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In order to classify South African Sign Language as a signed gesture, five fundamental

parameters need to be considered. These five parameters to be considered are: hand

shape, hand orientation, hand motion, hand location and facial expressions.

The research in this thesis will utilise Deep Learning techniques, specifically Convolu-

tional Neural Networks, to recognise hand shapes in various hand orientations. The

research will focus on two of the five fundamental parameters, i.e., recognising six South

African Sign Language hand shapes for each of five different hand orientations. These

hand shape and orientation combinations will be recognised by means of a video stream

captured on a mobile device. The efficacy of Convolutional Neural Network for gesture

recognition will be judged with respect to its classification accuracy and classification

speed in both a desktop and embedded context.

The research methodology employed to carry out the research was Design Science Re-

search. Design Science Research refers to a set of analytical techniques and perspectives

for performing research in the field of Information Systems and Computer Science. De-

sign Science Research necessitates the design of an artefact and the analysis thereof

in order to better understand its behaviour in the context of Information Systems or

Computer Science.
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Chapter 1

Introduction

1.1 Background and Motivation

Communication in all its forms is a process that we often take for granted. We make

use of communication to convey information to others through an array of media. It is

through these media that we are able to express ideas, emotions and share experiences

and knowledge we have acquired. We also communicate to utilise services provided to us

and seek help when necessary. The ability to communicate is important for the wellbeing

of human beings.

According to a 2004 fact sheet [4], (a total of) approximately 2 million people suffer with

hearing disabilities in South Africa. A large number, between 500 000 and 600 000, were

classified as deaf and 1 500 000 were considered as hearing impaired. The population

in 2004 was 47 million. This means that 4,5% of the total South African population

suffered from hearing disabilities. Even though a large number of people are hard of

hearing only a few speak native South African Sign Language (SASL). The estimates

vary between 700 000 and 2 million.

Deaf, with a capital D, refer to people who lost the ability to hear at an early age, who

belong to the Deaf community and speak SASL [5]. Deaf, with a lowercase d, refers

to people who do not use SASL and communicate with the hearing world in a spoken

language [6].

There are two common false notions. The first of these is that there exists only one

variant of Sign Language used by the Deaf worldwide. There exists many varieties of sign

language worldwide and in some cases even two or more variants for a single country.

The second is that each sign language is a signed-gestural equivalent of a particular

spoken language e.g. German. This is completely false, signed languages are languages
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Chapter 1. Introduction 2

with their own grammar and syntax [7]. This leads to a false belief that the Deaf

understand a spoken language and can, at the very least, read and write [8]. Because of

this lack of understanding it is immediately apparent that Deaf people struggle to enjoy

most services provided to those that are literate and understand spoken languages. This

inability to understand spoken languages makes it even more challenging for Deaf people

to obtain a job compared with those who are literate and understand spoken languages.

This obstacle leads to poverty and unemployment amongst the Deaf community. Sign

language interpreters are available for the Deaf community but are costly and scarce

and thus it is not feasible for most of the Deaf [9]. SASL interpreters are valued but can

be obtrusive when, for example, visiting a doctor. It can thus be surmised that a system

that translates SASL into text or voice would be invaluable to the Deaf community.

The SASL Research Group is a subgroup within the Assistive Technologies Research

Group at the University of the Western Cape. The main goal of the SASL research

group is to create a machine learning translation system that is capable of translating

SASL into English and vice versa. The SASL research focuses on the conversion of SASL

to English which is a completely separate process to English being converted into SASL.

Research has indicated that any sign language gesture can be characterised by five

fundamental parameters, these are: hand shape, hand orientation, hand location, hand

motion, and facial expressions [10]. The recognition of a SASL gesture is comprised of

each of these parameters being recognised within an image of a video stream.

The use of machine learning techniques to recognise SASL gestures are necessary to con-

vert gestures within the obtained image data, using image processing into sign writing.

This sign writing will be converted into English and then finally into audio. Thus, the

recognition accuracy of the machine learning techniques is directly correlated with the

correctness of the final audio rendering. All of the existing research within the SASL

group has been done and constructed to run on desktop computers. The ultimate goal

would be to construct the most performant machine learning based system and have it

run on an embedded device with a camera, such as a mobile phone. These embedded de-

vices with cameras are becoming increasingly more ubiquitous, are relatively affordable

and are much better suited, in terms of convenience, to the problem domain of SASL

translation than a desktop computer.

The Assistive Technologies Research Group has created systems that recognise hand

shape [11], hand location [12, 13], hand motion [14, 15] and facial expressions [16, 17] of

a signer in a video stream. Some notable research in the group relating to hand shape

recognition has been done by Li and Foster. Li’s system extracts features pertaining to

hand shape from a stream of images supplied by means of a web camera [11]. These

features are then classified by means of a Support Vector Machine (SVM) classifier. It

 

 

 

 



Chapter 1. Introduction 3

has been shown to robustly classify even with variations in skin tone, body dimensions

and gender.

Using a SVM classifier Li was able to recognise a set of 10 SASL hand gestures with

an accuracy of 83,3%. Building on this knowledge Foster expanded by comparing the

SVM classifier to other machine learning techniques, namely, Artificial Neural Network

(ANN) and Random Forests (RF). These were chosen because they have shown promise

across a wide array of classification problems [18]. Fosters research has shown that

SVMs are considerably quicker to train than ANNs and RFs. When compared in terms

of accuracy the ANN at 85.9% accuracy outperforms both the SVM and RF, which

obtained an accuracy of 81.3%, given a trained and optimised model. The RF was

fastest in terms of carrying out a classification on a single image when compared to a

SVM and ANN. Both the implementations for the ANN and RF were the ones provided

by the OpenCV library.

The proposal for this research aimed to use Deep Learning, specifically Convolutional

Neural Networks (CNNs), on mobile devices to enhance the research at the University

of the Western Cape’s (UWC) Assistive Technologies Research Group. Research of the

literature has indicated that hand orientation recognition using monocular cameras has

not been attempted before. However, the literature indicates that numerous research

efforts regarding hand shape exist. Generally the focus is in a single plane with a

monocular view of the front of the hand but never simultaneously with multiple hand

orientations. This research investigates deep learning in relation to both the recognition

of hand orientation and hand shapes in multiple orientations simultaneously and it does

so in the context of mobile and embedded devices.

1.2 Aim of the Research

This research analyses the effectiveness of Deep Learning in the context of gesture classi-

fication using two gesture parameters, namely, hand shape and hand orientation. SASL

researchers Foster and Li have used Artificial Neural Networks and Support Vector

Machines, respectively, to recognise hand shape in a single orientation on desktop com-

puters. This research not only focuses on the recognition of hand shape but also, on

the recognition of hand orientation and hand shapes within multiple orientations using

a new machine learning technique, deep learning, on mobile devices. Thus, this research

focuses on the efficacy of Deep Learning, specifically CNNs, with respect to hand shape

recognition in multiple orientations by analysing the computation speed and accuracy

in a desktop and in an embedded context.

 

 

 

 



Chapter 1. Introduction 4

1.3 Research Question

The research question can be formulated as follows: “How performant is Deep Learning,

specifically CNNs, on embedded devices in the context of hand shape recognition in

multiple hand orientations?”

This research question can be broken down further into the following sub-questions:

1. Which parameter values for the CNNs provide an optimised network model in the

context of hand shape recognition in various orientations with respect to accuracy on

embedded devices?

2. How accurate are CNNs at classifying unseen images in the context of hand orientation

recognition on embedded devices after an optimised network model has been established?

3. How accurate are CNNs at classifying unseen images in the context of hand shape

recognition in various orientations on embedded devices after an optimised network

model has been established?

4. How fast are CNNs at classifying unseen images in the context of hand shape recog-

nition in various orientations on embedded devices after an optimised network model

has been established?

1.4 Research Objectives

In order to answer these aforementioned questions, the following was completed:

1. A system was created that would segment the hand from within an image. The

segmented hand was used as input into a CNN to do training and classification.

2. After training the CNN, the classification accuracy and speed was analysed based on

test data. The test data was a set of unseen hand shape images.

3. The trained models were tested on a modern mobile operating system, Apple iOS.

1.5 Delimitation of Study Area

This research is subject to the following set of delimiters that describe the delimitation

of the research project:

 

 

 

 



Chapter 1. Introduction 5

1. It is assumed that the user of the application will have a tripod on which to mount

the mobile device.

2. It is assumed that the user of the system, sitting or standing, remains within the

frame of the video capture device when signing SASL. The user will not need to wear any

special markers or devices. The skin colour of the user in relation to their background

is arbitrary.

3. It is assumed that there will only be one person within the field of vision of the video

capture device when signing SASL. This assumption can be justified because a similar

problem exists within the context of verbal communication. i.e., when environments are

busy it is difficult to clearly hear what another person is communicating.

4. It is assumed that the user will hold up their palm until the hand tracking component

of the system is initialised. This is required in order to initially locate the users hand.

The signer will then be free to move their hand and sign SASL.

5. The trained models will be tested on Apple iOS.

1.6 Thesis Outline

Chapter 1 describes the research problem and the motivation for why this research is

important. The rest of the thesis is outlined below:

Chapter 2 - Related Work

Chapter 2 reviews the existing literature on machine learning and image processing tech-

niques pertaining to hand segmentation and gesture recognition. The chapter reviews

the image processing techniques used in the study, they are described in depth as to how

they relate to the study in Chapter 3. The rest of the chapter relates to the machine

learning techniques required for gesture recognition and uncovers some of the current

processes to recognise hand gestures. It shows that multiple approaches exist, namely

hardware and vision based systems. These approaches have been shown to be popular

and provide relatively robust classification results.

Chapter 3 - Research Methodology & Design

Chapter 3 reviews firstly, Design Science Research, the research methodology, used to

do the research and secondly the process followed to answer the questions outlined in

Chapter 1. The chapter also describes each of the steps in the process and how they

relate to the study in order to work towards answering the research questions. The

design of the artefacts is described in this chapter as well as the ethical data collection

 

 

 

 



Chapter 1. Introduction 6

process and how each of the testing processes will be performed in order to answer the

research questions. This chapter also describes the sample and all of its characteristics.

Chapter 4 - Results & Analysis

Chapter 4 describes the experiments spanning all of the research questions and the pre-

processing steps required in order to obtain the final results. After obtaining the results

by way of the experiments, an analysis is carried out with the aim of answering each of

the research questions outlined in Chapter 1. These research outputs, if adequate, are

added to the body of knowledge for Computer Science. The results and any patterns

that may have emerged are remarked upon.

Chapter 5 - Conclusion

Chapter 5 is a summary and discussion of the findings of the research and possible

directions for future work are presented.

 

 

 

 



Chapter 2

Related Work

2.1 Introduction

The related work chapter considers existing approaches to the problem domain of hand

gesture recognition, as well as CNNs and their application to computer vision problems.

This chapter is structured as follows: section 2.2 provides discussion of image processing,

section 2.3 discusses machine learning techniques, hand shape recognition, hand gesture

classification, section 2.4 summarises the hand shape gesture recognition and section 2.5

reviews the use of CNNs in computer vision.

2.2 Image Processing Techniques

Image processing is the manipulation and/or analysis of still images or image sequences

in a digital format in order to obtain meaningful information from the data. This

research utilises a number of image processing techniques which are required to segment

and track a signer’s hand. In this section, the theoretical background of image processing

techniques to segment a signer’s hand will be discussed.

The techniques that will be covered in this section are as follows: face detection, adaptive

skin detection, backprojection, thresholding, background subtraction using Gaussian

mixture models, template matching and CAMShift tracking. Additional information

about each of the techniques can be found in Appendix A for the interested reader.
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Chapter 2. Related work 8

2.2.1 Face Detection Using Viola-Jones Framework

The face detection in this research is achieved by making use of the Viola Jones ob-

ject detection framework in combination with cascades that are specifically designed for

detecting faces. The Viola-Jones framework (VJF) provides a set of rectangular coor-

dinates, varying in scale, for each face found inside an image. The VJF is the current

best face detection system and is able to detect faces rapidly in real time [19]. It may

be suitable for use in an embedded context but requires further investigation. Further

information for the interested reader is provided in Appendix A.1

2.2.2 Adaptive Skin Detection

Skin detection is an image processing technique that focuses on segmenting the pixels

that represent skin from those that don’t, based on a particular model [20]. It assigns

some arbitrary predefined colour to the pixels that are outliers to this model (in this

instance the colour black was chosen), i.e., non skin pixels, and assigns values along

the gray colorspace spectrum to those pixels that resemble skin colour pixels. This

intermediary step is necessary to achieve the goal of producing a binary image, i.e., an

image that contains black for non skin pixels and white for skin pixels.

An adaptive skin detection method is used in this research. The adaptive nature of the

skin detection used in this research pertains to the fact that the model for skin pixels

is derived in real time, on a frame by frame basis, by extracting a small patch of skin

from a detected face and this patch is used to construct a histogram model [21]. The

histogram model construction is based on histogram backprojection as described in the

next section. A sample image produced by the adaptive thresholding algorithm is shown

in Figure 2.1.

Figure 2.1: Adaptive thresholding sample

2.2.3 Histogram Backprojection

Histogram backprojection is an image processing technique that provides a representa-

tion of how well an image fits the distribution of pixels for a given histogram model.

 

 

 

 



Chapter 2. Related work 9

Thus, it is apparent that this technique can be used to construct a model of skin pixels

and produce an image representing the probability of skin pixels contained in an image.

Before the backprojection distribution map is computed, it is important to note that

the initial colour frame should first be converted to the HSV colorspace because the

sampled histogram is a Hue and Saturation histogram. A colour distribution histogram

is obtained by extracting a patch section from, in the face, the image and converting it

from the BGR colorspace to HSV or by using a predefined HS histogram. If a prede-

fined HS is not used, a histogram model is constructed using the extracted patch and

is computed using the Hue and Saturation channels to represent the skin colour distri-

bution of a signer. The colour distribution histogram produced in the sampling step is

used and backprojected onto the HSV version of the initial frame. A skin probability

image is obtained that maps non skin pixels as black and candidate skin pixels as values

spanning the grey colorspace for a given probability. This probability skin map has fixed

threshold applied to it in order to obtain a binary representation of the skin probability

map. The HSV colorspace is used because the separation of luminance from the colour

component makes it particularly valuable because it is not as volatile to varying degrees

of light [22].

A histogram, M , represents the histogram of the target object or colour distribution.

The histogram of the image, I, is also computed and subsequently the histogram R is

computed which is the ratio of M
I . This histogram R is backprojected onto the image

to obtain the colour distribution i.e., the images values in the image are substituted for

the value in the histogram, R, which they index [23]. This is given by the following

formulae:

Rj =
Mj

Ij
(2.1)

bx,y = min(Rh(cx,y), 1) (2.2)

where j refers to each histogram bin and x, y refers to each pixel in the backprojected

image. A sample of the image produced by the histogram backprojection is shown in

Figure 2.2. The users face was purposefully occluded with a black rectangle so as to

not disclose their identity. However, it is not occluded when executing in the proposed

system.
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Figure 2.2: Histogram backprojection sample

2.2.4 Thresholding

A number of thresholding techniques exist such as simple thresholding, adaptive thresh-

olding and Otsu’s binarisation. Thresholding involves converting an image from its

current representation into a binary representation for a given value or in the case

of adaptive thresholding and Otsu’s binarisation this value is dynamic or calculated.

Adaptive thresholding and simple/fixed value thresholding are utilised in this research

as described below.

Simple thresholding is the use of a static threshold value to convert a grayscale into

a binary image. All values higher than this value get assigned a particular value for

example, black or 0; and all values lower get assigned another value for example, white

or 255. This method is used on the backprojected image because it provides for the

ability to extract the skin pixels accurately.

Adaptive thresholding differs from the simple thresholding by calculating a threshold for

a smaller regions of the image [24]. Different thresholds are obtained for seperate parts

of the image and generally this provides a better result for images containing varying

levels of illumination. This method was used on the colour frame, and the resulting

thresholded image is used to detect the hand location using template matching. The

simplest implementation of adaptive thresholding would be to divide the image into

multiple sub-images of size n × m and computing histograms for each of these sub-

images. These respective histograms are then analysed to obtain the threshold value for

the related sub-image. Simple thresholding is applied to each of the sub-images using

the respective threshold values obtained from the histograms [25].
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2.2.5 Background Subtraction Using Gaussian Mixture Models

Background subtraction is an image processing technique that aims to identify and

segment regions of interest from the background i.e., differentiating the stationary com-

ponents of the image from those that are moving [26]. These regions of interest can

be defined as objects in the scene that move. The most effective method to obtain the

correct segmentation of these regions is to ensure that motion in the scene is exclusively

translated as motion in video data. In this research the moving component that is of

interest is the signer’s hand. Any motion in the face region can be removed by detecting

the face and removing it from the frame. More information is provided in Appendix A.2

2.2.6 Template Matching

Template matching is an image processing technique that involves searching for a refer-

ence or template image inside of another image, with a certain degree of accuracy [27].

Six widely used methods of template matching exist, namely, Squared Differencing,

Cross Correlation, Correlation Coefficient and their normalised equivalents. Template

matching, whilst not the most computationally efficient method, provides accurate de-

tection of a template for an initial location window. Once located, the rectangle set of

coordinates can be used to initialise the CAMShift algorithm. The CAMShift algorithm

is much better suited for realtime and embedded applications in comparison to template

matching and is described in the section that follows. The formulae used to perform

template matching are provided in Appendix A.3.

2.2.7 CAMShift

Figure 2.3: CAMShift sample

Continuously Adaptive Meanshift or CAMShift is an extended version of the meanshift

algorithm [28]. CAMShift is a colour based computer vision tracking algorithm and
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was developed as a perceptual user interface and consequently, needs to operate in real

time and attempts to use the least computational resources. Perceptual user interfaces

are interfaces that allow for computers to a digitally mimic the human senses, such as

giving the computer the ability to see or touch. The CAMShift algorithm is initialised

using the initial location of the hand and then continually tracks the hand in subsequent

frames. The need for tracking the hand is clear. It is necessary to track the hand in

order to know which segment of the image to pre-process and extract for hand shape

and orientation classification. A sample of the tracked hand is shown in Figure 2.3.

Additional information about the CAMShift algorithm is provided in Appendix A.4

2.3 Machine Learning Techniques

ANN hand shape recognition classifiers require a process that extracts a set of features

for a hand shape. These features are then used as inputs into the classifier which contains

a set of predefined classes for classification [18].

The ANN refers to a group of interconnected artificial neurons that are a very basic

approximation of neurons in the human brain. The ANN concept is modeled following

the neuron model presented by McCullough and Pitts 1943 [29]. ANNs are information

processing systems that have certain computational properties analogous to those which

have been postulated for biological neural networks [29].

In contrast to ANNs, CNNs only require a hand segmentation component, its architec-

ture contains special layers that are capable of learning filters, which are specific to the

problem and which do the feature extraction. These extracted features are then used as

input into a fully connected layer at the end of the network, for classification [30].

2.3.1 Hand Shape Recognition Using Machine Learning

When referring to the literature, it is evident that hand shape recognition systems can

be divided into two broadly-defined categories, namely, hardware-based systems and

vision-based systems. Hardware-based systems are systems that utilise special hardware

in order to extract hand shape features, for example, Data Gloves [31], stereoscopic or

3D cameras [32] or colour-coded materials. The use of hardware-based systems reduces

the complexity of extracting features because assumptions needn’t be made. Using such

a system generally results in an enhanced accuracy but at the cost of convenience. In the

future, 3D cameras, such as the structure.io and Google’s Project Tango device, once

they become ubiquitous in mobile devices, could be used [33, 34]. Vision-based systems
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are systems that only make use of a simple camera, such as a web camera or mobile

phone camera module which are capable of capturing an input video stream. Because

of a number of factors, such as motion, background, etc. images captured on such

devices require image processing in order to reduce the noise and extract clear features

[35]. A vision-based system poses many more challenges than a hardware-based systems.

However, with the correct set of algorithms it is possible to construct a high accuracy

classifier which will permit maximum user freedom i.e., the system is very minimalist in

its hardware requirements [35].

2.3.1.1 Hardware-Based Systems

A number of research efforts using hand shape recognition for hardware based systems

are described in [36–38]. A particular study by Fukui et al. proposed a hardware-based

wrist watch style wearable that measures wrist contours using photo reflector arrays to

recognise hand shapes [1]. The system was developed with home automation in mind but

could be applied to a variety of contexts. The device consisted of two main components:

the wrist watch type measurement component, a battery and a control component. The

measurement component contains photo reflectors (infrared-light distance sensors) in a

flexible band. These sensors can measure distances between the band and the surface of

the wrist. The band has two arrays each consisting of 75 photo reflectors. The control

component is comprised of a battery and a wireless module that enables communication

with a PC that has a wireless module. The system works by representing a wrist cross

section as a wrist contour. The wrist contour shape varies as a result of finger movements

induced by activities of tendons and muscles near the wrist. An initial iteration of the

device managed to classify 73.2% of eight possible hand shapes including training data

from the user, but only 47.8% accuracy when excluding the users data in the training set

[1]. There are small differences in the raw data for each of the hand shapes and thus it

is important that the feature extraction process is done with careful consideration. Two

features types are prepared, normalised contour data and contour statistics. Because of

the difference in muscle and tendon thickness each sensor must have a variation in the

ranges of distances they capture. The normalisation process samples the maximum and

minimum distances for each sensor element and normalises the distances data to values

ranging between 0 and 1, see Figure 2.4.

The contours statistics are made up of data about the wrist contour distances. Examples

of these statistics are the sum of the distances, maximum distances, histograms and so

forth. Each of the statistics are normalised using calibration data obtained when first

wearing the device. The calibration data used the wrist contour data of an open hand

and a closed fist. By normalising these statistics, slippage and personal differences
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Figure 2.4: Contour data from the wrist wearable [1] pp. 5. The data in the orange
box is emphasised through the normalisation process.

are avoided. The device uses two different techniques, k-Nearest Neighbours (kNN) or

AdaBoost learning, in order to do the classification [1]. In the kNN technique, an input

sample is labelled by votes of the k nearest samples. All Euclidean distances between

the input sample and the training samples are calculated and used for classification

of the input sample. The nearest k samples determine the class to which the input

sample belongs [39]. AdaBoost is a meta machine learning technique which improves

performance for a number of machine learning techniques. Decision stumps are used

as the classification method and enhanced by AdaBoost as presented in [40]. Decision

stumps is a machine learning technique that consists of a single layer decision tree [41].

