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ABSTRACT 

Prostate Cancer is the leading cause of cancer-related death in males in the Western 

world. It is a common biological disease originating from the reproductive system of 

the male namely, the prostate gland, usually in older patients (over the age of 50) and 

with a family history of this disease. The disease shows clinical aggressiveness due to 

genetic alterations of gene expression in prostate epithelial cells. Prostate cancer is 

currently diagnosed by biopsy and prostate cancer screening via the Prostate-Specific 

Antigen (PSA) blood test. Early detection is critical and although PSA was discovered 

to aid in the diagnoses of this cancer at its early stages, it has a disadvantage due to its 

low specificity thus causing unnecessary biopsies of healthy individuals and over-

treatment of patients. Although various studies and efforts have been made to identify 

the ideal biomarker for prostate cancer and many even being applied to clinical use, it 

is still challenging and has not replaced the best-known biomarker PSA. PSA test has 

minimal invasive characteristics, at relatively low cost together with high sensitivity 

but low specificity. Biomarker discovery is a challenging process and a good biomarker 

has to be sensitive, specific and its test highly standardized and reproducible as well as 

identify risk for or diagnose a disease, assess disease severity or progression, predict 

prognosis or guide treatment. Computational biology plays a significant role in the 

discovery of new biomarkers, the analyses of disease states and the validation of 

potential biomarkers. Bioinformatic approaches are effective for the detection of 

potential micro ribonucleic acid (miRNA) in cancer. Altered miRNA expression may 

serve as a biomarker for cancer diagnosis and treatment.  Small non-protein coding RNA, 

miRNA are small regulatory RNA molecules that modulate the expression of their target 

genes. miRNAs influence numerous cancer-relevant processes such as proliferation, cell 

cycle control, apoptosis, differentiation, migration and metabolism. Discovery and 
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existence of extracellular miRNAs that circulate in the blood of cancer patients has 

raised the possibility that miRNAs may serve as novel diagnostic markers.  Since a single 

miRNA is said to be able to target several mRNAs, aberrant miRNA expression is 

capable of disrupting the expression of several mRNAs and proteins. Biomarker 

discovery for prostate cancer of mRNA and miRNA expression are strongly needed to 

enable more accurate detection of prostate cancer, improve prediction of tumour 

aggressiveness and facilitate diagnosis. 

The aim of this project was to focus on functional analyses of genes and their protein 

products regulated by previously identified miRNA in prostate cancer using 

bioinformatics as a tool. Most proteins function in collaboration with other proteins and 

therefore this study further aims to identify these protein-protein interactions and the 

biological relevance of these interactions as it relates to Prostate cancer. Various 

computational databases were used such as STRING, DAVID and GeneHub-GEPIS 

for functional analyses of these miRNA regulated genes. The main focus was on the 21 

genes regulated by several miRNAs identified in a previous study. Results from this 

study identified six genes; ERP44, GP1BA, IFNG, SEPT2, TNFRSF13C and 

TNFSF4, as possible diagnostic biomarkers for prostate cancer. These results are 

promising, since the targeted biomarkers would be easily detectable in bodily fluids 

with the Gene Ontology (GO) analysis of these gene products showing enrichment for 

cell surface expression.   The six genes identified in silico were associated to 

transcription factors (TFs) to confirm regulatory control of these TFs in cancer 

promoting processes and more specifically prostate cancer.  The CREB, E2F, Nkx3-1 

and p53 TFs were discovered to be linked to the genes IFNG, GP1BA, SEPT2 and 

TNFRSF13C respectively. The expression of these TFs show strong association with 

cancer and cancer related pathways specifically prostate cancer and thus demonstrates 
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that these genes can be assessed as possible biomarkers for prostate cancer. The 

prognostic and predictive values of the candidate genes were evaluated to assess their 

relationship to prognosis of this disease by means of several in silico prognostic 

databases. The results revealed expression differences for the majority of the candidate 

genes were not significantly sufficient to be distinguished as strong prognostic 

biomarkers in several prostate cancer populations. Although one marker, GP1BA was 

supported as having prognostic value for prostate cancer based on  statistical p-

value in one of the prostate cancer patient datasets used. Another candidate gene 

SEPT2 showed promise as it has some prognostic value in the early stages of the 

disease.  Although the results yielded, based on the in silico analysis, were not the 

discovery of an ideal diagnostic marker based on the set criteria in this study, further 

analysis using a molecular approach qRT-PCR can be considered for a detailed follow-

up study on selected candidate genes to evaluate their roles in disease initiation and 

progression of prostate cancer using cell lines as well as patient samples. 

Keywords: miRNA, gene expression, biomarker, STRING, Prostate-Specific Antigen, 

Bioinformatics  
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Chapter 1 

Literature Review 

1.1. Introduction 

Cancer is defined as a disease in which a group of abnormal cells grow uncontrollably 

by disregarding the normal rules of cell division. The foundation of modern cancer 

biology rests on a simple principle that virtually all mammalian cells share similar 

molecular networks that control cell proliferation, differentiation and cell death 

(Hejmadi, 2009). Cancer is a disease that involves changes or mutations in the cell 

genome and normal cells   are transformed into cancers as a result of changes in 

networks at the molecular, biochemical and   cellular level. Phenomenal advances in 

cancer research in the past 50 years have given insight into how cancer  cells develop 

(Hejmadi, 2009). 

Omics is the biomedical field describing the study in biology such as genomics and 

proteomics.   Many of the emerging fields of large-scale data-rich biology are 

-

term referring to all the genes and the interactions of those genes with each other and 

the environment whereas proteomics refers to the study of proteins and its 

modifications made by an organism (Cho, 2007). Proteomics would not be possible 

without genomics. Therefore, in order to understand cancer biology there should be 

some understanding of molecular basis dealing with that of disease and proteomics for 

the discovery of biomarkers in complex diseases such as cancer (Cho, 2007).  
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In Bioinformatics, computational tools are applied on molecular data (genes and 

proteins) in a way to analyse and discover new outcomes by sequence recognition of 

genes and the prediction thereof. Genes are only the guidelines of the cell, while the 

proteins encoded by the genes are ultimately the functional drive for both normal and 

disease physiology. Cancer-related proteins and altered gene expression of miRNA, 

specifically in prostate cancer was the focus of this research, in order to identify 

biomarkers involved in prostate cancer development and progression thereof.  MiRNA 

molecules are already entering the clinic as diagnostic and prognostic biomarkers for 

patient stratification and also as therapeutic targets and agents (Jansson and Lund, 

2012). 

   1.2. Biology of cancer 

Cancer is a large group of diseases involving the uncontrolled growth and spread of 

abnormal cells that do not die, known as malignant tumours (Bashyam, 2002). Cancer 

is a multi-gene, multi-step disease originating from a single abnormal cell (clonal 

origin) with an altered DNA sequence (mutation).  Uncontrolled proliferation of these 

abnormal cells is due to successive rounds of mutation and selective expansion of 

these cells results in the formation of a tumour mass. These changes (DNA mutations) 

produce proteins that disrupt the delicate cellular balance between cell division 

resulting in cells that keep dividing to form cancers  (Hejmadi, 2009). 

Normal cells in the body have an orderly path of growth, division and death. Proteins 

within the cell control the cell cycle however cancer cells have an abnormal cell cycle 

and divide repeatedly out of control even though they are not needed; they crowd out 

normal cells and function abnormally (Bashyam, 2002). 
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1.3. Classification of cancer 

Cancer can be classified according to the type of cell that the tumour cells resemble 

which is likely to be the origin of the tumour (i) Carcinomas; are derived from 

epithelial cells such as breast, prostate and lung, (ii) Sarcomas; arising from connective 

tissue such as bone, cartilage and fat, (iii) Lymphomas; begin in the lymph nodes and 

immune system tissues and (iv) Leukaemia; begin in the bone marrow and accumulate 

in the blood stream.  Cancers are often referred to by terms that contain a prefix which 

is related to cell type the cancer originated from and a suffix such as sarcoma,-

carcinoma or oma. Some types of cancers are named according to the shape and size 

of the cells under a microscope such as small-cell carcinoma (International 

Classification of Diseases for Oncology, Third Edition - ICD-O-3). 

   1.4. The Cell cycle 

Most eukaryotic cells follow a process of growth and division called the cell cycle. 

These stages include; (1) a growth stage (2) mitosis or nuclear division and (3) 

cytokinesis or division of the cytoplasm. Throughout interphase the cell is engaged in 

growth and metabolic activities. Interphase can be broken down into three phases: G1, 

S and G2 (as seen in figure 1.1). During the G1 or first growth phase, normal cell 

function occurs as well as cell growth. S phase, DNA replicates producing two copies 

of each chromosome. G2 phase, the cell continues to prepare for mitosis and cell 

division. Mitosis or M phase has four stages. These phases are sequentially known as; 

prophase, metaphase, anaphase and telophase (Campbell and Reece, 2002). 

During prophase the chromosomes become visible and condense, becoming shorter 

and thicker. Each identical copy of a single chromosome is called a sister chromatid. 
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The nuclear envelope breaks down and spindle fibers form as microtubules grow out 

of the centrioles that move to opposite poles of the cell. During metaphase, the double-

stranded chromosomes line up along the equator of the cell. The microtubules attach to 

each sister chromatid (Campbell and Reece, 2002). Anaphase begins when the sister 

chromatids of each chromosome begin to separate (Campbell and Reece, 2002). The 

centromeres that hold the sister chromatids together divide and the chromosomes move 

away from each other along its spindle fiber. During telophase, the two groups of 

chromosomes reach the opposite ends of the cell, as a new nuclear envelope starts to 

form, the chromosomes uncoil and the spindle disappears. Cytokinesis or the C phase, 

involves the division of the cytoplasm and organelles. Two genetically identical cells 

are formed as a result of mitosis and cytokinesis (Campbell and Reece, 2002) 

  

Figure 1.1: The cell cycle (Taken from Campbell and Reece, 2002)  

1.5. Role of the cell cycle in cancer 

The study of these phases, the proteins that regulate them, and the complex 

biochemical interactions that stop or start DNA replication and cell division 

(cytokinesis) are the primary concerns of cell cycle biologists.   Many genes and 

proteins, that influence the passage from one phase of the cell cycle to another have 
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been identified and when their expression is altered by mutation or aberrant regulation, 

they are usually classed as oncogenes. Other proteins act to hold the cell at distinct 

points in the cycle (checkpoints) and are known as tumour suppressor genes. Most 

cancers are the result of inappropriate cell division, often stemming from aberrations in 

normal cell cycle regulation  (Kastan and Bartek, 2004). 

1.6. Regulation of the cell cycle 

How cell division (and thus tissue growth) is controlled is very complex. These 

regulatory molecules exist largely in two varieties: protein kinases, enzymes that serve 

to activate or inactivate other proteins through phosphorylation, and cyclins. Cdk 

(cyclin dependent kinase, adds phosphate to a protein), along with cyclins, are major 

control switches for the cell cycle, causing the cell to move from G1 to S or G2 to M 

phase (Carleton et al., 2007). Maturation Promoting Factor (MPF) includes the CdK 

and cyclins that triggers progression through the cell cycle. p53 is a protein that 

functions to block the cell cycle if the DNA is damaged. If the damage is severe this 

protein can cause apoptosis (cell death). p53 levels are increased in damaged cells 

(Carleton et al., 2007). This allows time to repair DNA by blocking the cell cycle. p53 

is frequently mutated in a number of cancers as an early genetic event. An extreme 

case of this is Li Fraumeni syndrome, where a genetic defect in p53 leads to a high 

frequency of cancer in affected individuals. p27 is a protein that binds to cyclin and 

Cdk blocking entry into S phase. Alteration of miRNA levels can also contribute to 

pathological conditions, including tumourgenesis,  that  are  associated  with  loss  of  

cell  cycle  control (Carleton et al., 2007). 
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Cell cycle checkpoints are regulatory pathways that control the order and timing of cell 

cycle transitions and ensure that critical events such as DNA replication and 

chromosome segregation are completed.  Checkpoints respond to damage by arresting 

the cell cycle to provide time for repair and by inducing transcription of genes that 

facilitate repair. Checkpoint loss, results in genomic instability and has been 

implicated in the evolution of normal cells into cancer cells  (Kastan and Bartek, 2004).  

Cyclins are among the most important components of the core cell cycle control 

system. Cyclins are a group of related proteins and there are four basic types: G1-

cyclins, G1/S-cyclins, S-cyclins and M-cyclins and each cyclin is associated with a 

particular phase, transition or set of phases in the cell cycle and helps drive the events 

of that phase or period (Kastan and Bartek, 2004). 

  

Figure 1.2: Mechanical analogy for the cell cycle control system (Taken from 

Campbell and Reece, 2002).    
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Checkpoints prevent cell cycle progression at specific points, allowing verification of 

necessary phase processes and repair of DNA damage. The cell cannot proceed to the 

next phase until checkpoint requirements have been met. Checkpoints typically consist 

of a network of regulatory proteins that monitor and dictate the progression of the cell 

through the different stages of the cell cycle. Several checkpoints are there to ensure 

that damaged or incomplete DNA is not passed on to daughter cells (Kastan and 

Bartek, 2004). 

1.7. Hallmarks of cancer 

All cancers share six common traits ("hallmarks") that govern the transformation of 

normal cells to cancer (malignant or tumour) cells.  The traits ("hallmarks") are (1) 

Cancer cells stimulate their own growth (self-sufficiency in growth signals), (2) they 

resist inhibitory signals that might otherwise stop their growth (insensitivity to anti-

growth signals), (3) they resist programmed cell death (evading apoptosis), (4) they 

can multiply indefinitely (limitless replicative potential), (5) they stimulate the growth 

of blood vessels to supply nutrients to tumours (sustained angiogenesis) and (6) they 

invade local tissue and spread to distant sites (tissue invasion and metastasis) 

(Hanahan and Weinberg, 2000). 
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Figure 1.3: The hallmarks of cancer (Taken from Hanahan and Weinberg, 2000) 

In an update published in 2011 ("Hallmarks of cancer: the next generation"), Weinberg 

and Hanahan proposed two new hallmarks: (1) abnormal metabolic pathways where  

most cancer cells use abnormal metabolic pathways to generate energy with the 

capability to modify, or reprogram, cellular metabolism in order to most effectively 

support neoplastic proliferation and (2) evading the immune system where  cancer cells 

   allowing cancer cells to evade 

immunological destruction, in particular by T and B lymphocytes, macrophages, and 

natural killer cells (Hanahan and Weinberg, 2011). 
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Figure 1.4:  Two additional hallmarks of cancer are involved in the pathogenesis of 

some and perhaps all cancers (Hanahan and Weinberg, 2011). 

All normal cells have mechanisms that ensure errors or damages are detected within 

their own control systems. The tumour cells created by multiple mutations are able to 

push their way through the epithelial tissue's basement membrane, which are proteins 

that normally create a barrier (Hanahan and Weinberg, 2000). During the development 

of earlier stages of the tumour, angiogenesis takes place. Angiogenesis is the 

development of new blood vessels forming from the pre-existing vessels. With the new 

blood supply the growth of the tumour accelerates and individual cells from the 

tumour enter into the network of newly formed blood vessels using these blood vessels 

to move to other parts of the body. Most tumours are lethal due to their ability to 

metastasize (to establish new tumour sites at other locations throughout the body) 

(Hanahan and Weinberg, 2000).   

Metastasis is now underway, as tumour cells from the original cancer growth travel 

throughout the body (Bashyam, 2002). Invasion and metastasis are a dynamic multi-

step process. Most of these cells will die soon after entering the blood or lymph 

circulation. The tumour cell leaves the blood vessels and invades tissue.  While the 
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primary tumour may result from mutations in the growth control genes, metastasis 

probably results mainly from changes in gene expression patterns in the cell 

(Bashyam, 2002).  

1.8. Genetics of cancer 

Genetic changes occur at different levels and by different mechanisms. Most common 

mutations are changes in the nucleotide sequence of genomic DNA. Mutations include 

point mutations, deletions and insertions affecting the g

altering the function of the genes protein product. Although complex error correction 

and prevention is built into each cell and tries to safeguard the cell against cancer, 

errors do occur and the control process fails, the mutation will survive and passed on 

to the daughter cells. Errors of mutations include (i) mutation in an oncogene causing 

the cell to reproduce faster, (ii) mutations might cause a loss of a tumour suppressor 

gene resulting in disruption of the apoptotic signalling pathway causing an immortal 

cell, (iii) mutations in the DNA damage and repair mechanisms will cause more errors 

in the daughter cells.   The transformation of a normal cell into cancer is a chain 

reaction caused by initial errors and mutations allowing the cell to escape the normal 

control mechanisms for normal cell growth. Once cancer has begun it is an on-going 

process of progression to more invasive stages (Merlo et al., 2006). 

Four types of genes are responsible for the cell division process playing a role in 

cancer development: (i) Oncogenes instructs the cell when to divide - promote cell 

growth and reproduction, (ii) Tumour suppressor genes instruct the cell when not to 

divide - codes for proteins that inhibit cell division (Croce, 2008). These are stated to 

be the two major genes that play a role in triggering cancer (Knudson, 2001), (iii) 
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Suicide genes or self-destruction genes control apoptosis (programmed cell death) and 

instruct the cell to kill itself if something goes wrong, (iv) The DNA in every cell in 

our body is constantly in danger of being damaged. DNA repair genes instruct the cell 

to repair damaged DNA.  

Several mutations need to occur to give rise to cancer. Cancer is caused by failure to 

regulate tissue growth, when the genes that regulate cell growth are altered (Croce, 

2008). Furthermore, epigenetic alterations are frequent in the DNA sequences coding 

for small RNAs called miRNAs. When oncogenes are expressed they are regulated by 

miRNAs. MiRNAs are small non-coding, single-stranded RNAs 21-25 nucleotides in 

length that control gene expression by downregulating them. Mutations in such 

miRNAs (known as oncomirs) can lead to activation of oncogenes. These alterations 

are caused by both DNA sequence mutation in oncogenes and tumour suppressor 

genes (Esquela-Kerscher et al., 2006). 

1.8.1 Epigenetic factors 

Although mutations are in the tumour suppressor genes, oncogenes and even 

chromosomal abnormalities, it has been found that cancer can also be driven by 

epigenetic alterations (Baylin et al., 2006). Epigenetics alterations are any functional 

modifications to the genome that does not involve any change to the nucleotide 

sequence (Kanwal et al., 2012). The epigenetic alterations serve to regulate gene 

expression without any change to the DNA sequence. According to various research 

studies, a large number of epigenetic alterations were found in cancers such as 

epigenetic alterations in DNA repair genes causing a reduced or silence expression of 

DNA repair proteins which results in deficient DNA repair (Jacinto et al., 2007, Lahtz 
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et al., 2011, Bernstein et al., 2013 and Bernstein et al., 2013). Like other cancers, 

prostate cancer occurs due to various genetic and epigenetic changes. 

