henry 2012).  The growth of U. armoricana and its culture within farming 

systems has been well studied and documented (Neori et al., 1998; 2004; Shpigel et al., 1999; 

Robertson-Andersson, 2003; Robertson-Andersson et al., 2007). In particular, this 

macroalgae has a nutrient uptake capacity that is one of the highest known among macroalgae 

(Shpigel et al., 1999; Neori et al., 2004).  Nutrient enriched U. lactuca have been shown to 

have a higher protein content of 36 – 44 % as opposed to their wild counterparts that have a 

protein content of only 3 – 24 % (Neori and Shpigel, 1999; Shpigel et al., 1999; Robertson-

Andersson, 2003; Robertson-Andersson et al., 2007). 

 

There are reservoirs of knowledge on the macroalgae utilization in integrated multi-trophic 

aquaculture (IMTA), where fish/shellfish and macroalgae are all grown together in an 

ecologically-based aquaculture farm design (see for examples - Bolton et al., 2006; 

Buschmann  et al., 2007; Chopin  et al., 2001; Neori  et al., 2004; Troell et al., 2009; 

Kangmin 2012).  Macroalgae can be used as a feed ingredient: to reduce cost and to increase 

the growth and survival in animal production. However, information is scarce on the effects 

of nutrient-enriched macroalgae diets on the growth of carnivorous fishes.  Additionally, little 

is known on comparing seawater cultured or non-nutrient enriched macroalgae with nutrient 

enriched marcroalgae when fed used in feed.  Work on the south African abalone and the sea 
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urchin Tripneustes gratilla L. with (Ulva spp) and Abfeed® indicated that protein enriched 

macro algae out performed wild or non-nutrient enriched algae both in a whole or compound 

feed diet (Naidoo et al., 2006;  Francis et al., 2008; Robertson-Andersson et al., 2011; Cyrus 

et al.,  2014a;b).  Several other research works on Ulva include Ulva fed at 5 to 15 % meal 

inclusion in diets to Carp, Channa, Tilapia,  Shrimp, Sea Bream, European Sea Bass, Striped 

Mullet, Gilthead Sea Bream, Sea urchin (Nakagawa et al., 1987; Hashim and Mat Saat 1992; 

Hashim and Hassan, 1995; Mustafa et al., 1995; Mustafa and Nakagawa 1995; Wassef et al., 

2001; Wassef et al., 2005; Valente et al., 2006; Diler et al., 2007; Soyutu et al., 2009; Cruz-

Suarez et al., 2010; Azad and Xiang 2012; Cyrus et al., 2014) revealed significant benefit in 

herbivores like molluscs and echinoderms. The aims of this present study was to use an 

African ecotype cat fish to determine the efficacy of nutrient utilization and proximate 

composition of macroalgae based and formulated feeds on African mud catfish Clarias 

gariepinus (Burchell) fingerlings. 

 

Materials and Methods 

 

Macroalgae production 

Initial production stock of Ulva armoricana was collected from Irvine & Johnson (I&J) 

(34
o
34′60 S; 19

o
21′0 E) Cape Abalone farm. Macroalgae production experiments were 

carried out during winter (Southern Hemisphere) at Benguela Abalone Group (32°54'24'' S; 

17°59'17'' E) on the West Coast of South Africa in four 32 m X 8 m (180 m
3
) concrete paddle 

ponds, filled to approximately 0.55 m depth with unfiltered seawater on a flow through 

system.  Ponds received 2 volume exchanges per day. Initial biomass of 500 kg/Ulva spp 

were stocked in each pond and growth rates were measured every 21 days (~3 weeks) for a 

period of 3 months.  The stocked Ulva spp in ponds A and B were fertilized (every 7 days in 
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order to allow assimilation) with a mixture of (10:16:0) Maxipos® and Ammonium sulphite 

at 100g/kg providing both nitrogen and phosphorous respectively.  Fertilization was carried 

out in the evenings with the incoming water turned off and the paddle wheel remaining in 

motion. The set up used were characterized as follows: 

 Pond A - Non enriched (Ulva spp) in standard seawater and 

 Pond B - Enriched (Ulva spp) added to improve growth (triple fertilizer ratio) 

About 5kg of Ulva from each pond were oven dry at 50°C for 4 days to prepare them for 

inclusion in the experimental diets. 

 

Experimental fish 

Clarias gariepinus (Burchell) is a freshwater species of air breathing catfish from the family 

Clariide.  The fish is found throughout Africa and the Middle East and is widely cultivated in 

Africa.  They are carnivorous, feeding on a wide variety of prey items, from zooplankton, to 

small crustaceans to other fish.  On commercial systems they have been habituated to an 

ominivorous feeding behavior.  The species is very hardy and can tolerate both well and 

poorly oxygenated water (Hammed et al., 2013a). 

