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ABSTRACT

SNP based literature and data retrieval
W.P. Veldsman

Magister Scientiae at the South African National Bioinformatics Institute in the Faculty of

Natural Sciences, University of the Western Cape

Reference single nucleotide polymorphism (refSNP) identifiers are used to earmark SNPs

in the human genome. These identifiers are often found in variant call format (VCF) files.

RefSNPs can be useful to include as terms submitted to search engines when sourcing

biomedical literature. In this thesis, the development of a bioinformatics software package

is motivated, planned and implemented as a web application (http://sniphunter.sanbi.ac.za)

with  an  application  programming  interface  (API).  The  purpose  is  to  allow  scientists

searching for relevant literature to query a database using refSNP identifiers and potential

keywords  assigned  to  scientific  literature  by  the  authors.  Multiple  queries  can  be

simultaneously launched using either the web interface or the API. In addition, a VCF file

parser was developed and packaged with the application to allow users to upload, extract

and write information from VCF files to a file format that can be interpreted by the novel

search engine created during this project. The parsing feature is seamlessly integrated

with the web application's user interface, meaning there is no expectation on the user to

learn a scripting language.

This multi-faceted software system, called SNiPhunter, envisions saving researchers time

during life sciences literature procurement, by suggesting articles based on the amount of

times a reference SNP identifier has been mentioned in an article. This will allow the user

to make a quantitative estimate as to the relevance of an article. A second novel feature is

the inclusion of the email address of a correspondence author in the results returned to the

user,  which  promotes  communication  between  scientists.  Moreover,  links  to  external

functional  information  are  provided  to  allow  researchers  to  examine  annotations

associated with their reference SNP identifier of interest. Standard information such as

digital object identifiers and publishing dates, that are typically provided by other search

engines, are also included in the results returned to the user.
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CHAPTER 1 

1. Thesis rationale 

The volume of information from next-generation sequencing (NGS) is increasing at an

exponential  rate,  and  so  is  the  amount  of  information  available  downstream  in  the

bioinformatics analysis pipeline. To make efficient use of the data becoming available to

scientists  and  the  general  public,  databases  have  to  be  integrated  to  improve  user

experience (UX), by being readily accessible to multiple controller frameworks employing

different  standards  and  protocols.  A  conservative  estimate,  that  excluded  non  peer

reviewed  databases  and  commercial  databases,  put  the  number  of  human  related

databases at 1550+ as at 2014 (Zou et al., 2015). These data sources are heterogeneous

in content and globally distributed, which necessitates providing application programming

interfaces (APIs) in addition to user interfaces (UIs). 

The Southern African Human Genome Programme (SAHGP) (www.sahgp.org) is expected

to produce South Africa's first bulk NGS data in the near future. Researchers will  have

access to this data in formats representing progressive stages of analysis. One of the final

stages of NGS data processing is encapsulated in variant call  format (VCF) files.  The

information  on  genetic  variation  contained  within  VCF files  will  assist  researchers  not

directly involved with the SAHGP, in analyzing human specific experimental data, and in

the generation of hypotheses leading to research outputs that could benefit the population

of Southern Africa.

Conducting research using unstructured data is a time consuming process. As mentioned

above, genome sequencing data is frequently processed and captured in VCF files. The

content of files that use this format is then relied upon by researchers to, for example,

construct  queries  for  initiating  academic  literature  resourcing  using  search  engines.

However, VCF files are not presented in a user friendly format. The parsing of their content

using software libraries, such as VCFtools (a Perl library) and PyVCF (a Python library), is

frequently required to extract useful information such as variant IDs that could serve as

search  query  keywords.  Moreover,  literature  retrieval  search  engines  seem  to  (i)  not

provide an option to return results based on the frequency of a keyword in an article, and
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(ii) not provide file upload facilities for bulk querying using keyword lists. 

The research question this project seeks to answer is: can data contained within VCF files,

be integrated with the processes of keyword generation and search engine querying, to

create a search engine that returns results with an empirical indication of the relevance of

a result?

A cornerstone of the software design approach is to use free and open source software

(F/oss)  in  combination  with  open  access  scientific  literature.  In  addition  to  this,  the

development of this proof-of-concept search engine steers clear of traditional database

design  software  relying  on  structured  query  language  (SQL)  and  the  PHP hypertext

preprocessor,  by  using  a  NoSQL  database  supported  by  JavaScript  and  the  Node

interpreter.  The  purpose  is  to  illustrate  scientific  software  design  using  low-cost,

untraditional alternatives.

A review of the literature will follow this introduction. Then the developmental approach of

the  project  will  be  explained  in  detail.  Next,  a  set  of  results  will  be  presented  and

discussed. This thesis will end with a conclusion, a set of references and an addendum

containing source code to supplement the methods and materials section.

1.1. Aims and objectives

The aim of this project is to design and implement a proof-of-concept search engine in

answer to the research question, and to address the observed shortcomings in current

academic search engines. The specific objectives are:

• Create a NoSQL database populated with processed data from Pubmed Central 

• Implement a web application with search engine functionality

• Provide an application programming interface

• Integrate a VCF parser with the user interface

• Package and publish the software
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CHAPTER 2

2. Literature review

2.1. Historical perspective

Early biological databases were created before the advent of the world wide web. That

was in a world where biological data was shared by means of snail mailing data storage

devices, such as punched paper cards or magnetic tapes, to scientific collaborators. Email

and mass production of personal computers were yet to arrive on the scene. The first

citation of digital data storage can be traced back to 1945 when the memex portmanteau

was coined by Vannevar Bush using the words memory and index (Bush, 1945). This was

done  to  give  a  name  to  a  concept  that  envisioned  people  storing  their  books,

communication and other records in a mechanized and easily retrievable manner in order

to enhance human memory. Twenty years later the Cambridge Structural Database (CSD)

started its transition from printed circulation to digital circulation (reviewed in Attwood et al.,

2011). The CSD is recognized as one of the first scientific databases and as inspiration for

the formation of the more widely known Protein Data Bank (PDB). The use of computers in

the field of biology eventually led to the formation of the word bioinformatics (also known

as computational biology or genomic data science)  in the late 1970's. This marked the

emergence of computer aided biological studies as a discipline in its own right. Shortly

afterwards, in the early 1980's, scientists began to realize that the rate limiting step in

nucleic acid sequencing was shifting from data acquisition to data management due to the

emergence of faster sequencing technologies (Gingeras and Roberts, 1980). Collecting

large amounts of scientific data and designing efficient search algorithms, were no longer

enough. Information resource interoperability became a central concern of bioinformatics

during the mid 1980s, when the volume of information being generated became more than

the  databases  of  the  time  could  handle  (Robbins,  1996).  The  problems  faced  during

biological  data management has remained an area of  concern since then.  In  the late

2000s,  the  reason  for  this  lack  of  progress  in  integration  was  ascribed  to  a  lack  of

standardization and uncoordinated bioinformatic research, rather than to the volume of

information  (Goble  &  Stevens,  2008).  Currently,  semantic  web  technology  is  being

investigated as an integration architecture that would allow for the substitution of links
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between  data  documents  with  links  between  the  underlying  data,  thereby  decreasing

search times and allowing abstraction of information (Machado et al., 2015). Abstraction is

vital for the application of  black box medicine in future clinical settings, that is, Decision

Support  Systems  (DSS),  that  will  match  clinical  data  with  broadly  distributed  and

heterogeneous  knowledge  bases  (Price,  2015),  without  requiring  the  user  to  have

technical expertise in database querying.

2.2. Literature review methodology

Point of view

Given the research question  this  project  seeks to  answer,  and a trend towards using

semantic web technology, the current state of the literature will be critically analyzed from

the standpoint that integration of biological databases with structured and unstructured

data,  is  necessary.  The  following  literature  review postulates  that  a  gap  exists  in  the

process of biological literature retrieval. It is argued that this gap could be addressed by

designing a tertiary data artifact with search engine functionality, that integrates relevant

information  from  open  access scientific  literature,  with  parsed  information  from  next

generation sequencing data contained within VCF files.

Scope of the review

Although this survey of the literature has properties of a systematic review, the selection of

relevant  material  was  not  trimmed  until  a  manageable  volume  of  material  remained.

Instead, an iterative approach was followed that consisted of:

1. keyword generation

2. search engine submission

3. intuitive selection based on title, blurb, citation count, and publication date

The  process  was  repeated  until  an  argument  could  be  sufficiently  constructed  from

identification of:

• key trends and main theories
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• proponents and opponents of themes

• examples from previous research and results

• all topics relevant to the project's implementation

Structure of the review

The main body of the review that follows, will begin with a general discussion of major

theories and models in database administration and biological data management. Critical

analysis of topics and trends will be grouped together by theme. Benefits and drawbacks

will be highlighted under each topic or trend, and where relevant, followed by subdivision

and clustering of  author  opinions into  proponents and critics.  Finally,  a  conclusion will

follow that reiterates support for this project to proceed.

2.3. Biological ontologies

Defining ontology

The science of ontology attempts to reconcile conflicting opinion regarding the difference

between the abstract and the concrete by studying existence. The problem of ambiguity in

naming conventions has in its nature uncertainty brought about by conflicting schools of

though regarding whether materialism or idealism best describes nature. However,  the

inherent nature of conflicting opinion already becomes apparent when attempting to define

ontology. There are a multitude of definitions for this field of study with the following three

equally correct definitions being put forward as applicable to biological database design:

An ontology is a concrete form of a conceptualization of a community's

knowledge. 

(Stevens et al., 2000)

A precise explanation of one's terms and reasoning in some subject area,

which can allow computers to help, is called an ontology.

(The World Wide Web Consortium, 2015)
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An explicit, formal representation of concepts and relationships among them

within a particular domain that expresses human knowledge in machine

readable form. 

(Martone, 2012)

A simple explanation for what an ontology is in the domain of bioinformatics can be derived

from the above definitions: it's a concept dictionary that can be used by both humans and

machines. Moreover, an ontology is composed of a vocabulary of words together with a

specification of their meaning, and an ontology has to be encoded using a knowledge

representation (KR) language so that the ontology can serve as a data template. The

semantic clarity that an ontology provides through KR encoding has to be balanced with

available time and resources because creating ontologies is a time consuming process

(Martone, 2012). The following diagram (Figure 1) illustrates a simple biological ontology

using the subject of this project, deoxyribonucleic acid (DNA), as an example:

In the above ontological diagram, the difference between nucleotides and nucleosides are

illustrated using solid lines to indicate sub-classes (is_a relationships), while the non-solid

lines  refer  to  compositional  relationships  (has_a  relationships).  This  exercise  in

deconstruction assigns compositional members to the class nucleosides (dotted lines) and
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representations contain rules based on the amount of hydrogen bonds nucleotides contain (depicted by red ovals in the 
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the class nucleotides (striped lines), by using three biochemical functional groups that can

form part of either of these two types of organic molecules. The red dots (pairs and triplets)

in some of the classes indicate the amount of hydrogen bonds that each member of the

class have that can engage in non-covalent bonding. This exemplifies the value of having

automated  reasoners  since  if  a  relationship  has  not  been  explicitly  declared  such  as

illustrated with the lack of  connecting lines for the purine and pyrimidine classes (e.g.

adenine is a member of the class pyrimidine), the relationship can be inferred by automatic

reasoning based on the cardinality of the hydrogen bonding property. For example, if a

cardinality rule states that all members of the class purine must have three and only three

hydrogen bonds capable  of  forming non-covalent  bonds in  the  context  of  DNA strand

formation, then a computer will be able to determine that guanine and cytosine must be

purines, while thymine and adenine cannot be purines.

Ontology design obstacles

Typical issues that can arise during ontology construction are highlighted by example with

Protégé  ontology  editor's  accompanying  Pizza  tutorial  (http://protegewiki.stanford.edu).

These  stumbling  blocks  include:  determining  valid  membership  of  a  class,  avoiding

ambiguity  in  assigning  names  to  classes,  defining  classes  using  the  correct

quantifiers/properties, distinguishing a class from an instance, preventing duplication due

to multiple inheritance, and separating structural from compositional relationships.

2.4. Biological database design

The data deluge

One of the most challenging aspects of biological database design is the necessity for

continued maintenance due to information and software evolution.  IBM (2012) estimated

that 2.5 quintillion bytes of data was generated on a daily basis, and that 90% of the data

in the world had been generated in the two year period leading up to the estimation. The

bulk of new data is generated by the Internet of Things (IoT) as less human-to-human and

human-to-machine interaction are required for information to be transferred over networks.