1.9. Prostate cancer  

1.9.1. The prostate gland 

The prostate gland is divided into three zones: peripheral, transition and central zones 

(refer to figure 1.5). 

Peripheral zone 

This zone is the largest and closest to the rectum and therefore easily found during a 

digital rectum examination (DRE). The majority (about 70-80%) of prostate tumours 

originate in the peripheral zone (Basic principles 2010). 

 

Figure 1.5: Zones of the prostate gland affected by cancer  

(http://www.cancer.ca/~/media/CCE/1158/dc5c29f2337751c9e3038122fd0b3ed9.png) 
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Transition zone 

This is the middle area of the prostate gland, between the peripheral and central zones. 

When men age the transition zone enlarges and eventually becomes the largest area of 

the prostate and it is responsible for the disease of benign prostatic hyperplasia (BPH)  

(Basic principles 2010).  

Central zone 

Found in front of the transition zone and farthest from the rectum surrounding the 

ejaculatory ducts, accounting for about 2.5% of prostate cancers (Cohen et al., 2008).  

 

Figure 1.6: Anatomy of the prostate gland (American Cancer Society, 2015) 

1.9.2. Types of Prostate Cancer 

Carcinoma of the prostate (or prostate cancer) is the development of cancer in the 

prostate gland found in the reproductive system of the male. A healthy male prostate is 

a walnut-sized gland located below the urinary bladder surrounding the urethra, the 

tube that carries urine from the bladder during urination and semen during ejaculation 

(Moore et al., 
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into cancer cells.  The prostate contains cells that make some of the fluid (semen) that 

protects and nourishes the sperm.  

Most prostate cancers are a type called adenocarcinomas, starting from the gland cells 

in the prostate. The type of cancer is found by sampling the cells from the prostate 

during a biopsy. Some types of prostate cancer include: (i) Ductal adenocarcinoma (ii) 

Transitional cell (urothelial) cancer (iii) Squamous cell cancer (iv) Carcinoid (v) Small 

cell cancer (vi) Sarcomas and sarcomatoid cancer (American Cancer Society, 2015). 

There are various conditions of the prostate that are non-cancerous: 

Benign Prostatic Hyperplasia (BPH) is a condition that causes the prostate to get larger 

as men age. BPH is not cancer and does not change into cancer. But it can cause 

problems urinating if the prostate gets larger. BPH is often treated with drugs that 

shrink the prostate or relax the muscles in it, which can help urine flow (Verhamme et 

al., 2002). 

In Prostatic Intraepithelial Neoplasia (PIN), there are changes in how the prostate 

gland cells look under the microscope, but  metastasize, like cancer cells 

(American Cancer Society, 2015). 

Proliferative inflammatory atrophy (PIA) is another possible finding on a prostate 

biopsy. In PIA, the prostate cells look smaller than normal, and there are signs of 

inflammation. PIA is not cancer, but sometimes leads to high-grade PIN, or perhaps to 

prostate cancer (American Cancer Society, 2015). 
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1.10. Grading and staging of prostate cancer 

The system used most often for grading prostate cancer is called the Gleason scoring 

system. Samples from two areas of the prostate are each graded from 1 to 5, and the 

number grades are added to give a Gleason score or sum of between 2 and 10. Most 

biopsies have a Gleason score of at least 6. A higher score means the cells look less 

normal and the cancer is likely to grow more progressively. The stage (extent) of a 

cancer is one of the most important factors in determining treatment options and the 

outlook of recovery. The stage is based on the prostate biopsy results (including the 

Gleason score), the PSA level, and any other exams or tests that were done to assess 

how far the cancer has spread (BMJ Group, 2009).  

The TNM Staging System was developed and is maintained by the American Joint 

Committee on Cancer (AJCC) and the Union for International Cancer Control (UICC)  

(Edge & Compton 2010). According to AJCC, TNM staging system is based on 5 key 

pieces of information: 

1. The extent of the main tumour (T category) 

2. Has the cancer spread to nearby lymph nodes (N category) 

3. Has the cancer metastasized (spread) to other parts of the body (M 

category) 

4. The PSA level at the time of diagnosis 

5. The Gleason score, based on the prostate biopsy (or surgery)  (American 

Cancer Society, 2015) 

These factors are combined to determine an overall stage, using Roman numerals i to 

iv (1 - 4). The lower the number, the less the cancer has spread. A high number, such 
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as stage IV (4), means a more advanced cancer (i) Stage I cancer is found only in the 

prostate and usually grows slowly (ii) Stage II cancer has not spread beyond the 

prostate gland, but involves more than one part of the prostate, and may tend to grow 

more quickly (iii) Stage III cancer has spread beyond the outer layer of the prostate 

into nearby tissues or to the seminal vesicles, the glands that help produce semen (iv) 

Stage IV cancer has spread to other areas of the body such as the bladder, rectum, 

bone, liver, lungs, or lymph nodes (AJCC). 

1.11. Epidemiology of prostate cancer 

Prostate cancer is the most common malignant tumour in men (Gronberg, 2003) and 

androgen-ablation therapy, the current management of advanced prostate cancer, 

reduces symptoms in about 70 80% of patients but do not provide a cure and most 

tumours relapse within 2 years resulting in and ultimately being responsible for 

prostate cancer mortality (Damber and Aus, 2008). Since 2012, prostate cancer is the 

most frequently diagnosed cancer (15% of all male cancers) and  with an estimated 

307,000 deaths in 2012, prostate cancer is the fifth leading cause of death from cancer 

in men (6.6% of the total deaths in men). PSA testing has a much greater effect on 

incidence than on mortality, there is less variation in mortality rates worldwide (ten-

fold from approximately 3 to 30 per 100,000) than is observed for incidence, 

[GLOBOCAN 2012 (IARC), Section of Cancer Surveillance (26/6/2016)] (Ferlay et 

al., 2014). 

Geography: Prostate cancer is most common in North America, North Western 

Europe, Australia, and the Caribbean, and it is less common in Asia, Africa, and 

Central and South America (Breslow et al., 1977). 
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Figure 1.7: Mortality and incidence rates of prostate cancer based on geographical 

location in males estimated age-standardised rates (World) per 100,000. 

Taken from: GLOBOCAN 2012 (IARC), Section of Cancer Surveillance (26/6/2016); 

World Cancer Report 2014). 
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Figure 1.8: Estimated Prostate Cancer Incidence Worldwide in 2012 Estimated age-

standardised rates (World) per 100,000 (GLOBOCAN 2012 (IARC) International 

Agency for Research on Cancer), WHO World Health Organization, 2015). 

  

Figure 1.9: Estimated Prostate Cancer Mortality Worldwide in 2012 Estimated age-

standardised rates (World) per 100,000(GLOBOCAN 2012(IARC) International 

Agency for Research on Cancer), WHO. World Health Organization, 2015). Risk 

factors of prostate cancer. 
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The global and region-specific estimates presented here and in more detail online 

(http://globocan.iarc.fr) provide a key resource for cancer researchers on the burden of 

cancer in 2012, and the cancer-specific patterns in 184 countries worldwide (Ferlay et 

al., 2014). 

1.12. Factors causing Prostate Cancer 

Epidemiology includes endogenous factors [family history, hormones, race, aging and 

oxidative stress] and exogenous factors [diet, environmental agents, occupation and 

other factors, including lifestyle factors] (Bostwick et al., 2004).   Epidemiologic 

studies have provided the greatest amount of information to date regarding risk of 

prostate cancer. However,   most of these studies have significant problems with 

exposure and disease characterization (Bostwick et al., 2004). 

Age: Prostate cancer risk goes up as men get older (Hankey et al., 1999).  Almost 6 

cases in 10 are diagnosed at the age of 65 years or later.  Age, especially 55 years and 

above had almost 17-fold higher risk of developing prostate cancer as compared to age 

less than 55 years (Bashir, 2015). 

Race: In the US, African-American men are more likely to get prostate cancer and die 

of it than in men of other races.  Differences in prostate cancer risk by race may reflect 

three factors: differences in exposure, such as dietary differences (exogenous factors); 

differences in detection (reflecting exogenous factors); and genetic differences 

(endogenous factors) (Bostwick et al., 2004).  African-Americans have the highest rates 

of prostate cancer in the world (223.0 per 100,000 men) (Bashir, 2015). 

Family history: Men with close family members (father or brother) who have had 

prostate cancer are more likely to get it themselves (Zeegers et al., 2003). 

 

 

 

 



20  
  

Men with a father or brother affected were twice as likely to develop prostate cancer as 

men with no relatives affected.   Increasing risk with increasing number of affected 

family members such that men with two or three first degree relatives affected had a 

five and 11 fold increased risk of developing prostate cancer (Steinberg et al., 1990, 

Bashir, 2015).  

Diet: Men who eat a lot of red meat or high-fat dairy products seem to have a greater 

chance of getting prostate cancer.   Fat consumption, especially polyunsaturated fat, 

shows a strong, positive correlation with prostate cancer incidence and mortality 

(Bostwick et al., 2004, Hayes et al., 1999). 

A small increased risk with lack of exercise is found in few cases of prostate cancer 

patients (Friedenreich et al., 2010). Obese men had almost six-fold higher risk of 

developing prostate cancer as compared to non-obese men  (Bashir, 2015). 
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1.13. Diagnosis of prostate cancer 

 

Figure 1.10: Progress of cancer in the prostate gland 

(http://www.prostateuk.org/psa/psa.htm) 

The widespread use of PSA screening has led to a dramatic downstaging of prostate 

cancer at diagnosis.   Prostate cancer is currently characterized by its clinical TNM 

stage, Gleason grade, and PSA serum level.   Imaging is becoming increasingly 

important in the assessment of prostate cancer since it can guide treatment selection, as 

well as treatment planning (Hricak et al., 2007). Imaging tests can determine if the 

cancer has spread. Microscopic spread of disease and early macroscopic invasion 

cannot be reliably shown using current technology (Heenan, 2004). There is no 

reliable and accurate test or imaging modality that can confidently diagnose and stage 

prostate cancer. A combination of digital rectal examination (DRE), prostate-specific 

antigen (PSA) level and transrectal ultrasound (TRUS) with systematic core biopsy 

and assessment of Gleason grade are used for diagnosis (Hricak et al., 2007). 
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 Magnetic resonance imaging (MRI)  offers the single most accurate assessment 

of local disease and regional metastatic spread of tumours.  Numerous studies 

have reported varying accuracies indicating that MRI is not the perfect imaging 

modality (Hricak et al., 2007). Currently MRI is not advocated for routine 

staging but it offers advantages over other imaging techniques in selected 

patients.   The use of MRI concluded that prostate cancer could not be 

differentiated from benign prostatic hyperplasia (BPH) and that its usefulness 

in staging was comparable to digital rectal examination (DRE) (Heenan, 2004).  

MR imaging, with high-resolution T2-weighted scans, MR spectroscopy, and 

dynamic contrast enhancement, is increasingly seen as a method that can 

improve prostate cancer detection, characterization, staging, and treatment 

follow-up (Hricak et al., 2007). 

 Computerized axial tomography scan (CAT scan) continues to be widely used 

in patients with newly diagnosed prostate cancer; it has virtually no role in 

prostate cancer detection or primary tumour staging. On CT scans, the 

separation between the prostate and the levatorani muscle is poorly defined, 

and intraprostatic anatomy is not well demonstrated.  The major role of CT is in 

the nodal staging of prostate cancer, for which it is limited   (Hricak et al., 

2007). 

 Prostatic ultrasound/ transrectal ultrasound (TRUS) is the most widely used 

clinical imaging method and it is the essential imaging tool for prostate cancer 

biopsy guidance. When prostate cancer is suspected, the diagnostic test of 

choice is a systematic needle biopsy with ultra sound guidance.  Even with such 

systematic sampling, underdiagnosis of the extent of prostate cancer can occur 

with transrectal ultra sound-guided biopsy  (Hricak et al., 2007). 
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Cancer screening is an examination to detect cancer before a person has symptoms. 

The American Cancer Society recommends screening for early detection, particularly 

for high-risk people or people with symptoms. Diagnosis is confirmed by various 

methods - clinical (physician) examination, laboratory testing (PSA test), scans (MRI, 

CAT), DRE (digital rectal examination) and transrectal ultrasound (TRUS).   Precise 

indications for and sensitivity and specificity of conventional imaging methods such as 

radionuclide bone scanning, computed tomography (CT), magnetic resonance (MR) 

imaging, ultrasonography (US), and combined positron emission tomography 

(PET)/CT remain under debate (Hricak et al., 2007). 

1.14. Prostate-specific antigen  

PSA is a protein produced by the cells of the prostate gland. PSA is found in the blood 

and measured in nanograms of PSA per millilitre (ng/mL) of blood. As seen in figure 

1.10, increased PSA levels are found in the blood of men with prostate cancer. The test 

is used to monitor the progression of prostate cancer. PSA is one of the best-known 

biomarkers in medicine but due to its insufficient specificity, researchers are looking at 

tests based on several biomarkers. PSA testing increases cancer detection but does not 

decrease mortality (Djulbegovic et al., 2010). Small cell carcinoma is a rare type of 

prostate cancer that is serious and spreads quickly to other parts of the body and cannot 

be detected using the PSA test thus various other biomarkers are necessary to detect 

these kinds of rare and hidden cancers (Nutting et al., 1997; Wei et al., 2009). 

PSA level is a strong indicator of stage and prognosis and is helpful in monitoring 

response to therapy. However, absolute PSA serum levels must be interpreted carefully 

with regard to the age of the patient, the size of the gland, and the presence of infection  
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(Hricak et al., 2007).  PSA was first used by forensic scientists as a marker for human 

semen. In the late 1970s, the initial laboratory studies were conducted to evaluate the 

relationship between PSA and prostatic disease (Loeba and Catalonab, 2007).    

In 1986, the U.S. Food and Drug Administration (FDA) approved the PSA test for 

prostate cancer screening. In the late 1980s the first clinical studies were initiated to 

examine the role of PSA in prostate cancer screening. Previously, most prostate cancer 

cases were diagnosed either through a suspicious digital rectal examination (DRE) or 

as an incidental finding in the prostate chips from transurethral resection for presumed 

benign prostatic hyperplasia (BPH)  (Loeba and Catalonab, 2007).    

There are several problems that complicate its use in daily practice. Firstly, PSA can 

also be elevated in benign prostatic conditions, limiting its specificity for prostate 

cancer. Even certain medications (e.g., Finasteride), ejaculation, and prostate 

manipulation (e.g., catheterization, cystoscopy, and prostatic massage) can alter PSA 

levels. The concerns about overdiagnosis of prostate cancer have become increasingly 

more resonant (Loeba and Catalonab, 2007)     unlikely that PSA by itself will be 

an effective screening tool for the early diagnosis of prostate cancer. However, if 

combined with digital rectal examination and/or transrectal ultrasound it is a vital part 

of any early detection program.   Conditions such as bacterial prostatitis and acute 

urinary retention can also falsely elevate the serum PSA level. Approximately 25% of 

the patients with BPH will have an elevated serum PSA concentration.   Prostatic 

intraepithelial neoplasia may also be associated with moderately elevated serum PSA 

levels (Oesterling, 1991). 
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1.15. Biomarkers 

1.15.1. What are Biomarkers? 

A biomarker is a gene, protein/peptide or metabolite present in a biological system, 

used to indicate a physiological or pathological state that can be recognized or 

monitored (Azuaje, 2010). 

Biomarkers are used to measure the progress of disease or the physiological effects of 

therapeutic intervention in the treatment of disease. The utility of a biomarker lies in 

its ability to provide an early indication of the disease, to monitor disease progression, 

to provide ease of detection and to provide a factor measurable across populations 

(Srinivas et al., 2002).   A practical serological biomarker should have certain 

characteristics, i.e. it is a secreted or shed protein and has the ability to diffuse into the 

circulation during tumour development and progression, through either angiogenesis 

or invasion of surrounding tissues and vasculature by cancer cells (Diamandis, 2004). 

Biomarkers can be proteins, metabolites, RNA transcripts, DNA, or epigenetic 

modifications of DNA, among other alterations. They can be detected through patient 

tissue samples, obtained either by biopsy or surgical resection, or non-invasively 

through the isolation of cells and/or molecules from bodily fluids, such as blood or 

urine (Prensner et al., 2012).  

1.15.2. Types of Biomarkers 

Promising biomarkers should be overexpressed proteins but this is not generally true 

for some of the best known cancer biomarkers such as PSA (Diamandis, 2004). 
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On the basis of their application to the detection of disease, three main classes of 

biomarkers may be specified: screening, diagnostic and prognostic biomarkers. 

Screening biomarkers are used to predict the potential occurrence of a disease in 

asymptomatic patients. Diagnostic biomarkers are used to make predictions on patients 

suspected of having the disease. Prognostic biomarkers are applied to predict the 

outcome of a patient suffering from a disease. Molecular biomarkers are measured in 

biological samples: solid tissues, blood or other bodily fluids (Azuaje, 2010). 

1.15.3. Methods to discover Biomarkers 

Biomarker discovery is a challenging process and a good biomarker has to be 

sensitive, specific and its test highly standardized and reproducible as well as identify 

risk for or diagnose a disease, assess disease severity or progression, predict prognosis 

or guide treatment. Biomarker discovery is a major research field of differential omics. 

It is a process of discovery, verification and validation. During the discovery and 

validation process there should be insight into the understanding of the molecular 

mechanism of the diseases (Azuaje, 2010). 

Biomarker verification is done in two ways: 

I. Wet-lab verification - Sample processing molecu

hypotheses. 

II. Computer-based techniques (Bioinformatics) - Data pre-processing, feature 

extraction and selection, statistical analysis, predictive modelling and refined / 

new hypotheses (Azuaje, 2010). 
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1.16. Biomarkers currently used for prostate cancer diagnosis  

For early diagnosis, it is best to find a non-invasive cancer biomarker to monitor 

molecular differences in tumours thus assisting in better treatment for cancer patients. 

A cancer biomarker, prostate-specific antigen (PSA), is a protein found in the blood of 

adult men with prostate cancer (Makarov et al., 2009).  

Prostate acid phosphatase (PAP) was the first reported biomarker to be elevated in the 

serum of patients with prostate cancer in 1930s (Gutman AB et al., 1938). However, 

PAP proved to be insensitive to detect localized lesion of prostate cancer and was 

replaced by PSA that was discovered in 1970 (Makarov et al., 2009). The low 

specificity of PSA in detecting prostate cancer caused relative high false positive rate 

in screening (Makarov et al., 2009). 
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Figure 1.11: Classification of biomarkers in prostate cancer (Ludwig JA et al., 2005). 

