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Abstract

Measurements of nuclear level lifetimes are an important aspect

of experimental nuclear physics. Such measurements determine

transition matrix elements for nuclear structure research and also

provide the widths of relevant excited states in nuclei that are of

astrophysical interest. In the latter, the measured widths are used

to obtain reaction rates in main sequence stars such as the Sun

and in binary-star systems where the accretion of material from

one star to another provides an opportunity to study extreme

stellar environments such as novae and x-ray bursts.

This thesis work describes the design and simulation of a new

experimental set up at iThemba LABS that will allow for high-

precision femtosecond-level lifetime measurements of nuclear states

using the Doppler Shift Attenuation Method (DSAM). We use

the Solid Edge computer-aided design (CAD) software to design

a new scattering chamber with a cooled target ladder specifically

for such measurements using inverse-kinematic transfer reactions

with ion implanted targets. The light charged ejectiles from the

reaction will be detected with a ∆E − E silicon telescope, while

Doppler shifted γ rays will be registered using a high-purity and

100% efficient germanium (HPGe) detector. We also describe pre-

liminary Monte Carlo simulation codes that are being developed

 

 

 

 



in a relativistically invariant framework to optimize the experi-

mental set up and to obtain predicted lineshapes of γ rays from

several astrophysically relevant states in nuclei using this experi-

mental set up.
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Chapter 1

Introduction

Measurements of nuclear level lifetimes play an important role in experi-

mental nuclear physics research. In studies of nuclear structure, measured

lifetimes can be used to determine transition matrix elements and provide

useful information to test nuclear models, make inferences about nuclear

shapes and for other studies of collective excitation modes in nuclei [1, 2].

Lifetime measurements are also relevant for studies in nuclear astro-

physics. Such measurements provide experimental widths of resonance reac-

tions that are related to reaction rates in stars via the astrophysical S-factor.

This is important for studies of reaction rates in main sequence stars such

as the Sun as well as explosive events such as classical novae. In the for-

mer, energy generation is a result of fusion reactions in stellar cores. In such

stellar environments, the pp-chains and cold CNO-cycle are important for

the quiescent burning that occurs over long periods of time; while the hot

CNO-cycle, occurring mainly in giant helium burning stars, is an important

precursor to the explosive burning in novae and X-ray bursts [3]. These ex-

plosive phenomena are a result of runaway burning processes near the end

of a star’s life and are responsible for both creating the heavy elements (iron
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and beyond) and dispersing reaction products in the universe. Break-out re-

actions from the hot CNO-cycle are believed to lead to the rp-process where

β+-decays and (p, γ) reactions compete to form reaction networks that take

the seed nuclei from the CNO-cycle up into the closed SnSbTe cycle [3]. The

specifics of these networks are not very well known and are still an active area

of research. Here lifetime measurements can offer important information for

characterizing many reactions in these networks.

This thesis relates to the cold CNO-cycle, where the 14N(p, γ) reaction

forms a bottleneck and affects the overall rate of energy production in the

main sequence. This reaction rate is the least well known of the entire cycle

and direct measurements of the reaction rate prove challenging due to low

cross sections and high background rates at thermal energies. Lifetime mea-

surements of excited states in 15O could remedy this situation by allowing

an indirect measurement using an R-matrix fit [4, 5].

The 14N(p, γ) reaction rate is affected by a broad subthreshold resonance

caused by a 3
2

+
excited state in 15O at 6.79 MeV, which has a lifetime

< 1.8 fs [6]. There have been several attempts to measure the lifetime of

this state [6, 7, 8, 9], out of which the only conclusive direct measurement of

1.60+0.75
−0.72 fs was carried out by Bertone et al. [8]. The other measurements

agree poorly or have only placed limits on the lifetime of this state. Bertone

et al. made their measurement at a low beam energy of 300 keV in direct

kinematics using the Doppler Shift Attenuation Method. This beam energy

leads to low recoil energies in the range where the stopping powers are not

very well known.

The main aim of this project is to design and simulate an experimental set

up capable of making lifetime measurements down to the 1 fs level with max-

imal sensitivity to lineshapes. In an anticipated future experiment, excited
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states in 15O will be produced with the 16O(3He, α) transfer reaction in in-

verse kinematics using a 3He implanted target. This will allow us to measure

the lifetime of interest in 15O using the Doppler Shift Attenuation Method

with the lineshape analysis technique and with minimal uncertainties from

known stopping powers. To do this, the full set up of a high vacuum scat-

tering chamber was designed using the Solid Edge computer aided design

(CAD) software package. Particular attention was paid to the cryogenics

of the vacuum system and beam tuning. We also developed a computer

program using the Geant4 toolkit to simulate the lineshapes and γ-ray effi-

ciencies. Data from these simulations were used to investigate the effects of

different detector geometries on the lineshapes and efficiencies and helped to

refine the design. These simulations will be used as a guide to plan the 15O

lifetime measurement as well as other future lifetime measurements that use

the same method.
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Chapter 2

Nuclear Lifetimes I - Nuclear

Structure

2.1 Introduction

By the year 1910 it was well known that atoms are the basic constituents

of bulk materials. What was still open to investigation and not well under-

stood then was the internal structure of the atom. At the time of Ernest

Rutherford’s famous gold leaf experiment [10, 11] the proposed model for

the atom was Thomson’s plum pudding model, which was based on the idea

that the electrons of an atom floated around in a sea of positive charge al-

most like the raisins in a plum pudding. By firing α particles at a thin gold

foil, Rutherford, Geiger and Marsden discovered that while most of the α

particles went straight through the foil, a small percentage of the α particles

would be scattered off the foil at extreme angles (greater than 90 degrees with

respect to the beam axis). From this experiment Rutherford concluded that

the plum pudding model was wrong. He postulated that the positive charge

in an atom is highly concentrated in a region far smaller than the atom itself

4

 

 

 

 



(called the nucleus), and that almost all the mass of an atom resides in the

nucleus. This discovery marked the beginning of nuclear physics as a field of

research.

2.1.1 The Strong Force

The discovery of the atomic nucleus prompted further investigation into what

its constituents might be. Thomson had already discovered the existence of

isotopes with the use of his mass spectrometer. Rutherford’s later discovery

of the proton and Chadwick’s discovery of the neutron raised new questions.

At the time it was thought that only two fundamental forces existed in nature;

gravity and electromagnetism. If this was true, nuclei containing more than

one proton should not exist, as the Coulomb repulsion would drive them

apart. Clearly, a previously unknown force must exist that is significantly

stronger than the electromagnetic force and is short ranged, so that it binds

the protons and neutrons in nuclei. This is now known to be the strong

force, which confines nucleons (protons and neutrons) inside a potential well

much the same way as the Coulomb interaction binds electrons inside atoms.

Solutions to the Schrödinger equation for this many-body system results in

the emergence of discrete states in nuclei, with particular energy spacings. It

should be noted here that even after more than 100 years of study of nuclear

physics, the strong force is still not well understood.

The depth of the potential well is a measure of the binding energy, denoted

B, of the nucleus. The binding energy can be obtained from the mass deficit

with the well known formula

(Zmp +Nmn)−M =
B

c2
, (2.1)
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where M is the nuclear mass, Z is the number of protons, N is the number

Figure 2.1: Graph of binding energy per nucleon for differing mass number A.

of neutrons, mp is the mass of a free proton and mn is the mass of a free

neutron. An often used quantity is the binding energy per nucleon
(
B
A

)
,

which is a gross measure of the energy required to remove one nucleon from

a nucleus. Figure 2.1 shows a plot of B
A

against the mass number A. The

graph shows a rapid rise in B
A

at low mass (A < 20) after which it begins to

flatten out, peaking at about 9 MeV per nucleon in the region of 56Fe and

62Ni, and dropping steadily at higher masses (A > 100). The flattening of

the curve in the region between A ≈ 40 and A ≈ 100 can be understood as a

result of the short range of the strong force and the fact that nuclear matter

is incompressible. Similarly, the drop at higher masses can be explained due

to the effect of Coulomb repulsion between protons.
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The curve shown in figure 2.1 can be described by a semi-empirical mass

formula, which was developed by assuming the atomic nucleus to be similar

to a liquid drop of an incompressible fluid. Thereby, in the model the nuclear

binding energy was proportional to the volume of the nucleus and, by im-

plication, the mass number A. Other corrections corresponding to different

phenomenological effects need to be added to the ‘volume term’ so that the

features of figure 2.1 can be described adequately [12],

B = avolA− asurfA
2
3 − 1

2
asym

(N − Z)2

A
− acZ(Z − 1)A−

1
3 + δ. (2.2)

In the above, the second term is due to the fact that nucleons on the surface

are less bound as they have fewer neighbours. The next term, called the

symmetry term, is particularly relevant for light nuclei. This term arises

from Pauli’s exclusion principle for fermions and accounts for the fact that

light nuclei along the N = Z line are more stable. Eventually, at higher

masses the Coulomb repulsion between protons begins to dominate. The

fourth term represents the energy associated with the Coulomb repulsion;

this term favours neutron rich nuclei and in competition with the symmetry

term reproduces the trend that heavier stable nuclei are neutron rich. Last

is the pairing term which vanishes for odd A nuclei and accounts for the fact

that even-even nuclei have a higher binding energy than odd-odd nuclei.

The semi-empirical mass formula does well to reproduce the binding en-

ergy per nucleon curve, but gives little information of the internal structure

of the nucleus. Several sophisticated nuclear models have been developed

since the semi-empirical mass formula was first proposed. I discuss two of

the most important and fundamental models below.
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2.1.2 The Nuclear Shell Model

The shell model was developed in the study of atoms, after it was noticed

that certain electronic configurations are particularly stable (the noble gases).

This is made apparent by plotting the single ionisation energies of various

elements as function of atomic number, which clearly shows various peaks

(c.f. figure 2.2). These tightly bound configurations were labeled with the

so called “magic numbers”. The phenomenon was explained in the context

of the occurrence of various shells of electron orbitals, with explicit shell

gaps. Later on, the study of nuclei revealed a similar phenomenon of magic

numbers in nuclei corresponding to peaks in proton and neutron separation

energies.

Figure 2.2: Single ionization energies for various elements. Note the peaks
at each noble gas [13].

For studies of nuclear structure along similar lines the nuclear shell model is

introduced. Since the exact form of the potential is not known (unlike the

Coulomb potential in atomic physics), it is essential that one acquires a rea-
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sonable first approximation of the residual strong interaction potential that

binds the nucleons. It is known that the nucleus is not a point object, and

has a finite size and distribution of charge and mass. Studies of isobaric nu-

clei and low energy nucleon-nucleon scattering experiments also suggest that

the strong interaction binds nucleons with similar strength independent of

their electric charge [14]. Further, experimental data from electron scattering

show that the nuclear density distribution appears to be roughly constant

throughout its volume and that nuclei do not have sharp boundaries. Instead,

as shown in figure 2.3, the nuclear surface appears diffuse.

Figure 2.3: Charge densities for various nuclei as a function of radius, ob-
tained from various electron scattering experiments [15].

All of the above indicates a short-ranged nuclear potential which is similar

in shape for all nuclei. Based on the observed charge density distributions

from electron scattering experiments, a commonly used guess for the nuclear

9

 

 

 

 



potential is the spherically symmetric Woods-Saxon potential [12],

V (r) =
−V0

1− e(r−R)/a
, (2.3)

where V0 is an estimate of the depth of the well, R is an estimate of the nuclear

radius, and a is the diffuseness parameter which is related to the skin depth t

in figure 2.3. Unfortunately the Schrödinger equation for the Woods-Saxon

potential can not be solved analytically. The potential, however, has a useful

approximation between two potentials that do have analytical solutions; the

harmonic oscillator and the finite square well. As an alternative, one could

also use a 3-dimensional harmonic oscillator potential,

V (r) =
1

2
Mω2r2, (2.4)

and add various modifications. The harmonic oscillator potential by itself

produces degenerate solutions due to rotational symmetry in three dimen-

sions. For example, the second ` = 0 state and the first ` = 2 state are

degenerate, and so on [12]. For this reason, an `2 term is added to the single

particle Hamiltonian in order to break the degeneracy of the s, p, d-states etc.

in the three dimensional isotropic harmonic oscillator problem,

Ĥ =
−h̄2

2M
∇2 +

1

2
Mω2r︸ ︷︷ ︸

H0

+D`2, (2.5)

with D < 0. This term has the effect of displacing the ` states slightly so

that they are separated and the high-` states lie below the low-` states [14].

Nonetheless, the potentials of Eqs. (2.3) and (2.4) by themselves do not re-

produce the experimentally observed magic numbers and shell gaps. The so-

lution to the problem is in the spin-orbit coupling as suggested by Goeppert-

10

 

 

 

 



Mayer, Jensen and others [14]. The interaction is known to be

Figure 2.4: Diagram showing the effects of adding the spin orbit interaction
to a potential. In this case the spin orbit term is added to the Woods-Saxon,
but the effect remains a splitting of the states with ` > 0 [16].
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〈` · s〉 = 〈1
2

(j2 − `2 − s2)〉, (2.6)

which has no effect on the ` = 0 states, but splits higher ` states depending

on whether the spin is aligned parallel or anti-parallel to the orbital angu-

lar momentum. The magnitude of the splitting is proportional to (2` + 1)

and increases with `. As shown in figure 2.4, once the spin-orbit term is

introduced, the experimental shell gaps and magic numbers are reproduced

exactly up to N = 126. The inclusion of this term to the Hamiltonian in

Eq. (2.5) yields a Hamiltonian that is usually used in the spherical shell

model,

Ĥsp = Ĥ0 +D`2 + C` · s, (2.7)

with C < 0.