This leads to an accumulation of stored information in every data warehouse imaginable

including biological databases. 
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Broad classification of biological databases

Biological databases can be classified according to data type and use. Sub-categories that

emerge  from  classification  include  sequence,  structure,  proteomic,  interactomic  and

genomic databases (Cannataro  et al.,  2014).  The information they contain represent a

data layer between bioinformatics and molecular biology. The flow of information from the

laboratory to data processing and interpretation can only be effective if the data model is

appropriate.  Traditional  database  design  focuses  on  data  models,  declarative  query

language use, high throughput mechanisms, and reliability (Cui et al., 2014) More recently,

designing databases with the aim of assisting users through data-centric decision making

has been given a central role in development. This is likely due to the sheer volume of

information that has become available. When databases grow in terms of size and count,

four areas of concern become apparent: data storage and scope, processing capacity,

level and method of digital curation, and data exchange facilitation (Zou et al., 2015). As

mentioned in the introduction to this thesis, there are now more than 1500 human-related

databases. So rather than attempt to provide a complete description of all the categories

and sub-categories of biological databases, it would be more prudent to discuss projects

that aims at indexing available databases. They can be conceptualized as databases of

databases and will  be referred to as  upper databases for  the rest  of  this review. The

Nucleic Acid Research (NAR) upper database is called the Molecular Biology Database

Collection (http://www.oxfordjournals.org/our_journal  s  /nar/database/c/). This database had

1512 databases with fourteen main categories and 41 sub-categories indexed as at 2013

(Yu et al., 2015). On 26 August 2015 one additional main category could be viewed on the

NAR upper database. The NAR publication has a Thomson Reuters impact factor rating of

9.112,  a  five-year  impact  factor  rating  of  8.867,  and  has  been  rated  by  the  Special

Libraries  Association  (SLA)  as  within  the  top  100  most  influential  journals.  The  1512

databases  indexed  in  the  NAR  upper  database  can  therefore  be  assumed  to  be  a

conservative  estimate.  Some authors  have even created indexes of  upper  databases.

Bolser et al. (2015) tabulated ten upper databases as being similar in scope to their upper

database called MetaBase.

Examples of small-scale experimental biological databases

Tangible User Interface (TUI) design has been put forward as a possible solution to help
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users cope with big data. This approach attempts to bridge the gap between the three-

dimensional  world and digital  representations as a way to make user interaction more

intuitive  by  rich  representations.  Eugenie++ is  a  TUI  system that  provides  users  with

physical objects that can be manipulated on a horizontal multi-touch surface (Grote et al.,

2015). The objects represent various navigational and logical methods that can be used to

traverse the Massachusetts Institute of Technology (MIT) registry of biological parts and

Pubmed. Genetalk is an example of a web application that serves as a communication

platform by providing users with the opportunity to annotate positions on the genome with

a diverse range of data in a conversation-thread like manner (Kamphans and Krawitz,

2012).  In essence, each annotated variant becomes a blog and the scientific community

then comments on each variant to exchange clinical and experimental findings with other

individuals in  the community.  This  could include users providing links to  the literature,

reporting annotation errors, or creating help request tickets. One drawback of Genetalk is

that there is a heavy reliance on user participation for the curation and continued viability

of the application. Moreover, no reference is made by Kamphans and Krawitz (2012) as to

how the level of user participation was quantified. Determining user participation levels is

important because previous studies (Ives and Olson, 1984) pointed out that there is not

necessarily a positive correlation between user participation and information satisfaction. 

Database schemata and data types

When a scientific problem has been formulated from observation and the manner in which

data collection will be carried out has been established through experimental design, the

next  step  for  a  scientist  is  to  think  about  how  data  will  be  stored  and  retrieved  for

subsequent analysis. The database selection process should take into consideration the

structure of the data that needs to be stored, but also the needs of the intended users of

the  data  (Stonebraker,  2010a).  The first  step  might  be  to  define  data  types and their

associated fields. This process is sometimes referred to as designing a database schema.

The  range  of  required  data  types  will  be  influenced  by  the  nature  of  the  data  to  be

collected and the manner in which the data will be accessed. Taking the project that this

literature review motivates as an example, if a single alpha-numeric term is to be used

during  querying  of  a  database,  then  a  key-value  hierarchical  database  will  be  more

appropriated than a relational database. Similarly, if all data in a database can be declared

as type string, a database management system (DBMS) could be prudently replaced with
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a flat-file database where type declaration and conversion can be easily manipulated by

the  designer  using  scripting  languages.  The  main  disadvantage  of  using  a  non-

standardized  database  over  a  DBMS  is  that  reliability  is  sacrificed  for  efficiency

(Stonebraker,  2010a),  that  is,  the  following  four  components  (Figure  2)  of  ACID-

compliance is compromised to an extent:

There is  a significant  overlap between ontology design and database schema design,

specifically  during  construction  of  entity  relationship  diagrams  (Kesh,  1995)  and  in  a

broader sense during construction of unified modeling language diagrams (Alkoshman,

2015). As mentioned earlier, ontologies are considered to be more generic than database

schemata  and  it  is  for  this  reason  that  ontologies  can  supplement  database  design.

Database schemata are intended to assist administrators and to some extent users in

interpreting  large  databases  not  only  during  design,  but  also  during  maintenance,

updating,  and  querying  of  such  databases  (Di  Battista  et  al.,  2002).  Graphic

representations of database schemata can decrease the complexity of lines upon lines of

code. Di Battista  et al. (2002) proposed an automated graphic representation framework

that mediates XML data file submissions to a graph drawing application hosted on an off-

site server. After the that has been processed on the external server, the same mediator

then returns graphs of the submitted schema to the system hosting the schema. Graphviz

(Gansner and North, 2000) is an example of a comprehensive graph drawing suite that

can be customized according to the needs of the developer. The Graphviz application is

coincidently also offered as a plugin to the Protégé ontology editor that was discussed in
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the  biological  ontologies  section.  Database  schemata  fall  into  three  major  categories:

relational, hierarchical, and graph based schemata (LinkedDataTools.com, 2015). Figure 3

illustrates the difference between the major database schemata. 

The cubes in the figure represent  classes, while the lines connecting cubes represent

relationships between the classes. A diamond shape at the end of a line in Figure 3A

indicates that the class to which it is nearest, is in a compositional (“has-a”) relationship

with the class connected to the other end of the line. The latter class is sometimes referred

to as the parent class. The relationships depicted in Figure 3A are typical of those found in

relational  databases,  where  the  classes  represent  the  contents  of  tables,  and  the

relationships indicate foreign key references. Figure 3B in contrast depicts a hierarchical

structure where parent nodes have a more intrinsic value. Hierarchical database schemata

characteristically adhere to the principal  of  orthogonality (Smith,  2008),  which prohibits

multiple inheritance, and seeks to minimize the amount of classes (Ross  et al.,  2005).

Graph  based  schemata,  as  illustrated  in  Figure  3C,  are  characterized  by  arbitrary

relationships that  do not  make distinctions based on intrinsic  importance.  This  type of

schema is appropriate for a database that intend to place an emphasize on semantic web

integration (LinkedDataTools.com, 2015). 
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Figure 3 - Graphical representation of the major database schemata: (A) relational, (B) hierarchical and (C) graph-
based schemata. Relational databases allow multiple inheritance unlike hierarchical database, while graph-based 
databases are best suited for semantic web integration.

 

 

 

 



Relational databases vs NoSQL databases

Relational databases are best suited for storing structured data (Leavitt,  2010) and as

such are queried using SQL. In contrast, non-relational databases (colloquially referred to

as NoSQL databases)  are  designed to  handle  unstructured data  more  efficiently  than

relational databases. NoSQL databases can also be employed in distributed environments

more easily than relational databases, thereby reducing the financial cost associated with

isometric scaling. The three major categories of NoSQL databases according to Leavitt

(2010)  are:  key-value,  column-based,  and  document-orientated.  Some  authors  make

additional distinction by categorizing graph-based databases as a fourth type of NoSQL

database (Tweed and James, 2010; Ponzanni, 2013).  By comparing database schema

categories as defined by LinkedDataTools.com (2015) in the previous section, with NoSQL

categories as defined in this section, there seems to be a consensus that key-value and

column-based NoSQL databases are most appropriately conceptualized with hierarchical

schemata. Key-value databases are typified by nested key-value pairs, that is, each value

acts as a column that can in turn be composed of a key-value pair. Conversely, column-

based NoSQL databases typically have a single column that contains closely related key

elements,  while  document-based databases do not  put  a constraint  on the amount  of

columns.

NoSQL databases share the main disadvantage that non-standardized databases exhibit

in  that  ACID-compliance  is  compromised.  However,  this  shortcoming  only  becomes a

concern  when  a  database  is  distributed  (Ponzanni,  2013).  Brewer's  theorem  (more

recently referred to as the CAP theorem) is an attempt to substitute ACID-compliance

(Stonebraker,  2010b;  Pokorny  2013)  as  a  tool  to  judge  the  robustness  of  a  NoSQL

database. 

2.5. Semantic web integration

Communicating science

Biological scientists more often than not use prior knowledge to make inferences about the

function of unknown entities rather than use axiomatic rules (such as contained in formulas

and equations) (Stevens et al., 2000). That is why databases are important. In addition to
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the need for prior knowledge, scientists also need communication knowledge; they need to

have reliable and efficient access to databases so that they can compare the data at their

disposal. Ideally all of the available biological information should be integrated so that all of

humanity's  collected  knowledge  can  contribute  to  future  biological  research.  However,

integrating  databases  is  difficult  because  designing  an  all  encompassing  database

inevitably leads to a series of compromises that sees a loss of information due to scientific

and political  ideals of different databases coming into conflict  (Stein, 2003).  A practical

difficulty in establishing links between databases is encountered when attempting to put in

place standardized naming conventions for biological objects and concepts. That is, the

same  biological  object  is  sometimes  given  different  names  and  different  biological

concepts are sometimes given the same name.

Data virtualization

An alternative to physical integration of databases is called data virtualization (also know

as data federation). The central idea of this technology is that heterogeneous resources

can be integrated by keeping track of the location of data (Machado et al., 2015), rather

than housing the actual data. The inverse of data federation is query federation, where

single or multiple queries are combined and sent to a predefined set of databases. In

addition to this alternative to data integration, data interoperability can be promoted by

technologies that  allow the underlying data in  databases to  be connected.  Knowledge

discovery can be promoted by embedding HTML content with RDFa (Goble and Stevens,

2008)  tags and with  semantic  metadata  tags from standardized vocabularies  such as

Dublin Core (Weibel et al., 1998) and FOAF (Brickley and Miller, 2012). Data virtualization

overlap  with  ontologies  in  a  similar  manner  to  how  database  schemata  overlap  with

ontologies.  The  unifying  similarity  is  the  absence  of  actual  data  populations.  Indeed,

ontologies such as the Web Ontology Language (counter intuitively abbreviated as OWL)

and  OWL-S  (Martin  et  al.,  2004)  have  been  specifically  designed  to  encourage  data

integration using ontologies, and in the case of OWL-S where the “S” refers to “service”, to

promote automated discovery, invocation and interoperability of such web services.

Linked data

Over  the  last  thirty  years,  communication  over  the  Internet,  and  before  that  over
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ARPANET, transitioned from flat files being exchanged with file transfer protocol (FTP), to

the current day use of hyper text transfer protocol (HTTP) for implementing linked data

(LD) communication structures (Sheridan and Tennison, 2010). LD is characterized by four

defining principals as put forward by Tim Berners-Lee (who is credited as the inventor of

the world wide web), namely: that uniform resource identifiers (URIs) should be used to

identify real world objects, that these URIs are in HTTP notation to ease dereferencing,

that the data should be enriched using RDF type standards, and that reference should be

made to  other  objects within  the data.  The idea that  modern data repositories should

conform to the concept of LD has gained so much traction that a five-star rating system,

devised by Berners-Lee (Janowicz  et al.,  2014), is frequently being used to gauge LD

compliance. In this rating system, stars are awarded according to the following criteria:

The data is accompanied by human readable dereferencable data.

The data is accompanied by machine readable dereferencable data.

The applied vocabulary links to other vocabularies.

Metadata about the vocabulary is available.

Other vocabularies link to the applied vocabulary (contrast with third star).

Representational State Transfer (REST)

Since LD is inherently RESTful (Sheridan and Tennison, 2010), providing access to such

data with servers that comply to REST constraints would, at least conceptually, decrease

the  complexity  of  such  a  service.  These  constraints  of  RESTful  implementations  was

discussed in detail  by Pautasso (2014) in terms of differing levels of maturity and with

reference to the main concepts of addressability, stateless interactions, uniform interface,

self-describing messages, and hypermedia. The latter concept supports the interpretation

that LD is inherently RESTful, but extends it to differentiate web services that comply with

RESTful constraints, by assigning to such web services the term hypermedia APIs. The

web service that is being motivated by this review, will  place an emphasize on making

content  discoverable,  and could therefore be classified as an hypermedia API.  A third
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group of researchers (Meng et al., 2009), advocated the use of RESTful web services over

traditional web servers, after empirically comparing their respective suitability in distributed

data  integration.  RESTful  web  services  seem to  not  have  any  particularly  drawbacks

according  to  the  surveyed  literature,  however,  REST technology  relies  heavily  on  the

HTTP protocol which might or might not be replaced in the future.