As new biomarkers are discovered, the following are needed in prostate cancer 

biomarker discovery; validating the many existing prostate biomarkers already 

discovered; (i) developing markers to minimize the number of unnecessary prostate 

biopsies. (ii) developing markers to identify men with indolent prostate cancer who 

will not be affected by disease in their lifetimes and do not need treatment. (iii) 

developing markers to identify men with aggressive disease who will benefit from 

local therapy and those who are likely to fail local therapy and require adjuvant 

intervention and (iv) developing markers that may serve as surrogate endpoints for 

clinical progression or survival (Makarov et al., 2009).    

Future research can focus on validation of already existing biomarkers and the 

discovery of new markers to identify men with aggressive prostate cancer 

(Baumgartner et al., 2011).  miRNAs has come to the fore to that it necessitates closer 

inspections as prostate cancer biomarkers. 
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1.17. MiRNAs activity 

MiRNA are regulatory RNA which play a role in gene expression. MiRNAs do not 

code for proteins, but can "target" protein-coding genes and reduce their expression. In 

mutations, the expression of the miRNAs of the genes it regulates is misexpressed 

resulting in cancer. Altered miRNA expression or the target genes thereof may serve 

as a biomarker for cancer diagnosis and treatment. Circulating miRNAs found in the 

blood of cancer patients has raised the possibility that miRNAs can serve as a novel 

diagnostic biomarker (Kosaka et al., 2010). 

The miRNAs play a role in physiological and pathological processes, such as 

development, cell proliferation, apoptosis and stress responses (Bartel, 2004). A single 

miRNA is said to target several mRNAs and in this sense if there are mutations in the 

miRNA expression then the expression of several mRNAs and proteins are also 

disrupted. In various studies, researchers have shown that measuring different miRNA 

levels in serum demonstrated that they could distinguish patients with cancer from 

healthy individuals (Lawrie et al., 2008, Mitchell et al., 2008).  

1.18. MiRNAs and its target genes/proteins as diagnostic biomarkers  

MiRNA suppress the expression of oncogenes, growth promoting, survival and 

angiogenic genes (low in tumours). MiRNA suppress expression of tumour suppressor, 

growth inhibitory and proapoptotic genes. A select number of miRNAs may serve as 

diagnostic markers or even potential therapeutic targets for different tumour types as 

several miRNAs are up-or down-regulated in multiple tumours (Sevli et al., 2010). 
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MiRNAs has critical functions in gene expression and dysregulation may cause tumour 

formation and progression. When miRNAs are up-regulated it inhibits tumour 

suppressor genes in tumour cells (Sevli et al., 2010) and are known as oncogenic 

miRNAs or oncomirs whereas the miRNAs that are down-regulated causing tumour 

progression are tumour suppressor miRNAs. The reduced expression is a result of 

increased levels of oncogene expression (Sevli et al., 2010).  

miRNAs regulate gene expression by direct cleavage of the targeted mRNAs or 

inhibiting translation through perfect or nearly perfect complementarity to targeted 

mRNAs. These targeted genes control multiple biological processes, including stem 

cell division, apoptosis and cancer (Zhang et al., 2007). 

miRNAs with high influence on protein networks are valuable biomarkers that can be 

used in clinical investigations for cancer treatment. Over- or under-expression of 

specific miRNAs in different tumours makes them potential diagnostic or prognostic 

biomarkers, however, miRNAs that are differentially expressed and influence their 

targets and target partners are important regulators and thus are more promising for 

diagnostics, prognostics or therapy (Alshalalfa et al., 2012). 

1.19. Bioinformatics  a search tool for biomarker discovery 

Computational approaches are effective for the detection of potential miRNAs in 

cancer. Biomarker discovery for prostate cancer of mRNA and microRNA expression 

are strongly needed to enable more accurate detection of prostate cancer, improve 

prediction of tumour aggressiveness and facilitate diagnosis. Computational biology 

(bioinformatics) plays a significant role in the discovery of new biomarkers, the 

analyses of disease states and the validation of potential biomarkers (Srinivas et al., 

2002). 
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Bioinformatics is crucial in the analysis of functional genomics data such as data 

clustering or principal component analysis. Functional enrichment analysis is used to 

determine the extent of over- or under-expression of functional categories relative to a 

background sets (Subramanian et al., 2005). Functional genomics describes the use of 

large scale data produced by high throughput technologies or databases to understand 

the function of genes and other parts of the genome (Narayanan, 2007). 

 Bioinformatics, such as digital differential display and in silico Northern blotting is 

used to compare gene expression between normal and cancerous tissues to identify 

overexpressed genes (Diamandis, 2004). 

This technology is the key to understanding and management of biological information 

and is essential to use the genomic information in understanding human diseases. 

There is growth in biological data due to the numerous amounts of research being done 

in the molecular field. Large databases are available, accessible and analysed for 

biological research and education. Prediction of a sequence (what we know), we can 

compared with related proteins and proteins with similar sequences (Baumgartner et 

al., 2011). 

 In general, the search, verification, biological and biochemical interpretation and 

independent validation of disease biomarkers require new innovations in high-

throughput technologies, biostatistics and bioinformatics and thus make necessary the 

interdisciplinary expertise and teamwork of clinicians, biologists, analytical- and 

biochemists and bioinformaticians to carry out all steps of a biomarker cohort study 

with professional planning, implementation, and control. Bioinformatics plays a key 

role in the biomarker discovery process, bridging the gap between initial discovery 
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phases such as experimental design, clinical study execution, and bioanalytics, 

including sample preparation, separation and high-throughput profiling and 

independent validation of identified candidate biomarkers (Baumgartner et al., 2011). 

  

Figure 1.12:  Tools for discovery and validation of biomarkers (Baumgartner et al., 

2011). 

1.20. Conclusion  

There is a need to develop new biomarkers for prostate cancer and this project is an 

attempt to identify effective biomarkers for prostate cancer using bioinformatics with 

the goal of finding more specific biomarkers to avoid overdiagnosis and overtreatment 

associated with PSA screening of prostate cancer. No individual marker is ideal but 

further validation of promising markers and continued discovery of biomarkers is 

needed. Even a combination of biomarkers should improve the predictive accuracy and 

using protein-protein interaction network for prostate cancer should hopefully help 

improvement in clinical outcome.  
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1.21. Aims and objectives  

The aim of this study was to identify prostate specific biomarkers for early diagnosis 

of the disease using in silico methods.    

Objectives: 

1. Identifying co-expression genes/proteins of 21 genes regulated by 13 miRNAs in 

prostate cancer. 

2. Extracting and refining a gene list from various databases for identifying potential 

biomarkers as diagnostic molecules for prostate cancer. 

3. Associate the candidate gene list to transcription factors to confirm their regulatory 

control in cancer processes and specifically prostate cancer. 

4. Assess the association of the candidate genes to pathways that contribute to the 

outcome of prostate cancer for better and supportive diagnostic evaluation. 

5. Evaluate the Prognostic and Predictive value of the candidate genes to assess their 

usefullness in the prognosis of prostate cancer. 
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Chapter 2 

Generation of a putative gene list for the early diagnosis of prostate cancer using a 

bioinformatics approach 

2.1. Introduction 

The National Center for Biotechnology Information defines Bioinformatics as:  

Bioinformatics is the field of science in which biology, computer science, and information 

technology merge into a single discipline. There are three important sub-disciplines within 

Bioinformatics: the development of new algorithms and statistics with which to assess 

relationships among members of large data sets; the analysis and interpretation of various 

types of data including nucleotide and amino acid sequences, protein domains and protein 

structures and the development and implementation of tools that enable efficient access and 

management of different types of information (NCBI, 2001). 

As a complex disease, cancer is related to a large number of genes and proteins. Biomedical 

researchers are interested in data-mining literature based on cancer-related genes and proteins 

to study cancer diagnostics, treatment, and prevention (Zhu et al., 2012). 

Existing scientific literature represents a rich source of knowledge based on the associations 

between genes, diseases and cellular processes.   The biomedical literature is an important 

source of knowledge on the function of genes and on the mechanisms by which these genes 

regulate cellular processes (Frijters et al., 2010). 

Owing to the increasing body of text and the open-access policies of many journals, literature 

mining is also becoming useful for both hypothesis generation and biological discovery. 

However, the biological discovery will require the integration of literature and high-
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throughput data, which should encourage close collaborations between biologists and 

computational linguists (Jensen et al., 2006). 

Cancer remains a major public health challenge despite progress in detection and therapy 

(Srinivas et al., 2002).  Among the important tools critical to detection, diagnosis, treatment, 

monitoring, and prognosis are biomarkers (Srinivas et al., 2001). Bioinformatics tools are 

essential in the discovery of sensitive and specific biomarkers in cancer research (Srinivas et 

al., 2002).  

Unlike benign prostate hyperplasia (BPH) or prostatitis, prostate cancer may not give 

symptoms in its early, curable stage, and therefore it is often diagnosed in the advanced 

stages of the disease. An intervention at an early stage may reduce the progression of small 

localized carcinoma to a large metastatic lesion, thereby reducing prostate cancer-related 

deaths. Discovery of other biomarkers are needed, if improvements in diagnosis and 

prognosis of prostate cancer are to be realized (Adam et al., 2001).  One of the best ways to 

diagnose cancer early, aid in its prognosis, or predict therapeutic response, is to use serum or 

tissue biomarkers (Kulasingam, 2008).  Cancer biomarkers can be DNA, mRNA, proteins, 

metabolites, or processes such as apoptosis, angiogenesis or proliferation (Hayes et al., 

1996).  Powerful bioinformatics tools, has a direct and major impact on the way the search for 

cancer biomarkers is conducted.  The modern technologies are capable of performing parallel 

rather than serial analyses and they can help to identify distinguishing patterns and multiple 

markers rather than just a single marker; such strategies represent a central component and a 

paradigm shift in the search for novel biomarkers (Kulasingam, 2008). 

Prostatic carcinomas most often arise in the glandular epithelium of the prostate periphery. 

Although PSA (KLK3) gene transcription is down-regulated in prostate cancer, PSA protein 

levels in the circulation of patients with prostate cancer increase through disruption of the 
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anatomic barriers between the glandular lumen and capillaries. Concomitant to early-stage 

prostate cancer is the loss of basal cells, disruption of cell attachment, degradation of the 

basement membrane, initiation of lymphangiogenesis. A goal of finding more specific 

biomarkers to avoid over-diagnosis and overtreatment associated with PSA screening of 

prostate cancer (Stacker et al., 2002). 

Ideally, a cancer biomarker should be detectable in the blood or other body fluids that can be 

accessed in a non-invasive manner and none has met the original goal of discovering cancer 

at an early stage. One reason for the low sensitivity and specificity is the presence of these 

markers in the serum of individuals without cancer or with non-malignant disease. Many 

potentially valuable biomarkers are expressed at very low levels and are difficult to detect. 

Finding new and better methods for detecting and identifying these low-abundant proteins 

represents a new challenge for routine diagnostics (Seibert et al., 2005). 

expression data becoming available, growing attention is being paid to in silico biology. 

Broadly speaking, the term in silico biology refers to the use of computers to perform 

biological studies and a high-throughput experimental technology which is generating 

biological data at unprecedented rates and the pace will only accelerate. The bioinformatics 

infrastructure that tabulates, curates and makes these data retrievable is developing in parallel 

(e.g., WIT, EcoCyc, MIPS, KEGG, Biology WorkBench, EMP, and Swiss-Prot) (Palsson, 

2000). 
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2.2. Computational approaches to predict a novel biomarker 

2.2.1. Data mining 

The overall goal of the data mining process is to extract information from a data set and 

transform it into an understandable structure for further use. Data mining is the analysis step 

of the "Knowledge Discovery in Databases" process, or KDD (Fayyad et al., 1996). 

A particular active area of research in bioinformatics is the application and development of 

data mining and techniques to solve biological problems. Analysing large biological data sets 

requires making sense of the data by inferring structure or generalizations from the data. 

Examples of this type of analysis include protein structure prediction, gene classification, 

cancer classification based on microarray data, clustering of gene expression data, statistical 

modelling of protein-protein interaction, etc. (Raza 2012). 

2.2.2. Biomedical text mining 

Biomedical text mining (also known as BioNLP) refers to text mining applied to texts and 

literature of the biomedical and molecular biology domain. It is a rather recent research field 

on the edge of natural language processing, bioinformatics, medical informatics and 

computational linguistics.   The main developments in this area have been related to the 

identification of biological entities (named entity recognition), such as protein and gene 

names as well as chemical compounds and drugs. Information extraction and text mining 

methods have been explored to extract information related to biological processes and 

diseases (Krallinger et al., 2010). 

There have been an enormous number of publications on cancer research. This integrated but 

unstructured biomedical text is of great value for cancer diagnostics, treatment, and 

prevention. The immense body and rapid growth of biomedical text on cancer has led to the 

appearance of a large number of text mining techniques aimed at extracting novel knowledge 
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from scientific text. Biomedical text mining on cancer research is computationally automatic 

and high-throughput in nature (Zhu et al., 2012).   Text mining can aid in uncovering 

information and knowledge from a mountain of text and it is now widely applied in 

biomedical research (Zhu et al., 2012). 

Text Mining is an information retrieval task aimed at discovering new, previously unknown 

information, by automatically extracting it from different text resources.   Research and 

development in the analysis of bioinformatics literature aims to provide bioinformaticians 

with effective means to access and exploit the knowledge contained in scientific publications 

(Manconi et al., 2012). 

2.2.2.1. PubMed 

Hands-on literature mining currently means a keyword search in PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed) or any literature database. In terms of information 

retrieval systems, PubMed is one of the best known biomedical databases and it contains 

more than 20 million citations on biomedical articles from MEDLINE and life science 

journals, which provides a convenient web-based search portal for users as well as an 

application program interface for developers (McEntyre et al., 2001). 

PubMed is a database developed by NCBI National Library of Medicine (NLM), it works as 

a part of the NCBI Entrez retrieval system, primarily designed to provide access to references 

and abstracts from biomedical and life sciences journals. PubMed provides links that allow 

access to the full-text journal articles of participating publishers (Lindberg, 2000).  PubMed 

remains an optimal tool in biomedical electronic research (Falagas, 2008). 

2.2.2.2. Google scholar 

Google Scholar (http://scholar.google.com) enables the user to search specifically for 

scholarly literature, including peer-reviewed papers, theses, books, preprints, abstracts and 
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technical reports from all broad areas of research. Google Scholar is used to find articles 

from a wide variety of academic publishers, professional societies and universities and 

available across the web. Google Scholar provides a new method of locating potentially 

relevant articles on a given subject by identifying subsequent articles that cite a previously 

published article (Noruzi, 2007). 

2.2.3. Biological databases  

Biological databases are libraries of life sciences information, collected from scientific 

experiments, published literature, high-throughput experiment technology and computational 

analysis (Attwood et al., 2012). 

Biological databases represent an invaluable resource in support of biological research. Much 

can be learned about a particular molecule by searching various databases and using available 

analysis tools. A large number of databases are available for that task and some databases are 

general while some are much specialised. For best results one often need to access multiple 

databases. Biological database design, development and long-term management are a core 

area of the discipline of Bioinformatics (Bourne, 2005). 

2.2.3.1. STRING 

Interactions between proteins are very important to understand their functions and biological 

processes. Several approaches and tools have been defined to deal with this challenge 

(Manconi et al., 2012). The STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) database (http://string-db.org) aims to provide a critical assessment and 

integration of protein protein interactions, including direct (physical) as well as indirect 

(functional) associations. The new version 10.0 of STRING covers more than 2000 

organisms, which has necessitated novel, scalable algorithms for transferring interaction 

information between organisms (Szklarczyk et al., 2014).  STRING characterises functional 
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links between proteins and the protein network, i.e. the summary of all known or predicted 

protein interactions in an organism.  

STRING specializes in three ways: (i) it provides uniquely comprehensive coverage, with 

>2000 organisms, 5 million proteins and >200 million interactions stored; (ii) it is one of very 

few sites to hold experimental, predicted and inferred interactions, together with interactions 

obtained through text mining; and (iii) it includes a wealth of accessory information, such as 

protein domains and protein structures, improving its day-to-day value for users.  Protein

protein associations have proven to be a useful concept, by which to group and organize all 

protein-coding genes in a genome (Franceschini, 2013). The confidence score is the 

approximate probability that a predicted link exists between two enzymes in the same 

metabolic map in the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. 

Confidence limits are as follows: low confidence - 20% (or better), medium confidence - 

50%, high confidence - 75%, highest confidence - 95% (Szklarczyk et al., 2010). STRING 

quantitatively integrates interaction data from these sources for a large number of organisms, 

and transfers information between these organisms. The database currently covers 9'643'763 

proteins from 2'031 organisms (Szklarczyk et al., 2015). 

2.2.3.2. DAVID 

DAVID (Database for Annotation, Visualization, and Integrated Discovery) 

(http://david.abcc.ncifcrf.gov/) is a web-accessible program that integrates functional 

genomic annotations with intuitive graphical summaries. Lists of gene or protein identifiers 

are rapidly annotated and summarized according to shared categorical data for Gene 

Ontology, protein domain, and biochemical pathway membership (Dennis, 2003).  The 

DAVID database aims to provide functional interpretation of large lists of genes and to 
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analyse these gene lists derived from high-throughput genomic experiments (Huang et al., 

2009). 

2.2.3.3. Gene Ontology 

The Gene Ontology tool (GO) (http://www.geneontology.org)   consists of a collaborative 

cellular location of action (Gene Ontology Consortium, 2012). 

The discipline of ontology allows experimental data to be stored in such a way that it 

constitutes a formal, structured representation of the reality captured by the underlying 

biological science. Ontology of a given domain represents types and the relations between 

them, and is designed to support computational reasoning about the instances of these types 

(Hill, 2008). GO resources include biomedical ontologies that cover molecular domains of all 

life forms as well as extensive compilations of gene product annotations to these ontologies 

that provide largely species-neutral, comprehensive statements about what gene products do 

(Blake, 2013). 

An enrichment analysis is performed directly from the home page of the GOC website. This 

service connects to the analysis tool from the PANTHER Classification System, which is 

maintained up to date with GO annotations.   The PANTHER (protein annotation through 

evolutionary relationship) classification system (http://www.pantherdb.org/) is a 

comprehensive system that combines gene function, ontology, pathways and statistical 

analysis tools that enable biologists to analyse large-scale, genome-wide data from 

sequencing, proteomics or gene expression experiments (Mi et al., 2013). 

