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Abstract 

Due to the rapid depletion of fossil fuel reserves and the production of environmentally 

harmful by-products such as carbon dioxide, there is an urgent need for alternate sustainable 

clean energy. One of the leading candidates in this endeavour is hydrogen, which can be used 

as an energy carrier since it has a high energy density, zero emissions and is produced from 

non-depletable resources such as water. The major challenge hindering a hydrogen economy 

is the lack of safe and effective storage technologies for mobile applications. A prospective 

solution to this problem lies in the use of porous powdered materials, which adsorb the 

hydrogen gas. However, the integration of these powdered materials into a storage tank 

system, results in the pipelines being contaminated during filling cycles. This necessitates the 

shaping of the porous powdered materials. Among the many shaping techniques available, 

the electrospinning technique has been proposed as a promising technology since it is a 

versatile process that is easily scaled-up making it attractive for the applications of the study. 

Furthermore, the electrospinning process enables the synthesis of nano-sized fibres with 

attractive hydrogen sorption characteristics. In this regard, the current study employs the 

electrospinning technique to synthesise electrospun composite fibres for mobile hydrogen 

storage applications. 

After electrospinning three polymers, polyacrylonitrile (PAN) was selected as the most 

suitable polymer because it yielded bead-free electrospun fibres. However, the diameter of 

the PAN fibres was large/thick which prompted further optimisation of the electrospinning 

parameters. The optimised electrospinning conditions that yield unbeaded fibres within the 

desired diameter range (of 300-500 nm) were a PAN concentration of 10 wt%, a flow rate of 

0.4 mL/h, a distance of 10 cm between the needle tip and collector plate, and an applied 

voltage of 8 kV. The study then progressed to the synthesis and characterisation of the 

pristine porous powdered materials which adsorb hydrogen gas. The porous powdered 

materials investigated were commercial zeolite 13X, its synthesised templated carbon 

derivative (ZTC) and Zr (UiO-66) and Cr (MIL-101) based metal-organic frameworks 

(MOFs). ZTC was synthesised via liquid impregnation coupled with chemical vapour 

deposition (CVD), and the MOFs were synthesised by the modulated solvothermal method. 

Analysis of the ZTCs morphology and phase crystallinity show that the carbon templated 

process using zeolites was successful, however, ZTC was amorphous compared to crystalline 

zeolite template. The BET surface area was assessed with the aid of nitrogen sorption 
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isotherms for both zeolite 13X and ZTC, and values of 730 and 2717 m
2
/g, respectively were 

obtained. The hydrogen adsorption capacity for zeolite 13X was 1.6 wt% and increased to    

2.4 wt% in the ZTC material at 77 K and 1 bar. The successful synthesis of well defined, 

crystalline MOFs was evident from X-ray diffraction and morphological analysis. The BET 

surface area and hydrogen adsorption for Zr MOF were 1186 m
2
/g and  1.5 wt%, respectively 

at 77 K and 1 bar. Cr MOF had a BET surface area of 2618 m
2
/g and hydrogen adsorption 

capacity of 1.9 wt% at 77 K and 1 bar.  

The main focus of the study was to synthesise electrospun composite fibres that can adsorb 

hydrogen gas and thus provide significant insight in this field of research. As such it 

examined composite fibres that incorporates porous powdered materials such as zeolite 13X, 

ZTCs, UiO-66 (Zr) MOF and MIL-101 (Cr) MOF and investigated their ability to adsorb 

hydrogen gas, which have not been reported previously. The synthesis of composite fibres 

was achieved by incorporating the porous powdered materials into the PAN resulting in a 

polymeric blend that was then electrospun. Morphological analysis illustrated that the porous 

powdered materials were successfully supported by or incorporated within the PAN fibres, 

forming composite fibres. The BET surface area of the 40 wt% zeolite-PAN and 12.5 wt% 

ZTC-PAN composite fibres were 440 and 1787 m
2
/g respectively. Zr MOF and Cr MOF 

composite fibres had a BET surface area of 815 and 1134 m
2
/g, respectively. The BET 

surface area had reduced by 40, 34, 31 and 57% for zeolite 13X, ZTC, Zr MOF and Cr MOF, 

respectively after these porous powdered materials were incorporated into PAN. The 

hydrogen adoption capacity for 40 wt% zeolite-PAN, 12.5 wt% ZTC-PAN, 20 wt% Zr MOF-

PAN and 20 wt% Cr MOF-PAN composite fibres was 0.8, 1.8, 0.9 and 1.1 wt%, respectively. 

This decrease was attributed to the limited amount of  porous powdered materials that could 

be incorporated into the fibres since only 40 wt% of zeolite 13X, 12.5 wt% of ZTC and 20 

wt% of the MOFs were loaded into their respective composite fibres. This was due to the fact 

that incorporation of greater amounts of porous powdered materials resulted in a viscous 

polymeric blend that was unable to be electrospun.  

It is evident from the study that electrospinning is a versatile process that is able to produce 

composite fibres with promising properties that can potentially advance the research in this 

field thus providing a practical solution to the problem of integrating loose powdered 

materials into an on-board hydrogen storage system.  
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Chapter One 

Introduction 

This chapter serves to establish the basis for the study by outlining the reason humanity is 

facing global devastation together with a proposed solution to curb the effects of global 

warming. It will focus on transportation and an alternative fuel option. Then the chapter will 

detail all relevant information as to the reason for the study and how it will be approached. It 

then goes on to highlight the scope of the study and how the thesis is structured. 

1.1  Broad context  

Existence on our planet is dependent on a delicately balanced global ecosystem, a tip in this 

balance results in cataclysmic effects (Vitousek et al., 1997). Case in point, the high 

concentration of greenhouse gases in the atmosphere such as carbon dioxide, which is 

problematic because it is directly linked to global warming and climate change (Conte et al., 

2001). An increase in carbon dioxide emissions was seen after the fossil fuel capitalisation 

during the 20
th

 century, when its concentration was estimated to have increased by a 

staggering 30% from 280 to 370 ppm (Conte et al., 2001; Armaroli & Balzani, 2007; 

Houghton et al., 2001). Human activities such as agriculture, mining as well as in the energy 

sector contribute the highest amount of greenhouse gas emissions (Houghton, 2009; Pegels, 

2010).  

Humankind has encountered many challenges over the centuries; however, the most 

significant challenge is the accessibility of energy (Evans et al., 2009). The direct correlation 

between economic growth and energy demand leaves developing countries like South Africa 

dependent on fossil fuels as a dominant source, since it is cheap and highly accessible, 

however, fossil fuel reserves are finite and rapidly diminishing (Armaroli & Balzani, 2007; 

Pegels, 2010; Evans et al., 2009; Dincer, 2000). This exploitation of fossil fuels resulted in a 

1.1% contribution to the global carbon dioxide emissions a decade ago (Pegels, 2010); WRI, 

2014).  The important question is how do we improve the living standards for people and not 

compromise the environment? Scientists believe that the solution lies in the use of renewable 

energy sources, for instance solar and wind energy (Armaroli & Balzani, 2007; Pegels, 2010). 
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The energy yield from solar and wind sources are impermanent hence the necessary storage 

of excess energy during low supply periods are usually done by batteries (Agbossou et al., 

2001). However, this storage option is limiting due to a loss of 1-5% of energy capacity per 

hour (Agbossou et al., 2001). Current research for viable storage of excess energy is 

exploring the employment of hydrogen, which is produced via electrolysis from this excess 

electrical energy, the hydrogen is then supplied to a fuel cell that provides electricity during 

high demand periods (Agbossou et al, 2001; Chan, 2007).  

Hydrogen, as an energy carrier, is easily produced and simply converted to electricity via fuel 

cell technology, as compared to solar and wind energy, which first needs to be transformed 

into electricity in order to be, transported effectively (Jiménez et al., 2012). A hydrogen 

economy sounds remarkable because it provides energy that is not harmful to the 

environment; it is produced in a variety of ways such as from non-depletable resources like 

water and it has a high energy density (Nishihara & Kyotani, 2012; Yang et al., 2012). 

Although hydrogen can be used to power portable electronic devices and in the distribution of 

generated power, it is mainly used as a fuel for transport (Solomon & Banerjee, 2006).  

A person’s inclination to be mobile is what drives the transport sector to consume 25% of the 

global energy (Mori & Hirose, 2009). South Africa is highly reliant on imported crude oil 

since it is the primary source of fuel for transportation, which averaged at 3% (amounting to 

8 million tonnes) per annum a decade post-apartheid (Thambiran & Diab, 2011; Wabiri & 

Amusa, 2010).  The transport sector contributes approximately 9% of the total greenhouse 

gas emissions in South Africa, which is mainly due to road transport (Thambiran & Diab, 

2011). With 79% of crude oil supplied by the Middle East, a region prone to geopolitical 

turmoil, together with the oil crisis in 1973 and the air pollutants and greenhouse gases from 

road transportation, alternative resources need to be explored to ensure energy security as 

well as a reduction in adverse environmental effects (Wabiri & Amusa, 2010; Demirdoven & 

Deutch, 2004; Lund, 2007; Lund & Kempton, 2008; Liaquat et al., 2010).  

The transition from internal combustion engines to hydrogen fuelled vehicles may seem easy 

due to the many advantages it presents, however, on-board hydrogen storage for automotive 

applications is challenging due to it being a low density gas (Solomon & Banerjee, 2006; 

Mori & Hirose, 2009). At ambient temperatures and pressures, hydrogen has a low 

volumetric density implying that for mobile applications, hydrogen gas will require an 

enormous on-board storage unit for the vehicle to travel an adequate distance (Yang et al., 
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2012; Bimbo et al., 2013). For instance, driving a distance of 400 km requires approximately 

4 kg of hydrogen for a fuel cell vehicle; this amount of hydrogen gas will fill up a 45 m
3
 tank 

at room temperature and 1 bar pressure (Zhao et al., 2008). Herein lays the major challenge 

for the realisation of a hydrogen economy (Jordá-Beneyto et al., 2007).  

A variety of storage options are already in existence, which are high pressure compressed 

gas, cryogenic liquid hydrogen, metal hydrides and physical adsorption on solid porous 

materials (Jiménez et al., 2012; Yang et al., 2012). However, none of these options satisfy the 

US Department of Energy on-board storage requirements for 2020, that is a gravimetric and 

volumetric capacity of 1.8 kWh/kg (0.055 kg H2/kg system) and 1.3 kWh/kg (0.040 kg H2/L 

system) respectively, these measurements include the tank, storage medium and accessories 

(Zhao et al., 2008; Jordá-Beneyto et al., 2007; US DOE, 2015). The on-board storage system 

needs to have the highest volumetric density, with the least amount of material used. Also, 

the uptake of hydrogen must be reversible and the system must be cost effective (Jiménez et 

al., 2012).  

In line with the South African National Development Plan to reduce greenhouse gas 

emissions, the Department of Science and Technology established a strategy branded as 

Hydrogen South Africa (abbreviated, HySA), which involves research, development and 

innovation of hydrogen and fuel cell technologies. HySA Infrastructure, a division of HySA, 

is aimed at researching and developing technologies, processes and products for hydrogen 

production, storage and distribution. This study constitutes part of the research undertaken at 

HySA Infrastruture. 

1.2 Problem statement 

Strategies that propagate the use of sustainable energy begins with research into renewable 

energy, followed by the development of innovative technologies and materials to be 

implemented worldwide, thereby being the final step of a global energy evolution (Su & 

Centi, 2013). Following the various research done on storage options for hydrogen fuelled 

vehicles, inadequate strategies that do not meet the necessary storage capacity, safety and 

cost requirements are available. However, a niche area that many scientists would say looks 

promising is the physisorption of hydrogen on porous nanomaterials (Yang et al., 2012; 

Nishihara et al., 2009). Intensive studies on physical adsorption of hydrogen on porous 

materials such as zeolites, templated carbons and metal-organic frameworks (MOFs) have 
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illustrated their potential for attractive storage capacities (Yang et al., 2012; Jordá-Beneyto et 

al., 2007; Nishihara et al., 2009). For mobile applications these porous, powdered materials 

need to be confined in a tank, a part of the hydrogen storage system, like a petroleum tank. 

However, various complications arise due to these porous materials being nano- or micro- 

scaled powders. For instance, the volumetric capacity is affected by the low packing density 

of the powders and contamination of the pipes can occur during charge and discharge cycles. 

In addition, powdered materials are difficult to handle since they are easily blown around 

(Ren et al., 2015b).  

1.3 Motivation and research questions 

The transition from producing these porous materials in a laboratory to integrating them in a 

storage system is challenging since they are produced in powder form. By shaping these 

powdered materials one can successfully integrate these materials into a storage system for 

mobile applications (Ren et al., 2015).  A variety of shaping techniques are available to date 

such as granulation, pelletisation, templating methods and a combination of templating and 

activation techniques. Electrospinning is a versatile, easily up-scaled technique that utilises a 

high voltage source that causes a polymer solution to be drawn out of a needle onto a metal 

collector plate resulting in fibres (Fu et al., 2011; Cavaliere et al., 2011; Megelski et al., 2002; 

Ren & North, 2014). 

Although electrospinning was discovered over a century ago, much attention is being paid to 

this process recently due to the production of fibres with micro- and nano-scale features 

necessary for the improvement of energy storage (Cavaliere et al., 2011). Morphology of the 

fibres is highly dependent on the manner in which they are electrospun. For instance, in the 

production of composite fibres (involving the porous materials being incorporated into the 

polymer and then electrospun) evaporation of the solvent during electrospinning and the 

removal of solvent trapped in the pores during the degassing process lead to the creation of 

pores (Ren et al., 2015b; Schwieger et al., 2016; Srinivasan et al., 2006).  

Electrospinning is able to produce composite fibres with the necessary properties that will 

advance the research in this field and furthermore create a product that will be implemented 

in real life applications (Cavaliere et al., 2011). The research done on electrospun composite 

fibres was limited and only incorporated select materials such as silicalite-1, MCM-41 and 

SBA-15, zeolitic imidazolate framework (ZIF-8), MIL-101 (Fe-based) and UiO-66 metal- 
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organic frameworks (MOFs) (Di et al., 2008; Ostermann et al., 2011; Srinivasan et al., 2006; 

Wu et al., 2012; Armstrong et al., 2015; Zhao et al., 2016).  Therefore this study will provide 

significant insight in the field because it examines composite fibres that incorporate porous 

materials such as zeolite 13X, zeolite templated carbons (ZTCs) and MIL-101 (Cr) MOF 

which have not been studied previously. Furthermore, the study will analyse the 

aforementioned composite fibres for hydrogen adsorption which also has not been done 

before. The study endeavours to ascertain answers to the following research questions: 

 Can the electrospun composite fibres adsorb hydrogen? 

 Can pores be created on PAN fibres if they are placed under vacuum? 

 Does the hydrogen storage capacity increase with weight percent of porous 

materials incorporated into the composite fibres? 

 Does heat treatment affect the composite fibres? 

1.4 Objectives  

The overall aim of the study is to produce electrospun composite fibres and to investigate 

their proclivity for hydrogen adsorption. To attain this aim, the objectives of the study were 

envisaged as follows: 

1. To perform experiments aimed at optimising electrospinning parameters and also 

identify the best polymeric material. 

2. To synthesise electrospun composite fibres whereby different porous powders 

such as zeolites, ZTCs and MOFs will be incorporated into the polymer and then 

electrospun. 

3. To thoroughly characterise the resulting materials and test them for their hydrogen 

uptake capacity.    

1.5  Hypotheses  

1. During electrospinning when the solvent evaporates resulting in fibres on the collector 

plate, the fibres are not completely free of solvent. It is hypothesised that placing the 

PAN fibres under a high vacuum of 10
-7

 bar will remove any solvent in the fibres 

thereby creating pores. 

2. It is further hypothesised that porous hydrogen storage materials in powder form can 

be encapsulated in the polymeric fibres and still adsorb hydrogen. The hydrogen 
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adsorption capacity will increase as the increment weight percent of powder is 

increased. 

1.6 Research approach  

The approach to achieving the goals of the study began with the literature review to assess the 

state-of-art of the electrospinning process and identify research gaps in order to structure the 

study. From literature, polymers suitable for electrospinning were selected, knowledge about 

the assembly of a bench scale electrospinning setup was obtained and the conditions that 

affect the electrospinning process identified. The research approach consisted of four stages; 

firstly, the polymer selection whereby a suitable polymer was determined. Secondly, the 

optimisation of electrospinning parameters for that suitable polymer. Thirdly, the synthesis of 

the porous powdered materials, and finally, the production of the composite fibres.  

In order to produce composite fibres a suitable polymer needed to be selected first, hence 

three polymers were chosen namely; poly-styrene-alt-maleic anhydride (PSMA), poly-acrylic 

acid (PAA) and poly-acrylonitrile (PAN) along with the corresponding solvent system, and 

thereafter electrospun. The resultant polymer fibres were analysed visually during the 

electrospinning process and via scanning electron microscopy (SEM) to assess if there was 

bead formation. In order to control the morphology and diameter of the fibres; one needs to 

understand the principles of electrospinning and the parameters that govern the success of the 

process (Huang et al., 2003).  Hence the second step was to optimise the electrospinning 

parameters by varying each parameter for PAN (suitable polymer selected from the previous 

step) to obtain a baseline condition. The varied parameters were:  

 Polymer concentration 

 Applied voltage 

 Flowrate of the polymer solution 

 Distance between the needle tip and collector plate 

According to literature, stabilisation improves the mechanical strength of the fibres thus the 

fibres underwent thermal treatment (Lee et al., 2012).  

The crux of the study was the production of composite fibres whereby the highest amount of 

porous powders that store hydrogen was incorporated into the polymer without 

compromising its ability to be electrospun. The porous powdered materials were: 
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 Zeolite 13X 

 ZTCs 

 MOFs specifically MIL-101 (Cr) and UiO-66 (Zr)  

Since the study focuses on the shaping of porous powdered materials without considerably 

compromising their hydrogen storage capacity, the effect of porous powdered material 

loading percent was investigated. The loading percentage range for each porous powdered 

material was identified whereby the porous powdered materials were incorporated and 

periodically incremented. It is known that by incorporating the porous powdered materials 

into PAN fibres, there will be a reduction in surface area and thus a concomitant reduction in 

the hydrogen storage capacity because a 100 weight percent loading cannot be achieved 

(Ostermann et al., 2011). It is by this thinking that the creation of porosity in the polymer 

nanofibres was investigated by placing the fibres under a high vacuum (10
-7 

bar) to remove 

any solvent trapped from the electrospinning process.
  

At each stage of the experimental approach the as-synthesised samples were characterised via 

SEM to analyse the surface morphology and to measure diameter of the fibres. Powder X-ray 

diffraction (XRD) was used to determine phase crystallinity and thermal studies were done 

by thermal gravimetric analysis (TGA) to determine the temperature at which the materials 

decompose. Since Brunauer-Emmett-Teller (BET) surface area and hydrogen storage 

capacity are directly correlated, both were measured. Then the structural changes in the 

materials were analysed via Fourier transform infrared spectroscopy (FTIR). 