The input samples are classified by weak learners’ weighted votes. The weights on weak

learners are tweaked to fit the training data during training. Decision stumps are often

used as components referred to as weak learners when boosting [42]. A final successful

classification of 77.9% is commendable.

2.3.1.2 Vision-based systems

A number of research efforts have been put forward in the domain of hand shape recog-

nition using vision based systems, and these are described in [43–45]. Amongst these

research efforts, Nowlan and Platt have proposed a system that tracks hands by means

of a CNN architecture [3]. The system locates whether a hand is within a frame and

where, the system subsequently determines whether or not the hand is open or closed.

 

 

 

 



Chapter 2. Related work 15

The input to the system is a series of frames captured at a resolution of 320×240 pixels

in black and white format. The system was constructed in a user independent manner

to accommodate natural clutter and variable lighting conditions in indoor scenes. The

system is divided into two separate components, namely, the gesture recognition and the

hand tracking components. For the hand tracking component, each frame is first sub-

sampled and then subtracted from a previously sub-sampled stored frame to produce a

difference frame. These difference frames provide untouched velocity inputs to the sys-

tem because the largest of the input points tend to occur closer to regions of movement

within the frame. Two separate CNNs make predictions on hand location for both the

intensity and difference frames. A voting scheme is then employed that combines the

predictions of the intensity and difference frames as well as the predictions for the hand

trajectory, which is computed from the last three frames. The voting scheme works as

follows: First, the hand location is predicted based on the trajectory of the previous

three frames. Secondly, the network responses that exceed a given threshold value from

both the intensity and difference networks are computed. The location that pertains

to the stronger of the two networks or the hand trajectory computation is chosen. The

order of importance, greatest to least, for each of the choices is: difference network,

intensity network and then hand trajectory. Threshold values are estimated using a

training set and a cross validation set. The gesture recognition component accepts a

100× 100 image subsection from the current frame as input. The position of this image

subsection is drawn around the centre of the point determined by the hand tracking

component. The performance of the gesture component is thus directly dependant on

the performance of the hand tracking component. A single CNN looks at the intensity

of the frame and determines whether or not the hand is in an open or closed state. The

100×100 hand image dimensions were chosen because it is allowed for a positional error

rate of up to 25 pixels, whilst still maintaining most of the hand within the image. The

largest positional error made by the system was 11 pixels, which falls well within the

bounds of the 25 pixel error [3].

Table 2.1 summarises the performance of the tracking component on a set of 342 (18×19

test images per participant) test images. The intensity network alone reports an accuracy

of 91.8% within 10 pixels. The difference frame outperforms the intensity frame by 1.8%.

The gesture recognition component was able to successfully identify whether the hand

was open or closed in 99.1% of the 342 images in the test set. For a set captured in

a controlled lab environment, for the CNN system, a success rate of 94% was obtained

using a set of 50 images.
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Table 2.1: Summary of test performance for hand location [3] pp. 7

Information User Test Error Rate

Intensity 8.2 %
Difference 6.4 %

Intensity + Difference 3.2 %
Intensity + Difference + 3 Frames 0.3 %

2.3.2 Hand Gesture Recognition Using Machine Learning

A similar broader split in categories is also applicable to gesture recognition and these

categories are: hardware-based systems and vision-based systems.

2.3.2.1 Hardware-based systems

A number of hardware based hand gesture recognition systems have been described in

[46–50]. In addition, McLeod et al. propose a hardware-based gesture recognition sys-

tem, GRUBC (Gesture Recognition by Utilising Bio-Mechanical Characteristics), that

utilises a glove to capture finger joint movements and classify a hand gesture based on

the information derived from this data. Range of motion (ROM) is a quantity which

defines joint movement by analysing the angle from its start point of motion to its end

point [51]. An example of this would be a joint starting point of 20◦ and end point of

50◦ which would yield a ROM of 30◦. These range of motion values are computed using

the sensory values provided by the sensory device. The rationale behind capturing these

computed values relative to nonparticipating sections is that they are a user-independent

representation of a hand gesture.

For a sensory device with n sensors, each American Sign Language (ASL) sign can be

represented with a set of n values. Let’s refer to this set Si = {s1, s2, s3, ..., sn} where i

refers to a particular ASL sign and S is the set of sensor values. One problem in gesture

recognition is that for each user Si yields different values. The task is to translate Si to

NRi where NRi is unique across different users. Suppose that S0 and Si represent the

sets of initial and end values of the sensory device,respectively, for a specific ASL sign,

then the range of motion tuple Ri would be calculated using Ri = Si − S0. The set is

then iterated to determine both the minimum and maximum values of Ri denoted by

m(R) and M(R) respectively. Each value in Ri is then normalised which results in values

between 0 and 1 and is then represented by a set NR. Each of the values in the set NR

are then discretised with a value of k, where k > 1. For example, if k = 2 each of the

values would be replaced with zeroes if the initial value was below 0.5. NR represents

the characteristics movement for a specific hand gesture and provides an abstraction for

the gesture. This abstraction can be referred to as the signature of the gesture. This
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process ensures that any user can wear the system, and also eliminates any noise that

arises from the data collection [51].

In order to recognise a gesture it is necessary for the captured data to follow this same

process as described above i.e., a comparison is made between the captured signature

and that of a known one in the database. Once the captured data is converted to its

NR signature, it goes through a process called registration in which these signatures

are saved in a registration database. Each following unknown gesture is then compared

to this registration database and labelled with the label of the signature that has the

least distance from that of the known gesture according to a specific distance metric e.g.

Euclidean distance.

Two approaches were used when testing and training the system, namely, leave-one-out

and keep-one-in splits. In the leave-one-out split, 18 of the sets are used in training and

the remaining one set is used for testing. This process is done until each set as been

tested against 18 other sets each time switching the test set. In the keep-one-in split,

one set is used for training and 18 sets are used for testing. The repetition, as in the

leave-one-out, was also done which resulted in 19 iterations of training. The reported

results are the average of all 19 experiments.

The use of the mechanical gesture recognition approach obtained results of 82.32% and

67.18% for GRUBC on the leave-one-out and keep-one-in approaches respectively. In the

leave-one-out approach, the single layer neural network managed to obtain an accuracy

of 81.82% and the multilayer neural network obtained 66.27% and 63.16% accuracy for

the 9–9–1 and 18–18–1 splits respectively in comparison to GRUBC. It is evident that

the results indicate that GRUBC only improves upon the single layer neural network by

a small percentage—this shows both methods to be quite effective. In the case of the

keep-one-in approach the single layer neural network performed poorly, with an accuracy

of 32.24%. The multilayer neural network performed better than the single layer neural

network with an accuracy of 54.75% [51].

2.3.2.2 Vision-based systems

A number of gesture recognition research efforts have used vision based systems as

described in [52–57]. Amongst these research efforts, Gambardella et al. proposed a

Max Pooling Convolutional Neural Network (MPCNN) Architecture that was able to

recognise 6 different gesture classes for interaction between humans and a robot swarm.

The system used a coloured glove on the signer’s hands. This coloured glove allows the

system to obtain the hand contour by means of colour segmentation. The contour image

is then smoothened by means of image processing techniques in order to remove noisy
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Figure 2.5: Max-Pooling Convolutional Neural Network (MPCNN) architecture using
alternating convolutional and max-pooling layers [2] pp. 2

Figure 2.6: Gesture classes defined by the count of fingers [2] pp. 3
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Figure 2.7: Images in the training and test sets. Each image represents one of the 6
gesture classes [2] pp. 4

edges. The contour image is then used as input to the MPCNN. The camera is mounted

on a robot designed by the Swarmanoid project [58] and is capable of capturing images

and video streams at a maximum resolution of 3 megapixels. Figure 2.5 illustrates the

architecture of the network. It alternates between convolution layers and max pooling

layers and finally ends with the classification layer which has 6 classes. Images are

captured by the camera unit on the robot in order to retrieve the hand contour. The

gesture vocabulary that the system can recognise is defined by the number of fingers

i.e., 0–6 as indicated in Figure 2.6.

The MPCNN requires that all images used as input be equal in size. All input images are

28×28 pixels in size. They are padded with 4 black pixels on all sides, which results in a

32×32 pixel image as shown in Figure 2.7. The MPCNN is trained using online gradient

descent and images are rotated in order to learn rotational invariant features [2]. All

results are averaged by using a batch size of 100 images for training and test sets. The

MPCNN with the lowest validation rate is chosen. The best error obtained was 3.23%,

where the training and validation errors are 0.002% and 0.0012% respectively. It took

approximately 80 epochs to reach the lowest test error. The system used to train the

network for deployment on robots contained a Core i5-650 (3.20 GHz) processor with

4 GB of DDR3 RAM. The time taken per training epoch was 426.12s. The evaluation

on the validation and test sets took 189.12s and 48.58s respectively. Once trained the

network was deployed on a robot with an ARM 11 533 MHz processor and 128 MB

RAM. It took 0.82s to capture, process and classify a single image. This shows that it

is possible to implement a real-time MPCNN. The MPCNN implementation was done

in C++ as in [59]. The classification rate achieved by the system was 96%.
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2.4 Summary of Hand Shape and Gesture Recognition Us-

ing Machine Learning

The literature has indicated that two broad categories for hand gesture and hand shape

recognition exist, namely, hardware-based and vision-based systems, each of which per-

form very well. A large number of research studies for both of these categories exist

using a variety of machine learning techniques such as kNN, Neural Networks, Support

Vector Machines, etc. The research studies highlighted in this chapter indicate that the

hardware based systems perform well when one considers the number of classes in the

gesture vocabulary. However, it also indicates that CNNs are comparable, obtaining

high accuracies for a 6 class vocabulary. Literature has shown that there is, however, a

lack of literature pertaining to the recognition of hand shapes in various orientations in

a vision-based systems context.

2.5 Convolutional Neural Networks In Computer Vision

CNNs are modelled after a Multi-Stage Heubel-Wiesel Architecture. The idea behind

this approach is based on the work on the cat’s visual cortex done by Heubel-Wiesel in

1962 [60]. This research identified: orientation-selective simple cells with local receptive

fields which plays a similar role to that of the filter bank layers in the CNN; and complex

cells which plays a similar role to that of the pooling layers in a CNN.

An innovative use of the CNN was to use the back propagation algorithm to train the

entire system in a supervised manner. This approach was a major success in Optical

Character Recognition (OCR) and hand writing recognition [30]. Based on this research,

a practical solution was developed and deployed at AT&T (Bell Laboratories) in 1993

[30]. The CNN was shown to outperform all other machine learning techniques in its

application to the digit recognition domain [61]. A recognition error rate of 0.95% on

the initial MNIST database [61] indicates that the CNN is the better technique when

compared to the results obtained for ANNs and Support Vector Machines. In addition,

this shows that CNNs are robust classifiers that may be practically applied to real-world

applications.

A Deep CNN was trained on the ImageNet LSVRC-2010 dataset, which is a subset of the

ImageNet database that contains 1000 different classes and 1.2 million images [62]. These

images were collected from the Internet and manually labelled by humans. Starting

in 2010, an annual competition called the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) has been held whereby machine learning techniques are applied to
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the database to recognise object classes. For recognition on the ImageNet database it is

customary to report two error rates, top-1 and top-5. Top-5 error refers to the fraction

of test images for which the correct label is not amongst the five labels considered

most probable by the model. Top-1 refers to the fraction of test images that were not

correctly predicted by the classifier with highest probable label [62]. In the 2010 LSVRC

competition the CNN had a much lower error rate of 37.5% and 17.0% for top-1 and top-

5 respectively in comparison to other techniques such as Sparse coding and SIFT+FVs

[62]. The sparse coding technique reported results of 47.1% and 28.2% for top-1 and

top-5. The SIFT+FV reported results of 45.7% and 25.7% for top-1 and top-5 [62]. It

is obvious that CNNs show great promise against other techniques in object recognition

and computer vision problems.

2.6 Conclusion

This chapter covered different computer vision and machine learning techniques used

in the recognition of hand gestures as well as the application of deep learning in this

context. It also briefly covered the use of deep learning in an array of computer vi-

sion problems. The literature review indicates that CNNs perform with high successful

classification rates across a broad range of computer vision problems and specifically in

the domain of gesture and hand shape recognition. It also illustrates that assumptions

need to be made, even when making use of a hardware-based system and that these

systems do not necessarily offer significant classification improvements when compared

to neural network class classifiers. In both instances, CNNs perform with recognition

accuracies comparable to the hardware-based system. Some vision-based systems also

make assumptions in order to simplify the hand segmentation process and obtain better

accuracies. In the research presented by Gambardella et al., a colour glove was used to

simplify the extraction of the hand contour. This is not really ideal for use in SASL

recognition because it places unnecessary constraints on the user [63].

CNNs are capable of obtaining very high accuracies and low error rates spanning a large

number of computer vision classification problems. This indicates that CNNs are an

ideal technique for the complex problem of hand orientation and hand shape recognition

in various contexts, with the promise of great success. When looking at the success of

CNNs in the ILSVRC challenge with a top-5 accuracy of 83% and an error rate of 0.95%

in the context of handwritten digit recognition, it is evident that CNNs are suitable for

computer vision tasks.
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The next chapter describes the research methodology used to answer the questions posed

in Chapter 1. It also details the design of the proposed system, the data collection process

and the testing process.
 

 

 

 



Chapter 3

Research Methodology and

Design

3.1 Introduction

A research methodology can be described as a protocol or guideline on how to collect,

analyse and use information on a particular topic or subject matter. This research

utilises a research methodology called Design Science Research (DSR) based on a model

of the general process as presented by Takeda et al. [64]. DSR is a set of synthetic

and analytical techniques and perspectives for performing research in the fields of In-

formation Systems, Computer Science and Engineering. DSR entails the creation of

new knowledge by means of designing novel artefacts (in this case the artefact refers

to an entity or process) and the analysis thereof using performance benchmarks, along

with reflection and abstraction to contribute to the field of Computer Science. Artefacts

may include, but are not limited to, algorithms, human/computer interfaces, systems

design methodologies and languages. The remainder of the chapter is structured as fol-

lows: Section 3.2 describes DSR, Section 3.3 describes its various phases and Section

3.5 describes the application thereof to the problem of hand orientation and hand shape

recognition in various orientations and the design of the proposed system.

3.2 Design Science Research — Overview

This section provides and overview of DSR and the differences between design, research

and the amalgamation of design and research in the context of DSR.
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3.2.1 Research

DSR is heavily inspired by Kuhn [65] and Lakatos [66] both of whom broadly describe

research as an activity that contributes to the understanding of a particular phenomenon.

DSR differs slightly from their work in that all or part of the phenomenon that is

under scrutiny need not have occurred naturally and instead, may have been created

artificially. The phenomenon being considered is typically a process or entity that is

of great interest to a single researcher or research community. The research should

produce a valid contribution to knowledge, that is usually a theory which describes

the behaviour of some aspect of the phenomenon. In order for the contribution to be

considered valuable, it should take the form of a publication and should be interesting

to research communities [67].

The activities or protocols that a research community deems appropriate towards pro-

ducing a body of knowledge are called its research methods or techniques. Two differ-

ent research approaches are used by research communities globally, paradigmatic and

pre- or multi-paradigmatic approaches. Research communities that utilise a paradig-

matic approach have a universal consensus regarding the phenomenon and the research

methods pertaining to its investigation. Research communities utilising a pre- or multi-

paradigmatic approach, in contrast, are different from research communities who belong

to a single head community. Each of these different sub-research communities are only

interested in certain parts of the phenomenon and use research methods which overlap

with the head community but may differ from each other in certain regards. Computer

Science is a great example of a multi-paradigmatic research community.

3.2.2 Design

Design may be defined as the purpose, planning or intention that exists or is thought

to exist before an action, fact or material object comes to fruition [68]. Thus, one may

easily deduce that design pertains to the development and creation of new artefacts. De-

sign knowledge may be separated into two categories; routine knowledge and innovative

knowledge. If the knowledge required to design the artefact exists, then it is referred

to as routine, otherwise it is innovative. Innovative design invokes the need to conduct

research that will bridge existing knowledge gaps and lead to a research publication or

patent.
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3.2.3 Design Science and Design Science Research

Design has been carried out for centuries and spans a wide range of study disciplines

such as Architecture, Business, Education and Law, which are all fundamentally con-

cerned with design at their core. This is a key differentiator and characteristic that

separates them from the scientific discipline [69]. In the 21st century, natural sciences

have dominated design across almost all disciplines except for Computer Science, Chem-

ical Engineering and Management Science.

To intellectualise the act of design, Herbert clearly differentiates between natural science

and science of the artificial [69]. Natural science pertains to a body of knowledge about a

phenomenon and describes the interaction of the phenomenon with other phenomena in

the world. In contrast, science of the artificial pertains to the knowledge about artificial

objects or phenomena (artefacts) designed to accomplish a particular goal. Herbert

extends this notion of the design of these artificial artefacts to consider the interactions

between internal and external environmental factors in order to accomplish the goals set

out in their design. The external environment is comprised of a set of external forces and

effects acting upon the artefact. The internal environment refers to the components that

the artefact is comprised of and the structure between these components. Consequently,

the behaviour of the artefact is said to be constrained by both its internal and external

environmental factors. The design activity can thus be defined as the development or

creation of an artefact, its components and its structure, which interact with its external

environment as intended.

In another view of internal and external environmental factors, one may consider the

design of artefacts to be a mapping from functional space to attribute space [64]. More

concisely, a functional requirement is a point within the functional space and the arte-

fact is the corresponding mapped point within the attribute space. Using this view one

can define Design Science as the knowledge that is comprised of constructs, techniques,

methods, models and a well-developed theory that facilitates the mapping from func-

tional space to attribute space. Design Science Research creates the missing knowledge

by means of design, analysis, reflection and abstraction.

3.3 Design Science Research Process

The Design Science Research process is shown in Figure 3.1 and the phases of which it is

comprised of are described in the subsections below, namely: awareness of the problem,

suggestion, development, evaluation and conclusion phases.
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Figure 3.1: Design Science Research process model (The DSR Cycle)

 

 

 

 



Chapter 3. Research Methodology and Design 27

3.3.1 Awareness of the Problem Phase

Awareness of the problem may arise from a variety of sources including new developments

in industry or research groups.

3.3.2 Suggestion Phase

The suggestion phase results in a tentative design. The performance of a prototype based

on the tentative design may also be included. If the tentative design does not present

a solution, the research is set aside and deemed unsuitable. This phase is essentially

a place of thought for envisioning new functionality based on a novel configuration of

existing or new elements.

3.3.3 Development Phase

After the tentative design is accepted the development phase may commence. During

the development phase the tentative design is further analysed and subsequently imple-

mented. The techniques used, and the process followed for development, vary, depending

on the artefacts. The novelty is primarily in the design and not in the construction of

the artefact(s). Artefacts include, but are not limited to, human/computer interfaces,

system design methodologies, languages or algorithms e.g. information retrieval. Dur-

ing the development phase it is possible for unforeseen problems to arise, which leads

to circumscription, at which point the tentative design is re-assessed and the process

is restarted from phase one. It should be noted that despite these potential problems

arising, valuable information is still contributed to the knowledge base.

3.3.4 Evaluation Phase

During the evaluation phase, the artefact is tested against certain criteria that are always

implicit and made explicit. Deviations from the expected results, both quantitative and

qualitative, are noted, analysed and explained. The analysis of these results either

confirms or contradicts the hypothesis. However, the process is restarted if the results

are not satisfactory. In general, amendments are made to the explanatory hypotheses

in light of any new observations, as opposed to being completely discarded.
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3.3.5 Conclusion Phase

The conclusion phase pertains to the end of the research cycle and is generally the result

of satisficing i.e., the results are considered presentable or of a satisfactory standard. The

results are consolidated and the knowledge gained is categorised as one of the following:

facts that have been learnt and repeatedly applied; behaviour that can be repeatedly

invoked; or anomalous behaviour that defies explanation and may be material for the

subject of future research.

3.4 Data Collection Process and Pre-Processing

Figure 3.2: Hand shapes 1–6 recognised by the system

The data collection process was done ethically i.e., each of the research subjects used in

the collection of the data, had the process and purpose of the data collection described

to them before collection. Each of the research subjects had the opportunity to agree

or decline to be a participant in the study by signing a consent form beforehand. Each

participant agreed to having the video data be accessible within the research group and

if any frame was used in a publication that their faces are covered.

Data collection was carried out using an iPhone 5C and the video stream was captured

using a custom-designed video capture application at a resolution of 352 × 288 pixels.

The process for data collection was as follows: the subjects used in the compilation of

the dataset were each asked to perform six hand shapes in five hand orientations. The

hand shapes are shown in Figure 3.2 and a matrix of these six hand shapes in each of

the five orientations is shown in Figure 3.3. A program that utilises the hand tracking

and segmentation component, that is described in the section that follows, was used

to extract the left hands of the signees. A total of ten subjects were used in the data
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Figure 3.3: Hand shapes 1–6 perform in orientations 1–5. Together this results in 30
distinct classes

collection process. The images extracted from the video data were labeled for hand

orientation and hand shape and a complete dataset was constructed. The dataset is

split in the following manner: 5 subjects are used for the training set and the remaining

4 subjects are used for the testing set. Each of these sets—training and testing contain

subjects that have variations in skin tone.

It is important to note that before any experiments were carried out, the dataset was

pre-processed in the following manner: each of the images was scaled to 80×80 pixels and

quantised to the greyscale colour space using the ImageMagick library. These grey-scaled

images were transformed into the Torch7’s native tensor format. Each of the tensors

 

 

 

 



Chapter 3. Research Methodology and Design 30

were then normalised using per-example mean subtraction. This normalisation is applied

in order to de-emphasise the illumination conditions of the image while emphasising its

contents.

3.5 Application of Design Science Research to Hand Ori-

entation Recognition and Hand Shape Recognition in

Multiple Orientations

Figure 3.4: The Design Science Research process as applied to the research

Figure 3.4 indicates the DSR as applied to this research and the different cycles each

separate component undergoes to produce the final artefact. The following section is

structured as follows: Section 3.5.2 describes the hand tracking and segmentation com-

ponent with respect to the various phases of DSR; Section 3.5.3 describes the hand
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gesture recognition component with relation to the various DSR phases. The awareness

phase, discussed in Section 3.5.1, for both of these DSR cycles are the same and only

the remaining phases are discussed in the respective cycles for each component.