2.2.3.4. TiGER 

Most of currently available biological databases do not focus on tissue-specific gene 

regulation but a web database called TiGER (Tissue-specific Gene Expression and 
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Regulation) (http://bioinfo.wilmer.jhu.edu/) house data on several genes across various 

tissues. The database contains three types of data including tissue-specific gene expression 

profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. The 

database provides three views (gene view, transcription factor view, and tissue view) to allow 

users to conveniently retrieve information about genes, TFs or tissues of interest. TiGER 

provides visualizations of the gene expression profiles, TF interactions and CRM detections 

(Liu et al., 2008).  

2.2.3.5. GeneHub-GEPIS 

GeneHub-GEPIS (http://research-public.gene.com/Research/genentech/genehub-

gepis/index.html) is a web server useful tool for performing gene expression analysis across 

many normal and cancer tissues for both mouse and human genes (Zhang, 2007). One 

distinguishing characteristic of this tool is that ESTs are mapped to pre-defined gene 

structures along the genome. 

GeneHub-GEPIS can report estimated expression levels in about 40 different types of normal 

and cancerous tissues for a given gene or a list of genes.  This tool is built upon the previous 

GeneHub database, which integrates gene and protein information from several databases 

(Zhang, 2007). 

2.3. Previous Study  

Using a bioinformatics framework as well as a molecular approach,  21 genes regulated by 13 

miRNAs were identified in a previous study (Khan, PhD thesis, 2015) as potential Prostate 

cancer miRNA targets. 

The 13 miRNAs were analysed using Real-Time PCR (qPCR) using a panel of prostate 

cancer cell lines as well as a panel of various cancer cell lines to determine the specificity of 

these miRNAs for prostate cancer as potential diagnostic biomarkers. This work focused on 
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the miRNA regulated genes to create a candidate gene list for prostate cancer diagnosis as 

well as prognosis. Thus a combination of miRNAs and protein biomarkers can be used to 

specifically and sensitively diagnose prostate cancer at its early stages as well as monitor 

outcome to treatment (prognosis).  

Table 2.1: 21 miRNA target genes that were identified by computational prediction methods 

as candidate biomarkers for detection of prostate cancer. 

 

2.4. Aims 

1. Expand on the current list of 21 genes. 

2. Extract and refine a list of genes as possible potential biomarkers for early diagnosis 

of prostate cancer, using the various databases outlined above. 

3. Confirm the candidate genes as novel to prostate cancer and generate a manageable 

candidate gene list. 

Target Gene description MiRNA related with target 
TMX1 Theoredoxin-related transmembrane protein MiR 10
TNFSF15 Tumor necrosis factor (ligand) superfamily, member 15 MiR 11
LIG4 Ligase IV, DNA, ATP-dependent MiR 12
FOXC1 Forkhead box C1 MiR 13
MNT MAX binding protein MiR 13

YWHAZ
Tyrosine 3-monooxygenase/ tryptophan  5-monooxygenase activation protein, zeta 
polypeptide MiR 9

TNFSF13B Tumour necrosis factor MiR 9
ADNP Activity-dependent neuroprotector homeobox MiR1
PAK7 p21 protein (Cdc42/Rac)-activated kinase 7 MiR1
RAB27A RAB27A, member RAS oncogene family MiR1
ACVR1C Activin A receptor, type IC MiR1
BTG2 BTG family member 2 MiR2
SH3RF1 SH3 domain containing Ring Finger MiR3
BFAR Bifunctional Apoptosis regulator miR3
PRKCI Protein kinase C, iota MiR4
PTPRC Protein tyrosine phosphatase, receptor type, C MiR4
ING4 Inhibitor of growth family, member 4 MiR5
ATM Ataxia telangiectasia mutated MiR6
CLN8 Ceroid-lipofuscinosis, neuronal 8 MiR7
CFLAR CASP8 and FADD-like apoptosis regulator MiR8
CSRNP3 Cysteine-serine-rich nuclear protein 3 MiR8

 

 

 

 



56  
  

2.5. Materials and methods 

  

Figure 2.1: Outline of Methodology for generation of a candidate gene list 

2.5.1. Expansion of candidate gene list 

2.5.1.1. Identification of co-expressed genes using the STRING database 

The STRING database was accessed at (http://string-db.org) and the 21  miRNA target genes 

were individually used in STRING to generate a list for each gene of co-expressed known 

and predicted protein-protein interactions. Input query of gene/protein name included 

organism of Homo sapiens as the species of interest. Predicted functional partners were 

derived from four sources: Genomic context, high-throughput experiments, co-expression 

and previous knowledge (PubMed etc.). Active Prediction Methods included neighborhood, 

gene fusion, co-occurrence, co-expression, experiments, databases and text mining as 

parameters.  

The default settings and additional criteria used were as follows: High confidence score 

(0.700) of 20   protein-protein interactions and a medium confidence score (0.400) with 10 

Expansion of the list of 21 genes by identifying 
their co-expressed genes using STRING

Eliminate duplication of genes and identify cell 
surface gene products using GO database 

Confirm generated gene list by functional 
annotation clustering in DAVID database to be 

associated with cancer 

Literature mining to cross reference gene lists 
against biological databases to identify previously 

non-associated prostate cancer genes

Candidate list of genes
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interactions. These settings were used as a stringency measure to filter the number of 

interactions that will be produced at a lower confidence score. Interactions found for each 

gene equals the amount of genes/proteins identified. 

Further refinement of the identified co-expressed genes by elimination of duplication and 

overlapping of genes was performed; this gene list was used further to generate a manageable 

candidate gene list using additional bioinformatics tools. 

2.5.1.2. Gene Ontology based enrichment analysis  

Enrichment analysis was done on the gene set generated in the previous section, by inserting 

all gene names one per row and  selecting the species; Homo sapiens. The ontology, cellular 

component was used to calculate the enrichment for genes corrospondng to a particlar term.  

Criteria: GO terms relating to the cellular component (CC) parts of a cell or its extracellular 

environment (e.g. cytoplasm, integral to plasma membrane) were used to further refine the 

list of genes. Ontology criteria included cell surface and displaying only the results with 

P<0.05. 

Analysis Summary of GO 

Analysis Type: PANTHER Overrepresentation Text  

Annotation Version and Release Date: GO Ontology database  

Analyzed List: upload_1 (Homo sapiens) 

Reference List: Homo sapiens (all genes in database) 

Annotation Data Set: GO cellular component complete 

The Bonferroni correction for multiple testing was used. The Bonferroni correction is 

important because many statistical tests are performed (one for each ontology term) at the 
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same time. This correction multiplies the single-test P-value by the number of independent 

tests to obtain an expected error rate  (Thomas et al., 2016). 

2.5.1.3. Functional Annotation clustering using DAVID 

DAVID database was accessed as a confirmation of results obtained from GO analysis. All 

genes were submitted to DAVID for functional annotation clustering by inserting the gene 

list and then choosing unique gene identifier followed 

Homo sapiens was selected as species to limit annotations. 

The uploaded gene list was analysed using, "Functional Annotation Clustering", selected 

from DAVID's functional annotation tools. Class stringency was set to medium, and options 

were defaulted to display Benjamini analysis. Selections of clusters were queried using the 

following terms: cell surface; regulation of cell death; regulation of cell proliferation; 

apoptosis and cell cycle process as onset progression of prostate cancer. Enrichment scores of 

1.3 or more was selected. A list of genes was created and further refined by removal of 

duplication resulting in the same genes generated from GO thus confirming results. 

2.5.1.4. Gene expression profiling using GeneHub-GEPIS 

The number of genes resulting following GO and DAVID analysis were then inserted into 

GeneHub-GEPIS database to eliminate genes already experimentally linked to prostate 

cancer through their expression within prostate cancer as annotated by this database, thus 

ensuring that genes selected as potential biomarkers would be novel. This database was 

specifically used due to the gene expression profiling of a large panel of normal and cancer 

tissues based on human EST sequence abundance. Either expressed or non-expressed genes 

in prostate cancer would be included within the new gene list generated. The following 

criteria were used: target species: Human; Search by Accession/Gene Symbol: e.g. ITGB1.  
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Bar graphs (figures 2.3 and 2.4) showing tumour (yellow bar) versus normal (blue bar) 

expression of various tissues for each gene was generated.  

2.5.1.5. Gene expression analysis using TiGER 

The same genes inserted in GeneHub-GEPIS were used in the TIGER database. Bar graphs 

(figures 2.5 and 2.6) showing results (red bar) of Expressed Sequence Tag (EST) Profile 

enrichment scores, with high enrichment being overly expressed in that specific tissue.  The 

gene view allowed information to be retrieved through a simple search engine by entering the 

gene symbol.  

ESTs may be used to identify gene transcripts, and are instrumental in gene discovery and in 

gene-sequence determination (Adams et al., 1991). A gene is considered as tissue-specific 

gene if it satisfies the two criteria: the enrichment score is greater than 5 and the P-value is 

smaller than 10-3.5. 

2.5.2. Literature mining of the Candidate genes 

The databases used for literature mining were: PubMed and Google Scholar. Genes were 

AND <gene name> was entered. All relevant literature, abstracts and journal articles were 

searched for information linking the genes as biomarkers for prostate cancer. All genes within 

the list generated that had been previously studied as candidate cancer or benign disease 

serum biomarkers in prostate cancer were eliminated and a final candidate gene list was 

generated. 

2.6. Results and Discussion 

2.6.1. Identifying possible candidate biomarkers 
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For the purpose of this study 21 genes known to be regulated by several miRNAs as 

identified in a Identification of miRNA's as specific biomarkers in prostate 

cancer diagnostics: (Khan, PhD thesis, 2015) 

were the main focus. As data mining can only uncover patterns present in the data, the target 

data set must be large enough to contain these patterns while remaining concise enough to be 

mined. 13 miRNAs were identified as potential prostate cancer miRNA targets and a 

gene/protein list of 21 miRNA targeted genes were generated and linked to prostate cancer 

(Khan, 2015). 

The STRING database was used for prediction of protein-protein networks. The 21 genes 

were used individually as driver genes and a total of 300 additional genes/proteins were 

identified and extracted from the STRING database.. Through expansion of the initial 21 

miRNA targeted genes, intermediary proteins functioning in concert with these genes are 

identified through protein-protein interactions. Identification and characterization of protein

protein interactions (PPIs) is one of the key aims in biological research.  More accurate PPI 

detection will also improve the ability to extract experimental data related to PPIs and 

provide evidence for each interaction (Niu et al., 2010).  

An example of an interaction network produced for TMX1 using STRING is shown in figure 

2.2.  
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Figure 2.2: TMX1 showing interactions of its 10 predicted functional partners using 

STRING. Different line colours between the proteins indicate the various types of interaction 

evidence for generating a specific interaction (Szklarczyk et al., 2015). 

Table 2.2: Number of genes extracted from STRING database for each miRNA targeted 

gene: 

miRNA Target Confidence Score Identified 

genes/interactions 

MiR1 ADNP 0.400 10 

MiR1 PAK7 0.700 20 

MiR1 RAB27A 0.700 20 

MiR1 ACVR1C 0.700 20 

MiR2 BTG2 0.400 10 

MiR3 SH3RF1 0.400 10 

MiR3 BFAR 0.400 10 

MiR4 PRKCI 0.700 20 

MiR4 PTPRC 0.700 20 
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MiR5 ING4 0.400 10 

MiR6 ATM 0.700 20 

MiR7 CLN8 0.400 10 

MiR8 CFLAR 0.700 20 

MiR8 CSRNP3 0.400 10 

MiR 9 YWHAZ 0.700 20 

MiR 9 TNFSF13B 0.700 20 

MiR 10 TMX1 0.400 10 

MiR 11 TNFSF15 0.400 10 

MiR 12 LIG4 0.400 10 

MiR 13 FOXC1 0.400 10 

MiR 13 MNT 0.400 10 

 

The gene list was refined and duplicates were eliminated using a Perl script, resulting in a 

total of 231 genes from the STRING database. 

GO analysis 

The identification of cell surface markers is critical to the development of new diagnostic and 

therapeutic modalities for the management of prostate cancer.  To identify potential markers 

for the diagnosis and treatment of prostate cancer, membrane-bound tumour antigens were 

searched for in that they may provide insights into the biology of prostate cancer progression 

(Reiter et al., 1998). Since these markers can be shed into the surrounding fluid and thus 

easily detected in various bodily fluids. 

The database GO was searched using the 231 genes identified and included the cellular 

component (CC) as part of the analysis GO terms generated a number of mapped 
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identifications of 26 genes in relation to their expression on the cell surface with a P value 

of <0.05.    

The smaller the p-value, the larger the significance since it indicates that the hypothesis under 

consideration may not adequately explain the observation. A small p-

strong evidence as the p-value is widely used in statistical hypothesis testing (Nuzzo, 2014). 

Cellular component included terms such 

et al., 2000). The GO concept is intended to make possible, in a 

flexible and dynamic way, the annotation of homologous gene and protein sequences in 

multiple organisms using a common vocabulary that results in the ability to query and 

retrieve genes and proteins based on their shared biology (Ashburner et al., 2000). 

Results obtained from GO is displayed in table 2.3 below. Column 1 indicates the annotation 

data category.  Column 2 indicates the number of reference genes linked to the annotation i.e. 

all genes within the database linked to this term. Column 3 shows the number of uploaded 

genes mapped to the annotation i.e. the number of genes within the list of 231 genes 

corresponding to this GO term. Column 4 shows the expected value, which is the number of 

genes expected in the list for this category, based on the reference list. Column 5 shows the 

Fold Enrichment of the genes observed in the uploaded list over the expected (number in the 

list divided by the expected number). The number is greater than 1, indicating that the 

category is overrepresented for this subset of genes in this study. Column 6 has either a + or - 

sign. The plus sign indicates over-representation of GO category. Column 7 has the p-value. 

A small p-value indicates that the number observed is significant and potentially interesting. 

A cut-off of 0.05 is recommended as a starting point (Thomas et al., 2016). Results obtained 

from GO and DAVID is shown in table 2.4 and displays the comparison thereof. 
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Table 2.3: Genes related to the GO term cellular component extracted from GO database 

 

Functional annotation using DAVID 

Two comparisons were performed,  DAVID  was mined for the exact same genes extracted 

from GO to confirm the GO term cellular component would result in the same output using 

DAVID.   

Genes extracted from DAVID database resulted in 20 clusters generated that was queried 

using the GO terms: 

Cluster 1 cell surface - enrichment score 6.25; cluster 4 regulation of cell death - enrichment 

score 4.19;   cluster 6 regulation of cell proliferation - enrichment score 3.2; cluster 11 

apoptosis - enrichment score 2.11 and cluster 18 cell cycle process - enrichment score 0.86. 

Combined clusters list and removal of duplication resulted in 26 genes. The confirmed 26 

genes from GO and DAVID analysis were then used to be further analysed for their 

expression in prostate cancer.   

 

 

GO cellular component 

complete 

Reference 

List 

Input  

List 

expected Fold Enrichment +/- P value 

external side of plasma 

membrane -  

cell surface 

779 26 8.46 3.07 + 6.27E-04 
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Table 2.4: Genes extracted from GO and DAVID  

 

2.6.2. Expression analysis 

TiGER and GeneHub-GEPIS are databases containing tissue specific enriched genes and 

expression analysis and these were used to  eliminate genes already experimentally linked to 

prostate cancer. All 26 genes were then mined in GeneHub-GEPIS, TIGER, PubMed and 

Google Scholar.  

Summary of expression analysis:  

GeneHub   TIGER  
8 non-expressed genes 5 non-expressed genes 

3 genes no EST hits 3 genes not found in 

databases 

 

Gene Ontology DAVID Name of gene 
CD22 CD22 hypothetical protein FLJ22814
CD3E CD3E CD3e molecule, epsilon (CD3-TCR complex)
CD4 CD4 CD4 molecule
EGFR EGFR epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)
ERP44 ERP44 Gene Name: TXNDC4 thioredoxin domain containing 4 (endoplasmic reticulum)
FAS FAS Fas (TNF receptor superfamily, member 6)
FASLG FASLG Fas ligand (TNF superfamily, member 6)
GP1BA GP1BA glycoprotein Ib (platelet), alpha polypeptide
IFNG IFNG interferon, gamma
IL13 IL13 interleukin 13
IL6 IL6 interleukin 6 (interferon, beta 2)
ITGA4 ITGA4 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
ITGAM ITGAM integrin, alpha M (complement component 3 receptor 3 subunit)
ITGB1 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
LAMP1 LAMP1 lysosomal-associated membrane protein 1
LGALS1 LGALS1 lectin, galactoside-binding, soluble, 1 (galectin 1)
MMP7 MMP7 matrix metallopeptidase 7 (matrilysin, uterine
SEPT2 SEPT2 septin 2
SERPINE2 SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2, 
SHH SHH sonic hedgehog homolog (Drosophila
TDGF1 TDGF1 teratocarcinoma-derived growth factor 1
TNFRSF10A TNFRSF10A tumor necrosis factor receptor superfamily, member 10a
TNFRSF10B TNFRSF10B tumor necrosis factor receptor superfamily, member 10b
TNFRSF13C TNFRSF13C tumor necrosis factor receptor superfamily, member 13C
TNFRSF1A TNFRSF1A tumor necrosis factor receptor superfamily, member 1A
TNFSF4 TNFSF4 tumor necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally activated glycoprotein 1, 34kDa)

Cell Surface  - 26 genes  
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In GeneHub-GEPIS, 8 genes showed no expression distribution in prostate tissue and 3 genes 

had no EST hits in the database. Outputs of 5 genes were non-expressed in the prostate in the 

TIGER database and results for 3 genes were not found in this database. Of the non-

expressed genes in these two databases, only 3 were common to both and only 1 gene, were 

not found in either database.  

 

 

Figure 2.3: Gene TNFSF4 showing no expression in both normal and tumour tissue as seen 

in the GeneHub-GEPIS database. 

 

Figure 2.4: Gene ITGB1 showing expression in both normal and tumour tissue, but more 

expression in tumour of the prostate in GeneHub-GEPIS database. 
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Figure 2.5: Gene TNFSF4 displaying no expression in prostate tissue in the TIGER database. 

 

Figure 2.6: Gene LAMP1 displaying expression in various tissues in TIGER database. 
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Literature mining was then used, in order to obtain genes of greater relevance to be validated 

as novel biomarkers for prostate cancer. 

2.6.3. Literature mining of the Candidate genes 

Of the 26 genes, only 6 showed no related articles to prostate cancer in PubMed and in 

Google Scholar of that 6, only 5 were not linked to prostate cancer. The resulting 6 genes 

from PubMed were chosen. Since Google Scholar offers results of inconsistent accuracy 

(Falagas, 2008).  

