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ABSTRACT 

Genetic variability in genes encoding drug metabolizing enzymes, transporters and targets are 

known to be the main factors of inter-individual differences in therapeutic outcome. Genetic 

factors are estimated to be responsible for about 15-30% of inter-individual variation in drug 

disposition and response. Single-nucleotide polymorphisms (SNPs) are the most prevalent 

class of genetic variation that could explain the variability in drug efficacy and undesired side 

effects for patients. 

The aims of this study were to develop and evaluate the performance of robust and high 

throughput techniques for genotyping ten polymorphisms related to anticancer drugs and ten 

polymorphisms related to cholesterol lowering drugs. SNaPshot minisequencing and high 

resolution melt analysis (HRM) genotyping panels were developed, optimized, and their 

performances were evaluated and compared. SNaPshot minisequencing systems were 

developed and successfully optimized for the genotyping of ten SNPs associated with 

anticancer drug therapy, and ten SNPs associated with cholesterol lowering drugs. These 

systems were used to genotype the selected SNPs in 130 healthy Cape Admixed participants 

residing in Cape Town, South Africa. Population genetics data obtained for the studied SNPs 

were analysed using several statistical analysis software tools. Important population genetic 

parameters were calculated. Among others, allelic and genotypic frequencies were 

determined and compared with other populations in the world. 

High resolution melt analysis (HRM) genotyping panels were developed, optimized and their 

performance were evaluated and compared to the SNaPshot assays. HRM was explored as an 

alternative inexpensive and rapid methodology to genotype five SNPs related to anticancer 

therapy and five SNPs related to cholesterol lowering therapy (statins). Unlike the SNaPshot 
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assays, rigorous optimization was required for the detection heterozygous genotypes via 

HRM. 

Both assays were validated using direct sequencing and compared to each other. The HRM 

system is a closed tube, cheap and (theoretically) rapid method for identifying genetic 

variations. HRM was however found to be more time consuming, needed further 

optimization, primer redesigning and more evaluation.  

The developed genotyping systems could be further validated using clinical samples from 

patients. This could help in optimizing drug therapy for cancer and cholesterol treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

v 

 

Declaration 

 

 

I declare that ‘Development of genotyping systems for Pharmacogenomics profiling’ is my 

own work that has not been submitted for any degree or examination in any other university 

and that all the sources I have used have been indicated and acknowledged by complete 

references. 

 

Full Name:  Fatma A. Eshumani 

Signature: 

Date:   November 2016 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



  

vi 

 

ACKNOWLEDGEMENTS 

First and foremost all praises and gratitude to Allah Almighty for sustaining me through my 

study, only through your strength and guidance was I able to persevere and complete my 

Masters.   

I would like to express my deep gratitude to my supervisor Prof. Mongi Benjeddou and my 

co-supervisor Dr. Bronwyn Kirby, for giving me the opportunity to do master degree and for 

their guidance, encouragement and advice. 

I am sincerely grateful to my husband and my brother Jamal for their love, invaluable support 

and endless patience. 

I owe a huge amount of gratitude to my beloved parents, the rest of my brothers, sisters and 

my husband’s family for their kind words, support, prayers and unwavering confidence in 

me. 

A special thank you to my colleagues in pharmacogenetics lab as well as all staff in 

Biotechnology department for all the assistance you have given me during the duration of my 

study. 

Finally, I would like to thank the education ministry of Libya and the Libyan embassy in 

South Africa for financial assistance. 

 

 

 

 

 

 

 

 

 

 

 



  

vii 

 

DEDICATION 

I dedicate this thesis to 

My parents 

My husband 

And  

My little daughter, Asmaa 

 

 

 

 

 

 

 

 

 

 

 

 

The Prophet Muhammad (Peace Be Upon Him) said, regarding knowledge:  

“Acquire knowledge and impart it to the people...One who treads a path in search of knowledge, 

has his path to Paradise made easy by God” (Sunan Tirmidhi, Hadith 107; Riyadh us-Saleheen, 

245). 

 

 

 

 

 



  

viii 

 

LIST OF ABBRIVIATIONS 

BLAST Basic Alignment Tool 

Bp Base pair 

dbSNP Database of Single Nucleotide Polymorphisms 

DNA Deoxyribonucleic acid 

EXO I 

FDA 

Exonuclease I 

US Food and Drug Administration 

HRM 

HWE 

 

MAF 

 

MgCl2 

 

NCBI 

 

PCR 

 

High-Resolution Melt 

Hardy-Weinberg equilibrium 

Minor Allele Frequency 

Magnesium Chloride 

National Centre for Biotechnology Institute 

Polymerase chain reaction 

SAP Shrimp Alkaline Phosphatase 

SNP Single nucleotide polymorphism 

  

 

 

 

 

 

 

 

 

 

 

 

 



  

ix 

 

LIST OF FIGURES 

                                Page  

 

Figure 1.1      Chemical structure of Cholesterol.             17 

Figure 1.2 A          Structure of lipoproteins. 

Figure 1.2 B          Relationship of lipoproteins components to diameter and                      18 

                                 density.          

Figure 1.3          Structure of HMG-CoA and different types of statins.                            21 

Figure 2.1               Electropherogram profile of the SNPs related to anticancer drugs.  

                                Green peaks indicate an A nucleotide, blue peaks indicate a G 

                                 nucleotide, black peaks indicate a C nucleotide, and red peaks  

                                indicate Tnucleotide.                                                                               38 

Figure 2.2               Allele frequencies of the selected SNPs related to anticancer drugs 

                                in the Cape Admixed population compared to other ethnic groups.        43 

Figure 3.1               Electropherogram profile of the SNPs related to cholesterol lowering  

                               drugs.                                                                                                         57                                                               

Figure 3.2              Allele frequencies of the selected SNPs related to cholesterol lowering  

                               drugs in the Cape Admixed population compared to other ethnic  

                              groups.                                                                                                        61 

Figure 4.1              Gradient PCR of the SNP (rs60140950) on 2% agarose gel.                    73 

Figure 4.2              MgCl2 optimization of the SNP (rs60140950) on 2% agarose gel.          74 

 

 

 

 



  

x 

 

Figure 4.3              HRM mutation scan of SNP rs1801133.                     75 

Figure4.4A            HRM mutation scan of SNP rs4149036.                                                   75 

Figure 4.4 B           HRM mutation scan of SNP rs2306283.                  76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

xi 

 

LIST OF TABLES 

                              Page 

Table 2.1     A list of genes and selected SNPs associated with anticancer drugs. 31    

    

Table 2.2            Multiplex PCR primers for the selected SNPs related to anticancer           

 

                           drugs used in SNaPshot™ genotyping.                                                         33 

 

Table 2.3            SNaPshot minisequencing reaction primers of the selected SNPs related    

 

                            to anticancer drugs.                                                                                       36            

Table 2.4          Genotype and allele frequencies of selected SNPs related to anticancer  

                          drugs in 130 healthy Cape Admixed individuals.                           41 

Table 2.5          Comparison of MAF of the selected SNPs related to anticancer drugs in      

                          the Cape Admixed population to other ethnic groups.                                  42 

Table 3.1   Multiplex PCR primers for SNPs related to Cholesterol lowering drugs  

                          used in SNaPshot™ genotyping.                                    53 

Table 3.2   SNaPshot minisequencing reaction primers of the selected SNPs related  

                          to cholesterol lowering drugs.                            55 

Table 3.3          Genotype and allele frequencies of the selected SNPs related to cholesterol              

                          lowering drugs in 130 healthy Cape Admixed individuals.               59 

Table 3.4          Comparison of MAF of the selected SNPs related to cholesterol lowering    

                         drugs in the Cape Admixed population to other ethnic groups.                      60 

Table 3.5 A       Haplotype structure defined by 5 SNPs in the SLCO1B1 gene in the Cape  

                          Admixed population.   63 

Table 3.5 B       Haplotype structure defined by 5 SNPs in the SLCO1B3 gene in the Cape  

 

 

 

 



  

xii 

 

                          Admixed population.                                   63 

Table 4.1  A list of selected SNPs primers used in HRM analysis                71 

Table 4.2  Confirmation of SNaPshot genotyping using direct sequencing.                    77 

Table 4.3  Performance of HRM in comparison to SNaPshot minisequencing.              78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

TABLE OF CONTENTS 

 Page 

Title Page i 

Keywords ii 

Abstract iii 

Declaration v 

Acknowledgements vi 

Dedication vii 

List of Abbreviations viii 

List of Figures  ix 

List of Tables  xi 

Chapter one        Literature review  

1.1.                      Introduction. 1 

1.2.                      Human genetic variation. 2 

1.2.1.                   Insertion and deletion variation. 3 

1.2.2.                   Short Tandem Repeats. 3 

1.2.3.                   Single nucleotide polymorphisms. 4 

1.3.                      Precision medicine and Pharmacogenetics / Pharmacogenomics.  4 

1.4.                      Pharmacogenetics and ethnic background. 6 

1.5.                      Genetic variation and drug response. 7 

1.6.                      Drug transporters. 7 

 

 

 

 



 

  

 

1.7.                        Drug metabolizing enzymes.        8 

1.8.                        Drug targets.        9 

1.9.                        Pharmacogenetics profiling systems. 10 

1.9.1.                     Allele specific PCR.        10 

1.9. 2.                    SNaPshot minisequencing (single base extension reaction).        11 

1.9.3.                     High resolution melt analysis.        12 

1.10.                      Pharmacogenetics of anticancer drugs.        12 

1.10.1.                   Genetics of Cancer.        13 

1.10.2.                   Cancer treatment and side effects.                          14 

1.11.                      Pharmacogenetics of cholesterol lowering drugs.         16 

1.11.1.                   Cholesterol.        17 

1.11.2.                   Lipoproteins.        18 

1.11.3.                   Familial cholesterolemia.        18 

1.11.4.                   Cholesterol lowering drugs.        19 

1.12.                      Genetic polymorphisms of drugs metabolizing enzymes,           

                              transporters and targets. 21 

1.12.1.                   Genetic variations associated with FDA approved anticancer          

                              drugs. 22 

1.12.1.1.                Catechol O-mthyltransferase enzyme.       22 

1.12.1.2.                Dihydropyrimidine dehydrogenase enzyme.                                   22 

1.12.1.3.                Thiopurine S-methyltransferase enzyme.                                        22 

1.12.1.4.                Transmembrane Protein 43.                                                             23  

1.12.1.5.                Methylene tetrahydrofolate reductase enzyme.                                23 

 

 

 

 



 

  

 

1.12.1.6.               Glutathione S-transferase P enzyme. 24 

1.12.2.                 Genetic variations associated with FDA approved cholesterol   

                            lowering drugs. 24 

1.12.2.1.             Solute carrier organic anion trasporter1B1 gene. 24 

1.12.2.2.             Solute carrier organic anion trasporter1B3 gene. 25 

1.13.                   Statistical analyses.  25 

1.13.1.                GenAlEx. 25 

1.13.2.               The Hardy- Weinberg equilibrium. 25 

1.14.                  The aim of the study. 26 

Chapter Two     Development of a pharmacogenomic profiling panel for  

                          anticancer drugs. 

2.1.                    Introduction.  27 

2.2.                    Materials and Methods 29 

2.3.                    Results 37 

2.4.                    Discussion 44 

2.5.                    Conclusion 49 

Chapter Three   Development of a Pharmacogenomic profiling panel of 

                          Cholesterol lowering drugs 

3.1.                    Introduction  50 

3.2.                    Materials and Methods 51 

3.3.                    Results 56 

 

 

 

 



 

  

 

3.4.                    Discussion 64 

3.5.                    Conclusion 67 

Chapter Four     Development and performance evaluation of High Resolution  

                          Melt Analysis Genotyping System   

4.1.                   Introduction                                                                                          69 

4.2.                   Materials and Methods 70 

4.3.                   Results 73 

4.4.                  Discussion  79 

4.5.                  Conclusion  80 

Chapter Five   Conclusion 81 

References 84 

 

 

 

 

 

 

 

 

 



 

1 

 

 

Chapter One 

Literature review 

 

1.1. Introduction 

The improvement of new methods for high-throughput single nucleotide polymorphism 

(SNP) analysis is one of the most exciting areas in genetic studies (Quintáns et al. 2004). 

Recently, countless methodologies for high-throughput SNP analysis have been developed 

such as: FRET analysis by real time PCR, DNA microarrays, Pyrosequencing, MALDI-TOF 

spectrometry and TaqMan probes or Molecular Beacons (Carracedo et al. 1998; Syvänen 

2001). The application of these methodologies has revolutionized many of the biomedical 

sciences. However, it has had a major influence when applied to the molecular study of 

human genetic variations (Carracedo et al. 1998).  

There is increasing interest in SNP typing due to their application in pharmacological 

response and genetic disease diagnosis (Evans and Relling 1999). It is well known that 

individuals’ DNA differs which makes some people more susceptible to specific diseases 

than others (Pennisi 2007). It has long been recognized that genetic variations in drug 

metabolizing enzymes, transporters and targets underlie the inter-individual variability in 

drug response. These differences that influence drug response might be due to age, sex, body 

weight, nutrition, organ function, infections, concomitant medication, environmental factors, 

and genetic makeup (Sadée and Dai 2005; Jacobs 2014). Hence, the goal of both 

Pharmacogenetics and Pharmacogenomics (PGXs) is to carefully study these variations to 

improve drug efficacy (Lee et al. 2005)with the ultimate aim to individualize therapy by 

 

 

 

 



 

2 

 

choosing the right drug  for each patient by classifying them into genetically definable groups 

that have similar drug responses (Kalow 2002). The advantage of studying human genetics is 

the discovery and description of the genetic contribution to many human diseases. This is a 

motivation for increasing studies to define the contribution of several genes to the 

development of diseases such as cancer, heart disease, and diabetes (Pennisi 2007).  

Africa has a high level of genetic diversity, but in spite of this diversity, population genetic 

studies are limited (Henry et al. 2008). South Africa is the home of native and immigrant 

population groups (Benjeddou 2010).The mix of these different ethnicities led to 

establishment of a unique population called Cape Coloured (Abrahams et al. 2011) which are 

designated here as Cape Admixed. The genomic intermixture in the Cape Admixed can form 

an essential foundation for subsequent pharmacogenetics studies in order to predict 

individualised therapy specially in Africa (Ikediobi et al. 2011). Note, that in this study the 

term “precision medicine” will be used interchangeably with “individualised” or 

“personalised therapy”. 

 

1.2. Human genetic variations 

Human genetic variation is the differences in the occurrence of mutations between the 

genomes of individuals and populations. The genomes of any two individuals differs at 

approximately one in every 1,000 base pairs (Venter et al. 2001) which results in an identify 

of up to 99.9% (Kruglyak and Nickerson 2001). Variation can appear in different ways, it can 

be in a single base pair, insertions/deletions of many nucleotide-long fragments of 

deoxyribonucleic acid (DNA) or loss of entire genes (Pelak et al. 2010). The rate of human 

genetic variation due to differences between populations is modest, and individuals from 

different populations can be genetically more similar than individuals from the same 
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population (Witherspoon et al. 2007). Major variations can be found within populations 

which can provide beneficial information about the histories and backgrounds of humans 

(Cavalli-Sforza et al. 1994). Human genetic variation has a direct influence on a wide range 

of biological and medical disciplines. Thus, the study of human genetic diversity is relevant 

to several research areas including human and population genetics, molecular biology, 

evolutionary biology, biological anthropology, health sciences and clinical medicine 

(Benjeddou 2010).  

 

1.2.1. Insertion and deletion variation  

Insertion and deletion (INDEL) variation refers to a type of genetic variation in which a 

specific nucleotide base pair is added or removed at some location of the DNA molecule 

during replication (Mills et al. 2006). INDELs are widely spread in the genome as they 

encompass a total of 3 million of the 15 million known genetic variants in humans(Mills et 

al. 2006) .There are five types of INDELs, including insertions and deletions of single-base 

pairs, monomeric base pair expansions,  multi-base pair expansions of 2–15 bp repeat units, 

transposon insertions, and  INDELs containing random DNA sequences (Mills et al. 2006). 

 

1.2.2. Short Tandem Repeats variation 

Short Tandem Repeats variation (STRs) are regions of DNA composed of short nucleotide 

sequence (2 to 6 base pairs long) repeated many times (Willems et al. 2014). STRs are also 

considered to be the most polymorphic regions in the human genome, and play a role in 

genetic diseases and have been used in forensics, in determining genetic profiles and 

population genetics. Studies have shown that STRs sites are prone to mutations during DNA 

replication (Willems et al. 2014). 

1.2.3. Single nucleotide polymorphisms  
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Single-nucleotide polymorphisms (SNPs) are the most prevalent class of genetic variation 

amongst people and are a valuable resource for mapping complex genetic traits (Marth et al. 