2.1.3 Deformation in Nuclei

The spherical shell model predicts the magic numbers and ground state spins

and parities in most nuclei quite well. It also does a good job at reproducing

the single particle excitation energies for nuclei that have a magic number

of either protons or neutrons, and particularly those with magic numbers for

both (doubly magic nuclei). However, when looking at nuclei far from closed

shells, where large deviations from spherical symmetry are expected in the

potential, one has to look beyond the spherical shell model.

In general, the radial distance of a deformed nuclear surface can be de-

12

 

 

 

 



(a) A prolate nucleus
(ε > 0) is stretched along
the symmetry axis

(b) A spherical nucleus
(ε = 0) is neither
stretched nor com-
pressed and in fact the
choice of symmetry axis
is completely arbitrary

(c) An oblate nucleus (ε < 0) is
compressed along the symmetry
axis

Figure 2.5: Nuclear shapes described by different deformation parameters.

scribed as an expansion in terms of the spherical harmonics

R(θ, φ) = R0[1 +
∑
λ

∑
µ

aλµYλµ] (2.8)

where the time dependent coefficients aλµ represent the collective ‘co-ordinates’,

and R0 is the radius of a sphere of equivalent volume. The lowest order term

of importance in the above is the quadrupole term. This is used in a general-

ized phenomenological shell model, called the Nilsson model which allows for

the lowest order deformed spheroidal potentials shown in figure 2.5. Within

the deformed shell model, the Hamiltonian is modified to be axially symmet-

ric, with an additional deformation parameter ε so that

Ĥ(ε) = Ĥ0(ε) + C` · s +D`2, (2.9)
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where,

Ĥ0(ε) = − h̄2

2M
∇2 +

1

2
Mω2

0(ε)[(x2 + y2)(1 +
1

3
ε)2 + z2(1− 2

3
ε)2]. (2.10)

Importantly the oscillator frequency becomes a function of the deformation

parameter in such a way that the volume of the nucleus is independent of

the deformation. This means the following condition must be imposed [17]

ωxωyωz = const. (2.11)

Figure 2.6: Graphic representation of the different projections of angular
momentum.

An important consequence of the deformed shape of the nucleus is that we

can now talk about spatial orientation for single particle wave functions.

However, they can not have a fixed orientation in space and are forced to

precess. The interpretation of this is that the single particle wave functions,

having aligned with each other along the symmetry axis, now begin to pre-

cess around an axis perpendicular to the symmetry axis and so the nucleus
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appears to spin. This means that the intrinsic total angular momentum is no

longer a good quantum number, but can be coupled with the angular momen-

tum arising from the collective motion to produce a total angular momentum

that is a good quantum number as shown in figure 2.6 [17]. The rotation

due the collective motion can be described by the quantum mechanical rigid

rotor, which has the following Hamiltonian

Ĥrot =
h̄2

2

3∑
i=1

R̂i

Ii
, (2.12)

where the Ii are the moments of inertia relative to the body-fixed frame and

the R̂i are components of the rotational angular momentum and the 3-axis

is chosen to be aligned with the symmetry axis as shown in figure 2.6. The

total angular momentum of the nucleus can now be written as

Î = R̂ + Ĵ, (2.13)

where Ĵ is the intrinsic total angular momentum. Thus Ĥrot can be rewritten

as

Ĥrot =
h̄2

2

∑
i

(Îi − Ĵi)2

Ii
=
h̄2

2

[∑
i

Î2
i

Ii
−
∑
i

2ÎiĴi
Ii

+
∑
i

Ĵ2
i

Ii

]
. (2.14)

Since the last term in Eq. (2.14) acts only on intrinsic degrees of freedom it

can be absorbed into the intrinsic part of the total Hamiltonian which is

Ĥ = Ĥ ′rot −
∑
i

h̄2

Ii
ÎiĴi + Ĥintr. (2.15)

In Eq. (2.15) the term containing ÎiĴi produces a Coriolis interaction that

can be ignored in a simplistic model under the condition that single particle
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excitations are much larger than rotational excitations. This is usually the

case for the low spin structure of light nuclei.

In general the rotor Hamiltonian Ĥ ′rot does not have analytical solutions,

except in the special case where the nucleus is axially symmetric

I1 = I2 = I, (2.16)

where some progress can be made analytically [14]. By making the above

substitution, Ĥ ′rot can be rewritten as

Ĥ ′rot =
h̄2

2

[
Î

I
+

(
1

I3

− 1

I

)
Î2

3

]
, (2.17)

with eigenvalues

E ′KI =
h̄2

2

[
I(I + 1)

I
+

(
1

I3

− 1

I

)
K2

]
. (2.18)

The eigenvectors for Ĥ ′rot can now be written as |KIM〉 and satisfy the

following eigenvalue relations

Î2|KIM〉 = I(I + 1)|KIM〉 (2.19)

Îz|KIM〉 = M |KIM〉 (2.20)

Î3|KIM〉 = K|KIM〉. (2.21)

In the above, K and M are the projections of angular momentum I onto the

body-fixed 3-axis and laboratory-fixed ẑ-axis respectively. Eq. (2.18) defines

bands of excited states for different values of K

EαKI = EαK +
h̄2

2Iα
I(I + 1), (2.22)
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where EαK (the energy of the intrinsic configuration) and Iα (the moment of

inertia) are parameters to be fitted to experimental data [14]. The emergence

of these bands is a feature similar to what is observed in the study of rigid

molecules having axial symmetry.

Figure 2.7: Nilsson diagram shows the effect of quadrupole deformation on
the single particle states. The quadrupole deformation is labeled here as
β [18].

Another important consequence of the deformed shape is that states with

differing spatial orientations are exposed to different potentials depending

on the shape of the nucleus. For axially symmetric deformations, when ε is

positive, the equipotential surfaces elongate along the ẑ-axis and the nucleus

becomes a prolate spheroid (see figure 2.5a). Hence states with high K sit

further from the nuclear surface and are less bound, while the opposite is

true for low K states. When ε is negative, the equipotential surfaces shrink

along the ẑ-axis, the nucleus becomes an oblate spheroid (see figure 2.5c).

Here the situation is reversed (high K states are more bound and low K
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states are less bound). This is often represented in a Nilsson diagram shown

in figure 2.7 and is a consequence of the short range of the nuclear force.

It is important to note that, up to this point, deformation of the nucleus

has been discussed in the context of the body-fixed frame. In other words,

at the lowest-order, the shape of a rotating nucleus is characterized by its

intrinsic quadrupole moment Q0 in its rest frame. However, this is not what

is measured experimentally. Instead what is measured in the laboratory

is the spectroscopic quadrupole moment Qs, which depends on the nuclear

spin in the lab frame. These two quantities are not in general identical

and it is possible for a nucleus to have some intrinsic deformation which

does not appear in the spectroscopic quadrupole moment. The spectroscopic

quadrupole moment is related to the body-fixed quadrupole moment via

Qs(I,K) =
3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0. (2.23)

It is important to note that by convention states in the Nilsson model are

labeled by the total number of harmonic oscillator quanta usually labeled

N , the number oscillator quanta along the 3-axis n3, and the projections of

intrinsic orbital and total angular momentum onto the 3-axis which often

carry labels of Λ and Ω. This Ω is the same as K from fig.2.6

2.2 Multipole Moments for a Charge Distri-

bution

As mentioned previously, in nuclear structure studies it is often the case that

we are interested in leading order charge and current distributions in nuclei.

This is where the multipole expansions become a powerful tool. Simplisti-
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cally, the multipole expansion of an electromagnetic field is in fact a Taylor

expansion where the lowest order terms are dominant and higher order mo-

ments can be neglected without sacrificing too much accuracy.

Figure 2.8: An arbitrary continuous charge distribution with s as the dis-
placement of a small charge element and r being the displacement vector to
the point at which we want to approximate the potential.

Let us begin by looking at the scalar potential,

V (r) =
1

4πε0

∫ τ

0

1

r′
ρ(s)dτ ′. (2.24)

Using the cosine law, r′ can be expressed, as shown in figure 2.8 in terms of

r and s

r′2 = r2 + s2 − 2rs cos(θ) = r2

[
1 +

(
s

r

)2

−
(
s

r

)
2 cos(θ)

]
(2.25)
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which can also be written as

r′ = r
√

1 + δ (2.26)

with

δ =

(
s

r

)(
s

r
− 2 cos(θ)

)
. (2.27)

Thus, Eq.(2.24) now becomes

V (r) =
1

4πε0

∫ τ

0

1

r
√

1 + δ
ρ(s)dτ ′. (2.28)

Now, in the limit r � s implies δ � 1 and so we apply a binomial expansion

to the 1√
1+δ

term giving

1

r
√

1 + δ
=

1

r

[
1− 1

2
δ +

3

8
δ2 − 5

16
δ3 + ...

]
. (2.29)

Therefore, more explicitly,

1

r′
=

1

r

[
1− 1

2

(
s

r

)(
s

r
− 2 cos(θ)

)
+

3

8

(
s

r

)2(
s

r
− 2 cos(θ)

)2

− 5

16

(
s

r

)3(
s

r
− 2 cos(θ)

)3

+ ...

]
. (2.30)

By multiplying out and rearranging the terms to group them in powers of d
r

we obtain
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1

r′
=

1

r

[
1 +

(
s

r

)
(cos(θ)) +

(
s

r

)2
(3 cos2(θ)− 1)

2

+

(
s

r

)3
(5 cos3(θ)− 3 cos(θ))

2
+ ...

]
. (2.31)

As it turns out, the coefficients in this series are the Legendre polynomials in

cosine which form an orthogonal basis set in function space. This also means

the above can be rewritten as

1

r′
=

1

r

∑(
s

r

)n
Pn(cos θ), (2.32)

where Pn denotes the Legendre polynomial of degree n. Finally, substitution

back into the potential gives

V (r) =
1

4πε0

∑ 1

rn+1

∫ τ

0

snPn(cos θ)ρ(s)dτ ′. (2.33)

This result is the multipole expansion of the electrostatic potential in powers

of 1
r
. Summing over all the terms of the expansion is, as a matter fact, an

exact solution for the potential. However, the real value of the expansion is

that it can be used as a tool for approximating the potential. In such cases

only the leading order terms play an important role.

From here it is easy to find the multipole expansion of the electric field by

applying the gradient operator to the scalar potential

E(r) = −∇V (r). (2.34)

This procedure can be carried out in a similar fashion for the vector potential

A(r), expanding the 1
r′

part just as before. This gives
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A(r) =
µ0I

4π

∮
1

r′
dl =

µ0I

4π

∑ 1

rn+1

∮
snPn(cos θ)dl. (2.35)

Since Legendre polynomials turn out to be special cases of the spherical

harmonics, both V (r) and A(r) can be written in as

V (r) =
1

4πε0

∑ 1

r`+1

∫ τ

0

4πs`ρ(s)

2`+ 1
Y ∗`m(θ, φ)Y`m(θ, φ)dτ ′ (2.36)

A(r) =
µ0I

4π

∑ 1

r`+1

∮
4πs`

2`+ 1
Y ∗`m(θ, φ)Y`m(θ, φ)dl. (2.37)

Looking more closely at V (r) and multiplying and dividing by Z we get

V (r) =
1

4πε0

∑ 1

r`+1

4πZ

2`+ 1

[
1

Z

∫ τ

0

eslρ(s)Y ∗`m(θ, φ)dτ ′

]
Y`m(θ, φ) (2.38)

=
1

4πε0

∑ 1

r`+1

4πZ

2`+ 1
Q`mY`m(θ, φ). (2.39)

Quantum mechanically, the Q`m’s take the role of operators, such that

Q`m = 〈ψ(s)|es`Y ∗`m(θ, φ)|ψ(s)〉 (2.40)

= 〈ψ(s)|O`m(E)|ψ(s)〉. (2.41)

In the above Ô`m(E) is now the electric multipole operator of order (`,m).

As mentioned previously, the quadrupole moments in nuclei tell us if the

nuclear shape is prolate or oblate. The leading-order quadrupole moment

operator is known to be
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Q̂20(E) = er2Y ∗20(θ, φ) (2.42)

= e(3 cos2(θ)− r2) (2.43)

= e(3z2 − r2). (2.44)

2.3 Fermi’s Golden Rule

Fermi’s Golden Rule provides a means for calculating transition probabilities

in nuclear and atomic systems. I describe this briefly below.