The final candidate gene list was narrowed down to the following 6 genes:  ERP44 (Gene 

Name: TXNDC4 thioredoxin domain containing 4 (endoplasmic reticulum), GP1BA 

(glycoprotein Ib (platelet), alpha polypeptide), IFNG (interferon, gamma), SEPT2 (septin 2), 

TNFRSF13C (tumour necrosis factor receptor superfamily, member 13C) and TNFSF4 

(tumour necrosis factor (ligand) superfamily, member 4 (tax-transcriptionally activated 

glycoprotein 1, 34 kDa).   

2.7. Discussion and Conclusion 

In this chapter the focus was on the diagnostic application of biomarkers using a 

bioinformatics approach. Using bioinformatics, the aim was to identify biomarkers for 

diagnosis of prostate cancer with a high sensitivity, specificity and accuracy. The biomarker 

should preferably be tissue specific, such that a change in serum level can be directly 

attributed to disease (for example, cancer) of that tissue (Diamandis, 2010).  Currently the 

most widely used serological biomarker include  prostate-specific antigen (PSA, also known 

as kallikrein-related peptidase (KLK) 3) in prostate cancer (Bostwick, 1994). This biomarker 

have been proven to be ineffective for the accurate diagnosis of prostate cancer hence the 

need to identify additional biomarkers for this disease which was the aim of this study 
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STRING database was used to look at known and predicted protein-protein associations 

(direct or indirect) for prostate cancer of the 21-miRNA target genes previously identified. 

The protein-protein interactions identified were based on experimental data, databases and 

literature and from predictions of genomic content analysis. The basic interaction unit in 

STRING is the functional association, i.e. a specific and productive functional relationship 

between two proteins, likely contributing to a common biological purpose  (Szklarczyk et al., 

2015). From STRING analysis 231 genes were generated which was further refined using 

GO, DAVID and expression analysis through TIGER and GeneHub-GEPIS. Gene Ontology 

(GO) analysis showed 26 out of the 231 genes being expressed on the cell surface with 

functional analysis using DAVID, showing the same number of genes to be linked to 

processes such as apoptosis, cell cycle and cancer onset and progression. 

A PubMed search revealed that 20 of the 26 genes identified had been previously studied in 

relation to prostate cancer. As seen in figure 2.3 and figure 2.5 the gene TNFSF4 were not 

expressed in prostate tissue in either TiGER or GeneHub-GEPIS database and is thus one of 

the six candidate genes identified. The coverage of the genes in TiGER and GeneHub-GEPIS 

databases with no association to prostate cancer was linked to and confirmed in literature 

mining to prostate cancer. 

These computational approaches led to six identified genes; ERP44, GP1BA, IFNG, SEPT2, 

TNFRSF13C and TNFSF4, as possible diagnostic biomarkers for prostate cancer. These 

results are promising, since the targeted biomarkers would be easily detectable in bodily 

fluids as the GO analysis of these genes are enriched for cell surface.  The identification of 

biomarkers for clinical applications remains an important issue for improving diagnostics, 

prognostics and therapy in many diseases, including prostate cancer. Investigation of these 

candidates should be prioritized for further verification and validation studies. The genes 

identified using an in silico approach within this chapter will be associated to transcription 
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factors and disease causing pathways in Chapter 3 to identify the underlying regulation of 

these genes and prognostic and predictive validation of these genes in prostate cancer 

(Chapter 4). 
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Chapter 3 

Identification of Transcription factors and disease associated pathways of the identified 

biomarkers 

3.1. Introduction 

Promoters assist in controlling gene expression, since it is at this site that the RNA 

polymerase binds for initiation of transcription. Multiple functional sites are involved in the 

binding of the polymerase and elements such as the TATA box, GC box, and CAAT box 

serve as binding sites for transcription factors (TFs). The proteins that mediate transcriptional 

regulation are called TFs. TFs play a central role in gene regulation but are not solely 

responsible. TFs influence the transcription of specific genes, essentially determining whether 

a particular gene will be turned "on" or "off" in an organism.  Each TF can regulate multiple 

genes (Phillips and Hoopes, 2008). 

Transcriptional activation of a gene requires the binding of specific transcription factors to 

regulatory DNA elements and the assembly of the preinitiation complex with RNA 

polymerase and RNA synthesis initiation. Many human oncogenes encode for transcription 

factors and some of the most prominent tumour suppressors (e.g. p53) are TFs.  TF families 

further increase the level of genetic complexity in eukaryotes and many TFs within the same 

family often work together to affect transcription of a single gene (Delgado and León, 2006). 

The identification of TF targets in prostate cancer provides potential new targets for 

therapeutic intervention of prostate cancer such as treatment strategies, disease progression 

and metastases. In this chapter TFs were identified and characterized with respect to their 

expression in the prostate.   Overexpression of TFs in prostate cancer implicates the 

development of carcinomas and the molecular diagnosis and treatment of prostate cancer.  In 
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order to facilitate the discovery of potential biomarkers, candidate genes, were investigated 

using TF annotation to identify linkage to prostate cancer.  

3.2. GeneCards 

GeneCards (www.genecards.org) is a readily available Web resource database that integrates 

data for 152 704 human genes from 125 sources (Fishilevich et al., 2016). GeneCards is 

accessible for searchable human gene annotations. Data are automatically mined from 120 

sources and presented as an integrated web card for every human gene (Fishilevich et al., 

2016).  

It contains comprehensive information about human genes, including data about the cellular 

functions of their products, their involvement in diseases   and genomic, transcriptomic, 

proteomic, genetic, clinical and functional information. The presented information aims at 

giving immediate insight into current knowledge about the respective gene, including a focus 

on its functions in health and disease (Rebhan et al., 1998). 

3.3. KEGG Pathway database 

The KEGG (Kyoto Encyclopedia of Genes and Genomes)   (http://www.genome.jp/kegg/) 

database provides a systematic analysis of gene functions, linking genomic information with 

higher order functional information in terms of the network of interacting molecules 

(Kanehisa and Goto, 2000). 

KEGG is an integrated database resource consisting of seventeen main databases and  KEGG 

pathway database (http://www.genome.jp/kegg/pathway.html) is one of the main databases 

and is part of the research projects of the Kanehisa Laboratories used for pathway-based 

information (Kanehisa et al., 2010). KEGG PATHWAY contains scientific literatures on the 

biological molecular interaction and reaction networks, including protein-protein interaction, 
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protein-DNA binding, protein-ligand interaction and enzyme-mediated biomass reactions. 

Interactions within one specific biological process or function are drawn manually to pathway 

maps. Currently, there are 365 pathway maps collected from 113,760 references (Kanehisa et 

al., 2010). 

3.4. Aims 

1. Extract transcription factors associated to the six candidate genes   

2. Functionally annotate the identified TFs and their relation to prostate cancer  using 

GeneCards  

3. Identify the TFs that are linked to pathways associated in prostate cancer using the 

KEGG database 

 

3.5. Materials and methods 

 

Figure 3.1: Flow chart of the methodology used for identification of transcription factors of 

the candidate genes 

 

 

The 6 candidate genes selected as potential novel biomarkers 
are evaluated by GeneCards database to identify TFs 

associated to these genes

Identification of TFs that target the promoter regions of the 
candidate genes involved in prostate cancer. 

Identification of Pathways in KEGG linked to the TFs that 
target the promoter regions of the candidate genes involved 

in prostate cancer. 
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3.5.1. Identification of TFs using GeneCards 

The GeneCards database was launched at  www.genecards.org and used to extract the TFs that 

are associated to the six genes of interest. These six identified genes; ERP44, GP1BA, IFNG, 

box and 

selected for further exploration. The GeneCard showed all the data concerning the genes used 

as input. GeneCards sections and sub-headings include: Aliases, Disorders, Domains, Drugs, 

Expression, Function, Genomics, Localization, Orthologs, Paralogs, Pathways, Products, 

Proteins, Publications, Sources, Summaries, Transcripts and Variants of the gene of interest.   

The Genomics section displays the chromosome, cytogenetic band and map location of the 

GeneCards gene as extracted from GeneLoc, HGNC, Entrez Gene, Nature and miRBase, as 

well as genomic views from UCSC and Ensembl, RefSeq DNA sequence links and TF 

binding sites from Qiagen. The section, under the sub-

TFs of the candidate genes are stored. The TF binding sites by Qiagen in 

the gene promoter displayed all related regulatory elements data, thus providing insight into 

the transcriptional regulation of the gene and cell proliferation, differentiation and 

tumourigenesis.  

3.5.2. Pathway discovery of the TFs associated to prostate cancer linked to the candidate 

genes using KEGG Pathway analysis 

Pathways in KEGG linked to the TFs that target the promoter regions of the candidate genes 

involved in prostate cancer were investigated and related to known prostate cancer pathways. 

Within the KEGG database, the KEGG Pathway database presented with pathway maps to 

molecular interaction and reaction networks of the prostate cancer pathway (See figure 3.2). 

The pathway map for prostate cancer was found under the sub- Cancers: Specific 

ed to 
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prostate cancer from GeneCards, these TFs (Table 3.2) were used in the KEGG Pathway as 

keyword entries.    

3.6. Results and Discussion 

Table 3.1: All TFs associated with the candidate genes identified in Chapter 2 extracted from 

GeneCards.  

GENE Regulatory Transcription factor 

ERP44 NF-kappaB1, NF-kappaB, C/EBPalpha, HTF, HFH-1,  

HNF-4alpha2, POU3F1 

GP1BA AP-1,c-Jun, ATF-2, NF-kappaB1, E2F, E2F-1, E2F-2, E2F-3a, E2F-

4 

IFNG STAT3, deltaCREB, CREB, POU2F1c, POU2F1b, POU2F1a, 

POU2F1, Ik-1, ATF-2, Hlf 

SEPT2 Max1, Nkx3-1v4, c-Myc, Nkx3-1, Nkx3-1v1, Nkx3-1v2, Nkx3-1v3, 

Cdc5 

TNFRSF13C AP-1, c-Jun, ATF-2, Sp1, p53, E47, USF-1, USF1, SEF-1(1) 

TNFSF4 AP-1, c-Jun, ATF-2, POU3F2, C/EBPalpha, POU6F1(c2), aMEF-2, 

MEF-2, MEF-2A, AML1a 

The common TFs are highlighted amongst this subset of genes and those associated with a 

particular gene. 
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3.6.1. Transcription factors that target the promoter regions of the candidate genes that 

are involved in or showing a direct link to prostate cancer 

NF-kappaB 

Nuclear factor- - TF family that consists of five members in mammalian cells: 

NF- - -Rel. NF-

physiological and pathological processes, including cell proliferation and differentiation, 

inflammatory and immune response, cell survival and apoptosis, cellular stress reactions and 

tumourigenesis (Yu et al., 2009; Beinke and Ley 2004). 

NF- -

proteasome to produce the mature transcription factor NF-   As a cleaved product of 

p105, p50 only has a DNA binding domain and must form a heterodimer with RelA, RelB or 

C-Rel to act as a transcription factor to regulate its target gene transcription (Yu et al., 2009). 

Overexpression of p50 has been demonstrated in a large percentage of non-small cell 

carcinomas (Bours et al., 1994; Mukhopadhyay et al., 1995). p50 involvement leads to the 

development of inflammation-associated cancers, including hepatoma, some breast cancers 

and colitis-associated cancers (Yu et al., 2009). Wang et al., 2006 reported that a peptide 

designed to bind with p50 can inhibit NF-  

There are reports demonstrating that TNF-   (Tumour necrosis factor alpha) also induce cell 

anti-apoptosis associated with NF-    (Sumitomo, 1999).  

The combination of TNF-alpha and NF-kappaB inhibitors could be constituted an effective 

therapy to TNF-alpha-resistant human prostate cancer cells  (Sumitomo, 1999). 

Transcription factor NF-kappaB1,   showing expression in various cancers was annotated to 

regulate genes ERP44 and GP1BA (as seen in table 3.1). 
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C/EBPalpha. 

The CCAAT/enhancer binding protein (C/EBP) family of TFs control the differentiation of a 

range of cell types, having key roles in regulating cellular proliferation through interaction 

with cell cycle proteins. C/EBPs have been described as both tumour promoters and tumour 

suppressors (Nerlov, 2007).   Common to gene ERP44 and gene TNFSF4,  

distinctive in that in addition to its transcriptional activity, it inhibits cell proliferation by 

several non-genomic mechanisms, causing it to be a tumour suppressor. In a study by Zhang 

et al., 2008, they found that 

highly expressed in prostate tumours. A significant observation is the frequent co-expression 

 (AR) in prostate cancer, particularly in the more 

aggressive metastatic tumours, which are both major regulators of transcription. This strongly 

suggests a combined role for them in determining the molecular phenotype of prostate 

tumours (Zhang et al., 2008).    

transcription of hepatic-specific and adipose-specific genes respectively.   In normal prostate, 

inhibited epigenetically PSA expression and was accompanied by the loss of expression of 

AR (Yin et al., 2006).    

POU3F1 

POU domain class 3, transcription factor I  Oct-6 (Pou3f1, SCIP, Tst-1) is a member of the 

Pit-Oct-Unc (POU) family of transcription factors (Hofmann et al., 2010). 

In another study, candidate   genes identified showed a differential methylation pattern 

between normal and prostate cancer cell lines (LNCaP, PC3, DU145) and observed additional 

expression differences in a gene family belonging to transcription factors (STAT1, POU3F1, 
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MYOD) (Mishra et al., 2007).  New insight into Oct-6 gene regulation was uncovered, with a 

potential impact on the control of nerve myelination (Hofmann et al., 2010). POU3F1 was 

linked to gene ERP44 (table 3.1). 

AP-1 

Common to gene GP1BA, TNFRSF13C and TNFSF4, AP-1 nuclear transcriptional factors 

regulate expression of multiple genes involved in tumour growth, metastasis and 

angiogenesis. Activation of AP-1 has been implicated in prostate cancer development and 

growth, and therefore may represent promising therapeutic targets for cancer prevention and 

treatment (Uzzo et al., 2006). 

AP-1 is a heterodimer composed of proteins belonging to the c-Fos, c-Jun, ATF and JDP 

families.  AP-1 controls a number of cellular processes including differentiation, proliferation, 

and apoptosis (Ameyar et al., 2003).   In addition to being activated by oncogenic signal 

transduction cascades, AP-1 is itself strongly oncogenic (Ozanne et al., 2007). 

c-Jun 

In human prostate cancer, up-regulation of c-Jun proteins occurs in advanced disease and 

high levels of c-Jun expression are associated with disease recurrence.    In a study by Ouyang 

et al., 2008, the study revealed that an unappreciated role for AP-1 transcription factors in 

prostate cancer progression and identified c-Jun as a marker of high-risk prostate cancer 

(Ouyang et al., 2008). Associated to genes GP1BA, TNFRSF13C and TNFSF4, c-Jun TF 

shows expression in prostate cancer. 

E2F family  

The E2F family of TFs was found to be associated to only gene GP1BA of the candidate 

genes. The E2F family are involved in the cell cycle regulation and synthesis of DNA.  E2F1, 
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E2F2 and E2F3 function to promote the expression of cell cycle regulated genes and promote 

cell cycle progression, even if this promotion by deregulation of these E2F activities leads to 

defective cell cycling and apoptosis (DeGregori and Johnson, 2006).  E2F-1, a regulator of 

cell proliferation and viability, reportedly plays a role in the development of hormone-

refractory prostate cancer.   Its ability to repress AR transcription, elevated levels of E2F-1 

may contribute to the progression of hormone-refractory prostate cancer (Davis et al., 2006). 

STAT3 

Signal transducers and activators of transcription, STAT   as TFs are critical in mediating 

virtually all cytokine driven signaling.   Activation of one STAT family member, Stat3, 

associated to gene IFNG, in human prostate cancer cell lines and primary prostate tumours 

revealed that elevated Stat3 activity was localized primarily in the tumour cells of prostate 

carcinoma specimens (Mora et al., 2002). Stat3 expression occurs frequently in primary 

prostate adenocarcinomas and is critical for the growth and survival of prostate cancer cells. 

These studies further suggest that Stat3 signaling represents a potentially novel molecular 

target for prostate cancer therapy (Mora et al., 2002). The inhibition of Stat3 signaling blocks 

the growth of prostate cancer cells  and this suggest that targeting Stat3 signaling may yield a 

potential therapeutic intervention for prostate cancer (Ni et al., 2000).  

CREB 

Akt is an antiapoptotic serine-threonine kinase that regulates a number of critical cellular 

pathways including those leading to cellular proliferation and inhibition of apoptosis. One of 

the downstream targets of Akt is CREB and has been shown to phosphorylate CREB; it is 

possible that Akt-mediated activation of CREB plays an important role in prostate 

carcinogenesis (Garcia et al., 2006). The transcription factor CREB regulates genes involved 

in various cellular processes by binding to cAMP response element (CRE) sequences present 

 

 

 

 



86  
  

in their promoter regions (Kim et al., 2005).   Defects in apoptotic signaling pathways are 

often associated with uncontrolled cell proliferation, high mutation rate and malignant 

transformation. Transcription factors, such as the mammalian ATF/CREB family of 

transcriptional regulators, have diverse functions in controlling cell proliferation and 

apoptosis   (Persengiev and Green, 2003).    AIbZIP is a novel member of the CREB/ATF 

family of transcription factors that is highly expressed in prostate tumours and of which the 

expression is up-regulated by androgen in LNCaP cells (Qi et al., 2002). 

POU2F1 

POU2F1 (also known as Oct-1) is the transcription factor associated to gene IFNG and 

Obinata et al., 2012 demonstrated that Oct1 can be a prognostic factor in prostate cancer  and 

as a coregulator of AR and may lead to the development of a new therapeutic intervention for 

prostate cancer.  Oct1 is involved in the proliferation of LNCaP cells (Obinata et al., 2012). 

NKX3-1 

NKX3-1 is a prostatic tumour suppressor gene. It is an androgen-regulated, prostate-specific 

gene whose expression is predominantly localized to prostate epithelium. It acts as a 

transcription factor that has critical function in prostate development and tumour suppression.  