2.6. SNPs: the determinant of genetic variation

Defining SNP based research

Genetics is the study of biological inheritance and subsequent variation among and within

individuals, while genomics is more specific in that it  concerns itself  with the structure,

function and mapping of genomes. The Human Genome Consortium estimated the size of

the human genome at  3,099,734,149 base pairs as at 21 March 2016. The bases being

one of four naturally occurring nucleotides: adenine (A), cytosine (C), guanine (G) and

thymine (T). There is a fifth abundant monomer of nucleic acid called uracil (U), but this

monomer is a constituent of RNA, not DNA. Uracil, which is derived from the deamination

of cytosine (Brown, 2007), is here referred to as a nucleic acid monomer entity because

the nucleotide uridine is thermodynamically unstable (Peña, 2015). It is important to note

that  uracil  is  not  a  polymorphism  of  thymine  in  the  context  of  the  SNPs.  Instead,

substitution of A, C, G and T with each other in a strand of DNA represent SNPs. Together

with  restriction  fragment  length  polymorphisms  (RFLPs)  and  simple  sequence  length

polymorphisms (SSLPs), SNPs are one of three types of DNA markers that are especially

useful, and characteristically include at least two alleles (Brown, 2007). The quantity of

SNP markers vastly outnumber that of other DNA markers because of its experimental

through-put  being  higher  than  that  of  RFLPs  (low  though-put)  and  SSLPs  (medium-

throughput) (Scarano, 2014). SNPs arise as a results of DNA mutations, which in turn is

caused by errors in DNA replication or as a result of mutagens acting on DNA (Brown,

2007). However, a second important note to make is that less than 1% of mutations that

fall in the SNP category are functional (Venter et al., 2001), that is, they lead to a change

in the function of a protein.
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SNP related literature resources

Conventions  used  to  represent  elucidated  genetic  data  differs  from  one  resource  to

another. The International Cancer Genome Consortium (ICGC) (https://icgc.org/icgc), lists

data categories for variation together with their respective entry availabilities, and contains

sample  generated  information  on  12979  donors.  Of  these,  the  database  has  simple

somatic mutation (SSM) category data for 8038 individuals, making the ICGC seems like

the ideal place to search for literature on a given SNP using its identifier (e.g. rs1799950 –

an SNP in the BRCA1 breast cancer related gene). However, a search using this refSNP

returns no results from the ICGC. When searching for this term using a more generic

database such as dbSNP (that forms part of NCBI and therefore the Pubmed and Pubmed

Central resource repositories), relevant results are returned for a plethora of information

after which data in related NCBI databases can then be retrieved by selecting a database

from a drop-down list. Selecting Pubmed from the drop-down list provides the user with a

subsequent list of articles that relate to the SNP, with the option to navigate to related

articles, however, no indication is given as to the relevance of the article to the identifier if

more than one article is associated with the identifier. Instead, literature is sorted with a

preference  for  more  recently  publicized  articles  (as  discussed  earlier  in  this  review).

Searching for the SNP by its identifier in non-institutionalized databases such as SNPedia

(http://www.snpedia.com) returns results that point  the user to literature relevant to the

SNP,  with  an  indication  of  whether  this  literature  is  provided  under  Open  Access

agreements,  but  the  order  in  which  the  results  are  listed  does  not  give  the  user  an

indication of how relevance was determined. In addition, the literature that SNPedia refers

the reader to does not give an indication of the date of publication. Interestingly, SNPedia

does  link  the  identifier  with  keywords and  provides  quantification  by  mentioning  other

SNPs in context (e.g. “This SNP, a variant in the BRCA1 gene, is 1 of 25 SNPs reported to

represent  independently  minor,  but  cumulatively  significant,  increased  risk  for  breast

cancer.”). Specific literature ordered by quantified relevance is not supplied by SNPedia,

and bulk  querying  using  reference SNP identifiers  is  not  available  as  part  of  its  user

interface. 

VCF files

According to Venter et al. (2001), the human genome contains approximately four million
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polymorphisms (DNA bases with at least two alleles). This is much lower than the three

billion base pairs present in the human genome, and a specialized file format containing

only data on the occurrence of variation would therefore remove 99.8% of data generated

during sequencing and found in, for example, FASTQ files (Cock  et al., 2010). Towards

this end, variant call format (VCF) files were developed to cater for variant analysis, not

only among individuals, but also across multiple samples (Danecek et al., 2011). This file

format was specifically  developed for  the 1000 Genomes Project,  where  the need for

removing redundant raw sequencing data became necessary to efficiently compare results

from the sequenced genomes of 1000 individuals. The following chart (Figure 4) illustrates

the importance of reducing file size by plotting 1000 genomes compressed VCF file sizes

as a function of human chromosome numbers:

The preceding chart was compiled using data from the 1000 Genomes Project repository

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). The resulting plot depicts an

overall decrease in data volumes across a sequential range of the human karyotype. This

decrease correlates with a decrease in chromosomal length (not depicted). The overall

size of VCF files indicate the need for removal of non-variant data, not only for the 1000

Genomes Project, but also for any other projects exceeding 1000 individuals. Although

VCF files are more succinct than raw sequencing data in the context of variation, further
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Figure 4 - VCF file sizes for each of the 46 (23 x 2) human chromosomes: The necessity to extract
only variant information from NGS results is supported by the need to reduce the volume of data 
available for each chromosome. Interestingly, this graph also illustrates the practice of numbering 
somatic, but not sex chromosomes, according to their size on karyotypes.
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parsing could be of benefit  when, for example, only the ID column of a VCF file is of

interest to the researcher. Software that allows for further parsing could be in the form of a

standalone package, such as PyVCF (http://pyvcf.readthedocs.org/en/latest/index.html), or

integrated with online bioinformatics platforms such as Galaxy (https://galaxyproject.org/). 

2.7. Open access initiatives

Defining and motivating free articles

Open access (OA) was defined by the Budapest open access initiative (BOAI) convention

of as follows:

The literature that should be freely accessible online is that which scholars

give to the world without expectation of payment...

(BOAI, 2002)

Publishing models based on this believe is becoming increasingly popular. Official figures

show that OA articles are increasing at a rate of about 10% per annum and an estimated

71% of  biomedical  research  articles  published  between  2011  and  2013  are  currently

available through OAIs (Archambault et al., 2014). In their report on OA proportions to the

European Commission, these authors ascribed growth in the amount of OA papers to four

drivers: increased interest in OA leads to more new papers being published under OA

licenses,  more  paid  papers  becoming OA licensed for  the  same reason,  expiration  of

embargo periods during which access to scientific literature is restricted, and an increase

in the amount of  overall  published scientific  papers per annum. The increase in freely

available articles represents a new source of information for scientists. This is because

paid-access models often only give free access to the abstract of an article, while in open

access  initiatives  the  reader  has  free  access  to  the  entire  article.  Shah  et  al.  (2003)

concluded that when creating a subset of literature for a database, access to the full text of

an article is preferable to only having free access to the abstract. The illustration (Figure 5)

following on the next page highlights the crux of their finding by incremental saturation of

the dispersion of gene names per article subsection based on the likelihood that a gene

name will appear in a given subsection:

18

 

 

 

 

https://galaxyproject.org/
http://pyvcf.readthedocs.org/en/latest/index.html


If cost is a limiting factor for a reader who is interested in determining the relevance of

thousands of articles based on the occurrence of a gene of interest, as was the case in the

study that the data for the above figure was drawn from, availability of free access to to all

subsections of an article will be a primary determinant of the feasibility of a project.

Open access categories and licensing

The quality of free publications can vary widely and therefore OA material is often placed

into the following categories: gold (e.g. listed in the Directory of Open Access Journals),

green (listed  in  directories  such as  OpenDOAR that  caters  for  self-archived material),

others (papers available through large databases such as CiteSeerX and Pubmed Central)

and rogue material (papers published without consent (see US vs. Aaron Swartz (2013))).

The legality of OA is ensured by obtaining a copyright owner's consent with a license, such

as the Creative Commons license, that may allow users to read, copy, download, link,

crawl, and search articles in OA repositories (Suber, 2004). Persuading researchers to

provide their written works under such licenses is not considered a hurdle to overcome

since there is a long standing tradition in the scientific  community  to  write articles for

impact rather than profit.  This tradition dates back to the creation of the first  scientific

journals  in  1665  and  benefits  science  by  increasing  the  scope  of  publication  through

reduced publication cost. However, the current percentage of green open access journals

only amount to between 10% and 20% of all published articles (Harnad et al., 2008), with

green OA papers constituting 90% of all OA material. Employers and funders who commit

to mandating self-archiving could have a significant impact on the availability of green OA

in  future.  OAIs  occasionally  rely  on  open  source  software  and  software  technicians

donating small amounts of their time. Suber (2004) mentioned that OAIs can be financially
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Figure 5 - Gene name occurrence frequency depicted with incremental saturation (after Shah et al., 2003): The 
frequency with which gene names occur in the standard subsections of scientific articles, supports the argument for 
providing full-text access free of charge, specifically to benefit data mining related exercises. 

 

 

 

 



maintained by being granted space on university servers. Hosting of OA material in this

way is  not  considered to  be completely  altruistic since the hosting institution gains by

increasing its research output and visibility. The Pubmed Central open access initiative

(PMC-OAI) is an example of an OAI repository using the open archives initiative protocol

for metadata harvesting (OAI-PMH).  It  contains partial  (or complete) access to articles

published in a list of journals available at: https://www.ncbi.nlm.nih.gov/pmc/journals/

Proponents of open access

OA literature has been shown to have a greater research impact than literature based on

reader-pays models (Antelman, 2004). According to the Australian open access support

group (AOASG) (2015), there are eight properties of OA that makes it a viable publishing

model: OA papers get higher citation rates, which leads to researchers gaining increased

exposure (Harnad  et al.,  2008; Mazloumian  et al.,  2011),  access is made available to

readers in developing countries (Chan  et al., 2005), taxpayers get better value for their

money (Harnad  et al., 2008, Phelps  et al., 2012), research input to practical application

output  is  better  served (Willinsky,  2005),  the public  becomes informed about  scientific

activities (Arzberger  et al.,  2004, Willinsky, 2005),  OA research is compliant with grant

rules  (Harnad  et  al.,  2008),  and  OA  can  influence  public  policy  (Willinsky,  2005;

Mazloumian et al., 2011). 

Critics of open access

Concern  is  often  raised  about  OA by  suggesting  that  subscription  services  will  be

deprecated  by  free  publications  (Aronson,  2005),  that  OA  will  encourage  or  allow

bypassing peer-review (Hunter, 2005; Haug, 2013), that it  deprives authors of royalties

(Goodman, 2004; Hunter, 2005), that it invites plagiarism (Goodman, 2004), and that it will

become  a  haven  for  poor  quality  and  rejected  material  (Goodman,  2004;  Hunter,

2005;Haug,  2013),  where  conflicts  of  interested  and  copyright  infractions  are

commonplace (Salem and Boumil, 2013). The argument that OA material in general is of

inferior quality could be due to an unwillingness to recognize the distinction between OA

categories  and  how  peer-review  processes  are  handled  in  each  of  these  categories

(Suber, 2009). In other words: the gold, green, other and rogue categories of open access

material often seem to be erroneously equated with each other.
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2.8. Ethical considerations relevant to biological data

Data privacy, ownership and consent

Even though abuse of personal records created during medical research on health and

disease has not been documented (Gulcher  et al., 2000), and is speculated to occur at

most very rarely, it is still necessary to consider the impact of information management on

privacy due to the legal implications that accompany violation of a person's right to privacy.

This is especially relevant in the field of human genetics where governments, insurers or

employers could theoretically discriminate against an individual based on that individual's

genetic predisposition (Rindfleisch, 1997). To reduce the possibility of research data being

used  unscrupulously,  various  oversight  committees  have  enacted  best  practices

guidelines.  The  Icelandic  data  protection  commission  has,  for  example,  outsourced

encryption  of  all  data  gathered  during  disease  based  gene  discovery  to  a  third  party

(Gulcher  et al., 2000). Their system ensures that data generated in the laboratory is de-

identified  before  publication.  Research  has  also  been  conducted  into  minimizing

information  loss  during  the  process  of  de-identification,  which  has  led  to  proposed

solutions to the k-anonymity and l-diversity computational problems encountered during

the process of automated de-identification (Ghinita et al., 2007). In addition, watermarking

algorithms traditionally used for copyright protection of media files have been integrated

with binning algorithms to extend copyright protection to medical records (Bertino  et al.,

2005). Increasing demand for secondary use of medical data necessitates the need for

protecting  data  owners  while  simultaneously  still  making  it  possible  to  determine  the

provenance of medical data. This complexity is compounded by the infeasible of obtaining

specific consent for secondary use of medical data as highlighted by O'Neill (2003) in his

examination on the limitations of informed consent.