 

Preparation of the experimental fish samples  

240 healthy fingerlings of Clarias gariepinus were purchased from Daplay fish farm in Iba 

area of Lagos, transported in aerated plastic bags within 10 minutes to the fish hatchery unit 

of the Department of Fisheries, Lagos State University, Nigeria. The experiment was 

conducted in line with Boyd (1998) pond aquaculture water quality management guidelines 

and practice.  
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Feed composition, formulation and feeding trials 

The control feed (CD) (Table 3) with 35 % crude protein level (fish meal, soybean meal, 

white maize, palm oil, Ca2So4 and premix)  was formulated using the Pearson’s square method 

as described Wagner and Stanton, (2006) and reported by Hammed et al. (2013a, b). Four 

different experimental diets were used in (Table 1) in this research work. The differences in 

feeds composition were chosen to test a commercial feed against the control and then an 

enrich Ulva feed against a non enriched feed against the control and commercial feed.   

FeedX is a commercial feed (a fish meal based feed, soya bean, starch, vitamin & minerals 

with some kelp and about 1% Ulva) available in South Africa used in feeding cultivated 

abalone.  CD + NEU comprise the control diet (10% inclusion) and non-enriched Ulva. CD + 

EU contain the control diet (10% inclusion) and enriched Ulva.  Preparations of the diets 

were based on the description by Royes and Chapman (2012).   

 

A total of 20 fingerlings of Clarias gariepinus with average weight 1.60 ± 0.05g and standard 

length of 4.50 ± 0.07cm were used in each of four treatments and three replicates were 

weighed and stocked in 5000m
3 

(50 L) culturing bowl between the period of June and July 

2013.  Prior to feeding trials, all fish were starved for 24 hours to ensure that their guts were 

emptied. The feed was administered twice (per day at 08:30 and 17: 30 hr) daily at 4 % body 

weight. Weight changes were measured every 3 days and the feeding rate adjusted 

accordingly to accommodate the change (Hogendoorn and Koops, 1983). In situ parameters, 

such as water temperature (
o
C), dissolved oxygen (mg/ L), and pH were measured with multi-

probe analyser Hanna HI 9828. 
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Table 1: Gross composition of the experimental diets. 

Ingredient 

(%) 

 

Treatments 

FeedX CD + NEU CD + EU CD 

Fish meal NR 28.56 28.56 31.415 

Soybean meal                                                 NR 28.56 28.56 31.415 

White maize                                                    - 27.88 27.88 30.670 

Palm oil                                                           - 4.5 4.5 5 

Ca2So4 - 0.45 0.45 0.5 

Premix - 1 1 1 

FeedX 100 0 0 0 

NEU spp 0 9.09 0 0 

EU spp 0 0 9.09 0 

Total 100 100 100 100 

FeedX (Commercial feed), NEU (Non-enriched Ulva), EU (Enriched Ulva), CD (Control diet: 35% 

CP), NR (Not revealed)  

 

 

 

Chemical evaluation of the experimental feed and fish 

Dry, milled Ulva samples of experimental diets and fingerlings were analyzed for proximate 

composition according to the methods of Animal Science Laboratory, Institute for Animal 

Production, Department of Agriculture, Forestry and Fisheries; Elsenberg, Western Cape 

Province, South Africa for Ash, Carbohydrate, Crude Fat, Crude Fibre, Crude Protein, Gross 

Energy (Mj/ kg), Nitrogen (N), Nitrogen Free Extract (NFE), Total Digestible Nutrients 

(TDN) and Moisture.  

 

Determination of growth and nutrient utilization 

The evaluation of experimental diets for growth and nutrient utilization was carried out using 

growth indices such as: Weight gain (WG), percentage weight gain (%WG), specific growth 

rate (SGR), feed conversion ratio (FCR), gross feed conversion ratio (GFCR) and Nitrogen 
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metabolism (Nm) as described by Fashina-Bombata et al. (2010), Hammed (2012) and 

Hammed et al.  (2013a; b). 

 

Determination of weight gain (WG) 

The weight gained by the fish was calculated weekly from the differences between the final 

mean weight and the initial mean weight. 

                        WG = (W2) – (W1) 

                                 Where: 

                                       W2 = Final mean body weight (g) 

                                       W1 = Initial mean body weight (g) 

 

Percentage weight gain (%WG) 

The Percentage weight gain was calculated using the formula: 

             % weight gain = (X2) – (X1) × 100 / (X1) 

                                 Where: 

                                       X2 = Final mean body weight (g) 

                                       X1 = Initial mean body weight (g) 

 

Specific growth rate (SGR) 

SGR: an instantaneous growth (% /day) was calculated as: 

                 SGR = Loge W2 – Loge W1 / T2 – T1 

                                 Where:  

                                       W2 = Weight of fish at time T2 in days 

                                       W1 = Weight of fish at time T1 in days 

                                       Loge = Natural log of base e 
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Feed Conversion Ratio (FCR) 

The food conversion ratio (FCR) is expressed as the proportion of dry food fed per unit live 

weight gain of fish: 

 

FCR = Weight of dry fed (g) / Live weight gain (g) 

            

Gross Feed Conversion Ratio (GFCR)  

The gross feed conversion ratio was calculated as percentage of the reciprocal of feed 

conversion ratio: 

             GFCR = 1 × 100 / FCR 

                              

Nitrogen metabolism (Nm) 

This was calculated as: 

                              Nm = (0.54) (b – a) h / 2 

                                                   

                              Where:   

                                    a = Initial weight of fish (g) 

                                    b = Final weight of fish (g) 

                                    h = Experimental period in days 

                                    0.54 = Experimental constant 
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Statistical Analysis  

All data collected were analysed for significant differences (P>0.05) (ANOVA) on Graph 

Pad Prism V.  The results were expressed as mean ± SD. Determined differences among 

treatments were partitioned by the Least Significant Difference (LSD) and the Duncan’s New 

Multiple Range Test (DNMRT) (Duncan, 1955). 