3.5.1 DSR–The Awareness Phase

Awareness of the South African Sign Language gesture recognition problem was brought

to the attention of the researcher by the Assistive Technologies Research Group at UWC.

The two sign language parameters, hand shape and hand orientation, have not yet been

recognised in combination with one another within the Assistive Technologies Research

Group or in the literature. However, a number of research efforts are found in the

literature focusing on hand shape in a single orientation, hand location, hand motion

and facial feature detection. The core research within the Assistive Technologies Re-

search Group has placed a focus on desktop and laptop computers using webcams. It

is clear that the system would be of greater value in the context of embedded devices,

in particular, mobile devices. Embedded and mobile devices are becoming increasingly

powerful with each passing year and are easier to carry around than a laptop or desktop

computer with a webcam. Thus, an important research opportunity is the simultane-

ous recognition of hand orientation and hand shape on mobile and embedded devices.

Consequently, a research proposal to create a system to recognise hand orientation and

hand shape in multiple orientations on mobile devices was compiled.

3.5.2 DSR Cycle 1–The Hand Tracking and Segmentation Component

3.5.2.1 Suggestion Phase

A hand tracking and segmentation (HTS) component design was put forward. This

HTS component is leveraged to extract hands from images or live video streams. The

component is capable of tracking a single hand, the left hand of the signee.
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Figure 3.5: The image processing component’s phases

Figure 3.6: The hand template image used for template matching.
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The HTS component design is described in Figure 3.5 and is comprised of a few key

phases, namely: hand location using adaptive thresholding and template matching, face

detection and back projection to obtain a skin image, CAMShift hand tracking, and

background subtraction using gaussian mixture models.

Figure 3.5, using segments labelled 1–5, illustrates how these key phases are integrated to

form the HTS component i.e., a each segment represents a phase of the HTS component.

The outputs in the figure that are highlighted in purple are the same instances used as

the purple highlighted inputs in their respective segments. The HTS component’s phases

are described below:

Segment 1, obtaining the hand location, is the process of locating the hand within an

image and is achieved by means of template matching. Template matching is computa-

tionally expensive so it is only utilised initially, to obtain an initial set of coordinates for

the location of the left hand. Only a single hand i.e., the left hand, is tracked but the

system may be extended in the future to track both hands—gesture recognition should

obtain similar performance for a right hand. Once the hand is located this template

matching execution loop halts. The template image used for matching is shown in Fig-

ure 3.6. It is important to note that this process is a prerequisite for segments 2–5 to

commence.

Segment 2, obtaining the skin image, involves the process for obtaining a skin image.

This is an important phase in the recognition process because the success of extracting

only the skin pixels in the image has an impact on learnable features in hand gesture

recognition. The face is first detected using the Viola-Jones object detection framework

and a small patch of skin is extracted in the nose region. The size of the patch is

dynamically calculated in relation to the size of the rectangular coordinates of the face.

The width and height dimensions are each divided by a factor of 2.8 and centered within

the face box to obtain the patch region. A colour probability distribution, in the form of

a histogram of this region, is constructed and back projected onto the input frame which

produces a skin probability distribution image. A fixed threshold value of 60 is applied

to the skin probability distribution to binarise this image [70]. All pixels exceeding this

threshold value are set to white (skin) and all pixels below or equal to this value are set

to black (non-skin). The output of this phase is a binary skin image.

Segment 3, CAMShift hand tracking, involves the process of hand tracking. It requires

the initial coordinates of the hand obtained using template matching as input and pro-

ceeds to continuously track the hand using the CAMShift algorithm. The output of this

phase is a set of hand coordinates in every subsequent frame.
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Segment 4, obtaining the motion image, involves the process of obtaining a motion

image. This is achieved by means of background subtraction using Gaussian Mixture

Models (GMMs).

Segment 5, extracting the hand image, involves the process of obtaining the final ex-

tracted hand. In this phase, the skin and motion images are combined using a logical

AND operation. The use of this combined image is important because the combined

skin and motion images highlight only skin coloured objects that are moving—in this

instance, a moving hand. This allows for the differentiation between any skin-coloured

pixels that are incorrectly detected in the stationary background and actual skin pixels

which are in motion. If a large portion of the motion image, greater than 65%, is black

then only the skin image is used. The combined image and the CAMShift tracking

coordinates makes it possible to extract the hand pixels from the input image.

Samples of the HTS procedure are provided in Figure 3.7 and samples of the hands that

were extracted by the HTS component are shown in Figure 3.8. Section 3.4 describes

the data collection process for the data used to train the HGR component.

Figure 3.7: Samples of the HTS phases

Figure 3.8: Sample of extracted hands
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Figure 3.9: HTS development cycle

3.5.2.2 Development Phase

Referring to Figure 3.9, a system design is presented and developed, after which this

system is evaluated based on the quality of the extracted hands. If the results are less

than satisfactory then circumscription may follow.

3.5.2.3 Evaluation Phase

In this phase used the method of experiments to evaluate the performance of the HTS

component. These experiments are carried out to test the robustness of the tracking

and hand extraction of the HTS component. Once evaluation has been concluded, if the

algorithm’s performance is not satisfactory, the design process is revisited.

3.5.2.4 Conclusion Phase

The results obtained in the evaluation phase are analysed and added to the body of

knowledge for computer vision. In the event that the results are less than satisfactory,
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Figure 3.10: The hand gesture recognition component’s phases

the process is revisited and enhanced to obtain a higher degree of accuracy.

3.5.3 DSR Cycle 2–The Hand Gesture Recognition Component

3.5.3.1 Suggestion Phase

Further extending on the awareness phase, a design of the hand gesture recognition

(HGR) component was presented. A prototype CNN was developed and tested using

the popular computer vision problem of handwritten digit recognition—the MNIST

handwritten digit problem. This prototype can be altered for the problem space of

HGR with a number of modifications to its architecture and micro-parameters.
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Figure 3.11: 2-Stage classifier construction

Figure 3.12: Architecture used for each of the MPCNNs.

The aim of this research is to detect both the hand shape and hand orientation simul-

taneously. The Figure 3.10 shows the flow for the recognition procedure. It indicates

that a training dataset is used to obtain a model that is tested by using a test set for

classification. The 2-stage classification approach is shown in Figure 3.11 and used when

detecting the hand orientation and hand shape in various orientations of an unseen hand

image. More information about the machine learning techniques used in this research

may be found in Appendix B.
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This 2-stage classification approach, involves a two-step procedure in which the detec-

tion of hand orientation and hand shape are conducted sequentially. First, the hand

orientation in an image is detected using a single CNN trained to recognise only the

hand orientation of any hand shape. This classifier will be called the “orientation clas-

sifier” as it only recognises the orientation of a hand image. Once a hand orientation

label has been obtained, the same input image is used as input to one of five hand shape

classifiers, each of which has been trained to recognise the hand shape of images in a

particular orientation.

This results in one CNN for hand orientation, followed by one of the possible five CNNs

for hand shape. For example, if a hand image is predicted as being aligned in orientation

by the orientation classifier, the image is then passed to the hand shape classifier that is

trained to differentiate and recognise the hand shape of images aligned in that orientation

only. All the CNNs are implemented using the Torch7 computing framework [71] and

have the same architecture as shown in Figure 3.12. The architecture consists of two

sets of successive convolution and max pooling layers, followed by a final fully connected

layer that leads to the output layer.

Figure 3.13: The various skin tones in the dataset

When training the CNNs, the dataset was split in the following manner: the images of

subjects 1, 2, 3, 6 and 7, whom have a range of skin tone variations, were used to train

the system. The images of the remaining subjects, 4, 5, 8, and 9, which also consisted

of a range of skin tone variations, were used for testing. These skin tone variations are

illustrated in Figure 3.13. In order to train the hand shape classifiers, the data was split

into separate subsets, each consisting of the images of a particular hand orientation in

all hand shapes, with 30 examples taken per subject.

Thus, the total number of examples per hand shape classifier can be calculated as follows:

30 examples × 5 subjects × 6 hand shapes = 900 training examples, and 30 examples

× 4 subjects × 6 hand shapes = 720 testing examples per hand shape classifier. The

hand orientation classifier data set was split into a training and testing set. Once again,

30 examples per subject were taken for each set. The total number of examples can be

calculated as follows: 30 examples × 5 subjects × 6 hand shapes × 5 hand orientations

= 4500 training examples and 30 examples × 4 subjects × 6 hand shapes × 5 hand

orientations = 3600 testing examples.
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Figure 3.14: HGR development cycle

3.5.3.2 Development Phase

Figure 3.14 shows the requirement of a gesture recognition system that is capable of

recognising hand orientations and hand shapes in different orientations. The architecture

of the CNNs are proposed, implemented and trained.

3.5.3.3 Evaluation Phase

In the evaluation phase the method of experiments is used to evaluate the performance

of the HGR component. The series of experiments trained CNNs and evaluated them in

terms of classification accuracy and classification speed. The evaluation process for hand

recognition component is outlined in Figure 3.15. This figure indicates that the dataset

was split into testing and training sets and subsequently used to train and test models

against their respective sets in the context of classification accuracy and classification

speed. The results obtained from the HGR component were then collated and evaluated.

If the results were less than satisfactory, the cycle was restarted.
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Split Data Into Training & Testing Datasets

Train Neural Network

Test Trained Model Against Test Set

Testing Classification Accuracy

Split Data Into Training & Testing Datasets

Time Classification

Test Trained Model Against Test Set

Testing Classification Speed

Figure 3.15: Process of training and testing the accuracy and speed of the gesture
recognition component

3.5.3.4 Conclusion Phase

The results obtained in the evaluation phase were analysed and added to the body of

knowledge for machine learning. In the event that the results were less than satisfactory,

the process was revisited and enhanced to obtain a higher degree of accuracy.
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3.6 The Integration of System Components

Figure 3.16: The integration of the HTS and HGR components

The integrated system, which is the amalgamation of the HTS and HGR components,

as detailed above, is illustrated in Figure 3.16. The figure illustrates how the HTS

and HGR components relate to one another and the flow of the full gesture recognition

procedure.

3.7 Conclusion

This section described the DSR methodology, what it is comprised of and how it applies

to the current research. In particular, it described the system and its components—

the HTS component, the HGR component and the dataset used in training and testing
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the HGR component. The next chapter describes the experiments carried out in the

testing of the HTS and HGR components and the results of these experiments, and their

analysis.
 

 

 

 



Chapter 4

Experimental Results and

Discussion

This chapter provides an in-depth analysis of results obtained from experiments carried

out to assess the performance of various components of the proposed system. These

experiments aim to answer the research questions outlined in Chapter 1. This chapter

is structured as follows: Section 4.1 describes an experiment to analyse the accuracy

and speed of the face detection component on an iPhone 5C and iPhone 6+. Section

4.2 describes an experiment to analyse the accuracy of the HTS component.

Sections 4.3–4.6 describe a series of experiments carried out to analyse the accuracy

of the CNNs, Hand Shape Classifiers 1–5 and the Orientation classifier, with various

CNN parameters. In order, these are: comparing the use of hand images with and

without a background, the use of various activation functions, the use of a number

of different learnable filter and fully connected layer node configurations, and the use

of different filter dimensions. Based on the result of these experiments, Section 4.7

compares each of the best Hand Shape classifiers and the Orientation classifiers to the

default configuration.

Section 4.8 describes the accuracy of two-stage classification using the most performant

CNN models as described in Chapter 3. Two-stage classification involves classifying a

hand image to first determine its hand orientation, followed by its hand shape. In this

case, a hand image is only determined to be correctly classified if both the hand orien-

tation and hand shape are correctly predicted. This is the final CNN model accuracy.

Section 4.8.1 describes the speed of classification of the classifiers executing on an iOS

device.
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Note that for ease of reference: hand shapes 1–6 will be referred to as H1 through H6;

orientations 1–5 will be referred to as O1 through O5; each of the hand shape classifiers

will be referred to as HSOi where i refers to the ith orientation, e.g. HSO1 refers to

the hand shape classifier for orientation 1 etc.; the orientation classifier will simply be

referred to as OR.

When assessing the accuracies of the classifiers, it is important to consider, and compare

these accuracies to the accuracy of random guessing. It should be noted that any

accuracy higher than 1
x for an x-class problem is considered to be effective and better

than random guessing. For a 5-class problem, this equates to 20% and for a 6-class

problem, approximately 17%. This accuracy will be referred to as the “random guessing”

accuracy in the discussions below.

When assessing accuracy, experiments were carried out on a 3 GHz personal computer

with 12 GB DDR3 RAM and a GeForce GTX 750 Ti GPU—512 MB RAM. To determine

the computational speed, the iPhone 5C and iPhone 6 Plus were used for embedded

context experiments. The operating system used was Ubuntu Linux 14.10 and the

Torch7 distribution (GitHub commit id: 7c740d5e8ec7fc10edbc3a75f2667e481eb47180)

for machine learning computation.
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Figure 4.1: Results for the various artefacts in the DSR process

Figure 4.1 indicates the evaluation phase and which experiments are carried out in the

testing of each cycle and component. As indicated, by the highlighted purple text in the

diagram, Section 4.1 and Section 4.2 describe the experiments carried out in order to

evaluate the HTS component. Sections 4.3–4.6 describe the experiments carried out in

the evaluation of the HGR component. Section 4.8 describes the evaluation of the final

artefact by its respective experiments.

4.1 Experiment to Assess Face Detection Performance

Face detection testing was carried out on two different devices, the iPhone 5C (A6 Chip—

1.3 GHz Dual-Core, 512 MB RAM) and the iPhone 6 Plus (A8 Chip—1.4 GHz Dual-

Core, 1 GB RAM). Four different face Haar cascades, created by the Intel Corporation,
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were used for testing against sample images captured on the iPhone 5C at a resolution

of 352×288. The dataset consisted of 1000 images of faces of the test subjects. The goal

of the experiment was to test which cascade was the fastest across both devices. Each

cascade was tested with all 1000 images over 50 iterations, i.e. a total of (1000 iterations

× 50 images) = 50000 comparisons, and the average time for each device for a single

image was recorded and is reported in Table 4.1. Although the accuracy of the cascades

is expected to be the same in every iteration, the computational speed varies. Obtaining

an average time over multiple iterations provides a better indication of computational

speed.

Table 4.1: Summary of test performance for Haar cascades on two iPhones (time
taken presented in seconds)

Cascade
iPhone 5C iPhone 6 Plus

Accuracy (%)Time Speed Time Speed
(s) (fps) (s) (fps)

frontalface default 0.030477 32.812 0.014228 70.284 100
frontalface alt 0.022945 43.582 0.011222 89.111 100
frontalface alt2 0.024714 40.463 0.016270 61.463 100

frontalface alt tree 0.027913 35.826 0.019970 50.075 100

An analysis of the results indicates that each of the Haar cascades are comparable

in terms of accuracy, with each cascade obtaining 100% accuracy. In addition, the

frontalface alt Haar cascade provides the best performance for both devices in terms of

speed. On the other hand, frontalface alt tree is the least performant of all the Haar

cascades in terms of speed. As expected the iPhone 6+ outperforms the iPhone 5C by

a factor of at least 1.5 for each cascade.

The best performing Haar cascade took 0.022945 and 0.011222 seconds per frame for the

iPhone 5C and iPhone 6 Plus respectively which translates to approximately 43 and 89

frames per second (FPS). This is more than sufficient for real time applications running

at 24 FPS. However, all the cascades on both devices clearly perform at faster than

real-time speed.

The results indicate that any of the Haar cascades may be used in terms of accuracy and

will provide realtime performance in each instance. The Haar cascade, frontalface alt,

is used in the proposed system because it provides the highest frame rate.
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4.2 Experiment To Assess Hand Tracking and Segmenta-

tion

This section tests the robustness of the HTS by testing whether the tracked hand is

completely enclosed inside the tracking window. Videos of subjects 1–4 were used in

this experiment. In each video, the subject first initialises the tracking by holding up

an open palm. The tracking window is then automatically placed onto the hand and

tracks it in each of the images in the video sequence. The subjects were not allowed to

have their hands occlude the face region as per the assumption that was put forward in

Chapter 1.

Figure 4.2: Samples of validly tracked frames

Figure 4.3: Samples of invalidly tracked frames

Each of the images in each video sequence was analysed manually by the researcher.

The criterion for judging whether an image is tracked relates to the tracking window

completely enclosing the hand, with no parts exceeding the bounding rectangle as illus-

trated in Figure 4.2. Figure 4.3 shows samples of invalidly tracked images in which the

hand exceeds the bounding rectangle. This criterion is very stringent and categorises a

frame as either being perfectly tracked or completely invalid. The faces of the subjects

in these figures have been covered so as to not disclose their identities.
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Table 4.2: Accuracies for the HTS component

Subject Correctly Tracked Frames Success Rate (%)

1 472/555 85.0

2 601/756 79.5

3 656/794 82.6

4 790/950 83.1

Average (%) — 82.58

Table 4.2 summarises the results for each subject. It is observed that the HTS compo-

nent managed to consistently track the hand, without any tracking loss, for all video

sequences. Overall, a very high average accuracy of 82.58% was obtained across all

four subjects. This is a very encouraging accuracy that indicates that the hands of the

subjects fall completely within the tracking window, in the majority of frames.

On a per-subject basis, it is observed that the accuracies ranged from 85.0% to 79.5%,

which are all very closely aligned with the average. This indicates that the proposed

HTS component performs consistently across subjects. This is especially encouraging

given the subjects were very diverse.

The results indicate that the HTS component is very robust in terms of tracking the

user’s hands and provides a solid foundation for the hand shape and hand recognition

component.

4.3 Experiment To Assess CNNs On Background And Non-

Background Datasets

The goal of this experiment was to determine whether removing the background from

the hand images aids in CNN classification. The model architecture described in Figure

3.12 was used to train a set of CNNs. One network was trained to recognise orientation

classes—the OR classifier—and five hand shape networks—HSO1–HSO5—were trained

to recognise shape classes in each of the orientation classes. A default model configura-

tion for all networks in this experiment as per [72] was used. This model is a 2-Layer

Max Pooling CNN with kernel and node configurations 5C→5P→4C→3P→500L, where

C = Convolution, P = Pooling, and L = Linear or Fully Connected Layers. The activa-

tion function used in this experiment was the hyperbolic tangent function (TanH). Two

sets of data were used to train the CNNs, namely, hands with background (BG) and

hands without background (NBG). The background for BG was removed as described

in the HTS component in the previous chapter.
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Table 4.3: Dataset Values

Set Name

Train Test

Number of Subjects 5 4

Shape Instances Per Subject 180 180

Orientation Instances Per Subject 900 900

Total Shape Instances 900 720

Total Orientation Instances 4500 3600

Each of the datasets, BG and NBG, are exactly the same size and the values for these

datasets are tabulated in 4.3 for ease of reference.

Table 4.4: Average accuracies for each classifier with BG vs. NBG

Data Set
Average Classifier Accuracy (%)

HSO1 HSO2 HSO3 HSO4 HSO5 OR

BG 63.6 64.4 57.3 44.3 52.7 90.8
NBG 88.6 74.3 86.8 59.8 60.6 90.7

The testing set was then used to test the resulting models. Table 4.4 summarises the

average accuracies obtained for each of the classifiers for the two datasets. It is evident

that NBG outperforms BG in every instance except for OR. The differences in average

accuracies for HSO1–HSO5 are 25.0%, 9.9%, 29.5%, 15.5% and 7.9% respectively. These

differences are very noticeable, especially in the case of HSO1, HSO3 and HSO4. This

demonstrates that the removal of the background is beneficial for each HSO classifier.

It is very interesting to observe that BG performs slightly better than NBG for OR, if

even by an extremely small margin of 0.1%—3 images. Contrary to expectation, this

means that having unwanted noise in the images leads to a slightly better accuracy

than that obtained for images with background subtracted hands. The reason for this

increase in accuracy for the background dataset may be attributed to the fact that a

larger number of samples allows for the OR classifier to better generalise, despite the

noise in the data. OR is trained on 3600 samples, compared to the 720 samples used for

each HSO. Thus, for the OR classifier, the large variations in raw hand images, coupled

with an abundance of examples, potentially allows for better filters to be learnt by the

CNN.

NBG provides a better accuracy when compared to BG for each of the HSO classifiers, as

well as a very small difference for the OR classifier, so in general, NBG can be considered

to be a better choice. Thus, it is beneficial to utilise computational resources to remove

the background from the hand image using the proposed HTS component.
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A further analysis of the comparison between BG and NBG for each classifier is provided

below to compare the respective accuracies at the class-level. Noting that it is very

difficult to determine the exact reason for a classification decision by a classifier [73], this

analysis—and all subsequent analyses in this chapter—attempt to provide an indication

as to the cause of incorrect classifications.

4.3.1 BG vs. NBG Comparison For HSO1
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Figure 4.4: HSO1 classifier results for BG vs. NBG

Figure 4.4 is a graph of the average NBG and BG accuracies for each shape class in

HSO1. An analysis of the graph indicates that NBG outperforms BG for four of the

six possible shape classes, namely, HS1, HS2, HS5, and HS6. The difference in accuracy

between BG and NBG for the fourth class is only 2%. HS3 is the only class for which BG

outperforms NBG by a relatively large difference, of 12%, which equates to 14 images.

This seems to indicate that when NBG outperforms BG, it does so by a large amount,

and when BG outperforms NBG it does so by a smaller amount. It is, therefore evident

that NBG generally outperforms BG for HSO1.
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Table 4.5: Confusion matrix for HSO1 NBG results

Predicted

Actual 1 2 3 4 5 6 Average %

1 115 4 0 1 0 0 95

2 0 120 0 0 0 0 100

3 1 3 96 0 10 10 80

4 4 2 2 109 0 3 90

5 0 1 0 0 118 1 98

6 1 0 8 0 31 80 66

Avg 88.6

An analysis is carried out to further analyse the accuracies of the two lowest, but by no

means low, performing classes of NBG, namely HS3 and HS6. A confusion matrix of

the samples for NBG is provided in Table 4.5. Observing the table, it is seen that HS3

is confused with shape classes HS5 and HS6 in most instances. Due to imperfect hand

segmentation caused by variance in lighting during video capture, the fingers of HS3

are clipped off in a small number of instances. In these images, only the palm section,

with the thumb seemingly crossed over it, is visible as shown Figure 4.5. HS5 and HS6

include the thumb crossed over the palm. Therefore, one possible reason that HS3 is

confused with HS5 and HS6 may be that the available features in the image resemble

HS5 and HS6. In these specific images, lighting changes caused the fingers of these

subjects to appear differently to the skin of their faces, thereby omitting them from the

back-projected and segmented image.