For a number of nuclei in an initial excited state |i〉, the decay rate is given

by the famous radioactive decay law,

dN(t)

dt
= −λN(t), (2.45)

where N(t) is the number of excited nuclei at time t and λ is the transition

probability. The solution to this differential equation yields the well known

exponential decay law

N(t) = N0e
−λt. (2.46)

The mean life or lifetime of the state is then given by

τ =

∫∞
0
te−λtdt∫∞

0
e−λtdt

=
1

λ
. (2.47)

Heisenberg’s uncertainty principle relates the mean lifetime to the width of

the excited state, such that

Γτ = h̄, (2.48)
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where Γ is the spread in the energy of the excited state. Over a large num-

ber of measurements N , one can obtain an average energy whose quantum

mechanical analogue is the expectation value 〈E〉

〈E〉 =
1

N

N∑
i=1

Ei. (2.49)

The spread in the energy values can be estimated by taking the square-root

of the variance [19]

Γ =

[
1

N

N∑
i=1

(E2
i − 〈E〉2)

] 1
2

. (2.50)

The quantity Γ is related to the probability of measuring the energy of the

state to be a specific value. As will be shown below, Fermi’s Golden Rule

shows that transition probabilities are proportional to the nuclear matrix

elements

Mfi = 〈ψ(Jf ,Mf )|Ô`m|ψ(Ji,Mi)〉, (2.51)

which can be factorized using the Wigner-Eckart theorem into a reduced

matrix element and a Clebsch-Gordan coefficient

Mfi = (−1)Jf−Mf

 Jf ` Ji

Mf m Mi

 〈ψ(Jf )||Ô`||ψ(Ji)〉. (2.52)

Therefore, measured transition matrix elements yield important information

about the structure of atomic nuclei, particularly the operators and the over-

lap of the wave functions in Eq. (2.52)

Fermi’s Golden Rule can be derived using perturbation theory, where the

time-dependence of the Hamiltonian is treated as a first order perturbation,
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so that

Ĥ = Ĥ0 + Ĥ ′(t). (2.53)

If |φn〉 are a complete orthonormal basis set of eigenvectors of Ĥ0 so that

Ĥ0|φn〉 = En|φn〉, (2.54)

then |Ψ(r, t)〉, any general eigenstate of Ĥ, is also a solution of the time-

dependent Schrödinger equation and can be expressed as

|Ψ(r, t)〉 =
∑
n

cn(t)e−iEnt/h̄|φn〉. (2.55)

Substituting the above into the time-dependent Schrödinger equation we get

ih̄
∂|Ψ(r, t)〉

∂t
= [Ĥ0 + Ĥ ′(t)]|Ψ(r, t)〉 (2.56)

ih̄
∑
n

[
∂cn(t)

∂t
− icn(t)

En
h̄

]e−iEnt/h̄|φn〉 =
∑
n

cn(t)[Ĥ0|φn〉+ Ĥ ′(t)|φn〉]e−iEnt/h̄.

(2.57)

Furthermore, taking an inner product with 〈φk|eiEkt/h̄ yields

ih̄
∑
n

[
∂cn(t)

∂t
− icn(t)

En
h̄

]ei(Ek−En)t/h̄〈φk|φn〉, (2.58)

on the left side and

∑
n

cn(t)[〈φk|Ĥ0|φn〉+ 〈φk|Ĥ ′(t)|φn〉]ei(Ek−En)t/h̄ (2.59)

on the right-hand side. Finally, the orthonormality of the eigenstates |φn〉
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yields

ih̄
∂ck(t)

∂t
=
∑
n

〈φk|Ĥ ′(t)|φn〉eiωknt, (2.60)

where ωkn = (Ek − En)/h̄.

If we assume that the nucleus is in an initial state |φ0〉 and that Ĥ ′(t) is

almost constant over the time interval of interest, then ck(t) can be solved

explicitly [19]

ck(t) =
〈φk|Ĥ ′(t)|φ0〉

(Ek − E0)
(1− eiωk0t), (2.61)

so that

|ck(t)|2 =
2

h̄2 |〈φk|Ĥ
′(t)|φ0〉|2

(1− cos(ωk0t))

ω2
k0

. (2.62)

Now the transition probability (λ) to a set of final states (labeled by f) is

given by

λ =
d

dt

∑
k∈f

|ck(t)|2 (2.63)

=
2

h̄2

∫
|〈φk|Ĥ ′(t)|φ0〉|2

sin(ωk0t)

ωk0

ρ(Ek)dE (2.64)

=
2π

h̄2 |〈φk|Ĥ
′(t)|φ0〉|2ρ(Ef ) (2.65)

where ρ(Ef ) is the density of final states. This result is Fermi’s Golden Rule

which relates nuclear matrix elements to lifetimes.
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2.4 The Relation Between Lifetime Measure-

ments and Coulomb Excitation

As emphasised in the previous section, lifetime measurements give impor-

tant nuclear structure information via Fermi’s Golden Rule. In this section

I focus on a particular kind of experiment called Coulomb excitation, where

independent lifetime measurements together with measured quadrupole tran-

sition strengths can give important information about the shapes of nuclei

that are studied.

Coulomb excitation is a technique used for measuring matrix elements of

electric multipole transitions, which yield transition probabilities. Coulomb

excitation has the distinct advantage of relying solely on the Coulomb inter-

action to produce the excited states in the nuclei of interest. As a result, the

analysis is simplified by the fact that the effects of the strong interaction can

be safely ignored. In order to achieve this it is important that the nuclear

surfaces remain well separated (≈ 6.5 fm for light nuclei and ≈ 5 fm for heavy

nuclei).

In Coulomb-excitation experiments, a projectile is scattered inelastically

off a target nucleus and in this time-dependent process the Coulomb inter-

action is used to excite states in the target and projectile nuclei. In the

early days of accelerator technology it was only possible to use light nuclei

as projectiles; due to which the electromagnetic interaction between target

and projectile was comparatively weak and so only a few states could be

populated [20]. In later years, as accelerator technology improved, it became

practical to use heavy ions as projectiles. This allowed a large number of ex-

cited states to be populated. In the following years the technique was further

developed and refined to become an important tool for investigating transi-
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tion probabilities of low-lying collective excitations. One particular aspect

of this field of research involved determination of spectroscopic quadrupole

moments by reorientation effect measurements [21].

Coulomb-excitation measurements rely on the ability to make measure-

ments of differential cross sections. In practice this means taking measure-

ments at various scattering angles, which might be affected by poor statis-

tics, particularly in radioactive ion beam experiments. In such cases the total

cross section can still be measured. The inelastic scattering cross section in

a Coulomb excitation can be written in the semi-classical limit as

( dσ
dΩ

)
n

= Pn

(1

4
a2sin−4(

ϑ

2
)
)
, (2.66)

where Pn is the probability of the nucleus being Coulomb excited into state

|n〉 and the rest is the well known Rutherford scattering cross section, where

ϑ is the scattering angle in the centre of mass frame and a is half the distance

of closest approach in a head-on collision given (in the c.g.s. system) by

a =
b

2
=
Z1Z2e

2

µv2
, (2.67)

where b is the impact parameter and µ is the reduced mass [20].

The cross sections for inelastic scattering can be measured experimentally

and from these data the reduced transition probability can be extracted. In

first-order perturbation theory, the inelastic scattering cross section for an

electric quadrupole (E2) excitation, can be expressed as

dσE2 =

(
Z1e

h̄ν

)2

a−2
if B(E2, Ii → If )dfE2(ϑ, ξ), (2.68)

where aif is the distance of closest approach in a head-on collision, B(E2, Ii →
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If ) is the reduced transition strength and dfE2(ϑ, ξ) is the differential scat-

tering cross section which depends on the centre of mass angle ϑ and the

adiabaticity parameter ξ [22]. The reduced transition probability relates to

the electric quadrupole matrix element so that

B(E2, Ii → If ) =
1

I0 + 1

∣∣〈I0M0||M̂(E2)||IfMf〉
∣∣2. (2.69)

As outlined previously, the operator in the electric quadrupole matrix element

is given by Eq. (2.44) and the reduced transition probability is related to the

lifetime τ . In the rotational model, the B(E2, IiK → IfK) relates to the

quadrupole moment via

B(E2, I → I − 2) =
5

16π
e2Q2

0|〈Ii2K0|IfK〉|2, (2.70)

which yields the absolute value of Q0 once the B(E2) value is known. How-

ever this does not provide information on the sign of Q0. Reorientation effect

measurements provide the sign of Qs, and hence, Q0. Eq. (2.69) can also be

rewritten as

B(E2, Ii → If ) = 8.161× 10−10EγPγ(E2, Ii → If ), (2.71)

where Pγ(E2) is the partial γ-ray transition probability, which can be ob-

tained from the total transition probability of the level

Pγ(E2) = P (level)
Iγ(E2)

Iγ(total)
(2.72)

=
1

τ

Iγ(E2)

Iγ(total)
, (2.73)

where Iγ(E2) is the intensity of the γ-ray transition and Iγ(total) is the sum
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of the intensities of all transitions depopulating the level. This equation

can additionally be used to extract magnetic dipole to electric quadrupole

(M1/E2) mixing ratios1 if enough experimental spectroscopic information is

available. For a typically mixed M1/E2 transition the probabilities Pγ(E2)

and Pγ(M1) are given by

Pγ(E2) =
P (level)

1 + δ−2 + αT (E2) + δ−2αT (M1)
(2.74)

Pγ(M1) =
P (level)

1 + δ2 + αT (M1) + δ2αT (E2)
(2.75)

where δ and αT are multipole mixing ratios and total internal conversion

coefficients,2 respectively. As a result, if a B(E2) value can be measured

with Coulomb excitation and the lifetime is obtained from an independent

lifetime measurement, the mixing ratio and M1 transition strength can also

be extracted.

Finally, complementary lifetime measurements are relevant in Coulomb-

excitation studies if the transition probability can be inserted from an in-

dependent measurement, providing valuable insight in the study of nuclear

shapes. This is illustrated in the example of 70Se, shown in figure 2.9, where

both lifetime and Coulomb-excitation measurements have been used to de-

termine the shape of the nucleus [2]. The overlap between the transitional

matrix element determined via lifetime measurements and the Coulomb-

excitation curve provides a means to deduce the nuclear shape in the labo-

1Analogous to the electric charge distribution described previously, magnetic transi-
tions occur due to varying current distributions in nuclei. The lowest-order moment in
such current distributions is the magnetic dipole moment represented by the magnetic
moment operator ~µ. In electromagnetic transitions in nuclei the radiation field is written
in terms of the eigenfunctions of angular momentum operators (the spherical harmonics)
which allow both electric and magnetic multipoles.

2Internal conversion becomes important in heavier nuclei and for low-energy high-
multipole order transitions where the multipole radiation field of the excited nucleus causes
an emission of an inner shell electron instead of usual γ-ray emission.
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ratory frame. As shown in figure 2.9, this method relies on the accuracy of

both measurements.

Figure 2.9: Plot of the transition matrix element as a function of the diagonal
matrix element for the 2+

1 state in 70Se. The extreme values consistent with
measurement of the 2+

1 → 0+
gs transition in 70Se are shown as solid lines. The

dotted horizontal lines show the 1-σ limits on 〈2+
1 ||E2||0+

gs〉 obtained from a
lifetime measurement [1]. The region where the two measurements overlap
is circled here and indicates that the nucleus should be prolate.
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Chapter 3

Nuclear Lifetimes II -

Astrophysics

3.1 Introduction

Life as we know it would not exist without stars. We depend almost entirely

on energy from the Sun. Beyond this, almost all the chemical elements

heavier than lithium (such as carbon, calcium and iron, etc.) can only have

been synthesized in these giant furnaces. This makes stellar astrophysics a

rather interesting topic of study.

3.1.1 Life Cycles of Stars

A star starts out as a cloud of interstellar gas which collapses under its own

gravity. This collapse occurs when the gravitational energy of the system

surpasses the thermal energy of the individual particles that make up the

gas:
GM2

R
≥ 3kTM

2m
, (3.1)
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or equivalently

M ≥ 3.7
( kT
Gm

) 3
2
ρ−

1
2 , (3.2)

where M,R and T are the total mass, radius and temperature of the cloud

respectively, m is the mean molecular weight and ρ is the density. This

is called the Jeans criterion [23]. For typical interstellar clouds (which are

made of mostly neutral hydrogen with density around 100 atoms cm−3 and

temperature of around 100 K) the mass required to fulfill the Jeans criterion is

2×104M�
1 [23]. As the cloud collapses, the density increases rapidly. If the

temperature is kept relatively constant during this time through radiating

away the energy released, the mass required to fulfill the Jeans criterion

reduces, allowing smaller regions of the cloud to individually collapse under

their own gravity. Thus, the large cloud fragments into smaller clouds, each

collapsing under its own weight. This stage of stellar evolution, where the

gas is essentially in free fall lasts for a few decades. This is one of the crucial

initial processes that lead to the formation of stars. The precise details of

this process are still not completely known [23].

In the early stages of star formation, the energy released by the gravi-

tational collapse is easily radiated away because of the transparency of the

gas. However, as the cloud collapses, the density and opacity of the gas in-

creases allowing some energy to be trapped within the gas, thereby raising

the temperature of the cloud. The internal pressure of the gas now starts

to play a role and the rate of collapse becomes dependent on the rate at

which the energy is radiated from the star. At this stage, the time-scale of

radiation cooling is longer than the time-scale of collapse. Thus the interior

temperature of the star rises steadily. This stage of stellar evolution can last

1The notation M� denotes a solar mass, a unit of mass commonly used in astronomy
and astrophysics which is equivalent to the mass of our Sun.
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several million years [23].