1999; Reumers et al. 2008). SNPs are introduced by the  substitution of one nucleotide with 

another at a particular locus within the DNA sequence (Simko et al. 2006). On average SNPs 

occur at approximately one in every 1000 bp (Komar 2009). SNPs could appear as bi-, tri-, or 

tetra-allelic polymorphisms. However, as tri-allelic and tetra-allelic SNPs are rare or almost 

do not exist in humans, SNPs are often described as bi-allelic markers (Brookes 1999).  

SNPs in the coding region (cSNPs) can be either, synonymous or nonsynonymous. 

Synonymous SNPs do not affect the protein sequence, while nonsynonymous SNPs change 

the amino acid sequence of a protein and may subsequently change its structure and function 

(Liao and Lee 2010). SNPs in regulatory regions of a gene can result in a disease phenotype 

because they may affect gene splicing, transcription factor binding sites, and other functional 

sites at the transcriptional level (Reumers et al. 2008). The majority of SNPs occur in the 

non-coding region of the human genome where  they do not have direct effect on a phenotype 

(Liao and Lee 2010). Studies have shown that not all SNPs are useful genetic markers. 

However, SNPs found in the promoter and expressed regions have a direct impact on gene 

function and are considered  to be worthwhile molecular markers (Paris et al. 2003). SNPs 

act as biological markers that assist scientists to distinguish genes that are linked to diseases 

(Cargill et al. 1999). 

1.3. Precision medicine and Pharmacogenetics / Pharmacogenomics   

Currently, the terms pharmacogenetics and pharmacogenomics which have so much in 

common are  used interchangeably to refer to studies investigating the contribution of 

inheritance to variation in the drug response phenotype (Weinshilboum and Wang 2006). 

More accurately, pharmacogenetics specifically refers to approaches that are concerned with 
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studying the genetic influence of individual difference to drug responses, identifying 

variations that are caused by hereditary factors (Issa 2002), and uses a patient’s genetic 

information in order to improve and personalise drug treatment (Holm 2008). Conversely, 

pharmacogenomics is defined  as all genes that influence drug responses, and uses genome 

wide analysis to identify such genes and search for novel drug targets (Srinivasan et al. 2009; 

Wu and Fuhlbrigge 2008). Generally, genetic factors are responsible for about 15 to 30% of 

differences in drug metabolism and rarely can account for up to 95% for certain drugs. These 

genetic differences can affect pharmacokinetics and pharmacodynamics (Choi and Song 

2008; Nebert et al. 2008; Benjeddou 2010). Pharmacokinetics describes the process of drug 

transport in the body in terms of its absorption, distribution, metabolism, and elimination 

(Shell 1982; McLeod and He 2012), while pharmacodynamics is defined as the study of drug 

concentration and the pharmacological effects on the body (Craig 1993; Sinnollareddy et al. 

2012). However, the variability in drug response can be due to non-genetic factors, such as 

age, concomitant diseases, food, environment factors and  organ functioning (Choi and Song 

2008; Nebert et al. 2008; Benjeddou 2010).  

The focus of pharmacogenetics studies is pharmacokinetics, while pharmacogenomics 

focuses on how genetic variation is linked to an individual’s pharmacodynamics response 

(Kalow 2006; Weinshilboum and Wang 2006).The promise of  both branches of study is to   

deliver personalised medicine which is based on clinical, genomic, genetic and environmental 

information of each patient (Limdi and Veenstra 2010). Such developments in 

pharmacogenetics and pharmacogenomics studies can be used to define diseases and 

biomarkers. This will lead to a patient-tailored therapeutic drug that hopefully would be more 

effective and will result in fewer adverse drug reactions (Kalow 2002; Oscarson 2003; 

Hedgecoe 2004). Ultimately, it is hoped that by knowing the important genetic variations that 
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exist between racial and ethnic groups, it will be possible to classify patients into low, 

intermediate and high dose groups (Shastry 2006). 

 

1.4. Pharmacogenetics and ethnic background 

Race, ancestry and ethnicity have been identified as major factors in pharmacogenetic 

discovery and improving our understanding of population differences in drug response 

(Urban 2010). This means that the variant that affects a response to a type of drug in one 

ethnic group may not have the same impact in another group, and this is due to gene-gene or 

gene-environment interaction differences (Tate and Goldstein 2004). For example, warfarin 

treatment shows a wide variance among patients of different racial groups, and this variance 

might be due to polymorphisms in the gene encoding for vitamin K epoxide reductase 

complex 1. One example of this is that  heparin and warfarin dosages for Chinese patients are 

lower than those commonly prescribed for Caucasian patients (Daar and Singer 2005). 

Another example is that the cardiovascular  drug BiDil, is recommended for African people 

because as it has low side effects compared with Caucasians (Taylor et al. 2004). 

Understanding ethnic genomic differences in populations is required to improve drug 

treatment and to establish public health policies (Shastry 2006; Suarez-Kurtz 2008b). Africa 

is a widely diverse landscape. Sub-Saharan Africans have the highest human genomic 

diversity in the world, however this diversity is understudied (Tishkoff et al. 2009; 

Benjeddou 2010). South Africa has a wide population diversity as a result of combination of 

different groups from Europe, Asia and Africa (Adhikari 2005; Benjeddou 2010). The unique 

South African Cape admixed population which is distinguished by wide ethnic intermixture 

diversity comprising  about 9 - 11% Asian, 21 - 28% white, 32 - 43% Khoisan and 20 - 36% 

black populations (de Wit et al. 2010; Erasmus et al. 2012). The mixed ancestries in this 

population may help set the foundation for future pharmacogenetics traits studies, in order to 
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predict personalized therapy in diverse populations particularly in Africa (Ikediobi et al. 

2011). This wide ethnic diversity supplies a valuable opportunity to study genomic patterns 

(Conrad et al. 2006). In addition, the complexity in the Admix populations creates an ideal 

situation for exploring the role of genetic ancestry of population, as well as clinical and 

environmental factors on human health(Suarez-Kurtz 2008a; Via et al. 2009). 

 

1.5. Genetic variation and drug response 

Inter-individual differences in drug disposition are substantial reasons for adverse drug 

reactions and deficiency in drug response (Sim et al. 2013). Despite that, genetic variation in 

the human genome plays a main role in variable response to drugs and other xenobiotics 

(Brockmöller and Tzvetkov 2008). Polymorphisms in drug metabolising enzymes, drug 

transporters, drug receptors, and ion channels genes can  lead to adverse drug reactions or can 

change the efficacy of therapeutics (Meyer 2000). Many of the newly identified SNPs could 

play a significant role in the expression level and activity of the corresponding protein 

(Venter et al. 2001). Such polymorphisms once they occur in genes encoding drug 

transporters or drug metabolizing enzymes might change the disposition of the drug, and 

subsequently, its efficacy and toxicity may be affected (Robert et al. 2005).  

 

1.6. Drug transporters 

Transport proteins play an important role in absorption, distribution, and excretion of many 

medications. They play a significant role in drug response, serving as drug targets and 

determining the most effective dose of each drug (Leabman et al. 2003).   

On the basis of function, membrane transport proteins are divided to major superfamilies 

which are the ABC (ATP-binding cassette) transporters, and the SLC (solute carrier) 

transporters. While the human ABC transporter family comprises eight sub-families with 48 
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members, the SLC family has 47 subfamilies with more than 365 members (Leabman et al. 

2003). Genetic polymorphisms in drug transporters are considered to be the main factors 

affecting the variation of patients’ responses to medication (Kalliokoski and Niemi 2009). 

Most of the SLC family members act as influx transporters for nutrients and substances 

essential for the cell, whereas ABC members function as efflux transporters for wasted 

metabolites and toxins, including many anticancer drugs (Nakanishi and Tamai 2011). 

In humans, SLC transporters primarily are expressed in the liver, kidneys, lungs and 

intestines, but can be expressed in most tissues where they are either localized at the 

basolateral or apical plasma membranes of polarized cells (Wojtal et al. 2009). Furthermore, 

SLCs have two gene superfamilies which contain the major organic cation and anion 

transporters. The SLCO superfamily (previously called SLC21) consists of the organic anion 

transporting polypeptides (OATPs), while SLC22A that makes up the organic cation 

transporters (OCTs) and the organic anion transporters(OATs) (Roth et al. 2012).   

SLCs membrane-associated transporters mediate the main physiological functions by influx 

and efflux of endogenous substrates including amino acids, lipids and bile acids, thyroid 

hormones and xenobiotics (Hagenbuch and Meier 2004; Shitara and Sugiyama 2006; Meier 

et al. 2007). These transporters are the main focus of many pharmacokinetics studies as they 

play a significant role in drug absorption and are therefore important determinants of drug 

distribution(Meier et al. 2007; Le Vée et al. 2015). 

 

1.7. Drug metabolizing enzymes  

Most xenobiotic compounds including drugs, environmental pollutants and endogenous 

compounds such as steroids and prostaglandin are metabolized by a diverse group of proteins 

called drug metabolizing enzymes (DMEs)  (Sheweita 2000). Conceptually, DMEs can be 
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divided into two categories, the oxidative or phase I reactions, in which lipophilic substances 

are catalysed into more water soluble forms which are more easily excreted. These reactions 

can either lead to activation or inactivation of the compound. Phase I enzymes includes the 

cytochrome P450s (CYP), epoxide hydrolases(EH) and flavin mono-oxygenases (FMO) 

(Evans and Relling 1999; Pinto and Dolan 2011), while the conjugative or Phase II reactions 

increase the solubility of compounds, which is typically achieved by conjugation to a highly 

polar agent such as glucuronic acid. Phase II enzymes include thiopurine S-

methyltransferases (TPMT), uridine glucuronyl transferases (UGT), N-acetyltransferases 

(NAT), glutathione S-transferases (GST) and sulphonyl tansferases (SULT) (Sheweita 2000; 

Clouthier and Pelletier 2012). Most DMEs are polymorphic, appearing as small insertions 

and deletions, gene amplification and deletions, or as SNPs (Sim et al. 2013). Their presence 

can affect drug efficacy and toxicity (Serpe et al. 2014).  

 

1.8. Drug targets  

The total number of drug targets is currently limited for many reasons, including the inability 

to understand the existence of splice variants or interactions between the encoded proteins 

from gene sequences and the unknown function of most DNA in the genome (Imming et al. 

2006). Drug targets have been classified into enzymes, substrates, metabolites and proteins, 

receptors, ion channels, transport proteins, DNA / RNA and ribosome, and the targets of 

monoclonal antibodies. In addition, some  drugs act through physicochemical mechanisms, or 

have unrecognized mechanisms of action (Imming et al. 2006; Landry and Gies 2008). 

Genetic variability in drug targets  can have an unequivocal impact on drug efficacy, and that 

can be exemplified by sequence variations in the gene for the β2-adrenoreceptor which 

influences its response to β2-agonists and the reno-protective action of angiotensin-
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converting enzyme inhibitors are impacted by SNPs in the gene for angiotensin-converting 

enzymes (Wood et al. 2003). 

 

1.9. Pharmacogenetics profiling systems 

There are several techniques that have been developed for genotyping SNPs in recent years 

including: DNA Microarrays, MALDI-TOF spectrometry, FRET analysis, SNPlex, 

Pyrosequencing, TaqMan, High resolution melt technique (HRM) and Allele Specific 

Amplification (ASA) (De Monaco et al. 2014). 

  1.9.1. Allele specific PCR 

Allele specific PCR is also called PCR allele specific amplification (PASA), is a method used 

for the identification of single nucleotide polymorphisms by using allele specific primers  

(Papp et al. 2003). A recently developed technique called PCR amplification of multiple 

specific alleles (PAMSA) involves using at least two allele specific primers in the same 

reaction and allows for the detection of all SNPs present in one sample (Ishiguro et al. 2005; 

Hansson and Kawabe 2005).Many PAMSA methods allow for the discrimination of alleles 

by gel electrophoresis. Liu et al. (1997) described a variant of PAMSA called bidirectional-

PASA, in which one allele is amplified in one direction whereas the other allele is amplified 

in the opposite direction. However, for this method four primers are needed and accurate 

optimization of the target fragment can be time consuming and problematic (Liu et al. 1997; 

Sasvari‐Szekely et al. 2000; Waterfall and Cobb 2001, 2002).In PAMSA, a primer length 

difference of between 2 and 5 nucleotides is used, and alleles are resolved on acrylamide 

gels. This method may require the molar ratio of allele-specific primers to be optimized 

(Okimoto and Dodgson 1996). Gaudet et al. (2007) described that three unlabelled primers 

were necessary to amplify specific alleles. The alleles-specific primers that were used had a 
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destabilizing mismatch within five bases of the 3’ end and a 5’ tail for the amplification of 

different length PCR products, which were detected on an agarose gel (Gaudet et al. 2007).  

1.9.2 SNaPshot minisequencing (Single Base Extension reaction) 

There is an increasing focus on SNPs in the last few years. Traditionally, SNP analysis was 

performed with costly and time consuming techniques based on conventional PCR followed 

by restriction fragment analysis and gel electrophoresis (Quintáns et al. 2004).Recently, 

many high-throughput methods for studying SNPs have been developed including next 

generation sequencing (NGS), MALDI-TOF spectrometry, DNA Microarrays, FRET analysis 

and TaqMan assays or Molecular beacons (Quintáns et al. 2004). Despite the growing 

number of techniques, one method which is growing in popularity is the SNaPshot 

minisequencing assay which relies on a single base extension with a labelled ddNTP 

(Brandstätter et al. 2003). It is also less time-consuming and relatively rapid, while remaining 

robust and accurate compared to the traditional SNP analysis techniques like gel visualisation 

(Syvänen 1999). The commercialized multiplex SNaPshot system has been used increasingly 

in various genotyping studies, because it is highly accurate that can effectively detect many 

polymorphisms in a single assay (Paneto et al. 2011; Li et al. 2012).Technically, this method 

uses only fluorescently labelled dideoxynucleotide triphosphates (ddNTPs) to identify the 

allelic variant during the elongation of a primer  located beside the SNP of interest (Huang et 

al. 2011; Li et al. 2012). The chemical structure of ddNTPs (lacking a 2’ and 3’ hydroxyl 

group) prohibits any additional elongation, resulting in a product one nucleotide longer than 

the primer itself. This additional nucleotide can be visualized by a capillary automated 

sequencer. Each ddNTP is labelled with a specific fluorescent colour (fluorophore) for the 

different bases G,C,A,Ts which allows them to be identified (Rogers et al. 2012) and a fifth 

colour is used to label the internal size marker (Quintáns et al. 2004).  
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1.9.3. High resolution melt analysis  

High resolution melt (HRM) analysis is a closed-tube assay (i.e. less chance of cross-

contamination than other techniques), commonly used to detect mutations and 

polymorphisms in blindly screened DNA samples. The DNA is amplified by PCR with 

increasing temperature, in the presence of a saturating dye which only fluoresce in the 

presence of double stranded DNA followed by observing the progressive change in 

fluorescence during DNA denaturation in order to provide information about target DNA 

quantity (Ramón-Laca et al. 2014; Lim et al. 2015). The fluorescence data can be instantly 

analysed by using suitable software supplied by the manufacturer (Prajantasen et al. 2015). 

Basically, the HRM technique depends on the melting temperature of double stranded DNA, 

GC composition, sequence length and heterozygosity of the target (Reed et al. 2007; 

Baniecki et al. 2015). HRM analysis is rapidly becoming the favoured choice to detect 

pathogenic variants because it is simple, easy to use, cheap, flexible, non-destructive, 

sensitive and specific (Vossen et al. 2009; Vondráčková et al. 2015). Theoretically HRM is 

used to generate target amplicons less than 500bp, however due to its sensitivity and 

specificity, amplicons up to 1000 bp have been successfully amplified (Botezatu et al. 2015; 

Vondráčková et al. 2015). HRM has been successfully used to screen for mutations and 

genotyping of humans, animals, plants and microbes, as well as epigenetics and general 

population studies (Vondráčková et al. 2015). It is also a good method for individualized 

medicine  to predict drug response (Reed et al. 2007). 

 

1.10. Pharmacogenetics of anticancer drugs 

Variability in response and toxicity of anticancer drugs are consistently observed among 

patients which is a real problem in clinical practice that may lead to therapy failure or adverse 

drug reactions(Bosch et al. 2006; Huang and Ratain 2009). However, genetic variations in 
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drug metabolizing enzymes, transporters and targets genes have major effects on the 

observed differences in chemotherapeutic outcome. The aim of studying pharmacogenetics is 

to identify the genetic base for these differences and use it to predict optimal personalized 

drug regimes and dosage for the patient (Lee et al. 2005; Huang and Ratain 2009). There are 

two approaches used to evaluate how genetic variation contributes to differences in drug 

response and toxicity in humans(Huang and Ratain 2009). The first approach focuses on 

candidate genes which are involved in human pathophysiology, pharmacology, and cancer 

biology, based on the important role that genetic variations play in the pharmacokinetics or 

pharmacodynamics of a drug and the likelihood of  affecting its efficacy and/or toxicity 

(Huang and Ratain 2009). The second is genome-wide approach that refers to the study of 

genetic variations within the human genome for their impact on drug therapy, which any 

genetic variant in the  genome can contribute to variation in drug action (Huang and Ratain 

2009).  