The class with the lowest, but by no means low, accuracy of HSO1 with NBG is HS6

which obtains an accuracy of 66%. The largest number of confused instances for HS6 is

with HS5, for a total of 31 instances. The reason for these incorrect classifications could

be attributed to the fact that these shapes—HS6 and HS5—appear visually similar,

with only a single finger difference in shape. In the hand shapes, the bottom section

of the hand shape is very similar. Therefore, HS6 may be confused with HS5. This

is further confirmed by the fact that HS5 is also confused with HS6 in the confusion

matrix. Samples of the incorrectly classified HS6 instances are shown in Figure 4.6.

Figure 4.5: HSO1 with NBG—incorrectly classified instances of HS3
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Figure 4.6: HSO1 with NBG—incorrectly classified instances of HS6

Table 4.6: Confusion matrix for HSO1 BG results

Predicted
Actual 1 2 3 4 5 6 Average %

1 65 11 0 44 0 0 54
2 59 17 0 44 0 0 14
3 0 0 111 9 0 0 92
4 0 0 9 111 0 0 92
5 10 0 0 26 84 0 70
6 3 0 12 35 0 70 58

Avg 63.6

Table 4.6 is a confusion matrix of BG for HSO1. An analysis is carried out on the BG

confusion matrix in order to also further analyse the incorrectly classified instances. It

is interesting to note that the highest accuracies are exactly the same for shape classes

HS3 and HS4 and even more so, that these classes are confused with each other in

all cases, with the number of confused instances exactly the same between these two

classes. Furthermore, each of the other classes has a noticeable number of confused

instances with HS4. In the case of HS2, which obtains the worst accuracy with all of its

confused instances being misclassified as either HS1 or HS4, it performs worse than the

random classification error. The exact reason for these confusions occurring is difficult

to determine. However, it may be attributed to the added noise in the images, which

leads to difficulty in the classification procedure.

It is interesting to note that when comparing the results for HS3 and HS4 in HSO1

for both BG and NBG, BG obtains higher accuracies for these shapes. These drops in

comparative accuracies could be attributed to the fact that the hands in NBG for these

shapes, HS3 and HS4, are clipped. Thus, it appears that despite having more noise in

BG, it is able to obtain a higher accuracy for these classes.
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4.3.2 BG vs. NBG Comparison For HSO2
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Figure 4.7: HSO2 classifier results for BG vs. NBG

Figure 4.7 is a graph of the average NBG and BG accuracies obtained for each shape class

in HSO2. An analysis of the graph indicates that NBG outperforms BG by a substantial

margin for four classes: HS1, HS2, HS4 and HS5. The graph also indicates that BG

does, however, outperform NBG for classes HS3 and HS6 by a noticeable difference. The

differences in accuracies, 13% and 21%, between BG and NBG are relatively large for

HS3 and HS6 respectively. Overall, NBG provides a better average accuracy in more

classes when compared to BG with a difference in average accuracy of 9.9%.
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Table 4.7: Confusion matrix for HSO2 NBG results

Predicted

Actual 1 2 3 4 5 6 Average %

1 101 4 0 1 11 3 84

2 0 96 0 11 13 0 80

3 1 0 105 12 0 2 87

4 0 1 22 72 18 7 60

5 0 0 0 6 105 9 87

6 2 0 4 2 56 56 46

Avg 74.3

An analysis is carried out to further analyse the accuracies of the HSO2 NBG classifier.

Table 4.7 is a confusion matrix of the HSO2 classifier, and when analysed, indicates that

the lowest performing shape classes are HS4 and HS6. The performance of these hand

shapes is discussed in further detail below.

HS4 has a relatively large number of samples being incorrectly classified, of which a

large number are being confused with HS3 and HS5. The confused instances occurring

between HS4 and HS3 challenging to explain due to the distinct differences in these

shapes for this orientation. The confused instances between HS4 and HS5 are also

attributed to random classification error as these shapes are also very dissimilar.

Regarding the relatively lower performance of HS6, this hand shape is clearly confused

with HS5 in the majority of cases. The confused instances between HS6 and HS5 could

be attributed to the fact that these shapes appear visually similar for this orientation.

This is further confirmed by the fact that HS5 is also confused with HS6 in the majority

of its cases in the confusion matrix. These similarities are illustrated in Figure 4.8

which shows images of HS6 which are incorrectly classified, and images of HS5 in this

orientation for reference.
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(a) HS6.

(b) HS5.

Figure 4.8: Confusions between HS6 and HS5 for HSO2: a) Sample images of HS6
for HSO2 that are incorrectly predicted as being HS5; b) Sample images of HS5 for

HSO2, demonstrating that they appear similar to those of HS6 in this orientation

Table 4.8: Confusion matrix for HSO2 BG results

Predicted
Actual 1 2 3 4 5 6 Average %

1 77 9 30 0 4 0 64
2 22 79 0 8 11 0 65
3 0 0 120 0 0 0 100
4 0 0 34 59 0 27 49
5 0 16 0 0 48 56 40
6 0 0 36 2 1 81 67

Avg 64.4

Table 4.8 is the confusion matrix of BG for HSO2. An analysis is carried out on this

confusion matrix to also further analyse the incorrectly classified instances. HSO2 also

has a single high accuracy class, namely, HS3. It should be noted that classes HS1,

HS4 and HS6 are being confused with class HS3 for a noticeable number of instances.

Despite these random classification errors attributed to by HS1, HS4 and HS6, each of

the classes in this classifier perform at least 2.5 times better than the random guessing

accuracy.

The difference in accuracies for HS6 in BG and NBG could be attributed to the fact

that NBG had a large number of its instances clipped at the fingers for this shape. The

difference in accuracy between datasets for HS3 is difficult to determine.
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4.3.3 BG vs. NBG Comparison For HSO3
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Figure 4.9: HSO3 classifier results for BG vs. NBG

Figure 4.9 is a graph of the average accuracies obtained for NBG and BG for each of

the shape classes in HSO3. As with the previous classifiers, NBG outperforms BG and,

in this orientation, it does so for every shape class, HS1 through HS6. Overall, NBG

outperforms BG with a large average accuracy difference of 29.4% which amounts to a

211 image difference.

Table 4.9: Confusion matrix for HSO3 NBG results

Predicted

Actual 1 2 3 4 5 6 Average %

1 116 0 0 4 0 0 96

2 26 94 0 0 0 0 78

3 0 0 108 1 8 3 90

4 7 0 0 110 1 2 91

5 0 0 0 0 119 1 99

6 1 0 5 9 27 78 65

Avg 86.8
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Table 4.9 is a confusion matrix of the HSO3 NBG classifier, and when analysed, indicates

that the least performant classes in HSO3 are HS6 and HS2 with accuracies of 65% and

78% respectively. The confused images that occur for these classes are further analysed

below.

Similar to the previous classifiers, the largest number of confused image samples of HS6

is predicted as being HS5. As mentioned before, HS6 may be confused with HS5 because

they appear visually similar. The two hand shapes have a single finger difference when

clipping occurs during hand extraction. These similarities are illustrated in Figure 4.10

which shows images of HS6 which are incorrectly classified, and images of HS5 in this

orientation for reference.

In the majority of cases, HS2 is incorrectly predicted as HS1. These confused images may

be attributed to the fact that these shapes appear visually similar in this orientation

if the gaps between the fingers in HS2 are not large enough. These similarities are

illustrated in Figure 4.11 which shows images of HS2 which are incorrectly classified,

and images of HS1 in this orientation for reference.

(a) HS6.

(b) HS5.

Figure 4.10: Confusions between HS6 and HS5 for HSO3: a) Sample images of HS6
for HSO3 that are incorrectly predicted as being HS5; b) Sample images of HS5 for

HSO3, demonstrating that they appear similar to those of HS6 in this orientation

(a) HS2.

(b) HS1.

Figure 4.11: Confusions between HS2 and HS1 for HSO3: a) Sample images of HS2
for HSO3 that are incorrectly predicted as being HS1; b) Sample images of HS1 for

HSO3, demonstrating that they appear similar to those of HS2 in this orientation
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Table 4.10: Confusion matrix for HSO3 BG results

Predicted
Actual 1 2 3 4 5 6 Average %

1 104 10 0 0 6 0 86
2 91 0 0 0 29 0 0
3 20 0 60 31 0 9 50
4 25 5 15 75 0 0 62
5 9 10 0 0 101 0 84
6 0 0 0 29 18 73 60

Avg 57.3

Table 4.10 is the confusion matrix of BG for HSO3. An analysis of the HSO3-BG con-

fusion matrix indicates that there are two relatively performant classes in this classifier,

namely, HS1 and HS5. A noticeable number of instances in the classes HS2–HS4, are

confused with HS1. A large number of instances of HS1, HS2 and HS6 are being confused

with HS5. It is very noticeable that not a single instance of HS2 for BG was correctly

classified.

In the case of HSO3 it is interesting to note that NBG outperforms BG in each instance

and indicates that the removal of the background is beneficial for every hand shape in

this HSO.
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4.3.4 BG vs. NBG Comparison For HSO4
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Figure 4.12: HSO4 classifier results for BG vs. NBG

Figure 4.12 is a graph of the average accuracies of NBG and BG for each of the shape

classes in HSO4. Analysing the graph, it is observed that NBG outperforms BG in every

case, save for HS3. There is a noticeable difference of 26% between BG and NBG for class

HS3, in which BG outperforms NBG. It is also interesting to observe that BG obtains

an accuracy of 100% for HS3. However, this difference is only for this single class and,

otherwise, BG provides lacklustre performance for other classes, as compared to NBG.

Once again, NBG outperforms BG, in this case with an average accuracy difference of

15%.
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Table 4.11: Confusion matrix for HSO4 NBG results

Predicted

Actual 1 2 3 4 5 6 Average %

1 63 30 0 15 5 7 52

2 0 112 0 4 4 0 93

3 1 0 86 1 20 12 71

4 22 1 2 59 31 5 49

5 1 1 1 14 60 43 50

6 1 0 10 14 44 51 42

Avg 59.8

Table 4.11 is a confusion matrix for HSO4 with NBG, and when analysed, indicates

that several classes in HSO4—HS6, HS4, HS5 and HS1— achieve lower accuracies of

42%, 49%, 50% and 52%, respectively. The confused images that occur for each of these

classes are discussed below.

The trend of HS5 and HS6 being confused with each other is observed in the confusion

matrix once again. In the case of HS4, it is misclassified as HS1 and HS5 in the ma-

jority of cases. For HS1, the majority of misclassified samples are with HS2 and HS4.

Apart from HS5 and HS6, generally speaking, it can only be concluded that the classes

are randomly confused with each other in this orientation given the large and random

distribution of misclassified samples in the confusion matrix. This may be attributed to

a large number of visual inter-similarities between images of these classes. Samples of

these misclassified images are illustrated in Figure 4.13. It should, however, be noted

that all of the average accuracies for the shapes in HSO4 exceed the random guess-

ing accuracy by a factor of about 2.5. Therefore, the classifier is still considered very

effective.
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(a) HS3.

(b) HS4.

(c) HS5.

(d) HS6.

Figure 4.13: Samples of the misclassified images for HSO4: a) Sample images of HS3;
b) Sample images of HS4; c) Sample images of HS5; d) Sample images of HS6

Table 4.12: Confusion matrix for HSO4 BG results

Predicted
Actual 1 2 3 4 5 6 Average %

1 55 0 58 0 7 0 45
2 0 60 29 31 0 0 50
3 0 0 120 0 0 0 100
4 0 3 81 35 1 0 29
5 3 24 67 0 26 0 21
6 6 0 69 22 0 23 19

Avg 44.3

Table 4.12 is the confusion matrix of BG for HSO4. An analysis of the confusion matrix

indicates that the most performant class is HS3 with an accuracy of 100%. Apart from

the perfect accuracy obtained for this shape, the classifier has a lacklustre distribution for

every other class obtaining accuracies of 50% and below. The results for HS1, HS2, HS4,

HS5 and HS6 are relatively poor, it appears that having the background included has a

large impact on accuracy. In addition the accuracy reductions may also be attributed

to the fact that all shapes except HS3 may appear similar in this orientation. It should
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be noted that, whilst these results are relatively poor, each of the classes perform better

than the random guessing classification accuracy.

4.3.5 BG vs. NBG Comparison For HSO5
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Figure 4.14: HSO5 classifier results for BG vs. NBG

Figure 4.14 is a graph of the average differences between NBG and BG for each shape

in HSO5. Once again, the graph indicates that NBG generally outperforms BG, in this

case for four of the six possible shape classes. However, BG noticeably outperforms the

NBG dataset for a single class, i.e., HS2. In terms of average accuracy NBG outperforms

BG with a difference of 7% which is equal to 56 images. It is of particular interest to note

the near perfect accuracy for both NBG and BG—99% and 98% respectively—for HS3.

All other hand shape classes are of a relatively lower accuracy for both NBG and BG.

The near-perfect accuracy of HS3 is most likely attributed to the fact that this shape is

distinctly dissimilar to all other shapes in its class for this particular orientation. Given

the hand is orientated with the side of the hand facing the camera view, other shapes

may appear very visually similar to each other, but this shape is distinct.
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Table 4.13: Confusion matrix for HSO5 NBG results

Predicted

Actual 1 2 3 4 5 6 Average %

1 77 18 0 1 1 23 64

2 41 47 27 4 0 1 39

3 0 0 119 0 0 1 99

4 9 19 3 60 7 22 50

5 24 9 1 1 70 15 58

6 0 6 0 37 13 64 53

Avg 60.6

Table 4.13 is a confusion matrix for HSO5 for NBG. The least performant classes are

HS2, HS4, HS6 and HS5 with accuracies of 39%, 50%, 53% and 58% respectively and

are discussed below.

The majority of HS2 images are confused with HS1. This could be attributed to the

fact that these shapes may appear almost indistinguishable in this orientation in a 2-

dimensional plane, even to the human eye. It is especially challenging for a camera at

a resolution of 352× 288. In some instances HS2 may have samples that appear similar

to that of HS3, i.e. more of a triangular shape, as indicated in Figure 4.15.

HS4 is confused with every other class in this orientation, but those confused instances

that are most notable occur with HS6 and HS2. The highest confusion count of 22

instances being incorrectly classified can be attributed to the fact that HS4 and HS6

may appear very similar for this particular orientation. The confused instances between

HS4 and HS2 amount to a total of 19 instances being incorrectly classified and this may

be attributed to the fact that the fingers may appear less bent for HS4 and consequently

lead to visual similarities between HS4 and HS2.

HS6 has its most notable confused instances occurring with classes HS5 and HS4. The

largest number of confused instances occur with HS4 with a total of 37 instances being

incorrectly classified. As described above, the confused instances occurring with HS4

are subject to the same problem in classification error i.e, they may appear visually

similar. The second most prominent confusion occurs between HS6 is HS5, which has

been observed before.

HS5 has the majority of its incorrectly classified instances occurring with classes HS6

and HS1. The instances that are confused with HS6 are due to erroneous extraction

as illustrated in Figure 4.16. The confused instances with HS1 could be attributed to

the fact that visual similarities arise due to the scaling of HS1 across the x-axis i.e.,
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the stretching of HS1. The confusions between HS5 and HS1 account for 20% of the

accuracy loss for this particular orientation. It should be noted that all of the average

accuracies for the shapes in HSO5 exceed the random guessing accuracy by a factor of

about 2.5. Therefore, the classifier is still considered very effective.

Figure 4.15: HSO5 instances of HS2 being confused with HS1

Figure 4.16: HSO5 HS5 erroneous extraction

Table 4.14: Confusion matrix for HSO5 BG results

Predicted
Actual 1 2 3 4 5 6 Average %

1 38 71 3 4 4 0 31
2 53 61 0 0 0 6 50
3 0 0 118 0 0 2 98
4 0 34 12 62 0 12 51
5 43 25 0 3 41 8 34
6 30 0 0 30 0 60 50

Avg 52.7

Table 4.14 is the confusion matrix of BG for HSO5. An analysis of the confusion matrix

indicates that HS3 has the highest accuracy, which is in accordance with the reasoning

described in the NBG analysis i.e. HS3 is distinctly dissimilar to any one of the other

shapes in this orientation. It is also interesting to note that in this case only HS1

and HS4 have a small number of instances that are being misclassified as the highest

class, HS3. HS1 and HS2 are being misclassified as one another in a relatively large

number of instances, which is also similar to NBG, in that these shapes are challenging

to distinguish in a 2-dimensional plane. The instances of HS4 and HS5 that are being

misclassified as HS2 are attributed to random classification error because these shapes

are not visually similar. Despite the relatively varied accuracies, even the lowest accuracy

obtained in this classifier is still larger than the random guessing classifier accuracy by

a factor of 1.9.

For this HSO classifier BG is more performant than NBG for HS2 with a difference of

11%. This is attributed to the erroneous extraction of this particular hand shape as
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indicated in Figure 4.15. Thus, it appears that having more features available allows for

the classifier with BG to be more performant for HS2.

4.3.6 BG vs. NBG Comparison For OR
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Figure 4.17: OR classifier results for BG vs. NBG

The Figure 4.17 is a graph of the average accuracy difference between NBG and BG

for the OR classifier. For this classifier, on average, BG outperforms NBG, albeit by a

very small difference of 0.06%. On closer observation, however, NBG outperforms BG

in three of the five classes. It is only noticeably outperformed by BG for one class—

O4—with a difference of 11.5%. For O3, they can be considered on a par. Therefore, as

confirmed in the previous classifiers, NBG outperforms BG in general. This indicates

that pre-processing frames to remove the background is advantageous to recognition.
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Table 4.15: Confusion matrix for OR NBG results

Predicted

Actual 1 2 3 4 5 Average %

1 626 7 7 3 77 86.9

2 34 634 32 10 10 88.0

3 7 8 705 0 0 97.9

4 0 51 27 636 6 88.3

5 45 7 0 2 666 92.5

Avg 90.7

Table 4.15 is a confusion matrix for the OR classifier for NBG. Although all of the classes

clearly perform at a very high accuracy, a further analysis is carried out to determine

causes for the gaps in classification for O1 with an accuracy of 86.9%, which is slightly

lower in accuracy compared to the other orientations.

In most misclassified cases, O1 is confused with O5. Noting that images of O1–O5

represent images of hand shapes HS1–HS6 in each respective orientation, a large number

of the incorrectly predicted images of O1 could be attributed to the similarities based

on the camera perspective. This is evidenced by the fact that the confused instances for

both O1 and O5 occur relative to one another.

Figure 4.18: HS3 instances in O1 that were being misclassified as O5

Table 4.16: Confusion matrix for OR BG results

Predicted
Actual 1 2 3 4 5 Average %

1 573 9 17 32 89 79.5
2 0 627 15 78 0 87.0
3 11 0 708 1 0 98.3
4 0 1 0 719 0 99.8
5 78 0 0 0 642 89.1

Avg 90.8

Table 4.16 is the confusion matrix of BG for OR. An analysis of this confusion matrix

indicates that the most performant class is O4 which only has a single misclassified

instance. The largest number of confused instances occur between O1 and O5. It should

be noted that O1 has 6 shape classes, each of which may be confused with any of the
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shape classes in O5. Thus, even the lowest accuracy of 79% is encouraging. It should

also be noted that these confused instances of O1 are similar in number to that of NBG.

For the OR classifier, BG outperforms NBG by a noticeable amount for O4. In this

orientation the misclassified samples of HS1, HS2, HS3 and HS5 in O4 had holes which

lead to difficulty or confusion in the classification procedure.

4.4 Experiment To Assess CNNs By Comparing Activa-

tion Functions

The goal of this experiment was to determine whether using an alternate activation

function provides a better CNN accuracy. Each of the HSO classifiers and the OR

classifier was trained, whilst each time altering the activation function used in the CNN—

the resulting accuracies were then compared. A number of activation functions such as

the ELU, ReLU, LeakyReLU, TanH, and Sigmoid exist. These activation functions may

provide varied classification accuracies in the current context. For ease of reference, the

terms “activation function” and “activation” may be used inter-changeably. To limit

the number of comparisons and compute time, henceforth, only NBG is used to train

the models.

Table 4.17: Average accuracies for classifiers across activations

Activation Classifier
Function HSO1 HSO2 HSO3 HSO4 HSO5 OR

ELU 90.2 70.1 85.8 58.6 62.6 91.8
HardTanh 89.3 76.3 87.0 65.0 60.9 91.3

LeakyReLU 89.1 70.4 85.4 57.3 64.4 92.2
Tanh 88.1 75.5 85.5 58.6 60.0 91.8

PReLU 89.4 68.8 86.2 59.0 62.6 90.6
ReLU 88.3 71.6 86.6 57.6 67.2 92.4
ReLU6 91.1 69.8 85.2 57.5 62.6 92.1
RReLU 88.6 70.9 85.6 58.3 65.9 91.0
Sigmoid 74.3 69.5 77.9 48.0 51.8 88.8

LogSigmoid 71.5 62.7 73.3 42.5 50.2 85.1
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Figure 4.19: Average Accuracies Across Activation Functions for All Classifiers

Table 4.17 summarises the average accuracies obtained for each activation for every HSO

classifier and the OR classifier. Each column in the table refers to a single classifier and

each row refers to an activation function. The best activation function for each column,

i.e. each classifier, is highlighted in red. An analysis of the table indicates an immediate

trend across each HSO classifier and the OR classifier. The trend observed is that the

Sigmoid and LogSigmoid functions, the last two rows, consistently perform at a lower

accuracy for every classifier when compared to every other activation function. The

Figure 4.19 is a graphical representation of the table. Each line in the graph represents

a single classifier, the goal is to compare activation functions for a particular classifier.

Each column in the graph is a comparison of the average accuracy obtained by a single

activation function for the respective classifier. A clear dip is observed in the line graphs

for the LogSigmoid and Sigmoid functions which confirms this point.

Sigmoidal functions that are symmetric about the origin, such as TanH, result in values

in the range [−1, 1]. According to LeCun in [74], these functions are preferred because

they are more likely to produce outputs that are, on average, closer to zero and may

also include negative values. This is in contrast to the sigmoid function that produces

values in the range [0, 1], which always results in a positive output, as well as a positive

mean. Due to the range of the sigmoid function, it takes longer for the sigmoid activation
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function to converge, and thus, makes it less performant when compared to symmetric

sigmoidal and rectified linear functions, hence the observation in the results.