1.7  Scope and delimitations 

A bench scale electrospinning unit was employed, because of financial constraints. Therefore, 

small batches of fibres were produced. Initial investigations resulted in the use of PAN as the 

polymer of choice to produce composite fibres. ZTCs are of interest for hydrogen storage 

because they are robust materials that possess a high surface area. Zeolite 13X was utilised 

because it served as a sacrificial template from which the ZTCs were synthesised. Zr MOF 

and Cr MOF were used because they are thermally and chemically stable. In addition,          

Cr MOF is synthesised from a green route and both MOFs possess high surface areas.    

Measurements for hydrogen storage capacity were done at 1 bar pressure because that was 

the pressure limit of the instrument available. Due to the exceedingly high temperatures at 

which carbonisation takes place, carbon fibres were not produced for the study because such 
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temperatures would destroy the porous powdered materials used in preparing the composite 

fibres. 

1.8  Thesis structure 

Chapter one introduces the topic of research, thus stating its relevance and gives an outline of 

the background and rationale of the study. It will briefly discuss how the study was executed 

to achieve the objectives and prove the hypotheses. It further outlines the scope and 

delimitations. Finally, it ends with a road map of the structure of the thesis. 

Chapter two is an in-depth literature review highlighting the physical properties of hydrogen, 

its production methods, and the advantages and disadvantages of the current hydrogen 

storage technologies available, that is compressed high pressure gas cylinders, cryogenic 

liquid hydrogen, chemisorption with chemical hydrides and physisorption on porous 

materials. Thereafter relevant information about the porous powdered materials, including 

zeolites, ZTCs and MOFs used in the production of the composite fibres are given. The 

chapter progresses further by explaining the reason why it is important to shape these porous 

powdered materials, and outlines shaping techniques available with an elaboration of 

electrospinning process and parameters. The chapter concludes by highlighting previous 

studies done on the production of electrospun composite fibres with particular attention to the 

porous powdered materials used in this study.  

Chapter three is the experimental section where all details and conditions pertaining to the 

production and characterisation of the materials are given.  

Chapter four is the polymer selection and optimisation, it discusses why and how the suitable 

polymer (PAN) was selected for the production of composite nanofibres. This chapter also 

presents and discusses the results from the optimisation of electrospun PAN fibres as well as 

the morphological, structural, thermal, surface area and hydrogen analysis. 

Chapter five presents the analysis of the pristine porous powdered materials and discusses the 

most important results applicable to the characterisation of the pristine porous materials that 

adsorb hydrogen gas.  

Chapter six is the analysis of the composite fibres whereby a full discussion of the results 

pertaining to the synthesised electrospun composite fibres is given.  
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Chapter seven will conclude the findings of this research and contain recommendations for 

future work. 

Chapter summary 

In hopes of setting the context of the study, the chapter began with an overview of the link 

between carbon dioxide concentrations and global warming, explaining the rationale for the 

use of hydrogen as a fuel for automotive vehicles. Strong evidence illustrates that solid-state 

porous materials is a promising solution for the hydrogen storage bottleneck for mobile 

applications. Shaping of the porous solid-state materials is a necessary step for integrating the 

materials into a hydrogen storage system which provided a motivation for the study.  

Electrospinning is a versatile shaping technique that incorporates porous materials into fibres 

thereby producing composite fibres. The chapter then highlighted how the study was 

approached to answer the research questions and hypotheses, and achieve the objectives set 

out. Thereafter scope of the study was outlined along with infrastructure limitations. The 

chapter concluded with how the thesis is structured by briefly describing what each chapter 

entails.  

The next chapter is an in-depth literature survey on research that was done on aspects 

pertaining to the study.  
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Chapter Two 

Literature Review 

The chapter provides insight into previous studies and findings pertaining to this particular 

research topic. It begins with a brief introduction of hydrogen and then focuses on the current 

hydrogen storage technologies with particular attention being paid to the adsorption of 

hydrogen on porous materials, highlighting the use of zeolites, templated carbons and MOFs 

specifically the types used in this study. 

The chapter goes on further to discuss the rationale behind shaping the powdered materials and 

highlights available shaping techniques paying particular attention to electrospinning, 

discussing the process, history and parameters. The chapter ends with research done on 

electrospun zeolite, carbon or MOF composite fibres.   

2.1  Hydrogen  

Hydrogen, being the lightest and abundantly available element is said to be the energy carrier 

for the 21
st
 century, since it is pollution free when produced from renewable energy sources 

(Jain, 2009). Ubiquitous sources of hydrogen on earth include natural gas, biomass and water 

since pure hydrogen is not available naturally in large quantities (Klell, 2006). Production of 

hydrogen via steam reforming, partial oxidation and gasification technologies of natural gas 

involves the conversion to syngas and then hydrogen, whereas biomass needs to be converted 

to biogas first then syngas and then hydrogen (Conte et al., 2001; Turner, 2004). An 

alternative, more sustainable method to produce hydrogen is the splitting of water into 

hydrogen and oxygen with the aid of an electrolyser; electrolysis can be driven by solar energy 

thus making it sustainable but it occurs on a small scale (Zeng & Zhang, 2010). 

Widespread infrastructure needs to be in place for the transport, distribution and storage of 

hydrogen for it to be an energy carrier for automotive fuel cell vehicles (Mori & Hirose, 2009). 

The typical supply route for hydrogen depicted in Figure 2.1, involves the hydrogen being 

produced at a plant then transported via two storage mechanisms (that is gas or liquid) to the 

hydrogen fuelling station. Thereafter it is converted or remains in the same phase when being 

transferred into the fuel cell vehicle depending on the on-board storage of fuel cell vehicles. 

Although the preferred method of hydrogen storage is as low pressure gas, since it is produced 
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in gaseous form, this is not possible due to hydrogen being a low density gas (Mori & Hirose, 

2009).    

 

Figure 2.1: Graphical representation of the route hydrogen takes from production to application 

that is the Fuel cell (FC) vehicle (Mori & Hirose, 2009). 

The significant on-board storage issues will govern the evolution of the energy and 

transportation sectors from fossil fuels to hydrogen (Berry & Aceves, 1998). The economic 

investment in hydrogen fuel cell vehicles is dependent on the type of on-board storage 

implemented which is able to satisfy stringent criteria, in terms of performance, range, cost and 

safety among other aspects (Berry & Aceves, 1998). 

2.2  Current hydrogen storage technologies 

Aceves et al (2000) states practical storage options for hydrogen include compressed high 

pressure gas cylinders, cryogenic liquid hydrogen and metal hydride absorption, each with its 

own benefits and drawbacks. However, a more favourable route to store hydrogen is the 

physisorption of hydrogen gas on porous materials such as zeolites, templated carbons and 

MOFs (Yürüm et al., 2009; Hirscher et al., 2010). This section will explain the storage 

mechanism of each technology and outline their advantages and disadvantages. 
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2.2.1 Compressed high pressure gas cylinders 

The typical and extensively studied technology for on-board hydrogen storage is high pressure 

gas cylinders, which utilise high pressure cylinders to contain compressed hydrogen gas at 350 

or 700 bar thereby increasing the energy density (Hua et al., 2011; O’Malley et al., 2014). 

There are four types of vessels to store hydrogen gas, categorised according to their 

composition. It began with steel cylinders (type I) at atmospheric pressure which was 

impractical for on-board storage because it took up a considerable amount of space and it was 

heavy (Mori & Hirose, 2009; Ewald, 1998). Thereafter type II cylinders which consisted of 

metal liner hoop wrapped with a glass fibre reinforced polymer (GFRP) were developed, 

however, these cylinders could not withstand the high pressures necessary for hydrogen storage 

(Mori & Hirose, 2009; Barthélémy et al., 2016).  It is the US DOE on-board requirements of a 

gravimetric and volumetric capacity of 0.055 kg H2/kg system and 0.040 kg H2/L system, 

respectively that prompted the development of type III and IV composite cylinders specifically 

designed for high pressures (Mori & Hirose, 2009; Barthélémy et al., 2016; Zheng et al., 2012). 

 The difference between type III and IV cylinders is that they have a metal or plastic liner, 

respectively but both are fully wrapped with carbon fibre/epoxy resin (Mori & Hirose, 2009; 

Zheng et al., 2012; Hu et al., 2008). Although both cylinders are designed for hydrogen storage 

type IV is more favourable because it is able to endure 15 000 refuelling cycles between 20-

875 bar (Villalonga et al., 2009). People are enthusiastic about this storage option because it 

has almost fulfilled the gravimetric targets and is close to meeting volumetric targets, however 

feasibility and large scale production requires a notable cost reduction (O’Malley et al., 2014). 

The general public’s perception of the use of hydrogen is that hydrogen is not safe because of 

the Hindenburg disaster in 1937, which is a major drawback since it will determine whether 

hydrogen fuel cell vehicles will be accepted into the public domain (Schulte et al., 2004). 

Compressed hydrogen gas cylinders run the risk of a fire due to the flammable polymer-

reinforced composite on the cylinders as well as the hazardous effects of leakage of hydrogen 

from stationary vehicles (Hu et al., 2008; Schulte et al., 2004; Utgikar & Thiesen, 2005). 

2.2.2 Cryogenic liquid hydrogen  

Storing hydrogen in its liquid form is quite beneficial because it contains a higher energy 

density; it is compact and can be easily and economically transported; however these benefits 

are outweighed by the disadvantages (Sherif et al., 1997). The use of liquid hydrogen is 
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restricted due to the high energy consumption for liquefaction as well as the high evaporation 

rate during transporting, refuelling and the absorption of heat when pressurised rapidly (Aceves 

et al., 2000; Aceves et al., 2010). By improving these restrictions, liquid hydrogen will be a 

promising option. Such improvements include reliquefying hydrogen that has evaporated and 

the use of cyro-compressed tanks (Berry & Aceves, 1998; Sherif et al., 1997). The interesting 

concept of cryo-compressed storage of hydrogen originates from the combination of existing 

technologies, compressed and liquid hydrogen whereby hydrogen is stored in a pressurised 

tank at cryogenic temperatures (Ahluwalia et al., 2010). The current cyro-compressed system 

(Gen-3) was assessed and resulted in remarkable achievements; the 2015 US Department of 

Energy gravimetric and volumetric targets were met but it is not yet viable in terms of cost, 

efficiency and safety (Ahluwalia et al., 2010). 

2.2.3 Chemisorption with metal hydrides 

The basic principle involved in the metal hydride storage mechanism in the production of metal 

hydrides is the absorption of atomic hydrogen by the metal which is then chemically bonded by 

the intermetallic phase of a metal under specific conditions (Jain, 2009; Ross, 2006). 

Conventional metal hydrides are more favourable because additional supply of energy is not 

required as in the case of liquid hydrogen. In addition, there is no loss of hydrogen due to 

evaporation and hydrogen is supplied at an optimal constant pressure making it safe compared 

to the aforementioned storage options (Güther & Otto, 1999). Sakintuna et al (2007) reported 

that metal hydrides have the leading hydrogen storage capacity of 6.5 H atoms/cm
3
 for MgH2 

in contrast to 0.99 H atoms/cm
3
 for compressed hydrogen gas and 4.2 H atoms/cm

3 
for liquid 

hydrogen. However, metal hydrides are too heavy and have slow kinetics during desorption, 

and thus are not suitable for automotive vehicle on-board storage (David, 2005). Development 

of light metal alloys are underway but an alternative storage option that is safe and practical for 

on-board storage is the adsorption of hydrogen on porous materials (Sakintuna et al., 2007). 

2.2.4 Physisorption on porous materials  

The physisorption storage mechanism is based on the ability of hydrogen gas molecules to 

adsorb onto porous materials. The porous materials are advantageous because they are light 

weight, the kinetics for hydrogen adsorption are fast, and some materials are inexpensive to 

synthesise. The physisorption of hydrogen gas on porous materials is supposed to be safe for 

automobile applications since it is aimed at storing hydrogen at ambient conditions (Thomas, 
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2007; Yang et al., 2010). However, reasonable storage capacities can only be obtained at 

cryogenic temperatures (77 K) and high pressures (20 bar), because the hydrogen molecules 

are adsorbed on the pore walls by weak van der Waals forces (Thomas, 2007; Li et al., 2012). 

Therefore intensive studies have been carried out on tuning porous materials such as zeolites, 

carbons and meta-organic frameworks to meet the targets since they illustrate a potential for 

attractive hydrogen storage capacities (Yang et al., 2012; Jordá-Beneyto et al., 2007; Nishihara 

et al., 2009). This is due to the fact that these materials exhibit high surface areas and 

distinctive microporosity (Zhao et al., 2008).  

The size of the pore channels is important for hydrogen storage capacities due to the interaction 

between the walls of the pore channel and the hydrogen gas. For instance, macropores (pore 

width greater than 50 nm) are too wide therefore the gas may pass through the pore channel 

without adsorbing to the wall. Micropores (width less than 2 nm) and mesopores (width 

between 2 and 50 nm) are more desirable for hydrogen storage since the pore channel is 

narrower allowing the hydrogen gas to better interact with the pore wall and adsorb (Li et al., 

2012; Fu et al., 2011). Although there are different types of the aforementioned materials for 

hydrogen storage the literature review will focus on zeolites, templated carbons as well as Zr- 

and Cr-MOFs. These materials were chosen because zeolites are thermally stable and excellent 

templating agents for the synthesis of templated carbons, which are robust, high surface area 

materials. The MOFs were chosen because they possess high surface areas and furthermore, 

both Zr MOF and Cr MOF are thermally and chemically stable and the Cr-MOF is synthesised 

via a green synthetic route.  

2.2.4.1 Zeolites  

Zeolites, commonly referred to as molecular sieves, are aluminosilicate materials that are 

highly crystalline and consist of interconnected cavities and molecular pores that are highly 

stable and can be produced from a variety of feedstocks  (Langmi et al., 2005; Li et al., 2012). 

There are a wide variety of zeolites available. Weitkamp et al. (1995) observed that sodalite 

cages in the zeolitic framework structure promotes higher hydrogen uptake capacity and the 

work was corroborated by Li et al. (2012) who stated that zeolite X is favourable for hydrogen 

storage due to the encapsulation of hydrogen occurring in the small sodalite cages rather than 

the supercages of the zeolite microporous faujasite framework illustrated in Figure 2.2. 
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Figure 2.2: Zeolite X faujasite (FAU) framework depicting the supercage and the sodalite (β) 

cage (Li et al., 2012). 

Coal fly ash, a common waste of the mining industry is used to produce zeolites rendering the 

zeolitization process inexpensive and also serve as an attractive route for beneficiating the coal 

combustion waste (Ma et al., 2014; Li & Yang, 2006; Babajide et al., 2012).  

The interest in zeolites as a hydrogen storage media began over twenty years ago since zeolite 

pore channel width can be easily controlled with the exchange of ions producing zeolites that 

are more susceptible to high hydrogen storage capacities (Weitkamp et al., 1995).  This 

observation initiated Langmi and colleagues to investigate the effect different cations 

(adsorption sites) and the framework structure would have on the hydrogen storage capacity 

and it was found that zeolites X and Y are not affected by the large cations blocking pores 

thereby not compromising the gravimetric hydrogen uptake capacity of 2.19 wt% at 77 K and 

15 bar for CaX which correlated to the BET surface area of 669 m
2
/g (Langmi et al., 2005). 

Since hydrogen storage capacity is dependent on the density of cations exchanged in the 

structure, Li and Yang (2006) investigated the effect the exchange of Li
+
, K

+
 and Na

+
 cations 

have on the hydrogen uptake capacity for X zeolites that have less silica in the structure. This 

investigation deduced that the interaction energy between the hydrogen and the cations was 

highest for Li
+
 and lowest for K

+
 because of the radius of the cation. There was a hydrogen 

uptake capacity of 1.5 wt% at 77 K and 1 bar and a BET surface area of 717 m
2
/g for the low 

silica X zeolite with the Li
+
 cation (Li & Yang, 2006). Although zeolites may seem like a 
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prospective material for hydrogen storage, the BET surface area and hydrogen adsorption 

capacity to date are quite low, therefore more promising materials could be carbons and MOFs.  

2.2.4.2 Zeolite templated carbons 

Zeolite templated carbons (ZTCs) as the name suggests are carbons that utilise zeolites as a 

sacrificial template, proving to be beneficial since control of porosity is easy and the pore 

channels are more ordered and uniform affording easy access for carbon precursors (Yang et 

al., 2012); Nishihara et al., 2009). The templation process is quite simple; firstly, the channel of 

the zeolite template is impregnated with a liquid carbon precursor followed by polymerisation 

and partial carbonisation. Secondly, the templation process is complete when the zeolite/carbon 

composite (from the first stage) is subjected to chemical vapour deposition (CVD) thereby 

being exposed to another carbon precursor usually a gas at high temperatures. The final stage is 

the detemplation that is the removal of the zeolite template often obtained by acid washing. A 

general schematic of the process can be seen below in Figure 2.3 (Masika & Mokaya, 2013).  

 

Figure 2.3: General graphical depiction of the templation of zeolite (adapted from Yang et al., 

2012; Nishihara et al., 2009). 

According to Nishihara et. al. (2009) templated carbons are more promising hydrogen storage 

material when compared to carbon nanotubes and carbon nanofibres, since templated carbons 

are highly microporous with large micropore volumes and surface areas. The aforementioned 

CVD method was used to prepare templated carbons and a BET surface area of  greater than 

2000 m
2
/g, a micropore volume of greater than 0.8 cm

3
/g and a 5.4 wt% hydrogen uptake at 77 

K and 20 bar was reported (Yang et al., 2012; Alam & Mokaya, 2010). Chen and colleagues 

(2007) synthesised templated carbons via a similar vapour phase deposition process with a 

surface area of 2500 m
2
/g, micropore volume of 0.2 cm

3
/g and a hydrogen uptake of 2 wt% at 

77 K and 1 bar. Masika and Mokaya (2013) reported a ZTC synthesised via the CVD process 
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with a surface area of 3332 m
2
/g, a pore volume of 1.66 cm

3
/g and a hydrogen uptake of 7.3 

wt% at 77 K and 20 bar. With similar characteristics to carbons MOFs are also leading 

contenders in the race of materials for physisorption of hydrogen due to the higher surface 

areas (Zhao et al., 2008). 

2.2.4.3 Metal-organic frameworks 

Metal-organic frameworks are compounds consisting of metal clusters and organic linkers, and 

are extremely porous, highly crystalline and large surface area materials (Klein et al., 2009; 

Abid et al., 2012). Thus they are under intensive consideration for hydrogen storage 

applications (Yang et al., 2010; Ren et al., 2015b).  Hirscher et al. (2010) stated that the 

hydrogen uptake is dependent on the surface area and not the structural composition of the 

different MOFs. However, Somayajulu Rallapalli et al. (2013) disagrees, stating that the 

structure of the surface and the pore geometry are the influencing factors for hydrogen 

adsorption.  

MIL-101, a chromium-based MOF (that will be referred to as Cr MOF henceforth), has an 

empirical formula of [Cr(O)-X (benzene-1,4-dicarboxylate)3 (H2O)2] where X= OH or F and 

consists of a rigid terephthalate ligand with octahedral trimeric chromium (III) clusters which is 

illustrated in Figure 2.4 (Zhao et al., 2015). Since HF is dangerous and toxic for large scale 

synthesis, Zhao et al. utilised the non-fluorinated method to synthesise Cr MOF thereby 

replacing HF with other acids and deduced that nitric and acetic acids were the best substitutes 

which yielded Cr MOF with a surface area greater than 3100 m
2
/g and 2700-2800 m

2
/g, 

respectively which were less than the fluorinated synthesis method which yielded a surface 

area of 4000 m
2
/g (Latroche et al., 2006; Ren et al., 2014).   