Access to information and equitable treatment

...people have a critical stake in how experimental results affect their health, personal

economy, and quality of life... 

(McInerney et al., 2004). 

In the United States, patients have a right to review their medical records and this has led
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to the creation of online portals such as the Patient Clinical Information System (PatCIS)

that  makes  it  possible  for  patients  to  view their  medical  information  over  the  internet

(Cimino et al., 2002). The creators of the PatCIS system reported that no adverse effects

were observed by extending the right of patients to view their medical information from

hard copy access to access through the world wide web. Giving people the opportunity to

access  their  medical  records  online  could  solve  an  observed  inequality  (Aday  and

Andersen, 1974) in access to healthcare between urban and rural individuals. Moreover, it

would be easier to quantify the behavior of individuals who review their records online and

that  in  turn  would  show  support  for  the  access-quantification-concept  put  forward  by

Donabedian (1972) that states that the use of a service rather than the mere existence of a

service is proof of access.

2.9. Conclusion to the literature review

The motivation for this study arose from a general observation, noted as far back as the

1980's  by  some  authors,  that  management  of  biological  data  rather  than  generation

thereof has become the central area of concern for biologists and indeed for researchers

and practitioners in other fields. Within the regional context that this project will be carried

out,  a  suggestion was made that  the expected increase in  raw sequencing data from

South African scientific activities, and specifically from the South African Human Genome

Programme (SAHGP), should be supported by investigation into how subsequent data will

be made available to the scientific community. The literature confirmed that SNPs are by

far the most abundant DNA marker and that SNP data is often represented within VCF

files,  the  latter  being  standardized  by  the  well  known  1000  Genomes  Project  as  the

medium of choice for representing biological variation extracted from raw sequencing data.

RefSNP identifiers in the ID column of VCF files were recognized as the key terms of

reference for SNP based variation, and as the probable query term when a scientist might

conduct further research based on SNPs.

Having determined a specific focus for the project on SNP data within VCF files, further

analysis of the literature revealed that there is a need to increase research efficiency when

using unstructured data. An opportunity was recognized in the increased availability of

open access literature that could serve as a source of semi-structured data. This data

could in turn be integrated with search engine query constructs. An argument was made
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that for an integrated service to be effectively deployed, it has to be aimed at complying

with integrative technologies such as Web 2.0, semantic web technology, and linked data

principals. The overarching influence that ontology has on each of these technologies was

demonstrated  by  contrasting  ontologies  with  database  schemata  and  pointing  out

similarities with linked data principals. Moreover there was an overwhelming consensus in

the  literature  that  RESTful  based  web  services  architecture  should  be  applied  when

designing mashup artifacts with an emphasize on semantic data integration.

Examination of the current state of the literature has confirmed that there exists a gap in

post variant call research that could feasibly be addressed by implementing a software

system that integrates structured data with open access literature using free and open

source software.
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CHAPTER 3

3. Methods and materials

3.1. User surveys

Prior to the start of the project's development phase, a survey was conducted to determine

the  needs  and  opinions  of  biological  database  users  at  the  South  African  National

Bioinformatics  Institute  (SANBI),  the  Institute  for  Microbial  Biotechnology  and

Metagenomics  (IMBM),  and  the  Molecular  Virology  laboratory  at  the  University  of  the

Western Cape (UWC). The survey was drafted using a Google Forms template obtained

from https://www.google.com/forms. An open invitation to complete the survey was sent by

email to the three facilities just mentioned as well as to a few individuals not associated

with these facilities. The questions in the survey were designed to determine temporal,

spatial and behavioral parameters in nine observational parameters as per the guidelines

set out by Reeves et al. (2008), but adapted for surveying biological database UX. A post-

implementation  survey  was  carried  out  in  a  similar  manner  to  determine  whether  the

developed application met user expectations. Graphs of the resulting data were drawn

using Libre Office Calc v4.2

3.2. Database construction

Article sourcing

Scientific  articles  made  available  for  public  use  by  the  Pubmed Central  open  access

initiative (PMC-OAI), were downloaded in extensible markup language (XML) format from

PMC's  database.  1,132,084  articles  were  downloaded  in  four  zipped  batches  from

http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/ Retrieval was carried out from an Ubuntu v14.04

terminal using GNU Wget v1.15. The URL just mentioned, was then concatenated with the

file name of each of the respective four batches, and passed as parameters to the Wget

command.
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Extraction of articles containing SNP identifiers

A Python v3.4.3 script (Addendum 1, script 1) was written to scan through the downloaded

articles  in  search  of  articles  containing  at  least  one  occurrence  of  a  reference  SNP

identifier.  For  the  rest  of  this  thesis,  Python  will  refer  to  Python  packaged  with  the

Anaconda v2.2.0 distribution. Reference SNP identifiers were taken to be reference SNP

cluster IDs (accession numbers used by databases such as dbSNP). These identifiers

were recognized by searching through the articles word for word, and if a word started with

“rs”, or the second and third characters were “rs”, the file in which the word occurred was

then copied to a separate directory.  The second disjunctive clause was necessary since

authors  occasionally  write  refSNPs  in  brackets.  To  decrease  algorithmic  complexity,

control was passed to the next iteration upon the discovery of the first valid term in a file.

Counters were also instantiated to keep track of the total amount of files scanned and

copied.

Parsing of articles containing reference SNPs

The next script (Addendum 1, script 2) was written to extract information, needed for the

search engine, from the subset of the literature corpus that contained refSNPs. Unicode

category  C  characters  (http://www.unicode.org/reports/tr44/#GC_Values_Table)  were

excluded with the remove_control_characters helper function. This function also removed

commas  and  backslashes  to  prevent  parsing  errors  resulting  from  ambiguous

interpretation of commas (in Javascript object notation (JSON)) and backslashes (in the

Python language). The following information were extracted from each article containing at

least one reference SNP cluster ID: the refSNP, the article title, the publication date, the

email address of the correspondence author, the author defined keywords, the article's

digital  object  identifier  (DOI),  and the article's  Pubmed Central  ID. The extraction was

repeated for every occurrence of a refSNP within a given article so that a refSNP together

with it's associated data could be converted as a completely encapsulated object to JSON.

Since there is currently no upper limit on the length of a refSNP, in terms of the amount of

characters a refSNP may contain (NCBI Bookshelf, 2014), the distribution and upper limit

of  refSNP character  lengths  were  quantitatively  determined  for  the  current  corpus  to

elucidate  trends  in  refSNP naming  conventions.  The  character  length  of  refSNPs  for

inclusion in the database were subsequently capped at six characters at the lower end and
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twelve characters at  the upper end. This most  appropriate interval  was determined by

manually  checking  the  validity  (unambiguity)  of  low  character  count  refSNPs  and

determining the maximum character count of a refSNP using preliminary data from the

extraction  process.   After  extraction  of  all  relevant  information,  each  refSNP  was

concatenated with its associated terms using tab delimitation (after stripping surrounding

white space from all  the terms),  and then the concatenated string was appended to a

master list as a single object. Next, a dictionary was created to accept entries from the

master list as keys, and an incremental occurrence counter updated the value of each

dictionary item, which ended up serving as an indication of how many times a refSNP has

occurred in  an article.  Each dictionary key-value pair  was then concatenated with  tab

delimitation,  and  written  to  a  comma-separated  values  (CSV)  file,  in  preparation  for

conversion to JSON format.

Javascript object notation encoding

The third python script (Addendum 1, script 3) was used to convert the tab delimited data

generated in the previous step to JSON. A loop in the script added data from each line in

the CSV file to a string after concatenation of the appropriate JSON punctuation marks.

The first level key was added prior to iteration. After iteration was completed, the end of

the string was sliced to remove an artifact created during the final iteration, and closing

JSON was then added to the string. Finally, the string was written as a single line to a file

with the name JSONdbKeys.json This file served as the database for the project.

Creating an index of author defined keywords and reference SNP cluster IDs

A front-end predictive text feature, that will be described in more detail later, required the

generation of two sets of arrays containing a complete set of author defined keywords and

extracted refSNPs. These arrays were created with the use of a Python scripts (Addendum

1, script 4 and 5) during the process of preparing data for inclusion in the database. Both

these scripts extracted data from the file created during the previous encoding step. The

algorithms started by determining the amount of unique records within the database. This

was done to avoid out of bounds errors. Alphanumeric single terms or phrases that didn't

start with “rs” were extracted to create the keyword array. Both algorithms created sets to

exclude duplicates, and then sorted the sets as a Python specific mechanism to convert
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the sets back to lists (arrays). The data was then copied to Javascript files that were in turn

imported into the relevant HTML pages.

3.3. Server side development

Instantiating and exposing a server to the web 

The database file was served with the use of JSON-server v0.7.20 installed on a virtual

machine provisioned on the South African National Bioinformatics Institute's mainframe.

Running JSON-server required the installation of Node v0.10.25 as an interpreter. During

development  phase,  the  server  was  started  from  the  command  line  by  passing  the

initialization script and database file name as arguments to a node command. However,

once the project was moved to production phase, two additional packages were used to

run the application as a service on Ubuntu v14.04 as follow: First, the Forever v0.15.01

node package was installed that allows scripts to run as a daemons. Afterwards, an add-

on to this package called Forever-service v0.5.4 was installed to start the database server

as  a  system  registered  service.  Both  these  packages  were  installed  using  the  Node

Package  Manager  (NPM)  v1.3.10  with  an  optional  parameter  to  make  the  packages

available globally instead of installing the packages locally. To register the service with the

operating system the following command was passed:

sudo forever-service install sniphunter --script index2.js

The application was then started with:

sudo start sniphunter

Running  the  above  command started  JSON-server  at  port  3000  (according  to  JSON-

server internal specifications) and it was therefore necessary to enabled port forwarding

using  the  following two commands to  allow interaction  with  the  service  when a  client

connected at port 80 (the standard HTTP port):

sudo sysctl -w net.ipv4.ip_forward=1

sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 3000
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By enabling port forwarding (first command) and then creating a port forwarding chain rule

using iptables (second command), the JSON-server API and the website developed during

this project was exposed as a web service and web application, respectively. 

Implementation of a customized JSON-server wrapper

Custom changes to the JSON-server were made using a wrapper (Addendum 1, script 6)

supplied with the JSON-server source code. The following three packages were installed

using NPM for use in the wrapper script:

• Awk [a wrapper of WebAwk] v1.0.0

• Intercept-stdout v0.1.2

• Multer v1.1.0

In addition, the Filesystem package bundled with the Node interpreted was also imported

for use in the wrapper script. All packages, with the necessary exception of Multer, were

limited in scope to their  local  environments to avoid possible conflicts with the JSON-

server  package.  Three  custom  routes  were  implemented  with  the  use  of  these  four

packages. A POST route was set up using the Multer package to allow users to upload

VCF files to the server for parsing. The uploaded file was then saved to a temporary folder

and the path to  this file was passed to a global  variable.  Two GET routes were then

implemented to handle file parsing. The first GET route used the Filesystem package to

create a file object to pass as a parameter to a method of the Awk package, with the

following command being passed as a file object to the same method:

$3 ~ "^rs" {print $3}

The intercept-stdout package was used to redirect Awk output. The redirected results were

then written to a file and the file was returned to browser. The second GET route was

similar to the first except that headers for information relevant to genome co-ordinates

were included in the output by amending the AWK command as follows:

BEGIN 

{printf format = "%-15s %-15s %-15s\n",
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"Chromosome","Position","refSNP_ID"; printf format = "%-15s %-15s %-

15s\n", "----------","--------","---------" }

$3 ~ "^rs" {printf format, $1 ,$2 ,$3}

3.4. Client side development

HTML structure

HTML was used to structure the content of the web application being server by the JSON-

server. Seven main HTML pages were created to serve the various features offered by the

web application: a single refSNP search page, a multiple refSNP search page, a keyword

search page, an API usage guideline page, a VCF file parser page, a software download

page, and a contact page. In addition, an upload confirmation page, a page containing all

keywords in the database, and a page containing all refSNPs in the database were added

to the public directory. The keyword and refSNP pages were added to allow automated

web crawlers to discover and create links to the service using content within the database.

All pages, with some exceptions in the confirmation page, were structured according to the

following pseudocode:

#Declare the document type

#Create opening HTML tag and opening head tag

#Add metadata and title tags

#Add relevant external script and stylesheet references

#Add in-page Google analytics tracking script

#Create closing head tag and opening body tag

#Add RDFa metadata

#Add navigation bar and modal content (if applicable)

#Add main content

#Create closing body tag and closing HTML tag

All pages contained a navigation bar (navbar) with the ability to collapse the navbar added

by  using  a  built-in  Bootstrap  class.  This  made  it  possible  to  hide  page  items  in  the

navigation  bar  when  the  user  had  a  smaller  screen  size.  Once the  page  items were

hidden, they could be viewed by clicking on a trigram in the top right hand corner of the

screen, which would open a drop down menu containing the page items. The first page
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item on every navbar contained the SNiPhunter brand name in a distinct font.