 

Results  

 

The water quality parameters in all the culture units were within the range of 23 – 24 
o
C, 6.5 - 

8.5 mg.l
-1

, 0.60 – 0.27 mg.l
-1

 and 7.8 - 8.4 for temperature, dissolved oxygen, ammonia and 

pH respectively.  Ulva biomass differed substantially among the two treatments from pond A 

to B. The lowest value was recorded in the standard seawater, which contained no fertilizer 

and also produced the least biomass (1045 ± 32.5 kg) with a 113 % increase at harvest. An 

increase in weight gain was seen with reference to fertilizer increase from one pond to 

another, with a higher weight (1235 ± 162.6 kg) being observed in the triple fertilizer 

experience 134 % increase. Growth rates differed substantially in pond (B) as a result of the 

weekly fertilization. The proximate composition (per g dry matter) of the initial stock of Ulva 

(Pond A & B) collected for the production of the different biomass incorporated in the diet 

composition (crude protein 18.310, ash 32.660, crude fibre 6.024, crude fat 0.380, nitrogen 

free extract 30.259, P 0.172, K 1.897, Ca 1.034, Mg 4.310, Na 5.172, Fe 0.007, Cu 0.001, Zn 

0.001, Mn 0.001, Br 0.006, Al 0.006 %) is presented in Table 2.  The highest mean weight 

gain (Table 3) was observed in fish fed diet 3 CD +EU (0.56 ± 0.22) and the lowest in diet 1 

Feed X (0.13 ± 0.05). There was a significant difference (P>0.05) in the weight gain of fish 

fed diet 1 compared to fingerlings fed diets 2, 3, 4. The result (Table 4) also shows 

performance of experimental diets on tested fish. There was no significant difference (p > 
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0.05) amongst the weight gain, % weight gain, specific growth rates and nitrogen metabolism 

of diets 2, 3 and 4 while significant difference (p < 0.05) was noticed in the food conversion 

ratio and gross food conversion ratio among the fish across the different experimental diets. 

The best of the FCR was noticed on fish fed diet 4 (0.79±2.39
 
)
 
followed by fish fed diet 3 

(1.75±1.34) indicating that the experimental fish was able to utilize control + non-enriched 

Ulva diet better than enriched as well as the commercial FeedX diets.   

 

 

Table 2: Proximate composition (per g dry matter) of the Ulva before cultivated in enriched 

water.  

 

Nutrients composition % dry matter 

Crude protein 18.310 

Ash 32.660 

Crude fibre 6.024 

Crude fat 0.380 

Nitrogen free extract (calc) 30.259 

Phosphorus (P) 0.172 

Potassium (K) 1.897 

Calcium (Ca) 1.034 

Magnesium (Mg) 4.310 

Sodium (Na) 5.172 

Iron (Fe) 0.007 

Copper (Cu) 0.001 

Zinc (Zn) 0.001 

Manganese (Mn) 0.001 

Bromine (Br) 0.006 

Aluminium (Al) 0.006 
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Table 3: Proximate composition of the formulated feed, macroalgal supplemented diets 

including all-macroalgae-based commercially formulated FeedX and Clarias gariepinus 

fingerlings used in this study.  

 

Proximate composition of  the experimental feeds 

Feeds Moisture Dry 

matter 

(%) 

Ash 

(%) 

Protein 

(%) 

Fibre 

(%) 

Fat 

(%) 

N 

(%) 

TDN 

(%) 

NFE 

(%) 

Gross 

Energy 

Mj/ kg 

Carbohydrate 

(%) 

FeedX  ~10 NA 32.9 19.2 10.9 0.7 NA NA NA NA 47.30 

CD + NEU  ~10 91.02 10.22 42.03 3.55 Nil 6.73 66.74 35.21 17.81 47.75 

CD + EU ~10 92.72 10.89 44.03 3.25 Nil 7.05 68.52 35.55 18.38 45.08 

CD ~10 93.49 9.90 45.38 2.70 Nil 7.05 69.37 35.55 18.40 44.72 

Proximate composition of  Clarias gariepinus fingerlings fed with experimental diets 

Fish Fed Diet Dry matter 

(%) 

Ash (%) Protein (%) Fat (%) N (%) Gross Energy Mj/ 

kg 

FeedX 91.50 17.66 63.44 Nil 10.15 19.08 

CD + NEU 86.60 12.44 65.63 Nil 10.50 17.95 

CD + EU 91.45 13.11 65.00 Nil 10.40 20.31 

CD 89.24 13.86 68..13 Nil 10.90 17.77 

 

Key: NA= Not Analysed, Nil= Negligible 

 

Table 4: Cumulative growth rate of Clarias gariepinus fingerlings fed with different diet 

composition 

 Diet composition  

Growth indices Commercial 

FeedX 

 