 

Figure 2.4: Crystal structure of Cr-MOF where Cr (orange polyhedrone), C (grey), O (red) and 

for clarity purposes H was omitted (Lee et al., 2009). 
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The thermal and chemical instabilities of most MOFs is what prompted the research and 

development of various MOFs, among them is UiO-66 which is a Zr based MOF (hereafter 

referred to as Zr MOF) consisting of a Zr metal centre bridged to 12 benzene-1,4-dicarboxylate 

(BDC) linkers forming a close packed cubic structure (Figure 2.5) (Kandiah et al., 2010; Wu et 

al., 2013). Its thermal and chemical stabilities exceed those of most MOFs due to the high 

affinity between Zr-O ligands as well as the close packed structure (Zhao et al., 2013). It is due 

to these reasons that the Zr MOF was tested as an adsorbent for hydrogen, which yielded 

excellent surface area and hydrogen uptake capacities like 1434 m
2
/g and 1.6 wt%, respectively 

at 1 bar and 77 K (Abid et al., 2012). Zhao et al. (2013) synthesised Zr-MOFs with a surface 

area of 1358 m
2
/g and a hydrogen uptake of 3.35 wt% at 18 bar and 77 K.  

 

Figure 2.5: Crystal structure of Zr-MOF (a) depicting the different elements as Zr (cyan), C 

(grey), O (red) and H (white). The pores on the Zr MOF are denoted by yellow (located on 

octahedral site) and pink (located on the tetrahedral site). The hydroxylated (b) and 

dehydroxylated (c) Zr6-cluster are also illustrated (Wu et al., 2013). 

The development of the aforementioned materials illustrates the promising possibility of a 

hydrogen economy, however, when these powdered materials are to be applied practically in a 

hydrogen storage system, they need to undergo further processing (which is referred to as 

shaping) prior to system integration depicted in Figure 2.6 (Ren et al., 2015b).  Some of the 

existing shaping techniques will be highlighted in the next section. 
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Figure 2.6: Graphical representation of the porous powdered materials at the different levels 

(Yang et al., 2010). 

2.3  Shaping techniques available for powders 

The integration of these porous powdered materials in hydrogen fuel cell vehicles is 

challenging, because; (1) they are powders which have a low packing density compromising 

the volumetric capacities, (2) pipelines may become contaminated during charge and discharge 

cycles, and (3) loose powders are difficult to handle since they can be blown away (Ren et al., 

2015). Generally the powdered materials are mixed with a binder and shaped into granules or 

fibres; however mechanical force (no binder) is used to shape monoliths (O'Neill et al., 2010).  

Ardelean et al. (2013) prepared Cr-MOF monoliths by mechanically pressing the Cr-MOF 

powders with a pressure of 120 MPa  and the effect shaping had on the hydrogen uptake 

capacity was studied. A general schematic of the pressing technique is illustrated in Figure 

2.7a. In terms of gas adsorption the induced transformation after compression is irreversible 

and a reduction in surface area and hydrogen uptake was prominent (Ardelean et al., 2013). 

Since pressing is not aided by a binder there is a possibility that the monolith may crack, and 

together with small scale production and the probable damage to the structure or surface 

texture of the porous materials, are limiting factors for mechanical pressing (Ren et al., 2015).  

An alternative shaping technique that will overcome the aforementioned drawbacks of 

mechanical pressing is granulation (Figure 2.7b) a process whereby the porous powders are 

mixed with a binder and shaped into pellets (Ren et al., 2015; Liu et al., 2012).  The aid of 

binders is beneficial due to the shaping being done easily without excess pressure being placed 

on the powdered materials. However, the amount of porous powders incorporated into the 

binder for shaping is limited and for hydrogen adsorption applications the binder may be a 
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diffusional barrier (Ren et al., 2015).  Ren and colleagues studied the effect granulation had on 

the hydrogen storage capacity of MOFs and reported that pellets can be produced at large scale 

and easily transferred to a hydrogen storage tank due their spherical nature. The simulated 

tumbler drum and drop test were used to assess the breakage of the pellets which amounted to 

zero breakage, nevertheless, the surface area and hydrogen uptake capacity for the pellets were 

lower than that of the powdered MOFs. 

 

Figure 2.7: Schematic diagram depicting the mechanical pressing process (a) and the 

granulation process (b) utilised to shape porous powdered materials into monoliths and pellets 

respectively (adapted from Ren et al., 2015; Akhtar et al., 2014). 

Complimentary to granulation is electrospinning, which is a versatile technique that produces 

ultra-thin continuous fibres (Cavaliere et al., 2011). Electrospinning is advantageous because it 

is a simple, easily scaled up process but more importantly it enables the production of fibres 

with properties that are best suited for hydrogen adsorption (Cavaliere et al., 2011; Megelski et 

al., 2002; Inayat et al., 2012; Elahi et al., 2013). Such properties include continuous ultrathin 

nano-scaled diameter fibres with a high surface area (Chung et al., 2005; Im et al., 2009; Han et 

al., 2005; Ding et al., 2002). Since electrospinning is the shaping technique adopted for the 

study, this review will dive deeper into the process in the next section.  

2.4  Electrospinning process 

The electrospinning process utilises a high voltage source that causes a polymer solution to be 

drawn out of a needle onto a metal collector plate resulting in fibres (Almuhamed et al., 2014). 

A typical electrospinning unit is made up of a high electric voltage meter, a syringe pump with 
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a syringe and needle as well as a metal collector as illustrated in Figure 2.8 (De Schoenmaker 

et al., 2013).  

 

Figure 2.8: schematic diagram of the electrospinning unit (Richard-Lacroix & Pellerin, 2013). 

An increase in repulsion charge on the surface of the droplet of polymer solution pumped out 

of a needle tip is caused by an increase in the electric voltage applied to the drop, resulting in 

the droplet transforming into the shape of a cone, often referred to as a Taylor cone (Shenoy et 

al., 2005). Once the charge repulsion surpasses the surface tension, the droplet transforms into 

a stream of polymer solution spiralling towards the collector during which the solvent 

evaporates and a mesh of electrospun fibres forms on a collector (Shenoy et al., 2005).  

2.4.1 Electrospinning history 

In 1897 Rayleigh was the first to observe electrostatic spinning technique known as 

electrospraying which was then studied by Zeleny in 1914. However, it was only by 1934 that 

Formhals patented  the process and apparatus which used a moving collector to draw out spun 

threads of a cellulose acetate and acetone mixture. But an aggregated web structure was 

produced due to the short distance between the needle and collector together with insufficient 

drying time. This gave rise to his second patent in 1940, where the distance between the needle 

and collector was adjusted allowing more time for the fibres to dry and the production of fibres 

via electrostatic forces was reported (Bhardwaj & Kundu, 2010; Subbiah et al., 2005; Jacobs et 

al., 2010). The term electrospinning was coined after Taylor studied the jet formation in 1969 

and found that 49.3 degree angle is necessary for the balance of the surface tension and 

electrostatic forces of the polymer to form a stream. Therefore the conical shape of the jet was 

termed the Taylor cone. Numerous modifications to the apparatus and parameters used to 
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electrospin were done over the years to give the universal electrospinning unit used today 

(Subbiah et al., 2005). However, now the main focus of research surrounding the 

electrospinning process is based on the diameter and morphology of the fibres since the rise in 

the early 90s of nano-scaled materials (Huang et al., 2003).  

2.4.2 Electrospinning parameters 

The morphology and diameter of the fibres are dependent on the parameters under which they 

are electrospun, categorised as solution, processing and ambient conditions. For instance a 

common defect amongst electrospun fibres is beads, which are not desired in this study since 

they reduce the surface area of the fibre and inhibit gas from accessing the porous powdered 

materials (Zuo et al., 2005). Since it is important to understand the materials and parameters for 

electrospinning in order to achieve the desired materials a discussion of the polymers used in 

this study that is PSMA, PAN and PAA as well as the parameters applied will be presented in 

the following sub-sections. 

2.4.2.1 Polymers 

The chemically versatile copolymer that is PSMA is formed from two moieties namely 

nonpolar polystyrene (PS) and a polar maleic acid (MA) (Figure 2.9 for reaction scheme). 

Cécile and Hsieh (2009) studied the solubility of the PSMA and the two moieties in different 

solvents and reported that the adoption of co-solvents, DMF and acetone was necessary to 

dissolve PSMA.  

 

Figure 2.9: Reaction scheme for the synthesis of PSMA (Henry et al., 2006). 

PAA is a polyelectrolyte, (implying that it has charges in aqueous solutions) consisting of a 

hydrocarbon backbone (non-polar) and carboxylic side groups (polar) structure presented in 

Figure 2.10 (Li & Hsieh, 2005). In order for fibres to form during electrospinning, it is 

imperative that the polymer contains adequate molecular chain entanglement for the formation 
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of fibres, which was reported by Li & Hsieh (2005). They showed that PAA dissolved in N,N-

Dimetylformamide (DMF) has a high molecular chain entanglement.  

 

Figure 2.10: Structure of PAA (adapted from Li et al., 2002) . 

PAN is the most studied electrospun polymer to date, since it is the best precursor for the 

production of carbon fibres due to the high carbon yield (Wang & Kumar, 2006; Nataraj et al., 

2012). PAN contains bulky nitrile groups (illustrated in Figure 2.10) that give rise to the stiff 

chains and dissolves well in DMF (Yamane et al., 1997). 

 

Figure 2.10: Structure of PAN (Rahaman et al., 2007). 

2.4.2.2 Solution parameters 

The viscosity of the polymer solution which is dependent on the concentration as well as the 

surface tension form part of solution parameters. Adequate chain entanglement, an attribute of 

structural and concentration properties of the polymer is a necessary requirement for the 

formation of fibres (Li & Hsieh, 2005; Wang & Kumar, 2006). The morphology of fibres are 

determined by the viscosity of the solution. An appropriate viscosity of the solution is required 

in order for electrospinning to take place because a very low viscosity does not yield smooth 

fibres and the polymeric solution jet will not be able to discharge from the needle if the 

viscosity is too high (Li & Wang, 2013). Non-beaded fibres result if the concentration and 

viscosity are high but the surface tension and solution conductivity are low, making them 
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inversely correlated to each other (Gupta et al., 2005; Wang et al., 2007). If the polymer has a 

low molecular weight it will be subject to electrospraying since the fluid breaks into droplets 

(McKee et al., 2004). 

2.4.2.3 Processing parameters 

Processing parameters are subdivided into the applied voltage, flowrate of the polymer 

solution, the distance between the tip of the needle and the collector plate, and the collector. 

The applied voltage and the flowrate are dependent on the viscosity of the polymer solution, 

resulting in a high applied voltage and flowrate if the viscosity is high (Shenoy et al., 2005). 

The polymer solution jet will only occur when the applied voltage has surpassed the surface 

tension of the solution (Chowdhury & Stylios, 2010). The distance between the needle tip and 

collector plate is important because, if the distance is too short, there will not be enough time 

for the solvent to evaporate and instead of dry fibres forming on the collector plate the fibres 

will intersect and bond, causing a cohesive porous structure to form (Gibson et al., 2001). The 

collector has to be made of a metal for electricity conduction purposes. The collectors are 

either stationary which yield randomly aligned fibres or rotating causing the fibres to be drawn 

out, hence they are more aligned (Carnell et al., 2008).   

2.4.2.4 Ambient parameters 

Temperature and humidity are commonly referred to as ambient parameters and are 

interdependent. Wang et al. found a decrease in the viscosity and surface tension with an 

increase in temperature favouring the formation of thinner fibre diameters (Wang et al., 2007). 

Humidity has an effect on the diameter and surface of the fibre which is partially dependent on 

the polymer and solvent utilised. An interesting observation is that water condensation as a 

result of humidity may cause pores to appear on the fibres (De Schoenmaker et al., 2013). 

2.5  Electrospun composite fibres 

Since the crux of the study is the production of composite electrospun fibres, it is essential that 

work done previously by other researchers be highlighted in the review. To date, only a few 

studies have been reported on composite electrospun fibres containing porous materials.  

Ostermann et al. (2011) were the first to produce MOF-polymer composite fibres where the 

zeolitic imidazolate framework (ZIF-8) was mixed with polyvinylpyroldine (PVP) and 

electrospun. It was reported that as the amount of ZIF-8 was added to the PVP the surface areas 
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increased. For instance, the 22 wt% and 56 wt% ZIF-8 in PVP yielded a surface area of 180 

and 530 m
2
/g which was however still lower when compared to the surface area of 960 m

2
/g 

for the ZIF-8 alone (Ostermann et al., 2011). This is due to the polymer acting as a diffusional 

barrier around the MOF particles depending on how thick the polymer layer is (Wu et al., 

2012). Armstrong and colleagues prepared nanofibres composites with Zr MOF and poly(vinyl 

cinnamate) (PVCi) by incorporating the Zr MOF into the PVCi then electrospinning and 

thereafter subject the composite fibres to a secondary growth of Zr-MOF (Armstrong et al., 

2015). The composite membrane was analysed after the secondary growth and it had a BET 

surface area of 430 m
2
/g, which was lower than the BET surface area of the pristine Zr-MOF of 

1188 m
2
/g. Gas permeation studies (helium, argon, nitrogen and sulfure hexafluoride) were 

conducted on the composite membrane. Srinivasen et al. (2006) electrospun zeolites and PVA. 

The PVA was a structure directing agent and was later removed by calcination, because they 

wanted to place the zeolites onto a sensor device for gas sensing applications. Zeolitic hollow 

composite fibres were also produced by Di and colleagues with the aid of PVP for catalysis 

applications (Di et al., 2008). It is important to note that even though these studies state that the 

composite fibres produced can be used for gas adsorption none of them conducted hydrogen 

adsorption capacity of the materials.    

Chapter summery 

Although hydrogen is said to be the solution to the energy problem since it is abundant and can 

be produced via eco-friendly methods, its realisation is still faced with the challenge of on-

board storage for automotive applications. This is due to the stringent performance, range, 

safety and cost criteria that the on-board storage technology needs to adhere to. There are four 

main on-board storage technologies available to date including compressed high pressure gas 

cylinders, cryogenic liquid hydrogen, chemisorption with metal hydrides and physisorption on 

porous materials, however, none fully satisfy the US DOE 2020 targets yet. 

Compressing hydrogen gas at 350 and 700 bar in type IV tanks is close to fulfilling the 

gravimetric and volumetric targets but the polymer reinforced resin tanks are flammable and 

high pressure hydrogen gas tanks do not sit well with the public due to the Hindenburg disaster. 

Liquefying the hydrogen is more advantageous since it contains a higher energy density but it 

requires an exorbitant amount of energy and money to liquefy hydrogen. Although the US 

DOE 2020 gravimetric and volumetric targets are met by cryo-compressed storage technology 

it is not cost effective or safe. The absorption of hydrogen gas into metal hydrides are safe 
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compared to compressed and liquid hydrogen but it is not recommended for on-board 

automotive vehicle storage due to mass constraints and the slow kinetics during desorption. 

The most promising solution to the on-board storage challenge is the physisorption of hydrogen 

gas onto porous materials such as zeolites, zeolite templated carbons and MOFs. These porous 

materials are safe to use for on-board storage and reasonably inexpensive to synthesise, 

however, the weak van der Waals forces between the hydrogen gas and the porous materials 

require cryogenic temperatures (77 K) and high pressures (20 bar) to achieve attractive storage 

capacities.  

The above mentioned porous materials have a high affinity to hydrogen gas because they are 

micro and nano-scaled porous powders with a high surface area and micropore channels that 

are tunable. Integrating these porous powders into a hydrogen fuel cell vehicle is challenging 

because of their low packing densities and the possible contamination of pipelines during 

charge and discharge cycles. Therefore it is necessary for these porous powders to be shaped 

into monoliths, pellets and fibres via mechanical pressing, granulation and electrospinning 

respectively. Although some of the shaping techniques are complimentary to each other, 

electrospinning is the most versatile and easily up-scaled technique that can produce the 

necessary materials such as composite fibres so as to advance the research in this field. 

Although the production of composite fibres is not a novel idea, this study produces composite 

fibres with porous materials (zeolite 13X, ZTCs, Cr MOF) that have not been studied before 

with the exception of Zr MOF and investigates these electrospun composite fibres that contain 

the abovementioned porous materials for their hydrogen adsorption capacity which has also 

never been done previously.   

The next chapter entails the details about the materials and experimental procedures used to 

synthesis the materials for the study as well as the analytical methods used to characterise the 

synthesised materials. 
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Chapter Three 

 

Materials, Experimental and Analytical Methods 

The focal point of this chapter is on the materials, experimental methods and analytical 

techniques utilised for the study. It begins with a flow diagram depicting the experimental 

route taken to achieve the different objectives set out. This is followed by a list of the 

materials and the electrospinning equipment used in the study. Thereafter a detailed 

explanation of the experimental methods used in the synthesis of pristine electrospun fibres, 

the porous powdered materials and composite fibres is provided. The chapter ends with a 

description of the characterisation techniques and the conditions under which the samples 

were characterised.  

3.1  Experimental overview 

Figure 3.1 presents a general schematic for the approach to the experimental work.  

                

Figure 3.1: General schematic for experimental approach. 
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The experimental approach was divided into four stages. Firstly, three polymers were chosen 

from literature based on the physical properties of the resultant electrospun fibres. Once the 

polymers were electrospun and the fibres evaluated according to specific characteristics 

required (discussed in section 4.1) the most suitable polymer was selected. Thereafter the 

electrospinning parameters were optimised for the most suitable polymer in order to 

determine the range in which the fibres were non-defected (i.e beads not present) and the 

fibre diameter was between 300-500 nm (stage two). Stage three was the synthesis of the 

porous powdered materials followed by the encapsulation of the porous powdered materials 

into the polymer to synthesise composite fibres (stage four). At each stage the materials were 

characterised via various techniques.  

3.2  Materials  

This section lists (Table 3.1) all relevant information about the chemicals, materials and 

gasses utilised to synthesise the pristine polymer fibres, the porous powdered materials as 

well as the composite fibres.  
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Table 3.1: The chemicals, materials and gases utilised for the synthesis of the pristine 

polymer fibres, porous powdered materials and composite fibres. 

