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Abstract

Computational prediction of host-pathogen protein-protein in-

teractions

I.H.I Ahmed (Ibrahim)

Supervised machine learning approaches have been applied successfully to the prediction

of protein-protein interactions (PPIs) within a single organism, i.e., intra-species predic-

tions. However, because of the absence of large amounts of experimentally validated PPIs

data for training and testing, fewer studies have successfully applied these techniques

to host-pathogen PPI, i.e., inter-species comparisons. Among the host-pathogen stud-

ies, most of them have focused on human-virus interactions and specifically human-HIV

PPI data. Additional improvements to machine learning techniques and feature sets are

important to improve the classification accuracy for host-pathogen protein-protein inter-

actions prediction.

The primary aim of this bioinformatics thesis was to develop a binary classifier with

an appropriate feature set for host-pathogen protein-protein interaction prediction using

published human-Hepatitis C virus PPI, and to test the model on available host-pathogen

data for human-Bacillus anthracis PPI. Twelve different feature sets were compared to

find the optimal set.

The feature selection process reveals that our novel quadruple feature (a subsequence of

four consecutive amino acid) combined with sequence similarity and human interactome

network properties (such as degree, cluster coefficient, and betweenness centrality) were
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the best set. The optimal feature set outperformed those in the relevant published mate-

rial, giving 95.9% sensitivity, 91.6% specificity and 89.0% accuracy.

Using our optimal features set, we developed a neural network model to predict PPI be-

tween human-Mycobacterium tuberculosis. The strategy is to develop a model trained

with intra-species PPI data and extend it to inter-species prediction. However, the lack

of experimentally validated PPI data between human-Mycobacterium tuberculosis (M-

tuberculosis), leads us to first assess the feasibility of using validated intra-species PPI

data to build a model for inter-species PPI. In this model we used human intra-species

PPI combined with Bacillus anthracis intra-species data to develop a binary classification

model and extend the model for human-Bacillus anthracis inter-species prediction. Thus,

we test our hypotheses on known human-Bacillus anthracis PPI data and the result shows

good performance with 89.0% as average accuracy.

The same approach was extended to the prediction of PPI between human-Mycobacterium

tuberculosis. The predicted human-M-tuberculosis PPI data were further validated using

functional enrichment of experimentally verified secretory proteins in M-tuberculosis, cel-

lular compartment analysis and pathway enrichment analysis. Results show that five

of the M-tuberculosis secretory proteins within an infected host macrophage that corre-

spond to the mycobacterial virulent strain H37Rv were extracted from the human-M-

tuberculosis PPI dataset predicted by our model. Finally, a web server was created to

predict PPIs between human and Mycobacterium tuberculosis which is available online at

URL:http://hppredict.sanbi.ac.za.

In summary, the concepts, techniques and technologies developed as part of this thesis

have the potential to contribute not only to the understanding PPI analysis between hu-

man and Mycobacterium tuberculosis, but can be extended to other pathogens. Further

materials related to this study are available at ftp://ftp.sanbi.ac.za/machine learning.

Keywords: Machine learning, feature selection, web server, support vector machine, ar-

tificial neural network, Mycobacterium tuberculosis, Bacillus anthracis.
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Chapter 1

Introduction

The ability of cells to sense their surrounding environment and respond in an appropriate

manner is essential for the normal functioning of every living organism. Cells are con-

stantly exposed to numerous stimuli and respond accordingly. These correct responses are

based on numerous intracellular signaling networks that are mostly achieved by proteins.

Proteins are the building blocks that facilitate most biological processes in a cell, in-

cluding cell growth, proliferation, nutrient uptake, gene expression, morphology, inter

cellular communication, apoptosis and motility. A protein can be expected to work in

relative isolation, but the majority are expected to operate in accordance with other

proteins in complexes and networks to regulate a myriad of processes that impact on

cellular structure and function, (Herbert and Hethcote, 2000). Some of these processes

include cell-cycle control, differentiation, protein folding, signaling, transcription, trans-

lation, post-translational modification and transport. Most of these processes can be

achieved through protein-protein interactions (PPI).

Protein-protein interactions refer to physical contacts established between two or more

proteins as a results of biochemical events or electrostatic forces. Therefore, PPIs and

their associated networks are intrinsic to understanding cellular processes, such as enzy-

matic activity, immunological recognition, DNA repair, network pathway, signaling cas-

cades and transcription control. On the other hand, many human diseases can be traced

to aberrant protein-protein interactions (Sandeep et al., 2010), and include endogenous
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2 CHAPTER 1. INTRODUCTION

proteins (Moller and Hoal, 2010), proteins from pathogens or both (Schluger and Rom,

1998). However, unraveling physical interaction between two proteins is essential for un-

derstanding the mechanisms of protein recognition at the molecular level and to unravel

the global picture of protein interaction in the cell. Protein interactions are fundamentally

characterized as stable or transient, and both types of interactions can be either strong

or weak. Stable interactions are those associated with proteins that are multi-subunit

complexes, and the subunits of these complexes can be identical or different. Hemoglobin

and the core RNA polymerase are examples of multi-subunit interactions that form stable

complexes.

On the other hand, transient interactions are expected to control the majority of cellular

processes. As the name implies, transient interactions are temporary in nature and typ-

ically require a set of conditions that promote the interaction, such as phosphorylation,

conformational changes or localization to discrete areas of the cell. Transient interac-

tions can be classified as strong or weak, and fast or slow. While in contact with their

binding partners, transiently interacting proteins are involved in a wide range of cellular

processes, including protein modification, transport, folding, signaling, and cell cycling.

Therefore, a study of protein interaction networks is important not only from a theoret-

ical stance but also in terms of potential practical applications, because it might enable

new drugs to be developed that can specifically interrupt or modulate protein interactions.

Many experimental methods have been developed for identification of protein interactions.

Some of the experimental methods enable screening of a large number of proteins in a cell.

Such methods include yeast two-hybrid (Y2H), tandem affinity purification (TAP), mass

spectroscopy (MS), DNA and protein microarrays, synthetic lethality, and phage display.

Other methods focus on monitoring and characterizing specific biochemical and physio-

chemical properties of a protein complex. Despite this, a complete interaction network

for many organisms is not available. The low interaction coverage along with the exper-

imental biases toward certain protein types and cellular localizations reported by most

experimental techniques, call for the development of computational methods to predict

 

 

 

 



1.1. COMPARTMENTALIZATION OF PPI 3

whether two proteins interact. This include methods based on

(i) the co-localization of potentially interacting genes in the same gene clusters or protein

chains (gene cluster, gene neighborhood, and Rosetta stone methods),

(ii) co-evolution patterns in interacting proteins (sequence co-evolution methods), and

(iii) the co-expression of genes. Some methods find patterns of co-occurrences in inter-

acting proteins, protein domains, and phenotypes (phylogenetic profiles and synthetic

lethality methods), while others use the presence of sequence/structural motifs charac-

teristic only for interacting proteins (classification methods, association methods). These

methods can be very useful for choosing potential targets for experimental screening or for

validating experimental data and can provide information about interaction details, in the

case of domain prediction methods which might not be apparent from the experimental

techniques. However, these methods may not be generally applicable to all proteins in

all organisms, and may also be prone to systematic error. Recently, a number of com-

plementary computational approaches have been developed for the large-scale prediction

of protein-protein interactions based on protein sequence, structure and evolutionary re-

lationships in complete genomes. In the following sections, we report on experimental

approaches used for identification of protein-protein interaction, in addition to comple-

mentary computational methods for PPI predictions.

1.1 Compartmentalization of PPI

Proteinprotein interaction data are one of the most valuable sources for proteome-wide

analysis , especially to understand human diseases on the systems-level (Vidal et al, 2011)

and to help network-related drug design (Bulusu et al, 2014). However, These protein

interactomes in particular have been susceptible to questions about their biological mean-

ing. Interaction data often contain interactions, where the two interacting proteins have

no common subcellular localizations (Wiwatwattana and Kumar, 2005). These interac-

tions could be biophysically possible, but biologically unlikely (Levy et al, 2009). Thus,

these interactions cause data bias that leads to deteriorated reliability in interactome-

 

 

 

 



4 CHAPTER 1. INTRODUCTION

based studies, especially those involving subcellular localization-specific cellular processes

(Lee et al, 2014).

1.2 Experimental Methods for Detecting PPIs

Various experimental methods for detecting protein-protein interactions have been devel-

oped. This include techniques that enable screening of a large number of proteins in a

cell, such as yeast two-hybrid (Y2H) (Fields and Song, 1989), tandem affinity purification

(TAP) (Krogan et al., 2006), mass spectroscopy (MS), DNA and protein microarrays,

synthetic lethality (Ooi et al., 2006), and phage display (Mullaney and Pallavicini, 2001).

Other methods focus on monitoring and characterizing specific biochemical and physio-

chemical properties of a protein complex (Benjamin et al., 2007).

1.2.1 Yeast Two-Hybrid Assays

Yeast two-hybrid is based on the reconstitution of a functional transcription factor when

two proteins or polypeptides of interest interact. This takes place in genetically modified

yeast strains, in which the transcription of a reporter gene leads to a specific phenotype,

usually growth on a selective medium or change in the color of the yeast colonies. The

Y2H method is based on the fact that many eukaryotic transcription activators have

two different domains namely the DNA binding domain (DBD) that recognizes a specific

DNA sequence, and the activation domain (AD). The AD coordinates the assembly of

the elements required for transcription and enables RNA polymerase II to transcribe a

specific reporter gene downstream of the DBD domain. The transcription is inactivated

by splitting the DBD and AD, but transcription can be restored if a DNA-binding domain

physically interact with an activating domain (Benjamin et al., 2007). Using the yeast

two-hybrid system the protein of interest (X) is expressed as a fusion protein to the DBD

(DBD-X; also known as the bait protein) and the activation domain is fused to the second

protein of interest (Y), (AD-Y; also known as the prey protein). The AD-Y fusion vector

is introduced into a yeast strain containing the DBD-X fusion partner by transformation

 

 

 

 



1.2. EXPERIMENTAL METHODS FOR DETECTING PPIS 5

or mating. Only if proteins X and Y physically interact with one another are the DBD

and AD brought together to activate expression of the downstream reporter gene (Figure

1).

1.2.2 Affinity Purification-Mass Spectrometry

Affinity purification-mass Spectrometry (AP-MS) is a powerful method of studying novel

interactions. AP-MS experiments allow identification of PPIs in a complex. The method

involves biochemical isolation of protein complexes using an inherent interaction and sub-

sequent identification of their constituting proteins using mass Spectrometry (Kimet al.,

2010). In a AP-MS experiment, a protein of interest (bait) is firstly tagged and expressed

in vivo, then followed by the Immunoprecipitation of the bait plus its interacting partner

(preys). Lastly the preys are identified using mass spectrometry based on their mass-to-

charge ratios. The main challenge in AP-MS is identification of the real interactors from

the many positive bait prey combinations. An advantage of these methods is that several

members of a complex can be tagged simultaneously. However these techniques may miss

complexes that are not present under certain conditions.

1.2.3 Synthetic Lethal Screens

Synthetic lethality describes any combination of two separately non-lethal mutations that

leads to the non-availability of an organism, (Ooi et al., 2006). Ordinarily, individual

mutations are compensated for or buffered. Synthetic lethal relationships can occur in

genes acting in the same biochemical pathway or those in linked pathways (Tong et

al., 2001; Tong and Boone, 2006). As such, synthetic screens detect functional linkages

between two proteins. The technique’s applicability in high throughput PPIs mapping is

hampered by its complexity.

 

 

 

 



6 CHAPTER 1. INTRODUCTION

1.2.4 Phage display

This method is based on the ability of bacteriophage to present engineered proteins

on their surface coat (Mullaney and Pallavicini, 2001). Interactions between phage-

displayed proteins and target proteins can be rapidly identified and characterized using

high throughput methodologies that makes the method attractive for scanning large pep-

tide libraries. By generating a phage library, a large set of proteins can be screened for

interactions.

1.2.5 Protein microarray

Protein microarray is steadily gaining popularity for PPI investigation. Protein microar-

ray consists of proteins that are immobilized in a grid-like pattern on small surfaces

(MacBeath and Schreiber, 2000). Huge numbers of proteins are used to screen and assess

patterns of interaction with samples containing distinct proteins or classes of proteins.

Two classes of protein microarrays are currently available: analytical and functional pro-

tein microarrays. In analytical protein microarrays, well-characterized molecules with

specific activity, such as antibodies are used as immobilized probes. On the other hand,

functional protein microarrays are mainly applied in areas of biological discovery such

as drug target identification and validation, protein interaction and immune responses.

For example (Zhu et al., 2001) cloned 5800 open reading frames on yeast proteome using

protein microarray method. Therefore, they identified a number of new calmodulin and

phospholipid interacting proteins. A common potential binding motif was identified for

many of the calmodulin-binding proteins. However, this method has some drawbacks

including (i) finding a surface and a method of attachment that allows the proteins to

maintain their secondary or tertiary structure and thus their biological activity and their

interactions with other molecules, (ii) producing an array with a long shelf life so that the

proteins on the chip do not denature over a short time, and (iii) identifying and isolating

antibodies or other capture molecules against every protein in the human genome.
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1.3 Computational Methods for Predicting PPIs

The labor intensive experimental techniques for the detection of PPIs (see section 1.1)

may not be generally applicable due to time constraints and high cost of experiments.

Recently, a number of computational methods have been developed for the large scale

prediction of PPIs based on protein sequence, structure and evolutionary relationships in

complete genomes. In this section, we will describe computational methods and resources

available for protein-protein interaction prediction that exploit the structural, genomics

and biological contexts of proteins in complete genomes. In addition to algorithms and

methods for interaction prediction, a number of useful databases pertaining to protein-

protein interactions will be described. These databases combine a large amount of data

from both computational and experimental techniques.

1.3.1 Methods Based on Single Biological Evidence

1.3.1.1 Gene Neighbor

One of the first methods of predicting PPIs using single biological evidence is gene neigh-

bor or co-localization. This method utilizes the idea that genes which physically interact

will be kept in close physical proximity to each other within the genome (Tamames et al.,

1997; Overbeek et al., 1999; Skrabanek et al., 2008). For example, in prokaryotes, related

genes are often co-localized into regions called operons. Genes involved in the same bio-

logical process or pathway are frequently situated in close proximity. Hence it is possible

to predict physical interaction between genes that are in close proximity (e.g. 500bp).

Many studies have been conducted for PPI prediction using this method. For example,

Okuda et al. (2005) examined the conservation of gene co-regulated between two dis-

tantly related prokaryotes, Bacillus subtilis(B.subtilis) and Escherichia coli (E.coli). The

analysis shows that about 60-80 % of gene pairs conserved co regulation relationships.

In addition, pathway and Clusters of Orthologous Groups (COG) analyses demonstrated

that conserved co-regulated gene pairs share the same functions.

The study by Tamames et al. (1997) analyzed genomes of Haemophilus influenza and
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Escherichia coli to study gene order relationship and genome organization. Their study

showed that functionally related genes are often transcribed as a single unit, an operon, in

bacteria and are co-regulated in eukaryotes. In addition Dandekar et al. (1998) applied a

systematic comparison of nine bacterial and archaeal genomes. Their study showed that

the proteins encoded by conserved gene pairs appear to physically interact in bacterial

and archaeal genomes.

1.3.1.2 Phylogenetic Profile Methods

Another powerful form of single biological evidence is the phylogenetic profile method,

which is based on the hypothesis that, non-homologous interacting, and functionally

linked proteins co-evolve and have orthologs in the same subset of fully sequenced or-

ganisms (Pellegrini et al., 1999; Benjamin et al., 2007). A phylogenetic profile for each

protein is constructed based on the presence or absence of that protein across a range of

genomes. The presence/absence of a given protein in a given genome is indicated as 1

or 0 respectively at each position of a profile (Figure 1.1). Proteins or their profiles can

then be clustered using a bit-distance measure, and those proteins from the same cluster

are considered potential interacting partners, (Benjamin et al., 2007). The disadvantage

of this methodology is that it fails to correctly classify ubiquitous proteins, i.e, proteins

that are present in all genomes but are not necessarily functionally linked. Additionally,

evolutionary processes such as gene duplication, loss, and horizontal gene transfer could

hamper accurate construction of phylogenetic profiles.
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[here] Schematic diagram of phylogenetic profiling

Figure 1.1: Schematic diagram of phylogenetic profiling: For each E. coli pro-

tein, the profile is constructed, indicating which genomes code for homologs of the pro-

tein. Profiles are calculated to determine which proteins share the same profiles. Pro-

teins with identical (or similar) profiles are boxed to indicate that they are likely to

be functionally linked. Boxes connected by lines have phylogenetic profiles that differ

by one bit and are termed neighbors. The figure was adopted from the URL(http :

//www.nature.com/nature/journal/v405/n6788/box/405823a0bx1.html)

1.3.1.3 Gene fusion

Single biological evidence methods for predicting PPIs also include the analysis of gene

fusion across complete genomes. Gene fusion or Rosetta stone (Figure 1.2) is a hybrid gene

formed from two separate genes, and can occur as a result of translocation, interstitial

deletion, or chromosomal inversion. This method is complementary to both co-localization

of genes and phylogenetic profiles, and uses both gene location and phylogenetic analysis

to infer function or interaction (Enright et al.,1999; Skrabanek et al., 2008). The gene

fusion approach predict PPIs from different genomes (Benjamin et al., 2007) based on

the principle that interacting proteins/domains have homology in other genomes that are

fused into one protein chain. Gene fusion events are detected by multiple species sequence

comparisons. This method starts by searching for unfused protein sequences that are
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Schematic diagram of gene fusion method

Figure 1.2: Schematic diagram of gene fusion method: Thus proteins in a genome

are predicted to interact if they are fused together into a single protein (Rosetta protein)

in another genome.

homologous to fused proteins in a given reference genome, but not to each other. Then,

the resulting unfused protein sequences are aligned to different regions of the reference

proteins, showing that the reference protein is a result of a gene fusion.

This method has been successfully applied to a large number of genomes (Enright et al.,

2002; Marcotte et al., 1999). Enright et al. (1999) predicted functional associations of

proteins using this method. Their analysis detected 215 genes or proteins in the complete

genome of E.coli and Haemophilus influenza. In addition they predicted 39730 functional

association pairs from 24 fully sequenced genomes using a gene fused approach.

1.3.1.4 Domain Profile Methods

Techniques in this class utilize conserved sequence properties such as domains, motifs

and signatures to predict interactions. Thus a sequence signature is defined as a ”highly

conserved region”, a sequence pattern that is found repeatedly in a group of related

protein sequences [15]. By this definition, a sequence signature could be a protein family,
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functional domain, functional site, or any conserved region of unknown function, and thus

the actual physical manifestation of a signature can vary greatly in size. Sprinzak and

Margalit, (2001) used sequence signatures found in experimentally determined interacting

protein pairs in yeast to predict PPIs. Deng et al. (2002) developed an optimization

method termed maximum likelihood estimation (MLE) that infer domain interactions

by maximizing the likelihood of the observed protein interaction data. The expectation-

maximization (EM) algorithm is used for the optimization of the probabilities of domain

interactions. They apply this method to predict cellular functions (43 categories including

a category ’other’) for yeast proteins defined in the Yeast Proteome Database(YPD), using

the protein-protein interaction data from the Munich Information Center for Protein

Sequences (MIPS, http://mips.gsf.de).