Ulva armoricana 

–non enriched 

CD + NEU 

Ulva 

armoricana – 

enriched         

CD + EU 

Control  - 35% 

Crude protein 

diet CD 

Mean body weight g 2.40±0.28
a
 3.72±1.21

b
 3.88±1.36

b
 3.90±1.22

b
 

Weight gain g 0.13±0.05
 a
 0.49±0.17

 b
 0.56±0.22

 b
 0.52±0.2

 
3

 b
 

% weight gain 5.46±1.72a
a
 17.35±8.83

 b
 18.25±5.6

 b
 18.72±7.80

 b
 

Specific Growth Rate 0.32±0.07
 a
 0.12±0.06

 b
 0.09±0.06

 b
 0.11±0.08

 b
 

Food Conversion Ratio 8.18±3.08
 a
 3.23±2.17

 b
 1.75±1.34

c
 0.79±2.39

 c
 

Gross Feed Conversion 

Ratio 
6.86±1.7

 
8

 a
 14.96±8.30

 b
 41.60±24.39

c
 62.72±21.68

c
 

Nitrogen metabolism 0.11±0.07
 a
 0.40±0.67

 b
 0.45±0.55

 b
 0.42±0.75

 b
 

Measurements in the same row with the same superscript are not significantly different (p > 

0.05).  Data are presented as means ± Standard Error. 
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Discussion 

 

The reason for insignificant difference (Table 4) between the Ulva supplemented diets (diet 2 

& 3) could be due to quality decline in the cultured macroalgae after double fertiliser ratio as 

revealed in our previous work (Amosu et al., 2014). However, the effect of supplementing 

the formulated feeds with macroalgae significantly improved the growth of all Clarias 

gariepinus fingerlings. This was on account of the contribution of macroalgae active 

ingredient to the nutrients that may have been lacking in the commercial FeedX. Although 

proximate composition of macroalgae typically have low protein content  but have been 

shown to be valuable supplementary feeds that promote good growth in aquaculture animals 

(Stepto and Cook 1993; Simpson 1994; Fleming et al., 1996; Robertson-Andersson 2003; 

Schoenhoff et al., 2003; Najmudeen and Victor 2004; Johnston et al., 2005; Dlaza et al., 

2008).  However, the relatively high nutritional value of the formulated feed (control) and 

supplemented feeds probably accounted for the enhanced growth recorded with the 

supplemented diets. The all-macroalgae-based commercially formulated feed (FeedX) 

performed extremely poorly compared to others. The major nutritional requirements for 

optimum growth in fish include the necessary carbohydrate and protein ratios (Fleming et al., 

1996; Guzmán and Viana 1998; Nelson et al., 2002). Whereas the carbohydrate content of 

the best performing formulated feed (Control, 44.72 %) and the worst performing 

Commercial FeedX (47.30 %) are both within the optimal range for fish requirements (Tacon 

1987), differences in their performance may be explained by the differences in their crude 

protein contents. Although the optimum dietary crude protein requirements of Clarias 

gariepinus was reported to be about 35 – 45 % (Tacon, 1987),finding shows tha  not only did 

Commercial FeedX (19.2 %) have a substantially lower crude protein content than (control) 

locally formulated feed (45.38 %), but also animal-based or animal-supplemented proteins 
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were more readily digested than plant-based proteins (Durazo-Beltrán et al., 2003).  

Commercial FeedX consists of dried macroalgae and seal meal, and it has been shown that 

fish fed on dry macroalgae only grow poorly like other aquatic animals (Britz 1996; Naidoo 

et al., 2006). Originally, FeedX contains kelp which is naturally low in protein (Troell et al., 

2006). The protein and carbohydrate contents of the locally formulated feed supplemented 

Ulva feeds were relatively similar to those of locally formulated feed, so those factors could 

not have accounted for the poorer growth obtained with the locally formulated feeds 

supplemented with Ulva.  In addition to the low protein content, a low palatability could also 

have accounted for the poor growth obtained with commercial FeedX (figure 1). When the 

culturing bowls were cleaned, more uneaten remnant of the commercial FeedX were found 

relative to other feeds, indicating that the fish fingerlings consumed less of the feed.  This 

reason may be due to low palatability as a result of other active inhibiting substance in the 

commercial FeedX.  It has been reported that less palatable feeds become wasted, and 

because feed intake is low, slower growth rates are achieved (Kautsky et al., 2001; Lee et al., 

2004).  The probable lower palatability of commercial FeedX could have been on account of 

the absence, or reduced effects, of attractants that may otherwise be active in locally 

formulated feed (Fleming et al., 1996; Sales and Janssens 2004; Dlaza et al., 2008).  

 

 

 

 

 



157 

 

 
 

Figure 1: Growth response of C. gariepinus fingerlingsto the different feed formulations. 

 

 

Similar to our findings, there is information that shows that a mixed diet of macroalgae can 

induce growth rates in aquatic animals that meet or exceed those attained with artificial feeds 

(Naidoo et al., 2006; Dlaza et al., 2008; Francis et al., 2008; Robertson-Andersson et al., 

2011).  This implies, a natural diet can improve livestock quality and reduce parasite 

infections as reported by Robertson-Andersson, 2003; Naidoo et al., 2006; Al-Hafedh et al., 

2012.  Therefore, combine formulation of different Ulva additive that was incorporated into 

the experimental diets (Table 3), suggests that protein enriched or fertilized Ulva spp has the 

potential to be a successful fin fish feed on African fish farms (Table 4).  