All main pages of the website contained open access and open source logo's above the

main heading. Links to external resources with more information on each of these topics

were embedded within the images.  Statistics on the amount  of  database entries were

included  below  the  main  heading  on  pages  that  returned  dynamic  content  from  the

database.  Queries on these pages could be launched by  clicking  on the  paper  plane

glyphicon or by pressing the enter key. A refresh button was added to clear old results and

refresh forms once clicked. In addition to the predictive text future described in more detail

in the layout section that follows, hints were also added below some form element input

boxes  to  give  the  user  additional  guidance  in  using  the  web  application.  Moreover,

information buttons were included on pages that required user input. When clicked they

would open a modal with usage information, and links to template text (TXT) and VCF

files, where applicable. A green information glyphicon was overlaid on the info button to

make it stand out for new users.

Web application layout 

Bootstrap v3.3.5, together with a single custom cascading style sheet (CSS) (Addendum

1, script 7), was used to style the web application. The Bootstrap library was downloaded

and stored in a local directory instead of using an external content distribution network

(CDN). Both the Bootstrap library and the custom style sheet was imported into all HTML

documents using the following tags in the head section of the respective HTML pages:

<script language="javascript" type="text/javascript" src="/scripts/jquery-

2.1.4.min.js"></script>

<script language="javascript" type="text/javascript" src="/stylesheet/bootstrap-

3.3.5-dist/js/bootstrap.js"></script>

<link rel="stylesheet" href="/stylesheet/bootstrap-3.3.5-

dist/css/bootstrap.css">

<link rel="stylesheet" href="/stylesheet/mystyle.css">

Since the Bootstrap library has jQuery as a dependency, jQuery v2.1.4 was downloaded,

stored  in  a  local  folder,  and  included  in  HTML pages  prior  to  the  importation  of  the

Bootstrap library.  The content of  the custom style sheet included two fonts (Architect's
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Daughter and Comfortaa), that were applied to the content of the HTML pages by using a

custom class, or by overriding fonts used for paragraphs and headings. The loading of a

wallpaper displaying three nucleotides (sourced from the Internet and adjusted with GNU

image manipulation program (GIMP) v2.8.16), was also accomplished using the custom

style  sheet.  An Ajax  loader  (https://commons.wikimedia.org/wiki/File:Ajax-loader.gif)  and

image rotater (http://codepen.io/fivera/pen/uLgyj) were also included within the stylesheet.

A CSS library, that formed part of the Awesomplete v0.0.0 predictive text package, was

downloaded from Github and imported into the search feature pages:

<script language="javascript" type="text/javascript" src="/scripts/awesomplete-

gh-pages/awesomplete.js"></script>

<link rel="stylesheet" href="/scripts/awesomplete-gh-pages/awesomplete.css" />

Custom styling of this library, to complement the theme of the website, was carried out by

directly tweaking parameters within the Awesomplete CSS file.

Javascript interactivity

Native Javascript functions and jQuery v2.1.4 were used to allow user interaction with the

web application. In contrast to the VCF file parser page that uploaded a VCF file to the

server,  a text file uploaded via the multiple refSNP search was not sent to the server.

Instead it was handled by the browser on the client side. The files were handled differently

because manipulating a VCF file and generating a new file from the resultant data required

the use of file system processes than are not available on the client side. The VCF file

parsing page had an action assigned to an express route inside a form element.  This

action was triggered once a file was selected and the upload button clicked. The multiple

refSNP page had four functions (Addendum 1, script 8) for text file handling: a function for

detecting a file selection event, a function for converting the file to UTF-8, a function for

presenting the data to the user for verification, and a function to handle a file read error.

With both the refSNP search pages and the keyword search page, queries were sent to

the database using the jQuery AJAX call following on the next page:
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$.ajax({

url: root + '/PMCOAI_rs_articles?rs_number=' + input,

method: 'GET'

}).then(function(data) {});

The root variable in the AJAX call was bound to localhost in the development environment

and  http://sniphunter.sanbi.ac.za in the production environment, while the refSNPs were

bound to the input variable. In the case were multiple queries were launched, an iterative

function looped over the rs numbers and assigned them individually to the input variable

with each successive AJAX call. The return data object was then used to create text nodes

objects, and the text node objects were then sorted according to the amount of times a

refSNP occurred in an article. Next, the HTML document was dynamically updated using

the following two functions:

//DOM update if no results found

if (listz.length == 0) {

var elem = document.createElement("h4");

var noresults = document.createTextNode("\"" + input + "\""

+ " did not match anything in the database");

elem.appendChild(noresults);

$("rs").append(elem);};

//DOM update if results found

while (listz.length != 0) {

readyToGo = listz.pop();

readyToGo = readyToGo.concat();

$("rs").append(readyToGo[1]);

$("[id=updated]").addClass("btn btn-default updateSpecs");};

The remaining code in the query scripts handled the refreshing of upload forms and 

clearing of results if the user wished to restart the query process.

Linked data and search engine optimization

Dublin core (http://dublincore.org) vocabulary, HTML metatags (http://www.metatags.org)

and resource description framework attributes (RDFa) (https://schema.org) were used to
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create machine readable content for inclusion in the source code of web pages. Standard

HTML metatags were used to set the character encoding for the web pages to UTF-8, to

provide a description of the page that could serve as a blurb in search engine results, and

to  tag  each  page  with  relevant  keywords.  Dublin  Core  (DC)  vocabulary  was  used  to

provide the title of the web application, to inform crawlers that the subject is bioinformatics,

to  tag the  data as  created by Werner  Veldsman and as published by SANBI,  and to

provide a date of publication. RDFa were added to inform search algorithms that the web

application  was  of  a  medical  nature,  and  that  the  target  audiences  were  medical

researchers and clinicians.

To further promote the discoverable of SNiPhunter,  a sitemap was created using  XML

sitemaps (https://www.xml-sitemaps.com/),  leaving  all  default  settings  unchanged.  The

automatically generated sitemap was added to the root directory of the public folder. The

sitemap was named sitemap.xml, which is a convention used to indicate to automated web

crawlers that  this  file  contained information on the website's  structure.  In  addition,  the

sitemap was uploaded to Google Webmaster Tools to make the search engine explicitly

aware of the SNiPhunter web application and its internal links.

Website and user analyses

The following tracking code was included in each page, except for the confirmation page,

to gather usage information when users interacted with the web application:

<script>

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-68718403-1', 'auto');

 ga('send', 'pageview');

</script>

Information obtained with this script included the country and city from which the user

accessed the web application as well as details on the operating system, browser, Internet

service provider, and screen resolution of the device used to access the site. Moreover,
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the behavior of  the users could be monitored by gathering information on the landing

pages, search engine queries made, and whether the users accessed the site directly, by

organic search, or by referral from another site. All the preceding information was analyzed

in terms of acquisition (total sessions vs new user sessions) and behavior (bounce rate,

pages viewed per session, and average session duration).

3.5. Software testing

Query response time

Query response time was measured ten times for a refSNP that returned a single result

and  ten  times  for  a  refSNP that  returned two results.  Query  response  time  was also

measured  ten  times  during  the  making  of  a  single,  double  and  triple  query.  All

measurements  were made using  the  network  feature of  Firefox  Web Developer  tools.

Graphs of the data were drawn with Python's matplotlib v1.4.3 library. Regression analysis

was carried out using the numpy v1.9.2 library for the Python interpreter.

Use case test

A random subset of refSNPs was selected to confirm the validity of returned results by

constraining the selection to:  a refSNP with minimum length,  a refSNP with  maximum

length,  a  refSNP with  average length,  and an invalid  refSNP.  The following validation

criteria was used during this test:

• Did the refSNP appear in the predictive text feature?

• Did results point to the correct internal resources?

• Did results point to the correct external resources?

• Did HTTP GET calls to the database return data objects to the browser?

• Could API calls be made to the database using Python?

• Were no results returned if the refSNP was not in the database?

Queries based on keywords used the same validation criteria, but different constraints.  A

single keyword, a phrase, a non-valid keyword, and an empty string were tested.
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Web application performance measurement

Google  PageSpeed  Insights  was  used  to  monitor  the  performance  of  the  website  on

mobile  and  desktop  devices.  This  tool  monitored  the  time  that  elapsed  since  a  user

requested a page to the time that the first view was rendered (above-the-fold content) as

well  as to  the time the page was completely rendered.  The results returned from this

network-independent assessment was then reviewed to determine whether any changes

with regards to server configuration, HTML structure, and use of external resources were

necessary. WebPageTest (http://www.webpagetest.org) was used to supplement results

from Google  PageSpeed  Insights  with  first  view,  repeat  view  and  content  breakdown

charts.

SNiPhunter installation

SNiPhunter's  source files were downloaded from Github using the following command

from an Ubuntu terminal with Git v1.9.1 installed on the operating system:

git clone https://github.com/Werner0/SNiPhunter.git

Installation  and  setup  was  completed  using  the  guidelines  provided  on  the  Github

repository, and the use case test was repeated.
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CHAPTER 4

4. Results and discussion

4.1. Pre-implementation survey

Eighteen biological database users completed the pre-implementation questionnaire. The

following graphs (Figures 6 and 7) depict results of two of the ten questions posed to them

during the survey:
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Figure 6 - Temporal biological database user behavior: More than half of the surveyed biological database 
users indicated that they visit biological databases at least once a week.
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Figure 7 - Spatial biological database user behavior: Just less than half of the surveyed biological database 
users visited genomic databases. Transcriptomic and proteomic database were roughly equal in popularity. 

46%

25%

21%

7%

Which type of biological databases do you visit?

Genomic Transcriptomic Proteomic Other

 

 

 

 



The charts on the previous page illustrate that more than half of the sampled population

use biological databases at least once a week. Just less than half of the individuals use

genomic databases. Two thirds of users indicated that they often have to traverse multiple

biological  databases to obtain information on a single biological  feature,  and that  they

know which specific database to query, but not how to use an API to query a database.

When asked about waiting for results to be processed, 61% said that they do not mind

waiting for a confirmation email to be sent once processing has been completed. 83% of

the  users  sampled  said  that  they  were  familiar  with  Pubmed  Central's  open  access

initiative (PMC-OAI) and 56% said that they use VCF files in their research. Given the

option to choose more than one preferred method of being assisted when using a new

database, a preference for video tutorials emerged, followed by user manuals, trial-and-

error usage and online forums. Personal assistance ranked lowest of the preferred training

methods. Real-time results of the survey can be viewed at https://goo.gl/3hWqIL.

4.2. Data extraction and database creation

The PMC-OAI corpus was provisioned in four batches with an average size of 4.2 Gb.

Downloading could be completed overnight using a connection speed of 30 Mbps over a

802.11N wireless router. Scanning the downloaded article set revealed that 1.82% of the

articles contained at least one probable reference SNP identifier (using the search criteria

defined in the methods and materials section). Discarding articles that did not include at

least one refSNP, reduced the uncompressed corpus size by a factor of 37. The following

table (Table 1) elucidates this reduction per batch:
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A-B 242 382 3 528 16 600 4 494  404
C-H 215 999 3 164 14 900 3 982  457
I-N 354 989 4 462 20 200 4 474  439
O-Z 318 714 5 651 26 300 7 700  800

1 132 084 16 805 78 000 20 650 2 100

Table 1: Pubmed Central open access initiative corpus size

Batch name 
range

Articles in 
batch

Compressed 
size (Mb)

Unzipped 
size (Mb)

Articles 
containing 

refSNPs
Parsed 

size (Mb)
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Analysis of the average character length of reference SNP identifiers extracted from the

corpus (Figure 8) revealed that refSNPs within the PMC-OAI contained on average nine

alphanumeric characters (the first two alphabetic characters followed by digits). Trimming

of refSNPs containing less than six characters, to avoid ambiguity caused by unrelated

naming conventions, was therefore justified.