1.3.2 Methods Based on Multiple Sources of Biological Evi-

dence

In the previous section we explored the first group of genomic context methods for pre-

dicting PPIs. In order to improve the accuracy of prediction, the second set of methods

utilize multiple biological evidences simultaneously. These sources individually are usually

weakly associated with the interaction but can yield reliable predictions when analyzed as

a group. Studies that utilize multiple evidence, formulate the PPI prediction as a binary

classification problem and solve the task with a classifier. In this manner the classifier

is trained to distinguish between positive sets that are truly interacting proteins, and

negative sets or non-interacting pairs. Protein sequences of different lengths should be

converted into feature vectors of the same length, where features refer to a particular

information source regarding either protein interaction partner.

The advantage of classification is the ability to assess any feature’s predictive power using

feature selection, and it can handle missing data which is common in biological datasets.

In order to perform binary classification using supervised learning approaches, the clas-

sifier requires positive and negative data sets for training, (Bishop 2006, Mitchell 1997).
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One of the main challenges for binary classification of PPIs prediction is the selection

of the negative data. In the absence of a gold standard negative data set that is ex-

perimentally validated, many studies suggest different methods for generating negative

data. One of the common methods for choosing negative data for training a predictor

of protein-protein interactions is based on annotations of cellular localization, and the

observation that pairs of proteins that have different localization patterns are unlikely to

interact, (Jansen et al., 2003), (Jansen and Gerstein, 2004). Some other studies selected

non-interacting pairs uniformly at random from the set of all protein pairs that are not

known to interact (Gomez et al., 2003; BenHur and Noble, 2005). These approaches are

likely to yield their own biases (BenHur and Noble, 2006), but the uniformly random

selection method is preferred. A number of classification techniques have been applied

for predicting PPIs. Such methods include Naive Bayes, Random forest, Support Vector

Machine and Artificial Neural Network (Zahiri et al., 2013).

1.3.3 Naive Bayes

Naive Bayes is a machine learning classifier that apply the Bayes theorem with an im-

plementation that is computationally efficient and easy to interpret. In addition, the

methods is ideal for problems that involve a normal distribution. Naive Bayes can be

trained with small training data for supervised learning tasks using maximum likelihood,

but it will not work well in complex problems (Najafabadi and Salavati, 2008; Zahiri et

al., 2013). Many studies have used naive Bayes for PPIs such as (Jansen et al., 2003; Lu

at al., 2005; Liu et al., 2012).

1.3.4 Random Forests

Random forests are an ensemble learning method for classification, regression and other

tasks, that operate by constructing a multitude of decision trees at training time and

outputting the class that is the mode of the classes (classification) or mean prediction

(regression) of the individual trees (Breiman, 2001). Chen and Liu, (2005) developed
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a random forest model for predicting PPIs on Saccharomyces cerevisiae dataset with

sensitivity 79.78% and specificity 64.38%. This is a significant improvement over the

(Breiman, 2001) prediction that used maximum likelihood approach (Dayer et al., 2008).

1.3.5 Support Vector Machine

Support vector machine (SVM) is a supervised learning model used for classification and

regression analysis (Vapnik, 1995; Cristianini and Taylor, 2000). An SVM model maps

the examples into space as points, see Figure 1.3, so that the examples of the separate

categories are divided by a clear margin that is as maximum as possible. Unlabeled

data are then mapped into that same space and predicted to belong to one of the two

categories. SVM model is used in computational biology for classifying biological data,

as well as protein-protein interaction predictions (Bock and Gough, 2001; Gomez et al.,

2003). SVM is powerful and can classify problems with arbitrary complexity, but also

require large memory. In addition, in order to build a good SVM model the hyper pa-

rameter must be optimized (Ben Hur et al., 2008). Many authors have used SVM for

PPIs prediction. A study conducted by Bock and Gough (2001) developed and SVM

model for PPI predictions using protein primary structure. They trained the model with

physiochemical properties of amino acid, including charge, hydrophobicity, and surface

tension for each residue in the sequence. Their model achieved an average 80% of accu-

racy. In addition, Bradford and Westhead (2005) applied SVM combined with surface

patch analysis for protein-protein binding site prediction using data from the protein data

bank database (PDB)(Berman et al,. 2000) for protein secondary structure. More than

75% accuracy was achieved after training the SVM with cross validation strategy. Gui

et al (2008), made a further attempt to improve the performance of the SVM for PPI

prediction by adding new feature sets which are physiochemical properties such as hy-

drophobicity, hydrophicility, volumes of side chains of amino acids, polarity, polarizability,

solvent-accessible surface area (SASA) and net charge index (NCI) of side chains of amino

acids. The method has been tested on Saccharomyces cerevisiae PPIs datasets which are
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experimentally validated, and achieved an accuracy 88%.

SVM-Support Vector Machines

Figure 1.3: Maximum-margin hyperplane and margins for an SVM trained with

samples from two classes: Samples on the margin are called the support vectors. The

SVM learned the representation of a hyperplane, here illustrated through an enclosed

rectangle that best separates the two classes of examples from each other. The examples

that lie on the outside edge of the hyperplane are the so called support vectors (the actual

representation learned by the SVM)

1.3.6 Neural Network

Artificial neural network (ANN) is a statistical learning algorithm inspired by biological

neural networks. The idea of artificial neurons was found by McCulloch and Pitts, (1943)

and developed by Werbos (1974). There are many types of ANN, but the most widely

used is the multilayer feed forward neural network. An artificial neural network is a black

box approach that has been used successfully in predictive modeling. Initially, the neural

network must be trained. For the purpose of training, all the characters describing the

unknown situation must be presented to the neural network, along with their predictions

(also given). There are many types of neural network algorithms. In this study we used
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the multi-layer feed-forward neural network (MFFN) (Figure 1.4). MFFN is used more

frequently than other neural network types for a wide variety of classification and pre-

diction tasks. A MFFN consists of neurons or nodes that are ordered into layers. The

first layer is called the input layer, the last layer is called the output layer and the layers

in-between are called hidden layers. An MFNN can have more than one hidden layer.

Each layer in the MFFN is connected with other layers through weights which control

the signal transfer between nodes through the so-called transfer or activation function.

The training of an MFFN is toward searching for optimal values of the weights. For the

activation function f(x) , the input Ik to node k is the weighted sum of the outputs of

all nodes (j = 1, 2, ..., n) connected to it. Here Ok is the output of the node k, wkj is the

linking weight between nodes k and j, and dk is a bias.

Multilayer feed forward neural network

Figure 1.4: An artificial neural network depicted as an interconnected group of

nodes, akin to the vast network of neurons in a brain: Here, each circular node

represents an artificial neuron and an arrow represents a connection from the output of

one neuron to the input of another.
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1.3.7 Computational Methods for Inter-Species PPIs

The knowledge of host pathogen PPIs is crucial for understanding the pathogenesis of

the relevant disease (Bosch et al., 1998; Mogensen et al., 2006). However, experimental

resources for studying interactions between host and pathogen proteins are rather limited.

Several computational methods for predicting interspecies PPIs have been developed,

including methods based on interolog , interacting domain/motif, structure, and even

machine learning (Zhou et al., 2013).

1.3.7.1 interolog Based Approach

Interolog based methods constitute the conventional way of predicting host-pathogen in-

teractions. The methods are based on the hypothesis that pairs of interacting proteins in

one species are expected to be conserved in related species. The rationale behind this ap-

proach is that if two proteins interact in one organism, their interolog in another organism

have a higher chance of interacting. This is based on the assumption that sequence and

structural similarities between gene products suggest functional similarities. Therefore,

the interolog based method for host-pathogen PPIs prediction procedure proceeds as fol-

lows: (i) selecting a known pair of PPI (A,B) in some source species (the template PPIs),

(ii) find in the host a interolog (A′) and in the pathogen a interolog (B′), respectively, of

the two (A,B) in the template PPIs and, (iii) predicting that (A′,B′) interact.

The interolog based approach has been applied to many studies, for example

Tyagi et al. (2009) developed interolog based methods to predict PPIs between human

host and Helicobacter pylori. They identify 623 Helicobacter proteins that interact with

6559 human proteins. Further analysis shows that most of their predicted Helicobacter

pylori proteins are known to be secreted proteins. Moreover, Krishnadev and Srinivasan,

(2011) used a interolog based method to predict protein protein interaction between hu-

man and three pathogens namely (E. coli, Salmonella enterica typhimurium and Yersinia

pestis). They implement the methods on data extracted from protein interaction database

(DIP)(Ioannis et al., 2002) and a database of protein family and domain interactions found
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in the Protein Data Bank (iPfam) (Finn et al., 2014). Thus they identify several host-

pathogen protein interactions, most of which are disease related or hypothetical proteins.

(Wuchty., 2011) attempt to improve the performance of interolog based methods by in-

corporating a machine learning approach coupled with expression and molecular char-

acteristics. First they implement the approach on human Plasmodium falciparum PPI

prediction. Thereafter, their analysis on the predicted sets shows that parasite proteins

tend to target central proteins in order to take control of the human cell. In addition they

target human proteins involved in pathway signaling and regulation.

1.3.8 Machine Learning Approaches

Machine learning techniques (supervised and semi supervised) have been applied inten-

sively for interspecies PPI predictions. However, these methods require template PPI

data sets associated with appropriate biological and biochemical properties as features

for training and testing purposes. Many studies utilize this technique. For example, Tas-

tan et al. (2009) developed a Random Forest classifier to predict PPIs between human

and HIV-1 by incorporating multiple features sets such as interacting domain, gene on-

tology annotations, post-translation modifications, tissue distribution, gene expression,

and topological properties of the human protein in the interaction network. The exten-

sion of their work using semi-supervised learning is presented by Qi et al. (2010). They

incorporate direct interaction data with likely interactions, which are not experimentally

validated to train a classifier for human HIV-1 PPIs prediction. However, they perform

multi-task learning on supervised classification using labeled data (truly interaction) and

semi-supervised task for partially labeled data (no evidence of direct interaction). Thus,

they train a multi-layer perceptron network using labeled data for PPI prediction while

the semi-supervised learning task share the network layer of supervised classifier. There-

fore, the performance shows improvement compared to their previous work. Furthermore,

Dyer et al. (2008) integrated known intra-species PPI data with protein-domains profiles

to predict PPIs for human-Plasmodium falciparum, and used Bayesian statistics to assess
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the prediction. Many studies have been done on human-virus interactions because of

the abundance of high-throughput experimental data. A support vector machine (SVM)

combined with linear kernel have been developed by Dyer et al. (2011) for PPI predic-

tion between human and HIV. The authors explored different types of features including

domain profile, protein sequence k-mers, and graph theoretic properties of human PPI

network. Consequently, their model achieved a precision value of 70% and recall greater

than 40% when they used a combination of all three features. Likewise, Cui et al. (2012)

proposed an SVM, based on feature: three consecutive amino acid frequency of sequence

feature to predict human-virus PPIs. Their study showed the importance of three con-

secutive features on model performance, which achieved above 80% accuracy. Qi et al.

(2010) proposed a solution to the lack of training data by using semi-supervised learning

for host-pathogen PPIs. They combined true positive data with partial positive (indirect

interactions) as a training set. However, high rates of false positives are likely to increase

when using partial sets. In the case of improving supervised learning performance with

the lack of reliable training data, an interesting question to ask is whether we can extend

the model by using a training set, where host-pathogen data originates from the same

host but different pathogens.

1.3.9 Structure Based Approach

When a pair of proteins have structures that are similar to a known interacting pair of

proteins, it is reasonable to believe that the former are likely interacting in a way that

is structurally similar to the latter. In accordance to this hypothesis, several works have

used structural information to identify the similarity between query proteins (i.e. proteins

in the pathogen and host) and template PPIs (i.e. known interacting protein pairs) and

infer that those host-pathogen protein pairs that match some template PPI are interacting

(Smith and Sternberg, 2002).
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1.3.9.1 Comparative modeling

Prediction by comparative modeling is a representative structure-based approach. For

example, in a study by Davis et al. (2006) an automated pipeline for large-scale compar-

ative protein structure modeling, is applied to model the structure of host and pathogen

proteins based on their sequences and corresponding template structures. Given the com-

puted model of a protein, the SCOP 34 super families that the protein belongs to are

identified. A database of protein structural interfaces, PIBASE, is then scanned. If a

SCOP super family of a host protein and a SCOP super family of a pathogen protein

are both involved in the same PIBASE 35 protein structural interface, then the host

protein and the pathogen protein are predicted as a putative PPI. Query proteins that

lack structural templates cannot be modeled in the above process. In this case, template

interactions in alternative databases (e.g. IntAct) are considered by Davis et al. (2006)

Specifcally, a pair of host and pathogen proteins are predicted to interact if at least 50%

of each of the two protein sequences are similar to some member proteins of a template

complex in IntAct and the joint sequence identity is at least 80%. These predictions,

which are conducted without structural information, form a very small portion of the

total number of putative PPIs, because of the stringent joint threshold. Each prediction

is further followed by a series of assessments and filtering, which results in a significant

reduction of potential host-pathogen PPIs by several order of magnitudes.

1.3.9.2 Structural similarity

Structural similarity can also be analyzed using the Dali database (Holm and Rosenstrm,

2010). This strategy has been adopted to predict human-HIV PPIs, human-Dengue virus

(DENV) PPIs and Aedes aegypti-DENV PPIs. Dali calculates a structural similarity

score by comparing the 3D structural coordinates of two PDB entries. To predict the

human-HIV and human DENV PPIs, structurally similar pathogen (HIV, DENV) and

host human proteins are determined using the structural similarity method. Then, under

the assumption that pathogen proteins having similar structure to host proteins are likely
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to participate in the similar set of PPIs (human PPIs dataset from HPRD31), the pathogen

proteins are directly mapped to their high-similarity matches within the host intra-species

PPIs network in order to predict the host-pathogen PPIs. The same structural similarity

prediction method has been applied to identify orthologs between Drosophila melanogaster

and Aedes aegypti and map D. melanogaster DENV PPIs to predict. The accuracy of this

prediction method depends on the performance of Dali in determining structurally similar

pathogen and host proteins. The available information on pathogen and host protein

structures and the quality of host intra-species PPIs data also have a significant influence

on prediction results.

1.4 Protein interaction data resources

The rapid accumulation of PPIs data has necessitated the development of advanced stor-

age systems. Although a plethora of repositories serving this purpose have been developed,

a few select databases provide consistent, reliable interaction data. These databases can

be grouped into three classes: (i) those have that store manually curated PPIs, (ii) those

that store predicted PPIs, and (iii) those that store both curated and predicted PPIs.

Table 1.1: Databases that store PPI data

Database Description

DIP Catalogs experimentally determined interaction between

Proteins by combining information from different sources

http://dip.mbi.ucla.edu/dip/

IntAct The data available in the database originated entirely from published

literature and it is manually curated http://www.ebi.ac.uk/intact/.

MINT MINT focus exclusively on curation of physical protein in-

teractions and ignores computationally predicted interactions

http://mint.bio.uniroma2.it/.
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BioGrid It is a database of physical and genetic interactions, that incorporates

both high throughput data and curated data https://thebiogrid.org/.

STRING Search tools for the retrieval of interacting gene/proteins nd it contain

both known and predicted data http://string-db.org/.

BIND Archives three type of interactions namely molecular interaction, com-

plexes, and pathways http://bind.ca.

VirusMINT Collecting all interactions between viral and human proteins, reported

in the literature http://mint.bio.uniroma2.it/virusmint/.

1.5 Problem formulation

Despite decades of drug research and development, infectious diseases are still resulting

in millions of deaths each year. Research efforts are ongoing for better understanding of

the mechanism by which the pathogen invade the host cell, and identification of potential

drug targets. Therefore, protein-protein interaction form the foundation of communi-

cation between a host and a pathogen and play a major role in infection (Dyer et al.,

2008). However, identification of physical interaction between proteins was limited to

labor-intensive experimental techniques such as co-precipitation or affinity chromatog-

raphy (Benjamin at al., 2007). Several experimental assays that probe interactions in a

high-throughput manner are now available and such methods include the yeast two-hybrid

screen and methods based on mass spectrometry. These methods however, may not be

generally applicable to all proteins in all organisms, and may also be prone to systematic

error. Recently, a number of computational methods have been developed for the predic-

tion of protein-protein interactions based on protein sequence, structure and evolutionary

relationships among completely sequenced genomes. Furthermore, many computational

methods have been developed for protein-protein interaction prediction within a single

organism (intra-species) and across species (inter-species).
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Some of the methods to predict intra-species PPI depend on genomic inference. Such

methods utilize the idea that physically interacting genes will be kept in close proximity

to each other on the genome (Bowers et al., 2004; Dandekar et al., 1998; Overbeek et

al., 1999; Galperin et al.,2000). Co-localization of genes across multiple genomes is an

indicator of physical interaction between the encoded proteins. The study by Tamames

et al. (1997) analyzed genomes of Haemophilus influenza and Escherichia coli to study

gene order relationship and genome organization. Their study shows that functionally

related genes tend to be localized in close proximity, and different from unrelated genes.

In addition, Dandekar et al. (1998) shows that the proteins encoded by conserved gene

pairs appear to be physically interacting in bacterial and archaeal genomes. Another ap-

proach based on genomics context is phylogeny profiling (Galperin et al., 2000; Pellegrini

et al, 1999; Snitkin et al,2006), which is based on comparison of evolutionary distance

between the sequences of associated protein family (Pazos et al.,2001). A method that

relies on the gene fusion event (Marcotte et al., 1999; Enright et al., 1999; Marcotte et

al., 2002) was introduced following the observation that very often, pairs of interacting

proteins have homology in another organism fused into a single protein chain (Enright et

al., 1999; Huynen et al., 2000; Marcotte et al., 1999). It should be noted, that the above

mentioned methods are not without flaws, and could result in an undesirably high rate of

false positives. There are other computational methods that depend on three-dimensional

aspects of protein interaction, but the scarcity of three-dimensional protein data makes

the utility of these methods limited. In addition, different classification approaches have

been applied to the prediction of protein-protein interactions. These methods use a va-

riety of biological information items to train a classifier to distinguish between positive

examples of truly interacting proteins pairs from the negative examples of non-interacting

proteins. For example, Guo et al. (2008) developed a classifier using support vector

machine combined with auto-covariance for the prediction of PPIs in Saccharomyces cere-

visiae and the methods achieved accuracy of 88.09%. Yet, other studies utilize supervised

classification techniques, such as as Random Forest (RF) (Chen and Liu, 2005), Neural

Network (Fariselli et al., 2002; Eom and Zhang, 2005), SVM (Zhang et al., 2014; Shen
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et al., 2007; You et al., 2004). On the other hand computational methods for predict-

ing host-pathogen protein protein interaction has not received much attention due to

the difficulty of experimental validation. Nevertheless, computational approaches such as

Bayesian network and SVM have been used successfully to predict host-pathogen PPIs,

(Dyer et al., 2007; Krishnadev et al., 2011) respectively. For example, Dyer et al. (2008)

integrated known intra-species PPI data with protein-domain profiles to predict PPIs be-

tween human-Plasmodium falciparum, and used Bayesian statistics to assess the predic-

tion. Tastan et al. (2009) used a random forest classifier to predict PPIs between human

and HIV-1 by incorporating multiple features sets such as interacting domain, gene ontol-

ogy annotations, post-translation modifications, tissue distribution, gene expression, and

topological properties of the human protein in the interaction network. Another study

by Wuchty, (2011), used a random forest classifier to predict PPIs between human and

Plasmodium falciparum where researchers validated the results using co-expression data

of human genes in the presence of parasites. Computational approaches have been applied

to human-virus interactions because of the abundance of high-throughput experimental

data. We have also mentioned the paper by Qi et al. (2006), using semi-supervised

learning for host-pathogen PPI prediction, based on true positive data as well as partial

positive data. However, one can expect high rates of false positives due to the partial

positive sets. In summary, previous studies differed in terms of classifiers, feature sets,

and their encodings and gold-standard datasets used. Thus, in order to develop a high

accuracy classification model, careful consideration must be taken in the selection of the

classifier, feature sets, and training data. Despite the vast amount of genomic data avail-

able today, there is a lack of experimentally validated host-pathogen PPI data for most

pathogenic organisms , specifically human-bacteria interactions. Therefore, the challenge

remains for studying host-pathogen protein-protein interaction for human-Mycobacterium

tuberculosis, where experimentally verified PPIs data is less than 200 pairs. Nevertheless,

in this study a sequence based prediction model is proposed by using Artificial Neural

Network (ANN), with a novel combination of features generated from literature to en-

hance the accuracy of the model results. The challenge is formidable when it comes to
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the study of host-pathogen protein-protein interaction for human-M-tuberculosis PPI data

set contains less than 200 experimentally verified pairs. To overcome this challenge, we

suggest a computational predictor model of the human-Bacillus anthracis PPIs, in which

case, sufficient experimentally validated PPI data is available. We set up a computational

predictor of host pathogen PPIs for the human-Bacillus anthracis case. In the latter

case, sufficient experimentally validated PPI data is available. Then for the same human-

Bacillus anthracis case, we test a different combinations of feature sets. The model model

with quadruple featute sets is found to perform quite well, very much in step with the

original prediction, but is less reliant on experimentally validated host-pathogen PPIs.