Based on this, NKX3.1 is a candidate gene for playing a role in the opposing processes of 

androgen-driven differentiation of prostatic tissue and loss of that differentiation during the 

progression of prostate cancer and early stages of prostate carcinogenesis.  Loss of NKX3A 

protein expression is a common finding in human prostate carcinomas and prostatic 

intraepithelial neoplasia (He et al., 1997).  Nkx3.1 is expressed early in the development of 

the prostate gland and is likely to play an important role in the differentiation of prostatic 

epithelia. Four splice variants (NKX3.1v1-4) (Korkmaz et al., 2000)  are associated with gene 

SEPT2.  
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Sp1 

Associated with gene TNFRSF13C, Sp1 is elevated in several malignancies including 

prostate cancer and is associated with the prognosis of patients of this disease (Sankpal et al., 

2011).   Studies have shown that in prostate cancer, Sp1 regulates important genes like 

androgen receptor, TGF- -Met, fatty acid synthase, matrix metalloprotein (MT1-MMP), 

-integrin.  These results highlight the importance of Sp1 in prostate cancer and 

emphasize the potential therapeutic value of targeting Sp1 (Sankpal et al., 2011). 

p53 

Annotation of this TF was shown to gene TNFRSF13C, p53 mutations are detected in at least 

20% of advanced prostate carcinomas  and the overall p53 mutation rate is lower in prostate 

cancers than in many other cancers such as colon, lung, brain, breast, and bladder where p53 

is mutated in over 50% of the cases studied (Surget et al., 2014).  The p53 tumour suppressor 

protein is widely known for its role as a transcription factor that regulates the expression of 

stress response genes and mediates a variety of anti-proliferative processes. It is the most 

commonly mutated tumour suppressor in human cancers (Surget et al., 2014).  Reported by 

Isaacs et al., 1991, p53 gene mutations in prostate cancer cells suggested a functional role for 

the p53 gene in suppressing prostatic tumourigenesis. 

E47 

Transcription factor 3 (E2A immunoglobulin enhancer-binding factors E12/E47), also known 

as TCF3   is a multifunctional basic helix loop helix (bHLH), transcription factor, regulating 

transcription of target genes by homo- or heterodimerization with cell specific bHLH 

proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell 

proliferation in normal cells and cancer cell lines. E2A, considered as a tumour suppressor is 
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highly expressed in prostate cancer. Loss of E2A promotes doxorubicin dependent apoptosis 

in prostate cancer cells (Patela and Chaudhary, 2012). 

c-Myc  

c-Myc affects the transcription of genes which participate in apoptosis. It is a key molecular 

integrator of cell cycle machinery and cellular metabolism and  determines the common and 

divergent patterns of c-Myc target gene expression in a variety of physiological and 

neoplastic conditions (Dang, 1999).  The transcriptionally active Max/Myc dimer promotes 

cell proliferation as well as apoptosis.  The protein Max is a member of the basic helix-loop-

helix leucine zipper (bHLHZ) family of transcription factors. It is able to form homodimers 

and heterodimers with other family members, which include Mad, Mxl1 and Myc. Myc is an 

oncoprotein implicated in cell proliferation, differentiation and apoptosis (Amati and Land, 

1994). 

Mutations of genes of the Myc family have been shown to be among the most frequently 

affected in the majority of human malignancies (Nair and Burley, 2006). Max1 and c-Myc 

are two TFs found to regulate the candidate gene IFNG only, of which Max1 showed no 

expression in prostate cancer from results obtained but numerous studies of human prostate 

cancer have demonstrated increased   c-Myc expression in the prostate as well as increased 

Myc gene copy number in up to 30% of tumours, even at the preneoplastic stage called 

prostate intraepithelial neoplasia (PIN) (Ellwood-Yen et al., 2003).   Two commonly used 

prostate tumour cell lines, LNCaP and PC-3, have significant c-Myc amplification and 

overexpression  (Zhong et al., 2000). 
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Table 3.2: Summary of TFs that target the promoter regions of the candidate genes involved 

in prostate cancer. 

GENE Prostate cancer associated Transcription factors 

ERP44 NF-kappaB1, NF-kappaB, C/EBPalpha, POU3F1 

GP1BA AP-1,c-Jun, NF-kappaB1, E2F, E2F-1, E2F-2, E2F-3a, E2F-4 

IFNG STAT3, deltaCREB, CREB, POU2F1c, POU2F1b, POU2F1a, 

POU2F1 

SEPT2 Nkx3-1v4, c-Myc, Nkx3-1, Nkx3-1v1, Nkx3-1v2, Nkx3-1v3,  

TNFRSF13C AP-1, c-Jun, Sp1, p53, E47 

TNFSF4 AP-1, c-Jun, C/EBPalpha,  

 

3.6.2. Transcription factors that target the promoter regions of the candidate genes that 

have shown no direct link to prostate cancer 

The following transcription factors; HTF, HFH-1, HNF-4alpha2,  ATF-2,   Ik-1, HLF,  Max1, 

POU3F2, POU6F1 (c2),  Cdc5, USF-1, USF1, SEF-1(1),  and aMEF-2, MEF-2, MEF-2A and 

AML1a showed no direct link to prostate cancer.  

HTF 

A TF, linked only to gene ERP44, HTF   (HER2 transcription factor)  from human epidermal 

growth factor receptor 2 has been identified as an AP-2 (activator protein-2) transcription 

factor.  Vernimmen et al., 2003 showed in their study that HTF is identical to AP-2 (activator 

protein-2).   Overexpression of HTF has been shown to play an important role in the 

development and progression of certain aggressive types of breast cancer. In recent years the 

protein has become an important biomarker and target of therapy for approximately 30% of 

breast cancer patients (Mitri et al., 2012).  
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HFH-1 

Hepatocyte nuclear factor-3 homologue 1 (HFH-1) belongs to the family of the FOX 

transcription factors (previously called HNF-3/forkhead transcription factors) that  play a role 

in tissue-specific and development gene regulation (Clevidence et al., 1993). 

HFH-1, linked only to gene ERP44 play important roles in early embryonic development and 

during development of many organ systems and represses the transcription of smooth muscle-

specific genes (Hoggatt et al., 2000). 

HNF-4alpha2 

Transcription factors, such as nuclear receptors activate transcription through interaction with 

coactivators.   Nuclear receptors comprise a large superfamily of relatively conserved 

transcription modulators that play a role in nearly every aspect of growth, differentiation, and 

development   (Erdmann et al., 2007).   Hepatocyte nuclear factor 4alpha (HNF4alpha) is a 

tissue-specific transcription factor expressed in many cell types, including pancreatic beta-

cells.   HNF4alpha2 is a spliced form of HNF4alpha   (Erdmann et al., 2007). This TF was 

associated to gene ERP44. 

ATF-2 

Common to genes GP1BA, IFNG, TNFRSF13C and TNFSF4,   ATF2 responds to stress-

related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, 

oncogenesis, neurological development and function, and skeletal remodelling. A study, 

implicated abnormal activation of ATF-2 in growth and progression of mammalian skin 

tumours (Leslie and Bar-Eli, 2005). 

Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that are extremely 

important in both development and cancer progression due to their regulation of cellular 
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processes such as angiogenesis, tumour growth, proliferation, tumour invasion and 

metastasis.  HS2ST1 (heparan sulfate 2-O-sulfotransferase, 2OST) is essential for maximal 

proliferation and invasion   of prostate cancer cells. HS2ST1 is upregulated by ATF2 

(Ferguson and Datta, 2011). 

POU family 

POU homologs are divided into six major classes, including common names: 

POU1 - POU1F1 (Pit-1); POU2 - POU2F1 (Oct-1), POU2F2 (Oct-2), POU2F3 (Oct-11); 

POU3 - POU3F1 (Oct-6; SCIP), POU3F2 (Oct-7; Brn-2), POU3F3 (Oct-8; Brn-1), POU3F4       

(Oct-9; Brn-4; DFN3); POU4 - POU4F1 (Brn-3a; RDC-1; Oct-T1), POU4F2 (Brn-3b; Brn-

3.2), POU4F3 (Brn-3c; Brn-3.1; DFNA15); POU5 - POU5F1(Oct-3; Oct-4), POU5F2 

(SPRM-1), Pou2/V; POU6 - POU6f1 (Brn-5; mPOU), POU6f2 (Emb; RPF-1) (Gold et al., 

2014). 

The transcription factors, POU3F2 and POU6F1 (c2), were linked to gene TNFSF4 which 

showed no expression in prostate cancer. In glioblastoma (GBM), a subset of stem-like 

tumour-propagating cells (TPCs) appears to drive tumour progression and underlie 

therapeutic resistance. A core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and 

OLIG2)  co-ordinately bind and activate TPC-specific regulatory elements and are essential 

for GBM propagation (Suvà1 et al., 2014). 

POU6F1 (c2), referred to as brain-5 (Brn-5), is widely expressed with highest levels in the 

developing brain and spinal cord from embryonic day 12.5. In the adult, Brn-5 mRNA is 

most abundant in the brain, where it is diffusely expressed with the exception of enrichment 

in layer IV of the neocortex (Andersen et al., 1993). 

 

 

 

 

 



92  
  

Ik-1 

Linked to gene IFNG,  the Ikaros family are zinc finger transcription factors. They participate 

in a complex network of interactions with gene regulatory elements, other family members 

and other transcriptional regulators to control gene expression. Ikaros family members 

regulate important cell-fate decisions during haematopoiesis. Mutation of several family 

members results in haematological malignancies, especially those of a lymphoid nature (John 

and Ward, 2011).  

HLF 

HLF is a member of the PAR (proline and acidic amino acid-rich region) subfamily of b/ZIP 

(basic region leucine zipper) transcription factors  in acute lymphoblastic leukaemia (Hunger 

et al., 1992). Hepatic leukaemia factor inhibits cell death and is a candidate circadian factor 

(Watersa et al., 2013). Linked only to gene IFNG, this TF did not show any direct link to 

prostate cancer.  

CDC5 

The cell division cycle 5 (CDC5) is considered a putative transcription factor, as it is a MYB 

(a transcription factor)-related protein. In human and yeast, CDC5 has been shown to act as a 

component of the spliceosome to participate in mRNA splicing (Zhang et al., 2013). 

Polo-like kinases play critical roles during multiple stages of cell cycle progression. Polo-like 

kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been 

shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells and plays critical 

roles in DNA replication and Pten null prostate cancer initiation.   Cdc5 is a Plk homolog 

known to play important roles in cell cycle regulation (Luo and Liu, 2012), also only linked 

to gene SEPT2. 
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USF-1 

USF is a family of transcription factors characterized by a highly conserved basic-helix-loop-

helix-leucine zipper (bHLH-zip) DNA-binding domain.  Upstream stimulatory factor 1(USF-

1, USF1), can activate transcription through pyrimidine-rich initiator (Inr) elements and E-

box motifs. This gene has been linked to familial combined hyperlipidaemia (FCHL) (Lee et 

al., 2006). This TF was associated to gene TNFRSF13C. 

SEF-1(1), aMEF-2, MEF-2, MEF-2A and AML1a 

aMEF-2, MEF-2   myocyte enhancer factor-2 (Mef2) proteins are a family of transcription 

factors which through control of gene expression are important regulators of cellular 

differentiation and consequently play a critical role in embryonic development  (Potthoff and 

Olson, 2007).  Studies have revealed a central role for the myocyte enhancer factor-2 (MEF2) 

family of transcription factors in linking calcium-dependent signaling pathways to the genes 

responsible for cell division, differentiation and death (McKinsey et al., 2002). The AML1 is 

associated with myelogenous leukaemias and encodes a DNA-binding protein. From AML1 

gene, two representative forms of proteins, AML1a and AML1b, are produced by alternative 

splicing (Tanaka et al., 1997). SEF-1(1), TF   showing no expression in prostate cancer, 

associated with gene TNFRSF13C. TFs (aMEF-2, MEF-2, MEF-2A and AML1a)  showed no 

expression in prostate cancer and were linked to gene TNFSF4, as seen in table 3.1. 
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3.6.3. KEGG Pathway Analysis 

 

Figure 3.2: Extracted from the KEGG Pathway database showing gene and TF links in 

Prostate Cancer (Kanehisa Laboratories©).  NKX3.1, PTEN, and p27 (shown in red) regulate 

the growth and survival of prostate cells in the normal prostate. Inadequate levels of PTEN 

and NKX3.1 lead to a reduction in p27 levels and to increased proliferation and decreased 

apoptosis (Kanehisa Laboratories©).  

Searching the KEGG pathway database with the TFs shown in table 3.2, associated to the six 

genes, resulted in  various TFs with some links to cancer however only 4 (NKX3.1, p53,  E2F 

and  CREB), showed association to the Prostate Cancer pathway.  

NKX3-1 TF is seen in the Prostate Cancer pathway and related to the gene of interest SEPT2 

as seen in table 3.2. p53 activation is induced by a number of stress signals, including DNA 

 

 

 

 



95  
  

damage, oxidative stress and was also found in the Prostate Cancer pathway linked to 

candidate gene TNFRSF13C. E2F, one of the TFs seen in the Prostate Cancer pathway was 

also found in Pathways in Cancer, p53 Signaling pathway and a number of other cancer 

pathways. E2F was linked to the gene of interest GP1BA. Another TF in the Prostate Cancer 

pathway, CREB (linked to gene of interest, IFNG) is also seen in other KEGG pathways such 

as the TNF Signaling pathway and Pathways in Cancer.  

The KEGG pathway database also revealed various TFs with links to cancer pathways. The 

TF AP-1 showed linkage to pathways such as TNF signaling pathway and Apoptosis pathway 

(Appendix B) and Cell Survival pathway as well as Inflammation and Immunity pathways.  

c-Jun, was found to be linked to the  Apoptosis pathway, TNF Signaling pathway, Pathways 

in Cancer (Appendix C) and  Colorectal Cancer pathway. The TFs, NF-kappaB involved in 

AGE-RAGE Signaling pathway and STAT3 TF is seen in  Pathways in Cancer. c-Myc is seen 

in the Transcriptional Misregulation in Cancer pathway and  Pathways in Cancer in the KEGG 

Pathway Database. Sp1 and E47 TFs were found in the Transcriptional Misregulation in 

Cancer pathway. The remaining TFs as seen in table 3.2 were not found within the KEGG 

Pathway databases revealing no results.   

3.7. Conclusion 

This chapter focused only on the TFs and the link of these TFs to pathways of the candidate 

biomarkers to prostate cancer. 

The set of 44 TFs found to be associated to the candidate genes; there are 15 TFs out of the 

44 that showed no experimental information about the genes they regulate with any direct 

links to prostate cancer.    
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The TFs that target the promoter region of the candidate genes have been reported to be 

involved in prostate cancer initiation, repression or progression. The remaining TFs linked to 

prostate cancer showing association to the candidate prostate cancer biomarkers (table 3.2); 

suggest that these genes could be potential diagnostic or prognostic markers as well as 

markers for monitoring therapeutic outcomes in prostate cancer. 

To assess the association of pathways and TFs provides new clues to genes, pathways, and 

TFs that contribute to the outcome of prostate cancer and might be exploited in designing 

new biomarkers thus demonstrating that effectively incorporating pathway information with 

TFs can provide better diagnostic evaluation.  

CREB, E2F, Nkx3-1 and p53 TFs were discovered to be linked to the genes IFNG, GP1BA, 

SEPT2 and TNFRSF13C respectively in prostate cancer and therefore shows that these genes 

can be assessed as possible biomarkers for prostate cancer. 
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Chapter 4 

Prognostic and Predictive validation of Genes using an in silico approach 

4.1. Introduction 

Genome-wide molecular profiles have served as sources for in silico discovery and/or 

validation of predictive/prognostic molecular biomarkers as well as therapeutic targets (Chen 

et al., 2014). Prognostic biomarkers are measurements made at diagnosis that provide 

reatment or in the presence of 

standard treatment. Predictive biomarkers are measured at baseline to identify patients who 

are likely or unlikely to benefit from a specific treatment (Simon, 2009). Prognostic markers 

help to stratify patients for treatment by identifying patients with different risks of outcome 

(e.g. recurrence of disease) and are important tools in the management of cancer and many 

other diseases (Riley et al., 2003). 

To obtain more accurate predictions, researchers have developed predictive tools (directed at 

predicting the probability of an outcome without considering the effect of time) and 

prognostic tools (directed at predicting the probability of an outcome over time) that are 

based on statistical models. Predictive and prognostic nomograms (devices that make 

predictions) have been introduced to predict the risk of the outcome of interest for the 

individual patient (Shariat et al., 2008).  

Several tools are available to conduct online survival analysis on genes of interest using 

publicly available data (Goswami and Nakshatri, 2014). 

For a molecular biomarker to be considered as a clinical test, the marker must demonstrate 

clinical magnitude of benefit, feasibility of clinical implementation and low costs. This 

incorporation of any clinical frameworks can be technically possible in various web-based 
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tools of genomic survival analysis by engaging disease domain experts in their development 

(Chen et al., 2014). 

Gene expression profiles are routinely applied to identify diagnostic and predictive 

biomarkers or novel targets for cancer and a few predictive markers identified in silico have 

also been validated for clinical, functional or mechanistic relevance in disease progression 

(Alinezhad et al., 2016). 

Several clinical features of prostate cancer including tumour stage, degree of tumour cell 

differentiation or Gleason score (GS) and the serum PSA are used in routine clinical practice 

to separate men into groups at low, intermediate, and high risk for tumour recurrence 

following local therapy (Singh et al., 2002). Majority of patients who undergo prostatectomy 

have low to intermediate risk clinical features and determining the prognosis for these 

patients remains difficult. Attempts to explore genetic correlates of tumour behaviour have 

found alterations in a number of candidate genes associated with prostate cancer progression 

and no single gene has been shown to have sufficient prognostic utility to warrant clinical 

implementation (Singh et al., 2002).  

To further examine the genes that were identified as possible novel biomarkers for prostate 

cancer by bioinformatics analysis, survival analysis methodologies have been adapted to the 

analysis of genomics data to link molecular information with clinical outcomes of interest 

especially prognosis. Genes recognized as being potential biomarkers for prostate cancer 

were evaluated to assess their relationship to prognosis of this disease. 

Validation studies provide conclusion about the expression of the candidate genes by using 

further bioinformatics tools. Uniting several databases enhances more accurate estimates of 

biomarkers for cancer diagnosis and prognosis. For the analysis of the candidate biomarkers 
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identified in Chapter 2, for prognostic value, several databases have been used to validate the 

six candidate genes in this study. 

4.2. SurvExpress® 

SurvExpress is a cancer-wide gene expression web-based database with clinical outcomes 

and a tool that provides survival analysis, risk assessment of cancer datasets and validations 

of survival biomarkers for cancer outcomes (Aguirre-Gamboa et al., 2013). It is a cancer 

database containing more than 20,000 samples and 130 datasets with censored clinical 

information covering tumours over 20 tissues. SurvExpress is the largest, most versatile, and 

quickest free tool available. SurvExpress can be accessed at 

http://bioinformatica.mty.itesm.mx/SurvExpress using a biomarker gene list as input 

(Aguirre-Gamboa et al., 2013). 