Pharmacogenomic approaches have been applied to several anticancer drugs in an attempt to 

determine related inherited variations that are able to predict a patient’s response to cancer 

drugs (Lee et al. 2005). 

 

1.10.1. The Genetics of Cancer 

Cancer is a common genetic disease that originally develops from normal cells that are able 

to proliferate and become abnormal. These cells keep dividing to form more cells without 

normal cell cycle controls, forming a solid mass of excess tissue called a tumor which can be 

either malignant (cancerous) or benign (not cancerous) (Weinberg 2013). Tumor suppressor 

genes and oncogenes are two essential classes of genes that play a role in the carcinogenic 

process. The epigenetic changes could be inherited from parents or somatic (acquired) 

changes that are associated with environment or lifestyle (Hemminki and Hemminki 2005). 
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About 5 to 10% of all cancers are caused by inherited mutations, while 90 to 95 % are as a 

result of other environmental factors (Mgbakor et al. 2014). There is a noteworthy increase in 

cancer worldwide, specifically in less developed countries (Torre et al. 2015). It was 

estimated by the GLOBOCAN project (http://www.globocan.iarc.fr) that in 2008, 12.7 

million new cancer cases and 7.6 million cancer deaths occurred worldwide, with 56% of the 

new cancer cases and 64% of the cancer deaths occurring in the less developed countries  

around the world (Ferlay et al. 2010; Jemal et al. 2011). Similarly, Torre and co-workers 

estimated that of the14.1 million new cancer cases and 8.2 million deaths which occurred in 

2012, 57% of the new cases and 65% of deaths occurred in the less developed regions of the 

world (Torre et al. 2015).This increase can be attributed  to population growth, senility and 

harmful lifestyle (Jemal et al. 2011). 

In Africa, cancer is increasing at an alarming rate. In 2008, about 715,000 new cancer cases 

and 542,000 cancer deaths occurred on the continent (Cancer), whereas 847,000 new cancer 

cases (6% of  the whole world) and 591,000 deaths (7.2% of the whole world) were projected 

for 2012 (Parkin et al. 2014).As Africa has a wealth of extraordinary genetic diversity, it is 

thought to be an appropriate place to investigate cancer aetiology due to the impact of 

environmental factors on different genetic variations (Mgbakor et al. 2014). 

 

1.10.2. Cancer treatment and side effects 

Cancer treatment depends on the nature of the cancer and its progression. There are many 

types of cancer treatment including surgery, photodynamic therapy, chemotherapy, 

radiotherapy, immunotherapy, targeted therapy, hyperthermia, stem cell transplant, lasers, 

and blood product donation and transfusion (Thurston 2006) . 
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Chemotherapy refers to the use of medicines to treat cancer. Chemotherapeutic agents are 

classed according to the cellular phase in which they are active (S phase, M phase, G1 phase, 

G2 phase dependent) (Pazdur 2005). Nonspecific agents that do not target a specific cell 

cycle phase such as alkylating agents, show a linear dose-response curve, so further drug 

dosages increases cell killing, whereas cell cycle specific drugs have a plateau with regards to 

cell killing ability, so increases in drug dosage will not result in increased cells being killed 

(Page and Takimoto 2002) . 

Chemotherapy drugs can be divided into many classes which are: Alkylating agents such as 

cyclophosphamide which is activated in the liver (Lind 2011); platinum compounds such as 

cisplatin, carboplatin and oxaliplatin; and Antimetabolites which are subclassified into 

Antifolates (e.g.Methotrexate), Antipyrimidines (e.g. fluorouracil) and Antipurines 

(e.g.mercaptopurine and thioguanine) (Lind 2011). Although anticancer therapeutics are 

effective, current anticancer treatments have several drawbacks which ultimately affect their 

efficiency including that they are non-specific, and kill both normal and cancerous cells 

(Kawabe 2004). Some patients reported that they have experienced on average of 20 

symptoms during the treatment, of which 7 were psychosocial and 13 were physical (Griffin 

et al. 1996). The most common side effects reported were nausea, vomiting, sore mouth, 

tiredness, hair loss, difficulty sleeping, loss of taste, loss of appetite, passing more urine, dry 

skin and effects on their social lives (Griffin et al. 1996; Carelle et al. 2002). For most 

patients, vomiting is not as common or as acute as before due to improvements in antiemetic 

drugs. Nevertheless, vomiting is still a frequent symptom and in particular nausea remains a 

wide issue (Bloechl-Daum et al. 2006). Today, fatigue is other common side effect of 

anticancer drugs that affects about 80% of patients receiving chemotherapy (Henry et al. 

2008).    

 

 

 

 

 



 

16 

 

1.11. Pharmacogenomics of cholesterol lowering drugs 

The main factors that could impact the response of cholesterol lowering drugs (statins)  

include diseases, correlated with medications and adherence to treatment, biologic and 

physiologic conditions, and genetic background (Hutz and Fiegenbaum 2008). It has been 

suggested that genetic variations in influx and efflux transporters in the liver may modify the 

disposition of cholesterol lowering drugs. There are a considerable number of transporters 

that might have a role in statins transport, however relatively few have been analysed 

(Romaine et al. 2010). Few mutations have been reported that are medically related to SLCO 

genes. Several studies have focused on the impact of SLCO variants on drug disposition, 

taking in account pharmacokinetics of drugs (Hagenbuch and Stieger 2013). 

The Genetic diversity in the solute carrier organic anion transporter 1B1 (SLCO1B1) and 

solute carrier organic anion transporter 1B3 (SLCO1B3) genes varies greatly among 

continental populations which can help in pharmacogenetic studies conducted in mixed 

populations (Sortica et al. 2012).Such variations in these genes are responsible for the uptake 

of structurally different drugs and endogenous compounds from blood to the liver 

(Kalliokoski and Niemi 2009; Hagenbuch and Stieger 2013). A large number of variations 

have been discovered in SLCO1B1 which affect transport function (Niemi et al. 2011). The 

influence of SLCO1B1 polymorphisms on transport function leads to its substrate specificity 

(Tirona et al. 2001). Although clinical statins have been identified that are substrates of 

organic anion transporting polypeptide 1B1 (OATP1B1) (Furihata et al. 2009; Niemi 2010), 

many of statins are substrates of other hepatic organic anion transporting polypeptides 

(OATPs), such as pitavastatin which is a substrate of organic anion transporting polypeptide 

1B3 (OATP1B3) (Fujino et al. 2005). Recent studies have identified the altered 

pharmacokinetics of pravastatin and pitavastatin associated with polymorphisms in SLCO1B1 

(Smith et al. 2007). 
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1.11.1. Cholesterol  

 Cholesterol is a waxy, fatty substance that is an essential constituent in every cell in the body 

(Figure 1.1). Cholesterol has important biological functions, and is mainly produced in the 

liver and CNS. Cholesterol is naturally absorbed through the intestinal tract (Charlton-Menys 

and Durrington 2008). It is the major sterol component of the plasma membrane and 

organelle membranes, except for the mitochondrial membranes (Lange et al. 2004). The 

quantity of cholesterol in cells depends on the type of organelle and compartment. The 

endoplasmic reticulum (ER), where cholesterol is formed contains 0.1-2% of cholesterol in 

mole%, depending on cell type (Lange et al. 2004). Cholesterol is very important for many 

biological processes; including the formation of lipids in cell membranes, as well as being a 

precursor for the synthesis of vitamin D, steroid hormones and bile acids (Brookes et al. 

2009). Changes in cholesterol levels can have deep influences on membrane transport 

(Charlton-Menys and Durrington 2008). Synthesized cholesterol is carried by two types of 

lipoproteins that are produced by the liver and intestine. High density lipoproteins (HDL) 

carry cholesterol from cells to the liver, where it is broken down as a waste product. 

Conversely, low density lipoproteins (LDL) carry cholesterol from the liver to body cells. 

Excess cholesterol can accumulate in the walls of arteries and lead to atherosclerosis (Gylling 

2004). Most cholesterol is synthesized in the body, while cholesterol gained from food is a 

minor component (Ikonen 2006).     

 

Figure1.1- Chemical structure of cholesterol 
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1.11.2. Lipoproteins 

Lipids are insoluble in plasma and therefore need to be transported as complexes with 

proteins, these complexes are called lipoproteins (Lusis and Pajukanta 2008). Lipoproteins 

are spherical particles (Figure 1.2 A), whose major constituents can include non-polar lipids 

of cholesterol esters and triglycerides, as well as polar components including free cholesterol, 

phospholipids and proteins (Shen et al. 1977).  

 

 

Figure 1.2 A-Structure of lipoproteins 

Figure 1.2 B-Relationship of lipoproteins components to diameter and density (Ridker 2014). 

 

 

Lipoproteins are categorized into classes with different ratios of fat and protein which lead to 

differences in density and size of the complexes (Figure 1.2 B). The classes are: very low 

density lipoproteins (VLDL), low density lipoproteins(LDL), intermediate density 

lipoproteins(IDL) and high density lipoproteins(HDL), as well as chylomicrons (Zhang et al. 

2011). 

 

1.11.3. Familial hypercholesterolemia 
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Familial hypercholesterolemia (FH) is an inherited autosomal (not related to the sex 

chromosomes) co-dominant genetic disorder. FH is mainly caused (85–90% of the cases) by 

mutations in the LDL receptor gene (LDLR), while 5–10% of the cases are linked to 

mutations in apolipoprotein B (APOB). Approximately 1% of the cases are the result of 

mutations in proprotein convertase subtilisin/kexin type 9 gene (PCSK9) (Davidson et al. 

2011; Gouni-Berthold and Berthold 2015). FH is characterized by very high LDL cholesterol, 

tendon xanthomas and premature cardiovascular disease (Chiou and Charng 2012). 

FH has been classified into two forms, heterozygous (heFH)form in which the patient inherits 

FH gene from one parent (Kwiterovich et al. 1974). HeFH is a relatively common disease 

with an estimated prevalence of 1/500 in most populations (Durrington 2001; Chiou and 

Charng 2012). However, the rare homozygous (hoFH) form occurs when the patient inherits 

the FH gene from both parents (Raal and Santos 2012). Globally the prevalence of hoFH is  

estimated to be 1 case in 1million people (Raal and Santos 2012) .  

HeFH is more frequent in specific populations, which is shown 1/100 among Afrikaners, 

1/170 among Christian Lebanese, 1/270 among French Canadians (Izar et al. 2010) and 1/208 

in the Hokuriku district of Japan (Mabuchi et al. 2011; Raal and Santos 2012). However, 

prevalence hoFH in these groups is estimated to be 1/30000, 1/100000, 1/275000 and 

1/171167, respectively (Raal and Santos 2012).  

1.11.4. Cholesterol lowering drugs 

Hydroxy methylglutaryl coenzyme A (HMG-CoA) Reductase Inhibitors (also called statins) 

are a type of drugs that reduce low-density lipoprotein cholesterol levels (Cho et al. 2015). 

Structurally statins are analogues of 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMG-CoA) (Figure1.3) and strongly inhibit hepatic conversion of HMG-CoA reductase, 

thereby limiting cholesterol biosynthesis (Endres 2005; Pahan 2006). 
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There are five types of statins available as a medication that approved by US Food and Drug 

Administration (FDA), including lovastatin, simvastatin, pravastatin, fluvastatin and  

atorvastatin (Manzoni and Rollini 2002). Current  studies show that due to their multiple 

functions, statins could be used for pharmaceutical treatment of several disorders including 

cancer, diabetes, inflammation, neurodegeneration and demyelination (Pahan 2006). In spite 

of the effectiveness of statins in lowering cholesterol levels in the blood, they have some side 

effects that cannot be disregarded, such as the fact that they cause myopathy, severe liver 

problems (Brookes et al. 2009), and an increased risk of  hemorrhagic strokes (Goldstein et 

al. 2008). Statins play a role in the development of heart disease and atherosclerosis because 

cholesterol plays in a main role in synthesising lipids and hormones in the body, therefore 

statins do not decrease cholesterol production only, but might affect other products synthesis 

(Brookes et al. 2009). 
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Figure 1.3-Structure of HMG-CoA and different types of statins (Shitara and Sugiyama 

2006). 

 

1.12. Genetic polymorphisms of drug metabolizing enzymes, transporters and targets 

It has well known that genetic variability in genes encoding drug metabolizing enzymes, 

transporters and targets comprises the main causes of inter-individual differences in 

therapeutic outcome (Evans 2004; Serpe et al. 2014).  

The following enzymes, transporters and targets harbouring well determined polymorphisms 

with clinical effect on FDA anticancer efficacy, and specific transporters with clinical effect 

on FDA cholesterol lowering drugs efficacy, were chosen for this study. 
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1.12. 1.Genetic variations associated with FDA approved anticancer drugs   

1.12.1.1. Catechol O-mthyltransferase enzyme: 

Catechol O-methyltransferaseenzyme (COMT) is encoded by the COMT gene which is an 

important gene involved in cisplatin cancer drug metabolism and is linked with ototoxicity in 

children (Fung et al. 2011). Ototoxicity is a serious problem that affects about 60% of 

patients receiving cisplatin (Ross et al. 2009). The genetic variations rs9332377 and 

rs4646316 in the COMT gene have been identified and are associated with hearing damage in 

children who receiving cisplatin (Ross et al. 2009).  

1.12.1.2. Dihydropyrimidine dehydrogenase enzyme: 

Dihydropyrimidine dehydrogenase enzyme (DPYD) is the first and rate-limiting factor in 

pyrimidines catabolism (Seck et al. 2005; Largillier et al. 2006; Saif 2013). It has been 

proposed that DPYD deficiency is associated with toxicities to the cancer drug fluorouracil 

(Li et al. 2014), and genetic polymorphisms in DPYD gene were responsible for DPYD 

deficiency (Luo et al. 2015). The SNPs rs2297595 and rs3918290 in the DPYD gene are 

linked to a decreased efficacy of fluorouracil and also cause severe toxicity (Gentile et al. 

2015). Patients with DPYD mutations may have severe drug-adverse effects following 

fluoropyrimidines (capecitabine and fluorouracil) therapy (Gross et al. 2008). The variant 

rs3918290 is associated with severe toxicity to capecitabine (Deenen et al. 2011), and the 

SNP 2297595 was found to be associated with toxicity, particularly in patients with breast 

and gastroesophageal cancer (Gross et al. 2008). 

1.12.1.3. Thiopurine S-methyltransferase enzyme: 

Thiopurine S-methyltransferase (TPMT) is an enzyme that catalyses the S-methylation of 

thiopurines such as azathioprine, thioguanine, and mercaptopurine (Spire‐Vayron de la 

Moureyre et al. 1998; Zeglam et al. 2015). Patients with inherited deficiency in TPMT 

activity treated with standard doses of thiopurine cancer drugs are at an elevated risk of 
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thiopurine toxicity (Weinshilboum 2001). The three SNPs in the TPMT gene, rs1142345, 

rs1800460 and rs1800462have been reported as the most common mutant alleles linked with 

the loss of TPMT activity in many populations (Murugesan et al. 2010) and with the 

incidence of adverse effects to thiopurines (Gazouli et al. 2010). 

 TPMT also plays a significant role in cisplatin metabolism and correlated with ototoxicity in 

paediatric patients (Fung et al. 2011). The SNPs rs1142345 and rs1800460 are associated 

with hearing loss in children treated with cisplatin (Ross et al. 2009).   

1.12.1.4. Transmembrane Protein 43: 

Transmembrane Protein 43 (TMEM43) is a 43 kDa putative membrane protein whose 

structure and function are undetermined (Siragam et al. 2014). This transporter is encoded by 

the TMEM43 gene (van der Zwaag et al. 2009). The SNP rs2228001 in the TMEM43 gene 

might decrease the activity of the transporter, and patients with the rare allele who receive 

cisplatin may be at higher risk of ototoxicity (Caronia et al. 2009).   

1.12.1.5. Methylene- tetrahydrofolate reductase enzyme:   

Methylene-tetrahydrofolatereductase (MTHFR) is an important enzyme that regulates folate 

metabolism (Shen et al. 2001) and is encoded by the MTHFR gene (Kałużna et al. 2015). 