This alternative model is then harnessed to predict human-Mycobacterium tuberculosis

PPIs, and it is not very badly hampered by the shortage of experimentally validated

human-Mycobacterium tuberculosis PPI data.

1.6 Research objectives

The objectives of this study were:

(i) Develop a binary classifier with an appropriate feature set for host-pathogen protein-

protein interaction prediction using published human-Hepatitis C virus (HCV) PPI, and

test the model on available host-pathogen data for human-Bacillus anthracis PPI.

(ii)Prediction of human-Mycobacterium tuberculosis PPIs using the feature set derived in

(i) and a neural network.

(iii) Development of a web server for the prediction of human-M-tuberculosis PPI.

 

 

 

 



Chapter 2

Feature Optimization and its

Application on Human-Bacillus PPI

Prediction

2.1 Abstract

Background: Machine learning approaches have been successfully applied to the predic-

tion of protein-protein interactions (PPIs) within a single organism i.e., intra-species PPI

predictions. However, fewer studies have successfully applied these techniques to host-

pathogen PPI, i.e., inter-species PPI prediction, due to limited experimentally validated

PPI data for training and testing. These inter-species comparisons have focused primar-

ily on human-virus interactions using different machine learning techniques and statistical

models. Yet the selection of appropriate machine learning techniques and the choice of

feature sets are important in order to strengthen the use of other biological datasets.

Results: In this study quadruplet amino acids in combination with human interactome

properties including graph-theoretic properties such as degree, cluster coefficient and be-

tweenness centrality, and sequence similarity resulted in improved performance when an

SVM classifier was used on a published human-HIV dataset. The same feature set was
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used to assess machine learning approaches in predicting human-bacterial protein- pro-

tein interactions. The accuracy of the SVM approach that was applied to the human-HIV

dataset was compared with a neural network approach to predict human-Bacillus an-

thracis protein-protein interactions. Our predictor shows an average accuracy of 93.4%

when using quadruple and the human interactome features coupled with sequence simi-

larity. The increased overall performance of our PPI prediction model using quadruple in

association with network features, compared to triplets used in human-virus interaction,

provides a refined set of target candidates. In summary, the results indicate that training

neural networks with appropriate features, can improve host-pathogen PPI predictions.

This algorithm was implemented using the neural network tool box of Matlab. Python

scripts were used to extract features.

2.2 Overview

An important aspect of any host-pathogen system is the mechanism by which a pathogen

infects its host. Host-pathogen protein-protein interactions play a vital role in initiating an

infection. In particular, the proteins and molecules in cell surfaces form the foundation of

communication between a host and a pathogen. PPIs constitute an important component

of virtually every biological function on the molecular level. Consequently, unraveling the

physical interaction between two proteins is essential for understanding the mechanisms

of protein recognition at the molecular level and to understand the global picture of pro-

tein function in the cell. There are many experimental methods for detecting PPIs. They

are expensive, labor intensive and time consuming. Experimental resources for studying

interactions between host and pathogen proteins are rather limited. In view of such prob-

lems, computational methods for predicting PPIs can provide valuable complementary

tools. Ranges of computational methods have been published that infer PPIs within sin-

gle species (intra-species). A review of such literature can be found in Pitre et al. (2008).

On the other hand, prediction of PPIs between hosts and pathogens (inter species) has not

received the same attention. The knowledge of the protein interactions between host and
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pathogen is crucial to understanding the pathogenesis of the relevant disease (Huang et

al., 1998; Mogensen et al., 2006). Recently computational approaches were developed to

infer PPIs between host and pathogen. For example, Dyer et al. (2008) integrated known

intra-species PPIs data with protein-domain profiles to predict PPIs between human and

Plasmodium falciparum. The application of machine learning techniques have been suc-

cessfully applied to the prediction of human-virus interactions because of the abundance

of high throughput experimental human-virus protein-protein interaction data sets. Qi

et al. (2006) proposed a solution to the lack of training data by using semi-supervised

learning for host-pathogen PPIs. They combined true positive data with partial positive

data (indirect interactions) as training sets. However, high rates of false positives are

likely when using partial sets. It is important to identify the features which are more

relevant in computational prediction of interaction between a given pair of proteins. Not

only does it help in revealing relationships between different data sources, but it can

suggest which data should be generated by experiments to identify novel interactions in

host-pathogen systems. Tastan et al. (2009) used a random forest classifier to predict

PPIs between human and HIV-1 by incorporating multiple feature sets such as interacting

domains, gene ontology annotations, post-translation modifications, tissue distribution,

gene expression, and topological properties of the human interactome network. Another

study, by Wuchty, (2011), used a random forest classifier to predict PPIs between human

and Plasmodium falciparum where researchers validated the results using co-expression

data of human genes in the presence of parasites. In order to develop a high accuracy

classification model, consideration must be given to the selection of the classifier, features

sets, and training data. With vast amounts of genomic data available today, there is

a lack of experimentally validated host-pathogen PPI data for most model organisms,

specifically human-bacteria interactions. Therefore, the challenge is formidable when it

comes to the study of host-pathogen protein-protein interaction for where limited experi-

mentally verified PPI data is available. For example, human Mycobacterium tuberculosis

has less than 200 experimentally verified PPI pairs. To overcome this challenge we im-

plement the following strategy. We set up a computational predictor of host pathogen
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PPIs for the human-Bacillus anthracis case. In the latter case, sufficient experimentally

validated PPI data is available. Then for the same human Bacillus anthracis case, we

test a different features combination to predicting PPIs (at least in this particular case).

The the quadruple features combination is found to perform quite well, very much in step

with the original prediction, but is less reliant on experimentally validated host-pathogen

PPIs. This alternative model is then harnessed to predict human-Mycobacterium tubercu-

losis PPIs, and it is not very badly hampered by the shortage of experimentally validated

human-Mycobacterium tuberculosis PPI data. For the binary classification problem we

use an artificial neural network, with a novel combination of features generated to en-

hance the accuracy of the predictor model. In addition, we assess the model performance,

comparing the quadruple amino acid features combined with network features and se-

quence similarity that is utilized in this thesis against the triple amino acid features in

existing literature. The triple features set in the literature were implemented using SVM.

Therefore we test the curation between two feaure set using the published data set and

the same algorithm (SVM).

2.3 Implementation

Prediction of protein-protein interactions using a supervised classifier requires training

data. In the process of predicting PPIs, pairs of proteins are classified into two classes

that can be labeled as interacting (positive) or not interacting (negative). The aim of the

training step is to derive a representative sample of the spectral signatures for each class.

The quality of the training data and the feature set significantly influence the performance

of the algorithm that is being implemented using matlab, and this has an impact on the

classification accuracy (DongMel and Douglas, 2002). The Matlab neural network toolbox

provides algorithms implementation, functions, and apps to create, train, visualize, and

simulate neural networks. Figure 2.1 shows the work flow for building the classification

model and the feature selection process.
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Work flow of human-Bacillus PPI prediction

Figure 2.1: Work flow of human-Bacillus PPI prediction: The work flow starts with

extracting host-pathogen PPI data, then converting the data to feature sets. Thereafter,

building a model for PPI prediction.

2.3.1 Feature representation

Recent work by (Cui et al., 2012; Gomez et al., 2003; Taylor et al,. 2004) emphasized the

value of encoding the important information content of the protein sequence for protein-

protein interaction prediction. In addition, the protein sequences are of different lengths

and should be converted into feature vectors of the same length, and the features from

each protein are concatenated to form a single feature. The concatenation is made in

this order, human protein feature + M-tuberculosis feature. In this study we consider

four types of features namely consecutive amino acid triples, consecutive amino acid

quadruple, sequences similarity and human interactome graph properties derived from

the human interactome network.
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2.3.1.1 Consecutive amino acid triples and quadruples.

The consecutive amino acid triples are the short amino acid sub-sequences of length

3 that occur in interacting proteins. The cardinality of the set of feature vectors, is

approximately 8000 which is all possible triples combination from 20 amino acid. To

reduce this high dimension, the 20 amino acids alphabet is reduced to six categories of

biochemical similarity [IVLM, FYW, HKR, DE, QNTP, and ACGS] (Cui et al., 2012;

Gomez et al., 2003; Taylor et al,. 2004). With this classification of amino acids, there

are 216 possible amino acid triples from the above 6 groups. On the other hand there are

1296 possible sub-strings of length 4 using the 6 amino acid categories reported above. For

both triples and quadruple we use a binary space (V, F ) to represent proteins sequence,

where V is a set of feature vectors with a fixed length (number of features) and F is

a set of frequency vectors, the relative frequency value in a wider range makes it easier

to discriminate protein sequences. A protein is first mapped to a feature vector v of

fixed length. Then the feature vector v is mapped to a relative frequency vector q, the

coordinates of which are defined by equation (2.1).

qi =
fi −min(f1, f2, ..., f216)

1 + max(f1, f2, ..., f216)
(2.1)

Here fi is the frequency of the ith triple (respectively, quadruple) in the sequence, for

i = 1, 2, ...., 216 (resp., i = 1, 2, ...., 1296).

2.3.1.2 Consecutive amino acid triples.

The consecutive amino acid triples are the short amino acid sub-sequences of length

3 that occur in interacting proteins. The cardinality of the set of feature vectors, is

approximately 8000. To reduce this high dimension, the 20 amino acids alphabet is

reduced to six categories of biochemical similarity [IVLM, FYW, HKR, DE, QNTP, and

ACGS] (Cui et al., 2012; Gomez et al., 2003; Taylor et al,. 2004). With this classification

of amino acids, there are 216 possible amino acid triples.
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2.3.1.3 Sequence similarity.

For each pair of human-pathogen proteins, we use Emboss WaterCommandline to calcu-

late a pairwise sequence similarity score. Therefore, we write a python script to filter the

similarity score from the output file.

2.3.1.4 Human interactome graph properties.

Three graph property features were derived from topological properties of the human

intra-species PPI network. These are the degree, clustering coefficient and betweenness

centrality. The degree of a node in a network is the number of neighbors that are con-

nected to it. Clustering coefficient is the ratio of the edges present among its neighbors

to all possible edges that could be present between them. Betweenness centrality for a

node is calculated as the fraction of shortest paths between node pairs that pass through

the node of interest. In order to calculate the values of those properties, human interac-

tion network data consisting of values of the mentioned properties for each protein was

extracted (ftp://ftp.sanbi.ac.za/machine learning). A python script was written to map

network properties to the training and testing data that was used in this study.

2.3.2 Neural network

In the previous section the new feature sets has better performance using neural network

than SVM. The successful demonstration of the utility of our new feature set on human-

HIV protein-protein interactions had to be tested on a bacterial system. The absence

of sufficient experimentally verified huma-Mycobacterial protein-protein interaction data

led us to consider a different bacterial pathogen namely Bacillus anthracis. We used a

multi-layer feed-forward neural network (MFFN) combined with feature selection process

to predict the protein interactions between human and Bacillus anthracis see section 2.4.

An artificial neural network is a black box approach that has been used successfully in

predictive modeling (Bishop, 2006). For the purpose of the initial step of training, all the

characters describing the unknown situation must be presented to the neural network,
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along with their classes label. There are many types of neural network algorithms. In this

study we used the multi-layer feed-forward neural network (MFFN). The MFFN is used

more frequently than other neural network types for a wide variety of classification and

prediction tasks. A MFFN consists of neurons or nodes that are ordered into layers. The

first layer is called the input layer, the last layer is called the output layer and the layers

in-between are called hidden layers. Each layer in the MFFN is connected with other

layers through weights that control the signal transfer between nodes through the so-

called transfer or activation function. The training of an MFFN is to search for optimal

values of the weights. For the activation function g(x), the input Ik to node k is the

weighted sum of the outputs of all nodes (j = 1, 2, ..., n) connected to it.

Ik = dk +
∑
j

WkjOj (2.2)

Oj = g(Ij) (2.3)

Ok is the output of the node k, Wkj is the linking weight between nodes k and j, and dk

is a bias.

Activation function.

Sigmoid(x) =
1

(1 + exp(−x))
(2.4)

2.3.3 Support Vector Machine

We used a SVM to predict protein-protein interactions using the same dataset as pub-

lished by (Cui et al., 2012; Gomez et al., 2003; Taylor et al,. 2004). We followed the same

performance evaluation criteria used by Cui et al (2012) to evaluate the choice of triple

versus quadruplet amino acids as par to the feature set. The criteria included sensitivity,

specificity and accuracy. The sensitivity, also called the true positive rate or the recall

rate, measures the proportion of actual positives that are correctly identified as such (e.g.,

the percentage of sick people who are correctly identified as having the condition), and in

the set of actual positives, the subset of true positives is complementary to the false neg-

atives. The specificity, sometimes called the true negative rate, measures the proportion
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of negatives that are correctly identified as such (e.g., the percentage of healthy people

who are correctly identified as not having the condition), and is complementary to the

false positive rate. The accuracy of a measurement system is the degree of closeness of

measurements of a quantity’s to that quantitys actual (true) value. In machine learning,

support vector machines (SVMs) (Cortes and Vapnik., 1995) are supervised learning mod-

els with associated learning algorithms that analyze data and recognize patterns, used for

classification and regression analysis. Given a set of training examples, each marked for

belonging to one of two categories, an SVM training algorithm builds a model that assigns

new examples into one category or the other, making it a non- probabilistic binary linear

classifier. An SVM model is a representation of the examples as points in space, mapped

so that the examples of the separate categories are divided by a clear gap that is as wide as

possible. New examples are then mapped into that same space and predicted to belong to

a category based on which side of the gap they sit. In addition to performing linear clas-

sification, SVMs can efficiently perform a non-linear classification using what is called the

kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. When

data is not labeled, a supervised learning is not possible, and an unsupervised learning

is required, that would find natural clustering of the data to groups, and map new data

to these formed groups. The clustering algorithm that provides an improvement to the

support vector machines is called support vector clustering (Ben-Hur et al., 2001). SVM

is highly used in industrial applications either when data is not labeled or when only some

data is labeled as a preprocessing for a classification pass. In this thesis, a radial basis

function kernel (rbf-kernel) is employed and is defined as

K(xi, xj) = exp(
|xi − xj|2

σ2
) (2.5)

where xi and xj are the two vectors where one of them is a support vector and

σ is an adjustable parameter that determine the area of influence of the support vec-

tor over the data space. Larger value of reduce the number of support vectors, since

each support vector covers more data space. The SVM implementation used in the

present study is SVMlight (Joachims, 1999). This program is freely downloadable from
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http://svmlight.joachim.org/ . SVMlight has several hyperparameters which should be

optimized in order to obtain a generative model.

2.3.4 Sub-network analysis of human-Bacillus interactions

Sub-networks of human-Bacillus proteins were generated using network analysis blog in

within cytoscape software. The GO enrichment analysis was also done using cytoscape

blogin namely Bingo (Shannon et al., 2003).

2.3.5 Performance evaluation

The receiver operating characteristic, or simply ROC curve, is a graphical plot which

illustrates the performance of a binary classifier system. It is created by plotting the

fraction of true positives out of the total actual positives (TPR = true positive rate) vs.

the fraction of false positives out of the total actual negatives (FPR = false positive rate),

at various threshold settings. A perfect test with 100% sensitivity and 100% specificity

would show the curve tending towards the upper left corner.

We used ROC curves for both evaluating the performance of the feature selection and

the prediction of PPI for human and Bacillus anthracis. Thus, we use human-Bacillus

PPI data as a positive set and the negative sets were randomly generated as specified in

section 2.4.2.

To evaluate the performance of our classification model we plotted the ROC curve using

the ROCR R-package. In addition to the ROC curve we also use the accuracy to measure

the model performance. The accuracy is the percentage of predictions that are correct.

We divide the training data into three sets: 60% for training, 20% for validation and

20% for testing. The first subset is the training set, used for computing the gradient and

updating the network weights and biases. The second subset is the validation set. When

the validation error increases for a specified number of iterations, the training is stopped,

and the weights and biases at the minimum of the validation error are returned. The

third subset is the test set. It is used to verify the network design.
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2.4 Results and Discussion

2.4.1 Quadruplets contribute to improved feature selection

In this work we establish an optimal feature set by benchmarking consecutive quadruple

amino acids, in combination with network features obtained from known human interac-

tion graphs and sequence similarity, and compared these to triple amino acid features as

reported by (Cui et al., 2012; Gomez et al., 2003; Taylor et al,. 2004). The comparison

was standardized by using the training and testing data sets as used by (Cui et al., 2012;

Gomez et al., 2003; Taylor et al,. 2004) and an SVM light classifier. We followed the

same performance evaluation criteria used by (Cui et al., 2012; Gomez et al., 2003; Taylor

et al,. 2004) to evaluate their model namely sensitivity, specificity and accuracy. The

comparison results as reported in Table 2.1 shows that our model outperforms the model

used by (Cui et al., 2012; Gomez et al., 2003; Taylor et al,. 2004) by 95.9 % to 80.5%

in terms of sensitivity, 91.6% to 89.7% in term of specificity and 88.6% to 85.1 in term

of accuracy. This performance shows the importance of the quadruple feature represen-

tation when combined with sequence similarity and human interactome network graph

properties such as degree, betweenness centrality and cluster coefficient for improving

host-pathogen PPIs prediction using the SVM classifier .

Table 2.1: Performance of the model generated using triple feature (Cui et al.,

2012; Gomez et al., 2003; Taylor et al,. 2004) in comparison with quadruple

feature.

eSN(%) dSP (%) cAC(%)

Quadruplet feature seta 95.9 91.6 88.6

Triplet feature setb 80.5 89.7 85.1

aFeatures included consecutive quadruple amino acids.

bFeatures published by (Cui et al., 2012; Gomez et al., 2003; Taylor et al,. 2004) that
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includes consecutive triple amino acids.

eSensitivity (SN), dspecificity (SP) and caccuracy (AC).