4.3. PROGgene 

PROGgene is a web accessible tool available at www.compbio.iupui.edu/proggene for 

researchers to identify potential prognostic biomarkers. It is useful in accelerating biomarker 

discovery in cancer and quickly providing results that may indicate disease-specific 

prognostic value of specific biomarkers. It has compiled data from public repositories such as 

Gene Expression Omnibus (GEO), European Bioinformatics Institute (EBI) Array Express 

and The Cancer Genome Atlas (Goswami and Nakshatri, 2013).  The database can be used to 

create prognostic (Kaplan-Meier, KM) plots for mRNAs and genes of interest using data in 

different cancers. A total of 64 datasets from 18 cancer types make this tool the most 

comprehensive prognostic biomarker identification tool to date and is primarily a hypothesis 

generation tool, which is meant to provide pursuable gene biomarkers in cancers of choice 

(Goswami and Nakshatri, 2013). 
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4.4. PrognoScan 

PrognoScan can be used for assessing the biological relationship between gene expression 

and prognosis. The database is publicly accessible at 

http://gibk21.bse.kyutech.ac.jp/PrognoScan/index.html. It is used to evaluate potential 

tumour markers and therapeutic targets and would accelerate cancer research. Cancer 

microarray datasets with clinical annotation were collected from the public domain including 

Gene Expression Omnibus (GEO) and individual laboratory web sites (Mizuno et al., 2009). 

The collection includes more than 40 datasets of various cancer types. The probe annotations 

were retrieved from GEO and ArrayExpress which was mapped to an Entrez Gene ID by 

querying the accompanied public identifier in UniGene database (Mizuno et al., 2009). 

PrognoScan employs the minimum p-value approach for grouping patients for survival 

analysis that finds the optimal cut-point in continuous gene expression measurements 

(Mizuno et al., 2009). Patients are divided into two (high and low) expression groups and the 

risk differences of the two groups are estimated by log-rank test. The optimal cut-point that 

gives the most pronounced pvalue (Pmin) is selected and conducts multiple correlated testing, 

p-value correction is conducted to control the error rate (Mizuno et al., 2009). 

4.5. Kaplan-Meier plots used as survival curves for prognostic value 

Kaplan-Meier plots using the Kaplan-Meier method were used to construct survival curves. 

The method, called the Kaplan-Meier estimator (also known as the product limit estimator), 

is based on a mathematical formula using information from those who have died and those 

who have survived to estimate the proportion of patients survived at any point during a study.  

The estimator is plotted over time. It computes the probabilities of occurrence of an event at a 

certain point in time. The resulting curve is called the Kaplan-Meier curve, which is a series 

of horizontal steps of declining magnitude that, when a large enough sample is taken, 
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approaches the true survival function for that population (Goel et al., 2010, Kaplan and 

Meier, 1958). The Kaplan-Meier approach estimates the survival curve in the presence of 

censored observations. Censoring means the total survival time for that subject cannot be 

accurately determined (Rich et al., 2010). 

Most survival analyses in cancer journals use some or all of Kaplan-Meier (KM) plots, log 

rank tests, and Cox (proportional hazards) regression (Clark et al., 2003). The main outcome 

under assessment is the time to an event of interest being the survival time, the time from 

complete remission to relapse or progression as equally as to the time from diagnosis to 

death. 

In each of the 3 gene expression databases used, KM plots were used to construct survival 

curves for the candidate prostate cancer biomarkers identified by this study due to the fact 

that the Kaplan-Meier method takes into account censored data, giving an estimate of 

recovery rates, probability of death, measurement of multiple variables to determine 

correlation of events. 

4.6. Aim 

The aim of this chapter is to evaluate the six identified candidate genes from Chapter 2, as 

prognostic and/or predictive biomarkers using various bioinformatics databases.  

4.7. Materials and Methods 

4.7.1. SurvExpress for the validation of prognostic biomarkers 

The list consisting of the 6 identified potential prostate cancer biomarkers were submitted to 

SurvExpress (http://bioinformatica.mty.itesm.mx/SurvExpress) homepage for validation as 

possible prognostic markers. The six genes (ERP44, GP1BA, IFNG, SEPT2, TNFRSF13C, 
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tissue type.  The default settings were used for 

probe sets/records will be a -Normalized)]. 

The genes were then analysed using four different datasets. For this study, there were eight 

Prostate datasets available and four datasets were selected with the most number of samples 

and relevant clinical data; (a) Taylor MSKCC with 140 samples and clinical data of 

recurrence, Gleason score and stage, (b) Sboner Rubin GSE16560 with 281 samples and 

clinical data of Gleason score, (c) Kollmeyer-Jenkins Prostate GSE10645-GPL5858 with 596 

samples and clinical data of Survival, Age, PSA, Stage, Grade (d) PRAD-TCGA with 497 

samples and clinical data of survival.   

Search criteria analysis was performed according to the parameters in table 4.1. The rest of 

the parameters were left as default. The results generated, after the specification 

of parameters, showed Kaplan-Meier curves, plots and tables. Results were looked at as a 

panel and individually to identify prognostic or predictive biomarkers in prostate cancer from 

the list of putative biomarkers identified.  

Table 4.1: Search criteria for the four datasets used in SurvExpress 

Dataset  Censored Stratification 

Taylor MSKCC Recurrence_months Death 

Sboner Rubin GSE16560 Survival_month Outcome 

Kollmeyer-Jenkins 

GSE10645-GPL5858 

Survival_after_RRP Prostate.cancer.specific.death 

PRAD-TCGA Survival_days No stratification 
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4.7.2. Prognostic value of the candidate biomarkers using PROGgene 

The six candidate 

provided and cancer type selected was 

value as bifurcating point allowed samples to be divided into High and Low gene expression 

 Molecular Sampling of 

 data for only two out of 

the six genes found: GP1BA and TNFSF4. Kaplan-Meier plots were created as the results 

output for both genes.   

4.7.3. Analysis of the biological relationship between gene expression and prognosis 

within the PrognoScan database. 

The multiple genes were entered in the gene identifier space provided and submitted. This 

type, subtype, endpoint, cohort, contributor, array type; probe ID, number of patients, optimal 

cutpoint, p-value (Pmin and Pcor). A statistically significant value of Pcor is given in red 

font. Each dataset has a link to the public domain where the raw data is archived (Mizuno et 

al ort of the individual gene 

which indicated further annotations for the dataset. 

The following plots where used to describe the prognostic value of each gene found in the 

PrognoScan databases (See figures 4.6, 4.7 and 4.8) (i) Expression plot showing patients 

ordered by the expression values of the given gene; the X-axis represents the accumulative 

number of patients and the Y-axis represents the expression value. Straight lines (cyan) show 

the optimal cut points that dichotomize patients into high (red) and low (blue) expression 

groups. (ii) Expression histogram resulting in the distribution of the expression value is 
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presented where the X-axis represents the number of patients and the Y-axis represents the 

expression value on the same scale as the expression plot. The line of the optimal cutpoint is 

also shown (cyan). (iii) P-value plot for each potential cut point of expression measurement; 

the X-axis represents the accumulative number of patients on the same scale as the expression 

plot and the Y-axis represents raw P-values on a log scale. The cut point to minimize the P-

value is determined and indicated by the cyan line. The grey line indicates the 5% 

significance level and (iv) Kaplan-Meier plot displays survival curves for high (red) and low 

(blue) expression groups at the optimal cut point are plotted; the X-axis represents time and 

the Y-axis represents survival rate. 95% confidence intervals for each group are also 

indicated by dotted lines (Mizuno et al., 2009). 

4.8. Results and Discussion 

4.8.1. Analysis of the six biomarkers as a panel using SurvExpress 

SurvExpress, an online biomarker validation tool and database, was used to explore the 

patient survival outcome in relation to the expression of the candidate biomarkers for prostate 

cancer. 

(A)                                                                        (B) 
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(C)                                                                       (D) 

 

Figure 4.1: Kaplan-Meier curves and performance of the six candidate biomarker panel 

in four datasets by SurvExpress: (A) Survival by month on Sboner Rubin prostate cancer 

dataset (B) Survival after Radical retropubic prostatectomy (RRP) on Kollmeyer Jerkins 

prostate cancer dataset (C) Recurrence on Taylor prostate cancer dataset and (D) Survival by 

days on Prostate adenocarcinoma (PRAD) - June 2016 dataset (refer to sections 4.2, 4.3, 4.4 

and 4.5 for patient data comparison of graphs in each database). 

The Sboner Rubin (Fig. 4.1A), Kollmeyer-Jenkins (Fig. 4.1B) and PRAD (Fig.4.1D) datasets 

demonstrated association of the biomarkers with patient survival. Taylor dataset also 

indicates clear association with disease recurrence (Fig. 4.1C). Analysis on PRAD data sets 

indicates that the genes are significantly associated with Prostate adenocarcinoma survival 

(Fig. 4.1D). The results of Kaplan Meier (KM) plots for the four authors are summarized in 

Figure 4.1. 

4.8.1.1. Dataset: Taylor MSKCC Prostate 

Resulting in one gene not found SEPT2 and the rest of the 5 genes as seen in the Kaplan-

Meier survival curve showed highly significant differences between low and high expression 

of this gene panel in the probability that prostate cancer patients display recurrence of 

disease.  
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4.8.1.2. Dataset: Sboner Rubin GSE16560 

Results for 4 genes out of the 6 were not found (ERP44, SEPT2, TNFRSF13C, and IFNG) 

using this tool. As a panel of genes in this dataset, 2 genes: TNFSF4 and GP1BA were found 

but showed only slight prognostic value to the end of the study where patients highly 

expressing these genes (red) show poor prognosis compared to patients with low expression 

of these biomarkers. Biomarkers when combined could significantly predict the prognostic 

outcome of prostate cancer based on the difference in outcome between the higher and the 

lower expression of these genes (as shown in figure 4.1). 

4.8.1.3. Dataset: Kollmeyer-Jenkins Prostate GSE10645-GPL5858 

Results showed 5 genes not found: ERP44, GP1BA, SEPT2, TNFRSF13C, and TNFSF4, 

with only 1 gene (IFNG) found in this dataset, showing that after radical retropubic 

prostatectomy patients survives resulting in no prognostic value of this gene.  

4.8.1.4. Dataset: PRAD - TCGA - Prostate adenocarcinoma  

Although all genes were found in this dataset, the expression of genes resulted in no 

differential expression in low and high risk patients, which estimated the probability of 

survival in days with censoring occurring at the start of the study, giving an indication that 

the genes present poor prognostic value for prostate cancer. 
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Table 4.2: Result of survival analysis showing the significant genes based on p-

0.05) using SurvExpress 

 Summary Result 
Biomarker ERP44, GP1BA, IFNG, SEPT2, TNFRSF13C, TNFSF4  
Database Prostate - PRAD - TCGA - Prostate adenocarcinoma June 2016  
Genes 6  
CI 0.694142  
Log.Rank 0.2469253  
Hazard.Ratio 2.191466  
C.I.Hazard.Ratio [0.561838339122112 - 8.54787633194716]  
pHR 0.2585771  
Correlation 0.006903972  
Significant.Genes 1  
Marginal.Genes 1  
Cox.Interesting GP1BA  
DEG 4  
DEG.Interesting GP1BA, IFNG, SEPT2, TNFSF4  

Notes Hazard Ratio was estimated by fitting a CoxPH using risk group as 
covariate. 

 

From the results seen, one gene out of the six on the dataset PRAD-TCGA Prostate 

adenocarcinoma showed promise as a good distinguishable prognostic markers based on the 

p-value (p < 0.05), GP1BA was significantly expressed with a p-value= 0.0350104. 

This result shows that in different datasets some genes are significant whereas that same 

genes are not significant in another dataset and this reason can be explained in a study that 

showed that the performance of biomarkers may differ in different populations, based on 

clinical information, probes per gene, the gene expression technology and the conditions used 

(Aguirre-Gamboa et al., 2013). 
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4.8.2. Analysis of the six biomarkers individually using SurvExpress 

As individual genes, the six candidate genes in SurvExpress generated little or no prognostic 

value, compared to the genes used as a panel; with certain genes showing no data within the 

dataset (see Figures 4.2, 4.3 and 4.4). 

4.8.2.1. Dataset: Taylor MSKCC Prostate 
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Figure 4.2: Kaplan-Meier curves and performance of the individual candidate 

biomarkers in dataset Taylor prostate cancer data by SurvExpress 

In this dataset, there is a good prognostic value for recurrence of disease in the beginning 

stages of the study for gene GP1BA based on the significant p-

statistically significant).  The rest of the genes found in this dataset, based on recurrence of 

disease, showed no prognostic value.  

4.8.2.2. Dataset: Sboner Rubin GSE16560 

                         GP1BA                  TNFSF4  

 

Figure 4.3: Kaplan-Meier curves and performance of the individual candidate 

biomarkers in dataset Sboner Rubin prostate cancer by SurvExpress 
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Displaying only the two genes found in this dataset, both genes again resulted in no 

significant prognostic value, to the end of the study in patients expressing these genes. 

4.8.2.3. Dataset: Kollmeyer-Jenkins Prostate GSE10645-GPL5858 

For gene, IFNG in this dataset (only 1 gene found)  the output showed the same results as 

the panel of genes as seen in figure 4.1B.  

4.8.2.4. Dataset: PRAD - TCGA - Prostate adenocarcinoma  
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Figure 4.4: Kaplan-Meier curves and performance of the individual candidate 

biomarkers in dataset PRAD - TCGA - Prostate adenocarcinoma June 2016 by 

SurvExpress 

From the survival curves of this dataset (Figure 4.2), the 5 genes found did not show 

significant value in predicting the disease outcome in relation to prostate adenocarcinoma. 

4.8.3. Determining the prognostic value the of candidate biomarkers within the 

PROGgene database 

To further determine the prognostic value of the individual biomarker candidates in overall 

survival of prostate cancer, the PROGgene database was used. Using this software the 

outcome was individual gene results with no gene panels looked at for the six candidate 

genes. The same dataset GSE16560 as in SurvExpress was used in PROGgene, with only 

slight variations in the survival curves (comparison of figure 4.3) but the outcome being the 

same. During this study of dataset GSE16560, all patients with the expression of these genes, 

whether low or highly expressed, resulted in no prognostic value for prostate cancer.  
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Figure 4.5: Kaplan-Meier plot for genes GP1BA and TNFSF4 in GSE16560 dataset by 

PROGgene 

4.8.4. Expression analysis and prognostic value of candidate genes using PrognoScan 

The prognostic value of the six candidate biomarkers was also determined using the 

PrognoScan database and the results represented with expression plots, expression 

histograms, P-value plots and Kaplan-Meier plots (survival curves). Again, not all genes were 

found in this database, with the following three genes: SEPT2, GP1BA (see appendix D) and 

TNFSF4 (See appendix E) and only one gene, SEPT2 (figure 4.6), showed possible 

prognostic value. The probability of survival with this gene highly expressed is significant in 

the early stages of the disease, showing possibility as a good prognostic biomarker at that 

stage. There is differential expression between the low and high expression during this stage 

for SEPT2. See table 4.3 displaying a significant p-value for this gene.  
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Figure 4.6: Expression plot, Expression histogram, P-value plot and Kaplan-Meier plots 

for high and low SEPT2 -expressing groups in prostate cancer 
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Table 4.3: PrognoScan SEPT2 gene result-­‐Statistically significant gene with corrected p-

value= 0.026191 

DATA  POSTPROCESSING   None  
PROBE_NAME   DAP1_0256  [6K  DASL]  
PROBE_DESCRIPTION   septin  2  
GENE_SYMBOL   SEPT2  
GENE_DESCRIPTION   septin  2  
DATASET   GSE16560  
CANCER_TYPE   Prostate  cancer  
SUBTYPE       
N   281  
ENDPOINT   Overall  Survival  
PERIOD   Months  
COHORT   Sweden  (1977-­‐1999)  
ARRAY  TYPE   6K  DASL  
CONTRIBUTOR   Sboner  
SAMPLE  PREPARATION   DASL  
CUTPOINT   0.84  
MINIMUM  P-­‐VALUE   0.001033  
CORRECTED  P-­‐VALUE   0.026191  
ln(HRhigh  /  HRlow)   0.59  
COX  P-­‐VALUE   0.254584  
ln(HR)   0.22  
HR  [95%  CI]   1.25  [0.85  -­‐  1.83]  

 

4.9. Conclusion 

Despite the introduction of PSA screening, the mortality from prostate cancer has remained 

relatively high. Although the benefits of PSA screening are widely debated, this serum 

marker remains one of only a few preoperative parameters of prognostic utility (Henshall et 

al., 2003). In silico biomarker validation could be a substantially more cost-effective strategy 

for biomarker development, which typically requires costly and lengthy processes. Survival 

analysis tools and resources, clinically deployed genome-based biomarkers are still scarce, 

highlighting the unresolved challenges in biomarker development from genomic studies 

(Chen et al., 2014). 
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Novel and clinical markers for prostate cancer diagnosis, prognosis, and prediction is 

essential to the optimal identification and treatment of this disease and to bring potential 

biomarkers from the laboratory environment into clinical use at the patient bedside requires a 

comprehensive pursuit and rigorous analysis (Tricoli et al., 2004). 

The prognostic gene signatures related to patient outcome such as survival time and tumour 

stage must be genes that are important in tumour development and progression (Li et al., 

2015). 

Larger patient cohorts are needed for prostate cancer, as compared to other cancers such as 

breast cancer, for data outcomes not to be ambiguous (Sutcliffeet al., 2009). This was evident 

in the comparison of the PROGgene and SurvExpress results of GSE16560 dataset. A 

limitation is that the cohort was not big enough therefore the genes were difficult to assess for 

prognosis for prostate cancer patients in general.  

Although, the results of the SurvExpress analysis revealed gene expression differences that 

were not significantly sufficient to be distinguished as strong prognostic biomarkers, one 

marker, GP1BA did stand out, supporting its prognostic value based on the statistical p-value.   

Another gene, from the Prognoscan database SEPT2 shows promise in that has some 

prognostic value in the early stages of the disease. 

This study provides some promising evidence that bioinformatics data mining can be a highly 

beneficial means to identify novel biomarkers, although combined with clinical biomarker 

validation by qRT-PCR, using a molecular approach and functional evaluation of candidate 

genes, it can be considered for a detailed follow-up study on selected candidates in the near 

future. 
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Chapter 5 

General Discussion and Summary 

5.1 General discussion 

The measurement of serum PSA is currently the most useful biomarker to aid in earlier 

detection of prostate cancer and is performed on millions of men worldwide. Urgently needed 

in the study of disease is the development of biomarkers that can detect curable disease 

earlier and not detect advanced disease better (Petricoin et al., 2004). 

miRNAs are important regulators of biologic processes in prostate cancer progression and in 

recent years, much effort has been invested in improving patient care by substituting 

procedures such as DRE or prostate biopsy with miRNA analysis in patient serum or plasma. 