Eventually the temperature of the core reaches ∼ 107 K, high enough for

thermonuclear reactions to begin with fusing hydrogen nuclei. This is the

main sequence stage of stellar evolution (which can take several billion years

for smaller stars) so named because the star remains on the main sequence

of the Hertzsprung-Russell (H-R) diagram shown in figure 3.1. On the main

sequence, energy is mainly produced via hydrogen burning while the star

is in hydrostatic equilibrium, which is explained in the next section. As a

result, the star’s size, temperature and luminosity hardly change during this

time. The main sequence stage comes to an end with the depletion of the

hydrogen fuel in the core, after which the evolution of the star depends on

its mass [23].

Once hydrogen is depleted in the core and the rate of energy produc-

tion begins to drop, gravitational collapse resumes. This rapidly increases

the temperature in an envelope surrounding the core, creating a hydrogen

burning shell. There is a rapid release of energy in this region so it cannot

be radiated away fast enough to maintain hydrostatic equilibrium. Thus the

core temperature rises, while the outer layers of the star are forced to expand

and cool. The lower surface temperature of the star means it becomes redder

and the higher energy production rate means it becomes brighter. Such stars

are located at the red giant branch of the H-R diagram. In some massive

stars helium burning may begin in the core. Depending on the mass, some

stars may be able to ignite the burning of successively heavier elements that

were produced in the previous burning stages. This process, which is mostly

helium burning produces elements like carbon, nitrogen and oxygen which

are eventually burnt producing heavier elements all the way up to iron.

Stars in the mass region of the Sun (up to ∼ 8M�) have enough mass
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Figure 3.1: A Hertzsprung-Russell diagram is a plot of luminosity against
temperature (or spectral class) for a group of stars. The diagram shows
various structures associated with different stages of stellar evolution. At
the top are super giants which are not very clear in this diagram. Below this
we find the main sequence and the giant and subgiant branches. Stars such
as the sun spend most of their lives on the main sequence burning hydrogen.
It is only when they begin to deplete the hydrogen in their cores that they
migrate off towards the right. Stars in the upper left hand side of the main
sequence tend to be more massive and burn hydrogen faster. As a result
these stars are expected to be the first to deplete their hydrogen supply and
leave the main sequence. Having left the main sequence, these stars move to
the subgiant and giant branches. The point at which the giant branch meets
the main sequence is known as the main sequence turn off and provides a
means of estimating the age of a stellar population [24].
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to ignite helium burning, but not enough to ignite carbon burning once the

helium is depleted. In such stars, towards the end of their life, the star’s core

is composed primarily of carbon and oxygen, surrounded by a helium burning

shell, a layer of helium ash from hydrogen burning, a hydrogen burning shell

and an outer layer of hydrogen. Similarly as explained before, the energy

produced in the inner burning shells is not easily radiated away, forcing the

outer layers to expand and cool. This pushes the star up the asymptotic

giant branch in the H-R diagram. Eventually the outer layers of gas are

forced away from the core to form a planetary nebula. The exposed carbon-

oxygen core has a high temperature and low luminosity and forms a typical

white dwarf.

Very massive stars nearing the end of their fuel supply are stuck with iron

cores and have no alternative but gravitational collapse. The gravitational

collapse forces photodisintegration of iron nuclei and electron capture which

consumes energy. To compensate for this energy loss, the core collapses faster

and faster leading to a large explosion called a supernova.

3.1.2 Equilibrium Conditions in the Stellar Interior

Most stars are in hydrostatic equilibrium, so that the internal pressure is

balanced by the weight of the outer layers of gas. Mathematically this means

the gradient of the pressure is

dP (r)

dr
=
−GM(r)ρ(r)

r2
, (3.3)

where P (r) is the internal pressure at radial distance r and G is the gravita-

tional constant [25]. The minus sign reflects the fact that gravity acts toward

the centre of the star. In the above, ρ(r) is the density at distance r and
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M(r) is the mass contained within a spherical shell,

M(r) =

∫ r

0

4πr′2ρ(r′)dr′. (3.4)

If one assumes that the pressure on the surface of the star vanishes, the

pressure at the centre (r = 0) can be written as

P (0) ≈ 8ρs
GM

R
, (3.5)

where ρs is the mean density of the star [26].

If the equilibrium condition does not hold, then the right-hand side of Eq. (3.6)

determines whether the star implodes or expands

ρr̈ = −G
(Mρ

r2

)
− dP

dr
. (3.6)

Ordinary stellar interiors are composed mostly of gaseous material which is

well described by the ideal gas law

PV = nkT (3.7)

which can be rewritten as

P (r) =
k

m
ρ(r)T (r), (3.8)

where k is Boltzmann’s constant and m is the mean molecular weight of the

particles in the gas (m ≈ 1
2
mH). Assuming ρ(0) = 2ρ, where ρ ' M

R3 is the

density at a point midway between the centre and surface, and using the

earlier estimate for P (0) gives [23]
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T (0) =
(m
k

)(GM
R

)
, (3.9)

which yields a value of around 107 K for the Sun.

Stars constantly radiate large amounts of energy in the form of electro-

magnetic radiation and jets of high energy particles. Although it is well

known that objects radiate energy by virtue of temperature, no object can

keep radiating energy over such long time scales simply because of high tem-

perature. Thus energy must come from some other source in order for the

star to maintain the high temperature. The thermal energy, ET , of the star

is well approximated by integrating the thermal energy per unit mass for an

ideal gas over the entire star

ET =

∫ R

0

[3

2

k

m
T
]
ρ(r)4πr2dr '

[3

2

k

m
T
]
M. (3.10)

The total gravitational energy, EG, is given by integrating over the entire

star

EG =

∫ R

0

[−GM(r)

r

]
ρ(r)4πr2dr ' −

[GM(r)

r

]
M. (3.11)

A numerical calculation of these values for the Sun gives a result of 2ET ≈

−EG. In its general form this is the virial theorem [23], which states that in

a non-rotating star one half of the energy released by gravitational collapse

goes to the internal energy while the other half is radiated away.

Given the luminosity of the sun, the virial theorem indicates it ought to

have radiated all its thermal energy in ∼ 4.4 × 107 years. Since the earth

itself is around 4.5 billion years old, clearly there must be another energy

source in the Sun that has not yet been taken into consideration [23]. That

source is the energy released by nuclear fusion. It is estimated that the total
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amount of energy that can be released by fusion would allow the Sun to shine

at its current luminosity for around 1011 years.

3.1.3 Nuclear Reactions

Hydrostatic equilibrium alone is not enough to ensure a stable star. Thermal

equilibrium must also be taken into account, which requires that all parts of

the star have reached the same temperature. This condition can obviously

not hold since stellar cores can reach temperatures of the order of 107 K while

surface temperatures are of the order of 103 K. To make matters worse,

the energy radiated from the surface of the star prevents perfect thermal

equilibrium. However, by energy conservation, the energy leaving the star

must be replaced by nuclear reactions throughout the interior of the star.

Mathematically this means

L =

∫ R

0

ε(r)ρ(r)4πr2dr, (3.12)

where L is the luminosity of the star and ε(r) is the rate of energy released

by nuclear reactions per unit time per unit mass of stellar material. This

condition allows maintenance of an energy balance over the whole star that

keeps it stable over cosmological time scales. Indeed when thermonuclear

reactions cease within the star it begins to collapse [23].

3.2 Reaction Rates

In determining the rate at which energy is produced in a star via thermonu-

clear fusion, one useful tool is the Q-value,

Q = (m1 +m2 −m3 −m4)c2, (3.13)
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for a nuclear reaction, 1 + 2 → 3 + 4. This is the energy liberated in the

(exothermic) reaction for Q > 0. This alone is not enough to determine the

rate at which the energy is produced. The rate of energy production also

depends on the number density of the reactants and the cross section of the

reaction.

The cross section is classically the geometrical cross sectional area of the

two reactants σ = π(R1 + R2)2 where R1 and R2 are the radii of the indi-

vidual nuclei. Since nuclear reactions are governed by the rules of quantum

mechanics, this geometrical cross section must be modified to σ = πλ̄2, where

λ̄ is the reduced de Broglie wavelength,

λ̄ =
m1 +m2

m2

h̄

(2m1E1)1/2
. (3.14)

Here E1 is the kinetic energy of m1 in the laboratory frame. It is easy to see

from Eq.(3.14) that the cross section is energy dependent. This is the same

as saying the cross section depends on the relative velocity between m1 and

m2, so that σ ≡ σ(v). The reaction rate r is then given by

r = N1N2vσ(v), (3.15)

where N1 and N2 are the number densities of the nuclei of type 1 and 2. As

the velocities of the particles in a star follow a distribution, it is often useful

to work with the average value

〈vσ〉 =

∫ ∞
0

φ(v)vσ(v)dv, (3.16)

where φ(v) is a normalized probability density function, described below.

Thermonuclear reactions take place in the plasma present in stellar cores
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and the energy of the reactants is by virtue of their relative thermal motion.

This stellar plasma is usually non-degenerate and the particles within move

at non-relativistic speeds. For a plasma in thermodynamic equilibrium one

can use a Maxwell-Boltzmann velocity distribution

φ(v) = 4πv2

(
m

2πkT

)3/2

exp

(
−mv2

2kT

)
. (3.17)

Since the exponential term is proportional to mv2 the function φ(v) can be

written in terms of energy:

φ(v) ∝ Eexp

(
−E
kT

)
. (3.18)

This means that when E � kT , the function increases linearly with E and

when E � kT the function decreases exponentially with increasing E. For

reactions in a stellar plasma, the velocities of both the interacting nuclear

species (labeled as x and y) are important. Both are described by the distri-

butions

φ(vx) = 4πv2
x

(
mx

2πkT

)3/2

exp

(
−mxv

2
x

2kT

)
(3.19)

φ(vy) = 4πv2
y

(
my

2πkT

)3/2

exp

(−myv
2
y

2kT

)
. (3.20)

Thus the reaction rate per pair of interacting particles is given by

〈vσ〉 =

∫ ∞
0

∫ ∞
0

φ(vx)φ(vy)vσ(v)dvydvx. (3.21)

It is more useful to work with the relative velocity v and the centre-of-mass

velocity V which are related to vx and vy by the classical Galilean transfor-

mations. The expression for 〈σv〉 can then be transformed into
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〈vσ〉 =

∫ ∞
0

∫ ∞
0

φ(V )φ(v)vσ(v)dvdV, (3.22)

with redefined velocity distributions

φ(V ) = 4πV 2

(
M

2πkT

)3/2

exp

(
−MV 2

2kT

)
(3.23)

φ(v) = 4πv2

(
µ

2πkT

)3/2

exp

(
−µv2

2kT

)
, (3.24)

where µ is the reduced mass and M is the total mass. Since σ depends only

on v, we can immediately integrate Eq.(3.22) over V which yields

〈vσ〉 =

(
8

πµ

)1/2
1

(kT )3/2

∫ ∞
0

σ(E)Eexp

(
−E
kT

)
dE. (3.25)

Consider now a general case of two nuclei fusing to form a compound nucleus

which then decays into two other nuclei

1 + 2→ 3 + 4 +Q, (3.26)

where Q > 0 at low stellar temperatures. As the temperature rises, more

and more particles have energy greater than the Q-value and so the reverse

process becomes more important. The forward process can be viewed as the

fusion of two nuclei which proceeds through an excited state in a compound

nucleus C

1 + 2→ C → 3 + 4 +Q. (3.27)

The cross section for this process is given by

σ12 = πλ̄2
12

2J + 1

(2J1 + 1)(2J2 + 1)︸ ︷︷ ︸
ω

(1 + δ12)|〈3 + 4|HII |C〉〈C|HI |1 + 2〉|2, (3.28)
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which includes a term πλ̄2
12 described previously and a statistical factor ω

where J is the angular momentum of the excited state in the compound

nucleus and J1 and J2 represent the angular momenta of the nuclei in the en-

trance channel. The statistical factor is essentially a sum over all final states

averaged over all initial states [27]. The term (1 + δ12) with the Kronecker

δ takes care of the possibility of the nuclei being identical particles in which

case the cross section must be doubled. The last term contains the matrix

elements which depend on the specific interaction(s) involved. Since this

reaction proceeds through an intermediate state, it is a two-step (resonant)

reaction. As a result of this, there are two matrix elements involved, one

for the transition into the compound nucleus 〈C|HI |1 + 2〉 and one for the

transition from the compound nucleus to the final state 〈3 + 4|HII |C〉. In

general these two transitions do not have to involve the same interaction and

thus their operators are labeled differently HI and HII . The cross section for

the reverse process can be constructed similarly

σ34 = πλ̄2
34

2J + 1

(2J3 + 1)(2J4 + 1)
(1 + δ34)|〈1 + 2|HI |C〉〈C|HII |3 + 4〉|2, (3.29)

where the matrix elements are reversed. As a result of time reversal in-

variance, which applies to the strong and electromagnetic interactions, the

matrix elements in each equation should be equal. Thus the cross sections

are proportional to each other

σ12

σ34

=
λ̄2

12

λ̄2
34

(2J3 + 1)(2J4 + 1)

(2J1 + 1)(2J2 + 1)

(1 + δ12)

(1 + δ34)
. (3.30)

Expanding the λ̄212
λ̄234

term with λ̄2 = h̄2/(2µxyExy) (where µxy and Exy are the

reduced mass and center-of-mass energy respectively) this is reduced to
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σ12

σ34

=
m3m4E34

m1m2E12

(2J3 + 1)(2J4 + 1)

(2J1 + 1)(2J2 + 1)

(1 + δ12)

(1 + δ34)
. (3.31)

It should be noted that this relation is only valid in the non-relativistic regime

and it contains no information about the compound nucleus even though it

was derived assuming a two step process. This means the cross sections can

be obtained independently, regardless of the intermediate state. This result

is general and in many instances it may be easier to make a measurement

of the cross section for the reverse process rather than trying to directly

measure the cross section of interest [23].