Item name Item abbreviation Grade/Purity Supplier 

Polystyrene-alt-

maleic anhydride 
PSMA Mw=109 000 Aldrich 

Polyacrylic acid PAA Mw=250 000 Aldrich 

Polyacrylonitrile PAN Mw=150 000 Aldrich 

N,N-

dimethylformamide 
DMF 99.8% Sigma-Aldrich 

Acetone - Analytical grade AB CHEM 

Molecular sieves 

13X 
Zeolite 13X Powder ̴ 2 µm Sigma-Aldrich 

Argon gas Ar 99.9999% pure Afrox gas 

Furfuryl alcohol FA 98% Acros Organics 

Hydrofluoric acid HF 
37% concentrated 

AR fuming 
Labchem 

Terephthalic acid H2BDC 98% Sigma-Aldrich 

Zirconium 

tetrachloride 
ZrCl4 99.5%, Sigma-Aldrich 

Formic acid  HCOOH 95% Sigma-Aldrich 

Chromium chloride 

hexahydrate 
CrCl3.6H2O 99.5% Sigma-Aldrich 

Nitrogen gas N2 99.9999% pure Afrox gas 

Hydrogen gas H2 99.9999% pure Afrox gas 

 

3.3  Electrospinning Equipment 

This section presents the electrospinning set-up adopted to conduct the study. Since the 

electrospinning set up is composed of various components a photograph (Figure 3.2) along 

with a description of the function of the various components (Table 3.2) are highlighted.  
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Figure 3.2: The bench top electrospinning set up adopted for the study  

Table 3.2: Description of the function of the individual components for the electrospinning 

set-up illustrated in Figure 3.2. 

Key Name Function 

0 High voltage meter Supplies voltage 

1 Main switch Used to switch high voltage meter unit on and off 

2 Display screen Displays the voltage that is being applied 

3 Voltage control Used to increase or decrease the applied voltage 

4 Syringe pump Used to automatically eject the polymer solution at a set rate 

5 Syringe Holds the polymer solution 

6 Earth cord Used to discharge the unit after use 

7 Applied voltage clip 
Supplies the voltage to the polymer solution present in the 

needle, for electrospinning to occur 

8 
Electrospinning 

needle 
Ejects the polymer solution 

9 High voltage cord 
Attached to the collector plate in order to create an electric 

field in order for the fibres to be collected 

10 Collector plate 
Collector plate is covered in aluminium foil and is used 

to collect the fibres 
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Figure 3.3a and b presents a schematic as well as the actual electrospinning setup adopted in 

this study.  

 

Figure 3.3: Schematic diagram of the horizontal electrospinning setup (a) illustrating the 

trajectory of the polymer stream resulting in fibres, adapted from (Richard-Lacroix & 

Pellerin, 2013) and a picture of the experimental set-up used for the study (b). 

3.4  Experimental Methods 

This section presents details of the experimental procedures undertaken to synthesise the 

materials for the study. It is divided into four subsections; the first part is on polymer 

selection, followed by optimising the parameters for electrospinning these selected polymers 

(part two). The third part deals with the synthesis of the porous powdered materials that will 

be incorporated into the polymer solution, and finally the fourth part details the procedure for 

the synthesis of the composite electrospun fibres.    

3.4.1 Polymer selection 

The aim of this section was to determine a suitable polymer to produce composite fibres. 

Three polymers along with the corresponding solvent systems in which the polymers dissolve 

were selected (illustrated in Table 3.3) from literature based on the physical characteristics of 

the resultant polymer fibres.  
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Table 3.3: Polymers and corresponding solvent systems to dissolve the polymers selected for 

the study 

Polymer Solvent system References 

PSMA 50:50 DMF:Acetone (Cécile & Hsieh, 2009) 

PAA DMF (Li & Hsieh, 2005) 

PAN DMF (Arshad et al., 2011) 

 

3.4.1.1 Calculation of polymer mass  

This subsection presents the calculations of the mass of the polymers that was used for the 

preparations of the polymeric solutions. Optimisation of the parameters as well as the 

conditions under which the electrospinning process was carried out is also presented.  

The process of determining the concentration (categorised as solution parameters explained 

in section 2.2.4.1) of the polymer solution was adopted from Leach and colleagues, whereby 

a range of polymer solutions with varying concentrations were prepared and subjectively 

assessed to find a polymer solution that forms a viscous flowing gel (Leach et al., 2011). 

Therefore calculations shown in this section are based on that specific concentration for each 

polymer. The calculation for PSMA concentration is based on Equation 1 because it is 

dissolved in a co-solvent system, the PAA and PAN concentrations will be based on   

Equation 2 since they are dissolved in a single solvent system. The definitions of the symbols 

for the equations are found in Table 3.4. 

wt%p = 
Pm

dα × Vα + dβ × Vβ + Pm 
                              Equation 1 

Pm= 
wt%p × ds × Vs

1−wt%p 
                 Equation 2 
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Table 3.4: Meaning of the symbols from Equation 1 and 2. 

Symbol Definition of symbol 

wt%p Concentration of polymer solution 

dα Density of first solvent 

dβ Density of second solvent 

Vα Volume of first solution 

Vβ Volume of second solution 

ds Solution density 

Vs Solution volume 

 

The mass of PSMA required for the preparation of a 25 wt% concentrated solution with DMF 

and acetone as the first and second solvent was calculated as follows:  

0.25 = 
Pm

0.944 g.mL
-1

× 2.5 mL + 0.79 g.mL
-1

 × 2.5 mL + Pm

 

 

0.25 = 
Pm

4.6 + Pm

 

 

       1.15 + 0.25Pm = Pm 

1.15 = 0.75 Pm 

Pm =1.5 g 

Since PAA utilises one solvent, Equation 2 was used to determine the mass of PAA required 

to prepare a 50 wt% solution. 

 

Pm= 
0.50 × 0.944 g. mL-1 × 10 mL

1 − 0.50
 

 

Pm= 9.44 g 

 

The mass of PAN was calculated in the same way and is presented in Table 3.5 
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The calculation of the polymer mass for PSMA and PAA are given as examples of how the 

calculation was done, therefore all corresponding information necessary to prepare the 

polymeric solutions for the study is found in Table 3.5.  

Table 3.5: Polymer mass and the corresponding solvent system volumes and ratios required 

to prepare the solutions with the optimal concentration (described in section 3.4.1.1). 

Polymer Polymer solution 

concentration 

(wt%) 

Polymer mass 

(g) 

Solvent system Solvent 

volume (mL) 

PSMA 25 1.50 
50:50 

DMF:Acetone 5 

PAA 50 9.44 DMF 10 

PAN 10 1.05 DMF 10 

 

3.4.1.2 Preparation of polymeric solutions 

The polymer solutions were prepared by adding the respective mass of polymer and volume 

of solvents (quantities found in Table 3.5) into a sealed vial to prevent evaporation of solvent. 

The solution was then mixed with a magnetic stirrer between 250-500 rpm until the polymer 

had dissolved. Thereafter the polymer solution was transferred to a syringe attached to needle 

with a diameter of 0.7 mm and was placed on the syringe pump. By using the various 

components of the electrospinning equipment set as illustrated in Figure 3.2, the polymer 

solution was electrospun. 

3.4.1.3 Optimisation method of processing parameters  

The parameters under which the aforementioned polymer solutions were electrospun are vital 

since they determine whether the resultant fibres are desired. Therefore the methodology 

utilised to optimise the processing parameters of the polymer solutions was adopted from 

Leach et al. (2011) and a general description of how the fibres were electrospun was 

highlighted in this section. First, the collector plate (aluminium foil on a wooden substrate) 

was set at a certain distance (measured with a ruler) from the needle tip to ensure there is 

adequate time for the solvent to evaporate so that the fibres were able to solidify and reach 

the collector plate. Thereafter the rate at which the polymer solution was pumped out of the 

syringe (commonly referred to as flowrate) was determined, by setting it to a low flow rate 
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and gradually increased while observing the ejected polymeric droplet. Once the first drop of 

polymer solution had appeared at the needle tip, it was wiped away and when another drop 

immediately replaced it then the flowrate was deemed to be optimised. The voltage was 

slowly increased until the droplet transformed into a steady stream (Figure 3.4). Once the 

steady stream was observed the collector plate was moved either towards or away from the 

needle tip so that the fibres reached the collector plate and thus rendering it optimised. The 

electrospinning process for all subsequent runs was done under ambient conditions and a 

digital monitor was utilised to record the temperature and humidity of the surrounding area. 

 
Figure 3.4: Illustration of the polymer drop at the needle tip forming a steady stream (Leach 

et al., 2011). 

3.4.1.4 Optimisation of parameters for polymeric solutions  

The method of optimising the solution and processing parameters was described in 3.4.1.1 

and 3.4.1.3 respectively. The most important solution and processing parameters are polymer 

concentration, flowrate of the polymer solution, distance between the needle tip and collector 

plate, applied voltage, as well as the temperature and humidity. The parameters under which 

the polymeric solutions were electrospun are presented in Table 3.6.  

 

 

 

 

 

 



Chapter Three           Materials, Experimental & Analytical Methods 

Page | 36 

 

Table 3.6: Electrospinning parameters for the polymeric solutions. 

 PSMA PAA PAN 

Concentration (wt%) 25 50 10 

Flowrate (mL/h) 0.50 0.45-0.95 0.35 

Distance (cm) 8 5 10 

Applied voltage (kV) 9 9-11 7 

Temperature (ºC) 26-27 21-25 23-24 

Humidity (%) 36-40 36-57 54-62 

 

After analysis of the PSMA, PAA and PAN fibres the most suitable polymer for the 

production of composite fibres was identified to be PAN (a full explanation of how it was 

determined will be presented in Chapter 4 section 4.1).  Since the polymer had been selected 

the study progressed onto stage two of the experimental approach which was the 

investigation of the processing parameters of the PAN solution to achieve fibres with the 

desired characteristics (that is non-beaded fibres that possess a narrow diameter).  

3.4.2 Optimisation of the processing parameters for PAN 

This subsection deals with the investigation of electrospinning parameters to obtain smooth 

PAN fibres with a diameter range of 300-500 nm so the fibre is of adequate thickness to 

encapsulate the porous powdered materials into the composite fibres. The concentration of 

the PAN solution was 10 wt% (the method of determining the concentration is highlighted in 

section  3.4.1.1) since it formed a flowing gel with sufficient viscosity for electrospinning. 

The PAN solution was then electrospun via the method described in section 3.4.1.3. 

However, for this investigation there were both fixed and varied parameters. The rate at 

which the PAN solution was pumped was set and remained at 0.4 mL/h for the duration of all 

the experimental sets. The experiments for this investigation were done at ambient 

temperatures and humidity, which was recorded at 17 ºC and 41-42% respectively.  The 

varying parameters were the applied voltage and the distance between the needle tip and 

collector plate. The applied voltage was ranged at three levels (approximately 5-6, 8-9 and 

greater than 12 kV), whereas the distance between the needle tip and collector plate was 
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varied at 5, 10 and 15 cm. The distance from the needle tip and applied voltage for each 

experimental set is shown in Table 3.7. The formation of beads and fibre diameter were the 

main response factors used to identify the optimal electrospinning conditions and SEM 

micrographs were used to determine these morphological variations.  

Table 3.7: The distance from the needle tip to collector (denoted as distance) and the applied 

voltage for the parameter investigation for 10 wt% PAN solution pumped out at 0.4 mL/h and 

electrospun at 17 ºC and 41-42% humidity.  

Experimental set code Distance/ cm Applied voltage/ kV 

PI-1 5 5 

PI-2 5 6-8 

PI-3 5 12 

PI-4 10 5-6 

PI-5 10 8 

PI-6 10 12 

PI-7 15 5 

PI-8 15 9 

PI-9 15 12 

 

3.4.3 Synthesis of porous powdered materials 

Stage three of the experimental approach was the synthesis of the porous powder materials 

(which adsorbs hydrogen) used in the production of the composite fibres. The porous 

powdered materials used in the study were zeolites 13X, zeolite templated carbons (ZTCs) as 

well as chromium and zirconium based metal-organic frameworks (Zr and Cr MOFs). The 

commercial zeolite 13X (obtained from Sigma-Aldrich) was used without further processing. 

Sub-section 3.4.3.1 and 3.4.3.2 presents pertinent details of the procedure used to synthesise 

ZTCs and MOFs respectively. 

3.4.3.1 ZTC synthesis  

The commercial zeolite 13X was used as a template for the synthesis of ZTC. A general 

schematic highlighting the synthesis route for ZTC is presented in Figure 3.5.  
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Figure 3.5: Schematic of ZTC synthesis route. 

The procedure for the synthesis of ZTC is as follows; commercial zeolite 13X (17.24 g) was 

dried at 200 ºC for 12 h in a vacuum oven and thereafter cooled under the flow of argon in a 

tube furnace to prevent the zeolites from reabsorbing atmospheric moisture. The dried zeolite 

was impregnated (ratio of 3 g zeolite: 10 mL furfural alcohol) with furfural alcohol (58 mL). 

After 24 h the impregnated sample was filtered, washed with ethanol (approximately 1 mL) 

and thereafter left to dry at room temperature for 3 h. The sample was then transferred to 

alumina combustion sample boats, placed in the tube furnace under argon gas (100 mL/min) 

for the chemical vapour deposition (CVD) process. The CVD process involved the use of a 

temperature program illustrated in Figure 3.6.  
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Figure 3.6: Graphical representation of the temperature programme utilised for the CVD 

process with picture of the tube furnace (magnified picture of the pressure guages and the 

bubbler inserted) used for the CVD process inserted. 

Still under argon flow the temperature was ramped up from 0 to 80 
o
C at which time 

polymerisation of the furfuryl alcohol impregnated zeolite 13X occurred for 24 h, thereafter 

polymerisation occurred for a further 8 h at 150 ºC. The temperature was then ramped up to 

700 ºC for stabilisation of the impregnated zeolite 13X for 3 h still under argon gas. After 

which a mixture of ethylene/argon (100:400 mL/min carbon precursor) gas is passed through 

the tube. After 3 h the gas flow is switched back to argon only and the temperature was 

ramped up to 900 ºC where carbonisation of the chemical vapour deposited carbon took place 

for a further 3 h under argon gas. Thereafter the temperature was ramped down to     500 ºC 

and held there for 20 minutes and finally cooled down to 25 ºC which marked the completion 

of the CVD process. 

The sample then underwent the detemplation process to remove silica via hydrofluoric acid 

(20 mL) washing for 3 h and thereafter diluted to 2 L with deionised water and filtered.  The 

sample was then refluxed in 10% hydrochloric acid (200 mL) at 70 ºC for 24 h. Thereafter 

the ZTC was filtered and washed with deionised water (2 L) and dried in a conventional oven 

at 90 ºC. 
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3.4.3.2 MOF synthesis  

The MOFs were synthesised via a modulated synthesis route (Ren et al., 2014a; Ren et al., 

2014b). Although the reaction vessels did differ, a general schematic of the synthesis route 

undertaken for Zr and Cr based MOFs is illustrated in Figure 3.7 and a detailed explanation 

of the procedure is in section 3.4.3.2.1 and 3.4.3.2.2 respectively. 

 

Figure 3.7:  General schematic for the synthesis of Zr and Cr MOFs. 
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3.4.3.2.1 Zr MOF synthesis  

Terephthalic acid (0.68 g) was dissolved in DMF (25 mL) and sonicated for 10 min and 

thereafter zirconium tetrachloride (1.06 g) was added and thoroughly mixed. The resulting 

solution was transferred to a round bottom flask. Formic acid (17.2 mL) was added to the 

round bottom flask and then placed in an oil bath and heated to 120 ºC for 8 h. The Zr MOF 

crystals were then centrifuged and washed with DMF at 60 ºC to remove unreacted 

terephthalic acid and dried at 90 ºC in a conventional oven. 

3.4.3.2.2 Cr MOF synthesis  

Terephthalic acid (1.66 g) was dissolved in deionised water (45 mL) with the aid of a 

sonicator. Chromium chloride hexahydrate (2.66 g) was transferred along with 55 mL of 

deionised water to the high pressure autoclave reaction vessel (picture shown in Figure 3.8). 

Formic acid (30.2 mL) was added to the resulting solution and the mixture was heated to 210 

ºC and held at that temperature for 8 h. Once the reaction was done the autoclave was left to 

cool overnight and the Cr MOF crystals were removed, centrifuged and washed in DMF at  

60 ºC for 1 h and finally dried at 90 ºC in a conventional oven. 

 

Figure 3.8: Picture of the high pressure autoclave reactor used to synthesise Cr MOF. 

3.4.4  Synthesis of electrospun composite fibres 

The suitable polymer was selected in section 3.4.1 and the processing parameters 

(specifically distance between the needle tip and collector plate and applied voltage) were 

investigated to determine the range at which suitable polymer (PAN) fibres were defect free 
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and of a narrow diameter in section 3.4.2. Having optimised the conditions for 

electrospinning pristine PAN fibres, it was then possible to start the incorporation of the 

porous powdered materials into the polymeric solution in order to produce composite 

electrospun fibres, which was the final stage of the experimental approach. The route 

undertaken to synthesise the composite fibres is presented in Figure 3.9, with zeolite 13X-

PAN composite fibres being the example.  

 

Figure 3.9: Schematic flow diagram of the synthesis route for zeolite 13X-PAN composite 

fibres. 
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Composite fibres were synthesised by incorporating the porous powdered materials into the 

PAN solution and then electrospun. The percentage of porous powdered materials 

incorporated into the fibres was based on observable viscosity as determined by the 

electrospinability of the resultant polymeric blend. A general description of the procedure for 

the synthesis of composite fibres is as follows; the mass of the vial, vial cap and magnetic 

stirrer bar was recorded and thereafter a PAN solution (10 wt%) was prepared as stated 

previously in section 3.4.1.1 and 3.4.1.2 in the weighed vial. Once the PAN was dissolved, 

the vial along with the PAN solution in it was weighed. The mass of the PAN solution was 

recorded and the thereafter the porous powdered material was added to achieve the desired 

weight percent loading. The polymeric blend (refers to the mixture of PAN solution and the 

porous powdered materials) was first mixed with a spatula, thereafter the vial was sealed and 

further mixed with a magnetic stirrer for approximately 60 min and sonicated for 10 min and 

then electrospun (like in section 3.4.1.3). 

The amount of zeolite 13X encapsulated (referred to as loading weight percent (wt%)) in the 

PAN fibre ranged between 5-40 wt% since loadings higher than 40 wt% were too viscous to 

electrospin. The parameters under which the zeolitic-PAN blend was electrospun are found in 

Table 3.8. The loading weight percent for ZTC-PAN composite fibres ranged between 7.5 

and 12.5 wt%. The parameters under which the various ZTC-PAN blends were electrospun 

are found in Table 3.9. The relevant information regarding the loading of the Zr and Cr-

MOFs as well as their electrospinning parameters for the MOF-PAN blends is found in Table 

3.10. 

Table 3.8: Loading percentage and electrospinning conditions for zeolite-PAN composite 

fibres. 

Sample 

code 

Loading 

(wt%) 

Flowrate 

(mL/h) 

Distance 

(cm) 

Applied 

voltage 

(kV) 

Temperature 

(ºC) 

Humidity 

(%) 

Zeo-5 5 1.50-1.90 10 7-8 23-24 23-27 

Zeo-10 10 2.00 10 7 25-26 30-36 

Zeo-20 20 2.50-2.80 10 9 26-28 20-23 

Zeo-40 40 2.80-3.00 10 8-10 19-25 40-60 
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Table 3.9: Loading percentage and electrospinning conditions for ZTC-PAN composite fibres 

Sample 

code 

Loading 

(wt%) 

Flowrate 

(mL/h) 

Distance 

(cm) 

Applied 

voltage 

(kV) 

Temperature 

(ºC) 

Humidity 

(%) 

ZTC-7.5 7.5 0.30-0.40 10 7-9 23-23 59-60 

ZTC-10 10 0.35-0.60 10 6-8 18-19 52-56 

ZTC-12.5 12.5 0.35 10 8-9 24-25 50-53 

 

Table 3.10: Loading percentage and electrospinning conditions for MOF-PAN composite 

fibres.  