Polymorphisms in MTHFR and the variant genotypes lead to decreased MTHFR enzyme 

activity and lower plasma folate level (Shen et al. 2001). Studies have shown that the 

common SNP rs1801133 is associated with a decreased activity of the enzyme MTHFR 

(Cortese and Motti 2001). In addition, this variant significantly increased the toxicity of 

methotrexate when used with carboplatin as a treatment for ovarian cancer (Toffoli et al. 

2003; Kim 2009). Severe acute toxicity could occur in patients with the AA genotype after 

the first cycle of adjuvant CMF (Cyclophosphamide, Methotrexate, Fluorouracil) 

chemotherapy (Toffoli et al. 2000b). 

 

 

 

 



 

24 

 

1.12.1.6. Glutathione S-transferase P enzyme: 

For the purpose of cell protection, GSTs enzymes catalyze the conjugation of glutathione to 

xenobiotics to form glutathione disulfide (Hayes and McLellan 1999; Geng et al. 2014). The 

genetic variant of GSTP1 gene (rs1695) has been indicated to be relevant to the response of 

anthracycline-based chemotherapy (e.g. epirubicin) in breast cancer (Tulsyan et al. 2013). 

The variant G is correlated with increased risk of toxicity in colorectal cancer patients (Braun 

et al. 2009) and increased risk of neutropenia in lupus erythematosus patients treated with 

cyclophosphamide (Zhong et al. 2006). However, in women with breast cancer, this SNP was 

not associated with adverse drug reactions after cyclotophosphamide containing 

chemotherapy (Ekhart et al. 2008; Low et al. 2009).   

 

1.12.2. Genetic polymorphisms associated with FDA approved cholesterol lowering 

drugs: 

1.12.2.1. Solute carrier organic anion trasporter1B1 (SLCO1B1) gene: 

It was identified that all types of statins that are used clinically are substrates of the 

transporter OATP1B1 (gene name SLCO1B1) (Niemi et al. 2011).Numerous variants have 

been found within the SLCO1B1gene (Romaine et al. 2010). The common SNPs rs4149056 

and rs2306283 are associated with decreased the hepatic transporter OATP1B1 activity 

(Niemi et al. 2011).   

The SNP rs11045819 genotype CC has been shown to exhibit significantly less LDL 

reduction and higher post-treatment LDL levels (Couvert et al. 2008). It has been identified 

that the SNPs rs4149015 and rs4149056 were linked with reduced plasma concentrations of 

pravastatin on paediatric patients with HeFH and cardiac transplant recipients treating with 

immunosuppressive drugs (Hedman et al. 2006). The SNP rs4149036 is associated with 
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triglyceride lowering, but only among those homozygous for the rare allele (Thompson et al. 

2005). 

1.12.2.2. Solute carrier organic anion trasporter1B3 (SLCO1B3) gene 

Statins are among the drugs that are substrates of OATP1B3 (gene name SLCO1B3) (Kindla 

et al. 2011). OATP1B3 is an important hepatic transporter that shares several substrates with 

OATP1B1, such as rosuvastatin and pravastatin (Ho et al. 2006; Seithel et al. 2007; Niemi et 

al. 2011). It was identified that the SNP rs72559743 reduces protein expression and activity 

of the protein, contrasted with SNP rs4149117 that increases the activity in vitro (Letschert et 

al. 2004). The SNP 60140950 has a harmful effect on the function of the protein (Geraldine 

et al.). It was reported that the SNP rs12299012 reduces the uptake of rosuvastatin (Schwarz 

et al. 2011). To date there is no clinical data available for SNP rs57585902. 

 

1.13. Statistical Analyses 

1.13.1 GenAlEx 

Genetic Analysis in Excel (GenAlEx) is an in-MS-Excel application used for population 

genetic analysis. GeneAlEx can be used to calculate allele frequency, the Hard-Weinberg 

Equilibrium and the Shannon and Fixation indices (Peakall and Smouse 2012). 

1.13.2. The Hardy-Weinberg Equilibrium 

The Hardy-Weinberg equilibrium (HWE) hypothesises that allele and genotype frequencies 

in a population remain constant or they are in equilibrium from generation to generation, 

unless other external influences are presented (Hardy 2003). These influences include: 

mutation, selection, population size, mating, gene migration and random genetic drift. 

However, this means static allele frequencies of HW which assumes no mutation, no 
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migration, no selection, random mating (no inbreeding) and a large population (no genetic 

drift) do not exist in nature (Butler 2005). However, the HWE is still an ideal state used to 

determine genotype frequencies. 

1.14. The aims of the study: 

This study aims to develop and evaluate the performance of robust and high throughput 

techniques for genotyping ten polymorphisms related to anticancer drugs and ten 

polymorphisms related to cholesterol lowering drugs. These assays will be developed using a 

SNaPshot minisequencing panel which is considered to be an accurate, less time-consuming 

and relatively rapid method for detection many polymorphisms in a single assay, as well as 

high resolution melt analysis as an alternative, fast and cheap typing method. In addition, 

HRM assays will be evaluated and the results validated by comparing them to those obtained 

by SNaPshot assays (the gold standard assay for genotyping). Lastly, both assays will be 

validated using direct sequencing. 

 In addition, the minor allele frequencies of ten previously identified SNPs 

pharmacogenetically associated with FDA approved anticancer drugs, and the minor allele 

frequencies of ten previously identified SNPs pharmacogenetically associated with FDA 

cholesterol lowering drugs will be determined. Allele and genotype frequencies for the 

investigated SNPs will be compared to different population groups from around the world. 
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Chapter Two 

Development of a pharmacogenomic profiling panel for anticancer drugs 

2.1. Introduction  

Cancer in Africa is a serious health issue compounded by communicable diseases (e.g. HIV), 

changes in life style and age (Parkin et al. 2008). It has been noticed that the differences in 

cancer drug responses and toxicity is a serious problem amongst patients which might lead to 

treatment failure or adverse drug reactions (Bosch et al. 2006; Huang and Ratain 2009). 

However, it has been shown that the genetic polymorphisms in drug metabolizing enzymes, 

transporters and targets genes may explain the differences of chemotherapeutic outcome. 

There are several chemotherapeutics that are used for cancer treatment. Despite their 

effectiveness, many exhibit serious side effects (Kawabe 2004). The importance of studying 

genetic variations has been introduced in the case of chemotherapeutics such as Azathioprine 

and mercaptopurine with variant alleles in the TPMT gene has been shown to put patients at 

risk for toxicity. This has helped physicians develop personalised dose regimes (Wilke et al. 

2007). Cisplatin is a widely used and highly effective anticancer agent. Nevertheless, 

ototoxicity can affect about 60% of patients who are receiving this treatment (Ross et al. 

2009).  It was reported that the SNPs rs9332377 and rs4646316 in the COMT gene and the 

SNPs rs1142345 and rs1800460 in the TPMT gene, are linked to ototoxicity in children 

receiving cisplatin (Ross et al. 2009). Hence, pharmacogenetics studies aim to identify these 

genetic variations and use them as a baseline to predict the optimal chemotherapy dose for 

each patient (Lee et al. 2005; Huang and Ratain 2009). 

Africa has a wealth of genetic diversity, so it is considered to be a good place to study how 

environmental factors influence the different genetic variations in relation to cancer treatment 
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(Mgbakor et al. 2014). South Africa is a multi-ethnic country and susceptibility to different 

types of cancer vary between ethnic groups (Bezwoda et al. 1997). It is home to different 

groups that include Khoisan, Xhosa, Zulu, Venda, and Sotho Pedi, the Afrikaners and the 

Cape Admixed the latter being a uniquely admixed population of immigrant Europeans, 

Asians and indigenous populations (Hardy et al. 2008; Du Plessis et al. 2015). The 

complexity in Admix populations in particular creates advantages for studying the clinical, 

environmental, and genetic ancestry of population differences in health outcomes (Suarez-

Kurtz 2008a; Via et al. 2009). Therefore, the objectives of this part of the project was to 

develop a SNaPshot minisequencing system to investigate the genotypic and allelic profile of 

ten previously reported single nucleotide polymorphisms relevant to anticancer drugs in 130 

South African Cape Admixed individuals living in Cape Town. The SNaPshot methodology 

is high throughput and fast, as it is based on single base extension with a labelled ddNTP (Hu 

et al. 2016). The minor allele frequencies (MAF) of the Cape admixed population were 

compared to several other populations. Ethnic populations that were included in this study 

were: British in England and Scotland (GBR) which represent European Caucasian, 

Colombian in Medellin, Colombia (CLM) and Mexican ancestry in Los Angeles, California 

(MXL) both represent Latino admixed population, Gujarati Indian in Houston, Texas (GIH) 

represent Asian, African ancestry in South-western US represent African American (ASW), 

Luhya in Webuya, Kenya (LWK) and Yoruba in Ibadan, Nigeria (YRI) both represent sub-

Saharan African populations. The SNPs were selected from various population groups as per 

Ensembl(http://www.Ensembl.org/Homo_sapiens/Variation/Population?db=core;r=22:19967

669-19968669;v=rs9332377;vdb=variation;vf=4986831). 
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2.2. Materials and Methods 

2.2.1. Sample Collection 

Biological samples were obtained in the form of buccal swabs from 130 apparently healthy, 

unrelated volunteers from the Cape Admixed population living in Cape Town, South Africa. 

Ethnicity of volunteers was determined by self-report. To confirm the volunteers’ mixed 

ancestry, the questionnaires included a short genealogy of two generations for maternal and 

paternal family members, as well as place of birth, home language and religious affiliation. 

Ethical approval for this project was obtained from the Senate Research Committee of the 

University of the Western Cape with a registration no: 10/9/40. 

2.2.2. DNA Extraction  

Genomic DNA was extracted using a standard salt lysis method. The cotton tip of each swab 

was cut off with a clean scalpel surgical blade. The excised pieces of the swab were added to 

a sterile 1.5ml Eppendorf tube containing 600 µl of salt lysis buffer (0.4 M NaCl, 0.01 M 

Tris-HCl (pH 8), 2 mM EDTA, 1% SDS) and 3µl of 20mg.ml
-1

 Proteinase K. The tubes were 

shaken vigorously and incubated shaking overnight at 60°C at 115 rpm in a G24 

Environmental Incubator shaker (New Brünswick Scientific Co., Inc., USA). After which the 

entire volume was transferred to a sterile tube. The lysis solution containing the biological 

material in the swab was recovered by using spin columns. The end of a 0.5 ml tube was 

perforated with a sterile surgical needle and placed inside a clean 1.5 ml Eppendorf tube and 

centrifuged at 14000 rpm for 1 min in an Eppendorf centrifuge 5417 (Eppendorf, Germany). 

The collected volume was added to the separated lysis material.  To precipitate the DNA, 

200 µl of 6M NaCl was added and the tubes were shaken vigorously for 15 sec and 

centrifuged at 5000 rpm for 15min. The supernatant containing the DNA was transferred to 

another sterile tube. A volume of 600 µl isopropanol was added and the tubes were incubated 
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at -80°C for 30 min. The DNA was collected by centrifugation at 14000 rpm for 30 min then 

washed with 100 µl of 70% Ethanol and centrifuged at 14 000 rpm for 10 min to remove 

excess salts. The pellets were air dried and re-suspended in a final volume of 50 µl of 1x TE 

buffer (1M Tris and 0.5M EDTA, pH 7). Samples were stored at -20°C. The concentration of 

DNA was measured by using a Nanodrop ND 1000 UV-Vis Spectrophotometer (Thermo 

Fisher Scientific, Inc., USA).  

2.2.3. SNP Selection 

A total of ten SNPs, seven non-synonymous and three intronic, were targeted for this part of 

this project. SNP selection was based on the available evidence on clinical relevance of 

genetic variants in anticancer therapy as gathered from the Pharmacogenomics 

Knowledgebase (http://www.pharmgkb.org), US Food and Drug Administration website 

(FDA) (http://www.FDA.gov) and Ensembl database (http://www.Ensembl.org). Genetic 

variants were initially selected based on the FDA's table of pharmacogenomic biomarkers in 

drug labelling for cancer therapy, and narrowed down to ten SNPs using additional clinical 

relevance data available in the Pharmacogenomics Knowledgebase 

(http://www.pharmgkb.org) (Table 2.1). 
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                   Table2.1- A list of genes and selected SNPs associated with anticancer therapy: 

 

 

 

 

 

 

 

 

 

 

 

 

 Ref: Pharmacogenomics Knowledgebase (http://www.pharmgkb.org), US Food and Drug Administration website (FDA) (http://www.FDA.gov).

SNP ID Gene  Type of gene Drug Clinical observation 

rs9332377 COMT Drug metabolizing enzyme Cisplatin
 

Ototoxicity 

rs3918290 DPYD Drug metabolizing enzyme Capecitabine, Fluorouracil and Tegafur
 

Drug toxicity 

 rs2297595  DPYD Drug metabolizing enzyme Capecitabine and Fluorouracil
 

Drug toxicity 

rs2228001 TMEM43 Drug  transporter Cisplatin
 

Ototoxicity and toxicity 

rs1142345 TPMT Drug metabolizing enzyme Cisplatin 

Thioguanine
 

Ototoxicity 

Drug toxicity 

rs1800460 TPMT Drug metabolizing enzyme Cisplatin 

Thioguanine
 

Ototoxicity 

Drug toxicity 

rs4646316 COMT Drug metabolizing enzyme Cisplatin
 

Ototoxicity 

rs1801133  MTHFR Drug  target Cyclophosphamide, Methotrexate and Carboplatin                               Drug toxicity 

rs1800462 TPMT Drug metabolizing enzyme Azathioprine , Thioguanine and purine analogous Drug toxicity 

rs1695 GSTP Drug metabolizing enzyme Cyclophosphamide, Epirubicin and Platinum compounds
 

Drug toxicity 
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2.2.4. Primer Design 

Primers were designed to genotype the selected SNPs in one multiplex PCR. The primers, 

which are listed in Table 2.2, were designed to have an annealing temperature between 55°C 

and 60°C using Primer3plus software (http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) 

and Ensembl database (http://www.Ensembl.org). Primers were aligned on Ensembl using 

BLAST (http://www.ensembl.org/Multi/Tools/Blast) to test for nonspecific amplification. 

Multiplex SNaPshot minisequencing primers listed in Table 2.3, in which poly (gcat) tails 

were added at the 5’ end of the specific hybridizing part of the primer to generate a range of 

different sized primers.  The final sizes ranged between 30 to 75 bp. Both PCR and SNaPshot 

minisequencing primers were synthesised by Inqaba Biotec, South Africa. 
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          Table2.2- Multiplex PCR primers for the selected SNPs related to anticancer drugs used in SNaPshot™ genotyping. 

Gene 
NCBI 

(dbSNP) 
Forward primer (5´to 3´) Reverse Primer (5ʹto 3ʹ) 

Amplicon length 

 (bp) 

COMT rs9332377 GTCTCCAGGGACCATACCAG GCTGGGTGAGTGGAAACAAT 107 

DPYD rs3918290 TGGACAAAGCTCCTTTCTGA TCACCAACTTATGCCAATTCTC 149 

DPYD rs2297595 CCAGCACCAAAAAGAGCAAT AAAACAAGAATTCGTTTGAAACAT 194 

TMEM43 rs2228001 GCCTCAAAACCGAGAAGATG CTGCCTCAGTTTGCCTTCTC 237 

TPMT rs1142345 GGGGAATTGACTGTCTTTTTGA TTGCAATCTGCAAGACACAT 316 

TPMT rs1800460 CCCTGATACCTGAGCCAGAG TTACCATTTGCGATCACCTG 375 

COMT rs4646316 ACGCTTCTCTTGGAGGTGAG TCTGCAGGAGACACATGCTT 431 

MTHFR rs1801133 AGGACAGTGTGGGAGTTTGG CTCACCTGGATGGGAAAGAT 470 

TPMT rs1800462 TCTGCTTTCCTGCATGTTCTT CAGGAATTTCGGTGATTGGT 265 

GSTP           rs1695 GCTGGGGCTCACAGACAG GTGCAGGTTGTGTCTTGTCC 381 
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2.2.5. PCR Amplification 

 PCR amplification was performed using the KAPA2G Fast Multiplex PCR mix (KAPA 

BIOSYSTEMS, South Africa) in a final volume of 25 µl according to manufacturer’s 

instructions. Each reaction contained a minimum of 20 ng genomic DNA. PCR 

amplifications were performed in a GeneAmp 2700/ 2720 (Applied Biosystems, USA) 

thermal cycler. PCR cycling conditions were carried out as follows: initial denaturation at 

95°C for 3 min, denaturation at 95°C for 15 sec, annealing at 60°C for 15 sec, elongation at 

72°C for 15 sec, for a total of 30 cycles, followed by final extension at 72°C for 1 min and a 

hold step at 4°C. PCR products were confirmed by agarose gel electrophoresis on 2% gels 

and visualised under UV light. 