 

In addition to Urchin diets, Ulva has proven beneficial as an additive in aquatic feeds (Cyrus 

et al., 2014), U. rigida as a supplementary diet for Carp Cyprinus carpio. L and Oreochromis 

niloticus, showed peak growth performance with a 5 – 15 % diet inclusion (Diler et al., 2007; 

 

 

 

 



158 

 

Ergun et al., 2009). This negates the research by Sherrington (2013) that Ulva is more 

beneficial for algivorous fish species than carnivorous fish as experienced in this present 

studies with Clarias gariepinus. However, further dietary investigation is required for fresh 

and marine water farmed finfish species because most cultured aquactic fish species in Africa 

are fresh water fishes compared to the more expensive mariculture systems.  The overall 

economic benefits is similar to other research findings (e.g. Robertson-Andersson, 2003; 

Bolton et al., 2008; Robertson-Andersson et al., 2008; Cruz-Suarez et al., 2010), that have 

identified the many direct and indirect economic benefits of integrating Ulva spp as an 

inorganic extractive component and direct feed for shellfish like abalone (Haliotis midae, L) 

and shrimp (Litopenaeus vannamei).  This is an ecosystem-based integration approach that 

effectively mitigates the excessive amounts of nutrients that may lead to fish kill, but also 

significantly reduce their green house gas emissions and thus their carbon footprints.  The 

highest food conversion ratio (8.18±3.08) was observed and recorded in diet 1 containing 

(FeedX - fishmeal based with some kelp and about 1% Ulva) and the lowest food conversion 

ratio (0.79±2.39) recorded in diet 4 containing (Control diet: 35% Crude Protein) at the end of 

the experiment.  This shows that fish fed diet 4 (control 35% Crude protein diet ) converted 

the diet well with good performance.  

 

Conclusion 

 

Our results support the idea that animal based protein feeds yield better growth rates than all-

macroalgae based protein feeds (FeedX).  The locally formulated feed outperformed all other 

formulated feeds tested in this experiment, and supports that it is a good formulated feed for 

cat fish (Clarias gariepinus) fingerlings. The formulated feed contains fish meal that supplies 

the surphure (lysine and methionine) amino acid lacking in plant protein.  Also, 
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supplementing the formulated feeds with enriched and non-enriched Ulva spp resulted in 

better growth due to the inclusion of fish meal.  Our study shows the benefits of 

supplementing existing formulated feeds with Ulva spp   combinations for Clarias gariepinus 

fingerlings. In this present study our findings suggest that plant protein Ulva armoricana 

supplemented diet has the potential to be a successful feed stimulant.  
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Chapter 7 

General Discussion 

 

This ultimate objective of this thesis was to mitigate for the reliance on wild harvesting of 

macroalgae, using the on-land integrated culture systems, with paddle-wheel raceways, as the 

preferred method of large scale macroalgal biomass production for the South African 

seaweed aquaculture industry.  Our findings include some exciting prospects for energy 

efficiency as we have shown that the biotransformation of Ulva armoricana to Liquefied 

Petroleum Gas (LPG) is viable and economically feasible in South Africa among other 

additional benefits from farming activities, including ocean de-acidification and the capturing 

of atmospheric and dissolved CO2 during growth to assist in climate change mitigation.  

Investigations into Ulva armoricana as an environmentally safe candidate for efficient heavy 

metals (Copper, Zinc, Lead) and inorganic nutrients (Ammonium, Nitrate, Nitrite,  

Phosphorus) extractions was also proven in this study.  Feed for human and/or livestock 

consumption was deemed not possible due to the unsafe levels of Cadmium (Cd) found for 

our macroalgae.  However, such enriched macrolage could be successfully used as a plant-

growth stimulant. Furthermore, we investigated the growth response of Ulva in two culture 

systems (Closed and Flow through system) to reveal the best available culture characteristics 

for optimum production of the macroalga with induced CO2.  In order to achieve a more 

comprehensive overview of resource benefits, the nutrient utilization and proximate 

composition of cultivated, protein-enriched Ulva armoricana was tested to determine the 

alga’s potential as a fish feed/feed ingredient  for substitution in formulated and 

commercially available aquaculture feeds. 
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7.1 Ulva cultivation in South Africa 

  

Three species (U. armoricana, U. capensis and U. rigida) of Ulva are currently cultivated in 

South Africa, with the free-floating U. armoricana (previously reported as U. lactuca) more 

widely cultured and used as an important feed source, particularly for the abalone industry 

(Robertson-Andersson, 2003; 2007; Department of Agriculture, Forestry and Fisheries, 

2012).  The taxonomy of the genus Ulva is currently in flux and it will take a while for this to 

be properly sorted.  Until such time, we are obliged to use the name U. armoricana for the 

material grown in aquaculture systems notably because this material has proven to be 

genetically different to South African material of U. rigida (Cyrus et al., 2014b; J.J. Bolton, 

pers. comm.) for which the former has been suggested to be synonymous (Brodie et al., 2007; 

Guiry and Guiry, 2015).  Ulva armoricana, U. capensis and U. rigida comprise South 

Africa’s largest aquaculture product by weight reaching a production of 2884.61 tonnes in 

2011 (Department of Agriculture, Forestry and Fisheries, 2011b; 2012; FAO, 2012).  