Sample 
Loading 

(wt%) 

Flowrate 

(mL/h) 

Distance 

(cm) 

Applied 

voltage 

(kV) 

Temperature 

(ºC) 

Humidity 

(%) 

Zr-MOF 

fibres 
20 1.25-2.50 10 10 22-24 40-60 

Cr-MOF 

fibres 
20 0.34-0.50 10 8-9 26-28 30-35 

 

3.5 Characterisation Methods 

This section focuses on the technical aspect of characterising the samples. It will describe the 

techniques used and all relevant information regarding the characterisation of the samples.  

3.5.1 Scanning Electron Microscopy (SEM) 

The procedure for preparing samples for SEM analysis was as follows; double-sided sticky 

tape was mounted on the aluminium stubs, then either the porous powdered materials or 

electrospun fibres (or the composites) were transferred to the sticky tape and the excess 

removed and placed on a multiple stub stage. The samples were then coated with carbon to 

reduce charging effects during analysis and thereafter transferred to an Auriga Cobra 

Focused-Ion Beam Scanning Electron Microscope (FIB-SEM) for analysis of surface 

morphology measurement fibre diameters.  
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3.5.2 Powder X-Ray Diffraction (PXRD) 

Samples for PXRD were prepared by either placing the porous powdered or electrospun 

fibres on to a disc, which was then transferred to a PANalytical X’Pert Pro powder 

diffractometer equipped with a Pixcel detector (Ni-filtered Cu-Kα radiation, 0.154 nm). The 

XRD patterns were acquired at room temperature, at a scanning rate of 0.1
°
·s

-1
 and 2θ ranging 

between 1–60
°
.  

3.5.3 Thermal Gravimetric Analysis (TGA) 

TGA was done by loading 9-10 mg of sample into a sample ceramic pan, placed in a  Mettler, 

Toledo, TGA/SDTA 851
e 
, heated to 1000 ºC, temperature ramped up at 10 

°
C·min

-1, 
under an 

air flow of 10 mL·min
-1

. 

3.5.4 Surface area and hydrogen adsorption measurements 

First, the samples had to undergo a process known as degassing whereby 0.1-0.3 g of the 

samples were transferred to a sample tube, which was then transferred to the degassing port 

of a Micromeritics ASAP 2020 HD analyser.  Degassing occurred between 200-280 ºC under 

10
-7 

bar
 
vacuum for 6 h to remove any solvent from the samples. The temperature for 

degassing was determined from the results of the thermal gravimetric analysis. Then the 

sample tube was transferred to the analysis port of the Micromeritics ASAP 2020 HD 

analyser and degassed again under the same temperature and vacuum but for only 3 h to 

remove any atmospheric moisture and gas. The BET surface area was obtained from the 

nitrogen isotherms. The measurements were conducted at 77 K. Then the sample was 

degassed again while still on the analysis port under the aforementioned conditions to remove 

the nitrogen gas from the pores of the materials, and analysed for volumetric hydrogen 

adsorption at 77 K and pressures up to 1 bar.  

3.5.5 Fourier Transform Infrared (FTIR) analysis 

FTIR spectra were obtained from a Perkin Elmer spectrum 100 FT-IR spectrometer fitted 

with an ATR configuration. Approximately 15 mg of the solid sample was placed on the 

sample holder then analysed at 60 scans reducing the noise and range between 400-4000 

wavenumbers.  
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Chapter summary 

The experimental methods section of the chapter was structured in sequential manner 

whereby, first a suitable polymer was selected from three polymers chosen from literature 

based on the physical characteristics of the resultant electrospun fibres. An explanation of 

how the solution and processing parameters were optimised for electrospinning of PSMA, 

PAA and PAN solutions was also presented. Once the most suitable polymer (which in this 

case was PAN) was selected, its electrospinning parameters were investigated. To determine 

the range at which the electrospun fibres were not beaded and had a fibre diameter in the 

range of 300-500 nm, the investigation was done by keeping the concentration of the PAN 

solution and the flowrate constant, and varying the distance between the collector plate and 

needle tip as well as the voltage. The experiments were conducted under ambient temperature 

and humidity.   

Commercial zeolite 13X and its templated carbon derivative as well as synthesised MOFs 

was utilised in the synthesis of composite fibres. The MOFs were synthesised via a 

modulated method whereas ZTC was produced from the combination of liquid carbon 

impregnation of the zeolite followed by CVD. Since the polymer had already been selected 

and the porous powdered materials synthesised, the next step involved the synthesis of the 

composite fibres by mixing the porous powdered materials with 10 wt% PAN solution and its 

resulting blend was electrospun. The amount of porous powdered materials incorporated (also 

known as loading weight percent) into the fibres was dependent on the observable viscosity 

and thereafter increased as determined by the electrospinability of the porous powdered 

material-polymeric blend. The loading weight percent for zeolite 13X, ZTCs and MOFs was 

0-40, 7.5-12.5 and 20 wt%, respectively. All the samples from the study were characterised 

using SEM, PXRD, TGA, BET surface area, hydrogen adsorption measurements and FTIR 

analysis. 

The next chapter presents and discusses the results of the suitable polymer selected for the 

study and optimised conditions under which it was electrospun. Morphological, structural and 

thermal analysis of the suitable as well as its surface area and hydrogen measurements will be 

presented in the following chapter. 
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Chapter Four 

Polymer Selection and Optimisation 

This chapter is divided into two sections; the first part discusses the results obtained when 

selecting the most suitable polymer for the synthesis of composite fibres and the second part 

presents the results for the optimisation of the processing parameters for the electrospinning 

of the suitable polymer to determine the optimum range in which the resultant fibres possess 

a medium fibre diameter and are not beaded.  

4.1  Polymer selection 

The first step for obtaining electrospun composite fibres with attractive hydrogen adsorption 

capacity involves identification of a polymer that has good electrospinability properties. In 

this regard the suitable polymer has to adhere to certain criteria such as; resulting in fibres 

that are not beaded, desirable fibre diameters and also its ability to incorporate the porous 

powders.  

4.1.1 Analysis of PSMA fibres 

Visual inspection was used to examine the fibres during electrospinning. Previous studies 

done on the formation of beads on electrospun fibres highlighted that beading results from the 

viscosity of the polymer solution as well from the unsteady stream of the ejected polymeric 

jet (Lee et al., 2003; Fong et al., 1999). Since lower concentrations (10 and 18 wt%) PSMA 

solutions did not yield fibres; the concentration was increased to 25 wt% resulting in a 

viscous flowing PSMA solution that yielded fibres. The parameters under which the PSMA 

fibres were electrospun are presented in Table 3.6. 

 

 

 

 



Chapter Four  Polymer Selection & Optimisation 

Page | 48 

 

 

 Figure 4.1: SEM micrograph of electrospun PSMA fibres. 

Since the concentration of polymer solution is directly correlated to its viscosity, the 

formation of beads on the PSMA fibres as can be seen from the SEM micrograph in Figure 

4.1 was related to the PSMA solution being too viscous. This observation was also reported 

by Cecile and Hsieh who studied the synthesis of electrospun PSMA fibres and reported that 

between 20 and 40 wt% there was formation of fibres with the presence of beads (Cécile & 

Hsieh, 2009). The rationale that the bead formation on the PSMA fibres were due to high 

concentration of the PSMA solution was also supported by Lee and colleagues who studied 

the morphology of the beads on the polystyrene (PS) moiety of PSMA (Lee et al., 2003). The 

diameter of the unbeaded part of the PSMA fibres was measured with the FIB-SEM when the 

SEM micrographs were taken. The PSMA fibre diameter ranged between 100-300 nm which 

can be described as narrow. Based on the criteria mentioned in the introductory section of this 

sub-section; PSMA polymer could be considered as unsuitable for this work since it failed to 

produce unbeaded fibres. Hence the study focused on a different polymer as discussed below.  

4.1.2 Analysis of PAA fibres 

For the study, PAA was received as an aqueous solution (35 wt% in water) which was too 

thick to electrospin, therefore it was diluted with DMF resulting in a 50 wt% PAA solution 

which possessed adequate viscosity for electrospinning (parameters can be found in Table 

3.6). Adequate molecular chain entanglement is a characteristic determined by the polymer 

structure and concentration and is a necessary requirement for the formation of fibres (Chen 
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et al., 2008). Implying that if the polymer concentration is too low there is insufficient 

molecular entanglement resulting in droplets (Kim et al., 2005a; Li & Hsieh, 2005).  

 

Figure 4.2: SEM micrograph of PAA fibres. 

There was no visible formation of beads on the PAA fibres while electrospinning, however, 

the SEM micrograph (Figure 4.2) illustrated that the PAA fibres were beaded which was not 

visible to the naked eye due to the fine nature of the fibres. This coupled with the fibre 

diameter of 100-200 nm renders PAA not suitable to encapsulate the porous powdered 

materials.   

4.1.3 Analysis of PAN fibres 

The morphological analysis obtained following the employment of the electrospinning 

parameters shown in Table 3.6 is illustrated in the SEM micrograph presented in Figure 4.3.  
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Figure 4.3: SEM micrograph of electrospun PAN fibres. 

During electrospinning of PAN solution there was no visible formation of beads, which was 

confirmed by SEM micrograph (figure 4.3) and the fibres appeared to be thicker as compared 

to the PSMA and PAN fibres. This observation was confirmed by the relatively thick 

diameter of the PAN fibres of 300-600 nm.  Li and Wang noted that the fibre diameter is 

dependent on the distance between the needle tip and the collector plate, however, this 

distance was kept constant for the electrospinning of all three polymers therefore it can be 

deduced that the large fibre diameter is attributed to the high viscosity of the PAN solution 

(Li & Wang , 2013), this deduction was corroborated by (Gu et al., 2005). For purposes of the 

study, an adequate fibre diameter would be between 300-500 nm since the fibre will be thick 

enough to encapsulate the powders but still allow the hydrogen gas molecules to access the 

pores of the porous powdered materials. As mentioned in section 3.4.1.1 the polymer 

solutions were selected via Leach et al. (2011) method that is preparing polymer solutions of 

varying concentrations and selecting the solution that is a viscous flowing gel. From the 

results presented in this section, it can be deduced that PAN was the most suitable polymer 

for the production of composite fibres because it formed bead free fibres as compared to 

PSMA and PAA which had beads. However, the fibre diameter of the PAN was a drawback 

because it was thicker than the diameters of PSMA and PAA. Fibre diameters are varied by 

changing the parameters they are electrospun under thus initiating the next section. 
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4.2  Optimisation of electrospinning parameters for PAN 

Since the general consensus amongst scientists is that the morphology and diameter of fibres 

are controlled by the electrospinning parameters, this section will focus on determining their 

effects of the PAN fibres (Jacobs et al., 2010; Li & Wang, 2013; Chowdhury & Stylios, 

2010). Having optimised the concentration of the PAN solution (10 wt%) in section 3.4.1 for 

electrospinning which yielded bead free fibres shown in Figure 4.3. The flowrate of the PAN 

solution was kept constant at 0.4 mL/h throughout the investigation as well as the 

temperature at 17 ºC and the humidity ranged between 41-42% since the investigation was 

done during the day and took a few hours to perform. Therefore it was necessary for the 

applied voltage and distance between the needle tip and the collector plate to be investigated 

and optimised in this section. It was also important to note the range in which beaded and 

unbeaded fibres resulted. The investigation was done by varying the applied voltage and 

distance between the needle tip and collector plate which was set at 5, 10 and 15 cm. The 

ranges for the applied voltage was subjective, the first range occurs at the first occurrence of 

a steady stream and thereafter increased consisting of the second and third range. This 

investigation yielded fibres from nine experimental sets (presented in Table 3.7) which 

underwent morphological analysis with the aid of SEM micrographs presented in Figure 4.4. 

The response factors were beaded or unbeaded fibres and the diameter size of the fibres 

found in Table 4.1.  

Table 4.1: The experimental code corresponding SEM micrographs (Figure 4.5) along with 

the diameter range of the fibres for parameter investigation of 10 wt% PAN solution. 

Experimental set code SEM micrograph  
Fibre 

morphology 

Fibre diameter 

range/nm 

PI-1 - No fibres - 

PI-2 [a] Beaded  451-521 

PI-3 [b] Beaded 451-622 

PI-4 [c] Beaded 496-624 

PI-5 [d] Not beaded 487-507 

PI-6 [e] Beaded 488-523 

PI-7 [f] Beaded 542-577 

PI-8 [g] Beaded 401-459 

PI-9 [h] Beaded 397-413 
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Figure 4.4: SEM micrographs from the parameter investigation. Experimental set codes PI-2 

to PI-9 are correlated to SEM micrograph [a] to [h]. 
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It can be seen from the SEM micrographs in Figure 4.4a, b, c, e and f that beaded fibres 

occurred with the exception of Figure 4.4d which yielded smooth fibres which is synonymous 

with the steady stream that was observed during electrospinning. Rather interesting are the 

structures in Figure 4.4g and h, these structures were observed while electrospinning when 

the applied voltage was increased and the steady stream of PAN solution split up.  However, 

these structures were also seen in previous studies (Han et al., 2005; Zhang et al., 2014) due 

to the residual solvent that causes the intersecting fibres to coagulate. This reasoning 

contradicted the observation from the current study because these structures were observed 

for a needle tip to collector distance of 15 cm which had enough time for the solvent to 

evaporate (Chowdhury & Stylios, 2010). The diameters for all experimental sets were similar 

but thinner diameters were seen for fibres in Figure 4.4h when the distance was 15 cm and 

the applied voltage was 12 kV. The thick fibres seen in Figure 4.4b occurred when the 

distance was 5 cm and the voltage was 12 kV confirming that distance between the needle tip 

and collector was a determining factor. The optimal parameters for electrospinning unbeaded 

PAN fibres with a diameter of 300-500 nm was concluded from this investigation as follows; 

a 10 wt% concentrated PAN solution ejected from the needle tip at a flowrate of 0.4 mL/h. 

The optimal distance from the needle tip to the collector plate and applied voltage was 10 cm 

and 8 kV respectively. 

4.3  Further characterisation of optimised PAN fibres 

Characterisation of the optimised electrospun PAN fibres was vital for the aim of the study. 

Previous studies have illustrated that there is an increase in the tensile strength of the PAN 

fibres when it undergoes carbonisation via thermal treatment (Bai et al., 2011). Therefore the 

PAN fibres synthesised in this study (as described in section 3.4.1 and 3.4.2) underwent 

thermal treatment. Carbonisation is a two stage process; the first is stabilisation which occurs 

between 200 and 300 
o
C and then carbonisation which occurs at temperatures over 900 

o
C 

(Lee et al., 2012). For the current study, thermal treatment was employed to stabilise the 

electrospun PAN fibres at 280
 o

C under vacuum only and was not advanced to the 

carbonisation stage because the high temperatures would decompose the porous powdered 

materials used to produce the composite fibres. The stabilisation temperature for the PAN 

fibres were adopted from the work done by Cho and colleagues (2007) who reported that 

complete stabilisation occurred at 280 ºC. 
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4.3.1 Morphological, Structural and Physical analysis 

Since thermal treatment was employed to improve tensile strength of the PAN fibres it was 

important to determine its effect on the morphology and structure which was analysed with 

the aid of SEM micrographs (Figure 4.5b) and PXRD pattern (Figure 4.5c).  

 

Figure 4.5: Picture (a), SEM micrograph (b) and PXRD patterns (c) of PAN fibres that 

underwent thermal treatment. 

Morphological analysis of the PAN fibres pre (Figure 4.3) and post (Figure 4.5b) thermal 

treatment illustrate that the PAN fibres did not decompose during thermal treatment. 

However, there was a chemical change evident from the difference in colour from white 

(Figure 3.3b) to orange-brown (Figure 4.5a). The diffraction pattern of the PAN fibres 

presented in Figure 4.5c shows weak peaks at 2θ =17°, 28°, 41–43°, 47° and 48°  that are as a 

result of pre-oxidation, aromatization and stabilization of the fibres as they were thermally 
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treated. Earlier studies by Lee et al. (2012) reported that the diffraction peaks at 2θ = 17° and 

29° corresponds with the (100) and (101) crystal planes of the PAN fibres.  

The difference in colour due to chemical transformations can be explained by FTIR analysis 

(Figure 4.6).  

 

Figure 4.6: FTIR spectra for PAN fibres pre- and post-thermal treatment. 

The PAN fibres showed peaks at  1̴500,  ̴1650,  ̴2200 and  2̴700 cm
-1

, attributed to –C–H,         

–C=C, –C≡N, and –C–H respectively (Cho et al., 2007). A weak stretching band that 

developed at  1̴500 cm
-1

 after thermal treatment is due to –C=C and –C=N, indicating 

cyclisation (reaction seen in Figure 4.7) and dehydrogenation which occurs in inert and 

atmospheric conditions (Ouyang et al., 2008).   
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Figure 4.7: Cyclisation of the nitrile groups present in PAN and dehydrogenation process that 

occurs during the stabilisation of PAN adapted from (Rahaman et al., 2007). 

Although literature states that tensile strength increases after the PAN fibres are stabilised, it 

was not the case in the study because after thermally treating the PAN fibres at 280 ºC under 

vacuum (referred to as degassing) for six hours the fibres became brittle. This observation 

could be due to the oxidation part of the stabilisation which does not occur because of the 

inert conditions (Rahaman et al., 2007).  

The reason for not stabilising the PAN fibres before subjecting them to vacuum was that the 

residual solvent from the electrospun PAN fibres would be removed under vacuum 

conditions thus creating porosity which was an important aspect for hydrogen uptake when 

producing the composite fibres. If the fibres were to firstly undergo thermal treatment, the 

solvent would dry up, and hence the creation of porosity would not occur. Therefore the PAN 

fibres were subjected to thermal treatment and vacuum (at 10
-7 

bar) simultaneously. For this 

reason, it was hypothesised that the removal of the residual solvent in the pristine electrospun 

PAN fibres under a high vacuum during degassing would result in the creation of porosity. 

Evidence to support or reject this hypothesis is presented in Figure 4.8, which are SEM 

micrographs of electrospun 10 wt% PAN fibres before and after the degassing process.   
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Figure 4.8: SEM micrographs of the electrospun 10 wt% PAN fibres pre (a) and post (b) 

degassing at 280 ºC under 10
-7

 bar vacuum for six hours. 

A smooth surface morphology was observed for the pristine electrospun PAN fibres (Figure 

4.8a) prior to the degassing process. However, after the pristine electrospun PAN fibres were 

subjected to the degassing process (that is thermal treatment at 280 ºC under 10
-7

 vacuum) the 

surface morphology became rough (Figure 4.8b) implying that there was removal of residual 

solvent. Although, there was no porosity (Figure 4.8b) observed after degassing which could 

be due to insufficient residual solvent in the PAN fibres. Therefore the aforementioned 

hypothesis that degassing would create porosity on the electrospun PAN fibres was not 

accepted. 