2.2.6. Post PCR Purification 

The PCR products were purified to remove excess primers and unincorporated ddNTPs using 

a Thermosensitive Alkaline Phosphatase (FastAP) (Thermoscientific, U.S.A) and 

Exonuclease I (Exo1) (Thermoscientific, U.S.A). PCR products were incubated with 0.5 μl of 

Exo1 and 1 μl of FastAP at 37°C for 15 min followed by thermal deactivation of the enzymes 

at 75°C for 15 min in a GeneAmp 2700/ 2720 (Applied Biosystems, USA) thermal cycler. 

2.2.7. SNaPshot minisequencing (Single Base Extension) 

The reaction was performed using the SNaPshot® kit according to the manufacturer’s 

specifications (Applied Biosystems, U.S.A). The final 10 μl reaction volume contained 3 μl 

of the purified PCR products, 0.2 μΜ of primers (final concentration), 2 μl of SNaPshot® 

ready mix and 3μl water. Negative and positive controls for the mini-sequencing reactions 

were prepared according to manufacturer’s instructions. A GeneAmp 2700 thermal cycler 

(Applied Biosystems, USA) was used for the minisequencing reactions. Sequencing cycling 
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conditions consisted of 25 cycles of denaturation at 96°C for 10 sec, annealing at 50°C for 5 

sec, and extension at 60°C for 30 sec, followed by a holding step at 4°C.  
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Table 2.3- SNaPshot minisequencing reaction primers of the selected SNPs related to anticancer drugs. 

NCBI 

(dbSNP) 
Amino Acid 

Change 
Nucleotide 

Change 
Minisequencing Reaction Primers  Primer Direction 

Position 

Accession number 

(NC_000006.12) 
Size bp Poly GCAT tail 

rs9332377 Intron C>T AGTATCCGGACTCAAGGACCGTGACCCACA Reverse 19968169 30 0 

rs3918290 Intron C>T ACTGAACTAAAGGCTGACTTTCCAGACAAC Reverse 97450058 35 5 

rs2297595 M166V T>C ACGAAACTTATGGATGCCCCTTTAGTTGGC Reverse 97699535 40 10 

rs2228001 G939L G>T GCAGCAGCTTCCCACCTGTTCCCATTTGAG Reverse 14145949 45 15 

rs1142345 T240C T>C AGATGAATGTCTTTTCATTTACTCTGTATC Forward 18130687 50 20 

rs1800460 A154T C>T GGCAAATTTGACATGATTTGGGATAGAGGA Reverse 18138997 55 25 

rs4646316 Intron C>T CACACCCCAGACCAGACACCAGGGCAGAAA Forward 19964609 60 30 

rs1801133 A222V G>A AGCACTTGAAGGAGAAGGTGTCTGCGGGAG Reverse 11796321 65 35 

rs1800462 A80P C>G AAGTGTAAATGTATGATTTTATGCAGGTTT Reverse 18143724 70 40 

rs1695 L105V A>G GACGGCGTGGAGGACCTCCGCTGCAAATAC Forward 67585218 75 45 
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2.2.8. Post Extension Purification 

Post Extension products were purified by adding 1 U of FastAP to the 10 µl reaction volume 

and incubated at 37°C for 30 minutes followed by 15 minutes at 75°C to inactivate the 

enzyme in a GeneAmp 2700 thermal cycler (Applied Biosystems, USA). 

2.2.9. Electrophoresis of the minisequencing products 

Reactions were set up in a 96-well plate in POP4 polymer (Applied Biosystems, USA). To 

each well, 8.7 μl HiDi Formamide (Applied Biosystems, USA) and 0.3 μl GeneScan Liz 120 

size standard (Applied Biosystems, USA) were mixed with 1μl of the purified 

minisequencing product. The plate was briefly centrifuged for 1 min at 1000 rpm and 

incubated in a thermal cycler for DNA denaturation at 95°C for 5 min. Subsequently, the 

fluorescently labelled fragments were separated on 36 cm-long capillary containing POP4 

polymer on ABI Prism 3500 DNA sequencer (Applied Biosystems, USA). Data was analysed 

using GeneMapper® IDX Software Version 1.4 (Applied Biosystems, USA).  

2.2.10. Statistical Analysis 

The statistical analysis of Genotype and allele frequencies, as well as the deviation from the 

Hardy-Weinberg Equilibrium were calculated using GenAlEx 6.5 software (Peakall and 

Smouse 2012). Allele and genotype frequencies are given with binomial proportion 95% 

confidence intervals (CI). The Chi-square test was used to determine if individual variants 

were in Hardy-Weinberg Equilibrium (HWE) at each locus. 

2.3. Results: 

The sample group enrolled in this study consisted of 130 healthy individuals from the Cape 

Admixed Population; 12 (9%) females and 118 (91%) males between the ages of 14 and 68 

years. Minor optimization was needed for the primer sets of the two SNPs (rs1801133 and 
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rs1800462). Due to poor amplification, the concentration of these two primers pairs was 

increased to 0.4 µM in the PCR amplification. Also minor optimization was required for 

these two SNPs in SNaPshot minisequencing reaction, in which the concentration was also 

increased to 0.4 µM. This resulted in good profiles for each. In certain cases the fragments 

migrated further than its indicated size which is likely due to minisequencing chemistry 

(Quintáns et al. 2004). Genotypes were confirmed with direct sequencing as described in 

Chapter 4. Electropherogram profile of the SNaPshot minisequencing genotyping system is 

displayed in Figure 2.1. 

 

 

Figure 2.1- Electropherogram profile of the SNPs related to anticancer drugs. Green peaks indicate an A 

nucleotide, blue peaks indicate a G nucleotide, black peaks indicate a C nucleotide and red peaks indicate a T 

nucleotide. 

The allelic frequency of each SNP was determined to be in HWE (P>0.05), with the 

exception of SNPs rs1801133 and rs3918290. The expected and observed genotype 
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frequencies in the study are determined under the Hardy-Weinberg Equilibrium. The 

genotype and allele frequencies of the ten selected SNPs relevant to anticancer drugs 

observed in Cape Admixed Population are summarized in Table 2.4. The minor allele 

frequency for the ten variants was compared globally to seven ethnic groups, which were: 

BGR (British in England and Scotland), CLM (Colombian in Medellin, Colombia), MXL 

(Mexican ancestry in Los Angeles in California), GIH (Gujarati Indian in Houston), ASW 

(African ancestry in Southwest US), LWK (Luhya in Webuye, Kenya) and YRI (Yoruba in 

Ibadan, Nigeria). The comparison was summarized in Table 2.5 and depicted in Figure 2.2. In 

our study, rs3918290 was the only investigated SNP found to be monomorphic. The 

heterozygosity was observed in two intronic and seven nonsynonomous SNPs. The intronic 

variant rs9332377 genotype frequencies for wild-type (CC), heterozygote (CT) and 

homozygote (TT) were 74.6%, 24.6% and 0.8%, respectively. Furthermore, the intronic 

variant rs4646316 genotype frequencies showed homozygote 57.7% for the wild-type (CC), 

38.5% for heterozygote (CT) and 3.8% for homozygote (TT). The M166V (rs2297595) 

genotype frequencies for wild-type (TT), heterozygote (TC), and homozygote (CC) were 

91.5%, 8.5% and 0.0%, respectively. The G939L (rs2228001) genotype frequencies for wild-

type (TT), heterozygote (TG), and homozygote (GG) were 46.9%, 47.7% and 5.4%, 

respectively. T240C (rs1142345) genotype frequencies for wild-type (TT), heterozygote 

(TC), and homozygote (CC) were 94.6%, 5.4% and 0.0%, respectively. The A154T 

(rs1800460) genotype frequencies for wild-type (CC), heterozygote (CT), and homozygote 

(TT) were 97.7%, 2.3% and 0.0%, respectively. The A222V (rs1801133) genotype 

frequencies for wild-type (GG), heterozygote (GA), and homozygote (AA) were 48.5%, 13% 

and 38.5%, respectively. A80P (rs1800462) genotype frequencies for wild-type (CC), 

heterozygote (CG), and homozygote (GG) were 99.2%, 0.8% and 0.0%, respectively. L105V 
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(rs1695) genotype frequencies for wild-type (GG), heterozygote (GA), and homozygote (AA) 

were 12.3%, 50% and 37.7%, respectively. 
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Table 2.4 - Genotype and allele frequencies of selected SNPs related to anticancer drugs in 130 

healthy Cape Admixed individuals. 

Amino Acid 

Substitution 

 

 

Gene 

 

 

dbSNP ID 

 

Observed Genotype Frequency 

 

Allele Frequency 

Genotype % 95% CI Allele % 95% CI 
HWE 

(P) 

 Intron 

 

rs9332377 

CC 74.6  67.12 – 82.08 C 86.9  82.8 - 91  
0.345  

 

COMT CT  24.6 17.2 – 32 T  13.1 9 - 17.2 

TT  0.8 0.0 -2.33    

          

Intron 
 

rs3918290 
CC 100.0  100-100  C 100.0  100-100  

NA DPYD CT 0.0   0.0 T 0.0  0.0  

TT 0.0  0.0    

          

M166V 
 

rs2297595 
TT 91.5  86.71-96.29 T  95.8  93.36- 98.24 

0.614 DPYD TC  8.5 3.71 -13.29  C 4.2 1.76- 6.64 

CC  0.0 0.0    

          

G939L 
 

rs2228001 
TT 46.9  38.32- 55.48 T 70.8  65.27-76.33 

0.082 TMEM43 TG  47.7 39.11- 56.29 G  29.2 23.67-34.73 

GG  5.4 1.51- 9.29    

          

T240C 
 

rs1142345 
TT  94.6 90.71- 98.49 T 97.3  95.33- 99.27 

0.752 TPMT TC  5.4 1.51- 9.29 C  2.7 0.73- 4.67 

CC  0.0 0.0    

          

A154T 
 

rs1800460 
CC  97.7 95.12- 100 C 98.8  97.48-100 

0.894 TPMT CT  2.3 0.0-4.88 T  1.2 0.0-2.52 

TT  0.0 0.0    

          

Intron 
 

rs4646316 
CC 57.7  49.21- 66.19 C 76.9  71.78-82.02 

0.342 COMT CT  38.5 30.14- 46.86 T  23.1 17.98-28.22 

TT  3.8 0.51- 7.09    

          

A222V 
 

MTHFR rs1801133 
GG 48.5  39.91- 57.09 G  55 48.95-61.05 

0.000 
GA  13 7.22- 18.78 A  45 38.95-51.05 

AA  38.5 30.14- 46.86     

          

A80P 
 

rs1800462 
CC 99.2  97.67-100 C 99.6  98.83-100 

0.965 TPMT CG  0.8 0.0-2.33 G  0.4 0.0 -1.17 

GG  0.0 0.0    

          

L105V 
 

rs1695 
GG 12.3  6.65-17.95 G 37.3  31.42-43.18 

0.432 GSTP GA  50 41.41- 58.59 A  62.7 56.82-68.58 

AA  37.7 29.37- 46.03    

P-Value will be NA for monomorphic SNPs (MAF =0). 
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Table 2.5 - Comparison of MAF of the selected SNPs related to anticancer drugs in the Cape Admixed population to other ethnic groups. 

 

a. This study, b. Data from Ensembl database (http://www.Ensembl.org).

dbSNP ID 
Amino acid 

change 

Minor 

Allele 

Minor Allele Frequency (%) 

Cape 

Admixed
 a  British 

b 
Colombian

 b
 Mexican 

b
 Indian 

b African 

American
 b

 
Luhya

b
 Yuroba

b
 

rs9332377 Intron T 13.1 15.9 14.9 8.6 21.4 33.6 33.3 35.2 

rs3918290 Intron T 0.0 0.0 0.0 0.0 1.5 0.8 0.0 0.0 

 

rs2297595 

 

M166V 

 

C 

 

4.2 

 

8.2 

 

6.4 

 

7.0 

 

3.4 

 

4.9 

 

10.1 

 

0.9 

 

rs2228001 

 

G939L 

 

G 

 

29.2 

 

38.5 

 

29.3 

 

25.8 

 

34 

 

33.6 

 

27.3 

 

26.9 

 

rs1142345 

 

T240C 

 

C 

 

2.7 

 

3.3 

 

2.1 

 

4.7 

 

2.4 

 

9.8 

 

11.6 

 

6.0 

 

rs1800460 

 

A154T 

 

T 

 

1.2 

 

2.7 

 

1.1 

 

3.9 

 

0.0 

 

2.5 

 

0.0 

 

0.0 

 

rs4646316 

 

Intron 

 

T 

 

23.1 

 

20.3 

 

21.8 

 

16.4 

 

9.2 

 

23.8 

 

16.7 

 

16.2 

 

rs1801133 

 

A222V 

 

A 

 

45.0 

 

32.4 

 

54.3 

 

46.9 

 

15 

 

13.9 

 

7.1 

 

10.6 

 

rs1800462 

 

A80P 

 

G 

 

0.4 

 

1.1 

 

1.1 

 

0.0 

 

0.0 

 

0.8 

 

0.0 

 

0.0 

 

rs1695 

 

L105V 

 

A 

 

62.7 

 

68.1 

 

64.4 

 

43.8 

 

68.9 

 

54.1 

 

49.0 

 

60.2 
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Figure2.2- Allele frequencies of the selected SNPs related to anticancer drugs in the Cape Admixed population compared to other ethnic groups. 

 

Cape Admixed (This study); British, Colombian, Mexican, Indian, African American, Luhya and Yuroba (Ensembl database).
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2.4. Discussion: 

The SNaPshot minisequencing assay is one of the most efficient, rapid and accurate 

ways for high throughput genotyping that requires little optimization steps (Quintáns 

et al. 2004). In this part of the project, SNaPshot minisequencing method was 

successfully used and optimized to investigate 10 SNPs relevant to anticancer drugs 

within 130 unrelated healthy individuals of the Cape Admixed population in South 

Africa. Cancer is increasing globally, especially in less developed countries (Torre et 

al. 2015). It is estimated that approximately 5-10% of all cancers are caused by 

inherited mutations (Mgbakor et al. 2014). It is well known that chemotherapeutics 

effectiveness is associated with ethnic differences which have profound effects on the 

response and toxicity to these agents (Chen et al. 2010). Differences in patients drug 

metabolizing enzymes, transporters and targets genes are considered to be the major 

source on the variability in treatment outcome (Evans 2004; Serpe et al. 2014).  

The Cape Admixed population has high genetic diversity compared to the indigenous 

populations. This unique population has contributed to inter-individual genetic 

variability, which may account for the observed physiological differences, especially 

with respect to drug uptake and metabolism. From the results presented it can be seen 

that the Cape Admixed population shares many genetic variations with other ethnic 

groups.  

The intronic variants rs9332377 and rs4646316 in the COMT gene which encodes for 

the enzyme catechol-O-methyltransferase, have previously been shown to be linked to 

an increased risk of hearing damage in a study on 162 paediatric cancer patients 

receiving cisplatin (Ross et al. 2009). However, a recent study by Yang et al. (2013) 

on 213 children with medulloblastoma and 41 with solid tumors showed no relation 
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between hearing damage and these variants. In our population, the MAF observed for 

the intronic SNPs in COMT gene was 13.1% for rs9332377, which was a bit lower 

than Colombian (14.9%) and higher than Mexican populations (8.6%), and 23.1% for 

rs4646316 which was slightly higher than Colombian (21.8%), Indian (21.4%) and 

British (20.3%) populations.  

The intronic variant rs3918290 and M166V (rs2297595), were detected in the DPYD 

gene which encodes the enzyme dihydropyrimidine dehydrogenase. These variants 

were reported by Gentile et al. (2015) to be responsible for decreasing efficacy of 

fluorouracil and cause acute toxicity. However, the incidence of severe toxicity was 

observed in SNP rs3918290 in patients who underwent treatment with 

fluoropyrimidines, such as fluorouracil and capecetabine, but no clear association 

with the M166V (rs2297595) variant and sever toxicity was found (Toffoli et al. 

2015). Deenen et al. (2011) enrolled advanced colorectal cancer Dutch patients in a 

study which described that the DPYD variants rs3918290 and rs2297595 lead to 

severe toxicity with capecitabine-based chemotherapy. Furthermore, rs3918290 was 

also confirmed as a cause of severe toxicity to tegafur as fluorouracil prodrugs 

(Terrazzino et al. 2013). It was suggested by some studies that patient’s gender could 

affect the toxicity of fluorouracil. Many studies have showed women are more prone 

to fluorouracil toxicity than men (Schwab et al. 2008). However, it was described by 

another study that the correlation of the variant rs3918290 with fluorouracil toxicity 

was significantly higher in men than in women (Schwab et al. 2008; Caudle et al. 