Although South Africa is not Africa’s largest macroalgal producer (Zanzibar, Tanzania is the 

continent’s largest producer), the country has the highest regional seaweed diversity and one 

of the richest in the world (Department of Agriculture, Forestry and Fisheries, 2012; FAO, 

2012).  None-the-less the South African marine macroalgal aquaculture industry is well 

researched and has developed steadily due to the increasing demand for abalone feed that has 

seen the need for sustainable production of macroalgae in IMTA.  The development and 

innovation is reported to be similar to that which has been reported in the developed world 

(Hernández et al., 2002; Copertino et al., 2009; Cahill et al., 2010). 
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7.2 The South African Seaweed Industry 

  

The South African seaweed aquaculture industry provides raw materials to other sectors of 

the economy, as well as the potential for bioremediation and other benefits such as biomass 

for biofuel, with species of Ulva being investigated for biogas production and for integrated 

aquaculture.  To mitigate for the reliance on wild harvesting, the South African seaweed 

aquaculture industry has grown rapidly over the past few decades.  On-land integrated culture 

units, with paddle-wheel raceways, are now widely viewed as the preferred method of Ulva 

production for the industry.  Using this technology, cultured Ulva production currently stands 

at 2000 tonnes wet weight per annum as at 2012 (Department of Agriculture, Forestry and 

Fisheries, 2013).  

 

The success of the seaweed aquaculture industry in South Africa is due to a number of natural 

and human (industrial) factors.  Natural factors include a rich seaweed diversity of about 900 

species, with a high level of endemism (Bolton et al., 2003; Amosu et al., 2013).  Industrial 

factors are numerous and can be summarized as follows.  The seaweed aquaculture industry 

has grown rapidly along the west coast where suitable rocky habitat exists, which serves as 

adhesive substrates for seed propagation (Troell et al., 2006).  Collaboration among local, 

international phycologist and research institutes have improved the knowledge and 

understanding of Ulva aquaculture leading to the success of it sustainable domestication in 

South Africa (Shipton and Britz 2007).   The development of the seaweed aquaculture 

industry has paralleled the growth of the abalone industry, and has been successful largely 

because of bilateral technology transfer and innovation between commercial abalone farms 

and various research institutions (Amosu et al., 2015).  The South African seaweed industry 
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thus provides a template that could be used by other coastal African nations to further their 

undeveloped aquaculture potential. 

 

7.3 Ulva energy production and climate change mitigation 

 

The South African government was the first in Africa to propose a 20-50 % biofuel 

renewable energy (Deenanath et al., 2012).  The fact that fossil fuel prices are fluctuating, 

and that macroalgal production costs will inevitably fall as macroalgal production expands, 

makes large scale macroalgae cultivation financially feasible (Robertson-Andersson et al., 

2013).  Ulva are exciting prospects in terms of energy efficiency.  Its growth rate, ease of 

harvesting, resistance to contamination by other algal species and minimal production loss, 

make it preferable to microalgae and to other macroalgae for large-scale renewable energy 

production and CO2 capturing systems. Macroalgae have additional advantages that make 

them environmentally sustainable (Habiq et al., 1984; Briand and Morand, 1997; Duffy et al., 

2009; Bruhn et al., 2011; Specht, 2011; Sarker et al., 2012).  Utilizing cultivated marine 

macroalgae as a sustainable and renewable feedstock for biogas production would be a great 

advantage for South Africa and could potentially lead the way in renewable energy 

development for the continent.  Additional benefits from such projects might include: 1) 

capturing industrially emitted CO2 to use for enhanced seaweed growth in large scale 

aquaculture facilities to mitigate climate change; 2) decreasing ocean acidification through 

carbon sequestration, as well as the uptake of excess nutrients from industrial and agricultural 

effluent discharges; and 3) reducing coastal eutrophication.  The high amounts of dissolved 

oxygen (the by-product of photosynthesis) in the paddle ponds further enable the aquaculture 

water to be reused for integrated polyculture with aquatic animals.  All these benefits 

ultimately support changes towards more environmentally-sound aquaculture practices. 
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The current research has demonstrated that South Africa may well be the first African 

country with the capacity for large-scale production of Ulva to Liquefied Petroleum Gas 

(LPG) as our findings compared well to similar other findings (e.g. Nett, 2012).  Our biogas 

production corroborate earlier reports from fresh and macerated U. lactuca yielded up to 271 

ml CH4 g
-1

 VS, which is in the range of the methane production from cattle manure and land-

based energy crops such as grass clover (Bruhn, 2011).  In a similar finding by Nikolaisen et 

al. (2011) the methane yield of the fresh and solid fraction of U. lactuca was 196 ml CH4 g
-1

 

VS and 192 ml CH4 g
-1

 VS respectively.  This latter result is comparable to 60 – 70 % for 

LPG, but better than LPG on major harmful emission like CO2, hydrocarbons and nitrogen 

oxide (Nox) production (Nett, 2012).  Additional benefits from seaweed-farming activities 

include capturing atmospheric and dissolved carbon dioxide during growth to assist in 

climate change mitigation.  Presently South Africa is spearheading renewable energy 

production in Africa in response to several developed and developing nations like the EU, 

USA, Canada, Brazil, Argentina, Colombia, China, New Zealand and Japan, all of whom 

have incorporated biofuel targets into their renewable energy policies in recent years 

(Steenblik, 2007). 