This trend is confirmed by the observation that the most performant activation function

for three of the six classifiers—HSO2, HSO3 and HSO4—is the symmetric sigmoidal

function, HardTanh. A problem that arises when using symmetric sigmoidal activation

functions is that they suffer from the vanishing gradient problem which may lead to

slow optimisation convergence and in some instances, lead to a poor local minimum.

Rectified linear activation functions—all the activation functions that contain ReLU in

its name—attempt to address many of the issues that arise from sigmoidal functions

as described in [75] but they do, however, have trouble with non-activating Rectified

Linear Units (ReLU) in some instances. Therefore, it is also observed that the rectified

linear activation functions, ReLU and ReLU6, also obtain higher relative accuracies for

three of the six classifiers—HSO1, HSO5 and OR—and obtain higher accuracies than

the symmetric sigmoidal function classifiers.

Table 4.18: Range in average accuracy for each classifier excluding the LogSigmoid
and Sigmoid activation functions

Average Accuracy of Classifier (%)
HSO1 HSO2 HSO3 HSO4 HSO5 OR

Min 88 68 85 57 60 90
Max 91 76 87 65 67 92

Range 3 8 2 8 7 2

Another observation made from the graph is that, apart from the Sigmoid and LogSig-

moid activations, other activations appear to perform very similarly, with relatively

comparable accuracies for every classifier, whilst some of these activation functions do

not perform similarly but have noticeable peaks and dips. Excluding the LogSigmoid

and Sigmoid activations, the Table 4.18 shows the difference in accuracy for the least

performant and most performant activation function, for each of the classifiers. It is

observed that the range is relatively low, between 2% and 3% for HSO1, HSO3 and

HSO5 whilst relatively higher ranges of 7% and 8% are obtained for HSO2, HSO4 and

HSO5. It is evident from this table that comparing activation functions is beneficial and

in some cases offers a reasonable increase in accuracy.

It should be noted that analyses of the confusion matrices of each classifier in this

experiment indicate a very similar trend for causes of confused instances to the analyses

discussed in Sections 4.3.1–4.3.6 for the previous experiment. Therefore, the confusion

matrices and their in-depth analyses for this and other comparative experiments in

Sections 4.5 and 4.6 are omitted from the main discussion, but are provided in Appendix

C for the interested reader. The following subsections provide further analysis of the

average accuracy of each CNN for each activation function.
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4.4.1 Activation Function Analysis For HSO1

Table 4.19: Average accuracy for HSO1 classifiers across activations

Shapes

1 2 3 4 5 6 Average (%)

ELU 99 100 70 96 94 81 90.2

HardTanh 98 100 80 89 99 69 89.3

LeakyReLU 96 98 70 95 95 78 89.1

Tanh 94 99 85 85 98 66 88.1

PReLU 95 100 70 97 94 78 89.4

ReLU 97 98 70 97 90 75 88.3

ReLU6 98 100 70 96 94 87 91.1

RReLU 95 96 71 97 94 76 88.6

Sigmoid 85 67 75 70 90 57 74.3

LogSigmoid 74 64 69 75 88 58 71.5

Table 4.19 tabulates the accuracies obtained for each shape orientated in O1 for each re-

spective activation function used. It should be noted that each row represents a separate

HSO1 classifier using the specified activation function—in the left-most column—and

that the right-most column of the table is the average accuracy across all six hand

shapes. Each of the other other columns represents the hand shapes across activation

functions. The comparisons in the table are done across rows. An analysis of the table

indicates that, even at the class-level, the Sigmoid and LogSigmoid activation function

perform at a lower level for all but a single class, HS3. Excluding these functions, the

other activations perform reasonably consistently and obtain very high accuracies. In

this specific orientation the classifier is capable of consistently discerning between hand

shapes with a very high accuracy.
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4.4.2 Activation Function Analysis For HSO2

Table 4.20: Average accuracy for HSO2 classifiers across activations

Shapes

1 2 3 4 5 6 Average %

ELU 78 62 87 54 87 50 70.1

HardTanh 85 81 89 62 88 50 76.3

LeakyReLU 77 68 88 50 85 52 70.4

Tanh 85 80 89 60 87 50 75.5

PReLU 78 60 86 50 88 48 68.8

ReLU 81 68 85 48 86 59 71.6

ReLU6 80 69 85 47 85 50 69.8

RReLU 80 70 85 49 88 51 70.9

Sigmoid 83 81 77 40 85 50 69.5

LogSigmoid 77 64 78 41 72 42 62.7

Table 4.20 shows the accuracies obtained for each shape orientated in O2 for each re-

spective activation function. It should be noted, that once again, the comparison for

this table is carried out across rows and will be the case for each subsequent table in this

section. An analysis of the table indicates that each of the activation functions perform

relatively well with respect to one another except for a single instance in which the

Sigmoid and LogSigmoid functions perform relatively poorly, namely, HS4. Excluding

the Sigmoid and LogSigmoid functions, it is interesting to note that in HS2 and HS4 the

HardTanH and TanH activations perform noticeably better than any of the other acti-

vations in this class with a range of 15% and 21% respectively. However, this anomaly

is difficult to explain.
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4.4.3 Activation Function Analysis For HSO3

Table 4.21: Average accuracy for HSO3 classifiers across activations

Shapes

1 2 3 4 5 6 Average %

ELU 97 75 86 88 95 71 85.8

HardTanh 97 78 91 90 99 65 87.0

LeakyReLU 100 75 86 84 95 70 85.4

Tanh 96 80 87 87 99 62 85.5

PReLU 97 75 86 90 99 68 86.2

ReLU 99 77 88 88 95 70 86.6

ReLU6 99 75 86 84 95 70 85.2

RReLU 99 75 85 85 95 73 85.6

Sigmoid 88 65 86 90 93 43 77.9

LogSigmoid 95 38 89 77 81 58 73.3

Table 4.21 shows the accuracies obtained for each shape orientated in O3 for each ac-

tivation function. An analysis of the table indicates that the Sigmoid and LogSigmoid

activation functions perform relatively poorly with respect to each of the other activa-

tion functions. The Sigmoid function performs reasonably well for HS4 and HS5 whilst

the LogSigmoid function performs poorly for all but a single class, HS3. Excluding

the Sigmoid and LogSigmoid functions, each of the other activation functions perform

reasonably consistently across shapes except for HardTanH and TanH in HS6, which

performs at a lower level in this instance. Thus, it is shown that the activations perform

reasonably consistently.

 

 

 

 



Chapter 4. Experimental Results and Discussion 73

4.4.4 Activation Function Analysis For HSO4

Table 4.22: Average accuracy for HSO4 classifiers across activations

Shapes

1 2 3 4 5 6 Average %

ELU 61 75 66 49 67 30 58.6

HardTanh 65 95 70 57 63 39 65.0

LeakyReLU 50 64 80 38 76 34 57.3

Tanh 61 91 68 45 50 35 58.6

PReLU 60 76 77 45 68 26 59.0

ReLU 46 65 80 40 84 28 57.6

ReLU6 45 65 75 49 75 34 57.5

RReLU 50 70 78 40 81 29 58.3

Sigmoid 39 59 59 41 51 37 48.0

LogSigmoid 39 60 56 31 38 29 42.5

Table 4.22 shows the accuracies obtained for each shape orientated in O4 for each ac-

tivation function. An analysis of the table indicates that HS6 is the lowest performing

class across every activation function. However, relatively encouraging accuracies are

obtained for each of the other shape classes. The LogSigmoid function performs consis-

tently poorly relative to any of the other non-sigmoid activation functions. The Sigmoid

function also performs poorly, but does however, obtain better relative accuracies in

class HS6 and HS4. Overall, the most consistently performant activation function was

the HardTanH activation.
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4.4.5 Activation Function Analysis For HSO5

Table 4.23: Average accuracy for HSO5 classifiers across activations

Shapes

1 2 3 4 5 6 Average %

ELU 57 33 97 50 82 54 62.6

HardTanh 63 30 99 50 69 53 60.9

LeakyReLU 61 32 90 63 86 51 64.4

Tanh 59 35 99 52 63 50 60.0

PReLU 58 45 94 57 68 52 62.6

ReLU 58 41 95 59 90 58 67.2

ReLU6 49 31 92 59 85 58 62.6

RReLU 59 41 91 55 89 58 65.9

Sigmoid 61 20 99 54 33 41 51.8

LogSigmoid 10 21 93 38 79 58 50.2

Table 4.23 shows the accuracies obtained for each shape orientated in O5 for each acti-

vation function. An analysis of the table shows that the LogSigmoid function performs

poorly for HS1, HS2 and HS4. The Sigmoid activation function performs poorly for the

shape classes HS2, HS5 and HS6 with good relative accuracies in the rest of the classes.

The other activation functions perform reasonably consistently for HS1, HS3, HS4, HS5

and HS6.
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4.4.6 Activation Function Analysis For OR

Table 4.24: Average accuracy for OR classifiers across activations

Orientation

1 2 3 4 5 Average %

ELU 86.6 92.3 97.0 92.7 90.4 91.8

HardTanh 89.0 90.6 97.9 87.9 90.9 91.3

LeakyReLU 86.2 95.0 94.3 95.5 90.2 92.2

Tanh 87.6 91.1 97.6 90.1 92.5 91.8

PReLU 87.2 91.2 94.8 90.5 89.3 90.6

ReLU 85.9 95.4 95.1 96.1 89.5 92.4

ReLU6 86.1 95.0 94.5 94.8 90.0 92.1

RReLU 84.0 93.6 94.1 93.3 90.0 91.0

Sigmoid 88.1 85.6 96.9 83.3 90.0 88.8

LogSigmoid 75.0 84.7 91.3 84.5 90.2 85.1

Table 4.24 shows the accuracies obtained for each orientation in OR for each activation

function. An analysis of the table indicates that the LogSigmoid activation function

performs relatively well for O5 and O3, but does however, have a sub-par performance

when compared to the other activation functions for O1, O2 and O4. Similarly, the

Sigmoid activation function also performs well for O5 and O3 but obtains sub-par ac-

curacies for O2 and O4 in comparison to the other activations. The other activation

functions perform consistently. This classifier performs excellently with no orientation

dropping below 80%.

The lower accuracies of Sigmoid and LogSigmoid were discussed in the analysis of the

summarised table at the start of this chapter. It appears that even at the class level,

Sigmoid and LogSigmoid perform at a lower level in comparison to each of the other

activation functions, though in a small number of instances it performs comparably to

the rest of the activations at a class level.

4.5 Experiment To Assess CNNs By Adjusting Learnable

Filter And Fully Connected Layer Node Counts

The goal of this experiment is to inspect the impact that the number of learnt filters at

each convolutional layer has on the CNNs accuracy. In addition, a variable number of

nodes in the fully connected layer were also added for each learnable filter configuration.
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A number of filters are learnt at each convolution layer. This number is variable and

may increase or decrease accuracy. The number of nodes in the fully connected layer

may also have an impact on accuracy.

One of the key aims for this research is the application of CNNs for hand orientation

recognition and hand shape recognition in multiple orientations and in an embedded or

mobile phone context. Mobile devices have limited resources. The number of convolu-

tions, storage and memory increase proportionally to the number of filters learnt and

the number of fixed layer nodes. Thus, to remain feasible, the number of learnt filters

need to be restricted to a maximum of 40 feature maps per layer in an ES context.

Therefore, henceforth, this experiment and subsequent experiments will consider two

sets of CNNs: one set of CNNs for mobile devices that limit the number of filter maps

learnt per convolution layer—the ES context; and another set of CNNs that have no

limit—the non-resource starved (NRS) context.

Each of the HSO classifiers and the OR classifier was trained, whilst each time altering

the number of nodes in the linear layer as well as the number of features learnt for each

convolution layer; C1 and C2. The learnable filter count refers to C1 and C2 respectively

e.g. 160 320 refers to C1 = 160 filters and C2 = 320 filters, 160 80 refers to C1 = 160

filters and C2 = 80 filters, and so forth. To limit the number of comparisons carried

out, henceforth, only the most performant activation function for each classifier from

the previous experiment is used to train these models.

The format of the tables in this experiment is different due to the 2-dimensional nature

of the parameters that are being compared, namely, the learnable filter count and the

fully connected layer node count. In this overall discussion, the configurations for the

best performing networks and their respective parameters are tabulated in Table 4.25

and compared in an NRS context and ES context.
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Table 4.25: Accuracies for a variable number of learnable filters and variable number
of nodes in the fully connected layer—Best configurations

Classifiers

HSO1 HSO2 HSO3 HSO4 HSO5 OR

N
R

S Learnable Filters 160 320 320 160 160 80 320 160 320 320 320 320

Linear Layer Nodes 500 200 600 300 200 500

Accuracy (%) 90.9 80.8 91.5 65.1 71.1 92.7

E
S

Learnable Filters 20 40 20 20 20 20 40 20 20 20 20 40

Linear Layer Nodes 600 300 200 600 400 400

Accuracy (%) 90.0 79.7 90.0 61.8 65.5 92.3

It should be noted that each of the accuracies in the NRS context had configurations that

learnt over at least 80 filters per convolution layer. Referring to the NRS section of the

Table 4.25, these configurations obtained relatively higher accuracies for HSO1-HSO5

and OR than those of the corresponding ES context configurations.

Observing the number of filters, it is interesting to note that the largest number of filters,

i.e. 320 320 only provides the best accuracy for two of the six classifiers—HSO5 and

OR in the NRS context. For five of the six classifiers in the table, learning 160 filters or

more provides a better accuracy. However, generally speaking, a larger number of filters

does appear to provide for a better accuracy as evidenced by the fact that not a single

configuration below 80 filters outperforms these larger configurations.

On the other hand, the number of fully connected nodes that provides the best accuracy

varies across classifiers and there seems to be no correlation between the number of

nodes in the fully connected layer and a good choice for the number of learnable filters.

Referring to the ES section of the table, these results take the device limitations into

account by limiting the number of learnable filters in each layer to a maximum of 40

filters. Regarding the best number of filters, it is interesting to observe that none of the

classifiers in the ES context use the largest learnable filter count available, i.e. 40 40,

to obtain the best accuracy and can benefit when that at least one of the layers learns

20 filters per feature map. In this case, a larger number of filters does not necessarily

provide the best accuracy. Similar to the NRS context, the ES context also seems to

have no correlation between the number of fully connected layer nodes and the learnable

filters.
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This is very interesting to note that despite applying the limitation of learning only a

maximum of 40 filters in the ES context, a comparison of each of the average accuracies

obtained for each classifier and configuration indicates that the ES context classifiers

perform at accuracies very comparable to the NRS context classifiers. It is evident that

for this specific problem and number of classes, i.e. five orientations and six shapes,

learning 20 or 40 filters is sufficient for the model to generalise with very reasonable

accuracies. The number of fully connected layer nodes varies and may need to be

adjusted on a case by case basis, although a deeper analysis on a classifier-specific basis

will provide further insight into this.

The following subsections provide further analysis of the learnable filter and fully con-

nected layer node counts for each HSO classifier and the OR classifier. Configurations in

the following section will be referred to using the following format: [LC1]-[LC2]-[LIN],

where LC is the learnable count learnt at a specific layer depth and 1 is the first convo-

lution layer, 2 is the second convolution layer and LIN refers to the number of nodes in

the fully connected layer, e.g. 20-40-500 refers to 20 filters learnt at the first convolu-

tion layer, 40 filters in the second convolution layer and 500 nodes in the fully connected

layer. In each case the best performing network in both the NRS context and ES context

are highlighted in red. The tabulation of results at the individual class level for each

configuration is not feasible given the large dimensionality of the results. The confusion

matrices for the most performant configurations are provided in Appendix C.2.

4.5.1 Learnable Filter And Fully Connected Layer Node Count Anal-

ysis For HSO1

Table 4.26: HSO1 accuracies for a variable number of learnable filters and variable
number of nodes in the fully connected layer

Fully Connected Nodes Count
200 300 400 500 600

L
e
a
rn

a
b

le
F

il
te

r
C

o
u

n
t

20 20 88.8 86.2 88.4 88.6 86.2
20 40 85.9 89.7 87.3 89.4 90.0
40 20 89.7 86.9 89.3 87.5 86.2
40 40 87.5 89.7 88.4 86.6 87.6
40 80 88.1 87.7 88.0 89.0 89.8
80 40 87.0 89.0 88.0 89.1 88.1
80 80 88.8 87.7 90.0 88.0 88.8
80 160 89.1 90.4 89.5 88.4 90.8
160 80 89.7 89.0 89.3 89.8 89.7
160 160 87.7 90.1 88.0 89.4 88.7
160 320 88.7 86.6 90.2 90.9 89.1
320 160 89.0 89.7 89.1 90.0 89.0
320 320 90.2 90.2 89.3 90.2 90.2
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Figure 4.20: HSO1 number of learnable filters learnt and number of nodes in the fully
connected layer

Table 4.26 tabulates the average accuracies for each of the filter and node configurations

for HSO1. An analysis of the table does not indicate any strong outliers with respect to

the configurations and also shows that, despite the highest accuracy being obtained by

the configuration 160-320-500, a similar accuracy could be obtained with less computa-

tion using a configuration of 20-40-500 or 20-40-600, as observed previously. The Figure

4.20 is a graphical representation of the table and does not depict any strong positive

trend for learning a number of filters exceeding 40. There appears to be no large differ-

ence in accuracies for the different node configurations. Thus, in this instance we can

conclude that a larger number of nodes in the fully connected layer does not necessarily

provide any benefit to accuracy.
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Figure 4.21: HSO2 number of learnable filters learnt and number of nodes in the fully
connected layer
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4.5.2 Learnable Filter And Fully Connected Layer Node Count Anal-

ysis For HSO2

Table 4.27: HSO2 accuracies for a variable number of learnable filters and variable
number of nodes in the fully connected layer

Fully Connected Nodes Count

200 300 400 500 600
L

e
a
rn

a
b

le
F

il
te

r
C

o
u

n
t

20 20 76.6 79.7 76.1 76.1 78.1

20 40 76.1 75.0 75.9 76.3 73.6

40 20 77.5 78.3 78.4 77.7 77.5

40 40 78.3 77.3 77.7 77.5 78.0

40 80 75.1 76.1 75.9 75.4 75.1

80 40 78.8 78.4 77.3 78.3 78.4

80 80 77.0 79.5 77.6 77.5 78.1

80 160 75.8 76.3 77.3 75.6 78.1

160 80 77.6 77.5 79.0 80.2 78.6

160 160 77.6 78.0 77.6 79.4 76.8

160 320 76.8 78.0 77.2 76.6 77.3

320 160 80.8 80.4 80.2 80.2 78.8

320 320 77.9 78.4 78.3 80.1 80.0

Table 4.27 tabulates the average accuracies for each of the filter and node configurations

in HSO2. Similar to HSO1, the analysis for the HSO2 table does not indicate any strong

outliers. The largest difference between accuracies in all of the configurations is at most

7%. The Figure 4.21 is a graphical representation of the table and further illustrates the

point, as in HSO1, that there is no proportional increase in accuracy as a larger number

of filters are learnt. Rather, the accuracies appear to be randomly distributed.
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4.5.3 Learnable Filter And Fully Connected Layer Node Count Anal-

ysis For HSO3
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Figure 4.22: HSO3 number of learnable filters learnt and number of nodes in the fully
connected layer

Table 4.28: HSO3 accuracies for a variable number of learnable filters and variable
number of nodes in the fully connected layer

Fully Connected Nodes Count
200 300 400 500 600

L
e
a
rn

a
b

le
F

il
te

r
C

o
u

n
t

20 20 90.0 88.1 86.6 87.6 85.1
20 40 88.7 86.9 86.3 86.8 87.5
40 20 86.5 88.6 88.4 87.2 88.1
40 40 88.6 88.3 89.4 88.1 88.6
40 80 88.6 87.0 87.9 88.6 88.1
80 40 90.1 89.0 88.6 89.8 88.1
80 80 90.4 89.1 86.6 88.6 88.6
80 160 89.0 87.3 88.3 88.3 88.0
160 80 88.3 89.7 88.6 88.7 91.5
160 160 88.4 89.3 89.3 88.7 88.8
160 320 89.3 89.3 88.3 89.5 89.4
320 160 90.6 89.7 88.1 89.0 89.4
320 320 89.7 90.4 90.4 88.8 88.7

Table 4.28 tabulates the average accuracies for each of the filter and node configurations

in HSO3. An analysis of the table indicates that there are also no strong outliers with
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the difference between the largest value and smallest value being at most 6%. The

Figure 4.22 is a graphical representation of the table and indicates no trend towards a

proportional increase in accuracy relating to the learnt filter configuration.