2013). The intronic DPYD gene SNP rs3918290 was not observed in the Cape 

admixed, British, Hispanic (Mexican and Colombian) and sub-Saharan populations. 

However, it was observed in African Americans with a MAF of 0.8% and Indians 

with a MAF of 1.5%. The substitution M166V (rs2297595) was observed with a MAF 
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of 4.2% which was a bit lower than the observed frequency for African Americans 

(MAF of 4.9%) and slightly higher than Indians that reported a MAF of 3.4%. 

In the TMEM43 gene which encodes for the transmembrane protein 43 (van der 

Zwaag et al. 2009), the SNP rs2228001 with the amino acid substitution G939L was 

previously shown to increase the risk of cisplatin- induced hearing loss (Caronia et al. 

2009). Caronia et al. investigated 91 osteosarcoma patients receiving cisplatin, and 

found that only 32 patients had ototoxicity in which patients with GG genotype were 

more prone to have ototoxicity than patients with the GA and AA genotypes. 

Moreover, this variant has been predicted to cause severe toxicity in a study 

consisting of 101 patients with bladder cancer treated with platinum-based 

chemotherapy (Sakano et al. 2010). In our population, this variant showed a MAF 

with 29.2% that was similar to Colombian population (29.3%). However, the MAF 

was higher than those of Mexican and sub-Saharan African populations (Table2.5). 

The variants T240C (rs1142345) and A154T (rs1800460) in the TPMT gene, which 

encodes for thiopurine methyltransferase, were found to increase the risk of hearing 

loss in child cancer patients treated with cisplatin (Ross et al. 2009). Conversely, a 

study by Yang et al. observed no relationship between these variants and hearing loss 

in children taking cisplatin. Moreover, he found no functional differences in TPMT 

knockout against wild-type mice after treatment with cisplatin (Yang et al. 2013). It 

has been identified that patients with inherited low levels of TPMT enzyme activity 

are at a higher risk for toxicity when treated with thiopurines, such as thioguanine , 

azathioprine, and mercatopurine (Murugesan et al. 2010). Moreover, it was 

determined that the TPMT polymorphisms (T240C, A154T and A80P), were the most 

common mutant alleles correlated with loss of TPMT enzyme activity in many 

populations (Murugesan et al. 2010). Furthermore, in previous studies on children 
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with inflammatory bowel disease (IBD) treated with thiopurines, these 

polymorphisms did not show a significant correlation with adverse effects to these 

drugs (Stocco et al. 2005; Ridder et al. 2006; Gazouli et al. 2010). The MAF for the 

variant T240C was 2.7% in our population, which was quite similar to Indians (2.4%). 

However, it is slightly higher than Colombians (2.1%) and lower than the British 

population (3.3%). While, the MAF for the variant A154T was 1.2%, which is similar 

to Colombian (1.1%) and lower than British, Mexican and African Americans (Table 

2.5). Further, the MAF for the variant A80P was 0.4% which was lower than British 

(1.1%), Colombian (1.1%) and African American (0.8%). However, it was 

significantly high compared to Mexican, Indian and sub-Saharan populations which 

all had a MAF of 0.0%. 

In the MTHFR gene encodes for methylene-tetrahydrofolate reductase (Kałużna et al. 

2015), the substitution A222V (ra1801133) has been shown to reduce enzyme activity 

and affect chemosensitivity of cancer cells (Martin et al. 2006). Ulrich and co-

workers investigated  220 chronic myelogenous leukemia patients, and they showed 

that in patients with the AA genotype, MTHFR activity appeared to be decreased and 

they are at a higher risk of methotrexate toxicity (Ulrich et al. 2001). In another study 

on Caucasian ovarian cancer patients treated with methotrexate only or combined with 

carboplatin, showed that AA genotype was associated with methotrexate-induced 

hyperhomocysteinaemia and patients were at a higher risk of treatment related toxicity 

(Toffoli et al. 2003). Moreover, this SNP has also been observed to reduce 

chemosensitivity to methotrexate in breast cancer cell lines (Sohn et al. 2004). Toffoli 

and co-workers also found a higher incidence of acute toxicity in Caucasian breast 

cancer patients carrying the AA genotype during CMF (cyclophosphamide, 

methotrexate, and fluorouracil) treatment (Toffoli et al. 2000a). Furthermore, in a 
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study consisting of 248 women with breast cancer, African American and Caucasian 

women with the GA and AA genotypes for A222V (ra1801133) were shown to have 

an increased cancer survival rate (Martin et al. 2006). However, in another study, no 

relationship between this variation and disease-free survival was found in breast 

cancer patients treated with FEC (cyclophosphamide, epirubicin, and fluorouracil) or 

CMF (Pare et al. 2007). The variant A222V (rs1801133) was detected in our studied 

population with a MAF of 45% which was lower than the Mexican population 

(46.9%), however, it was clearly higher than African Americans, Indians, Luhya and 

Yoruba that showed a MAF of 13.9%, 15%, 7.1% and 10.6%, respectively. 

The SNP rs1695 in the GSTP gene, that encodes for glutathione S-transferase, results 

in the amino acid change L105V, was observed in 94 women with breast cancer 

receiving anthracycline based CEF (cyclophosphamide, epirubicin, and fluorouracil) 

treatment. The study found that GG genotypes were associated with homological 

toxicity (Zárate et al. 2007). However, a study on Chinese patients with breast cancer, 

has shown that patients with the G allele have increased survival following 

cyclophosphamide-based chemotherapy than those with the A allele (Ge et al. 2013). 

In another study, colorectal cancer patients were found to be at an increased risk of 

toxicity when treated with cyclophosphamide (Braun et al. 2009). Moreover,  patients 

with AA genotype had increased oxaliplatin-induced neuropathy (Lecomte et al. 

2006). The MAF for L105V variant was 62.7% in our population which was lower 

than the Colombians (64.4%), Indians (68.9%) and British population (68.1), but 

higher than Mexican, African American and sub-Saharan populations (Table2.5).  
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 2.5. Conclusion 

Pharmacogenetics gives a unique way for studying and investigating the variability in 

response of chemotherapeutic drugs which have a narrow curative effect and show 

inter-individual differences. However, understanding the impact of genetic variations 

in drug metabolizing enzymes, transporters and targets could provide a solution to 

precision cancer treatment based on a patient’s genetic profile, ensuring they receive 

the drug with the highest efficacy and lowest toxicity. This study investigated the 

allele and genotype frequencies of ten SNPs in six pharmacogeneticaly cancer 

relevant genes in the South African Cape Admixed population. SNaPshot method was 

used successfully for high throughput genotyping. The genotypic and allelic 

frequencies obtained were compared globally to different ethnic groups. 

Ultimately, the genotype and allele frequency data of this study could assist in 

providing effective cancer treatments in the correct dosages for the South African 

Cape Admixed population. 
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Chapter Three 

Development of a Pharmacogenomic profiling panel of cholesterol lowering drugs 

3.1. Introduction 

Many transporters play an essential role in the membrane transport of clinical drugs, as they 

are involved in absorption, distribution and excretion of drugs (Tamai 2012). In addition, the 

ability of transporters to change the tissue concentrations of drugs such as statins, affects 

their pharmacological and/or toxicological properties (Giacomini et al. 2010; Shitara et 

al. 2013). However, it has been recognized that genetic variations play a role in determining 

a patient’s drug response and susceptibility to toxicity to statins (Needham and Mastaglia 

2014).  

The genetic structure in the organic anion-transporting polypeptide 1B1 (OATP1B1) and the 

organic anion-transporting polypeptide 1B3 (OATP1B3) varies from one population to 

another around the world which creates a great chance for pharmacogenetic studies (Sortica 

et al. 2012). The solute carrier organic anion transporter family member 1B1 (SLCO1B1) 

gene and the solute carrier organic anion transporter family member 1B3 (SLCO1B3) gene 

that code for OATP1B1 and OATP1B3, respectively are thought to mediate the influx and 

metabolism of statins in the liver (Schwarz et al. 2011). Some studies have previously shown 

connections between genetic variations in SLCO genes and the pharmacokinetics of substrate 

uptake. For example, the common variation V174A (rs4149056) in the SLCO1B1 reduces the 

activity of the OATP1B1 transporter which leads to increase plasma concentrations of several 

statins (Niemi et al. 2011). 

In this part of this study, we developed a robust genotyping system based on the SNaPshot 

minisequencing reaction to investigate the genotypic and allelic distributions of five SNPs in 
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the solute carrier organic anion transporter 1B1 (SLCO1B1) gene and five SNPs in the solute 

carrier organic anion transporter 1B3 (SLCO1B3) gene related to cholesterol lowering drugs. 

In addition, we generated important pharmacogenomic data for FDA approved cholesterol 

lowering drugs. The data was compared to different ethnic groups worldwide. The haplotype 

structure of these genes was designated and possible implications of the genetic variations on 

cholesterol lowering drugs in the South African Cape Admixed population are discussed. 

3.2. Materials and Methods 

3.2.1. Sample Collection 

Samples collection was as described in Chapter Two. 

3.2.2. DNA Extraction 

Genomic DNA was extracted from buccal swab samples using a standard salt-lysis method 

and stored at -20°C as described in Chapter Two. 

 

3.2.3. SNP Selection 

Ten single nucleotide polymorphisms (SNPs) were investigated in this part of the study. 

SNPs were selected based on the available evidence on clinical relevant genetic variants in 

cholesterol lowering therapy as gathered from the Pharmacogenomics Knowledgebase 

(http://www.pharmgkb.org), US Food and Drug Administration website (FDA) 

(http://www.FDA.gov), the UCSF-PMT (http://www.pharmacogenetics.ucsf.edu/) database 

and Ensembl database (http://www.Ensembl.org ). Genetic variants were initially selected 

based on the FDA's table of pharmacogenomic biomarkers in drug labelling for cholesterol 

lowering drugs, and narrowed down to ten SNPs using additional clinical relevance available 

in the Pharmacogenomics Knowledgebase (http://www.pharmgkb.org). 

 

 

 

 

http://www.pharmgkb.org/
http://www.fda.gov/
http://www.pharmacogenetics.ucsf.edu/
http://www.ensembl.org/
http://www.pharmgkb.org/


 

52 

 

3.2.4. Primer Design 

All primers were designed as described in Chapter two. PCR primers were designed to have 

an annealing temperature between 52°C and 55°C. Table 3.1 shows a list of PCR primers and 

Table 3.2 shows minisequencing primers.  
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Table 3.1- Multiplex PCR primers for the selected SNPs related to Cholesterol lowering drugs used in SNaPshot™ genotyping. 

Gene 
NCBI 

(dbSNP) 
Forward primer (5´to 3´) Reverse Primer (5ʹto 3ʹ) 

Amplicon length 

 (bp) 

SLCO1B1 rs4149056 CATGGCTTTGCTCTTCCTTC TGTAAGAAAGCCCCAATGGT 404 

SLCO1B1 rs2306283 GGGGAAGATAATGGTGCAAA GCTGCCTGTGTGTTCTCAAA 561 

SLCO1B1 rs4149015 TGGCCTTGGGTCTACATTTC CGTGGTATGTATGGAGACTGGA 661 

SLCO1B1 rs11045819 CAACATCGACCTTATCCACTTG TGTTAATGGGCGAACTGTGT 249 

SLCO1B1 rs4149036 CCTCTGTGCCACTATCAGTACC      GCTTCAGTGAAATGATGGGAAC 348 

SLCO1B3 rs4149117 CATTTGGGGCATTCAGTTCT TCTCAAAAGGTAACTGCCCACT 307 

SLCO1B3 rs57585902 ACCCACTTTGTTCATGGTGT GGTGGTGGGTTTCTCCTTCT 594 

SLCO1B3 rs60140950 GCACACAAGATCAGGCAATG CCTTGGTTGGTCAAATTAGC 465 

SLCO1B3 rs12299012 GGGTGAATGCCCAAGAGATA CCCCTCACATCCCCTTACTT 888 

SLCO1B3 rs72559743 ACACTGCCTGCCTGATCTCT TGTGGTACCTCCTGTTGCAG 764 
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3.2.5. PCR Amplification:  

The PCR reactions were performed as described in Chapter two. Cycling parameters were 

carried out as follows: initial denaturation at 95°C for 3 min, a total of 30 cycles of 

denaturation at 95°C for 15 s, annealing at 55°C for 15 sec, extension at 72°C for 15 sec, 

followed by final extension at 72°C for 1 min and a hold step at 4°C.  

3.2.6. Post PCR purification: 

PCR products were purified as described in Chapter Two. 

3.2.7. SNaPshot minisequencing reaction (Single base extension): 

Minisequencing reaction was performed in a 10 µl reaction volume using 3 µl of the purified 

PCR products, 0.4 µM of primers, and 2 µl of SNaPshot™ ready reaction mix (Applied 

Biosystems, U.S.A). Sequence cycling was performed according to the manufacturer’s 

instructions.  
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Table 3.2-SNaPshot minisequencing reaction primers of the selected SNPs related to cholesterol lowering drugs. 

NCBI 

(dbSNP) 

Amino Acid 

Change 

Nucleotide 

Change 

Minisequencing Reaction Primers 

 

 

 

Primer 

Direction 

 

Position 

Accession number 

(NC_000006.12) 

Size bp Poly GCAT tail 

rs4149056 V174A T>C GGAATCTGGGTCATACATGTGGATATATG Forward 21178615 30 0 

rs2306283 N130D G>A AGTTACAGGTATTCTAAAGAAACTAATATC Forward 21176804 35 5 

rs4149015 Intron G>A CATTTTCACACATATATACATATGTACATA              Reverse 21130388 40 10 

rs11045819 P155T C>A GACTCTATCACCCTTTTCCATTCTTAATTA            Reverse 21176879 45 15 

rs4149036 Intron C>A TTATTATTATCCCTTTAAATAGGCAGTTAC Forward 21174806 50 20 

rs4149117 S112A G>T CTCCTTATGGGAACTGGAAGTATTTTGAC        Forward 20858546 55 25 

rs57585902 T147A A>G GGAATAGTAAGTTACCTTGTAGTGGACTC              Reverse 20861096 60 30 

rs60140950 G256A G>C GAATAACTCCTAAGGACTCTCGTTGGGTTG        Forward 20875274 65 35 

rs12299012 V560A T>C CAGGAGGTACCACATTTATCTTGTTGACTG                      Forward 20883599 70 40 

rs72559743 G522C G>T CACTTACGGGTTCTCTATTATGAACATGTT          Reverse 20883484 75 45 
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3.2.8. Post Extension Purification 

Post-extension products were purified as described in Chapter Two. 

3.2.9. Electrophoresis of the minisequencing products 

The fluorescently labelled fragments were separated on an ABI Prism 3500 Genetic Analyzer 

(Applied Biosystems, USA) as described in Chapter Two. Data was analyzed using 

GeneMapper® IDX Software Version 1.4 (Applied Biosystems, USA). 

3.2.10. Statistical Analysis 

The statistical analysis of the data was done using the freely available software, GenAlEx as 

described in Chapter Two, as well as  the SHEsis analysis platform was used to deduce the 

haplotype frequencies (Yong and Lin 2005; Li et al. 2009). 

 

3.3. Results: 

3.3.1. SNaPshot minisequencing Genotyping: 

Our studied population composed of a 130 healthy, unrelated Cape Admixed participants 

residing in Cape Town, South Africa. There were 12 (9%) females and 118 (91%) males 

between the ages of 14 and 68 years. 

In this chapter, a SNaPshot multiplex assay was developed for genotyping five SNPs in 

SLCO1B1 and five SNPs in SLCO1B3 transporters genes in intronic and coding regions that 

are associated with FDA cholesterol lowering drugs (statins). The original primer 

concentration for the amplification reactions was 0.2 µM. However, minor optimization of the 

SNaPshot minisequencing reaction was required and the primer concentration was increased 

to 0.4µM for all the SNPs to get better results for each. As described in Chapter Two a 
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notable number of shifts for fragments during capillary electrophoresis were detected. 

Genotypes were confirmed with direct sequencing is discussed in detail in Chapter Four. A 

typical electropherogram profile of the SNaPshot minisequencing genotyping system of the 

ten selected SNPs relevant to cholesterol lowering drugs is displayed in Figure 3.1. 

 

Figure 3.1- Electropherogram profile of the SNPs related to cholesterol lowering drugs. Green peaks indicate an 

A nucleotide, blue peaks indicate a G nucleotide, black peaks indicate a C nucleotide and red peaks indicate a T 

nucleotide. 

SNaPshot genotyping results in the Cape Admixed are reported in Table 3.3. The minor allele 

frequency (MAF) for the ten variants was compared to seven different ethnic groups which 

were: BGR (British in England and Scotland), CLM (Colombian in Medellin, Colombia), 

MXL (Mexican ancestry in Los Angeles in California), GIH (Gujarati Indian in Houston), 

ASW (African ancestry in Southwest US), LWK (Luhya in Webuye, Kenya) and YRI 

(Yoruba in Ibadan, Nigeria), summarized in Table 3.4 and depicted in Figure 3.2. 