A total of 69,463 unique refSNP identifiers and 8,743 unique (but case-sensitive) author

defined keywords/phrases were left over after extraction and trimming. Further parsing of

the subset to extract only relevant information required for each refSNP, reduced the size

of the data eventually stored within the  JSONdbKeys.json database to 58.4 Mb. The

following snippet illustrates a raw entry from the resulting database:

{"rs_number": "rs12940887",

"email_address": "vinit.sawhney@bartshealth.nhs.uk",

"publication_date": "2012", "pubmed_id": "3426779",

"doi": "10.2174/138920212802510484",

"pubmed_file_name": "Curr_Genomics_2012_Sep_13(6)_446-462.nxml",

"rs_number_cited_in_article": "2",

"article_title": "Current Genomics in Cardiovascular Medicine",

"keywords": ["Cardiovascular disease", "GWAS", "Gene sequencing",

"Personalised medicine."]}
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Figure 8 - Average length of extracted refSNPs within the Pubmed Central open access initiative: The 
distribution of reference SNP identifier character length justified the exclusion of lower character length 
identifiers in order to avoid ambiguity in naming conventions.
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4.3. SNiPhunter ontology

The preceding ontological diagram (Figure 9) defines a SNiPhunter article in terms of its

Pubmed membership. According to Pubmed (https://www.ncbi.nlm.nih.gov/pubmed), their

database contains approximately 25 million indexed citations to life sciences journals and

online books. Articles within Pubmed Central (a subdivision of Pubmed), contain about 3.7

million full free-text articles (https://www.ncbi.nlm.nih.gov/pmc/). Yet another subset of the

PMC subdivision, is the PMC-OAI subset, which is made available to the public for data

mining related exercises. PMC corpus extraction results show the volume of this subset to

be about  1.1  million.  SNiPhunter's  corpus is  a  third  subset  that  contains  only  articles

mentioning at least one refSNP (if the refSNP has a character count of between six and

twelve). Currently this refSNP subset contains about twenty thousand articles.

4.4. Web application user interface

SNiPhunter was hosted on the SANBI mainframe and assigned the sub-domain name

sniphunter. The complete URL for the search engine was http://sniphunter.sanbi.ac.za The
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Figure 9 - Ontological diagram depicting SNiPhunter's article membership to the Pubmed corpus: SNiPhunter's 
data was derived from articles containing at least one refSNP identifier with a character length of between six and 
twelve.
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index/main page of the SNiPhunter web application, as imaged in Figure 10, contained the

SNiPhunter brand name in the top left hand corner. A trigram in the top right hand corner

opened a drop-down list (Figure 11C on the next page) when clicked. The drop-down list

contained links to all the features offered by the web application:

Clicking  the  lock  image below the  navigation  bar  opened  a  link  to  PLOS magazine's

description of open access initiatives (https://www.plos.org/open-access/),  while clicking

the open source initiative logo led to the official website (https://opensource.org/) of the

open source initiative. The main heading describing SNiPhunter as a SNP search engine,

as well as a sub-heading with database statistics, followed below the image links. The

interactive part of the index page contained an input field, which would open a predictive

text feature (Figure 11A) once brought into focus. To the right of the input field was a query

launch  button  (paper  plane  icon),  a  refresh  button  (circular  arrows  icon),  and  an

information button (green info icon) that opened an info modal (Figure 11B) when clicked.
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Figure 10 - Main page of the SNiPhunter SNP search engine: The main page of SNiPhunter's web 
application contains the single query feature with a paper plane button that launches the query, circular arrows
button that refreshes old queries, and an information button that opens a model with helpful information.
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The  index  page  and  all  other  pages  were  responsive  and  the  content  of  the  web

application adjusted satisfactory (using http://mobiletest.me) to all emulated devices. 

                             A                                                                 B

 

The page offering keyword search functionality had a similar layout to the refSNP search

page, except that there was a link that took the user to the API page if multiple keyword

search queries were to be made. The API page contained three examples (Figure 12) to
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Figure 11 - Ease of use features integrated with the SNiPhunter's web application: (A) an auto complete 
feature, (B) an information modal and (C) drop down menu access to all web application features. 
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familiarize the user with using the API provided by the SNiPhunter web service. The first

example illustrated the making of  a single query,  the second illustrated the making of

multiple queries,  and the third example illustrated the use of Python in simultaneously

making and filtering queries.

The third example on the API guidelines page (Figure 12) could be amended by replacing

the term doi in the second from last line with email_address, publication_date, pubmed_id,

pubmed_file_name,  keywords or  rs_number_cited_in_article depending  on  what

information the user required.

Since queries using multiple refSNPs often contain more terms than can easily be included

in a search query string, an upload feature was provided on the multiple refSNP search

page (Figure 13C). Uploaded content was correctly displayed as indicated by the listing of

submitted refSNPs in the white box at the bottom of Figure 13C. To assist the user in
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Figure 12 - Examples illustrating the use of SNiPhunter's API: Programmatic access to the SNiPhunter database is 
accomplished through the use of REST-ful query constructs, either using the browser or scripting languages.

 

 

 

 



creating  text  files  for  submission  to  the  search  engine,  a  VCF file  parser  was  made

available (Figure 13A) that could (i) extract rs numbers from a VCF file and (ii) extract

genome co-ordinates from a VCF file. Upload confirmation for VCF files were provided on

a separate page (Figure 13B). This page also contained parsing option. Both the VCF file

parsing page and the multiple refSNP search page, contained a link to a template file that

exemplified the required format of upload file contents.

                                                                   

                                 A                                                                     B          

                                                                   C

Extracted  refSNPs  were  displayed  as  expected  with  one  refSNP per  line  (without  a

heading)  to  comply  with  the  search  engine's  submission  format,  while  genome  co-

ordinates were displayed with headings (Figure 14):
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Figure 13 - SNiPhunter upload and parsing features: (A) an upload form, (B) post parsing download options and 
(C) upload confirmation

Figure 14 - VCF parsing results: Example genome co-ordinate data 
extracted from VCF files using the SNiPhunter parsing feature.

 

 

 

 



The use of the web application (Figure 15) and the web service (Figure 16) returns a

refSNP based query result:

Keyword based query results were similar to results returned for refSNP queries when

using the web service, but were differently formatted for display to the user (Figure 17)

when using the web application:

Figure 17 also illustrates a built-in sort functionality that returned results to the user based

on  the  amount  of  times  a  refSNP  occurred  within  associated  articles.  Articles  more

relevant  to  a  certain  refSNP  (based  on  the  assumption  that  occurrence  frequency

determines relevance) were listed first in both refSNP and keyword based query results.
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Figure 15 -  User interface results example: Typical 
web application result for refSNP based searches

Figure 16 - API results example: Typical web service 
result for refSNP and keyword based searches

Figure 17 - Keyword results example:  Results are sorted by the amount of times refSNPs occur in the associated 
article.

 

 

 

 



4.5. Query response time

There was no apparent  difference between the time taken to return single vs multiple

results on a single query (Figure 18) with the average time taken to return results being

about seven and a half seconds. However, when using the multiple search feature, query
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Figure 18 - Time taken to return single and multiple results for a single query: There was no 
significant difference in the time taken to return single results compared to multiple results.

Figure 19 - Time taken to return results with incremental queries: Response time 
increased with roughly seven and a half seconds with each additional query.

 

 

 

 



response time did increase with each additional query launched (Figure 19). Regression

analysis  revealed  that  the  average  time  in  milliseconds  to  return  results  increased

according to the following formula:

F( x)=7026 x+165

4.6. Database validation

Using four randomly selected refSNPs and three randomly selected keywords/phrases to

test the validity of results retrieved from the database confirmed (Table 2) that information

in the database was correctly stored, retrieved and displayed to the user:

4.7. Client side performance measurement

Google PageSpeed Insights reported that website performance could be improved by gzip

resource compression,  however,  since it  also  reported  that  server  response time was

adequate  and  that  there  were  unforeseen  consequences  with  implementing  a  Node

compression package, the suggested change was postponed. Other suggested changes

by PageSpeed Insights  had a  trivial  impact  on  speed and user  experience and were

ignored.  Supplementary results from WebPageTest  revealed that  the load time for the

SNiPhunter website was 5,926 ms (Figure 20) and re-load time was 1,910 ms (Figure 21):
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Table 2: Web application and service test using random terms

rs8702 ✔ ✔ ✔ ✔ ✔

rs4323662 ✔ ✔ ✔ ✔ ✔

rs1219109046 ✔ ✔ ✔ ✔ ✔

rs00000 ✔ ✔ ✔

tuberculosis ✔ ✔ ✔ ✔ ✔

mouse mutant ✔ ✔ ✔ ✔ ✔

unkeyword ✔ ✔ ✔

<empty string> ✔

Identifier, 
keyword or 

phrase

Appear in 
predictive 

text

Correct 
internal 
results

Correct 
external 
results

API returns 
data object 
to browser

API 
accessed 

with python
No results 
returned

 

 

 

 



The  bulk  of  the  5,926  ms  during  first-load  time  was  taken  up  by  the  download  of

rsnumbers.js (the file containing refSNPs for the predictive text feature). Page rendering

was however not prevented by this file since it was called at the very end of the body tag
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Figure 20 - SNiPhunter index page load time according to WebPageTest: First load page rendering took 
about seven seconds mostly due to the uploading of a refSNP index to the client.

Figure 21 - SNiPhunter index page re-load time according to WebPageTest: Subsequent loading times 
were reduced since the refSNP index was now cashed in the client's browser.

 

 

 

 



within the HTML of the page.

4.8. User participation analysis

Google analytics for the month of January 2016 reported 484 visitors to the site of which

230 users (47.31%) were unique. An average of 1.67 pages were viewed per visit with the

average duration of a visit lasting four minutes and twenty-five seconds. 27.27% of the

visitors viewed more than one page. Similar results for December 2015 showed 194 visits

of  which  188  were  unique  (95.36%),  with  1.15  pages  viewed  per  visit.  Average  visit

duration was twenty-four seconds, while 5.15% of the visitors viewed more than one page.

4.9. Post-implementation survey

A survey carried out to gather user input on SNiPhunter's beta release indicated that most

users viewed the site using the Firefox browser and the rest used the Chrome browser.

The  web  application's  design  appeal  (the  look  and  feel  of  the  website)  received  an

average score of eight out of ten. 85.7% of those surveyed reported that results returned

using  the  refSNP search  feature  was  useful.  No  user  indicated  that  a  feature  of  the

website was too complex, although most users did not complete testing all of the features.

Real time results can be viewed at https://goo.gl/ccGgwb.

4.10. Comparing SNiPhunter results to those of other search engines

The  following  four  images  (Figure  22,  A-D)  compare  the  first  result  retrieved  when

searching for refSNP related academic literature using Google, Google Scholar, dbSNP

and SNiPhunter:

A 

B

48

 

 

 

 

https://goo.gl/ccGgwb


C

D

Figure 22 - Comparison of SNiPhunter results with other search engine results: (A) Google search, (B) Google

Scholar, (C) Pubmed Central and (D) SNiPhunter results. SNiPhunter returned the most detailed results for refSNP

query constructs.

Major  search  engines,  such  as  Google,  design  their  search  algorithms  to  retrieve

information on all subjects and this is reflected by the lack of specificity in their results

(Figure 22, A – B). When searching for academic literature, it is therefore necessary to use

subject specific search engines. Using the search engine feature provided by PMC (the

database from which the dataset for SNiPhunter was derived) returns the same first result

as a SNiPhunter search, but  two features of the SNiPhunter search engine makes its

results more informative: (i) an indication is given to the user as to how many times a

refSNP has appeared in the suggested article and (ii) the email address of the contact

author is provided within the results. With these additional features (identified during the

literature review as shortcomings in academic literature search engine results) the user is

both  able  to  determine  the  relevance  of  the  suggested  article  quantitatively,  and

immediately gain access to the person who is responsible for answering questions on the

suggested article. This second feature could be of particular use by saving time when

multiple requests are made. In fact, the PMC search engine gives no indication as to how

a user should launch multiple refSNP based queries simultaneously. 

The benefits of using SNiPhunter to search for academic literature, when using keywords

instead of refSNPs, sets it further apart from its competitors. Since queries are made to the

SNiPhunter database on the condition that each database entry has a reference to at least

one refSNP, the user is guaranteed to get results that make reference to scientific literature

containing at least one refSNP.
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4.11. Multiple queries and VCF parsing

Besides  from  the  two  novel  features  that  SNiPhunter  brings  to  academic  literature

retrieval,  the  web application  also  endeavors  to  make  repetitive  queries  and  VCF file

parsing more user friendly, by removing the expectation that currently rests on the user to

have  some  scripting  knowledge.  The  web  application  that  was  developed  during  this

project allows a user to upload and process files with the click of a button (with instructions

and template files being provided on the relevant  pages).  This approach ensures that

biological  database users  who do not  have a background in  programming do not  get

discouraged from using the database. For example, in the event that a user wishes to

launch multiple queries, the only expectation is that the user knows how to create a text

file, insert each refSNP on a new line, save the file onto the local disc, and submit it using

the online submission form. There are currently no file size upload limits in place for the

multiple query feature, but as pointed out in the methods and materials, the file is not

actually  uploaded to  the server.  The limitation on processing  capacity  would therefore

depend on the user's device. According to the regression function, a file containing ten

refSNPs would  typically  take just  over  a  minute  to  process.  The limiting  factor  would

accordingly be processing time rather than processing capacity. VCF files in contrast are

much larger than text files, so processing capacity becomes a real concern. SNiPhunter

currently imposes no restrictions on VCF file size uploads. Unlike with the text files used

during multiple queries, VCF files are uploaded to the server. To avoid the server being

overloaded with large VCF files, the temporary directory for file uploads are cleared on a

daily basis. It will be necessary for the user to reduce VCF file sizes to manageable sizes

(about 1Mb is recommended), rather than place a burden on the server to handle these

potentially huge files. External data manipulation tools such as the 1000 genomes data

slicer  (http://www.1000genomes.org/data-slicer)  or  tools  available  on the Galaxy server

would have to be used prior to uploading a VCF file for parsing. This could be considered

a shortcoming in the parsing feature, but processing massive VCF files on the SANBI

mainframe is currently not an option. 
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4.12. SNiPhunter use case

SNiPhunter's use case diagram (Figure 23) highlights its dual interaction model: a user

can query the database using either the web application or the web service. The diagram

further illustrates that  all  queries to the database are RESTful  since queries launched

using the web application leads to programmatic HTTP requests. The web application can

be accessed by simply opening a browser and navigating to http://sniphunter.sanbi.ac.za.