4.5.4 Learnable Filter And Fully Connected Layer Node Count Anal-

ysis For HSO4
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Figure 4.23: HSO4 number of learnable filters learnt and number of nodes in the fully
connected layer

Table 4.29 tabulates the average accuracies for each of the filter and node configurations

in HSO4. The Figure 4.23 is a graphical representation of the table. The graph is

slightly more erratic than any of the previous classifiers and indicates that there is a

very slight increasing trend in accuracy for each linear node configuration when more

learnable filters are added, although it does not do so uniformly.
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Table 4.29: HSO4 accuracies for a variable number of learnable filters and variable
number of nodes in the fully connected layer

Fully Connected Nodes Count
200 300 400 500 600

L
e
a
rn

a
b

le
F

il
te

r
C

o
u

n
t

20 20 55.5 58.3 59.5 57.5 59.4
20 40 58.8 55.2 57.7 56.3 51.9
40 20 58.8 59.5 54.7 58.3 61.8
40 40 57.6 59.4 60.0 55.1 60.0
40 80 60.5 60.9 59.8 61.1 60.4
80 40 62.5 59.7 58.8 61.1 58.1
80 80 59.7 60.0 59.1 59.3 63.7
80 160 61.1 59.5 58.4 58.8 59.7
160 80 62.7 63.0 61.2 61.6 63.4
160 160 63.1 64.0 60.1 61.5 58.6
160 320 61.3 60.4 62.3 60.4 61.6
320 160 60.9 65.1 63.6 64.4 62.2
320 320 63.8 60.2 62.2 62.2 62.5

4.5.5 Learnable Filter And Fully Connected Layer Node Count Anal-

ysis For HSO5

Table 4.30: HSO5 accuracies for a variable number of learnable filters and variable
number of nodes in the fully connected layer

Fully Connected Nodes Count

200 300 400 500 600

L
e
a
rn

a
b

le
F

il
te

r
C

o
u

n
t

20 20 59.1 59.1 65.5 55.9 61.3

20 40 63.4 60.9 62.6 58.6 59.5

40 20 61.5 54.8 65.2 63.4 64.7

40 40 59.8 58.4 63.6 56.8 62.7

40 80 65.1 61.2 58.4 64.4 58.3

80 40 63.1 65.0 62.3 59.8 56.3

80 80 60.4 66.9 65.9 63.8 61.5

80 160 62.3 67.5 61.8 65.0 63.6

160 80 62.2 60.6 63.1 65.4 62.3

160 160 65.9 63.0 65.0 64.8 63.4

160 320 65.0 66.1 63.4 68.1 66.1

320 160 59.3 65.6 64.3 63.7 65.2

320 320 71.1 65.4 65.8 67.2 64.3

Table 4.30 tabulates the average accuracies for each of the filter and node configurations

in HSO5. An analysis of the table does not indicate any strong outliers nor an increase
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Figure 4.24: HSO5 number of learnable filters learnt and number of nodes in the fully
connected layer

in accuracy as more learnable filters are added. The Figure 4.24 is a graphical repre-

sentation of the table and illustrates the random distribution of the accuracies. The

graph indicates that for HSO5, the accuracies are more erratic than any of the previous

classifiers.
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4.5.6 Learnable Filter And Fully Connected Layer Node Count Anal-

ysis For OR
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Figure 4.25: OR number of learnable filters learnt and number of nodes in the fully
connected layer

Table 4.31: OR accuracies for a variable number of learnable filters and variable
number of nodes in the fully connected layer

Fully Connected Nodes Count
200 300 400 500 600

L
e
a
rn

a
b

le
F

il
te

r
C

o
u

n
t

20 20 91.2 91.0 91.0 91.3 91.8
20 40 91.2 90.5 92.3 90.8 91.8
40 20 91.6 91.0 91.0 91.7 90.5
40 40 92.0 92.2 91.8 91.4 91.6
40 80 91.5 91.7 91.1 91.8 91.6
80 40 91.7 90.2 91.2 91.5 91.9
80 80 92.2 92.1 91.6 91.5 92.3
80 160 92.0 91.7 91.4 92.3 92.1
160 80 91.6 91.5 91.3 92.1 92.2
160 160 92.1 92.1 92.3 92.6 92.2
160 320 92.0 92.2 92.0 92.0 92.5
320 160 91.3 92.0 91.9 92.2 92.6
320 320 92.5 92.2 92.5 92.7 92.1

Table 4.31 tabulates the average accuracies for each of the filter and node configurations

in OR. An analysis of the table does not indicate any strong outliers nor an increase in
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accuracy as more learnable filters are added. In fact the 20-40-400 configuration has an

accuracy very similar to the 320-320-500 configuration. The Figure 4.25 is a graphical

representation of the table and illustrates the similarity of the accuracies.

After the full analysis of each of the classifiers, this confirms the initial assertion that

learning 20 or 40 filters is sufficient for this specific problem i.e., the six and five class

problem. Learning more filters adds an immense amount of computation for little added

value in terms of accuracy. Similarly, the increase in the number of nodes in the fully

connected layer provides no substantial increase in accuracy. Thus, it can be concluded

that 200 nodes in the fully connected layer provides a reasonable accuracy for the least

amount of computation power.

4.6 Experiment To Assess CNNs By Adjusting Convolu-

tion And Pool Filter Dimensions

CNNs focus primarily on two assumptions when learning features. These assumptions

are that low level features are local and that the usefulness of a feature in a certain

segment might be useful elsewhere. Convolution and pool filter dimensions should be

chosen according to how strongly this holds true for the task at hand. Thus, the goal

of this experiment was to observe the effect that kernel dimensions of the convolution

and pool layers have on the accuracy of each of the classifiers. To limit the number

of comparisons carried out, henceforth, only the most performant number of learnable

filters and fully connected layer nodes for each classifier from the previous experiment

are used to train these models. Both, the NRS and ES context models from the pre-

vious experiment, along with their respective best configurations, are carried over to

this experiment, where the ES context classifiers are limited to a maximum of 40 learn-

able filters, as explained in the previous experiment. The effect of the dimensions of

the convolution and pool layers on the classifiers of each context are then separately

investigated and compared.

Each of the HS classifiers and the OR classifier is trained whilst each time altering the

dimensions of the convolution filters CD1 and CD2, and the dimensions of the pooling

filters, PD1 and PD2. The convolution filter dimensions will be referred to as CD1 and

CD2 respectively e.g. 5 3 refers to CD1 = 5 and CD2 = 3, and so forth. The format

used in the text refer to each of the tuples is as follows: CD(X1,X2) or PD(X1,X2)

where CD is the convolution layer, PD is the pooling layer, and X1 and X2 refer to the

convolution or pool layer dimensions.

 

 

 

 



Chapter 4. Experimental Results and Discussion 88

The format of the tables and the discussion are similar to that of the previous experiment

due to the 2-dimensional nature of the parameters that are being compared. In this

overall discussion, Table 4.32 tabulates the average accuracies for the most performant

convolution and pool kernel dimensions for each classifier.

Table 4.32: Average accuracies for the best convolution and pooling filter dimensions

Classifiers

HSO1 HSO2 HSO3 HSO4 HSO5 OR

N
R

S Pooling Filter 5 3 5 3 3 4 5 3 5 3 5 3

Convolution Filter 5 3 4 6 3 6 4 5 3 4 6 4

Accuracy (%) 90.2 81.6 90.5 66.2 68.7 92.8

E
S

Pooling Filter 6 2 5 3 5 3 5 3 5 3 3 4

Convolution Filter 3 5 6 5 5 4 3 5 4 3 6 5

Accuracy (%) 90.9 80.2 89.5 66.9 65.9 92.4

An analysis of the NRS section in Table 4.32 indicates, first, that the best pooling filter

tuple is PD(5,3) as evidenced by the fact that it obtains the highest accuracy for all but

a single classifier. Regarding the number of convolution filters, there does not seem to

be a prominent convolution filter tuple that performs best for every classifier. It appears

to be very classifier-specific.

An analysis of the ES section in the table indicates that the best pooling filter tuple is

also PD(5,3) as evidenced by the fact that it is the most common filter size for four of the

six classifiers. There is also no common convolution filter that performs consistently well

in the ES context. It should be noted that in both contexts the model depth and image

size, the pooling tuple PD(5,3) performs best. These sizes indicate that a relatively large

part of the feature maps is being down sampled. This leads to the belief that either the

initial input image sizes should be scaled beforehand or that a deeper network may be

capable of providing further learning of deeper hierarchical features if any exist.

Comparing the NRS and ES contexts, the differences in accuracies are observed to

be minimal for each classifier using the most performant convolution and pool filter

tuples. In fact, the ES context classifiers are more performant, if even very slightly,

in two instances—HSO1 and HSO4. It is very encouraging to note that this indicates

that applying the ES context restriction leads to a more computationally cost-effective

configuration for an accuracy very similar to that of the NRS context.
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The following subsections provide further analysis of the results obtained for the filter

dimension configurations for each classifier of each context. Graphs of the average accu-

racies obtained for each of the configurations in the NRS and ES contexts are provided

below. The corresponding tabulated data is provided in Appendix C in Section C.3.

4.6.1 Filter Dimension Analysis For HSO1
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Figure 4.26: HSO1 NRS accuracies for varying convolution and pooling filter dimen-
sions

Table C.13 in Appendix C tabulates the average accuracies obtained for the various

convolution and pool filter dimensions for HSO1 in the NRS context. The graph of this

data is shown in Figure 4.26. An analysis of the graph indicates that each of the pool

tuples performs relatively comparably to one another. However, the PD(2,2) tuple—

the purple line in the graph—does perform at a slightly lower level in comparison to

the other tuples, whilst other pool dimension configurations all perform very similarly

across convolution dimensions.
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Figure 4.27: HSO1 ES accuracies for varying convolution and pooling filter dimen-
sions

Regarding the result of the ES context classifier, Table C.14 in Appendix C tabulates

the average accuracies obtained for the various convolution and pool filter dimensions

for HSO1 in the ES context. The graph of this data is shown in Figure 4.27. An analysis

of the graph indicates that, in this case as well, the tuple PD(2,2) performs at a slightly

lower level in comparison to the other tuples, but that all other tuples perform similarly.

4.6.2 Filter Dimension Analysis For HSO2–HSO5 and OR

The results obtained for HSO2–HSO5 are similar to that of HSO1. The pool tuples

perform similarly in each instance except for PD(2,2) which performs at a slightly lower

accuracy by comparison. However, there are two instances in which HSO5 and OR

perform similarly, for PD(2,2), in relation to the other pool tuples for the ES context

only. These graphs are shown in Figures C.8 and C.10. In these instances, the graphs

clearly demonstrate that PD(2,2) is on a par with each of the other pool tuples. The

results also generally indicate that the convolution filter dimension has no observable

impact on the accuracy.
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Figure 4.28: HSO5 ES accuracies for varying convolution and pooling filter dimen-
sions
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Figure 4.29: OR ES accuracies for varying convolution and pooling filter dimensions
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The tables and graphs for these results are provided in the Appendix, Tables C.13–C.24

and Figures C.1–C.10, for the interested reader.

Table 4.33: Final convolution layer output filter sizes for pooling tuples on an 80×80
image

Pooling

2 2 3 4 5 3 6 2

Min 16× 16 5× 5 3× 3 4× 4

Max 18× 18 5× 5 4× 4 5× 5

A very clear trend that is observed across classifiers is that the pool tuple PD(2,2)

performs at a consistently lower level in comparison with the other pool tuples. However,

although in some instances it not as noticeable, this is generally the case.

One reason for the difference between PD(2,2) and all the other investigated tuples could

be attributed to the size of the final output feature maps corresponding to each tuple.

Table 4.33 shows the minimum and maximum final output feature map sizes obtained

when using the different convolution tuples for the provided model architecture. The

final output feature maps being used as inputs to the fully connected layer are relatively

large for P(2,2). Consequently, it could then be surmised that, at this output feature

size, the size of filters could have a bigger negative impact on accuracy. It could also be

surmised that scaling the initial input image from 80 × 80 pixels to a lower resolution

may allow PD(2,2) to be more performant than the other tuples given that the feature

map sizes will then be more in line with those of PD(3,4), PD(5,3) and PD(6,2) in

the 80× 80 context. Future testing and analysis is required to confirm this conjecture.

However, if this holds true it could also reduce a myriad of factors such as training time,

recognition time, and model size in memory. This is left to future work.

It was originally thought that PD(5,3) was the most performant tuple based on Table

4.32 which contains the best performing tuple configurations. Whilst this is true, it per-

forms better only by a marginal amount in most instances across each of the classifiers.

To conclude, for an 80 × 80 image the models seems to function best with the pool

tuples that allow for smaller features maps at the final convolution and pooling layer. It

is also observed that varying the convolution filter dimensions does not yield a noticeable

difference in accuracy.
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4.7 Comparison Of The Default And Best NRS and ES

Classifiers

This section summarises the average results obtained for each of the classifiers in the

default, NRS and ES contexts. The Table 4.34 tabulates all the accuracies obtained.

The default configuration refers to the same model used in the NBG vs BG experiment

i.e., Section 4.3.

Table 4.34: Accuracies for each classifier for default, NRS context and ES context

Classifiers

HSO1 HSO2 HSO3 HSO4 HSO5 OR

Default Accuracy (%) 88 74 86 59 60 90

NRS Accuracy (%) 90 80 91 65 71 92

ES Accuracy (%) 90 79 90 61 65 92

An analysis of the table indicates, very clearly, that both the NRS and ES classifiers

outperform each of the default classifiers in every instance and in some cases by a

noticeable amount. However, the accuracy of the default classifier cannot be considered

as being considerably lower than that of the ES or NRS classifiers and this is attributed

to the fact that the default model was a reasonably efficient model to begin with—

the same as used in the deep MNIST classifier [72, 76]. Had the default model used

the Sigmoid or LogSigmoid activation functions, it is likely that the default classifier’s

accuracy would have been noticeably lower. The small difference by which the NRS

classifier outperforms the ES classifier is encouraging and indicates that a smaller model

can obtain very comparable results to that of a larger model. This demonstrates the

feasibility of using deep learning models to perform classification on embedded and

mobile devices.

4.8 Experiment To Assess The 2-Stage CNNs

The previous experiments provided two sets of configurations that allowed for the best

accuracy to be noted in both an ES and an NRS context. Each of these HSO and

OR models was used to construct two final 2-stages classifiers. Their configurations are

tabulated in Table 4.35. The goal of this experiment was to determine the accuracies

of, and compare, these combined 2-stage classifiers.
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Table 4.35: Final configurations for each classifier for NRS context and ES context
where: LF = Learnable Filters, FCN = Fully Connected Layer Node Count, AF =
Activation Function, PFD = Pool Filter Dimension and CFD = Convolution Filter

Dimension

Classifiers

HSO1 HSO2 HSO3 HSO4 HSO5 OR

N
R

S

LF 160 320 320 160 160 80 320 160 320 320 320 320

FCN 500 200 600 300 200 500

AF ReLU6 HardTanH HardTanH HardTanH ReLU ReLU

PFD 5 3 5 3 3 4 5 3 5 3 5 3

CFD 5 3 4 6 3 6 4 5 3 4 6 4

E
S

LF 20 40 20 20 20 20 40 20 20 20 20 40

FCN 600 300 200 600 400 400

AF ReLU6 HardTanH HardTanH HardTanH ReLU ReLU

PFD 6 3 5 3 5 3 5 3 5 3 3 4

CFD 3 5 6 5 5 4 3 5 4 3 6 5

It is important to note that the six hand shapes and five orientations in the 2-stage

classifiers effectively result in 30 unique classes, i.e., one class for each unique hand

shape and orientation pair. The random guessing accuracy for a 30-class problem is

approximately 3%.

The results obtained for each 2-stage classifier are provided in tables: C.25 and C.26 in

Appendix C. Overall, the averages obtained for the ES and NRS classifiers were very

high accuracies of 73.4% and 73.2% respectively. This is an outstanding result given the

complexity of the classification problem at hand. It is observed that the ES classifier

obtains a marginally higher overall accuracy than the NRS classifier. The marginal

difference by which the ES classifier outperforms the NRS classifier is encouraging and

indicates that a smaller model can obtain good, if not better, results than a larger model.

This demonstrates the feasibility of using deep learning models to perform classification

on embedded and mobile devices.
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Table 4.36: Average orientation accuracies across shapes for the 2-stage classifier

Classifier

Orientation ES NRS

1 79 79

2 78 76

3 82 87

4 67 64

5 60 57

An analysis of the results on a per orientation basis, across all hand shapes, indicates

that in four of the five instances, the ES classifier outperforms the NRS classifier by a

difference of at most 3%. The NRS classifier does, however, outperform the ES classifier

for O3. Generally speaking, no outliers are observed. The highest performing orientation

is O3 across all shapes, followed by O1 and O2. O4 and O5 obtain relatively lower

accuracies, the reasons for which have been described at length in the experimental

analysis previously. These accuracies are by no means low and are still, in the worst

case, 57%, which is 19 times better than the random guessing classification accuracy for

a 30-class problem.

Table 4.37: Average shapes across orientations accuracies for the 2-stage classifier

Classifier

Shape ES NRS

1 66 69

2 77 80

3 76 72

4 75 73

5 82 82

6 63 60

Table 4.38: Accuracies of HS1 and HS6 across all orientations

Orientation
ES NRS

Shape 1 Shape 6 Shape 1 Shape 6

1 63 72 80 70

2 88 58 91 57

3 80 70 90 71

4 55 45 42 45

5 45 68 41 59
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An analysis of the results on a per shape basis, across all hand orientations, indicates

that best classes for both the NRS and ES contexts are HS2, HS3, HS4 and HS5 which

each obtain accuracies that exceed 72%. There are no observed outliers between the

NRS and ES classifiers with a difference of at most 4%. The two lowest accuracies,

but by no means low, obtained by either the NRS or ES classifier are for HS1 and

HS6 with accuracies ranging between 60% and 70%. It should be considered that these

accuracies are at least 20 times better than the random guessing classification accuracy

for a 30-class problem.

Table 4.38 tabulates the results for the lowest performing classes, i.e., HS1 and HS6.

An analysis of this table indicates that the relatively lower accuracies obtained for HS1

are attributed to specific orientations O2 and O4. The relatively lower accuracies for

HS6 are attributed to O4 and O5. The lower accuracies for HS6 can be attributed to

the fact that for these orientations it was shown that this hand shape performed at a

relatively lower level in their respective HSO classifiers. The interested reader may find

the results of these HSO classifiers in Appendix C.

Table 4.39: Correctly classified instances per subject

Test Subject
Accuracy (%)

ES NRS

4 73 75

5 66 66

8 73 72

9 80 79

The Table 4.39 shows the percentage of correctly classified instances per subject. Com-

paring the NRS and ES classifier accuracies across test subjects in the table indicates that

both the NRS and ES classifiers perform relatively consistently even across subjects with

very little difference between the number of instances being correctly classified per sub-

ject. It should be noted that these classifiers use different configurations. Consequently,

it is very good to see this consistency amongst subjects for both of the classifiers.

Comparing the accuracies of each test subject, it is seen that there is very little difference

in accuracy across subjects, with the difference between the lowest and highest subject

being only 7% for the ES classifier, and 8% for the NRS classifier. Variations in accuracy

of this magnitude are very encouraging given the wide variations in skin tone, body

dimension and gender between test subjects. This small difference suggests that the

classifiers are robust to variations in test subjects.
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A further analysis was carried out to determine in which stage each 2-stage classifier

failed to recognise an image correctly, i.e. in the first stage at the orientation classifier or

in the second stage at any of the hand shape classifiers. Detailed tables of these results

are provided in Tables C.27 and C.28 in Appendix C for the interested reader. The

Table 4.40 is a summary of these tables and shows the overall percentage classification

errors as a result of rejection in each stage.

Table 4.40: Overall percentage classification errors as a result of rejection at the first
stage (orientation classifier) or the second stage (any of the hand shape classifiers)

ES Error (%) NRS Error (%)

Stage 1 7.4 8.1

Stage 2 19.1 18.6

Overall 26.5 26.7

An analysis of the tables indicates that there were fewer instances of rejection in stage

one, the OR classifiers, than in the second stage, the HSO classifiers. The lower rejection

rate in stage 1 is in accordance with the high average accuracies, of over 90%, obtained

for the OR classifiers. Similarly the reason for the relatively higher classification error of

stage 2, in comparison to stage 1, is attributed to the relatively lower accuracy of each

of the five hand shape classifiers as compared to OR.

The results for the ES and NRS classifier for both stages are very similar with minute

differences in error amounting to 0.7% and 0.5% respectively. This is propagated into

the overall errors which are different by only 0.2%. This is very encouraging considering

the ES classifiers were limited to a maximum of 40 filters. This clearly demonstrates

the efficacy of deep learning towards hand shape and hand orientation recognition in an

embedded system and mobile device context.

4.8.1 Convolutional Neural Network Classification Speed

The full 2-stage classifier was constructed by combining the best ES classifiers. These

models were converted and transferred for use on an iPhone device using the ES neural

network library developed by the researcher. The goal of this test was to illustrate that an

iPhone is capable of performing real time recognition of images using a CNN. 100 images

were stored on the mobile device memory and copied into a memory buffer before timing

began i.e., the time to load the images was excluded from the recognition time. The

average time for a single instance to be classified and the number of frames processed

per second is reported in Table 4.41. The individual iteration times are provided in

Appendix C.29.
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Table 4.41: Recognition speeds for best ES configuration

Classification Time (seconds)

iPhone 5C iPhone 6+

Average Time (s) 0.0267 0.0074

Average FPS 37 135

The table tabulates the results obtained when performing recognition on the iPhone

5C and iPhone 6+ using the ES 2-stage classifier. Analysis of the table indicates that

real time classification is possible even using an older device such as the iPhone 5C.

The iPhone 5C and iPhone 6+ obtained an recognition speeds of 37 FPS and 135 FPS

respectively. It should be noted that these models were executed on an iPhone 5C and

iPhone 6+ with an A5 processor and A8 processor respectively. Newer devices will be

able to do these convolutions even faster on the CPU. In addition to this, many of these

operations can be parallelised on the mobile GPU for an even faster recognition time.

This mGPU implementation is left for future work.

4.9 Summary

This chapter covered all the experiments to test both the HTS and HGR components.

The face detection algorithm employed in this research was shown to execute at 43 FPS

and 89 FPS on the iPhone 5C and iPhone 6+ respectively. The HTS component, which

utilises the face detection algorithm, was shown to be robust with an average tracking

accuracy of 82.58%.

Experiments were carried out to test the HGR component. The first experiment—testing

the NBG and BG datasets—indicated that it is beneficial to remove the background from

the segmented hand images. This generally provides a better classification accuracy.

The second experiment–The comparison of activation functions—indicated that the

choice of activation function provides relatively consistent performance for each of the

activation functions. However, the Sigmoid and LogSigmoid functions generally perform

at a lower level in comparison to the other activation functions.

The third experiment—Assessing the impact of learnable filters in convolution layers and

the number of fully connected layer nodes on accuracy—indicates that learning more

filters does not necessarily equate to a noticeably better model. The highest accuracies

were obtained learning, using more than 40 filters, however, even learning with fewer

than or equal to 40 filters resulted in very comparable accuracies.
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The fourth experiment—Assessing the impact of the convolution and pool filter di-

mensions on accuracy— revealed that the changes in the convolution filter dimensions

provided no uniform increase or decrease in accuracy for each of the pool filter dimen-

sions configurations. However, it did indicate that the pool filter dimensions had a larger

impact on the accuracy of the classifier.

After these experiments were completed the models were used to construct the 2-stage

classifier. The most performant ES model was shown to obtain a final accuracy of

73.4% using the said 2-stage approach. This is a very encouraging accuracy for this

2-dimensional machine learning problem of recognising hand gestures, which involves

recognising two gesture parameters simultaneously, namely, shape and orientation.

This same model was shown to be realtime even with a limit being imposed on the

number of learnable filters. The CNN is capable of recognising new images at a speed

of 37 FPS and 135 FPS using the iPhone 5C and iPhone 6+ respectively.