 

The energy supply in South Africa is primarily coal based.  South Africa is therefore a CO2 

intense economy, with the country’s major energy requirement sourced from fossil fuels.  

South Africa is amongst the countries with the highest per-capita emissions of greenhouse 

gases in the world.  It is widely accepted that increases in CO2, largely caused by human-

induced emissions from the burning of fossil fuels and other activities, result in global 

warming, ocean acidification and climate change.  Ocean acidification, in particular, 

represents an extremely serious environmental hazard for aquaculture organisms.  Evidence 

suggests that the South African abalone industry will be severely influenced by ocean 
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acidification (Amosu et al., 2015).  Our research has demonstrated that it would be perfectly 

feasible to incorporate Ulva into abalone aquaculture on a national scale to potentially 

mitigate this effect. 

 

7.4 Efficacy of Ulva as an effluent filter 

 

Integration of Ulva in multitrophic aquaculture serves a dual purpose: (i) the production of 

biomass; and (ii) the removal of nutrients from the effluent waters of the aquaculture system, 

thereby reducing the load of dissolved nutrients to the aquatic environment.  The current 

research has shown that the Ulva biomass was of a suitable quality for biofilters of effluent 

wastewaters and that their heavy metal (except for cadmium) contents fell within the FAO 

and WHO permissible standards.  This quality makes the Ulva suitable as a feed for 

aquaculture animals, but not food for direct human consumption.  The high Cadmium (Cd) 

concentrations in the current study could well have originated from the unfiltered seawater 

and/or the fertilizer, possibilities already alluded to by Shuuluka (2011).  Irrespective of the 

source, our Cd values negate the use of these seaweeds for human consumption but may be 

used for feeding abalone that will be used as food.  Ulva armoricana used in this study 

efficiently removed dissolved inorganic nutrients from the effluents and their biofiltration 

capacities increased with an increase in fertilizer application.  The results from this study can 

therefore be applied in the development of a large-scale wastewater treatment pond system 

for both agro-allied industries and for fish farms.  The prospect of sustainable best available 

management practices, based on the utilization of Ulva mariculture designs of IMTA and 

paddle pods, bodes well for the South African aquaculture industry.  As human health is 

directly affected by ingestion of vegetables, the biomonitoring of trace elements in 
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macroalgae needs to be continually monitored because these algae could be a source of food 

for humans in many parts of the world.   

 

The current research has also showed that Ulva can be used in eco-monitoring by playing a 

significant role in coastal aquaculture, especially for wastewater filtration and 

bioaccumulation as described by a number of previous studies (e.g. Troell, 1999; Robertson-

Andersson, 2007; Msuya and Neori, 2010; Nobre et al., 2010).  Although the Cadmium (Cd) 

values in this research were higher than the maximum recommended level for Cadmium (Cd) 

in the FAO/WHO (2001) standard for seaweed/vegetable and the South African limits for 

lettuce, this could well have originated from the unfiltered seawater and/or the fertilizer 

(Shuuluka 2011).   It is therefore important that South Africa implements a continuous update 

of its seaweed safety monitoring by formulating a standard guideline and permissible limits 

of nutrients policy that must strictly be adhered to by all industries.  Apart from the 

FAO/WHO standards, other nation-permissible limits can be emulated such as the French 

limits for edible seaweeds (Besada et al., 2009) and/or the Australian and New Zealand limits 

for edible seaweeds (Almela et al., 2002; 2006). 

 

7.5 pH tolerance of Ulva under induced CO2 

 

pH toxicity tests were used as health indices of Ulva under increased CO2 concentrations that 

potentially could occur in IMTA systems.  The current research revealed sporulation as a 

physiological response to environmental stress, which is indicative of chlorophyll 

degradation and a reduction in photosynthetic activity.  Our results showed that acidic 

conditions (pH 4.73 – 6.67) were responsible for sporulation, which caused a significant 

inhibition in growth and led to sporulation responses, especially when the medium was not 
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enriched.  However, the Ulva was able to withstand this slightly low pH.  Toxicity tests for 

pH were conducted to assess the health of Ulva grown under extreme pH conditions.  