Only two SNPs (rs4149056 and rs2306283) were determined to be in HWE (p>0.05). Four 

out of the ten studied SNPs were monomorphic in the Cape Admixed population. None of the 

participants were homozygous for the variant allele for N130D (rs2306283), P155T 
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(rs11045819), G256A (rs60140950), S112A (rs4149117), V174A (rs4149056) and the 

intronic (rs4149036). The N130D variant genotype frequencies for wild-type homozygote 

(GG), heterozygote (GA) and mutant homozygote (AA) were 50.8%, 36.2% and 13%, 

respectively (Table 3.3). The P155T variant genotype frequencies for wild-type homozygote 

(CC), heterozygote (CA) and mutant homozygote (AA) were 61.5%, 38.5% and 0.0%, 

respectively. The genotype frequencies for G256A variant wild-type homozygote (GG), 

heterozygote (GC) and mutant homozygote (CC) were 96.1%, 3.1% and 0.8%, respectively. 

Interestingly, while this variant was not observed in African American and Yoruba; it was 

observed in the Cape Admixed, British, Colombian and Mexican populations (Table 3.4). 

The S112A variant genotype frequencies for wild-type homozygote (GG), heterozygote (GT) 

and mutant homozygote (TT) were 63.1%, 36.9% and 0.0%, respectively. The intronic 

variant rs4149036 genotype frequencies for the wild-type homozygote (CC), heterozygote 

(CA) and mutant homozygote (AA) were 48.5%, 50% and 1.5%, respectively. The variant 

V174A genotype frequency for wild-type homozygote (CC) was 90.8%, while heterozygote 

(CT) and mutant homozygote (TT) were 8.4 % and 0.8%, respectively. The intronic variant 

rs4149015 was not observed in the Cape Admixed and Yoruba. However, it was observed in 

the other populations. Two variants, T147A (rs57585902) and V560A (rs12299012) were not 

observed in the Cape Admixed, British, Colombian and Mexican; however, they were 

observed in the African American and the sub-Saharan populations. No population data was 

found for the variant G522C (rs72559743) on the database, which was not observed in the 

Cape Admixed population. 
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Table 3.3 - Genotype and allele frequencies of the selected SNPs related to cholesterol 

lowering drugs in 130 healthy Cape Admixed individuals. 

Amino Acid 

Substitution 

 

 

Gene 

 

 

dbSNP ID 

 

Observed Genotype Frequency 

 

Allele Frequency 

Genotype % 95% CI Allele % 95% CI 
HWE 

(P) 

 V174A 

 

rs4149056 

TT 90.8 85.83-95.77 T 95 92.35- 97.65  
0.213  

 
SLCO1B1 TC  8.4 3.63-13.17 C 5 2.35-7.65 

CC  0.8 0.0-2.33    

          

N130D 

 

rs2306283 

GG 50.8 42.21-59.39 G 68.8 63.17- 74.43 

0.073 SLCO1B1 GA 36.2 27.94- 44.46 A 31.2 25.57- 36.83 

AA 13 7.22- 18.78    

          

Intron 

 

rs4149015 

GG 100.0 100-100 G 100.0 100-100  

NA SLCO1B1 GA 0.0 0.0 A 0.0  0.0 

AA 0.0 0.0    

          

P155T 

 

rs11045819 

CC 61.5 53.14-69.86 C 80.8 76.01- 85.59 

0.007 SLCO1B1 CA 38.5 30.14-46.86 A 19.2 14.41-23.99 

AA 0.0 0.0    

          

Intron 

 

rs4149036 

CC 48.5 39.91-57.09 C 73.5 68.14-78.86 
0.001 SLCO1B1 CA 50 41.41-58.59 A 26.5 21.14- 31.86 

AA 1.5 0.0-3.59    

          

S112A 

 

rs4149117 

GG 63.1 54.81-71.39 G 81.5 76.78- 86.22 
0.010 SLCO1B3 GT 36.9 28.61-45.19 T 18.5 13.78- 23.22 

TT 0.0 0.0    

          

 T147A 

 

rs57585902 

AA 100.0 100-100 A 100.0 100-100  

NA SLCO1B3 AG 0.0 0.0 G 0.0 0.0  

GG 0.0 0.0    

          

G256A 

 

rs60140950 

GG 96.1 92.77-99.43 G 97.7 95.88-99.52 

0.000 SLCO1B3 GC 3.1 0.12-6.08 C 2.3 0.48-4.12 

CC 0.8 0.0-2.33    

          

V560A 

 

rs12299012 

TT 100.0 100-100 T 100.0 100-100  

NA SLCO1B3 TC 0.0 0.0 C 0.0   0.0 

CC 0.0 0.0    

          

       NA G522C 

 

rs72559743 

GG 100.0 100-100 G 100.0 100-100  

SLCO1B3 GT 0.0 0.0 T 0.0   0.0 

TT 0.0 0.0    

P-Value will be NA for monomorphic SNPs (MAF =0). 
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      Table 3.4- Comparison of MAF of the SNPs related to cholesterol lowering drugs of the Cape Admixed population to other ethnic groups. 

 

     a.This study, b. Data from Ensembl database (http://www.Ensembl.org) 

dbSNP ID 
Amino acid 

change 

Minor 

Allele 

Minor Allele Frequency (%) 

 Cape 

admixed 
a British 

b 
Colombian 

b 
Mexican 

b 
Indian 

b African-

American 
b Luhya 

b 
Yoruba 

b 

rs4149056 V174A C 5.0 14.3 18.1 7.8 1.9 6.6 2.0 0.9 

rs2306283 N130D A 31.2 64.3 52.1 62.5 44.7 25.4 15.7 18.5 

rs4149015 Intron A 0.0 2.2 6.9 2.3 5.8 0.8 3.0 0.0 

rs11045819 P155T A 19.2 15.4 14.9 5.5 2.9 6.6 2.5 5.1 

rs4149036 Intron A 26.5 18.1 25.0 12.5 10.7 54.9 56.6 59.7 

rs4149117 S112A T 18.5 13.2 11.2 13.3 6.8 51.6 72.2 65.3 

rs57585902 T147A G 0.0 0.0 0.0 0.0 0.0 4.1 2.5 5.6 

rs60140950 G256A C 2.3 15.9 14.9 4.7 9.2 0.0 0.5 0.0 

rs12299012 V560A C 0.0 0.0 0.0 0.0 0.0 0.8 2.0 2.8 

rs72559743 G522C T 0.0 ND ND ND ND ND ND ND 
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Figure 3.2- Allele frequencies of the selected SNPs related to cholesterol lowering drugs compared to other ethnic groups. 

Cape Admixed (This study); British, Colombian, Mexican, Indian, African American, Luhya and Yuroba (Ensembl database). 
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3.3.2. Haplotype analysis: 

Haplotypes were calculated using the SHesis online platform. Twelve haplotypes were 

distinguished from the five SNPs in the SLCO1B1gene, and four haplotypes were identified 

from the five SNPs in the SLCO1B3 gene (Table 3.5A and Table 3.5 B). The most frequently 

observed haplotypes in the SLCO1B1gene were T G G C C (33.2%), T A G C C (28.3%), T 

G G C A (14.7), T G G A A (9.4%) and T G G A C (7.8%), while the most frequently 

observed haplotypes in SLCO1B3gene were G A G T G (79.2%) and T A G T G (18.5%). 
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Table3.5 A- Haplotype structure defined by the 5 SNPs in the SLCO1B1 gene in the Cape 

Admixed population. 

 
Haplotype No. Haplotypes 

(1)
 Frequency % 

Haplotype *1 T G G C C 33.2 

Haplotype *2 T A G C C 28.3 

Haplotype *3 T G G C A 14.7 

Haplotype *4 T G G A A 9.4 

Haplotype *5 T G G A C 7.8 

Haplotype *6 C G G C A 1.7 

Haplotype *7 T A G A C 1.6 

Haplotype *8 C G G C C 1.5 

Haplotype *9 C A G C A 0.7 

Haplotype *10 C A G C C 0.6 

Haplotype *11 C G G A C 0.5 

Haplotype *12 T A G C A 0.0 

  Total 100  

 

Table3.5 B-Haplotype structure defined by the 5 SNPs in the SLCO1B3 gene in the Cape 

Admixed population. 

Haplotype No. Haplotypes 
(1)

 Frequency % 

 Haplotype*1 

 

G A G T G 

 

 79.2 

Haplotype*2  

 

T A G T G 

 

 18.5 

Haplotype*3 

 

G A C T G 

 

2.3  

Haplotype*4 

 

T A C T G 

 

0.0 

  Total 100  

1 - Haplotype sequences are based on the position of SNPs on chromosome 12. 
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3.4. Discussion: 

The SNaPshot minisequencing reaction was selected as it is an easy, accurate, and high 

throughput method for SNP analysis. Minimal optimization of increasing the primer 

concentration to 0.4 µM for each SNP was required to get good profiles. As a part of the 

project, ten SNPs in SLCO1B1 and SLCO1B3 genes were genotyped in 130 unrelated healthy 

individuals of the Cape Admixed population in South Africa.  

Drug transporters are important proteins involved in drug absorption, tissue accumulation and 

elimination from the body. Thus, recent interest has focussed on the contribution of inter-

individual variability that affect drug transporter function in drug response (DeGorter 2012). 

OATPs transporters encoded by the SLCO genes are uptake transporters with wide substrate 

specificity although statins are considered to be their commonly specified substrates. 

Furthermore, hepatocytes are the major site of stains action where transporter proteins from 

OATP1B subfamily are expressed (DeGorter 2012; Romaine et al. 2010). 

The common variant V174A (rs4149056) was found to be associated with altering the 

transporter activity of pravastatin in vitro (Tirona et al. 2001). Moreover, different studies 

have confirmed that this substitution is linked to decreased hepatic transporter activity of 

rosuvastatin, atorvastatin and pravastatin (Tirona et al. 2003; Katz et al. 2006;Oswald et al. 

2008). Thompson et al. studied the variant V174A (rs4149056), and noticed a significant 

effect on the ability of fluvastatin to affect HDL cholesterol (Thompson et al. 2005). 

However, they did not notice any significant associations for LDL cholesterol lowering. 

Furthermore, a study enrolled elderly patients with vascular risk or at risk of vascular disease 

showed that the V174A variant showed less pravastatin induced low LDL-Cholesterol levels 

(Akao et al. 2012). A previous study identified that the V174A  was correlated with reduced 

plasma concentrations of pravastatin in paediatric heterozygous familial 
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hypercholesterolemia (HeFH) (Hedman et al. 2006). The MAF for V174A recorded by 

Rajput et al. in study conducted on Pakistani population was observed at 23.9% (Rajput et al. 

2014). However, in the present study the variant was observed to have a MAF of 5% in the 

Admixed population which was lower than Mexican and African American, but higher than 

sub-Saharan and Indian populations (Table 3.4). 

It was reported that the variant N130D (rs2306283) was responsible for OATP expression in 

the liver cells (Nies et al. 2013). In a study, it  has been found that N130D associated with a 

significant increase in atorvastatin response, which was an evaluated reduction in LDL-

cholesterol (Rodrigues et al. 2011). Also, Kadam and co-workers identified in their recent 

study of 177 hypercholesterolaemic Indian patients undergoing atorvastatin treatment, that 

the variant N130D displayed a notable reduction of LDL-cholesterol in response to 

atorvastatin (Kadam et al. 2016). This variation was observed in our population with a MAF 

of 31.2% which was significantly lower than the Hispanic, Indian and British populations.  

Hedman et al. (2006) reported that the intronic SNP rs4149015 was associated with reduced 

plasma concentrations of pravastatin in children with heterozygous familial 

hypercholesterolemia (HeFH). This variant was not observed in Cape Admixed or in the 

Yoruba. However, it was recorded in British, Hispanic, Indian and African American 

populations (Table 3.4).  

In a study of 420 French patients with hypercholesterolemia used fluvastatin, Couvert and co-

workers reported that the SLCO1B1 variant, P155T (rs11045819) reduced LDL in the 

patients with the CC genotype  more than in  CA and AA genotypes (Couvert et al. 2008). In 

the Cape Admixed, this variant demonstrated a MAF at 19.2% which was higher than 

Colombian (14.9%) and British (15.4%) populations. 
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The intronic SNP rs4149036 was identified to be linked with triglyceride lowering in 

atorvastatin treated individuals with the uncommon homozygous AA (Thompson et al. 2005). 

This study found that the MAF for this variant was 26.5% which was a bit higher than that in 

Colombians (25%). 

The SLCO1B3 S112A (rs41429117), has been shown to increase transporter activity in vitro 

(Letschert et al. 2004). The T allele of S112A in Italians and Hungarians was observed at 

29.4% and 47.8%, respectively (Nagy et al. 2015). It was detected in Chinese (35%), Malay 

(20%) and Indians (8%) in a study by Chew et  al. (2011) and 15% in Caucasians (Baker et 

al. 2009). However, in the present study this variant was observed with a MAF of 18.5%. 

In a study of HeLa cell lines, V560A (rs12299012) in SLCO1B3 showed reduced uptake 

activity for rosuvastatin compared to the wild-type (Schwarz et al. 2011). To our knowledge, 

clinical data is currently lacking for the variant T147A (rs57585902). However,  this SNP and 

V560A (rs12299012) were not observed in Chinese, Malays and Indians (Chew et al. 2011) 

which corresponds with our population, British, Hispanic and Gujarati Indian populations. 

Both variants were observed in Caucasians with a MAF of  0.5% and 1.6%, respectively 

(Baker et al. 2009). 

The variant G256A (rs60140950) associated with the expression of SLCO1B3 gene was 

reported to have a negative effect on protein function in Caucasian Europeans (Geraldine et 

al.). Chew and colleagues also investigated the variant G256A (rs60140950) and it was found 

in Malays and Indians with MAF of 4% and 5%, respectively, but not in Chinese (Chew et al. 

2011). Similarly, a previous study (Baker et al. 2009) detected  this variant in Caucasians 

with a MAF of 1.9% which roughly corresponded with our population result that showed a 

MAF at 2.3%. 
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The rare SLCO1B3 variant, G522C (rs72559743) is reported to decrease protein expression 

and reduce the transporter activity which may be because of its location in the key regions of 

the transporter OATP1B3 (Letschert et al. 2004; Schwarz et al. 2011). It is notable that there 

is no population data on this variant on the database. However, Letschert et al. (2004) 

detected this SNP in Caucasians with a MAF of 2%. Chew et al. (2011) did not observe it in 

Chinese, Malays and Indians populations. This allele was also not detected in our study of the 

Cape Admixed. 

The incorporation of haplotypes in pharmacogenetic studies is believed to provide a more 

complete picture of loci that are applicable in genetic medicine to determine individual or 

population response to relevant drugs (Crawford and Nickerson 2005). In our study 

represented here, the haplotype structure defined for the ten SNPs was determined for the 

Cape Admixed population. Twelve haplotypes were detected from the five SNPs in 

SLCO1B1 and four haplotypes were inferred from the five SNPs in SLCO1B3. This data of 

haplotype structure could provide the basis of more clinical and in vitro studies to determine 

a suitable dosage for individuals with high efficacy and low toxicity. 

3.5. Conclusion: 

To conclude, in this chapter, we have focused on particular genes (SLCO1B1 and SLCO1B3) 

which encode for transporters located on the basolateral membrane of hepatocytes. These 

transporters have a significant role in the transport of statins. SNaPshot assay was developed 

to genotype five SNPs in SLCO1B1 and five SNPs in SLCO1B3. The obtained results were 

compared to seven different ethnic groups. In addition, haplotypes were inferred from these 

genes. Studying solute carrier transporters (SLCs) genetic variations and their 

pharmacogenetics implications in African populations will fill the gap in the missing data of 
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pharmacogenetics. Pharmacogenetics can be a robust tool to investigate the effect of genetic 

differences in these genes and their impact on drug response.  

In the next chapter, we are going to discuss high resolution melt technique as an alternative 

genotyping system.  
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Chapter Four 

Development and performance evaluation of High Resolution Melt Analysis Genotyping 

System   

4.1. Introduction 

SNPs are commonly investigated as markers of genetic variation in pharmacogenetics studies 

of cancer and other complex diseases (Martino et al. 2010). During the past decade, many 

high throughput genotyping techniques have been improved and developed (Martino et al. 