4.3.2 Thermal analysis 

Thermal gravimetric analysis shown in Figure 4.9 was done on the PAN fibres pre and post 

heat treatment to determine whether thermal treatment made the PAN fibres more resistant to 

thermal decomposition.  
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Figure 4.9: TGA plot of PAN fibres pre and post thermal treatment. 

The pristine PAN fibres before thermal treatment showed a sharp decrease in the weight 

percent of approximately 20% at 370 ºC due to loss of residual DMF and then a gradual 

weight loss making it stable until approximately 500 ºC. The thermal treated PAN fibres 

showed a gentle reduction in weight loss since they were free of any DMF and were 

relatively stable up to 400 ºC. Implying that the thermal treatment of PAN fibres reduced the 

temperature at which the fibres are thermally stable by 100 ºC, confirming the previous 

observation that thermal treatment did not improve the tensile strength of the fibres.  

4.3.3 Surface area and Hydrogen adsorption measurements 

Previous studies have reported that PAN fibres can adsorb hydrogen gas, although the 

adsorption capacity was low (ranging in 0.16-0.5 wt%) (Kim et al., 2005b), however, these 

studies were done on carbonised PAN fibres which were not adopted for this study (reasons 

for which is explained in the introduction of section 4.3). Therefore it was essential that 

surface area and hydrogen adsorption measurements be performed on these pristine thermally 

treated PAN fibres because they would assist in determining whether the PAN fibres 

contribute towards the surface area and hydrogen adsorption for the composite fibres. 

Degassing enables the removal of residual solvent which affects the surface area and 

hydrogen adsorption measurements. Therefore the pristine electrospun PAN fibres were 

degassed at 200 ºC for six hours under 10
-7

 bar vacuum which was the same temperature used 
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for the degassing of the porous powdered materials used in the synthesis of the composite 

fibres (which can be found in chapter six). The nitrogen isotherm in Figure 4.10a was used to 

determine the BET surface area of the thermal treated PAN fibres and corresponding 

hydrogen adsorption isotherm is presented in Figure 4.10b. 

 

Figure 4.10: Nitrogen sorption isotherm (a) and hydrogen adsorption capacity (b) for pristine 

electrospun PAN fibres that was degassed at 200 ºC for six hours under 10
-7 

bar vacuum and 

measured at 77 K and 1bar. 

The nitrogen isotherm in Figure 4.10a is of Type II isotherm implying that an identifiable 

monolayer has not formed and that there is a very weak interaction between the nitrogen gas 

molecules and the degassed PAN fibres. The BET surface area was recorded to be a 

negligible 13 cm
3
/g. The hydrogen adsorption capacity for the thermally treated PAN fibres 

was recorded at 0.05 wt% (Figure 4.10b). 

Chapter summary 

The chapter presented the results and discussion of the first aspect of the study that was the 

selection of a suitable polymer for the production of composite fibres. After electrospinning 

three polymers, PAN was selected as the most suitable polymer because it yielded bead free 

fibres. However, the diameter of the PAN fibres was large/thick which prompted the 

investigation aimed to determine whether the distance from the needle tip to the collector 

plate and the applied voltage would affect the fibre diameters while the optimised PAN 

concentration (10 wt%) and flowrate were held constant. The experiments were done under 

ambient temperatures and humidity. It was found that a distance and voltage of 10 cm and 8 
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kV respectively, yielded smooth unbeaded fibres with diameter of 480-510 nm which is 

within the desired range of 300-500 nm.  

Following the optimisation of the solution and processing parameters under which PAN was 

electrospun, the resultant PAN fibres underwent thermal treatment intending to improve its 

tensile strength. Due to previous studies reporting an increase in tensile strength during the 

first stage (that is stabilisation) of carbonisation of the PAN fibres. Therefore for this study, 

the optimised PAN fibres were stabilised via thermal treatment (between 200-300 ºC) under 

vacuum and did not progress to the carbonisation stage. This is due to carbonisation 

occurring at temperatures greater than 900 ºC which will result in the destruction of the 

porous powdered materials (that adsorb hydrogen gas) utilised to synthesise the composite 

fibres.  

The results from the morphological analysis illustrated that the PAN fibres did not 

decompose after thermal treatment, although there was a colour change from white to orange-

brown implying a chemical transformation. Phase crystallinity analysis showed peaks at       

2θ =17°, 28°, 41–43°, 47° and 48° due to pre-oxidation, aromatization and stabilization of the 

PAN fibres during thermal treatment. The cyclisation and dehydrogenation of the nitrile 

groups present in PAN fibres were confirmed by the weak stretching band at 1500 cm
-1

 seen 

in the FTIR spectrum. Although literature reports an increase in tensile strength of the PAN 

fibres after stabilisation, this was not corroborated by this study due to the embrittlement of 

the thermally treated PAN fibres. This observation is probably due to oxidation not occurring     

since thermal treatment was performed under vacuum conditions. The embrittlement of the 

PAN fibres was corroborated by thermal stability tests which illustrated that the pre-thermal 

treated PAN fibres were stable up to 500 ºC and the post thermal treated PAN fibres were 

only stable up to 400 ºC. However, the pristine electrospun PAN fibres had to undergo 

degassing (at 200 ºC under 10
-7

 bar vacuum for six hours) to remove residual solvent from 

the fibres. Since BET surface area and hydrogen adsorption capacity is gravimetric 

measurements (dependent of the mass of the fibres), the degassing temperature was reduced 

to 200 ºC which was suitable for the residual solvent to be removed.  

The next chapter presents the results and discussion from the analysis of the porous powdered 

materials that make up the composite fibres that is commercial zeolite 13X, its templated 

carbon derivative (ZTCs) and the Zr and Cr metal organic frameworks (MOFs). 
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Chapter Five 

Analysis of Pristine Porous Materials  

Since the focus of the study was to analyse the electrospun composite fibres for hydrogen 

storage applications, it was necessary to first analyse its constituents that is the optimised 

electrospun PAN fibres (presented in chapter four) and the pristine porous powdered 

materials. Therefore this chapter will provide an explanation of the results from the analysis 

of the porous powdered materials specifically commercial zeolite 13X, its synthesised 

templated carbon derivative (ZTC) and  metal organic frameworks (Zr and Cr based MOFs). 

The results for the porous powdered materials are categorised according to morphological 

and phase crystallinity analysis, followed by the thermal analysis and finally the surface area 

and hydrogen adsorption analysis. 

5.1  Zeolite 13X and ZTC 

Commercial zeolite 13X in Na-form was selected for the study since it is thermally stable, 

possesses good pore size distribution and furthermore is an excellent templating agent for the 

synthesis of ZTC (Li et al., 2012; Masika & Mokaya, 2013). ZTC is advantageous over most 

carbons because the zeolite template creates ordered microporous network structure which is 

beneficial for the storage of gas (Chen et al., 2007).  

The synthesis of ZTC in the study was a three stage process, whereby the zeolite 13X was 

templated by first impregnating the zeolite channels with furfuryl alcohol (a liquid carbon 

source), thereafter the impregnated zeolite underwent polymerisation and carbonisation (with 

the second carbon source being ethylene gas) via a temperature programmed chemical vapour 

deposition (CVD). The third stage involved the removal of the zeolite template, which was 

obtained by washing with hydrofluoric (HF) acid. A full description of the ZTC synthesis 

process can be seen in section 3.4.3.1. 

A comparative analysis of the zeolite 13X and its ZTC derivative will be presented in this 

section.  
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5.1.1 Morphological and Phase Crystallinity analysis 

The surface morphology and crystallinity of the zeolite and ZTC were assessed with the aid 

of SEM micrographs (Figure 5.1a-b respectively) and PXRD patterns (Figure 5.1c-d 

respectively). Photographs of the zeolite 13X and synthesised ZTC powders can be seen in 

Figure 5.1e and f respectively.  

 

Figure 5.1: SEM micrographs (a-b), PXRD patterns (c-d) and pictures (e-f) of zeolite 13X 

and ZTC powders. 

Well defined octahedral particles that are 2 µm can be seen from the SEM micrographs for 

both the commercial zeolite and the ZTC. The crystallinity of the zeolite particles was 

corroborated by numerous sharp peaks of the XRD pattern presented in Figure 5.1c which 

corresponds to the simulated powder XRD patterns for zeolite 13X reported by Treacy & 

Higgins, (2007). The observed sharp peaks present for the zeolite XRD pattern were absent in 

the XRD pattern for the ZTC implying that the ZTC was amorphous because the scattering of 

the phase contrast was reduced due to the filling of the pores (Masika & Mokaya, 2013; 
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Musyoka et al., 2015). The prominent peak that appears at approximately 2Ɵ=7º in both 

Figure 5.1c and d implies that the pore structure of the ZTC was an inverse of the zeolite 

pores and regular pores formed which possessed a d-spacing of 1.4 nm (Masika & Mokaya, 

2013; Yang et al., 2005). Since the prominent peak for the ZTC in Figure 5.1d is sharp and 

intense, it implies that the method utilised to fill the carbon into the pores (liquid 

impregnation and CVD method) of the zeolite was the most successful method for FAU 

structured zeolites such as in the case of zeolite 13X (Kyotani et al., 2003). According to 

literature the weak peak at around 2Ɵ=26º and 2Ɵ=43º which are a result of graphitic and 

turbostatic carbon (Yang et al., 2005; Masika et al., 2013). However, these aforementioned 

peaks were not present in the PXRD pattern (Figure 5.1d) of the ZTC synthesised in this 

study.  

5.1.2 Thermal analysis 

Determination of the temperature at which materials decompose especially when they are to 

be integrated into a hydrogen storage system is of vital importance. Therefore thermal 

gravimetric analysis (TGA) was done on the zeolite and its templated carbon derivative under 

air flow and the results are presented in Figure 5.2.   

 

Figure 5.2: TGA plots for commercial zeolite 13X and its ZTC derivative. 
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From the TGA plot of zeolite 13X (Figure 5.2) an initial decrease in mass of approximately 

20% was observed between 100-350 ºC zeolite 13X which can be attributed to the 

evaporation of atmospheric moisture that the zeolite had adsorbed during sample preparation. 

After 350 
o
C there was no weight loss implying that the zeolites was stable up to high 

temperatures (1000
 o

C) which can be corroborated by previous studies (Li et al., 2012). 

Thermal analysis of ZTC show that it was thermally stable up to 550 
o
C after which a sharp 

loss in weight was observed to occur between 600-710 
o
C. This drastic weight loss can be 

ascribed to carbon combustion in air or burn-off. Since the ZTC was completely combusted 

leaving no residual material behind indicates that the silica had been completely dissolved by 

the HF treatment (Musyoka et al., 2015).  

5.1.3 Surface area and Hydrogen adsorption 

The BET surface area of the porous zeolite 13X and ZTC materials is a vital characteristic 

and is obtained from the nitrogen isotherm presented in Figure 5.3. The hydrogen adsorption 

isotherm for zeolite and ZTC was determined via the gravimetric method detailed in section 

3.5.4 and the results of hydrogen adsorption capacity can be found in Figure 5.4. A summary 

of the physical characteristics and hydrogen adsorption capacity for zeolite and ZTC is found 

in Table 5.1. 

 

Figure 5.3: Nitrogen sorption isotherms for zeolite 13X and its ZTC derivative measured at 

77 K and 1 bar. 
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Figure 5.4: Hydrogen adsorption isotherm for zeolite 13X and its ZTC derivative measured at 

77 K and 1 bar. 

Table 5.1: Physical properties and hydrogen adsorption capacities of zeolite 13X and ZTC 

porous powdered materials. 

Sample 

 

Particle Size
a 

 

SBET (m
2
/g)

b
 

Pore volume 

(cm
3
/g)

c
 

H2 adsorption  

(wt%)
d
 

Zeolite 13X 2 µm 730 0.35 1.6 

ZTC 2 µm 2717 1.44 2.4 

a
 Estimated from SEM images. 

b BET surface area. 
c
 From H-K analysis. 

d 
Adsorbed at 77K 

and 1 bar. 

 

The S-shaped N2 sorption isotherms for zeolites and ZTCs (Figure 5.3) are of Type I 

classification which depicts well-defined micropores because the nitrogen fills most of the 

pores at approximately 0.05 P/P0 and thereafter reached a plateau (Thommes et al., 2015) 

(Lowell et al., 2012). The BET surface area for zeolite 13X and ZTC was 730 and 2717 m
2
/g 

respectively. A pore volume of 0.35 and 1.44 cm
3
/g was observed for zeolite 13X and ZTC 
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respectively.  It is evident from the higher surface area and pore volume of the ZTC that the 

structural ordering of the zeolite framework was effective in the templation process when 

compared to other carbons (Musyoka et al., 2015). The trend of physical properties 

improving after the carbonisation of the zeolitic template was also observed for the hydrogen 

adsorption capacity seen in Figure 5.4 which had increased by 67% after the silica was 

removed (detemplation). These trends were corroborated by previous studies (Masika & 

Mokaya, 2013; Alam & Mokaya, 2011). From Figure 5.4 it is also observed that the 

hydrogen adsorption isotherm did not reach a plateau implying that ZTC pores were not 

saturated with hydrogen gas. This observation suggests that the hydrogen adsorption capacity 

will increase at higher pressures (Musyoka et al., 2015).  

 

5.2  Zr and Cr based MOFs 

As a result of the attractive hydrogen adsorption properties of MOFs, great emphasis has 

been placed on determining MOFs for hydrogen storage over recent years, however, MOFs 

developed initially (Zn based MOFs) presented moisture instability (Kaye et al., 2007; 

Nguyen & Cohen, 2010). This moisture instability has been a limiting factor in the synthesis 

and processing of MOFs for hydrogen storage, this prompted the development of more stable 

MOFs such as Zr and Cr MOFs which were selected for this study (Cavka et al., 2008; Ferey 

et al., 2005).   

It is important to note that synthesis conditions play a vital role in determining the topology 

and physical properties of the Zr and Cr based MOFs therefore synthetic conditions were 

optimised previously by the HySA infrastructure research group and can be found in Ren et 

al., (2014a) and Ren et al., (2014b) respectively. Consequently, this section will only present 

the analysis of the MOFs synthesised under the optimised conditions as specified in section 

3.4.3.2.  

5.2.1 Morphological and Phase Crystallinity analysis 

Scanning Electron Microscopy and powder X-ray analysis techniques were employed to 

assess the morphology and the phase crystallinity of the Zr and Cr based MOFs and the 

results can be found in Figure 5.5 and 5.8 respectively.  
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Figure 5.5: Zr MOF powder; Picture (a) SEM micrograph (b) PXRD spectrum (c). 

The PXRD pattern (Figure 5.5c) illustrate peaks at 2Ɵ= 7.4, 8.5, 14.1, 14.7, 17, 18.6 and 

19.1º that are typical of the simulated PXRD pattern of Zr MOF which can be found in Zhao 

et al., (2013) thus confirming the synthesis of Zr MOF. Since the peak at 2Ɵ = 7.4º has a 

relatively higher intensity than the peak at 2Ɵ = 8.5º and both peaks are sharp, it can be 

deduced that the phase crystallinity of close packed cubic Zr MOF is high (Hafizovic et al., 

2007). Evidence of crystalline Zr MOF was corroborated by the SEM micrographs (Figure 

5.5b), which illustrates well-defined 100 nm octahedral shaped crystals. The modulated 

synthesis route utilised for Zr MOF is the reason for the highly crystalline Zr MOFs during 

which the Zr6O4(OH)4(O2C)12 secondary building units are generated when there is sufficient 

water and oxygen for the ZrCl4 (precursor) hydrolysis. The reaction of N,N-

dimethylformamide (DMF) with water is illustrated in Figure 5.6 below (Ren et al., 2014; 

Schaate et al., 2011; Wißmann et al, 2012).   
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Figure 5.6: The hydration and decomposition reaction of DMF (Ren et al., 2014). 

The equilibrium of the hydration and decomposition reaction in Figure 5.6 shifts to the left 

upon the addition of formic acid (modulator) resulting in the availability of excess water for 

the ZrCl4 hydrolysis (Ren et al., 2014).  

Since HF was not ideal for the synthesis of Cr MOF because it is highly toxic and corrosive,  

alternative synthetic routes which involved the modulated solvothermal method utilising 

formic acid (the modulator) was followed to synthesise Cr MOF (Zhao et al., 2015; Ren et 

al., 2014; Zhang et al., 2011; Zhao et al., 2011). The XRD pattern and SEM micrographs for 

Cr MOF can be found in Figure 5.7.  

 

Figure 5.7: Cr MOF powder; Picture (a) SEM micrograph (b) PXRD spectrum (c). 
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The synthesis of Cr MOF was confirmed by the PXRD pattern illustrated in Figure 5.7c 

which contained peaks at 2Ɵ = 2.8, 3.3, 3.9, 4.3, 4.8, 5.6,5.8, 8.4, 9.0 and 10.3º that are 

typical of the simulated PXRD pattern found in (Yang &Yan, 2011). The Cr MOF crystals 

were crystalline due to the modulator which was confirmed by the SEM micrograph      

(Figure 5.7b) showing small but defined 200 nm octahedral agglomerated crystals resulting in 

broad peaks in the PXRD pattern. The synthesised Cr MOF was greenish is colour as shown 

in Figure 5.7a. 

5.2.2 Thermal analysis 

Figure 5.8 presents the thermal gravimetric plots of Zr and Cr based MOFs that was utilised 

to assess the thermal stability and decomposition of the MOF crystals. 

 

Figure 5.8: TGA plots of Zr and Cr based MOF powders. 

From Figure 5.8, the Zr MOF was observed to have a weight loss of approximately 25% at 

about 100 ºC which can be attributed to the loss of adsorbed water molecules, thereafter there 

was gradual decomposition happening between 100 and 390 ºC due to loss of residual DMF 

molecules (Ren et al., 2014). From approximately 400-600 ºC a drastic weight loss of 30% 

was observed rendering Zr MOF thermally stable up to about 500 ºC. Above 600 ºC the 
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organic ligand is broken down and Zr MOF is decomposed to ZrO2 (Zhao et al., 2013).  The 

TGA plot for Cr MOF shows a gradual decrease of approximately 35% below 200 ºC  due to 

water and DMF molecules, followed by a drastic loss in weight which resulted from the 

decomposition of the linker molecule that occurred between 400-600 ºC  making Cr MOF 

nanocrystals stable up to 350 ºC (Solomon & Banerjee, 2006; Ren et al., 2014).   

5.2.3 Surface area and Hydrogen adsorption 

The BET surface area was assessed with the aid of nitrogen isotherms found in Figures 5.9 a 

and c, the hydrogen adsorption isotherms are presented in Figures 5.9 b and d for MOF 

nanocrystals.  A summary of the resulting physical properties and hydrogen adsorption 

capacities for the MOF nanocrystals are found in Table 5.2. 