The following chapter concludes the thesis.

 

 

 

 



Chapter 5

Conclusion

This research focused on deep learning in an embedded context, specifically CNNs,

and its applications to South African Sign Language gesture recognition using two of

the five fundamental gesture parameters - hand shape and hand orientation. CNNs

were shown to be very good candidates for image recognition and classification tasks in

the literature and performed very well in a gesture recognition context for two gesture

parameters. Two major factors were considered in this research: classification accuracy

and classification speed in an embedded context.

With respect to the first question: “Which parameter values for the CNNs provide an

optimised network model in the context of hand shape recognition in various orientations

with respect to accuracy on embedded devices?”, It was shown that the most performant

activation functions were generally either the rectified linear functions or the symmetric

sigmoidal function - hard hyperbolic tangent.

In response to the second question: “How accurate are CNNs at classifying unseen images

in the context of hand orientation recognition on embedded devices after an optimised

network model has been established?”, the results obtained for the orientation classifier

show that it obtained an overall accuracy of 92% and is capable of running on an iPhone

5C or better.

In response to the third question: “How accurate are CNNs at classifying unseen images

in the context of hand shape recognition in various orientations on embedded devices

after an optimised network model has been established?”, it was shown that the final

2-stage classifier managed to obtain a very high accuracy of 73.4% which is capable of

running on an iPhone 5C or better.

In response to the fourth question: “How fast are CNNs at classifying unseen images

in the context of hand shape recognition in various orientations on embedded devices

100
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after an optimised network model has been established?”, The classifier does so at a

very reasonable speed by obtaining speeds of 37 FPS and 137 FPS on an iPhone 5C and

iPhone 6+ respectively.

Thus, in response to the final research question “How performant is Deep Learning,

specifically CNNs, in the context of hand shape recognition in multiple hand orientations

on embedded devices?” It was concluded that deep learning and specifically, CNNs, are

very performant in terms of both accuracy and speed in the context of hand shape

recognition in multiple orientations on embedded devices such as the iPhone.

This research has added considerable value and novel results to the field of gesture

recognition in a South African Sign Language context. This research has also provided

considerable insight for the Assistive Technologies Research Group. It achieved this

insight by providing the research into the recognition of hand orientation and hand

shape in multiple orientations using CNNs on mobile devices.

5.1 Future Work

Although a satisfactory accuracy was obtained by the CNN classifier there are a number

of other steps that may improve the accuracy of the classifier. These are:

• Increasing the number of training and testing samples, i.e., obtaining a larger dataset.

A larger volume of data may help the classifier improve generalisation, especially

in certain instances where poorer accuracies were obtained.

• Recent research has indicated that using Generative Adversarial Networks (GANs)

to train on a subset of the training samples, combined with subsequently training

a CNN, has proved to provide excellent results, when trained against the Google

SVHN (Street View House Number) dataset.

• Adding a dropout layer in the case where classifiers are overfitting. Dropout layers

have shown to be effective in cases where classifiers are overfitting.

• Altering the learning rate or optimisation method and selecting different mini-batch

sizes.

• Introducing regularisation where models are overfitting or under-fitting, i.e., when the

models are either too simple or complex.

In order to speed up each of the components, future work should also focus on parallelis-

ing convolution and pooling operations on the mobile GPU. In addition to the machine
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learning process optimisation, computer vision tasks should also be done on the mobile

GPU where possible.

5.2 Concluding Remarks

The researcher has concluded that this research and experiments conducted has added

considerable value to his life and and it was proved to be a fulfilling learning experience.

It is hoped that this research can serve as a basis for the selection of machine learning

techniques in an embedded context for other sign language parameters by the Assistive

Technologies Research Group, and for classification problems in general.

 

 

 

 



Appendix A

Appendix - Image Processing

A.1 Face Detection Using Viola-Jones Framework

The face detection in this research is done by applying the Viola Jones object detection

framework in combination with cascades that are specifically designed for detecting faces

[19]. The Viola-Jones framework (VJF) is able to detect faces rapidly in real time.

A.1.1 Notable VJF Contributions to Object Detection

The VJF introduced a number of new contributions to object detection but three of

these contributions are particularly notable. These contributions are discussed below:

A.1.1.1 Integral Image

The VJF introduced a novel new image representation called the Integral Image. This

representation allows for very fast feature evaluation. Inspired by the work of Papageor-

giou et al. the VJF does not work directly with image intensities but rather a set of

features that are similar to Haar basis functions. The integral images allows for these

features to be hastily computed at various scales. The integral image can be computed

with only a few operations per pixel and, once computed, allow for any of these Haar-like

functions to be computed in constant time.

A.1.1.2 Adaboost on Haar-Like Features

The VJF also introduced a classifier that selects a small number of important features

by using the Adaboost machine learning algorithm. An image sub-window can contain
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a large number of Haar-like features far exceeding the number of pixels contained in the

full image. To provide real-time performance it is crucial that only the most important

features be selected and the majority of available less crucial features be discarded. The

Adaboost algorithm is modified such that weak learners are constrained in such a way

that each returned weak classifier is only dependent on a single feature. Thus, each

stage of the boosting process, which returns a weak classifier, can be viewed as a feature

selection process [77–79].

A.1.1.3 Cascade Classifiers

The VJF introduces a method for successively combining complex classifiers in a cascade

structure which dramatically increases the speed of the the face detector by limiting

computation power and focusing only the most important regions of an image. This

notion of focusing on the important regions of the image is that it is possible to determine

where an object might occur [80–82]. A crucial metric in the success of this process is

that majority or all of the object instances must be selected in the focus filter.

A.1.2 Features

The simplest features used are similar to Haar basis functions used by Papageorgiou et

al. [79]. More precisely, three features are used, namely: two rectangle features, three

rectangle features, and four rectangle features.

Two rectangle features are computed by calculating the difference between two vertically

or horizontally adjacent rectangular regions. It should be noted that these regions are

required to be the same size. A three rectangle feature is computed by calculating the

difference between the sum of the outer two rectangles and the centre rectangle. Lastly

the four rectangle feature is computed by calculating the difference between diagonal

pairs of rectangles. Each of these features is convolved across the image at a number of

scales and the appropriate calculation occurs for a particular feature. If this calculation

exceeds a acceptable value the object is considered to be detected by the covered feature

region.

A.1.3 Integral Image and the Computation of Features

To calculate the features in an image at a variety of scales and positions is costly in

terms of computation. Consequently the intermediary Integral Image was introduced

because it allows for the rapid calculation of features.
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An Integral Image is comprised of the sum of all pixels to the left and above, given an

arbitrary point (x,y), inclusive given by the formula:

G(x, y) =
∑
i

6 x, j 6 y (A.1)

Figure A.1: Integral Image calculations.

It is possible to compute a Haar-like feature by computing the sum of any rectangle in

the original image. If one observes Fig A.1 its clear that it is possible to compute the

sum of the pixels in D by subtracting the Integral Image value at 4 from the sum of the

Integral Image values at 2 and 3, 1 is added to this difference to account for the excess

caused by the intersection of rectangles (A and B) represented by 2 and rectangles (A

and C) represented by 3.
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In doing so it is apparent that one can calculate the sum of pixels in any rectangle and

consequently compute any Haar-like features at any scale or location.

A.1.4 Adaboost in Feature Selection

Adaboost is a learning algorithm that selects only the best features from a large list

of features. The VJF uses a modified version of the algorithm to select only a few of

the most critical Haar-like features. There is a large number of Haar-like features, often

exceeding the number of pixels in the image. In order to speed up computation it is

critical that only the best features be used to train a classifier.

Despite the fact that each of the features can be computed without much computational

cost the sheer number of features can lead to a slow classifier. Thus it is crucial that

only those features, that best distinguish between positive and negative examples, be

used, in order to achieve the strongest classifier.

A.1.5 Rejection Cascade for Weak Feature Classifiers

Figure A.2: Structure of the rejection cascade.

The rejection cascade is constructed in such a manner as to achieve a high accuracy while

significantly lowering the computational cost for negative examples. The notion behind

this rationale is that a simpler, and faster boosted classifier can reject most negative

sub-windows whilst still being capable of detecting the positive instances.

The rejection cascade takes the form of a degenerate decision tree as shown in Figure

A.2. Taking a look at Figure A.2 it is clear that each sub-window needs to pass through a

set of classifiers and if at any stage during this pass any of the classifiers infer a negative

result the sub-window is rejected. In doing so the computational power is used optimally

for sub-windows that do not contain a face.
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A.2 Gaussian Mixture Models

The use of stationary cameras for surveillance is a common use case. Detecting foreign

or moving objects is a common theme when analysing a capture video or scene. An

assumption that can be made is that the images of a scene without the foreign objects

exhibit some behaviour that can be described by a statistical model. If a statistical

model of the scene is constructed then foreign objects can easily be detected as outliers

to this model. This process is known as ”background subtraction” [26].

This background subtraction can be performed by a probabilistic method called Gaussian

Mixture Models. For a single Gaussian model a common bottom-up approach is used

to model the scene with a probability density function for each pixel. Any subsequent

pixels from a new image are considered to be part of the background if the pixel can

be described by the density function. For a static scene a simple model could be an

image of the scene without foreign objects. This would be followed by the estimation

of appropriate values for the variances in pixel intensities in the image. This single

Gaussian model was used in the construction of the Pfinder system as described in [83].

Pixel values have complex distributions and models that can better describe these are

required. A Gaussian mixture model (GMM) was proposed for background subtraction

in as in [84].

GMMs are a probabilistic method used for background subtraction, it achieves this

background subtraction by highlighting motion pixels across a number of frames such

that pixel brightness indicates the recency in motion for a pixel between 0 and 255. The

pixels (i, j) in a sequence of images I at a time t can be described as follows:

{P1,i,j ...Px,i,j} = {I(i, j, x) : x ∈ [1, t]} (A.2)

Each pixel in the image can be modelled as a mixture of n Gaussian distributions where

Wy,t represents a weight estimate for the nth Gaussian. The probability that a pixel has

the value Px,i,j at the time x can be expressed by the following equation:

P (Px,i,j) =

n∑
y=1

Wy,t × η(Px,i,j , µy,t,Σy,t) (A.3)

η(Px,i,j , µy,t,Σy,t) describes the normal distribution of the yth Gaussian component with

a mean of µy,t expressed by the following equation:
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η(Px,i,j , µy,t,Σy,t) =
1

(2π)
n
2 |Σy,t|

1
2

e

−1
2
(Px,i,j−µy,t)T

−1∑
y,t

(Px,i,j−µy,t)
(A.4)

where Σn,t = σ2n,t × I is the co-variance of the nth Gaussian given that I is the identity

matrix.

A fitness value
Wy,t

σy,t is used when ordering the n distributions, the first M distributions

are used to model the background scene and the estimate given by the following formula:

M = argminm(

m∑
y

Wy,t > Th) (A.5)

where Th refers to the threshold value that represents the minimum portion of the

background model.

Given an updated background, foreground detection is then achieved by labelling all

pixels which are determined to be more than a standard deviation of 2.5 away from any

of the M distributions as foreground pixels. If there is a match between the test value

and the x-th Gaussian component Wx,t, it is updated as shown below:

Given a new background, pixels belonging to the foreground are labelled as such if a

difference in standard deviation exceeds 2.5 from any of the M distributions. If a pixel

satisfies the constraint against the yth Gaussian component then Wy,t is updated as

shown below:

Wy,t = Wy,t−1 (A.6)

µy,t = (1− ρ)µy,t + ρPx,i,j (A.7)

σ2y,t = (1− ρ)σ2y,t−1 + ρ(Px,i,j − µy,t)T (Px,i,j − µy,t) (A.8)

ρ = αη(Px,i,j |µn,Σn) (A.9)

where 1
α refers to the time constant that determines the rate of change. If the pixel does

not satisfy the constraint it is updated as shown below:
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Wy,t = (1− α)Wy,t−1 (A.10)

µy,t = µy,t−1 (A.11)

σ2y,t = σ2y,t−1 (A.12)

If the pixel does not satisfy any of the Gaussian components then a new Gaussian

component is constructed with high variance. A low weight parameter and the pixel, as

its mean, replaces the Gaussian component with the lowest probability.

A.3 Template Matching Formula

Template matching is a computer vision technique for finding areas of an image that

are similar to those of a specified template or patch image [27]. A number of tem-

plate matching methodologies are available, however, this research makes use of the

Normalised Cross Correlation Template Matching. The image correlation is calculated

by the sum of pairwise multiplications of corresponding pixel values in the images [85].

A.3.1 Cross Correlation Template Matching Formulae

RcrossCorr(x, y) =
∑
x′y′

(T (x′, y′) ∗ I(x+ x′, y + y′)) (A.13)

RNorCrossCorr(x, y) =

∑
x′y′ [(T (x′, y′) ∗ I(x+ x′, y + y′))]√∑

x′y′ T (x′, y′)2 ∗
∑

x′y′ I(x+ x′, y + y′)2
(A.14)

A.4 CAMSHIFT

Continuously Adaptive Meanshift (CAMShift) is an extended version of the meanshift

algorithm [28]. CAMShift is a colour based computer vision tracking algorithm and was

developed as a perceptual user interface, and consequently needs to operate in real time

and should use the least amount of computational resources. Perceptual user interfaces

are interfaces that allow for computers to digitally mimic the human senses such as

giving the computer the ability to see or touch.
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The CAMShift algorithm uses a non-parametric technique to escalate a gradient and

find the mode (or highest peak) of probability distributions which is called the mean-

shift algorithm. To be applicable to the tracking of a hand within a video sequence the

algorithm is modified to find the mode of a colour distribution in a video sequence. To

obtain this colour distribution a colour histogram is used. Because the colour distribu-

tions of the video data change over time the meanshift algorithm needs to be modified

to adapt to the dynamic nature of the probability distribution it is tracking. This is one

of the distinct differences between CAMShift and meanshift.

In order for CAMShift to track coloured objects in a sequence of frames, a probabilistic

distribution image of the desired colour is necessary. This is achieved by using a 1-

dimensional hue colour histogram, this algorithm colour model in particular places a

singular focus on the hue channel. In order to obtain this colour histogram the hand

first needs to be located at least once using template matching as described in section

A.3. Once the hand is located the colour histogram can be created by binning the skin

pixels in the image section containing the hand.

During operation, the histogram is used as a model, or lookup table, to convert subse-

quent video frame pixels into a probability of skin image. Tracking, using CAMShift,

can take place on this skin probability image. CAMShift cleverly only does the skin

probability test on a smaller search window as opposed to a larger search space, the full

image, in order to save computational resources. The search window size is a tradeoff

between computation and accuracy, and should be sized in such a manner that allows for

the detection of the object, and its motion in any direction. Thus, the search window is

given by the initial location of the hand plus some padding for motion in any direction.

Another difference between meanshift and CAMShift mainly is that CAMShift is an

extension of the meanshift algorithm and adapts to the rotation and size changes of the

object within the frame.

More concisely, the meanshift algorithm is calculated as follows:

1. Choose a search window size.

2. Choose the initial location of the search window.

3. Compute the mean location in the search window.

4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until convergence (or until the mean location moves less than

a preset threshold).
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For discrete 2D probability distribution images the mean or centroid (steps 3 and 4 in

the meanshift algorithm) is calculated as follows:

Find the zeroth moment given by the formula

M00 =
n∑
x=1

n∑
y=1

ProbabilityDist(x, y) (A.15)

Find the first moment for x and y

M10 =

n∑
x=1

n∑
y=1

x× ProbabilityDist(x, y);M01 =

n∑
x=1

n∑
y=1

y × ProbabilityDist(x, y)

(A.16)

Consequently the mean search window location or centroid is given by

Centroidx =
M10

M00
;Centroidy =

M01

M00
; (A.17)

After locating the centroid using the meanshift algorithm the search window size is

updated according to the CAMShift specification. The width and height for the search

window is given by the following formulae:

SearchWindowW = 2×
√

M00

ProbMAX
(A.18)

SearchWindowH = 1.2× SearchWindowW (A.19)

A.5 Thresholding

A number of thresholding techniques exist such as simple thresholding, adaptive thresh-

olding and Otsu’s binarisation [86]. Thresholding involves converting an image from its

current representation into a binary representation given a particular value or in the case

of adaptive thresholding and Otsu binarisation this value is calculated. These types of

thresholding are explained below.
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A.5.1 Simple Thresholding

Simple thresholding is the use of a static threshold value to convert a grayscale into

a binary image. All values higher than this value get assigned a particular value (for

example black or 0) and all values lower get assigned another value (for example white

or 255).

A.5.2 Adaptive Thresholding

Adaptive thresholding differs from the simple thresholding by calculating a threshold for

a smaller region of the image. Then there are different thresholds for different regions

of the image and generally this gives a better result for images with varying levels of

illumination.

A.5.3 Otsu’s Binarisation

Otsu’s method of thresholding provides a mechanism for choosing a good candidate

threshold value for a bimodal image. Bimodal images are images that contain a two

large subsets of a particular pixel value or more clearly a histogram calculated from an

image that contains two peaks. Otsu’s method says that the value between these two

peaks is a good candidate threshold value.
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Appendix - Machine Learning

B.1 Convolution Operator

A convolution forms the basis of the convolutional layers in a convolutional neural net-

work. It may be described as a sliding window function that is applied element wise to

a matrix, in this case the matrix refers to an image [87]. This sliding window is more

aptly named a kernel, filter or feature detector [88]. k feature maps are learnt by con-

volving k filters across the image. The size of each feature map is calculated as follows:

fmw = (iw − kw) + 1, fmh = (ih − kh) + 1 where fm is the feature map, i is the image

and k is the kernel. Thus a single convolution layer would produce an array of k feature

maps. Each map is computed by convolving kernel n (where n is an element of k) across

the image and summing together each of the resulting outcomes of the convolution as

shown in Figure B.1. Furthermore, k feature maps are given by means of the following

function: fm = σ(weight × kernel + bias) where the weights and bias are those from

the visible layer to the hidden layer. The sigmoid function could be replaced by any

other non-linear transfer function such as ReLU, TanH, etc.
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Figure B.1: Graphical representation of how convolution operations work.

B.2 Max- and Average- Pooling Operators

Convolutions may result in a large number of features and can be computationally

expensive. Thus, a mechanism to reduce the feature set size has been devised, called
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Max-Pooling and Mean- or Average-Pooling i.e., these mechanisms reduce the dimension

of the input data. Each pooling layer consists of a kernel that has the size n × m.

The output of the pooling layer is dependant on the type of the pooling operation.

In Max-Pooling and Average-Pooling the output is computed as shown in the Figure

B.2. Max-Pooling involves sliding a kernel or grid across an image ensuring that these

regions do not overlap and finding the maximum value within the kernel. Average- or

Mean-Pooling operates under the same kernel procedure, however instead of using the

maximum value, the sum of all the values is taken and divided by the kernel size. Step

sizes may be added when sliding the kernel, the default rounding operation is floor but

the ceiling operator may also be used.
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Figure B.2: Graphical representation of how pooling operations work
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B.3 Activation & Transfer Functions

Before one can understand what an activation function is it is crucial that one under-

stands the fundamental process of forward propagation in neural networks. In essence

weights are multiplied by an input and compared with some threshold value which in

turn activates a particular artificial neuron in a neural network. Before checking whether

a neuron should be activated i.e., exceeds a certain threshold, it has a non-linear trans-

fer function applied to it in order to transform it from a linear to non-linear space. An

example of this transformation is the ReLU transfer function, output = max(0, data)

[89]. The importance of non-linear activation functions can be illustrated with a simple

example.

Imagine 4 points A1, A2, B1 and B2, A1 is close to A2 and B1 is close to B2, however,

A1 is far from B1 and B2 and consequently so is A2. Operating on this example, using

a linear transform allows for limited outcomes as opposed to non-linear transforms. For

instance, increasing the distance between A1 and A2 also increases the distance between

B1 and B2. Similarly if the distance between A1 and B1 is decreased the distance

between A2 and B2 also decreases. Many linear transforms exist but the results are

mostly similar when compared to non-linear transforms. In contrast if a non-linear

transform is used it is possible to increase the distance between A1 and A2 whilst

simultaneously decreasing the distance between B1 and B2. Each time a non-linear

transform is applied an increasingly complex relationship is formed between these points.

In the context of deep learning each non-linear transfer function creates increasingly

complex features with each layer.

As an alternative to the example above, The features of a many layers of pure linear

transforms can be reduced to a single layer because of the fundamental way matrix

multiplication works for linear transforms i.e., any number of linear transform matrices

can be represented by a single transform matrix. This is why non-linear transfer func-

tions are fundamentally important in deep learning. Figure B.3 visually illustrates the

difference between linear and non-linear combinations.
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Figure B.3: Visual representation of combining linear vs non-linear functions.

B.4 Gradient Descent

Gradient descent is the arguably the most popular method to optimise neural networks,

Three variants exist; batch gradient descent, stochastic gradient descent, and mini batch

gradient descent and these are discussed in the following section [87]. Each of these

variants refers to the amount of data used to compute the gradients for a particular

objective function. The accuracy of parameter update is directly proportional to the

amount of data used to compute the gradients. Thus, depending on the size of the

dataset a suitable variant is chosen that provides reasonable accuracy as well as a suitable

to time to update the parameter.
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B.4.1 Batch Gradient Descent

Batch gradient descent (BGD) is known to as the default variant of gradient descent.

BGD computes the gradient of the cost function across the entire dataset. BGD is

slower than other variants because it has to calculate the gradients for each training

example within the dataset with respect to every other example within the dataset.

BGDs slowness comes with an advantage; it is guaranteed to converge to the global

minimum for convex error surfaces and to a local minimum for non-convex surfaces.

θ = θ − η · ∇θJ(θ)

B.4.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD), similarly, computes the gradient for the whole dataset

however it differs from BGD in that parameter updates are done per training example

i.e., each x and y tuple in the dataset. SGD is faster than BGD because it does not

have to do redundant computations for each example. This approach does however have

a caveat; high variance is known to occur with the frequent updates resulting in heavy

fluctuation of the objective function. Because of these fluctuations SGD has the poten-

tial to find better local minima or even worse local minima. To mitigate the impact of

this fluctuation studies have shown that SGD will perform similarly to BGD in terms of

convergence when slowly decreasing the learning rate.