2.4.2 Model building and feature selection process

The ultimate goal of predicting human-Mycobacterium tuberculosis protein interactions is

prohibited by the limited amount of experimentally verified human-M-tuberculosis pro-

tein protein interaction data. A collective PPI dataset for the human and the pathogen

Bacillus anthracis provided a larger dataset to assess the accuracy of the newly es-

tablished feature set (Table 2.1) on a bacterial pathogen instead of viruses. We used

554 human-Bacillus anthracis experimentally verified interacting pairs from the IntAct

database (Henning et al., 2004). This data set served as a positive set for training the

classifier. There is no gold standard negative set available for training and testing pur-

poses. However, it is standard practice to create a negative dataset by choosing protein

pairs randomly from the set of protein pairs that are not known to interact (Dyer et al.,

2008; Tastan et al., 2011; Cui et al., 2012). The number of truly interacting pairs of

human-Bacillus anthracis proteins is likely to be far less than the total set of proteins.

These randomly generated protein pairs were filtered to ensure that there were no protein

pairs that are known to interact in the positive dataset, python script can be found in

ftp://ftp.sanbi.ac.za/machine-learning.

2.4.3 Performance of Triple amino acids in combination with

network and sequence similarity features

The Matlab neural network toolbox was used to predicting human-Bacillus PPIs. The

input data was randomly divided into three sets: 60% is used for training, 20% validation

and 20% testing. The protein sequences were converted into a numerical feature represen-

tation that concatenate the triple feature with sequence similarity, and the three human

interactome features. The model was trained using these features Table (2.2). The result
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shows the performance of the triple feature and the combinations of triples with each of

the other features in order to evaluate the importance of each single feature combined

with triples. Table 2.2 shows the accuracies of the different feature combinations. The

column labeled as model average shows combined average accuracy of the training, testing

and validation, while the other columns present the training accuracy. From Table 2.2

we observe that the model average improves from 84.0% when using triple feature alone,

to 91.3% when combining the triple feature with all other features. This result shows the

importance of graph properties features together with the sequence similarity. Figure 2.2

visualizes the results presented in Table 2.2, using the ROC curve. As mentioned before,

the more accurate the prediction the more the ROC curve will tend towards the upper

left corner. In this case Figure 2.2 shows that the combination of triples with all other

features performs best.

Table 2.2: Model performance (average accuracy) of the triple amino acid feature com-

bined with different network features

Features Model average Training Resting validation

three1 84.0 87.6 79.9 77.9

threeD2 58.1 87.2 82.4 78.4

threeB3 83.7 87.5 75.0 74.5

threeC4 80.1 82.6 73.5 75.0

threeS5 83.4 85.4 78.4 78.9

threeA6 91.3 95.8 83.3 77.7

1triple consecutive amino acid frequencies.

2triples+ betweenness centrality network properties.

3triples+ clustering coefficient.

4triples+ degree (network properties).

5triples+ sequence similarity feature.

6combination of all the above-mentioned features.
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Figure 2.2: ROC curve for triple amino acids with other feature combinations

ROC curves for six different combinations of features. Each curve indicates

the feature set used. ’three’ = triples consecutive amino acid frequencies; ’threeB’ =

triples + betweenness centrality network properties; ’threeC’=triples + clustering coef-

ficient; ’threeD’ = triples + degree (network properties); ’threeS’ = triples + sequence

similarity feature, and ’threeA’ = combination of all the above mention features

2.4.4 Performance of Quadruple amino acids in combination

with network and sequence similarity features

We repeated the procedure of feature combinations, but with triples replaced by quadru-

ples. The results in Table 2.3 show the performance of the quadruple feature and the

combinations of quadruple with each of the other features, in order to evaluate the im-

portance of each single feature combined with the quadruples. The results in Table 2.3

represent the model accuracies. The column called model average shows the average of
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the three numbers in the other columns, i.e., the average of the accuracies of the train-

ing, testing and validation. In Table 2.3 we see that the prediction using the quadruple

feature alone, gives an accuracy of 70.7%. Combining all the features gives an improve-

ment in accuracy (93.4%). This shows the importance of graph property features and the

sequence similarity. Figure 2.3 visualizes the results presented in Table 2.3 by means of

ROC curves. Recall that the significance of the ROC curve is such that, as prediction

gets closer to 100% accuracy, the ROC curve will tend towards the upper left corner. In

this case Figure 2.3 shows that the combination of quadruples with all other features is

the most accurate among the predictors. Finally, in the overall comparison of model per-

formance we find that the quadruple feature combined with other features constitutes the

best model among those presented in this Chapter. We use this model to make predictions

of new human-Bacillus PPIs.

Table 2.3: Model performance of quadruple amino acids with combination of other features

Features Model average Training Resting validation

four1 70.7 73.5 64.2 64.2

fourD2 80.1 82.9 76.5 70.6

fourB3 88.0 90.8 83.3 79.9

fourC4 91.0 95.4 80.4 80.9

fourS5 86.4 89.0 81.4 79.4

fourA6 93.4 97.3 82.8 85.8

1quadruple consecutive amino acid frequencies.

2quadruples+ betweenness centrality network properties.

3quadruples+ clustering coefficient.

4quadruples+ degree (network properties).

5quadruples+ sequence similarity feature.

6combination of all the above mentioned features.
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ROC curve for quadruple amino acids in combination with other features
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Figure 2.3: ROC curves for six different combinations of feature sets

Each curve indicates the feature set used. ’four’ = quadruple of four consecutive amino

acid frequencies; ’fourB’ = quadruples + betweenness centrality network properties,;

’fourC’ = quadruples + clustering coefficient, ’fourD’ = quadruples + degree (network

properties); ’fourS’ = quadruples + sequence similarity feature; ’fourA’ = combinations

of all above mentioned features.

2.4.5 Prediction of human-Bacillus PPIs

The model based on the quadruples feature combined with the sequence similarity, and

human interactome graph properties were chosen as an optimal model. We use this model

to make predictions of new human-Bacillus PPIs (Figure 2.4, 2.6 and 2.6).
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2.4.6 Functional enrichment analysis of sub-network

Functional enrichment analysis uses statistical methods to find functions that are over-

represented in a subset of genes. Thus it is very important for identifying the functional

relevance of proteins involved in the host-pathogen PPIs. The presence of over- repre-

sented functional categories that are closely related to immune response, can serve as

further support for the validation. The lists of significantly enriched GO terms for molec-

ular function are given in appendix A (Tables A.1 and A.2 ) respectively for Figures 2.4,

2.5 and 2.6.

Figure 2.4: Protein interactions predicted between Bacillus protein C3P710 and human

proteins
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Figure 2.5: Protein interactions predicted between Bacillus protein C3P8D5 and human

proteins
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Figure 2.6: Protein interactions predicted between Bacillus protein C3P5Q9 and human

proteins

2.5 Conclusion

Knowledge of interactions between host and pathogen proteins is important for under

standing the pathogenic process. The goal of this study was to define an optimal feature

set for, and subsequently, to predict physical protein interactions of Bacillus anthracis

with human proteins, using a neural network trained with human-Bacillus anthracis PPIs

data. Different combinations of features were used to test the model performance. The

best performance was the model trained with amino acid quadruples and pairwise sequence

similarity, together with human interactome properties such as degree, cluster coefficient

and betweenness centrality. This confirm that assumption that state pathogens are tend to

target hub proteins. Our approach demonstrated that the feature selection was not biased

to virus nucleotide composition but could be used in the context of bacterial genomes.

 

 

 

 



Chapter 3

Human-Mycobacterium tuberculosis PPI

Prediction

3.1 Abstract

Background: Tuberculosis is one of the most significant infectious diseases affecting hu-

mans, caused by M-tuberculosis. The lack of effective vaccine and antibiotics, and TB-HIV

co-infection with the emergence of both multi drug resistance (MDR) and extreme drug

resistance (XDR) make TB a serious global health threat. Studying human-M-tuberculosis

protein-protein interactions will help to understand the virulence and mechanisms of this

pathogen, and will be helpful in identifying potential drug targets. A previous study used

the interolog method combined with domain-domain interaction to predict PPI between

human and M-tuberculosis proteins, and utilized functional annotation for further valida-

tion. Another study by Rapanoel et al. (2013) developed an interolog method to predict

PPI between human and M-tuberculosis, then filtered the result using differentially ex-

pressed gene during infection together with known human-M-tuberculosis PPI data. Re-

sults: In this work we propose a novel strategy to over come the lack of experimental

PPI data for human-M-tuberculosis PPI prediction. Thus, we used a multi-layer feed-

forward neural network to predict human-M-tuberculosis PPI. In the absence of a large

44
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training data set for human-M-tuberculosis interactions, the network was trained using ex-

perimentally validated data on human-Bacillus anthracis PPIs from the IntAct database,

and combinations of six features namely amino acid triplets or quadruplets, pairwise se-

quence similarity, and human interactome properties including graph-theoretic properties

such as degree, cluster coefficient and betweenness centrality. For further validation, a

total of 83 human-M-tuberculosis PPIs were identified through orthology mapping to five

human-pathogen datasets. Our predictor shows an average accuracy of 93.4% when us-

ing quadruple and the human interactome features, compared to an average accuracy of

91.3% for amino acid triplets. An examination of the predicted human-M-tuberculosis

protein interaction network highlighted the enrichment of human immune related genes

interacting with Mycobacterium tuberculosis cell membrane proteins(p=0.01). Published

secretory proteins for M-tuberculosis during infection provided another dataset to cross

reference our predicted PPI.

3.2 Overview

Tuberculosis (TB) is an infectious disease usually caused by the bacterium M-tuberculosis.

The bacteria are easily spread through the air from human to human. TB is responsible

for 9.4 million new infections annually, and 1.7 million deaths p.a. according to the World

Health Organization records (WHO, 2010). One-third of the world population is currently

infected with TB, but only 10 percent of people who are infected will become infectious

at some time during their lives.

In 2008, globally there were an estimated 440 000 cases of multi drug resistant tu-

berculosis (MDR-TB) (Huynen et al., 2000). Therefore, a comprehensive view of the

causative organism Mycobacterium tuberculosis and its interaction with the host promises

to provide higher level of insights into the biology of the organism as well as to provide

rational strategies for designing therapeutic agents. In particular, studying human-M-

tuberculosis protein-protein interaction will help to understand the virulence and mech-

anisms of this pathogen, and identification of potential drug targets. Protein-protein
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interactions (PPIs) are key players in biological functioning on the molecular level. A

range of online intra-species protein-protein interaction resources are available that include

both experimental and/or computational evidence (a comprehensive list can be found at

https : //www.hsls.pitt.edu/obrc/index.php?page = proteinproteininteractions. Inter-

species protein- protein interaction predictions are dominated by species for which there

is an abundance of experimental data that can be used for training and testing see re-

view by (Zhou and Wong 2013). Machine learning methods were applied to human-viral

interaction data (Dyer et al., 2007, 2008, 2011; Cui et al., 2012, Emamjomeh et al., 2014;

Barmen et al., 2014) and to a lesser extent to human-bacterial interactions (Dyer et al.,

2010, Mazandu and Mulder 2011, Rapanoel et al., 2013). Despite the limited number

of experimentally verified human-M-tuberculosis interactions, Huo et al (2015) generated

a framework for human-M-tuberculosis interactions using a interolog sequence similarity-

based approach and included no more than 110 experimentally verified protein-protein

interaction pairs. These authors combined domain interaction with functional enrich-

ment for predicting PPIs between human and M-tuberculosis. Moreover, a homology-

based approach was implemented by Zhou et al. (2014) for human M-tuberculosis PPIs

prediction. Their predicted host-pathogen list was filtered using cellular compartment

distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis

and functional category enrichment analysis. Similarly, Rapanoel et al (2013) relied on

an interolog protein-protein interaction method that relied on intra-species interactions

for human obtained from a database of interacting proteins (DIP) and predicted interac-

tions for M-tuberculosis and humans (Mazandu and Mulder 2011; Mazandu and Mulder

2012). Filters such as gene expression data was used to reduce false positives (Rapanoel

et al., 2013) Despite the absence of large experimental datasets, we revisited a classifi-

cation method to predict human-M-tuberculosis protein-protein interactions based on the

improved performance achieved with a neural network approach combined with a selec-

tion of features that included quadruplet amino acids (see Chapter 2). In this chapter

we tested the utility of using human-human protein interactions and pathogen- pathogen

interactions as part of the training data to train the MFNN. Due to the limited number
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of experimentally verified M-tuberculosis-M-tuberculosis protein-protein interactions, we

first tested the approach using intra-species data for Bacillus anthracis and human-human

PPI. We refer to this step as the proof of concept model. Based on the accuracy measure-

ments obtained for the MFNN we tested the approach using the limited experimentally

validated M-tuberculosis-M-tuberculosis PPI and human- human PPI datasets. Finally, we

validated our resulting PPI predictions using a set of 44 secretory M-tuberculosis proteins

that were experimentally shown to be released into macrophages.

3.3 Implementation

The architecture involved for the construction of human-M-tuberculosis PPI is shown in

Figure 3.1. The first step was extract Bacillus intra-species PPIs and human intra species

data for training the algorithm. In addition we used host-pathogen data namely human-

Bacillus PPI data which are experimentally identified, for further validation. This is

based on the assumption that a model developed using intra-species data can be extended

to host- pathogen PPI prediction considering the extent of sequence similarity between

the target and template datasets in prediction. After the evaluation of the method on

experimentally verified human-Bacillus data, we proceeded with a repetition of the same

strategy with human and M-tuberculosis intra species data for model building (training

and testing) and then make use of it for human-M-tuberculosis PPI prediction.

3.3.1 Data

All data used in the construction of the positive data set data set was downloaded in

2012 and updated in 2015 from the database IntAct (Henning et al., 2004) and PATRIC

(Ioannis et al., 2002).
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Figure 3.1: Work flow applied to the construction of the human-Mycobacterium tubercu-

losis PPIs predictions. The panel (A) represent the process of the proof of concept model

development using human and Bacillus intra species PPIs data for model construction,

and human-Bacillus inter species PPIs data as independent test set; panel (B) Implement

the concept for human-M-tuberculosis PPIs prediction
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3.3.1.1 Proof of Concept Model

For the test model, we collected experimental protein-protein interaction data from In-

tAct database (Henning et al., 2004) for human to serve as a positive set, which include

200 pairs of interacting proteins. For the second organism Bacillus anthracis, there is not

enough intra-species experimentally validated PPI data. Therefore, we extracted PPIs for

different Bacillus from the PATRIC database (Wattam et al., 2014). These species include

Bacillus-amyloliquefaciens-CC178, Bacillus-anthracis-str- A0174, Bacillus-sp-10403023,

Bacillus-subtilis-S1-4,and Bacillus-subtilis-subsp-natto- BEST195. A total of 150 pairs

of PPIs were collected of Bacilli. All the interacting protein pairs were identified by

their UniProtKB (Magrane and UniProt Consortium, 2011) Accession IDs for normaliza-

tion purposes. In some instances it was necessary to convert the database identifiers to

UniProtKB Accession IDs. Thus, the 200 human PPIs and 150 Bacillus PPIs were used

as positive data sets for training. The selection of a negative data set or non-interacting

proteins was identified based on different cellular localization (Ben-Hur and Noble, 2006).

These methods consist of randomly selecting protein pairs that are not present in a veto

list containing all PPIs from the positive data set. With this strategy we generated a neg-

ative set of a size similar to that of the positive sets (200 for human and 150 for Bacillus

negative protein pairs), and combined it with the positive set to obtain a training data set

with 700 PPI pairs. In addition to the training data sets, we downloaded human- Bacillus

anthracis PPIs data from PATRIC database (Ioannis et al., 2002) for further validation

and model generalization.

3.3.1.2 Human M-tuberculosis Prediction Model

In order to apply proof of concept approach to human-M-tuberculosis PPI predictions,

we face the challenge that there is no enough M-tuberculosis intra-species PPIs. Conse-

quently we proceed with extracting Mycobacterium genus intra-species PPIs from PATRIC

database (Wattam et al., 2014). The Mycobacterium genus include (Mycobacterium tuber-

culosis C, Mycobacterium leprae, Mycobacterium avium 104, Mycobacterium smegmatis
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str. MC2 155, Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv). A to-

tal of 117 experimentally validated intra-species PPIs for Mycobacterium were extracted.

This data serve as the positive dataset. On the other hand the interacting pairs for hu-

man intra-species were chosen similarly as in Section 2.1.1. There is not enough human-

Mycobacterium tuberculosis experimentally validated PPI data, therefore we adopt the

proof of concept approach for human-M-tuberculosis PPI prediction. In the same way as

in the proof of concept model the negative set were generated and combined with the

positive set to obtain a training data set with 434 PPIs pairs.

3.3.2 Features Selection

In Chapter 2, we defined the optimal feature set to predict PPIs. These include quadruple,

sequence similarity and human interactome network properties such as (degree, cluster

coefficient and betweenness centrality). The details of feature encoding are provided in

Chapter 2 Section 2.2.4.

3.3.3 Feed Forward Neural Network

In this study we use the multi-layer feed-forward neural network (MFFN). The MFFN is

populary used for a wide variety of classification and prediction tasks.

The details of this classifier has been discussed in Chapter 2, see Section 2.3.2.

3.3.4 Performances Evaluation

The human-Bacillus anthracis (proof of concept model) classifier performance was eval-

uated using 3-fold cross validation, on which one third of the examples are reserved for

testing. The training data was also further split into three, and 1/3 was used as the

validation data. Therefore, we evaluated the quality of our predictive model using the

receiver operating characteristic (ROC) curve and confusion matrix, a graphical plot that

illustrates the performance of a binary classifier system as its discrimination threshold is

varied. The curve was created by plotting the true positive rate against the false positive
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rate at various threshold settings. It shows the trade off between sensitivity and speci-

ficity (any increase in sensitivity will be accompanied by a decrease in specificity). The

closer the curve follows the left-hand border and then the top border of the ROC space,

the more accurate the test. The closer the curve comes to the 45-degree diagonal of the

ROC space, the less accurate the test.

3.3.5 Human-M-tuberculosis PPI Validation

Four parameters were used to validate the human-M-tuberculosis PPIs in the absence of

experimental data namely

(i) functional enrichment analysis.

(ii) cellular compartment distribution.

(v) pathway enrichment analysis.

3.3.5.1 Functional Enrichment Analysis

Functional enrichment analysis is important for identifying the functional relevance of

host proteins predicted to be involved in host-pathogen PPIs. The presence of enriched

(over-represented) functional categories that are closely related to pathogen infection,

serves as further support for the validity of the prediction results. Molecular function

term enrichment analysis on the human proteins involved in the predicted human- M-

tuberculosis PPIs was conducted using the DAVID database (Huang et al., 2009). DAVID

does not support the functional enrichment analysis of M-tuberculosis proteins and there-

fore we used an in-house tool to identify the over-represented functional terms for the

corresponding M-tuberculosis proteins. Chande et al (2015) identified 44 secretory pro-

teins within an infected host macrophage that correspond to the mycobacterial virulent

strain (H37Rv). Among these 44 proteins were proteins that function in virulence, detox-

ification and adaptation. Five of the 44 M-tuberculosis secretory proteins were extracted

from the human-M-tuberculosis PPI dataset to validate the predicted interactions.
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3.3.5.2 Cellular Compartment Distribution

The cellular component gene ontology term describes locations, at the levels of sub cellular

structures and macromolecular complexes. Examples of cellular components include nu-

clear inner membrane, with the synonym inner envelop, and the ubiquitin ligase complex,

with several subtypes of these complexes represented. Generally, a gene product is located

in or is a subcomponent of a particular component. However, the cellular compartment

of the human proteins targeted by the predicted host-pathogen PPIs are an important

indicator of the quality of PPI prediction. If the targeted human proteins are mostly lo-

cated in cellular components having a close relationship with pathogen infection or known

interactions with host cells that are relevant to the pathogen infection, then we can be

more certain about the quality of our prediction. Gene Ontology cellular compartment

is one of the most inclusive annotations for human proteins. The cellular compartment

distribution shows how many proteins (and the percentage) in the dataset happen to fall

into each cellular compartment. We selected the top 20 most frequently located cellular

compartments of the human proteins that are predicted to be targeted by M-tuberculosis

in our model.