 

Figure 5.9: Nitrogen sorption isotherms (a and c) and hydrogen adsorption isotherms (b and 

d) for Zr and Cr MOF nanocrystals measured at 77 K and 1bar. 
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Table 5.2: Physical properties and H2 uptake capacities of the MOF nanocrystals  

Sample 

 

Particle Size
a 

 

SBET (m
2
/g)

b
 

Pore volume 

(cm
3
/g)

c
 

H2 adsorption 

(wt%)
d
 

Zr-MOF 100 nm 1186 0.56 1.5 

Cr-MOF 200 nm 2618 1.29 1.9 

a
 Estimated from SEM images. 

b BET surface area. 
c
 From H-K analysis. 

d 
Adsorbed at 77K 

and 1 bar. 

 

The nitrogen isotherm for Zr MOF nanocrystals was Type I (Figure 5.9a) indicating the 

presence of micropores and the Zr MOF possessed a BET surface area of 1186 cm
3
/g with a 

micropore volume of 0.56 cm
3
/g. The excellent interaction between the nitrogen gas 

molecules and the Zr MOF micropores is the reason for the steep region of the curve at 

relative pressures lower than 0.1 p/po  seen in Figure 5.10a (Thommes et al., 2015). Cr MOF 

nanocrystals nitrogen isotherm was Type IV in nature indicative of some presence of 

mesopores (Thommes et al., 2015). The BET surface area and pore volume for Cr MOF 

nanocrystals was 2618 m
2
/g and 1.29 cm

3
/g respectively. The hydrogen adsorption was 1.5 

and 1.9 wt% for Zr and Cr MOF respectively at 77 K and 1 bar, however, there was no 

plateaus present for both MOFs indicative of incomplete saturation. Therefore at higher 

pressures the hydrogen storage capacity can be expected to increase. 

 

Chapter summary 

The morphological phase crystallinity, thermal, surface area and hydrogen adsorption results 

of the pristine porous powdered materials that are zeolite 13X, ZTC and MOFs were 

discussed in this chapter.  

Due to the many advantages zeolite 13X presents such as high thermal stability and good 

pore size distribution, commercial zeolite 13X was selected for the study. Furthermore zeolite 

13X is excellent for the synthesis of templated carbons (referred to as ZTC) via the liquid 

impregnation coupled with CVD approach followed by silica removal. Analysis of the 

morphology and phase crystallinity illustrated that preparing the carbon inverse of the zeolite 
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13X was successful since the pore ordering structure of the zeolite was retained for the ZTC. 

However, ZTC was more armorphic in nature illustrated by phase crystallinity analysis. This 

was due to the presence of the peak at 2Ɵ=7º on the PXRD spectrum for the ZTC synthesised 

in this study and the absence of the typical peaks ascribed to graphitic and turbostatic carbon 

reported in literature. TGA illustrated that zeolite 13X was thermally stable at temperatures 

up to about 1000 ºC; however, its ZTC counterpart was only stable up to   550 ºC. The BET 

surface area was assessed with the aid of nitrogen sorption isotherms, both zeolite 13X and 

ZTC isotherms were classified as a Type I isotherm indicating the presence of micropores 

and with reduced external surfaces. The BET surface area for zeolite 13X and ZTC was 730 

m
2
/g and 2717 m

2
/g respectively. The pore volume was also found to be      0.35 cm

3
/g and 

1.44 cm
3
/g respectively. The excellent interaction between the nitrogen gas molecules and the 

ZTC micropores is the reason for the precipitous section of the curve at relative pressures 

lower than 0.1 p/po. The inverse carbon microporous material prepared with the zeolites 

illustrated an increase of hydrogen adsorption from 1.6 wt% (for zeolite) to 2.4 wt% (for 

ZTC). 

With increasing development of moisture and thermal stability and due to their attractive 

hydrogen adsorption properties, Zr and Cr MOFs were selected for the study. A comparison 

of the as-synthesised MOFs and their simulated PXRD patterns confirmed the synthesis of Zr 

and Cr MOFs. The synthesised MOFs were defined, crystalline octahedral crystals due to the 

modulated synthetic route undertaken. Thermal analysis illustrated Zr and Cr MOF was 

stable up to 500 and 350 ºC respectively. Zr MOF had a BET surface area and pore volume of 

1186 cm
3
/g and 0.56 cm

3
/g respectively. The BET surface area and pore volume for Cr MOF 

was 2618 m
2
/g and 1.29 cm

3
/g respectively. The hydrogen adsorption capacity was 1.5 and 

1.9 wt% for Zr and Cr MOF respectively at 77 K and 1 bar. The hydrogen adsorption 

isotherms of ZTC and both MOFs with the exception of zeolite 13X illustrated incomplete 

saturation since no plateaus were present indicating that the hydrogen storage capacity should 

increase with higher pressures. 

The next chapter will present and discuss the results obtained for the electrospun composite 

PAN fibres containing the porous powdered materials. 
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Chapter Six 

Analysis of the Electrospun Composite Fibres 

Previous chapters presented the analysis of the individual constituents of the composite 

fibres, namely pristine electrospun PAN fibres and porous powdered materials that adsorbed 

hydrogen in chapter four and five respectively. The results from the analysis of the zeolite, 

ZTC and MOF electrospun composite nanofibres which are the main focus of the study will 

be presented and discussed in this chapter.  

The composite electrospun fibres were synthesised by first identifying the loading percentage 

range of the porous powdered materials by incorporating varying masses of the porous 

powders into the PAN solution resulting in a polymeric blend. Since the addition of the 

porous powders resulted in a more viscous polymeric, the loading percentage was 

incremented until the blend was too viscous to be electrospun. A full description of the 

synthesis and electrospinning conditions for the composite fibres can be found in          

section 3.4.4.  

It is important to note that the hydrogen adsorption capacity and surface area measurements 

for the composite fibres was determined by the amount of porous powdered materials 

incorporated into fibres because pristine PAN nanofibers have a negligible hydrogen 

adsorption capacity and surface area (presented in section 4.3.3). The composite fibres 

underwent degassing which involves the subjecting composite fibres to thermal treatment at 

200 ºC under 10
-7

 bar vacuum for six hours (reasons for which are presented in section 4.3). 

Degassing of the composite fibres enables the removal of residual solvent which affects their 

gravimetric surface area and hydrogen adsorption capacity.  

6.1 Zeolite-PAN composite fibres 

Zeolite-PAN composite fibres were synthesised by incorporating a loading weight percent 

range of 5-40 wt% of commercial zeolite 13X into the PAN solution which resulted in a 

zeolitic-PAN blend that was then electrospun. The experimental protocol for the synthesis of 

zeolite-PAN composite fibres is presented in section 3.4.4. 
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6.1.1 Morphological and Phase Crystallinity analysis 

The loading weight percentage range for the zeolite-PAN composite fibres was 5, 10, 20 and 

40 wt% which can be seen in the SEM micrographs in Figure 6.1.  

 

Figure 6.1: SEM micrographs of 5 (a), 10 (b), 20 (c) and 40 wt% (d) zeolite-PAN composite 

fibres 

From Figure 6.1, it is evident that the zeolite 13X crystals are too big to be incorporated into 

the PAN nanofibers therefore it can be said that the zeolite 13X crystals are adhered to the 

PAN nanofibers. As the loading percentage of zeolite 13X is increased a more uniform 

distribution of zeolite 13X crystals on the PAN fibres can be observed in Figure 6.1d for the 

40 wt% loading. The loading weight percent greater than 40 wt% was not possible because 

the polymeric blend had become too viscous to electrospin. After identifying 40 wt% to be 

the highest possible loading for the zeolite-PAN composite fibres, vacuum degassing was 

conducted to improve the accessibility of the gas into the micropores of the zeolite. The effect 

of vacuum degassing can be seen on the SEM micrographs of the zeolite-PAN composite 

fibres pre- and post-vacuum degassing presented in Figure 6.2a and b respectively. X-ray 
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diffraction analysis technique was employed to assess the phase crystallinity of the zeolite-

PAN composite fibre and is presented in Figure 6.2c. 

 

Figure 6.2: SEM micrographs of zeolite-PAN composite fibres before (a) and after (b) 

vacuum degassing with the PXRD pattern (c). 

From Figure 6.2a and b it can be observed that the degassing process has created pores on the 

PAN fibres adhering the zeolite 13X crystals, thus allowing the nitrogen and hydrogen gas to 

access the micropores of the zeolite 13X crystals.  It can also be seen that the morphology of 

the zeolite 13X crystals was conserved during the electrospinning process. Evidence of 

structural conservation of zeolites in the electrospun composite can be illustrated by the 

PXRD pattern shown Figure 6.2c. The low signal-to-noise of the zeolite-PAN fibres is due to 

the influence of the incorporation of zeolites on to the fibres. Since the optimised loading of 

zeolite 13X was 40 wt%  into the PAN solution, therefore 40 wt% zeolite-PAN composite 

fibres is the focus for the thermal, surface area and hydrogen adsorption analysis which will 

be presented and discussed in this section.  
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6.1.2 Thermal analysis 

Thermal gravimetric analysis of zeolite 13X, thermal treated PAN fibres and zeolite-PAN 

composite fibres can be seen from the TGA plot presented in Figure 6.3. 

 

Figure 6.3: TGA plot of zeolite 13X, thermal treated (degassed) PAN fibres and zeolite-PAN 

composite fibres. 

A 10% weight loss can be seen around 100 ºC for the zeolite-PAN composite fibres which 

can be attributed to the loss of water molecules adsorbed. Thereafter a weight loss of 

approximately 20 wt% was seen between 180–680 ºC due to the decomposition of the PAN 

polymeric fibres. Thermal analysis of the thermally treated (degassed) PAN fibres (presented 

in section 4.3.2) showed it was stable up to 400 ºC. After 720 ºC no further loss in weight 

occurred, this can be attributed to the presence of the zeolite 13X because zeolites have a 

high thermal stability up to 1000 ºC as explained in section 5.1.2.  

6.1.3 Surface area and Hydrogen adsorption 

The BET surface area for the zeolite 13X crystals, thermal treated PAN fibres and        

zeolite-PAN composite fibres was assessed with the aid of nitrogen isotherms presented in 

Figure 6.4a and its hydrogen adsorption capacity (Figure 6.4b) were both measured at 77 K 

and 1 bar.  
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Figure 6.4: Nitrogen isotherm (a) and hydrogen adsorption isotherm (b) of zeolite 13X, 

thermal treated (degassed) PAN fibres and zeolite-PAN composite fibres measured at 77 K 

and 1 bar. 

The S-shaped N2 adsorption isotherm is of a Type 1V classification which depicts well-

defined micropores because the nitrogen fills most of the pores at approximately 0.05 P/P0 

and thereafter reached a plateau. The BET surface area of the 40 wt% zeolite-PAN composite 

fibres (440 m
2
·g

-1
) was lower than that of the pristine zeolite 13X (730 m

2
·g

-1
). This 

observation could be attributed to the limited amount of zeolite adhered by the PAN 

nanofibres since loading percentage greater than 40 wt% resulted in the viscous polymeric 

blend being unable to be electrospun. Furthermore, Ostermann et al., (2011) reported the 

decrease in surface area could be due to the layer of polymer formed over the zeolite 
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obstructing the nitrogen gas from adsorbing onto the pore walls, even though porosity was 

evident (in section 6.1.1) from the vacuum degassing of the composite fibres used in this 

study. Since surface area measurements can be correlated to hydrogen measurements 

(Weitkamp et al., 1995), a comparison of the H2 isotherms (Figure 5.4b) of the zeolite 13X 

crystals on their own indicates that the hydrogen capacity for the 40 wt% zeolite-PAN 

composite fibres (0.85 wt%) is over 50% of that of the pristine zeolite13X crystals (1.6 wt%). 

6.2  ZTC-PAN composite fibres  

Since ZTC is a result of the carbon infilling of zeolite pores it would be expected that the 

weight loading percent range would be similar to that of zeolites. However, the loading 

weight percent range of ZTC was 7.5, 10 and 12.5 wt%. The density of carbon based ZTC is 

1.5 Kg/m
3
 (Musyoka et al., 2015) making it less dense than silica based zeolite with a density 

of 1.9 Kg/m
3 

(Masika & Mokaya, 2013). This section will present the discussed results for 

7.5, 10 and 12.5 wt% ZTC-PAN composite fibres.  

6.2.1 Morphological analysis 

The SEM micrographs of 7.5, 10 and 12.5 wt% loading of ZTC into ZTC-PAN composite 

fibres are illustrated in Figure 6.5. 
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Figure 6.5: SEM micrographs of 7.5 (a), 10 (b) and 12.5 wt% (c) loadings of ZTC into the 

ZTC-PAN composite fibres. 

Comparison of the SEM micrographs of the pristine ZTC powders (Figure 5.1b) with that of 

the ZTC-PAN composite fibres (Figure 6.5), it is evident that the ZTC had retained the 

octahedral pyramidal shape after being electrospun. Figure 6.5 also shows that ZTC had 

adhered well to the PAN fibres. It was also noted that as the loading weight percent of the 

ZTC was increased, the ZTC-PAN blend became more viscous resulting in coagulated ZTC 

composite fibres. Therefore a higher weight percent loading (greater than 12.5 wt%) would 

make the ZTC-PAN polymeric blend too thick to be electrospun. Thus rendering 12.5 wt% 
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loading of ZTC as the optimised loading weight percentage of ZTC into the polymeric blend 

that was electrospun resulting in ZTC-PAN composite fibres was characterised further in the 

study. 

6.2.2 Thermal analysis 

Thermal gravimetric analysis for the ZTC powders, thermal treated (degassed) PAN fibres 

and 12.5 wt% ZTC-PAN composite fibres is presented in Figure 6.6. The experimental 

procedure is found in section 3.5.3. 

 

Figure 6.6: TGA plot for the ZTC powders, thermal treated (degassed) PAN fibres and 12.5 

wt% ZTC-PAN composite fibres. 

The TGA plot (Figure 6.6)  shows that the 12.5 wt% ZTC-PAN composite fibres were stable 

up to about 500 ºC, after which a gradual weight loss was observed until its complete 

combustion by 700 ºC. It was observed that the TGA plots for the thermally treated 

(degassed) PAN fibres and the pristine ZTC were similar in shape when compared to the 

ZTC-PAN composite fibres. However, thermally treated (degassed) PAN fibres and pristine 

ZTC powders were stable up to 400 and 550 ºC respectively. The gradual weight loss 

observed between 0-550 ºC for the ZTC-PAN composite fibres can be due to the constituents 

of the composite fibres being burnt off followed by the complete combustion at 

approximately 700 ºC due to the carbonisation process. The ZTC-PAN composite fibres were 
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less thermally stable compared to the ZTC powders and this could be ascribed to the PAN 

which was less thermally stable.  

6.2.3 Surface area and hydrogen adsorption analysis 

Since it was hypothesised that the hydrogen adsorption capacity would increase as the 

amount of porous powdered materials adhered by the PAN nanofibres increased, evidence to 

support or reject this hypothesis is presented in this section. Figure 6.7a presents the nitrogen 

sorption isotherms for ZTC powder, thermally treated (degassed) PAN fibres and 7.5, 10 and 

12.5 wt% loadings of ZTC into ZTC-PAN composite fibres and hydrogen adsorption 

isotherms presented in Figure 6.7b. The experimental protocol is detailed in section 3.5.4. 

 

Figure 6.7: Nitrogen isotherm (a) and hydrogen adsorption isotherm (b) for ZTC powders, 

thermal treated (degassed) PAN fibres and 7.5, 10 and 12.5 wt% loadings of ZTC into ZTC-

PAN composite fibres measured at 77 K and 1 bar. 
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According to the shape of the ZTC-PAN nitrogen isotherms presented in Figure 6.7, they can 

be classified as type IV isotherms which are attributed to the presence of both micropores and 

mesopores due to the hysteresis loop. PAN was not classified since the surface area was too 

low. Since PAN and powder ZTC had a surface area of 13 and 2717 m
2
/g respectively, the 

enhanced surface area observed for the ZTC-PAN composite fibres can be attributed to the 

presence of ZTC in the composite. The trend observed correlated positively with the variation 

of the weight percent of the ZTC adhered by the PAN nanofibres and shows an increase in 

surface area of 1018, 1663 and 1787 m
2
/g for 7.5, 10 and 12.5 wt% ZTC-PAN composite 

fibres respectively. This trend was also observed for the hydrogen adsorption capacities for 

the different loadings of ZTC into the ZTC-PAN fibres presented in Figure 6.7b. Therefore 

the hypothesis (section 1.4) that hydrogen adsorption would increase with increased amounts 

of porous powdered materials incorporated was accepted. 

A reduction in surface area when compared to pristine ZTC powders was to be expected 

since the PAN would block nitrogen gas from accessing the pores of the ZTC. Moreover the 

surface area depended upon the percentage of ZTC powders incorporated into the PAN 

fibres. These observations were supported by findings presented by Ostermann et al., (2011). 

The reduction in surface area when comparing the pristine ZTC powders to 12.5 wt% ZTC-

PAN composite fibres amounts to approximately 66%. Since the addition of ZTC greater than 

12.5 wt% results in a viscous polymeric blend that was unable to be electrospun therefore 

higher surface areas and hydrogen adsorption capacities could not be achieved. It can be 

debated that if the concentration of the PAN is decreased the weight percentage of the ZTC 

could be increased. However, reducing the PAN concentration makes the composite fibres 

susceptible to the formation of beads which would lead to a decrease of the surface area. 

Furthermore, the concentration of the ZTC-PAN blend needs to possess sufficient molecular 

entanglement to ensure that electrospinning takes place (Cécile & Hsieh, 2009).  

6.3  MOF-PAN composite fibres 

A single loading of 20 wt% was used for both Zr and Cr MOFs to prepare the MOF-PAN 

composite fibres. The loading percentage of MOFs (20 wt%) achieved was due to the 

nanosize of the MOF crystals. The experimental protocol detailing the synthesis of the MOF-

PAN composite fibres are presented in section 3.4.4. 
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6.3.1 Morphological and Phase Crystallinity analysis 

The morphology and phase crystallinity of the 20 wt% Zr and Cr MOF-PAN composite fibres 

were assessed by SEM micrographs (a and c) and PXRD patterns (b and d) presented in 

Figure 6.8.  

 

Figure 6.8: SEM micrographs (a and c) and PXRD patterns (b and d) for Zr and Cr MOF-

PAN composite fibres. 

From Figure 6.8 a and c, it can be observed from the examination of the SEM micrographs 

that the octahedral shape of the Zr- and Cr- based MOFs was conserved after electrospinning 

which can also be confirmed from the XRD patterns since the peaks of the powdered MOFs 

correspond to the peaks shown for the pristine MOF materials (see Figure 5.5 and 5.7 

respectively). However, the signal to noise ratio seen in the PXRD peaks of the MOF 

composite fibres is due to the amorphous PAN (Ren et al., 2015). The Zr and Cr MOFs used 
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in the study was fully characterised in section 5.3, and particle sizes were 100-200 nm 

making them smaller and less dense than the zeolites or ZTC therefore these MOF 

nanocrystals were embedded into the PAN fibres whereas the zeolite and the ZTC particles 

were just adhered together by the PAN (see Figure 6.1 and 6.5 respectively). 

6.3.2 Thermal analysis 

Thermal analysis for both MOF composite fibres and their pristine constituents are presented 

in Figure 6.9. The experimental protocol for TGA is presented in section 3.5.3. 