The rate of energy production ε12 depends on the Q-value and the reaction

rate r12, so that ε12 = Qr12. This is often expressed in terms of the density of

the stellar material ρ. Since at high stellar temperatures the reverse reaction

becomes important as well, the net rate of energy production in a star is

usually expressed as [23]

εnet = ε12 + ε34 = (r12 − r34)Q/ρ. (3.32)

3.3 Resonances

Resonant reactions are those which proceed via some intermediate stage and

lead to large enhancements of the reaction cross section. These reactions play

an important role in thermonuclear reactions where particle energies are low

compared to the Coulomb barrier.

To begin with, we look at the familiar case of plane waves incident on a

three-dimensional attractive square well potential of radius R. We restrict

our discussion to low energy neutron scattering. The neutron has two distinct

channels, an elastic scattering channel and a reaction channel. We have two
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distinct regions, region I where r < R and region II where r > R. In region

I V (r) = −V0 and in region II V (r) = 0. In this case we have the general

solution for the wave function in region I

uI = AeiKr +Be−iKr (3.33)

and in region II

uII = CeiKr +De−iKr. (3.34)

We consider only waves coming in from r � R and can set A = 0. This means

that the incoming waves are either reflected at the boundary or transmitted

to region I. Given this interpretation we define the transmission coefficient

T̂ =
|B|2

|D|2
. (3.35)

In addition, we have the continuity condition which requires that the wave

function be smooth. This means that both the wave function and its deriva-

tives must be continuous everywhere. So at the boundary between region I

and region II

uI(R) = uII(R) (3.36)

∂

∂r
uI(R) =

∂

∂r
uII(R), (3.37)

with

uin = AeiKr +Be−iKr. (3.38)

The second term in Eq. (3.38) represents incoming waves and the first term
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represents reflected waves. It is expected that the amplitude of the reflected

waves is reduced by a factor q due to absorption. We should also take into

account the possibility of the reflected waves being shifted in phase by some

factor ζ relative to the incoming waves. This means |A|2 ≤ |B|2, with the

condition [3]

A = Be2iζe−2q. (3.39)

Folding this into Eq. (3.38) yields

uin = Be2iζe−2qeiKr +Be−iKr (3.40)

= B[e−i(Kr+ζ+iq) + ei(Kr+ζ+iq)]ei(ζ−q) (3.41)

= 2Bei(ζ−q)cos(Kr + ζ + iq). (3.42)

Taking the logarithmic derivative of the radial wave function then leads to

f0 = R

(
1

uin(r)

duin(r)

dr

)
r=R

(3.43)

= R
−2Bei(ζ−q)K sin(KR + ζ + iq)

2Bei(ζ−q) cos(KR + ζ + iq)
(3.44)

= −KR tan(KR + ζ + iq). (3.45)

From this it should be clear that f0 is energy dependent and that this de-

pendency arises from the dependencies of K, ζ and q on energy [3]. Since

the properties of the nuclear interior are not completely known, we must try

to express the cross section near a resonance in terms of quantities we can

measure. First we impose the condition for a resonance energy Eλ where
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f0(Eλ, q) = −KR tan(KR + ζ + iq) = 0. (3.46)

Many energies may fulfill this condition, but we will consider just one. We

will assume that elastic scattering is the dominant process so that |q| � 1 and

look at the Taylor expansion in order to approximate f0 near the resonance

energy

f0 ≈ f0(Eλ, q) + (E − Eλ)
(
∂f0

∂E

)
Eλ,q=0

+ q

(
∂f0

∂q

)
Eλ,q=0

. (3.47)

The last term can be expanded using Eq. (3.45)

q

(
∂f0

∂q

)
Eλ,q=0

= −qKR
[
∂

∂q
tan(KR + ζ + iq)

]
Eλ,q=0

= −iqKR. (3.48)

The
(
∂f0
∂E

)
Eλ,q=0

term is expected to be real since q = 0 implies a vanishing

reaction cross section. Substitution back into Eq. (3.47) yields

f0 ≈ (E − Eλ)
(
∂f0

∂E

)
Eλ,q=0

− iqKR = Re(f0) + iIm(f0). (3.49)

Given this result we define the new quantities

Γλe ≡ − 2kR

(∂f0/∂E)Eλ,q=0

(3.50)

Γλr ≡ − 2qKR

(∂f0/∂E)Eλ,q=0

(3.51)

Γλ ≡ Γλe + Γλr, (3.52)
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where Γλe and Γλr are the elastic scattering and reaction partial widths re-

spectively and their sum is then the total width. Notice that only Γλr really

depends on q. With this the reaction cross section (from Eq. (A.14)) can be

re-written as

σre =
π

k2

ΓλeΓλr

(E − Eλ)2 +
Γ2
λ

4

(3.53)

which clearly has a peak at E = Eλ and has a full width at half maximum

of Γλ which is why this quantity is called the width of the resonance. This

result is the Breit-Wigner formula for s-wave neutrons. Importantly, when

|E − Eλ| � Γλ (far from the resonance energy), the reaction cross section

all but disappears leaving only the elastic scattering cross section. So far

this treatment has neglected the angular momentum considerations and the

effects of the Coulomb barrier. A fuller treatment can be found in Blatt

and Weisskopf [27]. On including a statistical factor for the orbital angular

momentum degenerate states, the resonant scattering cross section is2

σre,l = (2`+ 1)
π

k2

ΓλeΓλr

(E − Eλ)2 +
Γ2
λ

4

. (3.54)

3.3.1 Astrophysical S-factor

In general, while analysing nuclear reactions it is important to consider the

tunneling probability through the Coulomb barrier. This probability is re-

2The (2`+ 1) term is replaced by 2J+1
(2J1+1)(2J2+1) for the general case of resonant reac-

tions.
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lated to the Sommerfeld parameter defined as

η =
a

λ̄
(3.55)

=
Z1Z2e

2

h̄v
, (3.56)

where a is the half distance of closest approach as mentioned in Chapter 2

Section 2.4 and λ̄ is the reduced de Broglie wavelength from Eq. (3.14) so

that,

P = e−2πη. (3.57)

Clearly the cross section for a reaction drops rapidly below the Coulomb

barrier. From Eq. (3.14), it is obvious that the cross section also drops

linearly with increasing energy of the projectile. In light of the above, the

cross section can be expressed as

σ(E) =
1

E
e−2πηS(E), (3.58)

where S(E) is the astrophysical S-factor and encapsulates all the nuclear

physics effects. For non-resonant reactions the S-factor varies smoothly with

center-of-mass energy and changes less rapidly with beam energy than the

cross section. It is therefore a useful tool for extrapolating cross sections

away from resonances. In terms of the S-factor the reaction rate can be

written as

〈vσ〉 =

(
8

πµ

)1/2
1

(kT )3/2

∫ ∞
0

S(E)e−2πηe(
−E
kT )dE, (3.59)

which is proportional to both the Maxwellian distribution, which decreases

exponentially at high energies, and the Gamow factor, which increases expo-
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nentially with energy. As a result 〈vσ〉 has a peak at intermediate energies

as shown in figure 3.2. This energy regime is known as the Gamow window

and it defines the energy range most relevant for astrophysical reaction rates.

Figure 3.2: The Gamow window sits at intermediate energies, where the
Maxwellian distribution and tunneling probability are comparable.
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3.4 Hydrogen Burning

3.4.1 PP-chains

For most of a star’s life it is dependent on hydrogen burning for energy pro-

duction [23]. Hydrogen burning can proceed via various mechanisms which

are sensitive to the precise conditions within the stellar core. One method is

for hydrogen burning to proceed via the proton-proton chains (or pp-chains).

These reactions have the net result of fusing four protons into a 4He nucleus

4p→ 4He + 2e+ + 2ν. (3.60)

This is a multi-step process going through various different reactions. If we

assume a stellar gas consisting entirely of hydrogen, then the only reactants

will be protons and the first reaction in the pp-chains produces deuterium as

follows

2p→ d+ e+ + ν. (3.61)

The next step is the burning of deuterium and several reactions are possible
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d(p, γ)3He

d(d, γ)4He

d(d, t)p

d(d, n)3He

d(3He, p)4He

d(3He, γ)5Li

d(4He, γ)6Li.

Since the total reaction rate depends on the number of available particles

and the reaction rate per particle pair 〈σv〉12

r12 =
N1N2

1 + δ12

〈σv〉12, (3.62)

this means that processes involving protons dominate (due to large proton

numbers in the stellar interior). So the first reaction

p+ d→ 3He + γ, (3.63)

dominates over the others. The deuterium abundance in the star now de-

pends on the deuterium producing rates and deuterium burning rates,

dD

dt
= rpp− rpd =

N2
p

2
〈σv〉pp−NpNd〈σv〉pd. (3.64)

The final step is the burning of 3He, where once again th??ere are several

possible reactions which can take place
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3He(d, γ)5Li

3He(d, p)4He

3He(3He, γ)6Be

3He(3He, 2p)4He

3He(α, γ)7Be.

Of these the 3He(d, p)4He and 3He(3He, 2p)4He reactions have the largest

S-factors and play important roles. Since the deuterium abundance in stars

is very low, the latter reaction dominates. This completes the first pp-chain

(pp-chain I). The 3He(α, γ)7Be reaction also plays an important role in the

stellar interior. This leads to two further branches (pp-chain II and pp-

chain III) which can compete favourably with pp-chain I depending on the

temperature of the core.

3.4.2 CNO cycles

Other important energy producing processes in stars are the CNO-cycles.

These are not possible in first generation stars, which by definition have only

the products of big bang nucleosynthesis available for fusion (mostly hydro-

gen and helium). Later generations of stars contain trace amounts of heavier

nuclei formed by previous generations. In a sufficiently massive star the core

reaches temperatures (and pressures) high enough for reactions involving

these heavier nuclei to play an important role. The most significant reac-

tions involve those nuclei with the lowest Coulomb barriers and the highest

abundances. These are the carbon and nitrogen nuclei. Other nuclei between

helium and carbon have lower Coulomb barriers but, their abundances are
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so low that they do not play a significant role in energy production [23].

An important cycle for energy production in these stars (such as the sun) is

the CNO cycle. We restrict our discussion to the cold CNO cycle, which is

responsible for energy production in main sequence stars. The cycle starts

with a 12C nucleus capturing a proton and producing 13N. It then proceeds

through β+ decay of 13N, proton capture by 13C, another proton capture by

14N, β+ decay by 15O and finally regenerates 12C via 15N(p, α)12C.

Figure 3.3: Pictorial description of the cold CNO cycle.
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12C(p, γ)13N

13N(β+, ν)13C

13C(p, γ)14N

14N(p, γ)15O

15O(β+, ν)15N

15N(p, α)12C

A diagram of the cycle is shown in figure 3.3.

Although the abundances of carbon and nitrogen nuclei are comparatively

much lower than that of hydrogen in a young stellar interior, these nuclei

are not consumed by the process. So the CNO cycle is a significant source

of energy. As one would expect, the overall rate of energy production in

the cycle depends on the slowest reaction. The nitrogen nuclei have the

highest Coulomb barrier of all the capture reactions in the cycle. Since the

14N(p, γ)15O reaction proceeds essentially via the electromagnetic interaction,

while the 15N(p, α)12C proceeds mostly via the strong force, the 14N(p, γ)15O

reaction is expected to be the slowest reaction. As discussed below, the

cross section for this reaction is the least well known of the cycle, and still

remains an important research problem [28]. An accurate determination of

the 14N(p, γ) reaction rate is essential for understanding energy generation in

main sequence stars and correlating measured neutrino fluxes from the Sun

to the temperature and elemental composition of the solar core [4, 29].

3.5 The 14N(p, γ)15O Reaction

As mentioned previously, the 14N(p, γ)15O reaction, being the slowest, forms

a bottleneck in the CNO-cycle. Thus a precise determination of this reaction
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rate is important to better understand energy production in main sequence

stars. As shown in figure 3.4, extrapolation of the S-factor to stellar energies

shows large discrepancies arising from the results of various experiments.

Figure 3.4: R-matrix fit highlighting the effect of uncertainties in the
6791 keV state. Note that very small changes in the width lead to large
variations in the S-factor below 200 keV [28].

This is largely because of two reasons.

1. The S-factor is affected by a wide sub-threshold resonance from the

6791 keV state in 15O, as shown in figure 3.5.

2. The Gamow window for the reaction is below 200 keV, where direct

measurement of the cross section is difficult.

Instead the cross section is measured in a more practical region and the

S-factor is then extrapolated to the Gamow peak. The procedure requires

independently determined widths of the known resonances to be used in the

extrapolations as shown in figure 3.4. This calls for an accurate measurement
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Figure 3.5: Level scheme of 15O showing the excited state at 6791 keV which
has a high energy tail contributing to the cross section in the Gamow window.

of the width (lifetime) of the sub-threshold 6791 keV state. To date, several

attempts to measure the lifetime of the state have been made using various

methods [8, 6, 30, 7], which agree reasonably well with one another. Attempts

have also been made at direct cross section measurements and R-matrix

fits [4, 5, 31]. A compilation of the results is shown in Table 5.1.