In prostate cancer, diagnosis and follow-up monitoring after therapies are some of the major 

challenges for its clinical management. Patients undergo repetitive biopsies, being invasive 

and not decisive, even if coupled with PSA and digital rectal examination (DRE) (Fabris et 

al., 2016). Although several markers have reasonable operating characteristics, no individual 

marker is ideal and therefore it is possible that a combination of biomarkers may provide 

better predictive value (Makarov et al., 2009).  

There are several molecular events that are believed to occur in a large percentage of prostate 

carcinomas such as down-regulation of the NKX3.1 homeobox gene represents a frequent 

and critical event in prostate cancer initiation and is likely to involve multiple mechanisms. 

Studies have suggested a role for MYC overexpression in prostate cancer initiation as nuclear 

MYC protein is up-regulated in many PIN lesions and the majority of carcinomas (Shen and 

Abate-Shen, 2010). PTEN was originally identified as a tumour suppressor that is frequently 

mutated or deleted in prostate cancer. miRNAs have specific roles in regulation of critical 

target genes, as the cluster miR-106b-25 negatively regulates PTEN expression. Suitable 
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combinations of markers may be successful in cumulatively predicting outcomes, as enabled 

by new technologies such as molecular systems pathology (Shen and Abate-Shen, 2010).  

Throughout prostate development and maturation, genes such as nkx3.1, FOXA1 and AR 

function to mediate gland formation and cellular differentiation. Activation of developmental 

genes within differentiated prostate epithelium can promote hyperplastic proliferation and/or 

progression of prostate cancer. Many of detected mutations still require validation to 

determine if there is any functional consequence and it represents the current paradigm shift 

from single molecule research to genome-wide analysis (Schrecengost and Knudsen, 2013). 

Despite extensive research efforts, very few biomarkers of prostate cancer have been 

successfully implemented into clinical practice today. Biomarkers for prostate cancer should 

be addressed to distinguish BPH from prostate cancer, to detect the aggressive forms from the 

indolent cases, and to identify metastatic cancer predictors (Tefekli and Tunc, 2013).  

5.2. Summary 

Chapter 2 

In chapter 2, the 13 miRNAs that were identified as potential prostate cancer miRNA targets 

and their 21 target genes were generated and shown to be related to prostate cancer (Khan, 

PhD thesis, 2015) were expanded on by identifying their co-expressed genes using the 

STRING database and a total of 300 additional genes/proteins were identified and extracted.  

The gene list was then refined and duplicates were eliminated, resulting in a total of 231 

genes from the STRING database   as possible potential biomarkers for early diagnosis of 

prostate cancer.  Cell surface gene products were identified using the GO database with the 

231 genes identified in STRING generating a number of mapped identifications of 26 genes 

in relation to their expression on the cell surface with a P value of <0.05. A confirmation of 

the generated gene list by functional annotation clustering in DAVID database  resulted in 20 
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clusters that were queried using the GO terms: cell surface, regulation of cell death, 

regulation of cell proliferation,  apoptosis and  cell cycle process and in turn also resulted in 

the same 26 genes as GO, which then was used in the TiGER and GeneHub-GEPIS databases 

known for tissue specific enriched genes and expression analysis. These databases were used 

to eliminate genes already experimentally linked to prostate cancer.  

Literature mining: PubMed and Google Scholar were used, in order to obtain genes of greater 

relevance to be validated as novel biomarkers for prostate cancer.  The final candidate gene 

list was narrowed down to the following 6 genes:   ERP44, GP1BA, IFNG, SEPT2, 

TNFRSF13C and TNFSF4 for prostate cancer and would be easily detectable in bodily fluids 

since the GO analysis of these genes is enriched for cell surface expression.  

Chapter 3  

The 6 genes identified in silico (Chapter 2) were associated with TFs and pathways in 

Chapter 3. The TFs were identified using GeneCards and were annotated to confirm 

regulatory control in cancer processes and specifically prostate cancer.  44 TFs were found to 

be associated to the candidate genes and 15 of these TFs showed no experimental information 

about the genes they regulate and any direct links to prostate cancer.   Identification of 

Pathways in the KEGG database were linked to the TFs that target the promoter regions of 

the candidate genes involved in prostate cancer and resulted in various TFs with some links 

to cancer however only 4 (NKX3.1, p53, E2F and CREB), showed association to the Prostate 

Cancer pathway. CREB, E2F, Nkx3-1 and p53 TFs were discovered to be linked to the genes 

IFNG, GP1BA, SEPT2 and TNFRSF13C respectively therefore showing that these genes can 

be assessed as potential biomarkers for prostate cancer. 
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Chapter 4  

In this chapter, the six identified candidate genes from Chapter 2 were evaluated as 

prognostic and/or predictive biomarkers using SurvExpress as a panel as well as individually.  

The genes were analysed using four different datasets.  One gene out of the six, GP1BA was 

significantly expressed, on the dataset PRAD-TCGA Prostate adenocarcinoma and showed 

promise as a good distinguishable prognostic marker based on the p-value (p < 0.05). As 

individual genes, the six candidate genes in SurvExpress generated little or no prognostic 

value, compared to the genes used as a panel; with certain genes showing no data within the 

dataset.    The prognostic value of the candidate biomarkers using PROGgene database  

allowed samples to be divided into High and Low gene expression groups resulted in no 

prognostic value for prostate cancer. Expression analysis and prognostic value of candidate 

genes using PrognoScan showed one gene, SEPT2 with differential expression significant at 

early stages of the disease being  possibility a good prognostic biomarker.  

5.3. Future Work for this study 

This study provides some promising evidence that bioinformatics data mining can be a highly 

beneficial means to identify novel biomarkers, although combined with clinical biomarker 

validation by qRT-PCR, using a molecular approach and functional evaluation of candidate 

genes, it can be considered for a detailed follow-up study on selected candidates in the near 

future to evaluate their roles in disease initiation and progression of prostate cancer using cell 

lines as well as patient samples. 

Large scale protein interactions and miRNA target prediction data were used in this study and 

future directions for this work could use additional protein interaction networks, different 

miRNA target prediction algorithms and different expression data sets to reveal more miRNA 

regulated genes in prostate cancer as diagnostic biomarkers.  
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The 6 genes of interest identified (Chapter 2) would require validation at a molecular level. 

Various types of assays can be used in the biomarker method validation process and range 

from the relatively low technology end such as immunohistochemistry (IHC) to 

immunoassays to the high technology end including platforms for genomics, proteomics and 

multiplex ligand-binding assays.   A genomics approach such as gene expression analysis 

microarrays has become the standard technology used for target identification and validation. 

Immunoassays are routinely used for protein biomarker assessments due to its 

straightforward clinical application and translation into a potential diagnostic assay. The 

analytical platforms used are based on nuclear magnetic resonance spectroscopy and the 

combination of liquid chromatography with mass spectroscopy.   Molecular and functional 

imaging technologies are used to assess cell proliferation and apoptosis, cellular metabolism, 

angiogenesis and vascular dynamics. The right choice of assay is an important first step to 

successful biomarker method validation (Chau et al., 2008). 

5.4. Future perspectives 

Future research should focus on validation of already existing biomarkers and the discovery 

of new markers to identify men with aggressive prostate cancer, PSA is not specific for 

prostate cancer and serum levels are elevated in common benign diseases (Makarov et al., 

2009).  

The future biomarker studies for prostate cancer should focus on biomarker candidates that 

address the current gaps in biomarker development, including prognostic and predictive 

biomarkers. One approach to identifying predictive biomarkers is to focus on genomic 

disease signatures, which influence the biological characteristics of an individual cancer 

(Prensner et al., 2012).  
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Challenges for future studies will be to integrate epidemiological studies with molecular 

investigations and clinical analyses to gain fundamental insights into how environmental, 

dietary, and lifestyle influences contribute to the development of prostate cancer, much work 

remains to be done to enhance the overall rate of prostate cancer survival.  

High‑throughput technology methods and advances in molecular biology are helping and 

accelerating the exploration to useful biomarkers. Future studies are needed to reconfirm the 

features of the existing biomarkers and further discover novel potential ones to better predict 

the presence of the disease (Qu et al., 2014). 

With the emergence of novel high throughput omics-based technologies, there is a need for 

better in silico computational and bioinformatics tools to improve clinical inferences drawn 

from huge databases (Adeola et al., 2016). The ideal biomarker should be economical, 

consistent, non-invasive, easily accessible, and quickly quantifiable. A drawback of the PSA 

test has resulted in a concerted effort to develop replacement-screening tools for prostate 

cancer. It will be a challenge to replace PSA entirely due to its minimally invasive nature and 

low cost but there is a pressing need to complement PSA with biomarkers that can increase 

the specificity and sensitivity of a screen. A panel of diagnostic and prognostic biomarkers 

that will work in conjunction with PSA will be ideal (Velonas et al., 2013).  

Also, prognostic markers are particularly important at the time of initial diagnosis of prostate 

cancer since it varies widely in patient outcome. No prognostic marker can accurately predict 

outcome for an individual patient, it provides a probability estimate of outcome for a 

heterogeneous population of patients. Prognostic markers may be crucial to reduce 

overtreatment of patients with indolent malignancy and so minimizing the side effects of 

adjuvant systemic therapies, and to avoid under treatment of patients with aggressive and life-

threatening malignancy, which would be recommended in receiving the most appropriate 
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local and systemic therapy.  Tumour biomarkers might be useful for risk assessment, 

screening for early cancer detection, diagnosis, prognosis, selection and monitoring of 

anticancer therapy (Mordente et al., 2015). 
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  APPENDICES 

Appendix A: Genes found within the Prostate cancer Pathway (Extracted from the KEGG 

Pathway database) 

CDKN1B; cyclin dependent kinase inhibitor 1B  

CDK2; cyclin dependent kinase 2  

CCNE1; cyclin E1  

CCNE2; cyclin E2  

RB1; RB transcriptional corepressor 1  

E2F1; E2F transcription factor 1  

E2F2; E2F transcription factor 2  

E2F3; E2F transcription factor 3  

INS; insulin  

PDGFA; platelet derived growth factor subunit A  

PDGFB; platelet derived growth factor subunit B  

PDGFC; platelet derived growth factor C  

PDGFD; platelet derived growth factor D  

EGF; epidermal growth factor  

TGFA; transforming growth factor alpha  

IGF1; insulin like growth factor 1  

INSRR; insulin receptor related receptor  

PDGFRA; platelet derived growth factor receptor alpha  

PDGFRB; platelet derived growth factor receptor beta  

 

 

 

 

http://www.genome.jp/dbget-bin/www_bget?ko:K06624
http://www.genome.jp/dbget-bin/www_bget?ko:K06626
http://www.genome.jp/dbget-bin/www_bget?ko:K06626
http://www.genome.jp/dbget-bin/www_bget?ko:K06618
http://www.genome.jp/dbget-bin/www_bget?ko:K17454
http://www.genome.jp/dbget-bin/www_bget?ko:K09389
http://www.genome.jp/dbget-bin/www_bget?ko:K06620
http://www.genome.jp/dbget-bin/www_bget?ko:K04526
http://www.genome.jp/dbget-bin/www_bget?ko:K04359
http://www.genome.jp/dbget-bin/www_bget?ko:K17386
http://www.genome.jp/dbget-bin/www_bget?ko:K05450
http://www.genome.jp/dbget-bin/www_bget?ko:K05450
http://www.genome.jp/dbget-bin/www_bget?ko:K04357
http://www.genome.jp/dbget-bin/www_bget?ko:K08774
http://www.genome.jp/dbget-bin/www_bget?ko:K05459
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FGFR1; fibroblast growth factor receptor 1  

FGFR2; fibroblast growth factor receptor 2 

EGFR; epidermal growth factor receptor  

ERBB2; erb-b2 receptor tyrosine kinase 2 

IGF1R; insulin like growth factor 1 receptor  

PIK3CA; phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha  
PIK3CD; phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit delta  
PIK3CB; phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit beta  
PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit gamma  
PIK3R1; phosphoinositide-3-kinase regulatory subunit 1  

PIK3R5; phosphoinositide-3-kinase regulatory subunit 5  

PIK3R2; phosphoinositide-3-kinase regulatory subunit 2  

PIK3R3; phosphoinositide-3-kinase regulatory subunit 3  

PTEN; phosphatase and tensin homolog  

PDPK1; 3-phosphoinositide dependent protein kinase 1  

NKX3-1; NK3 homeobox 1  

AKT1; AKT serine/threonine kinase 1 

AKT2; AKT serine/threonine kinase 2  

AKT3; AKT serine/threonine kinase 3  

CASP9; caspase 9  

BAD; BCL2 associated agonist of cell death  

FOXO1; forkhead box O1  

 

 

 

 

http://www.genome.jp/dbget-bin/www_bget?ko:K02649
http://www.genome.jp/dbget-bin/www_bget?ko:K02649
http://www.genome.jp/dbget-bin/www_bget?ko:K02649
http://www.genome.jp/dbget-bin/www_bget?ko:K02649
http://www.genome.jp/dbget-bin/www_bget?ko:K09348
http://www.genome.jp/dbget-bin/www_bget?ko:K02158
http://www.genome.jp/dbget-bin/www_bget?ko:K07201
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CDKN1A; cyclin dependent kinase inhibitor 1A  

MDM2; MDM2 proto-oncogene  

TP53; tumor protein p53  

GSK3B; glycogen synthase kinase 3 beta  

CREB1; cAMP responsive element binding protein 1  

ATF4; activating transcription factor 4  
33 
 
 
CREB3; cAMP responsive element binding protein 3  

CREB3L1; cAMP responsive element binding protein 3 
like 1  
CREB3L2; cAMP responsive element binding protein 3 
like 2  
CREB3L3; cAMP responsive element binding protein 3 
like 3  
CREB3L4; cAMP responsive element binding protein 3 
like 4  
CREB5; cAMP responsive element binding protein 5  

CTNNB1; catenin beta 1  

CREBBP; CREB binding protein  

EP300; E1A binding protein p300  

TCF7; transcription factor 7 (T-cell specific, HMG-box)  

TCF7L1; transcription factor 7 like 1 

TCF7L2; transcription factor 7 like 2  

LEF1; lymphoid enhancer binding factor 1  

CCND1; cyclin D1 

CHUK; conserved helix-loop-helix ubiquitous kinase  

IKBKB; inhibitor of kappa light polypeptide gene 
enhancer in B-cells, kinase beta  

 

 

 

 

http://www.genome.jp/dbget-bin/www_bget?ko:K06625
http://www.genome.jp/dbget-bin/www_bget?ko:K04451
http://www.genome.jp/dbget-bin/www_bget?ko:K05870
http://www.genome.jp/dbget-bin/www_bget?ko:K04374
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09048
http://www.genome.jp/dbget-bin/www_bget?ko:K09047
http://www.genome.jp/dbget-bin/www_bget?ko:K02105
http://www.genome.jp/dbget-bin/www_bget?ko:K02620
http://www.genome.jp/dbget-bin/www_bget?ko:K04490
http://www.genome.jp/dbget-bin/www_bget?ko:K04491
http://www.genome.jp/dbget-bin/www_bget?ko:K04492
http://www.genome.jp/dbget-bin/www_bget?ko:K04503
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IKBKG; inhibitor of kappa light polypeptide gene 
enhancer in B-cells, kinase gamma  
NFKBIA; NFKB inhibitor alpha  

NFKB1; nuclear factor kappa B subunit 1  

RELA; RELA proto-oncogene, NF-kB subunit  

BCL2; BCL2, apoptosis regulator  

MTOR; mechanistic target of rapamycin  

GRB2; growth factor receptor bound protein 2  

SOS1; SOS Ras/Rac guanine nucleotide exchange factor 1  

SOS2; SOS Ras/Rho guanine nucleotide exchange factor 
2  
HRAS; HRas proto-oncogene, GTPase  

KRAS; KRAS proto-oncogene, GTPase 

NRAS; neuroblastoma RAS viral oncogene homolog  

ARAF; A-Raf proto-oncogene, serine/threonine kinase  

BRAF; B-Raf proto-oncogene, serine/threonine kinase  

RAF1; Raf-1 proto-oncogene, serine/threonine kinase  

MAP2K1; mitogen-activated protein kinase kinase 1  

MAP2K2; mitogen-activated protein kinase kinase 2  

MAPK1; mitogen-activated protein kinase 1 

MAPK3; mitogen-activated protein kinase 3  

SRD5A2; steroid 5 alpha-reductase 2  

AR; androgen receptor  

HSP90AA1; heat shock protein 90 alpha family class A 
member 1  

 

 

 

 

http://www.genome.jp/dbget-bin/www_bget?ko:K07210
http://www.genome.jp/dbget-bin/www_bget?ko:K07210
http://www.genome.jp/dbget-bin/www_bget?ko:K04734
http://www.genome.jp/dbget-bin/www_bget?ko:K02580
http://www.genome.jp/dbget-bin/www_bget?ko:K04735
http://www.genome.jp/dbget-bin/www_bget?ko:K02161
http://www.genome.jp/dbget-bin/www_bget?ko:K04364
http://www.genome.jp/dbget-bin/www_bget?ko:K03099
http://www.genome.jp/dbget-bin/www_bget?ko:K03099
http://www.genome.jp/dbget-bin/www_bget?ko:K03099
http://www.genome.jp/dbget-bin/www_bget?ko:K02833
http://www.genome.jp/dbget-bin/www_bget?ko:K07827
http://www.genome.jp/dbget-bin/www_bget?ko:K07828
http://www.genome.jp/dbget-bin/www_bget?ko:K08557
http://www.genome.jp/dbget-bin/www_bget?ko:K04079
http://www.genome.jp/dbget-bin/www_bget?ko:K04079
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HSP90AB1; heat shock protein 90 alpha family class B 
member 1  
HSP90B1; heat shock protein 90 beta family member 1  

KLK3; kallikrein related peptidase 3  

GSTP1; glutathione S-transferase pi 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.genome.jp/dbget-bin/www_bget?ko:K04079
http://www.genome.jp/dbget-bin/www_bget?ko:K04079
http://www.genome.jp/dbget-bin/www_bget?ko:K09487
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Appendix B:  Apoptosis Pathway (Extracted from the KEGG Pathway database) 
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Appendix C: Pathways in Cancer (Extracted from the KEGG Pathway database) 
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Appendix D: Expression plot, Expression histogram, P-value plot and Kaplan-Meier plots 

for high and low GP1BA-expressing groups in prostate cancer. Expression analysis and 

prognostic value of GP1BA gene using PrognoScan database 
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Appendix E: Expression plot, Expression histogram, P-value plot and Kaplan-Meier plots 

for high and low TNFSF4-expressing groups in prostate cancer. Expression analysis and 

prognostic value of TNFSF4 gene using PrognoScan database 
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