3.3.5.3 Pathway Enrichment Analysis

Pathway enrichment analysis is a primary source for identifying a list of functionally re-

lated proteins. Therefore, for a set of proteins that are significantly enriched in certain

pathways, it is very likely that this set of proteins play coordinated roles in vivo. Thus,

pathway enrichment analysis is one of the most frequently used assessments for predicted

host-pathogen PPIs. For pathway enrichment analysis, we use DAVID database (Huang

et al., 2009), which is currently one of the most extensive integrated enrichment anal-

ysis databases. For each human protein set predicted by our model, we analyzed the

human proteins pathway enrichment using the DAVID database, and the top 20 most

significantly enriched pathways. The enrichment analysis results provide important ev-

idence that our approach can predict more human-M-tuberculosis PPIs that are more
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relevant to M-tuberculosis infection. Besides assessing the quality of the host proteins

that are predicted to interact with pathogen proteins based on pathway enrichment, we

also conduct pathway enrichment analysis for M-tuberculosis proteins that target human

pro- teins. This analysis was done by using IntPath database (Zhou et al., 2012) which

support pathway enrichment analysis of this important pathogen. The pathway analy-

sis on the M-tuberculosis proteins are also used to assess the performance accuracy of

our model, which give clues to the functional roles of M-tuberculosis proteins that target

human proteins.

3.4 Results and Discussion

We develop a test model (proof of concept) using experimentally verified intra species

PPI for human-Bacillus combined with our feature set described in Chapter 2. After

validating our approach using human-Bacillus, we proceeded to predict the protein-protein

interaction (PPIs) between human and Mycobacterium tuberculosis.

3.4.1 Construction of the Proof of Concept Model

Figure 3.1 (a) summarizes the procedure used to construct the model of the human-

Bacillus anthracis PPI prediction. The starting point of this work is a set of 150 pairs

of human protein-protein interaction data extracted from IntAct database (Henning et

al., 2002) which serve as a positive set. Since there is no well-established gold standard

PPI data for Bacillus anthracis, we collected data from PATRIC databases (Wattam

et al., 2014) containing four different Bacillus high-quality experimentally determined

interactions PPIs as described further in Section 3.3.1.1. The data extracted were merged,

creating our gold standard of positive interactions. The gold standard of negative inter-

actions was obtained by randomly pairing the protein list from non-interacting protein

sets. These randomly generated protein pairs were filtered to ensure that there were no

protein pairs that are known to interact in the positive dataset. The final training data

sets contain 150 pairs of human PPI positive and negative data, and similarly 150 pairs
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for Bacillus. Moreover, for each possible pair of proteins, we constructed two type of

features based on:(I) pairwise sequence similarity, and; (II) quadruple consecutive amino

acid. In addition to human PPI network graph properties values such as (I) degree; (II)

betweenness centrality; (III) cluster coefficient; as described in Section 3.3.1.1. The gold

standard dataset was used to train a feed forward artificial neural network classifier and

to perform further validations on the final model. The proof of concept model achieved

an average accuracy of 91.4% on training (Figure 3.2), 85.6% validation (Figure 3.4) and

80.6% testing (Figure 3.5). In addition, the overall average accuracy of training, testing

and validation was 89.0% (Figure 3.3) which indicate good promise for transferring the

model to host-pathogen PPI prediction. Thus, in order to make use of the model developed

on intra-species data for host-pathogen interaction, we test our model on independent

human-Bacillus anthracis PPI data. The independent test sets consist of 680 pairs of

human-Bacillus anthraces PPIs experimentally identified PPI data extracted from IntAct

database (Henning et al, 2002). Finally, the result of the independent test is used to

generalize the concept of training a classifier with intra-species PPIs, and apply it to the

problem of host-pathogen PPIs prediction.

Figure 3.2: Training confusion matrix for the proof of concept model
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Training confusion matrix for human-Bacillus PPI. In the confusion matrix plot the rows

show the predicted class and the columns show the true class. The diagonal cells show

where the true class and predicted class match. The off diagonal cells show instances

where the classifier has made mistakes. The column on the right hand side of the plot

shows the accuracy for each predicted class, while the row at the bottom of the plot shows

the accuracy for each true class. The cell in the bottom right of the plot shows the overall

accuracy.

Figure 3.3: Confusion matrix plot that reflect the average result of training, testing and

validation process for the proof of concept model

3.3 Confusion matrix plot that reflect the average result of training, testing and validation

process for the human-Bacillus PPI: In the matrix the rows show the predicted class

and the columns show the true class. The diagonal cells show where the true class and

predicted class match. The off diagonal cells show instances where the classifier has made

mistakes. The column on the right hand side of the plot shows the accuracy for each

predicted class, while the row at the bottom of the plot shows the accuracy for each true

class. The cell in the bottom right of the plot shows the overall accuracy (blue).
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3.4.2 human-Bacillus anthracis PPI Performance Evaluation

In this section, we evaluate the performance of the proposed method when applied to the

set of human and Bacillus intra-species PPI data respectively. We performed a 3-fold

cross-validation to assess the model performance. Cross-validation is a model validation

technique for assessing how the results of a statistical analysis will generalize to an in-

dependent data set. Figure 3.2, 3.4 and 3.5 shows the confusion matrix of the training,

validation and testing respectively. The confusion matrix is represented by a matrix each

row of which represents the instances in a predicted class, while each column represents

the actual class. One of the advantages of using this performance evaluation tool is that

the data mining analyzer can easily see whether or not the model is confusing two classes.

The matrix also shows the accuracy of the classifier as the percentage of correctly classi-

fied patterns in a given class divided by the total number of patterns in that class. The

overall (average) accuracy of the classifier is also evaluated by using the confusion matrix

Figure 3.3. In addition to the confusion matrix we use the ROC curve to illustrate the

performance of the classifier. The ROC curve is created by plotting the true positive

rate (TPR) against the false positive rate (FPR) at various threshold settings. Figure 3.6

represent the training result for the proof of concept model. Figure 3.7 shows the proof of

concept model performance result on independent host-pathogen data for human-Bacillus

anthraces PPIs data that are experimentally verified.
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Figure 3.4: Validation result for the proof of concept model

In the matrix the rows show the predicted class and the columns show the true class.

The diagonal cells show where the true class and predicted class match. The off diagonal

cells show instances where the classifier has made mistakes. The column on the right

hand side of the plot shows the accuracy for each predicted class, while the row at the

bottom of the plot shows the accuracy for each true class. The cell in the bottom right

of the plot shows the overall accuracy.
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Figure 3.5: Proof of concept model testing result

3.5 Validation result for the human-Bacillus PPI: In the matrix the rows show the show

the predicted class and the columns show the true class. The diagonal cells show where

the true class and predicted class match. The off diagonal cells show instances where

the classifier has made mistakes. The column on the right hand side of the plot shows

the accuracy for each predicted class, while the row at the bottom of the plot shows the

accuracy for each true class. The cell in the bottom right of the plot shows the overall

accuracy (blue).
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Figure 3.6: ROC curve of proof of concept model (proof of concept model)

The curve represent the accuracy of the model using six different combinations of fea-

ture sets, namely quadruples consecutive amino acid frequencies, betweenness centrality,

clustering coefficient, degree, and sequence similarity.
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Figure 3.7: ROC curve of proof of concept model (proof of concept model)

The curve represent the accuracy of the model on independent human-Bacillus anthraces

PPIs data that has been experimentally verified.

3.4.3 Construction of Human-Mycobacterium tuberculosis PPI Pre-

diction Model

In the previous section we demonstrated a model that tests the hypotheses which starts

by considering intra-species protein-protein interactions (especially intra human and intra

M-tuberculosis) as the training set, and then we consider the extent of sequence similarity

between the target and template datasets in prediction. We follow the same procedure as

mentioned in the test model construction section 3.4.1.

The same problem formulation as described in the previous section for the earlier model,

was applied to develop the new model described in this section. Predicting physical in-

teractions between human and Mycobacterium tuberculosis protein pairs is considered as
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a binary classification task. That is, each human-M-tuberculosis protein pair belongs to

one of two classes: interaction or non-interaction. Associated with every protein, is a

numeric feature vector. Using labeled examples of the two classes and the feature vec-

tors, a function that distinguishes the two classes is learned using the neural network

classifier (see Chapter 2 Section 2.3.2 for details). The human positive and negative sets

employed were the same as in the previous model presented in the testing model, see

section 3.3.1. In the case of Mycobacterium tuberculosis there is not enough gold stan-

dard positive interactions data available. However, we extracted protein-protein interac-

tion data from PATRIC database (Wattam et al, 2014). The data sets contain different

strains of Mycobacterium such as (Mycobacterium tuberculosis C, Mycobacterium leprae,

Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv). After filtering the data

obtained from these strains, we generate 150 pairs of interacting M-tuberculosis proteins

as a positive set. In addition, the negative dataset was generated randomly as described in

Section 3.31.2. The total positive set included 500 proteins involving 150 Mycobacterium

tuberculosis proteins and 200 human proteins. In the absence of a comprehensive negative

training set of non-interacting protein pairs, a simple heuristic was applied. As a negative,

non-interacting training set of equal size, protein pairs that did not appear in the positive

training set were randomly sampled. Using such sets, the feed forward neural network

algorithm was applied, allowing cross-validation by reporting the fraction of protein pairs

that were correctly classified. The training process was repeated choosing different net-

work structure until the best performance was achieved, returning an area under the ROC

curve, (Figure 3.8). This result is above the performance of the test model constructed

in the previous section 3.3.1. In addition to the ROC, the confusion matrix was also used

for further assessment of the training process. Figures 3.9, 3.10, 3.11, and 3.12 show the

training, validation, testing, and the overall average model performance. For example, in

the training stage the model achieved 96.6% for training, 84.5% validation, 91.4% testing

and 94.0% overall model average.
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Figure 3.8: ROC curve for Human-Mycobacterium tuberculosis model

The curve represents the accuracy of the model using six different combinations of feature

sets.
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Figure 3.9: Training confusion matrix for the Human-Mycobacterium tuberculosis model

3.9 Training confusion matrix for the Human-Mycobacterium tuberculosis model

(Step2 model) In the confusion matrix plot the rows show the predicted class, and the

columns show the true class. The diagonal cells show where the true class and predicted

class match. The off diagonal cells show instances where the classifier has made mistakes.

The column on the right hand side of the plot shows the accuracy for each predicted class,

while the row at the bottom of the plot shows the accuracy for each true class. The cell

in the bottom right of the plot shows the overall accuracy.
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Figure 3.10: Validation result for the Human-Mycobacterium tuberculosis model

3.10 Validation result for the Human-Mycobacterium tuberculosis model (Step2

model). In the matrix the rows show the predicted class, and the columns show the true

class. The diagonal cells show where the true class and predicted class match. The off

diagonal cells show instances where the classifier has made mistakes. The column on the

right hand side of the plot shows the accuracy for each predicted class, while the row at

the bottom of the plot shows the accuracy for each true class. The cell in the bottom

right of the plot shows the overall accuracy.

Therefore, the model described above was used for the prediction host-pathogen

protein-protein interaction, namely human as host and M-tuberculosis as pathogen. We

start off the prediction process by preparing blind sets of unknown human-M-tuberculosis

interaction sets. The classifier returned a set 7750 human proteins that interact with 1171

M-tuberculosis proteins (Appendix Table S3,S4 supplementary data).
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Figure 3.11: The Human-Mycobacterium tuberculosis model

3.11 The testing result for the Human-Mycobacterium tuberculosis model (Step2

model). In the confusion matrix the rows show the predicted class, and the columns

show the true class. The diagonal cells show where the true class and predicted class

match. The off diagonal cells show instances where the classifier has made mistakes. The

column on the right hand side of the plot shows the accuracy for each predicted class,

while the row at the bottom of the plot shows the accuracy for each true class. The cell

in the bottom right of the plot shows the overall accuracy.
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Figure 3.12: The confusion matrix plot that reflect the average result of (training, testing

and validation) process for the Human-Mycobacterium tuberculosis model

3.12 The confusion matrix plot that reflect the average result of (training,

testing and validation) process for the Human-Mycobacterium tuberculosis model

(Step2 mode). In the matrix, the rows show the predicted class and the columns show

the true class. The diagonal cells show where the true class and predicted class match.

The off diagonal cells show instances where the classifier has made mistakes. The column

on the right hand side of the plot shows the accuracy for each predicted class, while the

row at the bottom of the plot shows the accuracy for each true class. The cell in the

bottom right of the plot shows the overall accuracy.

3.4.4 Quality Assessment of Candidate Human Proteins Pre-

dicted to Interact with M-tuberculosis

While the neural network classifier provided a large sample of candidates, such interactions

most certainly contained a considerable amount of false positives. To assess the quality

of interactions we use various items of biological evidence for further filtering. Such

evidence include gene ontology terms enrichment analysis, pathway analysis and network
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topology. This result shows a promising strategy for overcoming the lack of training data

for driving a supervised classifier, where the PPIs data was introduced from different strain

of Mycobacterium species and incorporating appropriate feature sets. The functional

assessment of the PPI network demonstrated that the interacting proteins are involved

in immunity-related functions and provide clues to the role of hypothetical proteins in

M-tuberculosis.

3.4.4.1 Functional Enrichment Analysis

Functional enrichment analysis is important for identifying the functional relevance of host

proteins predicted to be involved in host-pathogen PPIs. The presence of enriched (over-

represented) functional categories that are closely related to pathogen infection, serves

as further support for the validity of the prediction results. Molecular function term en-

richment analysis on the human proteins involved in the predicted human- M-tuberculosis

PPIs was conducted using the DAVID database (Huang et al., 2009) Table A.3 appendix

A. DAVID does not support the functional enrichment analysis of M-tuberculosis proteins

and therefore we used an in-house tool to calculate the over-represented functional terms

for the corresponding M-tuberculosis proteins.

Chande et al (2015) identified 44 secretory proteins within an infected host macrophage

that correspond to the mycobacterial virulent strain (H37Rv). Among these 44 proteins

were proteins that function in virulence, detoxification and adaptation. Five of the 44 M-

tuberculosis secretory proteins were extracted from the human-M-tuberculosis PPI dataset

to validate the predicted interactions. The chaperon protein, P9WPE9, is predicted to

interact with 34 human proteins Figure 3.14. Functional classes identified for the interact-

ing human proteins are oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor,

interferon binding, tetrapyrrole binding and heme binding (3.5). This data supports pre-

vious work that showed that chaperons facilitate efficient mycobacterial association with

macrophages and polarizing in M2-like phenotype (Hickey et al 2014; Lopes et al 2014).

The phospodiesterase cdA (P9WP65) is predicted to interact with 110 human proteins

Functional classes identified for the interacting human proteins is MHC class II receptor
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activity. This data supports 3.1. The three M-tuberculosis proteins identified above are

depicted in an interaction network with shared proteins (Figure 3.15) Figure 3.13.

Table 3.1: Functional enrichment analysis of human proteins interaction with P9WP65

M-tuberculosis

GO Term ID GO Term Name Corrected p-val

GO:0032395 MHC class II receptor activity 7.5E-12

GO:0032393 MHC class I receptor activity 1.8E-2

Figure 3.13: A subnetwork of Mycobacterium tuberculosis P9WPE9 protein predicted with

34 human proteins.
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Figure 3.14: A subnetwork of predicted interactions between human-Mycobacterium tu-

berculosis PPI.
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Figure 3.15: Molecular function distribution of human proteins targeted by M-tuberculosis

predicted by our model.

Table 3.2: Functional enrichment analysis of TB proteins involved in the predicted human-

Mycobacterium tuberculosis PPIs dataset part1

GO Term ID GO Term Name Corrected p-val Uncorrected p-val

GO:0009408 response to heat 4.50488939444e-09 3.36185775705e-11

GO:0005618 cell wall 1.39097140604e-05 2.07607672543e-07

GO:0006457 protein folding 0.0001357126 3.03834186879e-06

GO:0004451 isocitrate lyase activity 0.0007525261 2.48198542211e-05

GO:0001666 response to hypoxia 0.0007525261 2.80793311456e-05

GO:0009405 pathogenesis 0.00140295 8.28319626094e-05

GO:0005829 cytosol 0.00140295 8.37582093625e-05

GO:0006097 glyoxylate cycle 0.0021493251 0.0001443577

GO:0052572 response to host immune response 0.0039852804 0.000297409

GO:0046677 response to antibiotic 0.0070477864 0.0005785496

GO:0046421 methylisocitrate lyase activity 0.0073154356 0.0007097064

GO:0042026 protein refolding 0.0073154356 0.0007097064

GO:0042542 response to hydrogen peroxide 0.0104922548 0.0011745061

GO:0071451 cellular response to superoxide 0.0104922548 0.0011745061

GO:0009410 response to xenobiotic stimulus 0.0130229335 0.0017493493

GO:0006102 isocitrate metabolic process 0.0130229335 0.0017493493

GO:0046812 host cell surface binding 0.0162933934 0.0024318498
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Table 3.3: Functional enrichment analysis of TB proteins involved in the predicted human-

Mycobacterium tuberculosis PPIs dataset part2

GO Term ID GO Term Name Corrected p-val Uncorrected p-val

GO:0003899 DNA-directed RNA polymerase activity 0.0162933934 0.0024318498

GO:0005886 plasma membrane 0.0196106491 0.0031354111

GO:0071456 cellular response to hypoxia 0.0196106491 0.0032196588

GO:0006099 tricarboxylic acid cycle 0.0199714431 0.0034279343

GO:0040007 growth 0.0226579541 0.004058141

GO:0010039 response to iron ion 0.0262948777 0.0051019912

GO:0009267 cellular response to starvation 0.0262948777 0.0051019912

GO:0051701 interaction with host 0.0296699791 0.0059782794

GO:0001101 response to acid chemical 0.0400090554 0.0086586762

GO:0006352 DNA-templated transcription, initiation 0.0438236319 0.0100310406

GO:0005737 cytoplasm 0.0438236319 0.0101383029

GO:0016987 sigma factor activity 0.048128093 0.0114932759

GO:0005576 extracellular region 0.0495032259 0.012191093

GO:0004601 peroxidase activity 0.0536758885 0.0163986954

GO:0051409 response to nitrosative stress 0.0536758885 0.0182000653

GO:0033670 regulation of NAD+ kinase activity 0.0536758885 0.0220311483

GO:0006534 cysteine metabolic process 0.0536758885 0.0220311483

GO:0015038 glutathione disulfide oxidoreductase activity 0.0536758885 0.0220311483