However, a weighted mean of the partial widths extracted from lifetimes

shown above is Γaveγ = 0.59±0.12 eV. This 20% relative uncertainty continues

to be too large for reasonable extrapolations down to lower energies [28].

Therefore, there is a clear need for new lifetime measurements to stringently
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Table 3.1: Compiled results of previous experiments.

Group Method τ 6791
γ [fs] Γ6791

γ [eV]

Oxford 1968 [7] DSAM < 28 > 0.023
TUNL 2001 [8] DSAM 1.6± 0.7 0.41± 0.17
RIKEN 2004 [30] CoulEx 0.69± 0.43 0.95± 0.59
LUNA 2004 [5] R-Matrix fit 1.1± 0.5 0.59± 0.27
Bochum 2008 [9] DSAM < 0.77 > 0.85
LUNA 2008 [4] R-Matrix fit 0.75± 0.20 0.87± 0.23
TRIUMF 2013 [6] DSAM < 1.42 > 0.46

constrain the S-factor extrapolations.

This thesis describes the design and simulation of a new set up at iThemba

LABS that potentially allows one to remeasure the lifetime of the subthresh-

old state using the Doppler Shift Attenuation Method (DSAM). A measure-

ment of this lifetime has already been carried out at TRIUMF [32] using a

similar design. The published data offers useful guidance fro out simulations.

Since such lifetime measurements (of the order τ ≈ 1 fs) are extremely chal-

lenging, our goal is to produce the state similarly to Ref.[32] using the inverse

kinematic transfer reaction 3He(16O, 15O)4He, so that we are least sensitive

to systematic effects and have maximal sensitivity. In the next section I

briefly discuss direct nuclear reactions before describing the design and the

simulations.

3.6 Direct Nuclear Reactions

Nuclear reactions can be broadly classified on the basis of how a projectile

interacts with target nuclei. On one extreme a projectile may impart energy

to only a single nucleon exciting a single degree of freedom. On the other
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extreme, the projectile may be totally absorbed into the nucleus, sharing its

energy amongst all the available nucleons and forming a compound nucleus

which later decays via an exit channel. Resonance reactions fall into the

latter category.

Those reactions in which there is little change between the initial and

final states (for example, with only single particle excitations) are known as

direct nuclear reactions. Besides these, there are a variety of processes that

exist between the two extreme cases mentioned above, such as semi-direct,

pre-equilibrium, pre-compound and others [33]. A key feature distinguishing

direct reactions from compound nucleus reactions is the time scale in which

they occur. Direct reactions take place over a time scale comparable to the

time of flight of the projectile while traversing the target nucleus. This is

much shorter than what one would expect from resonant reactions, where

the time scales are much longer, on the order of the lifetime of the compound

state that is produced.

3.6.1 Scattering Theory

We begin by modelling the reaction as a scattering problem, where a beam

of particles with a well defined momentum direction interacts with a nuclear

potential. A sketch of the scenario can be found in figure 3.6. The initial and

final states can be represented by wave functions which have the asymptotic

forms
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Figure 3.6: Diagram of the scenario described above. A localised central
potential at the centre, a beam of particles approximated by plane waves
with wavelength λa and scattered particles approximated as outward bound
spherical waves with wavelength λb.

ψinitial = A0e
i(k·r)ΨprojectileΨtarget (3.65)

r
lim−→∞ ψfinal = A0

[
ei(k·r)ΨprojectileΨtarget

+
∑
b

fb(θ, φ)
ei(kb·r)

rb
ΨejectileΨresidual

]
. (3.66)

In the above, the index b ranges over all possible elastic and inelastic channels.

Also introduced here is the scattering amplitude fb(θ, φ) which is proportional
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to the differential cross section of the reaction,

dσb
dΩ
∝ |fb(θ, φ)|2. (3.67)

A fuller treatment of the scattering problem can be found in appendix A.

3.6.2 Born approximation

In the simplistic description above much of the information relating to the

specifics of the reaction has been ignored. However, solving the Schrödinger

equation requires some explicit handling of these factors. All the information

needed to describe the internal structure of both the target and the projectile

is encapsulated in the wave functions Ψ.

Unlike the time independent Schrödinger equation for a bound state prob-

lem in a central field

[
−h̄2

2m
∇2 + V (r)− E

]
Ψ(r) = 0, (3.68)

which can easily be solved using standard methods, here the states involved

are in the continuum and the nature of the potential V (r) is not known

explicitly. Thus, the Schrödinger equation reduces to an inhomogeneous

Helmholtz equation

(∇2 + k2)Ψ(r) = λU(r)Ψ(r), (3.69)

where k2 = 2mE
h̄2

, U(r) = 2m
h̄2
V (r) and λ is a parameter related to the strength

of the potential. The situation is further complicated if we allow reactions

to excite internal degrees of freedom so that the total Hamiltonian can be
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written as

Ĥ = Ĥtarget + Ĥprojectile −
h̄2

2µα
∇2
α + V (r)α, (3.70)

which now contains a term h̄2

2µα
∇2
α describing the relative motion of the two

nuclei3 and an interaction potential V (r)α proportional to λU(r) [34]. Intro-

ducing this to the Schrödinger equation yields, for the special case of elastic

scattering

[
E − Ĥtarget − Ĥprojectile +

h̄2

2µα
∇2
α

]
Ψ = V (r)αΨ. (3.71)

For convenience we collect the operator terms into a free particle Hamiltonian

Ĥ0 so that [
E − Ĥ0

]
Ψ = V (r)αΨ. (3.72)

In the limit V (r)α → 0, the eigenstates involved ought to be plane wave

eigenstates ψ0. Therefore, the solutions to the Helmholtz equation can be

written in the form

Ψ =
[
E − Ĥ0

]−1

V (r)αΨ + ψ0. (3.73)

The above is called the Lippmann-Schwinger equation and it has singularities

when E takes eigenvalues of Ĥ0. This can be solved by shifting the poles

slightly as follows. Since

ε
lim−→0

[
E − Ĥ0 + iε

]−1

'
[
E − Ĥ0

]−1

, (3.74)

we can write

Ψ =
ε
lim−→0

[
E − Ĥ0 + iε

]−1

V (r)αΨ + ψ0, (3.75)

3In general many target-projectile combinations are possible, the subscript α takes
care of this.
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as a particular solution to Eq. (3.73), where ψ0 satisfies the eigenvalue equa-

tion [
E − Ĥ0

]
ψ0 = 0. (3.76)

In shorthand notation, one can use a substitution for the operator in Eq. (3.75)

ε
lim−→0

[
E − Ĥ0 + iε

]−1

V (r)α = Ô, (3.77)

so that

Ψ = ψ0 + ÔΨ (3.78)

is a general solution to the integral equation. It is apparent that the solution

to Eq (3.77) is in fact an infinite series, called the Born series

Ψ =
∑
µ=0

Ôµψ0. (3.79)

which converges for a small interaction coupling λ. This is the Plane Wave

Born Approximation or PWBA. In reality the Coulomb interaction in nuclei

will distort the incident waves somewhat. Therefore, it is often more appro-

priate to use the Distorted Wave Born Approximation or DWBA with the

aid of a computer program such as DWUCK4 [35].

3.6.3 Partial Waves

So far the effects of angular momentum have been ignored. In reality angular

momentum plays an important role in characterising the scattering ampli-

tude. To see this we take a closer look at the scenario sketched earlier, in

particular the assumption that the wave function for the incident particles

can be approximated with plane waves. Since we have chosen k = kz it is
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implied that the uncertainty in the xy- position of each particle is large, or

equivalently that the beam must be smeared over a certain area and so the

impact parameter (labeled d in figure 3.6) cannot be known a priori. Since

` is the cross-product of position with momentum (r × p) this means that

the incoming angular momentum must be a sum over all possible angular

momentum states4. Since we have assumed a central potential, ` is a good

quantum number and the wavefunction can be separated into radial and an-

gular parts [36]. The spherical harmonics form a complete orthonormal set

of eigenfunctions for the angular momentum operator `2. So the initial and

final wavefunctions in a scattering problem can be expressed as a sum of

partial waves

ψinitial = eikz =
∑̀
λ=0

µ=λ∑
µ=−λ

cλuλ(r)Yλµ(θ, φ) (3.80)

ψfinal = fb(θ, φ)
∑̀
λ=0

µ=λ∑
µ=−λ

dλuλ(r)Yλµ(θ, φ). (3.81)

In the above, the wave function is separated into a radial part, u`(r), and an

angular part, Y`m(θ, φ), and the subscript b is used to label the exit channels

in ψfinal. The radial wavefunctions reduce to the spherical Bessel functions

far away from the scattering centre [34], so that

r
lim−→∞ uλ(r) = jλ(kr) = (kr)λ

(
− 1

(kr)

d

d(kr)

)λ
sin(kr)

(kr)
. (3.82)

4It is crucial to note that only a limited number of angular momentum values can be
carried by the incoming particles, because the interaction potential is localized, if this were
not the case, the expansion would be less useful as we would end up with an infinite series
of partial waves to sum over. Having a characteristic length scale for the potential means
we can impose the condition d < r0 where r0 reflects the size of the potential in some sense
and therefore only the first few terms of the expansion contribute to the wavefunction.
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If the target and the beam were both unpolarized, the sum over µ removes

all contributions from functions with µ 6= 0. The spherical harmonics then

reduce to the Legendre polynomials and the scattering amplitude depends

only on θ,

ψinitial =
∑̀
λ=0

cλuλ(r)Pλ(cosθ) (3.83)

ψfinal = fb(θ)
∑̀
λ=0

dλuλ(r)Pλ(cosθ). (3.84)

3.6.4 Direct Nuclear Reactions for Experiments

As mentioned previously, direct nuclear reactions such as 16O(3He, 4He)15O

occur over short time scales and only involve excitations of a few degrees of

freedom in the target. This greatly simplifies analysis, while simultaneously

allowing a good selectivity in the production of excited states. Frequently

we are interested in cases of nucleon transfer such as pick-up reactions (p, d),

(3He, α), (p, t), etc., and stripping reactions such as (d, p), (α, 3He), (d, n)

and so on. Consider the B(p, d)A reaction, in which the nucleus A forms a

closed shell with respect to neutrons. In such cases it is useful to regard the

target as the product nucleus A with an extra neutron in the next shell. In

other words B can be represented as

|B〉 = |A+ ψn〉, (3.85)

where |ψn〉 describes a neutron in the next available single particle state.

To determine the transition probability we need only calculate the matrix
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element

〈f|Vα|i〉 = 〈A+ d|Vα|B + p〉 (3.86)

= 〈A+ d|Vα|A+ ψn + p〉 (3.87)

= 〈d|Vα|ψn + p〉. (3.88)

This kind of analysis is particularly useful for near closed shell nuclei, where

direct nuclear reactions allow an examination of particle-hole excitations

around the shell gaps.
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Chapter 4

Apparatus and Design

Specifications

The Doppler shift lifetime experimental set up is planned to be located at the

G-line of the iThemba LABS cyclotron facility. The process of generating a

beam at iThemba LABS starts with an ion source which feeds positive ions

into one of two solid pole cyclotrons. These are called the SPC1 and SPC2

units shown in figure 4.1, which accelerate the charged particle beam up to

around K = 8 in energy before it is injected into the K = 200 separated sector

cyclotron shown in figure 4.2. From there the beam is guided down the beam

line by a series of bending and focusing magnets to one of several vaults used

for either isotope production, radiotherapy or nuclear physics experiments,

such as lifetime measurements.

Before describing the design considerations of our set up, I briefly discuss

some of the techniques used for lifetime measurements in nuclear physics.
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Figure 4.1: Floor plan of the iThemba LABS facility showing the SPC1 and
SPC2 units and SSC. The G-line is circled in black.

Figure 4.2: The separated sector cyclotron (SSC) from above.

68

 

 

 

 



4.1 Techniques

Nuclear lifetimes span a vast range of time scales from attoseconds (10−18 s)

to billions of years, necessitating a variety of techniques for nuclear lifetime

measurements. I describe below three popular techniques for measuring short

lifetimes.

4.1.1 Fast Electronic Timing

For lifetimes of the order of nanoseconds or even several hundred picosec-

onds, fast electronics is sufficient to make the measurements. This method

is based on a fast timing measurement of the delay between the production

of an excited state and the detection of γ rays (following de-excitation) in

a detector that ideally has fast response and good timing resolution. This

requires precise measurements of the time difference between a beam pulse

event on the target and a γ-ray detection event. Taking several such mea-

surements and collating the data gives a distribution which can be fitted with

the well known exponential decay law:

A(t) = A0e
−t/τ , (4.1)

where t is the time elapsed since the population of the state, A0 is a normal-

ization and τ , a free parameter, is the lifetime of the state [37].

4.1.2 Recoil Distance Doppler Shift

The Recoil Distance Doppler Shift method (RDDS) is used for measuring

nuclear level lifetimes ranging from a few picoseconds up to several hundred

picoseconds. The method relies on detecting γ rays from a nuclear reaction
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while the nucleus is in motion or after it has stopped. For such measurements,

a thin target is used in the reaction so that the recoils decay outside the

target. Some distance away a thick foil is used to stop the recoiling nuclei.