Calls to the API are made in a similar manner but a term indicating that the call must be

routed to the database is suffixed to the URL followed by a separator and a term indicating

whether a search should be conducted by refSNP or by keyword. When using a scripting

language, the returned objects can be filtered for specific data. Examples one through

three on the API guideline page (http://sniphunter.sanbi.ac.za/API.html) show two possible

query strings and a scripted call. Query strings should always be constructed to retrieve

objects by supplying a valid rs number (refSNP) or keyword since the API will only return

an empty object if the database does not contain data on the query.
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Figure 23 - SNiPhunter use case diagram: The dual interaction model of SNiPhunter allows interaction with both 
human users and programs.
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4.13. User behavior and feedback

User behavior was analyzed using both Google analytics and in-house surveying. This

was  of  benefit  to  the  project  since  Google  analytics  gave  an  external  view  on  user

behavior,  while  the  in-house  survey  was conducted  by  targeting  specific  users  at  the

Natural Sciences faculty of the University of the Western Cape. A map (Figure 24) of the

geographic dispersion of users indicated that SNiPhunter was accessed from around the

globe with most interaction coming from Russia and the United States:

This dispersion supported the argument in the literature review in that providing a web

application, with a user-friendly interface for querying scientific databases, broadens the

target audience. Incremental saturation in Figure 24 indicates the amount of sessions that

were initiated with the SNiPhunter web application and excludes calls to the API.  It  is

important to note that the data that was used to generate this map included sessions from

users who might not be genuine scientific users. It is a reflection of all interaction with the

website. The session duration and geographic dispersions on national levels, however,

suggested that sessions were not initiated from single origins within each country and that

the users spent at least some time on the website. This validated the authenticity of the
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Figure 24 - Geographic dispersion of SNiPhunter users for the period December 2015 to January 2016: 
Interaction with SNiPhunter was more or less evenly distributed across the globe with Africa being a notable exception.

 

 

 

 



data to an extent. For example, a similar map of sessions originating just from within South

Africa (Figure 25), reports activity from four provinces:

The interaction from the province of Limpopo could be traced to a class exercise that was

conducted at the University of Limpopo. Google analytics reported 17 unique visits from

the city of Polokwane where the university is located. A contact person at the university

confirmed that a group of 4th year Medical Sciences students used the SNiPhunter refSNP

search feature to source articles during a Human Genetics exercise. This was the first

proof of SNiPhunter being used in practice and revealed that these scientific users spent

an average of three minutes on the site. A quarter of the visitors from this cohort explored

additional features on the website, which might be an indication of interest. 

The reported increase in visits to SNiPhunter's website from December 2015 to January

2016 revealed that the user base is growing. This is supported by an increase in visitors

who viewed more than one page. Moreover, a drop in unique visitors suggested that users

are  being  retained.  The in-house surveys revealed that  most  of  those surveyed used

genomic databases frequently. The software developed during this project sought to cater

for this audience and received an overall positive reception during the post implementation

survey, however, one user complained about the lack of contrast in the color scheme of

the website.  The background color for dynamic content was accordingly changed from

gray to red to accommodate users who might have difficulty reading the retrieved results.

There was also an inquiry regarding the database not returning results for valid refSNPs.

This issue is related to scalability and is discussed in more detail under the section dealing

with the limitations of SNiPhunter. 
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Figure 25 - User sessions originating from South 
Africa for the period December 2015 to January 
2016: As expected, most interaction came from the 
Western Cape where SNiPhunter was developed.

 

 

 

 



4.14. Search engine optimization and semantic web integration

The structured vocabularies (HTML metatags, Dublin Core and RDFa), that were used to

make  the  application  developed  during  this  project  more  accessible  to  web  crawlers,

seemed to have a greater impact on some search engines than others. Search engines

tend to change their ranking criteria over time, and optimizing the structured data of a

website to gain higher ranking, depends not only on what ranking criteria is used by a

given search engine, but also whether structured data optimized for a given search engine

would be suitable for use with other search engines. A search using the term SNiPhunter

with five popular search engines revealed that  http://sniphunter.sanbi.ac.za was the top

result on Google, Bing and Ask. However, SNiPhunter was ranked fifth on AOL search and

ninth on Yahoo. The reason for the difference in ranking is not clear. Higher rankings might

be seen with the two latter search engines in future if the size of the user base continues

to grow. Google Webmaster Tools indicated that it had registered all the RDFa content of

the website. In total, four RDFa compliant classes (http://schema.org) were discovered.

They  were:  MedicalWebPage,  SoftwareApplication,  Person,  and  APIReference.  These

classes  indicated  the  target  audience,  source  code  accessibility,  the  name  of  the

developer, and the availability of an API, respectively.

4.15. Licensing and privacy

All the source files of this open source project is available on Github and is licensed under

a Massachusetts Institute of Technology (MIT) license. This license was used because it is

a permissive free software license that puts little restriction on reuse, which makes it ideal

for  minimizing  license  compatibility  issues  that  might  arise  during  mashup  design.

Moreover, many of the third party libraries used during this project used the MIT license.

The MIT license is worded as follow (italics added):

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sub-

license, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
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substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A file named COPYRIGHT NOTICE is available in the main directory of the source file

repository on Github. It complies with the second paragraph of the MIT license by including

the original MIT license for each third party library, and also lists the various other licenses

under which non-MIT licensed third party packages were published. Due to the volume of

life sciences articles available through the PMC-OAI, the individual licenses for each article

could not be examined, but PMC's general copyright notice regarding use of PMC articles

was included in the COPYRIGHT NOTICE file. It should further be noted from the PMC

general copyright notice that articles published through PMC-OAI have creative commons

or similar licenses, which tend to have lower reuse restrictions. Nevertheless, potential

copyright issues were avoided by providing links to full text articles hosted on PMC instead

of re-hosting relevant articles.

Since  SNiPhunter's  database  only  contains  information  that  is  already  in  the  public

domain,  the  only  possible  concern  there  could  be  regarding  privacy  in  this  project  is

whether  correspondence  authors  have  any  objections  to  their  email  addresses  being

displayed prominently  in  search results.  The spirit  in  which  their  email  addresses are

included  in  search  results,  however,  justify  the  use:  the  intention  is  to  promote

communication between scientists. Moreover, the SNiPhunter database does not contain

patient  privileged,  de-identified  data  or  other  information  that  could  compromise  the

privacy of research subjects.

4.16. SNiPhunter limitations and future improvements

The first version of SNiPhunter, released on 29 January 2016, contained 69,463 refSNP

identifiers and 8,743 keywords in 20,650 Pubmed articles. Although these statistics are
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highlighted to the user on the web application's front end, a concern was raised regarding

SNiPhunter not returning any results for a given refSNP. A limiting feature of the database

is that it only contains information made available to the public by the Pubmed Central

(PMC) open access initiative. This PMC subset contains much less literature than all of

Pubmed's indexed literature (as illustrated with the ontological diagram). Nevertheless, it

remains difficult to explain to a user why their reference SNP identifier or keyword query

did not return any results. Some attempt is made in the information modals available on

each  of  the  query  pages  to  inform  the  user  that  refSNPs  or  keywords  that  are  not

registered  by  the  predictive  text  feature,  are  not  indexed  in  the  database.  The  ideal

solution  to  the  problem,  however,  is  to  incorporate  data  from  multiple  open  access

initiatives and automate updating of  the data made available through these initiatives.

Unfortunately, the investment of time and expertise required for additional implementation

to meet this solution would require a group effort and is outside of the scope of a MSc

project. Moreover, license restrictions on using automated downloaders are in place for the

PMC-OAI corpus, which would prohibit  automatic corpus updates. As mentioned in the

literature review, the rate at which open access material  is growing, is increasing over

time. Taking this increase in material becoming available each year as well as the trend

towards integrative data administration (also discussed in the literature review), there is a

sense of optimism in the scientific community that tertiary data artifacts would in future be

less hampered by heterogeneous distribution of scientific literature.

Since the third party code for SNiPhunter relied on software distributed free of charge, the

first software package used in an attempt to meet a given implementation goal, did not

always work. For example, a Node package that could be used to compress static web

files, did compress the intended data, but interfered with the delivery of dynamic content

generated by the JSON-server package. The respective first lines in two images available

in Addendum 2, compare the query load time before (Figure A1) and after (Figure A2) the

compression package was imported.

Figure A2 shows a query response time of 12,943 ms, which is well above the upper most

deviance registered during query response time testing. In addition, the respective second

lines in  the two images reveal  that  asynchronous loading is preferred since increased

loading times will not prevent subsequent calls from executing successfully. It was for this

reason that the animation indicating that an Ajax call is in progress was loaded from an
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external source rather than making a separate call to the same address to where an in-

progress Ajax call was being made.

Seeing that open source software does not come with the same type of support that might

be  expected  from  commercial  software,  resolving  issues  encountered  during  usage

depends on the goodwill and availability of the developer. There seemed to be a qualitative

correlation between the robustness of a third party library and the developer answering

queries in a timely and helpful manner. This makes sense given that a software package

that has been abandoned would likely have compatibility issues. A good rule of thumb is to

view the public activity  thread of  a  repository to ascertain  whether there is any active

development taking place. Nevertheless, packages showing little or no active development

could still be highly useful. The WebAwk wrapper for Node used during this project is an

example of such a package.

4.17. Conclusion

A software solution called SNiPhunter was developed, under the auspices of the Southern

African Human Genome Programme (SAHGP), after a gap in scientific literature sourcing

was identified during a literature review. Specific shortcomings noted during the review

were (i) the inability to search for scientific literature using a quantitative estimate of the

amount of times a refSNP appears in an article, and (ii) the inability to make such queries

in bulk using a file uploaded via a user friendly interface. A subset of Pubmed Central's

open  access  initiative  was  used  to  design  a  JSON flat-file  database  containing  data

necessary to operate an academic literature search engine as a web application and an

API. The system was built from the ground up using only third party libraries and snippets

from independent programmers to supplement the source code. No content management

system, web design template, or commercial services were employed. Data extraction was

carried out using the Python programming language, while data storage and retrieval were

made possible using source code written for the Node interpreter. In addition to addressing

the two observed shortcomings, SNiPhunter also offers a VCF parser integrated with the

user interface to make using the system easier for scientists who do not have sufficient

programming skills. Indeed, the entire approach to the project was user centric with an

emphasis on using structured data and metadata vocabularies to increase the visibility of

the application. A user survey was carried out prior to development  and triangulated with a
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post development survey. These surveys together with website analytics data suggested

that SNiPhunter was well received by the sampled population and that the user base was

steadily growing.  An ontological  representation illustrated the constraints  of  the search

engine  and  a  distribution  of  refSNP character  length  was used to  justify  exclusion  of

ambiguous low character length entries. A use case diagram was constructed to highlight

the dual interaction model of the developed software, and the source code of the project

was  published  online  under  a  MIT  license,  to  encourage  further  development.  The

heterogeneity of scientific literature datasets was observed as a scalability obstacle for

further  development  of  SNiPhunter,  but  a  trend  in  data  integration  technologies  was

recognized as a possible future solution to this problem. In summary, the creation of a

viable academic search engine was demonstrated with the use of free material and tools.
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ADDENDUM 1

Script 1 in Python format

#Copies files containing potentially valid "rs" terms from source to destination directory
import os
import shutil
directory = "/home/werner/Desktop/Source/articles.O-Z/" #source directory
filelisting = os.walk(directory)
totalFiles = 0 #counter 1
rsFiles = 0 #counter 2
for root, dirs, files in filelisting:   
    for file in files:
        totalFiles += 1
        breakTest = 0
        fileOne = open(root + "/" + file)
        if breakTest == 1:
            break
        for line in fileOne:
            line1 = line.split()
            if breakTest == 1:
                break
            for word in line1:
                #search clause
                if (word.startswith('rs') or (not word[0].isalnum() and "rs" in word[1:3])): 

     #destination directory
                    shutil.copy(os.path.join(root,file), "/home/werner/Desktop/Destination/" + file)
                    breakTest = 1
                    rsFiles += 1
                if breakTest == 1:
                    break
        fileOne.close()
print(totalFiles, rsFiles) #print ratio of files scanned to files containing rsSNPs