θ = θ − η · ∇θJ(θ;x(i); y(i))

B.4.3 Mini-Batch Gradient Descent

Mini-batch gradient descent (MBGD) is a combination of both the ideas behind SGD and

BGD. MBGD takes a smaller subset or mini-batch of size n of the dataset and computes

the gradients for each example with respect to the mini-batch. The advantages of this

variant is that it reduces the variance in the parameter updates which may lead to a

more stable convergence when compared to that obtained using SGD.

θ = θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n))
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B.5 Back-propagation In Neural Networks

Back-propagation is a learning algorithm that allows for the observation of the change in

error or cost with respect to weights and biases [90]. Algorithmically, back-propagation

can be described as follows:

1. Setting the input layers values to the feature vector, x, where x is an input sample.

2. Perform the feedforward operation for each layer following the input layer. This is

achieved by calculating the weighted input give by zl = wlal−1 + bl. Subsequently an

activation function is applied to the weighted input, z, given by the formula al = σ(zl)

in order to obtain the next layers activations.

3. Calculate the error for the output layer for the chosen cost function. The error vector

is calculated as given by the formula δL = ∇aC � σ′(zL). ∇aC refers to the vector of

partial derivatives ∂C
∂aLj

where L is the output layer of the network, j refers to the index of

the neuron in layer L and C refers to the cost function e.g. MeanSquaredError(MSE)

and σ′(zL) refers to the rate of change for the activation function σ with respect to zLj .

4. Back propagate the errors for each layer preceding the output layer computed by the

formula δl = ((wl+1)T δl+1)� σ′(zl). (wl+1)T refers to the transposed weight matrix for

layer (l + 1) and δl+1 refers to the errors of the activations in layer (l + 1).

5. Compute the gradient of the cost function with respect to the weights give by the

formulae ∂C
∂wl

jk

= al−1k δlj and ∂C
∂blj

= δlj .

B.5.1 Back-propagation In Convolutional Neural Networks

Back-propagation in Convolutional Neural Networks are similar to that of standard

Artificial Neural Networks, however, the differ distinctly because of the convolution and

pooling operators [90].

When dealing with high-dimensional inputs such as images it is not feasible to connect

all neurons (or pixels in the case of images) to neurons in the subsequent layer. Instead

each neuron is only connected to the local region of the image. This is called the receptive

field of the neuron and is the same size as the convolution layers filter. The depth of

the output volume equals that of the input volume. For example if a grayscale image of

32× 32 is given a filter of size 3× 3, the result will be 3× 3× 1 = 9 weights.

When using convolution layers connections are cut and shared across filters. This is

achieved by using parameter sharing which is a scheme to control the total number of

parameters in the network. If there exists a convolution layer that learns 96 filters (or
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kernels), with a filter size of 11 × 11 and an output volume size of 55 × 55 × 1 pixels

after the first convolution, then the result would be 55× 55× 96 = 290400 neurons and

each filter would be 11 × 11 × 1 = 121 weights and 1 bias. Together these calculation

result in a total of 290400 × 122 = 35428800 parameters. Because of this high number

of parameters it would be beneficial if this number could be reduced.

It turns out that this number can be dramatically reduced by making one reasonable

assumption. This assumption is that if a feature is useful to compute at one position

it should also be useful to compute at another location. Another way of looking at

this would be to imagine that there is a 2-dimensional slice with 96 depth slices each of

size 55x55. The depth slices are constrained to using only a single set of weights and

biases, with this parameter sharing in place, the number of parameters is dramatically

reduced to 96× 11× 11× 1 = 11616 parameters. During back-propagation every neuron

will compute the gradient for its weights but these gradients will update a single set of

weights per slice.

Figure B.4 illustrates how parameters are shared. Figure B.4 shows that the feedforward

operation is identical to that of a convolution in the case of a convolutional neural

network, and the weights in this case are the filters.
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Figure B.4: Forward propagation in convolutional neural networks
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Figure B.5 illustrates how to calculate the gradients for convolution layers by back-

propagating the errors similar to a standard neural network. The only difference here is

that instead of dot products the back-propagation in the convolutional neural network

uses convolutions, as illustrated in Figure B.5 and Figure B.6. Figure B.5 in particular

focuses on visually representing how the gradients are calculated between layers, with

connections being highlighted with the appropriate colours in the kernel. The calcula-

tions are depicted in the big grey block as well as visually in the Full Convolution section

in Figure B.6 and a full convolution is performed between the rotated kernel and the

errors from the subsequent layer.
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Figure B.5: Gradient calculation in convolutional neural networks - a visual depiction.
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Figure B.6: How to calculate the gradients in a convolutional neural network.

Algorithmically the convolutional neural network back-propagation can be described as

follows:

1) Setting the activation values, a1 for the the input.
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2) Perform the feed forward operation for each layer after the initial layer. This is

achieved by computing zlx,y = wlx,y × σ(zlx,y) + blx,y and alx,y = σ(zlx,y).

3) Calculate the error for the output layer for a given cost function. The error vector,

δL, is computed using the following formula: δL = ∇aC � σ′(zL)

4) Back propagate the errors for each layer preceding the output layer computed by the

formula δlx,y = δl+1
x,y ×ROT180(wl+1

x,y )σ′(zlx,y).

5) The gradient of the cost function is given by the following formula: ∂C
∂wl

a,b

= δla,b ×

σ(ROT180(zl−1a,b )).

 

 

 

 



Appendix C

Appendix - Results & Analysis

C.1 Experiment 2 Results

Table C.1: HSO1 with the best activation (ReLU6)

Shape

1 2 3 4 5 6 Average %

1 118 1 0 1 0 0 98.33

2 0 120 0 0 0 0 100.00

3 0 3 84 0 19 14 70.00

4 0 3 1 116 0 0 96.67

5 0 0 0 0 113 7 94.17

6 0 1 1 1 12 105 87.50

Avg 91.11

Table C.2: HSO2 with the best activation (HardTanh)

Shape

1 2 3 4 5 6 Average %

1 103 0 0 3 14 0 85.83

2 0 98 0 9 13 0 81.67

3 0 0 107 13 0 0 89.17

4 0 1 22 75 19 3 62.50

5 0 0 0 8 106 6 88.33

6 1 0 0 2 56 61 50.83

Avg 76.39
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Table C.3: HSO3 with the best activation (HardTanh)

Shape

1 2 3 4 5 6 Average %

1 117 0 0 1 0 2 97.50

2 26 94 0 0 0 0 78.33

3 0 0 110 3 4 3 91.67

4 10 0 0 109 0 1 90.83

5 0 0 0 0 119 1 99.17

6 0 0 4 8 30 78 65.00

Avg 87.08

Table C.4: HSO4 with the best activation (HardTanh)

Shape

1 2 3 4 5 6 Average %

1 78 29 0 7 4 2 65.00

2 0 114 0 3 3 0 95.00

3 1 0 84 0 19 16 70.00

4 16 0 5 69 26 4 57.50

5 1 3 5 12 76 23 63.33

6 7 3 8 14 41 47 39.17

Avg 65.00

Table C.5: HSO5 with the best activation (ReLU)

Shape

1 2 3 4 5 6 Average %

1 70 23 0 0 5 22 58.33

2 33 50 8 16 2 11 41.67

3 0 0 115 0 0 5 95.83

4 5 18 1 71 6 19 59.17

5 5 1 0 0 108 6 90.00

6 0 9 4 23 14 70 58.33

Avg 67.22
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Table C.6: OR with the best activation (ReLU)

Orientation

1 2 3 4 5 Average %

1 619 0 21 0 80 92.44

2 13 687 14 2 4 95.42

3 17 14 685 4 0 95.14

4 1 16 5 692 6 96.11

5 51 22 0 2 645 89.58

Avg 92.44

C.2 Experiment 3 Results

Table C.7: HSO1 with the best learnable filter count and fully connected layer node
count

Shape

1 2 3 4 5 6 Average %

1 117 0 0 3 0 0 97

2 0 114 0 0 6 0 95

3 0 3 85 0 19 13 70

4 0 0 1 117 2 0 97

5 0 0 0 1 113 6 94

6 0 2 1 1 20 96 80

Avg 89

Table C.8: HSO2 with the best learnable filter count and fully connected layer node
count

Shape

1 2 3 4 5 6 Average %

1 108 0 0 0 12 0 90

2 0 101 0 6 13 0 84

3 0 0 113 6 0 1 94

4 3 0 19 80 16 2 66

5 0 0 0 3 106 11 88

6 1 0 0 1 52 66 55

Avg 79
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Table C.9: HSO3 with the best learnable filter count and fully connected layer node
count

Shape

1 2 3 4 5 6 Average %

1 117 0 0 2 0 1 97

2 23 97 0 0 0 0 80

3 0 0 108 0 0 5 90

4 3 0 0 115 1 1 95

5 0 0 0 0 119 1 99

6 0 0 5 11 27 77 64

Avg 87

Table C.10: HSO4 with the best learnable filter count and fully connected layer node
count

Shape

1 2 3 4 5 6 Average %

1 63 30 0 11 10 6 52

2 0 116 0 1 3 0 96

3 1 0 88 0 17 14 73

4 18 1 11 65 20 5 54

5 1 1 6 11 68 33 56

6 9 0 10 10 45 46 38

Avg 61

Table C.11: HSO5 with the best learnable filter count and fully connected layer node
count

Shape

1 2 3 4 5 6 Average %

1 69 20 0 1 9 21 57

2 39 40 9 22 1 9 33

3 0 0 115 0 0 5 95

4 6 16 1 79 5 13 65

5 1 0 0 0 108 11 90

6 0 7 1 28 13 71 59

Avg 66
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Table C.12: OR with the best learnable filter count and fully connected layer node
count

Orientation

1 2 3 4 5 Average %

1 611 0 18 1 90 84

2 11 673 29 5 2 93

3 11 23 682 4 0 94

4 1 13 13 685 8 95

5 54 18 0 0 648 90

Avg 91

C.3 Experiment 4 Results

Table C.13: HSO1 accuracies for variable convolution and pooling filter sizes - desktop
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 80.14 87.08 89.17 87.36

3 5 83.61 88.33 88.75 86.67

3 6 84.31 89.28 87.50 86.39

4 3 80.69 86.25 88.61 86.11

4 5 83.19 88.89 89.17 86.39

4 6 85.69 89.72 86.67 86.53

5 3 81.81 85.33 90.28 86.11

5 4 81.11 87.64 89.58 85.97

5 6 83.33 89.58 87.08 87.64

6 3 80.42 86.53 89.31 86.11

6 4 81.81 87.36 89.86 86.53

6 5 84.58 89.86 88.89 85.83
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Table C.14: HSO1 accuracies for variable convolution and pooling filter sizes - em-
bedded context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 80.00 86.53 85.69 87.08

3 5 83.47 88.75 85.28 90.97

3 6 85.28 86.94 83.61 86.81

4 3 80.69 84.31 85.28 87.92

4 5 81.25 88.75 88.75 85.97

4 6 82.77 86.94 88.05 87.22

5 3 84.44 85.00 88.19 83.75

5 4 83.75 87.36 89.03 86.25

5 6 82.91 84.86 80.83 85.83

6 3 81.25 86.25 84.86 87.36

6 4 82.77 88.19 88.47 84.58

6 5 83.33 88.19 86.94 85.83

Table C.15: HSO2 accuracies for variable convolution and pooling filter sizes - desktop
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 66.94 77.36 77.92 76.53

3 5 62.64 75.00 74.17 74.44

3 6 63.19 74.86 80.28 75.83

4 3 64.86 76.58 78.89 77.36

4 5 64.17 74.17 78.06 77.50

4 6 61.39 76.81 81.67 76.11

5 3 62.78 75.97 77.92 76.53

5 4 60.83 77.78 79.03 74.17

5 6 63.06 74.58 80.69 74.44

6 3 63.33 76.25 77.92 76.11

6 4 62.78 75.28 79.72 74.17

6 5 64.03 75.97 80.14 78.61
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Table C.16: HSO2 accuracies for variable convolution and pooling filter sizes - em-
bedded context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 67.36 75.56 74.03 75.56

3 5 66.53 71.94 73.33 74.44

3 6 65.42 77.08 78.06 73.89

4 3 64.86 75.28 74.44 73.75

4 5 65.97 75.56 76.25 73.33

4 6 62.78 70.42 75.97 70.14

5 3 66.81 75.56 76.39 75.14

5 4 65.83 74.44 76.39 74.17

5 6 68.19 73.61 76.11 78.75

6 3 64.44 76.25 76.67 75.97

6 4 67.08 77.50 76.67 75.28

6 5 65.97 73.33 80.28 76.11

Table C.17: HSO3 accuracies for variable convolution and pooling filter sizes - desktop
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 80.83 87.82 89.44 88.33

3 5 77.92 88.75 86.81 87.50

3 6 73.89 90.56 86.81 88.33

4 3 75.00 86.94 89.58 84.72

4 5 73.06 90.42 88.06 87.22

4 6 77.08 88.89 87.36 83.47

5 3 79.86 86.39 87.92 85.97

5 4 76.94 88.33 87.92 84.86

5 6 75.42 88.75 86.53 84.86

6 3 80.00 86.53 87.92 86.81

6 4 69.17 88.75 88.75 82.08

6 5 77.64 89.86 87.64 86.53

 

 

 

 



Appendix C. Extra Results 133

Table C.18: HSO3 accuracies for variable convolution and pooling filter sizes - em-
bedded context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 77.78 85.00 88.61 89.44

3 5 78.47 88.06 82.08 88.06

3 6 76.94 88.19 85.42 88.19

4 3 80.00 86.25 86.94 83.47

4 5 80.69 87.78 80.14 83.61

4 6 74.44 88.33 86.25 84.86

5 3 79.58 84.17 85.56 84.17

5 4 80.00 87.78 89.58 85.42

5 6 75.14 89.31 87.78 84.86

6 3 78.47 82.78 87.08 85.14

6 4 76.11 85.97 85.83 84.44

6 5 77.22 88.33 84.31 80.69

Table C.19: HSO4 accuracies for variable convolution and pooling filter sizes - desktop
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 48.89 61.53 60.42 53.33

3 5 45.83 61.11 65.00 57.36

3 6 50.14 57.64 60.42 54.58

4 3 43.89 60.97 65.56 53.75

4 5 49.31 61.39 66.25 53.75

4 6 43.75 57.36 62.36 55.28

5 3 50.69 63.47 62.50 55.00

5 4 50.28 62.78 62.50 52.78

5 6 46.11 59.58 60.42 55.14

6 3 45.97 63.06 64.72 54.58

6 4 47.08 60.42 60.83 54.58

6 5 49.31 56.53 63.47 55.69
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Table C.20: HSO4 accuracies for variable convolution and pooling filter sizes - em-
bedded context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 51.81 59.17 56.94 54.58

3 5 50.56 61.94 66.94 58.75

3 6 49.44 59.86 58.61 55.97

4 3 50.56 57.36 59.72 55.00

4 5 50.97 59.03 62.36 54.44

4 6 45.83 60.42 58.89 56.94

5 3 52.08 57.36 63.61 52.50

5 4 48.33 61.81 59.31 56.39

5 6 56.53 61.11 60.97 51.39

6 3 49.86 54.17 60.69 50.42

6 4 51.94 54.72 59.86 53.33

6 5 48.19 59.03 62.22 56.53

Table C.21: HSO5 accuracies for variable convolution and pooling filter sizes - desktop
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 59.44 67.22 68.75 64.31

3 5 57.92 68.33 66.81 63.75

3 6 58.61 67.92 63.75 63.06

4 3 60.14 67.08 66.67 65.97

4 5 59.86 68.06 66.11 68.19

4 6 50.00 64.72 68.06 62.64

5 3 60.42 68.06 65.97 64.72

5 4 59.86 66.25 66.81 63.89

5 6 58.47 63.61 64.44 63.33

6 3 58.47 65.28 65.14 64.58

6 4 58.47 66.11 65.00 64.03

6 5 61.67 66.94 68.61 67.22
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Table C.22: HSO5 accuracies for variable convolution and pooling filter sizes - em-
bedded context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 58.06 61.94 60.56 58.89

3 5 63.33 61.94 55.42 55.69

3 6 61.39 61.81 62.22 60.28

4 3 61.25 60.42 65.97 64.72

4 5 57.08 62.22 65.42 61.81

4 6 61.81 61.94 62.08 57.78

5 3 59.17 59.03 62.92 57.92

5 4 57.78 60.00 54.58 59.86

5 6 59.31 62.92 63.06 59.72

6 3 58.19 56.25 60.28 62.92

6 4 61.94 64.03 61.39 63.61

6 5 56.53 65.00 57.36 58.75

Table C.23: OR accuracies for variable convolution and pooling filter sizes - desktop
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 85.64 90.89 90.67 91.06

3 5 76.92 90.56 89.72 89.28

3 6 82.78 90.06 90.97 90.00

4 3 84.94 89.97 90.61 90.33

4 5 83.58 90.72 90.08 90.53

4 6 84.28 90.47 89.53 85.53

5 3 85.64 90.83 91.19 90.89

5 4 86.06 91.06 92.64 91.08

5 6 80.33 91.50 91.39 89.64

6 3 87.39 90.11 91.75 91.00

6 4 84.81 90.89 92.81 91.19

6 5 84.06 90.64 90.86 89.53
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Table C.24: OR accuracies for variable convolution and pooling filter sizes - embedded
context

Pooling

2 2 3 4 5 3 6 2

C
o
n
v
o
lu

ti
o
n

3 4 88.19 89.67 91.39 91.22

3 5 88.39 90.47 88.28 91.14

3 6 87.83 91.19 91.64 90.61

4 3 88.00 89.97 90.44 90.42

4 5 89.53 91.75 88.53 91.92

4 6 88.61 90.92 89.28 90.86

5 3 88.50 89.50 91.06 90.58

5 4 89.53 90.42 90.94 90.28

5 6 89.11 90.47 91.03 89.00

6 3 88.86 89.33 90.03 89.94

6 4 88.56 89.33 91.61 91.44

6 5 88.94 92.47 90.89 90.75
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Figure C.1: HSO2 NRS accuracies for varying convolution and pooling filter dimen-
sions

 

 

 

 



Appendix C. Extra Results 137

 0

 20

 40

 60

 80

 100

C
D

(3
,4

)

C
D

(3
,5

)

C
D

(3
,6

)

C
D

(4
,3

)

C
D

(4
,5

)

C
D

(4
,6

)

C
D

(5
,3

)

C
D

(5
,4

)

C
D

(5
,6

)

C
D

(6
,3

)

C
D

(6
,4

)

C
D

(6
,5

)

A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 (

%
)

Dimensions of Convolution Filters C1 and C2

Dimensions of Pool Filters P1 and P2
PD(2,2) PD(3,4) PD(5,3) PD(6,2)

Figure C.2: HSO2 ES accuracies for varying convolution and pooling filter dimensions
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Figure C.3: HSO3 NRS accuracies for varying convolution and pooling filter dimen-
sions
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Figure C.4: HSO3 ES accuracies for varying convolution and pooling filter dimensions
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Figure C.5: HSO4 NRS accuracies for varying convolution and pooling filter dimen-
sions
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Figure C.6: HSO4 ES accuracies for varying convolution and pooling filter dimensions
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Figure C.7: HSO5 NRS accuracies for varying convolution and pooling filter dimen-
sions
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Figure C.8: HSO5 ES accuracies for varying convolution and pooling filter dimensions
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Figure C.9: OR NRS accuracies for varying convolution and pooling filter dimensions
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Figure C.10: OR ES accuracies for varying convolution and pooling filter dimensions

C.4 Experiment 5 Results

Table C.25: Accuracy of final 2-stage network; each column represents the accuracy
results of a single hand shape classifier. These results pertain to the best embedded

systems models

Shape
Orientation

Avg
1 2 3 4 5

1 63.87 88.33 80.00 55.83 45.83 66

2 100.00 84.17 71.67 90.00 39.17 77

3 58.33 80.83 85.83 75.00 80.83 76

4 90.83 75.83 91.67 60.00 60.83 75

5 91.67 84.17 93.33 75.00 66.67 82

6 72.50 58.33 70.00 45.83 68.33 63

Average 79 78 82 67 60 73.4
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Table C.26: Accuracy of final 2-stage network; each column represents the accuracy
results of a single hand shape classifier. These results pertain to the best desktop model

Shape
Orientation

Avg
1 2 3 4 5

1 80.67 91.67 90.00 42.50 41.67 69

2 90.83 85.83 84.17 93.33 49.17 80

3 51.67 78.33 87.50 74.17 70.83 72

4 91.67 64.16 93.33 60.83 58.33 73

5 93.33 81.67 99.17 72.50 65.00 82

6 70.83 57.50 71.67 45.83 59.17 60

Average 79 76 87 64 57 73.2

Table C.27: Classification instances errors per subject as a result of rejection at the
first stage (orientation classifier) or the second stage (any of the hand shape classifiers)

Test Subject
Embedded Desktop

Stage 1 Stage 2 Total Stage 1 Stage 2 Total

4 183 59 242 161 61 222

5 191 110 301 187 119 306

8 214 23 237 222 30 252

9 99 75 174 98 83 181

Table C.28: Percentage classification errors per subject as a result of rejection at the
first stage (orientation classifier) or the second stage (any of the hand shape classifiers)

Test Subject
Embedded Error (%) Desktop Error (%)

Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall

4 8.2 25.4 33.6 8.5 22.4 30.8

5 15.3 26.5 41.8 16.5 26.0 42.5

8 3.2 29.7 32.9 4.2 30.8 35.0

9 10.4 13.8 24.2 11.5 13.6 25.1

Overall 7.4 19.1 26.5 8.1 18.6 26.7
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C.5 Convolutional Neural Network Classification Speed

Results

Table C.29: Recognition speeds for the best ES configuration

Classification Time (seconds)

iPhone 5C iPhone 6+

Iteration Time (s) Time (s)

1 0.0269 0.0075

2 0.0279 0.0075

3 0.0275 0.0075

4 0.0267 0.0075

5 0.0267 0.0075

6 0.0268 0.0076

7 0.0264 0.0075

8 0.0265 0.0075

9 0.0266 0.0074

10 0.0266 0.0075

11 0.0265 0.0076

12 0.0265 0.0074

13 0.0265 0.0073

14 0.0267 0.0073

15 0.0268 0.0076

16 0.0265 0.0072

17 0.0265 0.0073

18 0.0266 0.0075

19 0.0265 0.0074

20 0.0265 0.0073

Average (s) 0.0267 0.0074

FPS 37 135
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