The de-excitation photons are then detected in a high purity germanium

(HPGe) crystal as shown in figure 4.3.

Figure 4.3: Schematic of the Recoil Distance Doppler Shift method. The
recoil distance is labelled d.

If the decay takes place while the recoils are in flight between the target

and stopper foil, the γ-ray energy will be Doppler shifted. On the other

hand, if the decay happens once the nuclei have come to a stop, there will

be no Doppler shift. If the lifetime of the excited state is greater than the

stopping time then the two peaks can be resolved reasonably well, and the

recoil velocity can be determined from the energy shift [37]. By measuring

the relative intensities in the two peaks as a function of a variable recoil

distance d, one can reliably extract the unknown lifetime τ .
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4.1.3 Doppler Shift Attenuation Method

The Doppler Shift Attenuation Method (DSAM) is a technique for measuring

nuclear lifetimes from a few femtoseconds up to a few picoseconds. The

Figure 4.4: Schematic of a DSAM experiment where the nucleus de-excites
while recoiling in the stopping medium.

method relies on detecting Doppler shifted γ rays emitted from a recoiling

nucleus that is produced in a nuclear reaction. As the excited nucleus recoils

in a stopping medium (shown in figure 5.3), the recoil velocity varies with

time until the instant the γ ray is emitted. This implies that the Doppler

shift is related to the lifetime. The Doppler shifted energy Eγ is dependent

on the energy loss of the recoils in the medium prior to photon emission

Eγ = E0

√
1− F 2(τ)β2

1− F (τ)βcosθ
, (4.2)

where E0 is the unshifted energy and θ is the angle between the momenta

of the recoiling nucleus and the detected γ-ray. In the above, F (τ) is an

attenuation factor that is related to the lifetime by

F (τ) =

∫
et/τv(t)cosζdt

v0τ
, (4.3)
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where ζ is the angular spread in the recoil velocity [8]. Therefore the lifetime

τ can be obtained with careful analysis of the lineshape of the measured γ

ray or the centroid shift of the γ-ray peak, provided the detector response is

well understood at that energy. A lineshape analysis offers less reliance on

the detector resolution and the requirement for hight statistics in the γ-ray

peak of interest as opposed to the centroid-shift method. Additionally, an

accurate understanding of the energy loss mechanism is very important to

extract nuclear level lifetimes using this method. It is important that the

recoils stop in the target backing, which is by necessity thick and of high Z

material. Care also must be taken that the recoils do not stop too quickly so

that a large fraction of the decays do not occur before losing significant kinetic

energy [37, 32]. Below I discuss our design for fs-level lifetime measurements

using the DSA method.

4.2 Design specifications

As mentioned in Chapter 3, Section 3.5, the only conclusive measurement of

the lifetime of the 6791 keV state in 15O was carried out by Bertone et al.

using a 14N(p, γ) reaction in direct kinematics with 300 keV protons [8].

Consequently, this experiment relied on the Doppler shift attenuation method

with low recoil energies. It is well established that the stopping powers are

not accurately known at such low energies. Ideally, the lifetime ought to be

measured using an inverse kinematic reaction due to the obvious advantages

listed below.

1. Higher recoil energies from inverse kinematics ensure that the recoil-

ing nuclei are predominantly under the influence of electronic stopping.

Unlike nuclear stopping, which plays a role at lower energies, electronic
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stopping does not cause large angle scattering, and is much better un-

derstood.

2. Higher recoil velocities that are forwardly peaked produce larger Doppler

shifts and greater sensitivity. Additionally, short-lived states in high

velocity recoiling nuclei will all have decayed by the time nuclear stop-

ping begins to play a role.

It was also mentioned previously, that we aim to produce the subthreshold

state in 15O at 6791 keV using a 16O(3He, α) reaction in inverse kinematics.

This is similar to work done previously [32], and the design is very similar to

ones used before at TRIUMF [32] and Chalk River Laboratories [38]. In the

reaction, a heavy ion 16O beam will be bombarded on a 3He target implanted

on a thick foil, such as Au or Zr. The reaction produces a light ejectile (an

α particle) that can be tagged by a (∆E−E) silicon telescope, provided the

E detector is thick enough to fully stop the light ejectiles of interest. This

arrangement allows one to gate on the excited state of interest, minimizing

systematic effects due to γ-ray feeding from higher lying states. The 15O

nucleus recoils within the target, emitting a Doppler shifted γ ray which will

be detected by a high purity germanium detector placed at 0◦ to the beam

for maximal sensitivity.

I discuss the vacuum system and design specifications of the scattering

chamber at the G-line below.

4.2.1 Vacuum System

It is easy to see why a vacuum system is needed to transport the beam to

the target, as high particle densities lead to high interaction probabilities

and short mean free paths. For the purposes of beam transport particle
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densities around 109 cm−3 with cross sections around 10−14 cm2 are suffi-

cient to produce a mean free path on the order of 103 m. This criterion

corresponds to pressures of ∼ 10−7 mbar. However, beam transport is not

the only motivation for using a high vacuum system, as contaminants in the

vacuum chamber may condense on the target resulting in unwanted fusion

evaporation reactions. For this reason it is important to achieve a vacuum

better that ∼ 10−7 mbar in the scattering chamber for precise lifetime mea-

surements. Vacuum considerations in the proposed beamline are discussed

below.

Figure 4.5: Full design done in Solid Edge (ST6). We use CF flanges every-
where for high vacuum.
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4.2.2 Pumps and Gauges

Since there are no pumps capable of pumping across all pressure ranges,

the pumping on the beamline must be done in stages. Pressures down to

10−3 mbar are considered rough vacuum. Various pumps are capable of

pumping down to these pressures. In our set up it is planned to use a

110 `/s dry scroll pump as the first stage of pumping. The lack of oil in

such pumps reduces contaminants in the vacuum system. The second stage

of pumping will use a 400 `/s turbopump which would take the pressure

down to ∼ 10−9 mbar. As shown in figure 4.5, the design also includes a

metal plate, with a small aperture and length of pipe 6 cm long with a inner

diameter of 3 cm, between the last two sections of the set up and the rest of

the beam line. This is intended to produce low pumping speeds across the

plate, which effectively reduces the volume that needs to be pumped by the

main turbo pump in the vicinity of the target. The upstream part of the

beamline will be pumped by a 150 `/s turbopump. The design also makes

provision for an inverted magnetron vacuum gauge to be attached as close

to the target as possible to monitor the vacuum at the reaction site.

Since the roughing pumps upstream of the set up are not oil free, two

cryogenic systems have been put into the design. A cold trap will be placed

upstream of the rest of the set up and a cold shroud placed just upstream of

the target. Both are introduced in order to condense hydrocarbon vapours

and other possible contaminants out of the vacuum. The cold shroud also

serves a second purpose related to the target heating which is explained in

the following section.

75

 

 

 

 



4.2.3 Target Holder and Cooling Arrangement

It was mentioned before that the experiment requires implanted 3He targets

on thick foils of high Z stopping material. While these implanted targets are

stable at room temperature, they are known to outgas with beam heating.

In our design, as shown in figure 4.6, the targets are sandwiched between

target frames and the target ladder which can hold up to three targets. In

our design the beam stops fully in the gold backing. The target ladder will be

mounted on a manual linear motion feed-through to provide precise control

of the position of the targets.

Figure 4.6: Close up view of the design. All copper parts are to be made of
oxygen free high conductivity copper. The white plates are ceramic insulators
to electrically isolate the collimators and target ladder.
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4.2.4 Target Heating

The power delivered by the beam depends on the energy of the beam and the

beam current. In our design, the beam spot is expected to have a diameter

of about 3 mm while the targets will have effective diameters of 10 mm.

Therefore, the full power of the beam will be absorbed by the implanted

region of the target. Assuming radial heat conduction, one can calculate the

temperature gradient in the material

dT

dr
=

P

κA
, (4.4)

where P is the beam power, κ is the thermal conductivity of the material in

Wm−1K−1 and A is the cross sectional area through which the heat flows.

The temperature difference can be found trivially,

∆T =

∫ ro

ri

Pdr

κ2πrt
, (4.5)

=
P

κ2πt
ln
ro
ri
, (4.6)

where A is expressed as 2πr multiplied by the target thickness t. Table 4.1

Table 4.1: Comparison of heating in different target materials.

Material κ[Wm−1K−1] ∆T [K]
Au 318 12.05
Zr 22.6 169.57

shows an estimate of the temperature gradient for 25 µm thick Au and Zr

foils, assuming a 10 pnA, 50 MeV beam hits the centre of the target and the

temperature remains constant over the beam spot. To minimize the effects

of outgassing of the implanted helium due to the beam, the cold shroud is
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designed to be placed in thermal contact with the target ladder using copper

braids. It is however, important that the target ladder is slightly warmer

than the cold shroud so that contaminants do not condense on the targets.

To estimate this effect I performed a finite element analysis using Solid Edge

to estimate the temperature gradient along the cold shroud. The results show

that the cold shroud is approximately 4 K cooler near the contact on the LN2

tank than at the edge near the target. The visual output of this simulation

is shown in figure 4.7. The copper braids will surely not conduct as much,

guaranteeing that the target ladder will not be as cold as the shroud.

Figure 4.7: Heat transfer simulation performed in Solid Edge.

4.2.5 Beam Tuning

The design allows the beam to be tuned using a combination of a ruby

upstream of the cold shroud (figure 4.5) and a pair of collimators mounted

in the cold shroud (shown in figure 4.6). As the ruby scintillator needs to be

observed with a camera while tuning the beam, a view port has been included
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for this purpose. The ruby is placed further upstream of the silicon detectors

to minimize stray radiation reaching the silicon detectors. It is planned that

the beam will be tuned by minimizing the current on the defining and clean

up collimators1, while maximising the current on the target ladder. This

requires the collimators and target ladder to be electrically isolated from the

rest of the chamber.

1The collimator arrangement is designed so that halo effects are minimal
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Chapter 5

Monte Carlo Simulations

Simulations play a crucial role in scientific investigations across all fields.

For the purposes of experimental nuclear physics, computer simulations are

often used as tools to better understand systematic effects, make predictions

of experimental data and fine tune experimental design based on these pre-

dictions. In the following sections I describe some Monte Carlo simulations

that I have developed for the anticipated 3He(16O, 15O)4He experiment to

measure the ∼ 1 fs lifetime of the subthreshold state in 15O at 6.8 MeV using

the DSA method. The simulations will be used to optimize the experimental

set up for both γ-detection efficiency, as well as the γ-ray lineshape, that will

eventually be used to extract the lifetime.

The simulation procedure consists of three important subgroups:

1. Calculation of reaction kinematics.

2. Randomization and selection of recoil and ejectile momenta.

3. Calculation of the γ-ray lineshape.

4. Incorporation of the above into a Geant4 code to incorporate γ-ray

detection efficiencies.
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5.1 Monte Carlo Methods

Since observables can never be specified with infinite precision, simulating

natural processes requires one to work with the statistical properties of a

population with an assumed inherent randomness. For example, the direction

of a γ ray from a radioactive decay cannot be known a priori. As a result,

simulating a radioactive decay requires picking the direction of a photon at

random with known probability for each direction. This process is repeated

for a large number of particles in an ensemble and is called the Monte Carlo

method.

The defining characteristic of Monte Carlo methods is the use of ran-

dom numbers within a computer program. This program is equipped with a

(pseudo) random number generator that generates random numbers within

the interval (0, 1). In general, the probability of uniformly generating a ran-

dom number in the interval (x, x+ dx) is

p(x)dx = dx, (5.1)

when 0 < x < 1 and 0 otherwise. The function p(x) is called the probability

distribution function of x. Given a function y(x), the probability distribution

of y must satisfy

|p(y)dy| = |p(x)dx| (5.2)

p(y) = p(x)

∣∣∣∣dxdy
∣∣∣∣ , (5.3)

by the fundamental transformation law of probabilities [39]. If p(y) is an
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arbitrary probability density function f(y), then the above gives

p(x)
dx

dy
= f(y) (5.4)∫ x

−∞
p(x)dx =

∫ y′

−∞
f(y)dy (5.5)

x = F(y′), (5.6)

where F is known as the cumulative density function of y and p(x) = 1 for

Figure 5.1: A Gaussian probability density function f(y)(green) with its
cumulative density function F(y)(red).

xε(0, 1) and zero elsewhere. This gives F−1(x) that will generate random

deviates y that follow the distribution f(y). This is the concept behind

the inverse transform method of generating random deviates from a given

probability distribution function. Geometrically, F(y) can be interpreted as

the probability of randomly selecting a number from the distribution which is

less than y. The inverse transformation is now the same as picking a uniform

random x in (0, 1) and finding y(x) such that the F(y) = x. This can be
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seen by looking at a particular example shown in figure 5.1.

It should be noted that the Gaussian distribution pictured in figure 5.1

is one example where the inverse transform method to generate a single

Gaussian variate is not trivial1. Fortunately the distribution can be ob-

tained using a generalization with multiple variates [39]. If x1, x2, x3, . . . , xn

are random deviates with a joint probability distribution p(x1, x2, x3, . . . , xn)

and y1, y2, y3, . . . , yn are all functions of the x’s, then the joint probability

distribution of the y’s is given by the product of p(x1, x2, x3, . . . , xn) with the

Jacobian determinant of the x’s with respect to the y’s

p(y1, . . . , yn)dy1 . . . dyn = p(x1, . . . , xn)

∂x1
∂y1

. . . ∂x1
∂yn

...
...