 

Figure 6.9: TGA plots for MOF powders, thermal treated (degassed) PAN fibres and the 

MOF composite fibres. 
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From the thermal gravimetric analysis of the MOF nanocrystals, thermal treated (degassed) 

PAN fibres and the MOF composite fibres presented in Figure 6.9, showed an initial weight 

loss of approximately 20% was observed for the MOF nanocrystals around 100 ºC. Whereas 

at the same temperature a 10% weight loss was observed for the MOF composite fibres. This 

weight loss is attributed to the loss of moisture as the MOF nanocrystals adsorbed more 

moisture than the MOF composite fibres because fewer MOF crystals per unit mass were 

used in the case of the composite. From Figure 6.9, Zr and Cr MOF composite fibres show a 

gradual weight loss up to 500 and 400 ºC respectively, due to the nitrile groups in the PAN 

undergoing cyclisation (Ren et al., 2015). Thereafter a drastic weight loss followed by the 

partial or complete combustion of the composite fibres between 550 and 650 ºC respectively. 

The Zr MOF composite fibres was stable up to 500 ºC (Figure 6.9a) showing that the Zr 

MOF nanocrystals was stable (up to 500 ºC) even when PAN fibres was combusted implying 

that the PAN fibres had protected the Zr MOF nanocrystals. The residue remaining above 

600 ºC in the TGA plot presented in Figure 6.9a is as a result of the organic ligand being 

broken down and Zr MOF is decomposed to ZrO2 (Zhao et al., 2013). From Figure 6.9b a 

residue was observed due to the decomposition of the linker molecule that occurred between 

400-600 ºC  making Cr MOF nanocrystals stable up to 350 ºC (Solomon & Banerjee, 2006; 

Ren et al., 2014).   

6.3.3 Surface area and hydrogen adsorption analysis 

The BET surface areas for the pristine MOF powders, thermal treated (degassed) PAN fibres 

and the MOF-PAN composite fibres were obtained from the nitrogen isotherms presented in 

Figure 6.10. The hydrogen adsorption isotherms are presented in Figure 6.11 and the physical 

properties of the MOF composite fibres are shown in Table 6.1. The experimental protocol 

for the surface area and hydrogen adsorption analysis of the samples are presented in section 

3.5.4.  
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Figure 6.10: Nitrogen isotherms for Zr (a) and Cr (b) pristine MOF powders, thermal treated 

(degassed) PAN fibres and MOF composite fibres measured at 77 K and 1 bar. 
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Figure 6.11: Hydrogen adsorption isotherms for Zr (a) and Cr (b) pristine MOF powders, 

thermal treated (degassed) PAN fibres and MOF composite fibres measured at 77 K and        

1 bar. 
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It was observed from the Nitrogen isotherms in Figure 6.10 for the pristine MOF powders 

and MOF composite fibres that the pores were sharply filled below 0.1 P/Po indicating high 

microporosity. Pristine MOFs depicted the type I  classification of the isotherms whereas 

MOF-PAN composite fibres had a type IV isotherm (Thommes et al., 2015). The physical 

properties and hydrogen uptake capacities of the MOF composite fibres are presented in 

Table 6.1.  

Table 6.1: Physical properties and H2 uptake capacities of MOF composite fibres. 

Sample 

 

Size
a 

 

SBET (m
2
/g)

b
 

Pore volume 

(cm
3
/g)

c
 

H2 adsorption 

(wt%)
d 

Zr-MOF (20 wt.%) 

PAN fibre 
1-2 µm 815 0.70 0.9 

Cr-MOF (20 wt.%) 

PAN fibre 
1-2 µm 1134 0.43 1.1 

 
a
 Estimated from SEM images. 

b BET surface area. 
c
 From H-K analysis. 

d 
Adsorbed at 77K 

and 1 bar. 

 

From Table 6.1the Zr and Cr MOF composite fibres had a BET surface area of 815 m
2
/g and 

1134 m
2
/g respectively. When compared to the BET surface area of the Zr and Cr MOF 

nanocrystals (of 1186 and 2618 m
2
/g respectively) a surface area reduction of 31% and 57% 

respectively were observed once the MOF powders were incorporated into the PAN fibres. 

The hydrogen adsorption for Zr and Cr MOF composite fibres (Figure 6.11) were 0.9 and 1.1 

wt% as compared to that of the Zr and Cr MOF nanocrystals (Figure 5.9) which was 1.5 wt% 

and 1.9 wt% respectively. The hydrogen adsorption capacity was reduced by 60% and 73% 

for Zr and Cr MOF nanocrystals respectively after they were electrospun into composite 

fibres.  

It is important to note that the reduction in surface area and hydrogen adsorption capacities of 

after the incorporation of pristine MOF powders into the PAN fibres was due to low weight 

percent loading of the MOF powders. In this case only 20 wt% of the MOF nanocrystals was 

used to synthesise the MOF composite fibres. Due to the density and size of the MOFs it was 

thought that by incorporating more than 20 wt% of the MOF crystals the hydrogen adsorption 

would increase however, the incorporation of 30 wt% MOF crystals into the PAN solution 

resulted in the MOF-PAN blends being too thick to be electrospun. Therefore 20 wt% MOFs 

was the optimised loading percentage for the MOF composite fibres. Furthermore, the 
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reduction in surface area and hydrogen adsorption capacities can also be due to the PAN 

layer blocking the nitrogen and hydrogen gases from filling the pores embedded into the 

fibres. Therefore the MOF composite fibres underwent vacuum degassing which removes 

residual solvent after electrospinning thus creating porosity which is evident from the SEM 

micrographs presented in Figure 6.8a and c. The porosity created by vacuum degassing of the 

MOF composite fibres aids in nitrogen and hydrogen gas accessing the pores of the MOF 

nanocrystals embedded within the fibres.  

Since there was no plateau presented in hydrogen adsorption capacities for the MOF 

nanocrystals and MOF composite fibres (Figure 6.11), meaning saturation had not been 

reached therefore a higher hydrogen adsorption can be expected at higher pressures (Ren et 

al.  2015).  

Chapter summary 

The chapter began with the analysis of the zeolite-PAN composite fibres then progressed to 

the ZTC-PAN composite fibres and finally concluded with the analysis of the Zr and Cr MOF 

composite fibres. Morphological analysis illustrated that the porous powdered materials were 

successfully supported by or encapsulated within the PAN fibres forming composite fibres 

and that the shapes of the porous powdered materials were conserved in the composite fibres. 

The amount of powdered materials supported by or encapsulated within the PAN fibres were 

determined by the size and density of the powdered materials which affects the viscosity of 

the powdered-polymeric blend and in turn its ability to be electrospun. Although the 

hydrogen adsorption capacity is directly correlated to the weight percentage of powdered 

materials supported by or encapsulated within the PAN fibre there is an optimised weight 

percent implying that once this amount is surpassed the powdered-polymeric blend was 

unable to be electrospun. The optimised weight percent for zeolites, ZTC and MOFs 

composite fibres were 40, 12.5 and 20 wt% respectively. 

The optimised weight percent loaded composite fibres showed similar thermal stability to that 

of its constituents that is the pristine PAN fibres and the porous powdered materials. The 

thermal gravimetric analysis of the zeolite-PAN composite fibres illustrate no weight loss 

after 680 ºC due to the high thermal stability of zeolites (up to 1000 ºC), however the PAN 

fibres decomposed between 180-700 ºC. ZTC-, Zr MOF- and Cr MOF-PAN composite fibres 

were thermally stable up to 500, 500 and 400 ºC respectively. This information was then 
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utilised to determine the temperatures at which degassing (that is the removal any gasses or 

moisture adsorbed onto the composite fibres) occurred. 

The BET surface area of the 40 wt% zeolite-PAN composite fibres (440 m
2
/g) was lower 

than that of the pristine zeolite 13X (730 m
2
/g). As the weight percent of the ZTC adhered to 

the fibres was incremented, an increase in surface area of 1018, 1663 and 1787 m
2
/g was 

observed for 7.5, 10 and 12.5 wt% ZTC-PAN composite fibres respectively. However, these 

surface area measurements were lower than that of the surface area of the pristine ZTC     

(2717 m
2
/g). The BET surface of Zr and Cr MOF composite fibres were 815 and 1134 m

2
/g 

respectively which had reduced by 31% and 57% respectively when the pristine Zr MOF        

(1186 m
2
/g) and Cr MOF (2618 m

2
/g) powders were incorporated into the PAN fibres. 

The hydrogen capacity for the 40 wt% zeolite-PAN composite fibres (0.8 wt%) is over 50% 

to the pristine zeolite powders (1.6 wt%). On the other hand the trend of increasing hydrogen 

adsorption capacities were observed as the loadings of ZTC into the ZTC-PAN fibres was 

increased. The hydrogen adsorption capacities for 7.5, 10 and 12.5 wt% ZTC composite 

fibres were 0.9, 1.5 and 1.8 wt% respectively. However, the hydrogen adsorption capacity of 

the ZTC-PAN composite fibre was lower than that of the pristine ZTC powder of 2.4 wt%. 

The hydrogen adsorption for Zr and Cr MOF composite fibres were 0.9 and 1.1 wt% as 

compared to that of the Zr and Cr MOF nanocrystals which were 1.5 wt% and 1.9 wt% 

respectively. A comparison of the hydrogen adsorption capacities for the pristine porous 

materials and the electrospun composite fibres are summarised in Table 6.2. 

Table 6.2: A comparison of the hydrogen adsorption capacities for the pristine porous 

powdered materials and their corresponding electrospun composite fibres. 

Pristine powdered 

material 

H2 adsorption 

capacity (wt%) 

Electrospun 

composite fibres 

H2 adsorption 

capacity (wt%) 

Zeolite 13X 1.6 40 wt% Zeolite-PAN 0.8 

ZTC 2.4 12.5 wt% ZTC-PAN 1.8 

Zr MOF 1.5 
20 wt% Zr MOF-

PAN 
0.9 

Cr MOF 1.9 
20 wt% Cr MOF-

PAN 
1.1 
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When comparing the hydrogen adsorption capacities of the electrospun composite fibres, it 

was deduced that ZTC-PAN composite fibres had the highest hydrogen adsorption capacity 

followed by Cr MOF-PAN composite fibres. Zr MOF-PAN composite fibres had the third 

highest hydrogen adsorption capacity. Zeolite-PAN fibres had the lowest hydrogen 

adsorption capacity even though it had the highest loading percentage of (40 wt%) zeolite 

13X adhered by the PAN fibres.  

The reduction in surface area and hydrogen adsorption capacities after the porous powdered 

materials were electrospun into composite fibres is mainly due to the low amounts of porous 

powdered materials supported by or incorporated within the PAN fibres. Since it is the 

porous powdered materials that adsorb the nitrogen and hydrogen gases not the PAN fibres. 

Another contributing factor to this reduction is the PAN layer blocking the nitrogen and 

hydrogen gases from filling the pores. Therefore the composite fibres underwent vacuum 

degassing which removes residual solvent after electrospinning thus creating porosity 

observed from the SEM micrographs. This aided in nitrogen and hydrogen gas accessing the 

pores of the porous powdered materials. 

The following chapter will conclude the findings from the study and give recommendations 

for future work. 
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Chapter Seven 

Conclusions and Recommendations 

The transition from synthesising powdered materials that adsorb hydrogen gas in the 

laboratory to integrating them in a storage system necessitates the adoption of a versatile 

shaping technique such as electrospinning.  

The first aspect of the study was the selection of a suitable polymer for the production of 

composite fibres. After electrospinning three polymers polyacrylonitrile (PAN) was selected 

as the most suitable polymer because it yielded bead free electrospun fibres. However, the 

diameter of the PAN fibres was large/thick which prompted further optimisation of the 

electrospinning parameters. This was aimed at determining whether the distance from the 

needle tip to the collector plate and the applied voltage would affect the fibre diameters. It 

was thereafter found that a PAN concentration of 10 wt%, a flow rate of 0.4 mL/h, a distance 

of 10 cm between the needle tip and collector plate and an applied voltage of 8 kV yielded 

smooth fibres (unbeaded) with nanofiber diameter of 480-510 nm which is within the desired 

range of 300-500 nm. Fibres of this diameter range are desirable since they are expected to be 

thick enough to enable incorporation of the porous powdered materials.  

Since literature reports an increase in tensile strength during the stabilisation stage (that 

occurs between 200-300 ºC) of the carbonisation process for the PAN fibres, this study 

subjected the optimised electrospun PAN fibres to thermal treatment (stabilisation) and 

accessed its effects. It was observed that although thermal treatment did not decompose the 

PAN fibres, however it was observed to lead to brittle fibres. This observation could be due 

to the bypass of the oxidation stage since it was done under inert conditions. Stabilisation of 

the PAN fibres was done under vacuum conditions because; it was hypothesised that the 

residual solvent in the electrospun PAN fibres would be removed under the high vacuum thus 

creating porosity. However, from the results this hypothesis was not accepted.    

The study then progressed on to the synthesis and characterisation of the pristine porous 

powdered materials which were commercial zeolite 13X, its synthesised zeolite templated 

carbon derivative (ZTC) and Zr (UiO-66) and Cr (MIL-101) based metal organic frameworks 

(MOFs). ZTC was synthesised via a liquid impregnation coupled with chemical vapour 

deposition (CVD) approach and the MOFs were synthesised by a modulated solvothermal 

 

 

 

 



Chapter Seven  Conclusions & Recommendations 

Page | 93 

 

method. Analysis of the ZTCs morphology and phase crystallinity show that the carbon 

derivative of zeolite 13X was successful but ZTC was mainly amorphous in nature compared 

to crystalline zeolites. It was observed from the thermal gravimetric tests that zeolite 13X was 

more thermally stable (up to 1000 ºC) when compared to its ZTC derivative which was stable 

up to 550 ºC.  The BET surface area was assessed with the aid of nitrogen sorption isotherms, 

for both zeolite 13X and ZTC which were 730 and 2717 m
2
/g respectively. The pore volume 

was 0.35 and 1.44 cm
3
/g for zeolite 13X and ZTC respectively. The hydrogen adsorption 

capacity for zeolite 13X was 1.6 wt% and increased to 2.4 wt% for the carbon derivative. The 

successful synthesis of defined, crystalline MOF nanocrystals was evident from X-ray 

diffraction and morphological analysis. The Zr and Cr MOFs were thermally stable up to 500 

and 350 ºC respectively. The BET surface area and pore volume for Zr MOF were 1186 m
2
/g 

and 0.56 cm
3
/g respectively. Cr MOF had a BET surface area of 2618 m

2
/g and a pore 

volume of 1.29 cm
3
/g. Zr and Cr MOF had a hydrogen adsorption capacity of 1.5 and 1.9 

wt% respectively at 77 K and 1 bar. Since there were no plateaus observed for the hydrogen 

adsorption isotherms for ZTC and both MOFs, the hydrogen adsorption capacities for these 

samples are expected to increase at higher pressures.  

The main focus and fourth aspect of the study was to synthesise electrospun composite 

nanofibres that can adsorb hydrogen gas. This was achieved by incorporating the porous 

powdered materials into the PAN resulting in a polymeric blend that was electrospun. 

Morphological analysis illustrated that the porous powdered materials were successfully 

supported by or encapsulated within the PAN fibres forming composite fibres. The achieved 

weight percent loading range of porous powdered materials into the PAN solution was based 

on the observable viscosity of the powdered-polymeric blends as determined by its 

electrospinability (based on the ability of the powdered-polymeric blend to flow through the 

needle tip).   

The composite fibres showed similar thermal gravimetric stability to that of the pristine 

parent materials. Zeolite-PAN composite fibres showed no weight loss after 720 ºC due to the 

high thermal stability of zeolites (up to 1000 ºC), however the PAN fibres decomposed 

between 180-700 ºC. ZTC-PAN, Zr MOF-PAN and Cr MOF-PAN composite fibres were 

thermally stable up to 500, 500 and 400 ºC respectively. 

The BET surface area of the 40 wt% zeolite-PAN and 12.5 wt% ZTC-PAN composite fibres 

were 440 and 1787 m
2
·g

-1
 respectively. Zr and Cr MOF composite fibres had a BET surface 
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area of 815 and 1134 m
2
/g respectively. The BET surface area had reduced by 40, 34, 31 and 

57% for zeolite 13X, ZTC, Zr and Cr MOFs respectively after these pristine porous powdered 

materials were electrospun into composite fibres. This reduction in surface area is primarily 

due the amount of porous powdered materials supported by or incorporated within the PAN 

fibres since only 40 wt% of zeolite 13X, 12.5 wt% of ZTC and 20 wt% of the MOFs were 

loaded into the PAN solution (resulting in a powdered-polymeric blend) prior to 

electrospinning of the composite fibres. Incorporating greater amounts of pristine porous 

materials resulted in a viscous powdered-polymeric blend that could not be electrospun. 

Another possible reason for the lower surface areas measured could be that the PAN layer 

blocked the nitrogen gas from entering the pores of the incorporated porous powdered 

materials. Therefore the composite fibres were subjected to vacuum degassing to remove 

residual solvent after electrospinning, which created porosity on the composite fibres but not 

on the pristine electrospun PAN fibres. The porosity on the composite fibres assisted the 

nitrogen gas in accessing the pores of the porous powdered materials. Similar trend would 

have been expected for the MOF-PAN composite fibres 

It had been hypothesised that an increase in hydrogen adsorption capacity would be observed 

as the loading weight percent of the porous powdered materials was increased, since PAN 

fibres had a negligible hydrogen adsorption capacity. This hypothesis was accepted after the 

hydrogen adsorption capacities for 7.5, 10 and 12.5 wt% loadings of ZTC into the ZTC-PAN 

composite fibres showed an increase of 0.9, 1.5 and 1.8 wt% respectively. However, the 

hydrogen adsorption capacity of the ZTC-PAN composite fibre was lower than that of the 

pristine ZTC powder of 2.4 wt%. The hydrogen adsorption for Zr and Cr MOF composite 

fibres were 0.9 and 1.1 wt% as compared to that of the Zr and Cr MOF nanocrystals which 

were 1.5 wt% and 1.8 wt% respectively. Similar trend would have been expected for the 

MOF-PAN composite fibres. When comparing the hydrogen adsorption capacities of the 

electrospun composite fibres, it was deduced that ZTC-PAN composite fibres had the highest 

hydrogen adsorption capacity followed by Cr MOF-PAN composite fibres. Zr MOF-PAN 

composite fibres had the third highest hydrogen adsorption capacity. Zeolite-PAN fibres had 

the lowest hydrogen adsorption capacity even though it had the highest loading percentage of 

(40 wt%) zeolite 13X adhered by the PAN fibres.  

Even though it has been shown in this study that zeolite-PAN, ZTC-PAN and MOF-PAN 

composite fibres had a lesser hydrogen adsorption capacity compared to that of their pristine 

porous powdered materials (zeolite, ZTC, Zr MOF and Cr MOF), the electrospinning 
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approach has been demonstrated to be a powerful tool for entrapping these loose powders. It 

can be anticipated that the use of a polymer with hydrogen adsorption properties would lead 

to enhanced hydrogen adsorption that could even surpass those of the porous powdered 

materials. Future work should thus form on the selection of polymers that could guarantee 

this improvement. These polymers can be polyaniline (PANi) or polymers with intrinsic 

microporosity (PIMs).    
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