2010). However, in the recent years it has been suggested that high resolution melt technique 

(HRM) is the most widely used technique in genome analysis (Martino et al. 2010). HRM is 

a cheap, fast and easy method to discriminate single base variations and small insertions and 

deletions (Druml and Cichna-Markl 2014; Prajantasen et al. 2015). HRM analysis was first 

introduced by Ririe et al. (1997). It is a real-time PCR-based technique for mutation and 

genotyping studies (Ezgu et al. 2014; Mastoraki et al. 2015). It is based on the principle that 

different PCR products vary in their melting temprature depending on the percentage of GC, 

length and sequence  (Druml and Cichna-Markl 2014; Prajantasen et al. 2015). HRM is ideal 

for SNP genotyping, however, it is not recommended for screening genes with highly 

variable SNPs (Vondráčková et al. 2015). Given that a HRM approach offers several, the aim 

of this part of the study was to develop an HRM-based method for genotyping SNPs 

associated with FDA approved anticancer and lowering cholesterol drugs in the Cape 

Admixed population. HRM performance was evaluated and compared with SNaPshot as it is 

the standard genotyping system which its results were confirmed by direct sequencing.  
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4.2. Materials and Methods 

4.2.1. Sample Collection 

Samples were collected as described in Chapter2. 

4.2.2. DNA Extraction   

Genomic DNA was extracted as described in Chapter 2. 

4.2.3. SNP Selection 

SNPs were selected as described in Chapters 2 and 3. 

4.2.4. Primer Design 

All primers were designed by using Primer3plus tool and synthesized by Inqaba Biotec, 

South Africa (Table 4.1). The amplicons were made with the size ranging from 154-280 bp 

then aligned at Ensembl using BLAST (http://www.ensembl.org/Multi/Tools/Blast). Primers 

were diluted to a working stock of 2 μM.  
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Table 4.1- A list of selected SNPs primers used in HRM analysis. 

 

Gene dpSNP ID 

 

Nucleotide 

Change  

 

Forward primer  Reverse primer  

Amplicon 

length 

 (bp) 

DPYD rs3918390 C/T TGCCAATTCTCTTGTTTTAGATG GACAAATGTTTCCCCCAGAA 195 

DPYD rs2297595 T/C GCGAAGGATTTCTGATCTGTG AATGTGCCCCATGAGTGTTT 278 

TPMT rs1800460 C/T TTACCATTTGCGATCACCTG TAAAACCATGAGGGGATGGA 265 

MTHFR rs1801133 G/A GAAAAGCTGCGTGATGATGA TGTTGGAAGGTGCAAGATCA 231 

TPMT rs1142345 T/C ATTTTATCTATGTCTCATTTACTTTTCTGT CATGTTACTCTTTCTTGTTTCAGGTAAAAT 154 

SLCO1B1 rs4149056   T/C TCTACATAGGTTGTTTAAAGGAATCTGG AAAGTAGACAAAGGGAAAGTGATCATAC 208 

SLCO1B3 rs60140950 G/C CACTATCAGAATAACTCCTAAGGACTCTC CTGACTCTAGATGATTTGAGTATGCTTTAT    343 

SLCO1B3 rs57585902 A/G CATCAGAAAATTCAACATCAAGTTTATC GGATAAATGTTCTTCCTATTTGTTCTTAAA 209 

SLCO1B1 rs11045819 C/A ATTAATCAAATTTTATCACTCAATAGAGCA GGGCGAACTGTGTATATTAACACTATAA 216 

SLCO1B1 rs2306283   G/A ATTCAGTGATGTTCTTACAGTTACAGGTAT AATTATGTCTGTAAGAGTCAAATGTTTTTC 280 
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4.2.5. HRM Analysis 

HRM was done using the KAPA HRM FAST PCR kit. The final reaction volume of 20 µl 

contained 15 ng of DNA and was set up according to manufacturer’s instructions. HRM 

analysis was performed on a 36-well Rotor Gene Q (Qiagen) real-time PCR thermocycler. 

Thermocycling conditions were: initial hold at 95°C for 3 min, followed by a total of 40 

cycles of denaturation at 95°C for 5 sec, annealing at 63°C for 20 sec and extension at 72°C 

for 30 sec with fluorescence acquisition, then HRM was performed over a melting 

temperature ranging from 70°C-95°C at the rate of 0.1 °C per sec. Melt profiles were then 

analysed using the Rotor Gene data collection software (Qiagen). 

 

4.2.6. HRM sensitivity: 

HRM sensitivity was calculated by the number of genotypes obtained over the total reactions 

(Martino et al. 2010), while error rate was calculated as the number of genotypes different 

between HRM and SNaPshot divided by the number of genotypes obtained by HRM (Cui et 

al. 2013).  

4.2.7. Sequencing analysis: 

Direct sequencing was used to validate SNaPshot genotyping results, which the later was 

used to evaluate and validate the HRM performance as a standard for genotyping. 

 

 

 

 

 

 

 

 



 

73 

 

4.3. Results: 

4.3.1. PCR and HRM optimization: 

 

4.3.1.1. Optimizing annealing temperature: 

Firstly, all primers sets needed to be optimized to determine an appropriate annealing 

temperature (Ta). Therefore, gradient PCR was performed for each primer set and any 

resultant amplicons were analyzed by 2% agarose gel electrophoresis. Figure 4.1 showed the 

result of optimizing annealing temperature for the SNP rs60140950 HRM primer which the 

bands had quite similar brightness. However, the annealing temperature at 63 gave the best 

result. 

 

 

Figure 4.1-Anneaing temperature optimization of the SNP (rs60140950) by gradient PCR on 2% agarose gel.  

1: at 58°C, 2: at 59°C, 3:  at 60°C, 4: at 62°C, 5: at 63°C. 
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4.3.1.2. Optimizing MgCl2 concentration: 

MgCl2 concentration was the main factor that affected our results. Five concentrations of 

MgCl2 (2.5mM, 3.5mM, 5mM, 7.5mM and 10mM) were tested. However, the best result that 

could discriminate heterozygote samples was 10mM MgCl2 (Figure 4.2).  

 

Figure 4.2-MgCl2 optimization of the SNP (rs60140950) on 2% agarose gel. 1: 2.5mM, 2.5mM, 3: 7.5mM, 4: 

10 mM. 

 

4.3.2. Genotyping: 

The homozygotes samples of the investigated SNPs rs3918290, rs1800460, and rs57585902 

were detected easily. However, no heterozygotes samples for the SNPs rs1801133, 

rs1142345, rs11045819 and rs60140950 were able to be discriminated. They were detected 

only for the SNPs rs4149056, rs2306283 and rs2297595 (Figure 4.3).  

As shown in Figure 4.3, for the SNP rs1801133, the wild type G and the mutant A were  

detected on the HRM mutation scan, however, the melting temperature (Tm) of the mutant A 

was slightly shifted to the left compared to  the wild type G, and the reason of that is AT base 

pair had a lower melting temperature compared to a GC base pair (Cui et al. 2013). 
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Figure 4.3- HRM mutation scan for SNP rs1801133. The wild type G and mutant A can clearly be 

distinguished. 

In Figure 4.4 A and B, heterozygosity in the SNPs rs4149056 and rs2306283 is clearly 

detected as their peaks were much lower and wider than the peaks for the homozygote 

samples. 

 

Figure 4.4 A- HRM mutation scan of SNP rs4149056. The homozygotes and heterozygote peaks can be clearly 

distinguished based on peak height. 
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Figure4.4 B- HRM mutation scan of SNP rs2306283. The homozygotes and heterozygote peaks can be clearly 

distinguished based on peak height. 

4.3.3. Evaluation of SNaPshot and HRM systems: 

We compared sensitivity of HRM with the SNaPshot assay which was confirmed by direct 

sequencing (Table 4.2). HRM sensitivity, defined as the number of genotypes obtained over 

the total number of reactions (Martino et al. 2010), while error rate was calculated by taking 

the number of genotypes different between HRM and SNaPshot divided by the number of 

genotypes obtained by HRM (Cui et al. 2013). 

The data represented here showed a mean level of HRM sensitivity of 89.2%, while the mean 

error rate was 20.8 % (Table 4.3). The difference in HRM sensitivity which was 

demonstrated in this study could be attributed to several factors. However, some previous 

studies showed that the sensitivity of HRM was affected by the instrument type (De Leeneer 

et al. 2008; Herrmann et al. 2007; Cui et al. 2013). The differences detected in this study 

could be due to performing the reactions on a capillary system which is less sensitive than 

newer micro-titre plate systems. 
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Table 4.2-Confirmation of SNaPshot genotyping using direct sequencing 

 

SNPs 

 

Number of samples 

 

Correct SNaPshot genotypes 

 

*Error rate % 

rs2297595 130 126 3.2  

rs1801133 130 127  2.4 

rs1142345 130 130 0 

rs1800460 130 130 0 

rs3918390 130 130 0 

rs4149056 130 121 7.4  

rs60140950 130 126 3.2  

rs57585902 130 130 0 

rs11045819 130 130 0 

rs2306283 130 130 0 

*Error rate = number of genotypes different between SNaPshot and direct sequencing/number of correct 

genotypes obtained by SNaPshot. 
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Table 4.3- Performance of HRM in comparison to SNaPshot. 

 

(a)
Sensitivity = number of genotypes obtained/total reactions 

 (b)
Error rate = number of genotypes different between HRM and SNaPshot /number of correct genotypes obtained by HRM. 

AA = Homozygous for the ancestral allele, AB= Heterozygous, BB= Homozygous for the minor allele.

 

dp SNP ID 

 

Type of drug 

 

Total samples 

 

Correct profiles 

(a)
Sensitivity % Error rate  

Error rate% HRM SNaPshot Err/AA Err/AB Err/BB 

rs2297595 Anticancer 50 49 98 96.9 0/47 1/3 0 2.1 

rs1801133 Anticancer 50 38 76 97.7 5/25 7/7 0/18 31.6 

rs1142345 Anticancer 50 48 96 100 0/48 2/2 0 4.2 

rs1800460 Anticancer 50 50 100 100 0/50 0 0 0 

rs3918390 Anticancer 50 50 100 100 0/50 0 0 0 

rs4149056 Cholesterol lowering 50 44 88 93.1 0/44 5/6 0 11.1 

  rs60140950 Cholesterol lowering 50 49 98 96.9 0/49 1/1 0 2 

 rs2306283 Cholesterol lowering 50 32 64 100 0/21 18/22 0/7 56.3 

   rs11045819 Cholesterol lowering 50 36 72 100 0/36 14/14 0 38.9 

   rs57585902 Cholesterol lowering 50 50 100 100 0/50 0 0 0 

  Mean 44.6 89.2 98.5    20.8 
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4.4. Discussion: 

Numerous techniques are developed for SNP genotyping; however, HRM assay are less time 

consuming, easy and cheap method (Reed and Wittwer 2004; Erali et al. 2008). In addition, it 

does not require any post PCR steps, as it is done in one tube or plate (Wittwer et al. 2003; 

Norambuena et al. 2009). In comparison with SNaPshot that needs minor optimization, HRM 

has been described as an uncomplicated method which can detect several SNPs in one 

multiplex assay (Pati et al. 2004). In addition, it is reliable, rapid and accurate (Syvänen 

1999). Despite that, it is more expensive than other methods (Pati et al. 2004). 

 The aim of this present study was to develop and explore an inexpensive, fast and alternative 

method to genotype different SNPs associated with anticancer and cholesterol lowering 

drugs, and to evaluate and validate the data obtained from HRM by comparing it with the 

SNaPshot system which is considered the gold standard for genotyping. In this study, five 

SNPs related to anticancer drugs and five SNPs related to cholesterol lowering drugs were 

selected to be amplified and analysed individually and a total of 50 samples were genotyped 

for each SNP. Several factors such as amplicon size, MgCl2 concentration and DNA quality 

were taken into consideration in order to successfully performed HRM assay on the selected 

SNPs.  

It has been shown that HRM is more sensitive when small amplicons are used because the 

differences in the melting temperature (Tm) are greater compared to larger amplicons 

(Gundry et al. 2008). However, genotyping SNPs by HRM with larger products (amplicon 

size of 600 to 1000 bp) has been reported  (Reed and Wittwer 2004). Thus, in this study, 

primers were designed to generate the shortest possible amplicons flanking the mutation of 

interest with high efficiency, low template secondary structure, and low complementarity. 
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After determining the optimal conditions, HRM was successfully performed. Genotype for 

each SNP was determined after the melting peaks were normalized. Heterozygotes are easily 

distinguished by a change in shape and width of melting curve (Graham et al. 2005; Cui et al. 

2013; Gundry et al. 2008), while homozygotes could be identified by a shift in melting 

temperature (Cui et al. 2013), which is in our study differed by approximately 0.5°C. The 

homozygous SNPs detected in this study were class 1 (G/A, C/T), class 2 (C/A) and class 3 

(C/G). In a study by Liew et al., reported that about 4% of homozygous human SNPs  of 

class 3 and class 4 (T/A) cannot be detected by HRM due to the small difference in melting 

temperature (Tm) generated by homozygous T/A and C/G base pairs (Liew et al. 2004).  

4.5. Conclusion: 

In this chapter, HRM was used as an alternative, inexpensive and rapid methodology to 

genotype five SNPs related to anticancer drug therapy and five SNPs related to cholesterol 

lowering drug therapy (statins). A rigorous optimization was required for the detection 

heterozygous genotypes. The obtained SNaPshot results were confirmed by direct sequencing 

to use them as a standard for evaluating HRM performance. 

 Ultimately, this study found that the SNaPshot assay was the more appropriate method as it 

needed minor optimization compared to HRM. 
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Chapter five 

Conclusion 

SNPs are the most prolific type of variations in the genome, and have been used as molecular 

markers in a wide range of studies. A number of SNP genotyping technologies have evolved 

in the last few years. In genetic research, development of new techniques for high-throughput 

SNP analysis is one of the most stimulating areas with regards to using SNPs, particularly in 

studies of normal and pathogenic human variations. Despite the remarkable technological 

advancements, further improvements are still necessary which must focus on the 

development of cost effective and less time consuming methods. Therefore, progress in 

genotyping methods is essential for the development of precision medicine as these 

technologies will advance the healthcare industry and contribute to the evolution of medical 

science. 

African populations have the most genomic diversity in the globe. However, in spite of being 

the origin of all the modern human beings, genetics studies on these ethnically diverse 

populations is still limited. In particular, South Africa is home to different ethnic groups from 

Europe, Asia and Africa. The mix of these groups led to the establishment of a unique 

population called South African coloured population, which are distinguished in this study as 

the Cape Admixed. Intensive studies on the genomic diversity in Africa and particularly in 

South Africa should be made, which could compensate for the lack of pharmacogenetics data 

that might have significant medical implications and serve as a solution for the wide health 

burden in this continent. 
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In this study, we have developed a SNaPshot and a HRM assay for pharmacogenomics 

profiling. The performance of both genotyping systems was evaluated using direct 

sequencing.  

Ten SNPs associated with anticancer therapy were genotyped in 130 individuals within the 

Cape Admixed population. The results obtained were compared globally to seven different 

ethnic groups which were: British in England and Scotland (GBR) who served as 

representative European Caucasian; Colombian in Medellin, Colombia (CLM) and Mexican 

ancestry in Los Angeles, California (MXL) who both represented admixed populations; 

Gujarati Indian in Houston, Texas (GIH) represented Asians, while African ancestry in 

Southwest USA represented African Americans (ASW); and Luhya in Webuya, Kenya 

(LWK) and Yoruba in Ibadan, Nigeria (YRI) both served as representatives of sub-Saharan 

African populations.  

In addition to anticancer drugs profiling, five SNPs of SLCO1B1 and five SNPs of SLCO1B3 

associated with cholesterol lowering drugs were investigated and the data obtained was also 

compared to the seven different ethnic groups. The haplotype structures were inferred for the 

SLCO1B1 and SLCO1B3 genes. From the obtained results, as expected the Cape Admixed 

population shares genetic characteristics with several other global populations.  

A SNaPshot minisequencing system was successfully designed, developed and used to offer a 

quick, high throughput and accurate technique that required minor optimization. HRM 

method was designed and used to genotype five SNPs related to anticancer drugs and five 

SNPs related to cholesterol lowering drugs. The performance of HRM was evaluated by 

comparing with the SNaPshot assay results as it is the gold standard genotyping technique. 

Both assays were validated using direct sequencing. Despite its advantages - closed tube, 
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cheap and rapid method for identifying genetic variations, HRM is more time consuming  to 

optimize and may require primer redesigning as well as optimization of reaction conditions. 

In future research, we suggest exploring the use of the MassARRAY
®
 System (Agena 

Bioscience) for pharmacogenomics SNPs genotyping. This system combines mass 

spectrometry, a sensitive and robust chemistry, and advanced data analysis software to meet 

the assay design, validation, and performance needs of genomic laboratories. In addition, the 

developed genotyping systems could be further validated using clinical samples from 

patients. This could help in optimizing drug therapy for cancer and cholesterol.  
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