Script 2 in Python format

#Create flat file database
import xml.etree.ElementTree as ET
import os
import json
import unicodedata
def remove_control_characters(s): #Remove control characters in XML text
    t = ""
    for ch in s:
        if unicodedata.category(ch)[0] == "C":
            t += " "
        if ch == "," or ch == "\"":
            t += ""
        else:
            t += ch
    return "".join(ch for ch in t if unicodedata.category(ch)[0]!="C")
directory = "/home/werner/Desktop/Destination/"
filelisting = os.walk(directory)
rslist =[]
for root, dirs, files in filelisting:   
    for file in files:
        email = "not available" #iteration reset
        pmid = "not available" #iteration reset
        year = "not available" #iteration reset
        doi = "not available" #iteration reset      
        kwds = [] #iteration reset
        title = "" #iteration reset
        tree = ET.parse(root + "/" + file)
        #Get email addresses
        for node in tree.iter('email'):
            email = node.text
        #Get publication date
        for node in tree.iter('pub-date'):
            for subnode in node.iter('year'):
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                collection = node.attrib
                if "pub-type" in collection.keys():
                    year = subnode.text
        #Get titles
        for node in tree.iter('title-group'):
            for subnode in node.iter('article-title'):
                whole = subnode.itertext()
                for parts in whole:
                    title += parts
        title = remove_control_characters(title)                
        #Get PMC IDs
        for node in tree.iter('article-id'):
            pmidat = node.attrib
            if "pmc" in pmidat.values():
                pmid = node.text
            if "doi" in pmidat.values():
                doi = node.text   
        #Get author defined keywords
        for node in tree.iter('kwd'):  
            kwd = node.text
            if kwd != None:
                kwds.append(json.dumps(kwd))  
        kwdstring = str(kwds)
        kwdstring = kwdstring.replace("'", "")
        kwdstring = kwdstring.replace("\\", "")
        #Get rs numbers
        for node in tree.iter():
            if node.text != None:
                node = node.text.split()
                for rsnumber in node:
                    #trim rs numbers preceded by opening bracket
                    if "rs" in rsnumber[1:3]:
                        rsnumber = rsnumber[1:]
                    #ensure that digits follow rs numbers and place limits on rs number length
                    if rsnumber.isalnum() and len(rsnumber) > 4 and len(rsnumber) <= 12: 
                        #ensure that digits follow rs
                        if rsnumber.startswith("rs") and rsnumber[2].isdigit():
                            #ensure that rs numbers end with digits
                            while not rsnumber[-1].isdigit():
                                rsnumber = rsnumber[:-1] 
                            #create list item without white spaces
                            rslist.append(rsnumber.strip() + "\t" + email.strip() + "\t" + 
year.strip() + \
                            "\t" + pmid.strip() + "\t" + doi.strip() + "\t" + file.strip() + "\t" + 
str(kwdstring) + "\t" + str(title))
#create refSNP occurence counter (with dictionary) to avoid data duplication
rsdict = {}
for item in rslist:
    #add data if counter is zero
    if rsdict.get(item,"empty") == "empty":
        rsdict.update({item:1})
    #increment counter if data was added
    if rsdict.get(item,"empty") != "empty":
        rsdict[item] += 1
rslist = []
#create tab delimited CSV file and add data
writetofile = open("/home/werner/Desktop/TEXTdb.csv", "a")
for item in rsdict.keys():
    writetofile.write(item + "\t" + str(rsdict[item]) + "\n")
writetofile.close()

Script 3 in Python format

#Convert tab delimited CSV file to JSON
import json
file = open("/home/werner/Desktop/TEXTdb.csv", "r")
JSONstring = "{\"PMCOAI_rs_articles\": ["
for line in file:
    lister = line.strip().split("\t")
    if len(lister) == 9:
        rs_number = "\"rs_number\": " + "\"" + lister[0] + "\""
        email_address = "\"email_address\": " + "\"" + lister[1] + "\""
        publication_date = "\"publication_date\": " + "\"" + lister[2] + "\""
        pubmed_id = "\"pubmed_id\": " + "\"" + lister[3] + "\""
        doi = "\"doi\": " + "\"" + lister[4] + "\""
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        pubmed_file_name = "\"pubmed_file_name\": " + "\"" + lister[5] + "\""
        keywords = "\"keywords\": " + lister[6]
        article_title = "\"article_title\": " + "\"" + lister[7] + "\""
        rs_number_cited_in_article = "\"rs_number_cited_in_article\": " + "\"" + lister[8] + "\""   
        newdictionary = "{" + rs_number + ", " + email_address + ", " + publication_date + ", " + 
pubmed_id + \
        ", " + doi + ", " + pubmed_file_name + ", " + rs_number_cited_in_article + ", " + 
article_title + ", " + keywords + "}"
        JSONstring += newdictionary + ", "
file.close()
#save JSON data and ensure last entry is enclosed in brackets
with open("/home/werner/Desktop/JSONdbKeys.json", "w") as file1:
    JSONstring = JSONstring[:-2]
    JSONstring += "]}"
    file1.write(JSONstring)

Script 4 in Python format

#Generate keyword list and count keywords in database
import json
keywordList = []
with open("/home/werner/Desktop/JSONdbKeys.json") as data_file:    
    data = json.load(data_file)
    #Determine range to avoid out of bounds error
    for i in range(len(data["PMCOAI_rs_articles"])):
        if len(data["PMCOAI_rs_articles"][i]["keywords"]) > 0:
            for keywords in data["PMCOAI_rs_articles"][i]["keywords"]:
                keywords = keywords.strip()
                #Include alphanumeric terms and phrases
                if len(keywords) > 0 and all(x.isalnum() or x.isspace() for x in keywords) \
                and not keywords.startswith("rs"):
                    keywordList.append(keywords)
    #Remove duplicates with set
    keywordList = set(keywordList)
    #Revert to list
    keywordList = sorted(keywordList)
with open("/home/werner/Desktop/keywords.js", "w") as data_file:
    data_file.write(json.dumps(keywordList))
print(len(keywordList))

Script 5 in Python format

#Generate rs number list and count rs numbers in database
import json
keywordList = []
with open("/home/werner/Desktop/JSONdbKeys.json") as data_file:    
    data = json.load(data_file)
    #Determine range to avoid out of bounds error
    for i in range(len(data["PMCOAI_rs_articles"])):
        #Include rs numbers with at least four digits following "rs"
        if len(data["PMCOAI_rs_articles"][i]["rs_number"]) > 5 and data["PMCOAI_rs_articles"][i]
["rs_number"][2:].isdigit():
            keywordList.append(data["PMCOAI_rs_articles"][i]["rs_number"])
    #Remove duplicates with set
    keywordList = set(keywordList)
    #Revert to list
    keywordList = sorted(keywordList)
with open("/home/werner/Desktop/rsnumbers.js", "w") as data_file: 
    data_file.write(json.dumps(keywordList))
print(len(keywordList))

Script 6 in Javascript format

var jsonServer = require('../../json-server')
// Returns an Express server
var server = jsonServer.create()
// Set default middlewares (logger, static, cors and no-cache)
server.use(jsonServer.defaults)
// Create global file path variable
var multer = require('../../multer');
var upload = multer({ dest: 'uploads/' });
var mypath = "";
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// Add custom routes
// Implement get route to accept VCF file uploads
server.post('/upload', upload.single('image'), function(req, res) {
             mypath = "";

mypath += req.file.path;
res.redirect("/confirmation.html")});

// Parse VCF file and return extracted SNPs to client
server.get('/extractSNP', function(req, res) {
    var awk = require('../../awk');
    var fs = require('fs');
    var intercept = require("../../intercept-stdout");
    var captured_text = "";
    //Initialize standard output hook
    var unhook_intercept = intercept(function(txt) {
    captured_text += txt;});
    awkscript = fs.readFileSync( __dirname + '/awkString.awk');
    data = fs.readFileSync(mypath);
    awk(awkscript, data);
    //Terminate standard output hook
    unhook_intercept();
    fs.writeFile('rsIDs.txt',captured_text,'utf8' ,function(){
        res.download('rsIDs.txt')});});
// Parse VCF file and return extracted genomic co-ordinates to client
server.get('/extractLoc', function(req, res) {
    var awk = require('../../awk');
    var fs = require('fs');
    var intercept = require("../../intercept-stdout");
    var captured_text = "";
    var unhook_intercept = intercept(function(txt) {
    captured_text += txt;
    });
    awkscript = fs.readFileSync( __dirname + '/awkString2.awk');
    data = fs.readFileSync(mypath);
    awk(awkscript, data);
    unhook_intercept();
    //Create callback to capture data before sending file to browser
    fs.writeFile('rsIDsPlus.txt',captured_text,'utf8' ,function(){
        res.download('rsIDsPlus.txt')});});
// Returns an Express router
var router = jsonServer.router('JSONdbKeys.json')
server.use(router)
server.listen(3000)

Script 7 in CSS format

/*Load default fonts*/
@font-face {
  font-family: 'ArchitectsDaughter';
  src: url(/fonts/ArchitectsDaughter.ttf);}
  @font-face {
  font-family: 'Comfortaa';
  src: url(/fonts/Comfortaa_Bold.ttf);}
/*Font overrides*/
.myFont {
  font-family: 'ArchitectsDaughter', cursive;
  text-shadow: 2px 2px black;}
* {
  font-family: 'Comfortaa', cursive;}
H1 {
  font-family: 'Comfortaa', cursive;
  text-shadow: 2px 2px black;}
H2 {
  font-family: 'Comfortaa', cursive;}
H3 {
  font-family: 'Comfortaa', cursive;}
H4 {
  font-family: 'Comfortaa', cursive;}
H5 {
  font-family: 'Comfortaa', cursive;}
H6 {
  font-family: 'Comfortaa', cursive;
}
/* Custom formatting */
.divspecs {
  margin: 40px 20px 40px 20px;
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  text-align: center;
  color: cornsilk;}
.updateSpecs {
  white-space: normal;
  margin-bottom: 10px;}
.formStyling {
  padding-bottom: 4px;}
.inputClass {
  margin: 0 auto;}
p {
  text-align: left;}
.centerClass {
  text-align: center;}
/*Page background*/
html, body {
  height: 100%;}
html {
  overflow-y: hidden;}
body {
  overflow-y: scroll;
  background-color:#000000;
  background: url(/images/DNA.jpg) no-repeat center center;
  background-size: 100% 100%;}
/*AJAX loader*/
.modal1 {
  display:    none;
  position:   fixed;
  z-index:    1000;
  top:        0;
  left:       0;
  height:     100%;
  width:      100%;
  background: rgba( 255, 255, 255, .8 )
  url(https://upload.wikimedia.org/wikipedia/commons/d/de/Ajax-loader.gif)
  50% 50%
  no-repeat;}
body.loading {
  overflow: hidden;}
body.loading .modal1 {
  display: block;}
/*Fivera image rotate*/
img {
  -webkit-transition: all 0.8s ease;
  -moz-transition: all 0.8s ease;
  -o-transition: all 0.8s ease;
  -ms-transition: all 0.8s ease;
  transition: all 0.8s ease;}
img:hover {
  -webkit-transform: rotate(20deg);
  -moz-transform: rotate(20deg);
  -o-transform: rotate(20deg);
  -ms-transform: rotate(20deg);
  transform: rotate(20deg);}

Script 8 in Javascript format

//File upload event handler
function startRead() {
  var file = document.getElementById('file').files[0];
  if(file) {
    getAsText(file);};};
//Get file as text
function getAsText(readFile) {
  var reader;
  try {
    reader = new FileReader();
  } catch(e) {
    document.getElementById('output').innerHTML =
    "Error: seems File API is not supported on your browser";
    return;};
  // Read file into memory as UTF-8
  reader.readAsText(readFile, "UTF-8");
  // Handle progress, success, and errors
  reader.onload = loaded;
  reader.onerror = errorHandler;};
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//Create filestring variable
var fileString = "";
//On load function
function loaded(evt) {
  fileString = evt.target.result;
  fileString = fileString.split("\n");
  for(var i=0; i < fileString.length; i++) {
    document.getElementById('output').innerHTML += (fileString[i] + "\n");};};
//On error function
function errorHandler(evt) {
  if(evt.target.error.code == evt.target.error.NOT_READABLE_ERR) {
    document.getElementById('output').innerHTML = "Error reading file..."}};
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ADDENDUM 2
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Figure A1 - Query response time without compression package (using external loading animation): Response time
without compression, and a call to an external loading animation was within an acceptable time frame.

Figure A2 - Query response time with compression package (using local loading animation): Loading times after 
an attempt to apply a compression package indicated incompatibility issues with the time frame increasing by about a 
factor of three. In addition, AJAX calls interrupted the loading of a locally stored loading animation.
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