GO:0050440 2-methylcitrate synthase activity 0.0536758885 0.0220311483

GO:0051336 regulation of hydrolase activity 0.0536758885 0.0220311483

GO:0004096 catalase activity 0.0536758885 0.0220311483

GO:0036440 citrate synthase activity 0.05367588857 0.0220311483

GO:0042744 hydrogen peroxide catabolic process 0.0536758885 0.0220311483

GO:0000774 adenyl-nucleotide exchange factor activity 0.0536758885 0.0220311483

GO:0010034 response to acetate 0.0536758885 0.0220311483

GO:0006880 intracellular sequestering of iron ion 0.0536758885 0.0220311483

GO:0070301 cellular response to hydrogen peroxide 0.0536758885 0.0220311483
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Table 3.4: Functional enrichment analysis of TB proteins involved in the predicted human-

Mycobacterium tuberculosis PPIs dataset part3

GO Term ID GO Term Name Corrected p-val Uncorrected p-val

GO:0080007 S-nitrosoglutathione reductase activity 0.0536758885 0.0220311483

GO:0047547 2-methylcitrate dehydratase activity 0.0536758885 0.0220311483

GO:0031071 cysteine desulfurase activity 0.0630585067 0.0328680353

GO:0003994 aconitate hydratase activity 0.0630585067 0.0328680353

GO:0006826 iron ion transport 0.0630585067 0.0328680353

GO:0090143 nucleoid organization 0.0630585067 0.0328680353

GO:0008260 3-oxoacid CoA-transferase activity 0.0630585067 0.0328680353

GO:0044183 protein binding involved in protein folding 0.0630585067 0.0328680353

GO:0034605 cellular response to heat 0.0630585067 0.0328680353

GO:0043175 RNA polymerase core enzyme binding 0.0630585067 0.0328680353

GO:0015771 trehalose transport 0.0630585067 0.0328680353

GO:0044406 adhesion of symbiont to host 0.0630585067 0.0328680353

GO:0006414 translational elongation 0.0630585067 0.0328680353

GO:0070542 response to fatty acid 0.0630585067 0.0328680353

GO:0046777 protein autophosphorylation 0.0630585067 0.032941011

GO:0006021 inositol biosynthetic process 0.0758535336 0.0435874783

GO:0070404 NADH binding 0.0758535336 0.0435874783

GO:0015968 stringent response 0.0758535336 0.0435874783

GO:0097691 bacterial extracellular vesicle 0.0758535336 0.0435874783

GO:0008199 ferric iron binding 0.0758535336 0.0435874783

GO:0004322 ferroxidase activity 0.0758535336 0.0435874783

GO:0042262 DNA protection 0.0758535336 0.0435874783

GO:0098869 cellular oxidant detoxification 0.0896488476 0.0541907213

GO:0015036 disulfide oxidoreductase activity 0.0896488476 0.0541907213

GO:0050708 regulation of protein secretion 0.0896488476 0.0541907213

GO:0016485 protein processing 0.0896488476 0.0541907213
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3.4.4.1.1 Pathway Enrichment Analysis of Proteins Involved in Host-Pathogen

PPIs Pathway enrichment analysis of human protein predicted to be targeted by M-

tuberculosis can reveal much about the functional relevance of host proteins involved in

the host-pathogen PPI. The basis for the pathway enrichment analysis stems from the fact

that the host proteins involved in host-pathogen interactions should be a set of proteins

that have functional correlation to pathways relevant to the pathogen infection. We con-

ducted pathway enrichment analysis to assess the quality of our prediction results (Table

3.5) and (Table A.5 in appendix) .

Table 3.5: Pathway enrichment analysis of human proteins involved in the predicted

host-pathogen PPIs dataset

GO Term Description corrected p-Value

hsa05330 Allograft rejection 0.0655169228523671

hsa04940 Type I diabetes mellitus 0.0587534383209521

hsa05332 Graft-versus-host disease 0.0573589240685808

hsa04620 Toll-like receptor signaling pathway 0.0522176682089858

hsa05320 Autoimmune thyroid disease 0.0411967332397079

hsa04060 Cytokine-cytokine receptor interaction 0.0127952357982488

hsa05310 Asthma 0.0116853080549702

hsa04672 Intestinal immune network for IgA production 0.00852708916093116

hsa04612 AnSystemic lupus erythematosus 0.00600444889205232

3.5 Summary

Knowledge of interactions between host and pathogen proteins is important for under-

standing the pathogenic process. The goal of this study was prediction of physical inter-

actions of proteins of Mycobacterium tuberculosis with human proteins, using a trained

neural network. We proposed a novel strategy for host-pathogen PPI prediction in the

absence of experimentally validated data. This strategy utilized tow intra-species PPI
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data to develop a binary classification model then extend the model for host-pathogen

prediction. Therefore, we start with proof of concept model that is built using human

intra PPI data combined with Bacillus anthracis intra PPI data. Thus, the model was

trained using human and Bacillus intra species data combined with the optimal feature

sets that obtained from Chapter 2. The model was tested using experimentally verified

human-Bacillus anthracis inter-species PPI data to validated the possibility of extending

the model developed using intra species data to make prediction on inter-species PPI. The

rationale behind using human-Bacillus to build the proof of concept model is that, first

there is enough human and Bacillus inter species PPI data which is important for testing

the model. Secondly, to our knowledge there is no previous work that implemented this

strategy for host-pathogen PPI prediction using machine learning techniques so that we

can conduct any comparison. However, our model shows good results for inter-species

data that motivate us to proceed for developing a model to predict PPI between human

and Mycobacterium tuberculosis. The human-M-tuberculosis PPI prediction results were

further filtered using functional annotation categories.

 

 

 

 



Chapter 4

Online Human-M-tuberculosis PPI

Predictor

4.1 Abstract

Background: A number of web tools have been developed to predict human-pathogen

protein-protein interactions that are based on homology searching methods. These include

structural information obtained from interacting domains. Despite the use of machine-

learning methods to prediction PPI, there has not been a web-accessible platform that

allows a user to screen their data against these classifier models. Results: In this study,

a host-pathogen predictor web server was designed to allow the user to submit protein

sequence pairs for human and M-tuberculosis. The front end of the server was written

in PHPframework, CSS and javascript, and the back-end program for protein-protein

interaction prediction. The PPI prediction module comprises a protein sequence data

pre-processing step and a machine learning algorithm for binary classification. The clas-

sification algorithm was implemented using pybrain, a python library for artificial neural

networks. The HPPredict webserver calculates the likelihood of a human-M-tuberculosis

protein-protein interaction using an underlying neural network model, which performs

with an accuracy of 93% as demonstrated in Chapter 3. The server can be accessed at

75
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URL:(http://hppredict.sanbi.ac.za).

4.2 Overview

To complement experimental data, several computational tools have been developed to

predict PPIs within single species (Intra) and between host-pathogen (Inter species).

However, only few online tools are available for PPI prediction. Chinnasamy et al. (2006)

developed a probability-based tree augmented naive (TAN) Bayesian network combined

with yeast PPI data for training and validation to predict protein-protein interactions

within a species. In addition, Aloy and Russell, (2003) produced a web server to predict

PPIs using homologous searching methods. Their method starts with searching homologs

of query proteins against the database of interacting domains (DBID) of known three-

dimensional complex structures. The preservation of the atomic contacts at the interaction

interface was used as a scoring matrix. Structure information has been central to number

of PPI prediction webtools (Ogmen et al., 2005; Planas-Iglesias et al., 2013). Dohkan

et al. (2006) developed a web server using a support vector machine (SVM) model to

predict PPI in yeast and human. They assume that the high level of false positives in

binary classification is due to the equality between positive and negative training sets.

Therefore, in order to improve the performance they increased the number of negatives.

Rashid et al. (2010) developed a web-server to predict PPIs in Mycobacterium tuberculosis.

They used an SVM combined with three models: i) amino acid composition, ii) dipeptide

composition and iii) biochemical class tripeptide composition. Herein, we developed a

web-based tool (HPPredict) to predict potential PPIs between human and Mycobacterium

tuberculosis that uses a feed forward artificial neural network method to decide whether

two proteins interact or not. Quadruple frequency of amino acid, sequence similarity, and

human interactome network properties were added as features. Furthermore, HPPredict

provides a likelihood score for the potential predicted PPIs.
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4.3 Implementation

HPPredict consists of two parts; a front-end web interface, written in PHPframework, CSS

and javascript, and a back-end program for protein-protein interaction prediction which

consists of two modules. One module focuses on protein sequence data pre-processing, and

a machine learning algorithm for binary classification. The classification algorithm was

implemented using pybrain, a python library for artificial neural network. The flowchart

representation of HPPredict is shown in 4.1. The back-end processes start by data parsing

where the input sequences are saved in a temporary file with job ID as filename which

is unique for each job having been submitted to the server. Secondly, the data encoding

processes are started by calling a number of python scripts This includes a script for the

five types of features (quadruple, human interactome network properties, and sequence

similarity). There is script for each feature type, combining all converted data into a

single file that is ready to pass as input to the classifier. After the data preprocessing

stage has been completed successfully, the classifier model will be executed to output the

result associated with the job ID.
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Work flow for the construction of HPPrediction

  

Design User Interface

Script for Encoding Sequence Into Quadraple Feature

Script  for Encoding sequence Into Sequence 
Similarity Feature

Script  for Encoding Sequence 
Into Network Properties Feature

Script  for Cimbining All 
Feature and Prepare Data
 for Classification

Emboss: Water
 Command

Human Network 
Properties File

Qudraple
 Feature File

Excuting the Classification
 Model Neural Network

Figure 4.1: Work flow for the construction of HPPrediction web server. This diagram

illus- trates the data parsing and binary classification model. It includes a web based user

interface.

4.4 Description of the web server

4.4.1 Home page

The home page provide the user with a brief introduction to the web server.
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Figure 4.2: Host-pathogen. Input data includes a pair of sequences in FASTA format

4.4.2 Host-pathogen prediction

Figure 4.3:

The prediction page serves as the main engine of the predictor. The user submits a pair of

protein sequences in FASTA format, Alternatively the prediction page provides a file up-

loading option. The file must contain a pair of amino acids from both host and pathogen.

After pressing the submit button the unique job ID is generated. Using this job ID a user
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can receive the result on result page.

>P9WQN5(Mycobacterium tuberculosis)

MGESERSEAFGIPRDSPLSSGDAAELEQLRREAAVLREQLENAVGSHAPTRSARDIHQLE

ARIDSLAARNSKLMETLKEARQQLLALREEVDRLGQPPSGYGVLLATHDDDTVDVFTSGR

KMRLTCSPNIDAASLKKGQTVRLNEALTVVEAGTFEAVGEISTLREILADGHRALVVGHA

DEERVVWLADPLIAEDLPDGLPEALNDDTRPRKLRPGDSLLVDTKAGYAFERIPKAEVED

LVLEEVPDVSYADIGGLSRQIEQIRDAVELPFLHKELYREYSLRPPKGVLLYGPPGCGKT

LIAKAVANSLAKKMAEVRGDDAHEAKSYFLNIKGPELLNKFVGETERHIRLIFQRAREKA

SEGTPVIVFFDEMDSIFRTRGTGVSSDVETTVVPQLLSEIDGVEGLENVIVIGASNREDM

IDPAILRPGRLDVKIKIERPDAEAAQDIYSKYLTEFLPVHADDLAEFDGDRSACIKAMIE

KVVDRMYAEIDDNRFLEVTYANGDKEVMYFKDFNSGAMIQNVVDRAKKNAIKSVLET-

GQP GLRIQHLLDSIVDEFAENEDLPNTTNPDDWARISGKKGERIVYIRTLVTGKSS-

SASRAID TESNLGQYL

>P11940(HUMAN)

MNPSAPSYPMASLYVGDLHPDVTEAMLYEKFSPAGPILSIRVCRDMITRRSLGYAYVNFQ

QPADAERALDTMNFDVIKGKPVRIMWSQRDPSLRKSGVGNIFIKNLDKSIDNKALY-

DTFS AFGNILSCKVVCDENGSKGYGFVHFETQEAAERAIEKMNGMLLNDRKVFV-

GRFKSRKERE AELGARAKEFTNVYIKNFGEDMDDERLKDLFGKFGPALSVKVMT-

DESGKSKGFGFVSFER HEDAQKAVDEMNGKELNGKQIYVGRAQKKVERQTELKRK-

FEQMKQDRITRYQGVNLYVKN LDDGIDDERLRKEFSPFGTITSAKVMMEGGRSKGFGFVCF-

SSPEEATKAVTEMNGRIVAT KPLYVALAQRKEERQAHLTNQYMQRMASVRAVPN-

PVINPYQPAPPSGYFMAAIPQTQNRA AYYPPSQIAQLRPSPRWTAQGARPHPFQN-

MPGAIRPAAPRPPFSTMRPASSQVPRVMSTQ RVANTSTQTMGPRPAAAAAAATPAVRTVPQYKYAAGVRN-

PQQHLNAQPQVTMQQPAVHVQ GQEPLTASMLASAPPQEQKQMLGERLFPLIQAMH-

PTLAGKITGMLLEIDNSELLHMLESP ESLRSKVDEAVAVLQAHQAKEAAQKAVNSAT-

GVPTV
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Alternatively the prediction page provides a file uploading option. The file must contain

a pair of amino acids from both host and pathogen. After pressing the submit button the

unique job ID is generated. Using this job ID a user can receive the result on result page.

4.4.3 Result Page

Figure 4.4:

After the data submission processes has been completed successfully, the engine will do all

the calculation such as converting amino acid sequences to numerical data and calculating

a prediction using the model. However, all these processes take place in the back-end

system. The output is a prediction score that ranges from 0 to 1. Score from 0.6 to 1

means that two proteins are interacting, but the strength of interaction depends on how

close the score is to 1.
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4.4.4 Download Page

Figure 4.5:

The download page provides all the supplementary data that was used for developing

these tools.

4.5 Conclusions

HPPredict is a convenient tool for the identification of potential protein-protein interac-

tions between a host and pathogen, which may be vital in exploring drug targets for in-

fectious diseases. This web server can also be used to construct the human-M-tuberculosis

interactome network for a novel protein whose function is unknown. In general, one

protein may interact with at least several partners including upstream and downstream

regulators. These are useful guidelines for further experimental validation of the signal-

ing network around any given protein. However, HPPredict currently provide models

for human-M-tuberculosis PPI. Additional models must be generated for other infectious

disease such as malaria. Another feature to be included in subsequent releases will be the

addition of functional annotations for the predicted PPI so that the user can interpret their

results. Finally, network analysis and visualization, are important for further elucidation
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of the result. HPPredict provides a new type of tool to facilitate the prediction of direct

or indirect protein partners and guides scientists to persue new experimental directions.

The HPPredict server is available as a public web service http://sanbi/HPPrediction/.

 

 

 

 



Chapter 5

Conclusions and recommendations

Numerous human diseases are caused by bacterial infections. Our lack of understanding

of the intimate relation between the pathogen and its host complicates the development of

therapies. Protein-protein interactions are key players in every cell function, both within

and between organisms, at every level of cellular function. Comprehensively identify-

ing these interactions are essential to understand the mechanisms by which pathogens

evade the hosts immune system. Past experimental and computational research largely

focused on identifying interactions within single organisms. However, the elucidation of

inter-species PPIs offers an alternative avenue for the design of novel chemotherapeutics.

Prediction of critical PPIs in pathogens and host-pathogen systems will allow the design

of several inhibitors at a given time. Thus, characterizing the interspecies interactome

on a systematic level has only been a recent focus. High-throughput experimental tech-

niques are being adapted to identify the interactions of both organisms at the same time.

However, there is still no single cost-effective and highly accurate experimental technique

to identify interactions on a large scale. As was the case for intra-species protein inter-

actomes, computational methods could be utilized to inform and accelerate experimental

endeavors. This thesis contributes towards identifying an interspecies interactome, specif-

ically between human and Mycobacterium tuberculosis. A mechanine learning perspective

was adopted throughout this thesis. The task of predicting PPIs were formulated in a

binary classification framework, where each possible protein pair falls into one of two
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classes, the interacting protein pairs (positive class) and the non-interacting protein pairs

(negative class). The classifiers were trained in a supervised setting. In developing these

predictors, several data and methodology-related challenges were handled. Firstly, Chap-

ter 2 describes the first supervised model. A feed forward neural network classifier was

employed to learn to distinguish interacting proteins from non-interacting pairs. One

challenge to building such a system is identifying biological information that can serve as

predictive features. Therefore, identifying information that is predictive in distinguishing

interacting protein pairs from non-interacting ones is important. Thus, we developed a

model that determines an optimal feature set that can be more representative for host-

pathogen interaction prediction. This thesis demonstrated that the quadruple amino acid

consecutive frequencies feature combined with human interactome properties plus pair-

wise sequence similarity score, can give optimal results on host-pathogen PPIs prediction.

This result was validated in a comparison to published feature selection (Cui et al., 2012;

Gomez et al., 2003; Taylor et al,. 2004) in human- HIV PPI data. Secondly, in Chapter 3

we utilized the optimal feature set obtained from Chapter 2 to develop a novel model for

human-Mycobacterium tuberculosis PPI. In Chapter 3 we use tow intra-species PPI data

in order to make inter-species prediction. To our knowledge there is no previous work that

utilize tow intra-species data combined with machine learning to predict host-pathogen

interactions. Therefore, we developed a model using human-Bacillus anthracis for which

there is available inter- species PPI data. This approach was then extended to human-M-

tuberculosis PPI prediction. Finally, in Chapter 4 we developed a web server to predict

the likelihood of two human-M-tuberculosis proteins interacting based on the model de-

veloped in Chapter 3. There are several potential directions for future extensions of this

research. Firstly, the web server can be expanded to incorporate functional information

and visualization. Secondly, the server can be modified for predicting interactions in other

Host-pathogen sys tems. Along with M-tuberculosis, there are many other clinically im-

portant pathogens for which computational models could shed light on their interaction

with the human host. The binary classification setting I provide and most of the features

I derive can be extended to predicting other host-pathogen PPIs. The limiting step will
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be the availability of the labeled data.

numerous of human diseases are caused by bacterial infections. Our lack of under-

standing of the intimate relation between the pathogen and its host complicates the de-

velopment of therapie. Protein-protein interactions are key players in every cell function,

both within and between organisms, at every level of cellular function. Comprehensively

identifying these interactions is essential towards discovering how cellular processes take

place. Past experimental and computational research largely focused on identifying inter-

actions within single organisms. However, the elucidation of inter-species PPIs offers an

alternative avenue for the design of novel chemotherapeutics. Prediction of critical PPIs

in pathogens and host-pathogen systems will allow the design of several inhibitors at a

given time. Thus, characterizing the interspecies interactome on a systematic level has

only been a recent focus. High-throughput experimental techniques have being adapted

to handle the interactions of both organisms at the same time. However, there is still no

single cost-effective and highly accurate experimental technique to identify interactions

on a large scale. As was the case for intra-species protein interactome, computational

methods could be utilized to inform and accelerate experimental endeavors.

This thesis contribute to identifying an interspecies interactome, specifically between hu-

man and Mycobacterium tuberculosis. Throughout the thesis, I employed a machine learn-

ing perspective. The task of predicting PPIs were formulated in a binary classification

framework, where each possible protein pair falls into one of two classes, the interacting

protein pairs (positive class) and the non-interacting protein pairs (negative class). The

classifiers were learnt in a supervised setting. In developing these predictors, several data

and methodology-related challenges were handled. Firstly, Chapter 2 describes the first

supervised model. A feed forward neural network classifier was employed to learn to dis-

tinguish interacting proteins from non-interacting pairs. One challenge to building such a

system is identifying biological information that can serve as predictive features. There-

fore, identifying information that is predictive in distinguishing interacting protein pairs

from non-interacting ones is important. Thus, we developed a model that determines
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an optimal feature set that can be more representative for host-pathogen interaction

prediction. However, the feature selection part shows that the quadruple amino acide

consecutive frequencies feature combined with human interactome properties plus pair-

wise sequence similarity score, can give optimal results on host-pathogen PPIs prediction.