Although this finding is in contradiction to some earlier reports (e.g. Nordby (1977) reported 

optimum pH of 8.0 – 8.5 for sporulation) our results are largely consistent with more recent 

works by Harley et al. (2012) and Roleda et al. (2012) who found that a pH of 6.5 - 7.5 gave 

the optimum sporulation. This could be due to differences in the species involved in the 

experiments, seanonality and cultivation methods.  We further demonstrated CO2 to be a 

major limitation to large-scale algal biomass production and utilization, especially in closed 

systems, a sentiment already expressed by Ugoala et al. (2012).  In our flow-through systems, 

despite sporulation resulting in the majority of the treatments, the results show that U rigida 

is able to tolerate a sustained pH of 7.2.  This implies that in large-scale cultivation systems 

CO2 could be added and pH maintained at 7.2.  Incidentally, the growth rates of U. rigida 

under increased CO2 concentrations observed in this study differs from those reported for U. 

lactuca and U. fasciata (see Neori et al., 1991; Robertson-Andersson et al., 2008).   

 

The current research also found that the application of a soluble fertilizer was found to 

promote growth and prevent sporulation.  This is in support of previous studies for the 

production of U. lactuca (Bruhn et al., 2011; Nikolaisen et al., 2011).  In the future, it will be 

important to conduct experiments on the rates of fertilizer application at low pH, as well as to 

follow the responses of multiple generations to elevated CO2 under conditions that simulate 

growth. 
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7.6 Ulva as fish feed  

 

Our nutrient utilization and proximate composition results show that the African mud catfish 

Clarias gariepinus grew well when protein enriched U. armoricana was incorporated into its 

diet, proving that protein enriched Ulva has the potential of a successful fish feed.  In 

addition, the current research has identified with a number of other direct (e.g. feed for 

shellfish like abalone (H. midae) and shrimp (Litopenaeus vannamei) and indirect (e.g. 

integration of protein enriched Ulva as an inorganic biofilter) economic benefits of 

integrating protein enriched Ulva.  Similar to previous findings (e.g. Diler et al., 2007; 

Soyutu et al., 2009; Robertson-Andersson et al., 2011; Cyrus et al., 2014a; b) our results 

show that a mixed diet of macroalgae, that includes protein enriched Ulva, can result in 

growth rates in cat fish that match or even exceed those attained with some artificial feeds.  

These findings (including the current research), are in support of the research by Sherrington 

(2013) that demonstrated that Ulva is more beneficial for algavorous finfish than carnivorous 

finfish.  Our research shows that an U. armoricana supplemented diet has the potential to be 

a successful feed stimulant.   

 

Various species of macroalgae have been incorporated into fish feed formulations to assess 

their nutritional value, and many have been shown to be beneficial especially when the crop 

plant proteins, commonly used in fish feeds, have been shown to be deficient in certain amino 

acids such as lysine, methionine, threonine and tryptophan (Li et al., 2007).  Whereas 

analyses of the amino acid content of numerous macroalgae have found that although there is 

significant variation, they generally contain all the essential amino acids (Wassef, 2005; 

Lemme, 2010).  Similar findings by Wassef et al. (2001) demonstrated that an U. lactuca 

meal feeding trial with mullet (Mugil cephalus) resulted in a higher growth performance, feed 
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intake and protein utilization efficiency in the mullet.  Similarly, U. lactuca has been fed to 

European sea bass, striped mullet and seabream (Sparus aurata); all resulted in higher growth 

performance, feed intake and protein utilization efficiency in these fish species.   (Wassef et 

al., 2001;Wassef, 2005; Li et al., 2008).  Numerous other reports on the dietary benefits of 

using Ulva spp in fish feeds were summarized by Mustafa and Nakagawa (1995) in general, 

and by Mustafa et al. (1995) more specifically for red seabream among others. 

 

7.7 Future research   

 

In order to facilitate a more effective South African aquaculture industry that is increasingly 

becoming more dependent on species of Ulva, the following recommendations are proposed. 

 A comprehensive taxonomic study, including DNA sequencing, of all species of Ulva 

(both naturally occurring and those grown in aquaculture facilities) should be 

undertaken to access the levels of cryptism and ultimately the diversity of the genus in 

South Africa. 

 Detailed investigations into the liquid chromatography mass spectroscopy (LCMS) 

differences in the chemical composition of all ‘species’ of Ulva reported for South 

Africa.  Species-specific differences no doubt are expected to affect the quality in 

respect of their potential biogas production.  Identifying candidate species based on 

preferred chemical properties would go a long way in reducing the time and effort 

generally taken through aquaculture trial-and-error synarios.  

 Serious consideration should be given to research programme using bacteria to 

enhance the methane produced from the anaerobic digestion process, using a 

bioaugmentation with bacteria to improve the degradation of Ulva biomass, to achieve 
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higher levels of methane. Macroalgae contain two main sugars, namely mannitol and 

laminaran.      

 Additional studies need to be conducted to improve Ulva species-specific cultivation 

in terms of productivity, cost benefit analysis, atmospheric CO2 sequestration during 

growth, adaptive mechanisms to altered pH concentrations, improving nutritional 

quality, biofiltration responses, and the possible mechanisms for heavy metal 

exclusions.  

 

In conclusion, the results presented in this thesis suggests that South Africa could take 

advantage of being the first African country to propose specific standards for large-scale Ulva 

production and its use in agriculture as the country’s successful research innovations and 

development provides a template for other developing countries to follow.  We have shown 

that the derived benefits from Ulva farming activities includes bioremediation, ocean de-

acidification, and the capturing of atmospheric and dissolved CO2 during growth to assist in 

climate change mitigation.   
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