This result was validated in a comparison to published feature selection (Cui et al., 2012;

Gomez et al., 2003; Taylor et al,. 2004) in human-HIV PPI data. Secondly, in Chapter

3 we utilized the optimal feature set obtained from Chapter 2 to develop a novel model

for human-Mycobacterium tuberculosis PPI. In Chapter 3 we use intra-species PPI data

in order to make inter-species prediction. To our knowledge there is no previous work

that utilize intra-species data combined with machine learning to predict host-pathogen

interactions. Therefore, we first developed a model on different species, named proof of

concept model where there is available inter-species PPI data. After approval of the con-

cept, then we proceed to implement it on huamn-M-tuberculosis prediction. Finally, in

Chapter 4 we developed a web server which use the model implmented in Chapter 3.

There are several potential directions for future extensions of this research. Firstly, in-

corporating additional features to improve the accuracy of the host-pathogen prediction

task. Secondly, the web server can be expanded to incorporate functional prediction

and visualization. The server can be modified for predicting interactions in other Host-

pathogen systems. Along with M-tuberculosis, there are many other clinically important

pathogens for which computational models could shed light on their interaction with the

human host. The binary classification setting I provide and most of the features I derive

can be extended to predicting other host-pathogen PPIs. The limiting step will be the

availability of the labeled data.
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Appendix A

Supplementary material

A.1 Supplementary material for Chapter 2

Quadruple Feature Set

Sample of four consecutive amino acid frequencies, which we used as quadruple feature set.

(’I’, ’I’, ’I’, ’I’), (’I’, ’I’, ’I’, ’F’), (’I’, ’I’, ’I’, ’H’), (’I’, ’I’, ’I’, ’D’), (’I’, ’I’, ’I’, ’Q’), (’I’, ’I’,

’I’, ’A’), (’I’, ’I’, ’F’, ’I’), (’I’, ’I’, ’F’, ’F’), (’I’, ’I’, ’F’, ’H’), (’I’, ’I’, ’F’, ’D’), (’I’, ’I’, ’F’,

’Q’), (’I’, ’I’, ’F’, ’A’), (’I’, ’I’, ’H’, ’I’), (’I’, ’I’, ’H’, ’F’), (’I’, ’I’, ’H’, ’H’), (’I’, ’I’, ’H’, ’D’),

(’I’, ’I’, ’H’, ’Q’), (’I’, ’I’, ’H’, ’A’), (’I’, ’I’, ’D’, ’I’), (’I’, ’I’, ’D’, ’F’), (’I’, ’I’, ’D’, ’H’), (’I’,

’I’, ’D’, ’D’), (’I’, ’I’, ’D’, ’Q’), (’I’, ’I’, ’D’, ’A’), (’I’, ’I’, ’Q’, ’I’), (’I’, ’I’, ’Q’, ’F’), (’I’, ’I’,

’Q’, ’H’), (’I’, ’I’, ’Q’, ’D’), (’I’, ’I’, ’Q’, ’Q’), (’I’, ’I’, ’Q’, ’A’), (’I’, ’I’, ’A’, ’I’), (’I’, ’I’, ’A’,

’F’), (’I’, ’I’, ’A’, ’H’), (’I’, ’I’, ’A’, ’D’), (’I’, ’I’, ’A’, ’Q’), (’I’, ’I’, ’A’, ’A’), (’I’, ’F’, ’I’,

’I’), (’I’, ’F’, ’I’, ’F’), (’I’, ’F’, ’I’, ’H’), (’I’, ’F’, ’I’, ’D’), (’I’, ’F’, ’I’, ’Q’), (’I’, ’F’, ’I’, ’A’),

(’I’, ’F’, ’F’, ’I’), (’I’, ’F’, ’F’, ’F’), (’I’, ’F’, ’F’, ’H’), (’I’, ’F’, ’F’, ’D’), (’I’, ’F’, ’ F’, ’Q’),

(’I’, ’F’, ’F’, ’A’), (’I’, ’F’, ’H’, ’I’), (’I’, ’F’, ’H’, ’F’), (’I’, ’F’, ’H’, ’H’), (’I’, ’F’, ’H’, ’D’),

(’I’, ’F’, ’H’, ’Q’), (’I’, ’F’, ’H’, ’A’), (’I’, ’F’, ’D’, ’I’), (’I’, ’F’, ’D’, ’F’), (’I’, ’F’, ’D’, ’H’),

(’I’, ’F’, ’D’, ’D’), (’I’, ’F’, ’D’, ’Q’), (’I’, ’F’, ’D’, ’A’), (’I’, ’F’, ’Q’, ’I’), (’I’, ’F’, ’Q’, ’F’),

(’I’, ’F’, ’Q’, ’H’), (’I’, ’F’, ’Q’, ’D’), (’I’, ’F’, ’Q’, ’Q’), (’I’, ’F’, ’Q’, ’A’), (’I’, ’F’, ’A’, ’I’),
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(’I’, ’F’, ’A’, ’F’), (’I’, ’F’, ’A’, ’H’), (’I’, ’F’, ’A’, ’D’), (’I’, ’F’, ’A’, ’Q’), (’I’, ’F’, ’A’, ’A’),

(’I’, ’H’, ’I’, ’I’), (’I’, ’H’, ’I’, ’F’), (’I’, ’H’, ’I’, ’H’), (’I’, ’H’, ’I’, ’D’), (’I’, ’H’, ’I’, ’Q’), (’I’,

’H’, ’I’, ’A’), (’I’, ’H’, ’F’, ’I’), (’I’, ’H’, ’F’, ’F’), (’I’, ’H’, ’F’, ’H’), (’I’, ’H’, ’F’, ’D’), (’I’,

’H’, ’F’, ’Q’), (’I’, ’H’, ’F’, ’A’), (’I’, ’H’, ’H’, ’I’), (’I’, ’H’, ’H’, ’F’), (’I’, ’H’, ’H’, ’H’), (’I’,

’H’, ’H’, ’D’), (’I’, ’H’, ’H’, ’Q’), (’I’, ’H’, ’H’, ’A’), (’I’, ’H’, ’D’, ’I’), (’I’, ’H’, ’D’, ’F’), (’I’,

’H’, ’D’, ’H’), (’ I’, ’H’, ’D’, ’D’), (’I’, ’H’, ’D’, ’Q’), (’I’, ’H’, ’D’, ’A’), (’I’, ’H’, ’Q’, ’I’),

(’I’, ’H’, ’Q’, ’F’), (’I’, ’H’, ’Q’, ’H’), (’I’, ’H’, ’Q’, ’D’), (’I’, ’H’, ’Q’, ’Q’), (’I’, ’H’, ’Q’,

’A’), (’I’, ’H’, ’A’, ’I’), (’I’, ’H’, ’A’, ’F’), (’I’, ’H’, ’A’, ’H’), (’I’, ’H’, ’A’, ’D’), (’I’, ’H’, ’A’,

’Q’), (’I’, ’H’, ’A’, ’A’), (’I’, ’D’, ’I’, ’I’), (’I’, ’D’, ’I’, ’F’), (’I’, ’D’, ’I’, ’H’), (’I’, ’D’, ’I’,

’D’), (’I’, ’D’, ’I’, ’Q’), (’I’, ’D’, ’I’, ’A’), (’I’, ’D’, ’F’, ’I’), (’I’, ’D’, ’F’, ’F’), (’I’, ’D’, ’F’,

’H’), (’I’, ’D’, ’F’, ’D’), (’I’, ’D’, ’F’, ’Q’), (’I’, ’D’, ’F’, ’A’), (’I’, ’D’, ’H’, ’I’), (’I’, ’D’, ’H’,

’F’), (’I’, ’D’, ’H’, ’H’), (’I’, ’D’, ’H’, ’D’), (’I’, ’D’, ’H’, ’Q’), (’I’, ’D’, ’H’, ’A’), (’I’, ’D’,

’D’, ’I’), (’I’, ’D’, ’D’, ’F’), (’I’, ’D’, ’D’, ’H’), (’I’, ’D’, ’D’, ’D’), (’I’, ’D’, ’D’, ’Q’), (’I’,

’D’, ’D’, ’A’), (’I’, ’D’, ’Q’, ’I’), (’I’, ’D’, ’Q’, ’F’), (’I’, ’D’, ’Q’, ’H’), (’I’, ’D’, ’Q’, ’D’),

(’I’, ’D’, ’Q’, ’Q’), (’I’, ’D’, ’Q’, ’A’), (’I’, ’D’, ’A’, ’I’), (’I’, ’D’, ’A’ , ’F’), (’I’, ’D’, ’A’,

’H’), (’I’, ’D’, ’A’, ’D’), (’I’, ’D’, ’A’, ’Q’), (’I’, ’D’, ’A’, ’A’), (’I’, ’Q’, ’I’, ’I’), (’I’, ’Q’, ’I’,

’F’), (’I’, ’Q’, ’I’, ’H’), (’I’, ’Q’, ’I’, ’D’), (’I’, ’Q’, ’I’, ’Q’), (’I’, ’Q’, ’I’, ’A’), (’I’, ’Q’, ’F’,

’I’), (’I’, ’Q’, ’F’, ’F’), (’I’, ’Q’, ’F’, ’H’), (’I’, ’Q’, ’F’, ’D’), (’I’, ’Q’, ’F’, ’Q’), (’I’, ’Q’, ’F’,

’A’), (’I’, ’Q’, ’H’, ’I’), (’I’, ’Q’, ’H’, ’F’), (’I’, ’Q’, ’H’, ’H’), (’I’, ’Q’, ’H’, ’D’), (’I’, ’Q’,

’H’, ’Q’), (’I’, ’Q’, ’H’, ’A’), (’I’, ’Q’, ’D’, ’I’), (’I’, ’Q’, ’D’, ’F’), (’I’, ’Q’, ’D’, ’H’), (’I’,

’Q’, ’D’, ’D’), (’I’, ’Q’, ’D’, ’Q’), (’I’, ’Q’, ’D’, ’A’), (’I’, ’Q’, ’Q’, ’I’), (’I’, ’Q’, ’Q’, ’F’),

(’I’, ’Q’, ’Q’, ’H’), (’I’, ’Q’, ’Q’, ’D’), (’I’, ’Q’, ’Q’, ’Q’), (’I’, ’Q’, ’Q’, ’A’), (’I’, ’Q’, ’A’,

’I’), (’I’, ’Q’, ’A’, ’F’), (’I’, ’Q’, ’A’, ’H’), (’I’, ’Q’, ’A’, ’D’), (’I’, ’Q’, ’A’, ’Q’), (’I’, ’Q’,

’A’, ’A’), (’I’, ’A’, ’I’, ’I’), (’I’, ’A’, ’I’, ’F’)

Triple Feature Set

Sample of three consecutive amino acid frequencies, which we used as triple feature set.

(’I’, ’V’, ’L’), (’I’, ’V’, ’M’), (’I’, ’V’, ’F’), (’I’, ’V’, ’Y’), (’I’, ’V’, ’W’), (’I’, ’V’, ’H’),

(’I’, ’V’, ’K’), (’I’, ’V’, ’R’), (’I’, ’V’, ’D’), (’I’, ’V’, ’E’), (’I’, ’V’, ’Q’), (’I’, ’V’, ’N’), (’I’,
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’V’, ’T’), (’I’, ’V’, ’P’), (’I’, ’V’, ’A’), (’I’, ’V’, ’C’), (’I’, ’V’, ’G’), (’I’, ’V’, ’S’), (’I’, ’L’,

’V’), (’I’, ’L’, ’M’), (’I’, ’L’, ’F’), (’I’, ’L’, ’Y’), (’I’, ’L’, ’W’), (’I’, ’L’, ’H’), (’I’, ’L’, ’K’),

(’I’, ’L’, ’R’), (’I’, ’L’, ’D’), (’I’, ’L’, ’E’), (’I’, ’L’, ’Q’), (’I’, ’L’, ’N’), (’I’, ’L’, ’T’), (’I’, ’L’,

’P’), (’I’, ’L’, ’A’), (’I’, ’L’, ’C’), (’I’, ’L’, ’G’), (’I’, ’L’, ’S’), (’I’, ’M’, ’V’), (’I’, ’M’, ’L’),

(’I’, ’M’, ’F’), (’I’, ’M’, ’Y’), (’I’, ’M’, ’W’), (’I’, ’M’, ’H’), (’I’, ’M’, ’K’), (’I’, ’M’, ’R’),

(’I’, ’M’, ’D’), (’I’, ’M’, ’E’), (’I’, ’M’, ’Q’), (’I’, ’M’, ’N’), (’I’, ’M’, ’T’), (’I’, ’M’, ’P’), (’I’,

’M’, ’A’), (’I’, ’M’, ’C’), (’I’, ’M’, ’G’), (’I’, ’M’, ’S’), (’V’, ’I’, ’L’), (’V’, ’I’, ’M’), (’V’, ’I’,

’F’), (’V’, ’I’, ’Y’), (’V’, ’I’, ’W’), (’V’, ’I’, ’H’), (’V’ , ’I’, ’K’), (’V’, ’I’, ’R’), (’V’, ’I’, ’D’),

(’V’, ’I’, ’E’), (’V’, ’I’, ’Q’), (’V’, ’I’, ’N’), (’V’, ’I’, ’T’), (’V’, ’I’, ’P’), (’V’, ’I’, ’A’), (’V’,

’I’, ’C’), (’V’, ’I’, ’G’), (’V’, ’I’, ’S’), (’V’, ’L’, ’I’), (’V’, ’L’, ’M’), (’V’, ’L’, ’F’), (’V’, ’L’,

’Y’), (’V’, ’L’, ’W’), (’V’, ’L’, ’H’), (’V’, ’L’, ’K’), (’V’, ’L’, ’R’), (’V’, ’L’, ’D’), (’V’, ’L’,

’E’), (’V’, ’L’, ’Q’), (’V’, ’L’, ’N’), (’V’, ’L’, ’T’), (’V’, ’L’, ’P’), (’V’, ’L’, ’A’), (’V’, ’L’,

’C’), (’V’, ’L’, ’G’), (’V’, ’L’, ’S’), (’V’, ’M’, ’I’), (’V’, ’M’, ’L’), (’V’, ’M’, ’F’), (’V’, ’M’,

’Y’), (’V’, ’M’, ’W’), (’V’, ’M’, ’H’), (’V’, ’M’, ’K’), (’V’, ’M’, ’R’), (’V’, ’M’, ’D’), (’V’,

’M’, ’E’), (’V’, ’M’, ’Q’), (’V’, ’M’, ’N’), (’V’, ’M’, ’T’), (’V’, ’M’, ’P’), (’V’, ’M’, ’A’), (’V’,

’M’, ’C’), (’V’, ’M’, ’G’), (’V’, ’M’, ’S’), (’L’, ’I’, ’V’), (’L’, ’I’, ’M’), (’L’, ’I’, ’F’), (’L’,

’I’, ’Y’), (’L’, ’I’, ’W’), (’L’, ’I’, ’H’), (’L’, ’I’, ’K’), (’L’, ’I’, ’R’), (’L’, ’I’, ’D’), (’L’, ’I’,

’E’), (’L’, ’I’, ’Q’), (’L’, ’I’, ’N’), (’L’, ’ I’, ’T’), (’L’, ’I’, ’P’), (’L’, ’I’, ’A’), (’L’, ’I’, ’C’),

(’L’, ’I’, ’G’), (’L’, ’I’, ’S’), (’L’, ’V’, ’I’), (’L’, ’V’, ’M’), (’L’, ’V’, ’F’), (’L’, ’V’, ’Y’), (’L’,

’V’, ’W’), (’L’, ’V’, ’H’), (’L’, ’V’, ’K’), (’L’, ’V’, ’R’), (’L’, ’V’, ’D’), (’L’, ’V’, ’E’), (’L’,

’V’, ’Q’), (’L’, ’V’, ’N’), (’L’, ’V’, ’T’), (’L’, ’V’, ’P’), (’L’, ’V’, ’A’), (’L’, ’V’, ’C’), (’L’,

’V’, ’G’), (’L’, ’V’, ’S’), (’L’, ’M’, ’I’), (’L’, ’M’, ’V’), (’L’, ’M’, ’F’), (’L’, ’M’, ’Y’), (’L’,

’M’, ’W’), (’L’, ’M’, ’H’), (’L’, ’M’, ’K’), (’L’, ’M’, ’R’), (’L’, ’M’, ’D’), (’L’, ’M’, ’E’), (’L’,

’M’, ’Q’), (’L’, ’M’, ’N’), (’L’, ’M’, ’T’), (’L’, ’M’, ’P’), (’L’, ’M’, ’A’), (’L’, ’M’, ’C’), (’L’,

’M’, ’G’), (’L’, ’M’, ’S’), (’M’, ’I’, ’V’), (’M’, ’I’, ’L’), (’M’, ’I’, ’F’), (’M’, ’I’, ’Y’), (’M’,

’I’, ’W’), (’M’, ’I’, ’H’), (’M’, ’I’, ’K’), (’M’, ’I’, ’R’), (’M’, ’I’, ’D’), (’M’, ’I’, ’E’), (’M’,

’I’, ’Q’), (’M’, ’I’, ’N’), (’M’, ’I’, ’T’), (’M’, ’I’, ’P’), (’M’, ’I’, ’A’), (’M’, ’I’, ’C’), (’M’, ’I’,

’G’), (’M’, ’I’, ’S’), (’M’, ’V’, ’I’), (’M’, ’V’, ’L’), (’M’, ’V’, ’F’), (’M’, ’V’, ’Y’), (’M’, ’V’,

’W’), (’M’, ’V’, ’H’), (’M’, ’V’, ’K’), (’M’, ’V’, ’R’), (’M’, ’V’, ’D’), (’M’, ’V’, ’E’), (’M’,
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’V’, ’Q’), (’M’, ’V’, ’N’), (’M’, ’V’, ’T’), (’M’, ’V’, ’P’), (’M’, ’V’, ’A’), (’M’, ’V’, ’C’), (’M’,

’V’, ’G’), (’M’, ’V’, ’S’), (’M’, ’L’, ’I’), (’M’, ’L’, ’V’), (’M’, ’L’, ’F’), (’M’, ’L’, ’Y’), (’M’,

’L’, ’W’), (’M’, ’L’, ’H’), (’M’, ’L’, ’K’), (’M’, ’L’, ’R’), (’M’, ’L’, ’D’), (’M’, ’L’, ’E’), (’M’,

’L’, ’Q’), (’M’, ’L’, ’N’), (’M’, ’L’, ’T’), (’M’, ’L’, ’P’), (’M’, ’L’, ’A’), (’M’, ’L’, ’C’), (’M’,

’L’, ’G’), (’M’, ’L’, ’S’)

Table A.1: Significantly enriched GO terms for human proteins predicted to interact with

Bacillus anthraces based on artificial neural network using using DAVID database.

GO Term Description P-Value

GO:0051015 actin filament binding 2.752293578

GO:0042802 identical protein binding 8.0275229358

GO:0019899 enzyme binding 6.6513761468

GO:0008092 cytoskeletal protein binding 6.4220183486

GO:0043566 structure-specific DNA binding 2.9816513761

GO:0008134 transcription factor binding 6.1926605505

GO:0046983 protein dimerization activity 6.4220183486

GO:0016564 transcription repressor activity 4.3577981651

GO:0003690 double-stranded DNA binding 2.0642201835

GO:0003677 DNA binding 18.119266055

GO:0042803 protein homodimerization activity 4.128440367

GO:0030528 transcription regulator activity 12.6146788991

GO:0019900 kinase binding 2.752293578

GO:0043565 sequence-specific DNA binding 6.1926605505

GO:0048306 calcium-dependent protein binding 1.1467889908

GO:0016563 transcription activator activity 4.5871559633

GO:0043425 bHLH transcription factor binding 0.6880733945

GO:0003779 actin binding 3.8990825688
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GO:0060589 nucleoside-triphosphatase regulator

activity

4.5871559633

GO:0019901 protein kinase binding 2.2935779817

GO:0030695 GTPase regulator activity 4.3577981651

GO:0035258 steroid hormone receptor binding 1.1467889908

GO:0019903 protein phosphatase binding 1.1467889908

GO:0046982 protein heterodimerization activity 2.752293578

GO:0005083 small GTPase regulator activity 3.2110091743

GO:0003712 transcription cofactor activity 3.8990825688

GO:0051427 hormone receptor binding 1.6055045872

GO:0019902 phosphatase binding 1.1467889908

GO:0051082 unfolded protein binding 1.8348623853

GO:0050681 androgen receptor binding 0.9174311927

GO:0003714 transcription corepressor activity 2.0642201835

GO:0030742 GTP-dependent protein binding 0.6880733945

GO:0048365 Rac GTPase binding 0.6880733945

GO:0047485 protein N-terminus binding 1.376146789

GO:0015631 tubulin binding 1.6055045872

GO:0019904 protein domain specific binding 3.4403669725

GO:0003723 RNA binding 6.1926605505

GO:0035257 nuclear hormone receptor binding 1.376146789

GO:0043047 single-stranded telomeric DNA

binding

0.4587155963

GO:0003697 single-stranded DNA binding 1.1467889908

GO:0019838 growth factor binding 1.6055045872

GO:0042162 telomeric DNA binding 0.6880733945

GO:0019865 immunoglobulin binding 0.6880733945

GO:0005096 GTPase activator activity 2.5229357798

GO:0003700 transcription factor activity 7.7981651376
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GO:0010843 promoter binding 1.1467889908

GO:0005201 extracellular matrix structural con-

stituent

1.376146789

GO:0032393 MHC class I receptor activity 0.6880733945

GO:0005086 ARF guanyl-nucleotide exchange

factor activity

0.6880733945

GO:0003743 translation initiation factor activity 1.1467889908

GO:0042289 MHC class II protein binding 0.4587155963

GO:0030911 TPR domain binding 0.4587155963

GO:0005099 Ras GTPase activator activity 1.376146789

GO:0005085 guanyl-nucleotide exchange factor

activity

1.8348623853

GO:0003702 RNA polymerase II transcription

factor activity

2.5229357798

GO:0003713 transcription coactivator activity 2.2935779817

Table A.2: Significantly enriched GO terms for human proteins predicted to interact with

Bacillus anthraces based on artificial neural network using using DAVID database.

GO Term Description P-Value

GO:0008066 glutamate receptor activity 3.6253776435

GO:0020037 heme binding 3.9274924471

GO:0046906 tetrapyrrole binding 3.9274924471

GO:0010851 cyclase regulator activity 1.5105740181

GO:0004672 protein kinase activity 8.4592145015

GO:0004674 protein serine/threonine kinase ac-

tivity

6.6465256798

GO:0051119 sugar transmembrane transporter

activity

1.8126888218
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GO:0001640 adenylate cyclase inhibiting

metabotropic glutamate recep-

tor activity

1.2084592145

GO:0005355 glucose transmembrane transporter

activity

1.5105740181

GO:0019825 oxygen binding 2.1148036254

GO:0005402 cation:sugar symporter activity 1.5105740181

GO:0005351 sugar:hydrogen symporter activity 1.5105740181

GO:0010853 cyclase activator activity 1.2084592145

GO:0030250 guanylate cyclase activator activity 1.2084592145

GO:0003677 DNA binding 20.8459214502

GO:0004970 ionotropic glutamate receptor activ-

ity

1.5105740181

GO:0015149 hexose transmembrane transporter

activity

1.5105740181

GO:0030249 guanylate cyclase regulator activity 1.2084592145

GO:0009055 electron carrier activity 4.2296072508

GO:0005234 extracellular-glutamate-gated ion

channel activity

1.5105740181

GO:0015145 monosaccharide transmembrane

transporter activity

1.5105740181

GO:0015295 solute:hydrogen symporter activity 1.5105740181

GO:0070330 aromatase activity 1.2084592145

GO:0005070 SH3/SH2 adaptor activity 1.5105740181

GO:0005506 iron ion binding 3.9274924471

GO:0017076 purine nucleotide binding 15.4078549849

GO:0000166 nucleotide binding 17.5226586103

GO:0032555 purine ribonucleotide binding 14.501510574

GO:0032553 ribonucleotide binding 14.501510574
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GO:0008395 steroid hydroxylase activity 0.9063444109

GO:0030554 adenyl nucleotide binding 12.6888217523

GO:0004373 glycogen (starch) synthase activity 0.6042296073

GO:0018685 alkane 1-monooxygenase activity 0.6042296073

GO:0008943 glyceraldehyde-3-phosphate dehy-

drogenase activity

0.6042296073

GO:0004357 glutamate-cysteine ligase activity 0.6042296073

GO:0001642 group III metabotropic glutamate

receptor activity

0.6042296073

GO:0000774 adenyl-nucleotide exchange factor

activity

0.6042296073

GO:0008067 metabotropic glutamate, GABA-B-

like receptor activity

0.6042296073

GO:0060090 molecular adaptor activity 1.5105740181

GO:0001883 purine nucleoside binding 12.6888217523

GO:0032393 MHC class I receptor activity 0.9063444109

GO:0019992 diacylglycerol binding 1.5105740181

GO:0001882 nucleoside binding 12.6888217523

GO:0015631 tubulin binding 1.8126888218

GO:0005524 ATP binding 11.7824773414

GO:0008017 microtubule binding 1.5105740181

GO:0005230 extracellular ligand-gated ion chan-

nel activity

1.5105740181

GO:0032559 adenyl ribonucleotide binding 11.7824773414

GO:0032396 inhibitory MHC class I receptor ac-

tivity

0.6042296073

GO:0051287 NAD or NADH binding 1.2084592145

GO:0050662 coenzyme binding 2.416918429

GO:0046983 protein dimerization activity 5.1359516616
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GO:0008568 microtubule-severing ATPase activ-

ity

0.6042296073

GO:0051219 phosphoprotein binding 0.9063444109

A.2 Supplementary material for Chapter 3

A.2.1 Functional Enrichment Analysis

Table A.3: Significantly enriched GO terms for human proteins predicted to interact

with Mycobacterium tuberculosis based on artificial neural network using using DAVID

database.

GO Term Description P-Value

GO:0042611 MHC protein complex 3.23544921613908E-033

GO:0042613 MHC class II protein complex 4.82140931562631E-030

GO:0044459 plasma membrane part 1.35280381858508E-017

GO:0005615 extracellular space 7.23503205138012E-016

GO:0044421 extracellular region part 4.17180171700974E-013

GO:0005886 plasma membrane 7.11456314393665E-013

GO:0005887 integral to plasma membrane 1.10173418858245E-010

GO:0031226 intrinsic to plasma membrane 2.25524941885622E-010

GO:0005576 extracellular region 1.12807686190366E-007

GO:0009986 cell surface 3.88220988341176E-007

GO:0043020 NADPH oxidase complex 0.000002909

GO:0009897 external side of plasma membrane 9.90036867574453E-006

GO:0042612 MHC class I protein complex 2.31643760969542E-005

GO:0031224 intrinsic to membrane 0.0001789811

GO:0016021 integral to membrane 0.000253924

GO:0045121 membrane raft 0.0004491051
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GO:0000267 cell fraction 0.0004504223

GO:0046696 lipopolysaccharide receptor com-

plex

0.0015379475

GO:0005625 soluble fraction 0.002040066

GO:0042825 TAP complex 0.0031765206

GO:0042824 MHC class I peptide loading com-

plex

0.0053559954

GO:0031982 vesicle 0.0103813822

GO:0043005 neuron projection 0.0113540174

GO:0005578 proteinaceous extracellular matrix 0.0200357283

GO:0043514 interleukin-12 complex 0.0250339938

GO:0045177 apical part of cell 0.0255253642

GO:0030141 secretory granulev 0.0264316574

GO:0005792 microsome 0.0304527589

GO:0031012 extracellular matrix 0.0305916012

GO:0055037 recycling endosome 0.0335509649

GO:0042598 vesicular fraction 0.0348446272

GO:0010008 endosome membrane 0.034982789

GO:0044440 endosomal part 0.034982789

GO:0030139 endocytic vesicle 0.0381731621

GO:0005768 endosome 0.0459514446

GO:0030870 Mre11 complex 0.0494450822

GO:0030425 dendrite 0.05536914

GO:0042995 cell projectionv 0.0567679446

GO:0043235 receptor complex 0.058834271

GO:0031410 cytoplasmic vesicle 0.0618097512

GO:0048471 perinuclear region of cytoplasm 0.0720397621

GO:0030670 phagocytic vesicle membrane 0.0732486703

GO:0005624 membrane fraction 0.0854260851

 

 

 

 



114 APPENDIX A. SUPPLEMENTARY MATERIAL

GO:0016324 apical plasma membrane 0.0872619927

GO:0005773 vacuole 0.0991265809

A.2.2 Cellular Compartment Analysis of Human Proteins Tar-

geted by Predicted Host Pathogen PPIs.

Table A.4: Cellular compartment significantly enriched GO terms for human proteins

predicted to interact with Mycobacterium tuberculosis based on artificial neural network

using DAVID database.

GO:0042611 MHC protein complex 3.23544921613908E-033

GO:0042613 MHC class II protein complex 4.82140931562631E-030

GO:0044459 plasma membrane part 1.35280381858508E-017

GO:0005615 extracellular space 7.23503205138012E-016

GO:0044421 extracellular region part 4.17180171700974E-013

GO:0005886 plasma membrane 7.11456314393665E-013

GO:0005887 integral to plasma membrane 1.10173418858245E-010

GO:0031226 intrinsic to plasma membrane 2.25524941885622E-010

GO:0005576 extracellular region 1.12807686190366E-007

GO:0009986 cell surface 3.88220988341176E-007

GO:0043020 MHC protein complex 3.23544921613908E-033

GO:0042613 MHC class II protein complex 4.82140931562631E-030

GO:0044459 plasma membrane part 1.35280381858508E-017

GO:0005615 extracellular space 7.23503205138012E-016

GO:0044421 extracellular region part 4.17180171700974E-013

GO:0005886 plasma membrane 7.11456314393665E-013
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GO:0005887 integral to plasma membrane 1.10173418858245E-010

GO:0031226 intrinsic to plasma membrane 2.25524941885622E-010

GO:0005576 extracellular region 1.12807686190366E-007

GO:0009986 cell surface 3.88220988341176E-007

GO:0043020 MHC protein complex 3.23544921613908E-033

GO:0042613 MHC class II protein complex 4.82140931562631E-030

GO:0044459 plasma membrane part 1.35280381858508E-017

GO:0005615 extracellular space 7.23503205138012E-016

GO:0044421 extracellular region part 4.17180171700974E-013

GO:0005886 plasma membrane 7.11456314393665E-013

GO:0005887 integral to plasma membrane 1.10173418858245E-010

GO:0031226 intrinsic to plasma membrane 2.25524941885622E-010

GO:0005576 extracellular region 1.12807686190366E-007

GO:0009986 cell surface 3.88220988341176E-007

GO:0043020 NADPH oxidase complex 0.000002909

GO:0009897 external side of plasma membrane 9.90036867574453E-006

GO:0042612 MHC class I protein complex 2.31643760969542E-005

GO:0031224 intrinsic to membrane 0.0001789811

GO:0016021 integral to membrane 0.000253924

GO:0045121 membrane raft 0.0004491051

GO:0000267 cell fraction 0.0004504223

GO:0046696 lipopolysaccharide receptor com-

plex

0.0015379475

GO:0005625 soluble fraction 0.002040066

GO:0042825 TAP complex 0.0031765206

GO:0042824 MHC class I peptide loading com-

plex

0.0053559954

GO:0031982 vesicle 0.0103813822

GO:0043005 neuron projection 0.0113540174
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GO:0005578 proteinaceous extracellular matrix 0.0200357283

GO:0043514 interleukin-12 complex 0.0250339938

GO:0045177 apical part of cell 0.0255253642

GO:0030141 secretory granule 0.0264316574

GO:0005792 microsome 0.0304527589

GO:0031012 extracellular matrix 0.0305916012

GO:0055037 recycling endosome 0.0335509649

GO:0042598 vesicular fraction 0.0348446272

GO:0010008 endosome membrane 0.034982789

GO:0044440 endosomal part 0.034982789

GO:0030139 endocytic vesicle 0.0381731621

GO:0005768 endosome 0.0459514446

GO:0030870 Mre11 complex 0.0494450822

GO:0030425 dendrite 0.05536914

GO:0042995 cell projection 0.0567679446

GO:0043235 receptor complex 0.058834271

GO:0031410 cytoplasmic vesicle 0.0618097512

GO:0048471 perinuclear region of cytoplasm 0.0720397621

GO:0030670 phagocytic vesicle membrane 0.0732486703

GO:0005624 membrane fraction 0.0854260851

GO:0016324 apical plasma membrane 0.0872619927

GO:0005773 vacuole 0.0991265809

GO:0009897 external side of plasma membrane 9.90036867574453E-006

GO:0042612 MHC class I protein complex 2.31643760969542E-005

GO:0031224 intrinsic to membrane 0.0001789811

GO:0016021 integral to membrane 0.000253924

GO:0045121 membrane raft 0.0004491051

GO:0000267 cell fraction 0.0004504223
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GO:0046696 lipopolysaccharide receptor com-

plex

0.0015379475

GO:0005625 soluble fraction 0.002040066

GO:0042825 TAP complex 0.0031765206

GO:0042824 MHC class I peptide loading com-

plex

0.0053559954

GO:0031982 vesicle 0.0103813822

GO:0043005 neuron projection 0.0113540174

GO:0005578 proteinaceous extracellular matrix 0.0200357283

GO:0043514 interleukin-12 complex 0.0250339938

GO:0045177 apical part of cell 0.0255253642

GO:0030141 secretory granule 0.0264316574

GO:0005792 microsome 0.0304527589

GO:0031012 extracellular matrix 0.0305916012

GO:0055037 recycling endosome 0.0335509649

GO:0042598 vesicular fraction 0.0348446272

GO:0010008 endosome membrane 0.034982789

GO:0044440 endosomal part 0.034982789

GO:0030139 endocytic vesicle 0.0381731621

GO:0005768 endosome 0.0459514446

GO:0030870 Mre11 complex 0.0494450822

GO:0030425 dendrite 0.05536914

GO:0042995 cell projection 0.0567679446

GO:0043235 receptor complex 0.058834271

GO:0031410 cytoplasmic vesicle 0.0618097512

GO:0048471 perinuclear region of cytoplasm 0.0720397621

GO:0030670 phagocytic vesicle membrane 0.0732486703

GO:0005624 membrane fraction 0.0854260851

GO:0016324 apical plasma membrane 0.0872619927
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GO:0005773 vacuole 0.0991265809

GO:0009897 external side of plasma membrane 9.90036867574453E-006

GO:0042612 MHC class I protein complex 2.31643760969542E-005

GO:0031224 intrinsic to membrane 0.0001789811

GO:0016021 integral to membrane 0.000253924

GO:0045121 membrane raft 0.0004491051

GO:0000267 cell fraction 0.0004504223

GO:0046696 lipopolysaccharide receptor com-

plex

0.0015379475

GO:0005625 soluble fraction 0.002040066

GO:0042825 TAP complex 0.0031765206

GO:0042824 MHC class I peptide loading com-

plex

0.0053559954

GO:0031982 vesicle 0.0103813822

GO:0043005 neuron projection 0.0113540174

GO:0005578 proteinaceous extracellular matrix 0.0200357283

GO:0043514 interleukin-12 complex 0.0250339938

GO:0045177 apical part of cell 0.0255253642

GO:0030141 secretory granule 0.0264316574

GO:0005792 microsome 0.0304527589

GO:0031012 extracellular matrix 0.0305916012

GO:0055037 recycling endosome 0.0335509649

GO:0042598 vesicular fraction 0.0348446272

GO:0010008 endosome membrane 0.034982789

GO:0044440 endosomal part 0.034982789

GO:0030139 endocytic vesicle 0.0381731621

GO:0005768 endosome 0.0459514446

GO:0030870 Mre11 complex 0.0494450822

GO:0030425 dendrite 0.05536914
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GO:0042995 cell projection 0.0567679446

GO:0043235 receptor complex 0.058834271

GO:0031410 cytoplasmic vesicle 0.0618097512

GO:0048471 perinuclear region of cytoplasm 0.0720397621

GO:0030670 phagocytic vesicle membrane 0.0732486703

GO:0005624 membrane fraction 0.0854260851

GO:0016324 apical plasma membrane 0.0872619927

GO:0005773 vacuole 0.0991265809

A.2.3 Pathway Enrichment Analysis

Table A.5: Significantly enriched pathways for human proteins involved in the predicted

host-pathogen PPIs dataset.

Term Description P-value

hsa05330 Allograft rejection 1.43961320988873E-022

hsa04940 Type I diabetes mellitus 6.63451812361417E-021

hsa05332 Graft-versus-host disease 1.91008931630884E-018

hsa04620 Toll-like receptor signaling pathway 3.52723400581991E-016

hsa05320 Autoimmune thyroid disease 4.32686009511781E-016

hsa04060 Cytokine-cytokine receptor interac-

tion

1.79254275419825E-015

hsa05310 Asthma 5.72234157506714E-013

hsa04672 Intestinal immune network for IgA

production

2.31359584030868E-012

hsa04612 Antigen processing and presenta-

tion

4.06974087441091E-011

hsa05322 Systemic lupus erythematosus 4.88182455888323E-008
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hsa05416 Viral myocarditis 6.1708141275611E-008

hsa04630 Jak-STAT signaling pathway 4.59215307449203E-007

hsa04640 Hematopoietic cell lineage 5.48180015452256E-007

hsa04514 Cell adhesion molecules (CAMs) 1.00650660616269E-005

hsa04650 Natural killer cell mediated cytotox-

icity

0.000245965

hsa04621 NOD-like receptor signaling path-

way

0.0005455903

hsa04623 Cytosolic DNA-sensing pathway 0.0016455838

hsa00980 Metabolism of xenobiotics by cy-

tochrome

P450 0.002584611

hsa00982 Drug metabolism 0.0030556494

hsa04622 RIG-I-like receptor signaling path-

way

0.0060044489

hsa05020 Prion diseases 0.0085270892

hsa04062 Chemokine signaling pathway 0.0116853081

hsa04660 T cell receptor signaling pathway 0.0127952358

hsa00590 Arachidonic acid metabolism 0.0411967332

hsa04210 Apoptosis 0.0522176682

hsa04670 Leukocyte transendothelial migra-

tion

0.0573589241

hsa04614 Renin-angiotensin system 0.0587534383

hsa04144 Endocytosis 0.0655169229
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