∂xn
∂y1

. . . ∂xn
∂yn

dy1 . . . dyn. (5.7)

This forms the basis of the Box-Müller transform used to generate pairs of

normally distributed variates. The use of this method for our purposes is

described in more detail later in this chapter.

5.2 Simulations for 3He(16O, 15O)4He

5.2.1 Reaction Kinematics

The first step in our simulations is an accurate determination of the recoil

and ejectile kinematics for a 50 MeV 16O beam incident on a 3He target.

Once the initial values of the ejectile and recoil momenta are determined,

they will eventually be tracked in a Geant4 simulation code to determine the

Doppler effects. Since the proposed reaction is in inverse kinematics, with

1This is because the inverse of the cdf for the Gaussian distribution is calculated
numerically which can become computationally taxing.
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Figure 5.2: The sum of the momenta in the centre of mass frame is always
0, which greatly simplifies analysis.

a relatively high beam energies, it is best that the kinematics be calculated

relativistically for a generic lineshape simulation which correctly calculates

all recoil velocities. It is useful to analyse this problem in the centre of

mass frame, where
∑
i

pi = 0. Figure 5.2 illustrates the difference between

the laboratory and centre of mass frames. In what follows, subscripts 1

to 4 denote the projectile, target, ejectile and recoil respectively. Greek

subscripts denote 4-vectors following the Einstein summation convention,

primed symbols are taken to be in the centre of mass frame and we set

c = 1 for convenience. For such a reaction shown in figure 5.2, the square of

invariant mass of the system before the collision in the lab frame is

sLab = pµpµ (5.8)

= (E1 + E2)2 − (p1 + p2)2 (5.9)

= (Ebeam +m1 +m2)2 − (Ebeam +m1)2 −m2
2 (5.10)

= (m1 +m2)2 + 2m2Ebeam. (5.11)

84

 

 

 

 



Similarly, in the centre of mass frame

sCoM = p′µp′µ (5.12)

= (E ′1 + E ′2)2 (5.13)

=

[√
m2

1 + p′21 +
√
m2

2 + p′22

]2

. (5.14)

Since by definition p′21 = p′22 = p′2, these subscripts can be dropped and an

expression for p′ can be obtained by equating the two expressions above .

sLab = sCoM (5.15)

sLab = m2
1 +m2

2 + 2p′
2

+2
√
m2

1 + p′2
√
m2

2 + p′2 (5.16)

sLab −m2
1 −m2

2 − 2p′
2

= 2
√
m2

1 + p′2
√
m2

2 + p′2 (5.17)

(sLab −m2
1 −m2

2)2 + 4p′
4

= 4p′
2
(sLab −m2

1 −m2
2)

+4(m2
1m

2
2 +m2

1p
′2 +m2

2p
′2 + p′

4
)

(sLab −m2
1 −m2

2)2 = 4p′
2
sLab + 4m2

1m
2
2 (5.18)√

(sLab −m2
1 −m2

2)2 − 4m2
1m

2
2

4sLab
= p′. (5.19)

Since s is conserved we also have

sCoM = p′µp′µ (5.20)

= (E ′3 + E ′4)2 (5.21)

=

[√
m2

3 + p′23 +
√
m2

4 + p′24

]2

, (5.22)
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after the collision and similar to before p′23 = p′24 = p′2a, so that

p′a =

√
(sLab −m2

3 −m2
4)2 − 4m2

3m
2
4

4sLab
, (5.23)

where the subscript ‘a’ represents ‘after’ the collision. We can now find the

velocity of the centre of mass frame vcm with the Lorentz boost.

p′µ2 = Λµ
νp

ν (5.24)
E ′2

0

0

p′

 =


γ 0 0 −γβ

0 1 0 0

0 0 1 0

−γβ 0 0 γ




m2

0

0

0

 , (5.25)

where β = vcm
c

and γ = (1− β2)−
1
2 . As p′3 is already known, for a given scat-

tering angle θ′3 in the centre of mass frame it is easy to calculate p3,p4, E3, E4

and θ4 using a combination of projections onto the z-axis and xy-plane, and

the Lorentz transformation equations [40]. However, for our purposes it is

more useful to work with quantities in the laboratory frame. In such cases

the above has only limited use. Instead, the energy of the ejectile in the

laboratory frame

E3 = γE ′3 − γβp′3 cos θ′3, (5.26)
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must be expressed in terms of the laboratory scattering angle. After much

tedious algebra the above can be rewritten as

E3 =
1

E ′2t − p2
1 cos2 θ3

[
Et

(
m2E1 +

m2
1 +m2

2 +m2
3 −m2

4

2

)
± p1 cos θ3

{(
m2E1 +

m2
1 +m2

2 −m2
3 −m2

4

2

)2

−m2
3m

2
4 − p2

1m
2
3 sin2 θ3

} 1
2

]
, (5.27)

which expresses E3 purely in terms of the masses, total energies Et and

E ′t, and the laboratory scattering angle θ3. The total energy in the centre

of mass frame E ′t is the square root of the invariant mass obtained from

Eq. (5.11). A close look at Eq.(5.27) shows that there may be two solutions

for E3 corresponding to positive and negative square roots. This depends on

a quantity ζ

ζ =
p1

Et

 1 +
m2

3−m2
4

E′2t√[
1− (m3+m4

E′t
)2
] [

1− (m3−m4

E′t
)2
]
 . (5.28)

If ζ > 1, both solutions to Eq. (5.27) are valid because when vcm is large

enough, backward scattering angles in the centre of mass frame may corre-

spond to forward angles in the laboratory frame. If ζ < 1, only the solution

corresponding to the positive square root is physically realistic. Clearly the

value inside the square root in Eq. (5.27) cannot be negative and this condi-

tion is used in the kinematics code to check if θ3 is a valid scattering angle.

Since we want to express all quantities in the laboratory frame, the recoil
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scattering angle is finally calculated using the relations

p4 sin θ4 = p3 sin θ3 (5.29)

p4 cos θ4 = p1 − p3 cos θ3. (5.30)

These scattering angles are used to specify initial conditions in the simulation

codes that are explained in the following sections.

5.2.2 DSAM Lineshape Code for 3He(16O, 15O)4He

In what follows I describe the DSAM code that I developed using the kine-

matics described above. The γ-ray lineshape is first simulated using a Monte

Carlo code written in C++ (see appendix C), which is independent of γ-

detection efficiency. Figure 5.3 is a schematic detailing the various parame-

ters used in the simulation. For the sake of clarity, in the following sections

the notation will match the labels in figure 5.3. In our new convention the

subscripts 3 and 4 for the ejectile and recoil will be replaced by α and R

respectively and the subscript γ will denote quantities related to the γ rays.

In the code, the reaction is specified by the user, who supplies the A and Z

values of the particles involved in the collision, as well as excitation and beam

energies. Atomic masses are retrieved from a lookup table of mass excesses

obtained from the Atomic Mass Data Centre [41] and converted to nuclear

masses by subtracting Zme. These masses are used in conjunction with the

excitation energy to find the Q-value of the reaction.
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Figure 5.3: Schematic of the DSAM set up. The subscripts R and α label
the ‘recoil’ and ‘ejectile’ respectively. The Germanium detector is placed at
0◦ to the beam for maximal sensitivity to Doppler shifts.

The use of randomized variables in the simulations

The code now chooses a random ejectile scattering angle θα in the laboratory

frame2 using the transformation

θα = cos−1
[
1 + (cos θαmax − 1)u

]
, (5.31)

where the uniform random deviates u ε (0, 1) generate various cos θα in the

range3 (cos θαmax, 1).

In the next step the kinematics calculator is used to calculate the mo-

menta and energies of the ejectile and recoil in the laboratory frame. This is

2As mentioned previously, θ3 = θα for a (3He, α) reaction.
3Since the kinematics is independent of the azimuthal angle φα they have been ne-

glected here. However, in the Geant simulations described later this angle must be specified
as part of the initial conditions.
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done by starting with initial values of energies and momenta

E1 = m1 + Ebeam (5.32)

E2 = m2 (5.33)

p1 =
√
E2

1 −m2
1. (5.34)

The total energy in the laboratory frame Et is then just the sum of the

energies E1 and E2, whereas the total energy in the centre of mass frame

E ′t is the square root of the invariant mass derived in Eqs. (5.11) and (5.14).

After calculating the ejectile energy in the laboratory frame, the recoil energy

E4 is simply the difference between the total energy and the ejectile energy.

Finally, the code calculates the recoil scattering angle for the predetermined

θα from Eqs. (5.29) and (5.30). The recoil momentum and scattering angle

are later used as initial values to calculate the energy loss of the recoil and

subsequently the Doppler shift of the emitted γ ray as it moves through the

target backing. Since the lifetime of the excited state follows the exponential

probability distribution

p(t) = e
−t
τ , (5.35)

it has a cumulative density function

F = τ(1− e
−t
τ ). (5.36)

The above shows that random decay times t following an exponential dis-

tribution can be generated using the inverse transform t = −τ ln(u) with

uniform variates u in the range (0, 1). For our simulations τ was chosen to

be 1 fs. Once this procedure selects a random time of flight t prior to photon

emission, θγ, the polar angle for the photon is randomized similar to the way
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θα was generated with Eq. (5.31). This procedure speeds up computation

time by selecting only those γ rays which hit a cylindrical HPGe detector

shown in figure 5.3. The HPGe detector specifications were taken for a 100%

relative efficiency n-type CANBERRA detector.

Finally, the azimuthal angles for the γ ray and recoil, φγ and φR, are

independently chosen from a uniform distribution over the interval (0, 2π).

The recoil and γ momenta are now completely specified. The angle between

the recoiling 15O nucleus and the emitted photon is easily calculated by taking

the scalar product4

cos θγR =
pγ · pR

|pγ||pR|
. (5.37)

Once the randomized variables are obtained, the Doppler shift simula-

tion was done independently using two approaches. In the first approach

described below, the energy loss for the recoil prior to photon emission was

calculated using a cubic spline interpolation discussed in appendix B, to-

gether with stopping powers obtained from SRIM2013 [42] for 15O nuclei

recoiling in Au. For these calculations, first the decay time t was divided

into small time slices of width dt = 10−6τ . The initial value of the recoil

kinetic energy TR from the kinematics is converted into a velocity which is

used to find the distance ∆x = vRdt that the recoil travels in the first time

interval. The spline interpolation described previously was used to obtain

the stopping power
(
dE
dx

)
for this value of TR. Assuming that the stopping

power is constant over the infinitesimal time dt, the energy lost in the time

interval dt is then

∆E '
(
dE

dx

)
∆x. (5.38)

4The values of θR and pR are obtained from the kinematics code.
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Figure 5.4: Outline of the flow through the Monte Carlo code.

This iterative procedure provides a new recoil kinetic energy T ′R = TR −∆E

for the next time step. In this fashion the recoil is stepped through until

time t, losing energy at each step. The final kinetic energy of the recoil TR
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after a time t has elapsed is then used to calculate

β =

√
2m4TR + TR2

ER

, (5.39)

which is ≈ 5% for our reaction after the energy losses have been taken into

account. The Doppler shifted γ-ray energy can finally be obtained using the

formula

Eγ = E0

√
1− β2

1− β cos θγR

, (5.40)

with E0 being the unshifted γ-ray energy. Figure 5.4 shows this general

algorithm used for each event in the simulation.

These simulations were first used to investigate the effects of the colli-

mator on lineshape. This was done by restricting the acceptance angle for

ejectiles (θαmax in figure 5.3). The results are shown in figure 5.5. These sim-

Figure 5.5: The effects of introducing a collimator (setting θαmax = 8◦) on
lineshape. A clearly asymmetric peak arises on using a collimator.

ulations were done with the detector distance fixed to 150 mm. It is obvious
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that for τ = 1 fs there is a clear enhancement in sensitivity to the γ ray line-

shape from introducing a collimator for the light ejectiles. I also performed

a set of simulations to investigate the effect of changing the target-detector

distance while keeping the collimator fixed from the earlier simulation. This

offers constraints on the acceptance angle for the γ rays (θγmax in figure 5.3),

for different values of

θγmax = tan−1

(
rg
dg

)
, (5.41)

where rg is the radius of the crystal and dg is the distance from the centre of

the front face of the crystal to the target. The results are shown in figure 5.6

and also show a clear improvement in lineshape sensitivity at the cost of solid

angle, which is not unexpected.
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Finally, the Doppler effects on varying the HPGe detector angle with

respect to the beam axis were simulated to have a complete understanding

of the sensitivity requirements for a τ = 1 fs lifetime measurement. This was

Figure 5.7: Lineshapes obtained for different HPGe detector angles with
respect to the beam axis. The collimator angle is kept fixed for all simulations
at 8◦.

done by making a transformation
p′γx

p′γy

p′γz

 =


1 0 0

0 cos η sin η

0 − sin η cos η




pγx

pγy

pγz

 , (5.42)

for a general rotation angle η. These simulations were done for a fixed detec-

tor distance at 150 mm and θαmax set to 8◦. The results, shown in figure 5.7,

show that for short lifetimes the lineshape gets smeared out rather rapidly

as the HPGe detector is moved off the beam axis. It is quite apparent that

measuring a 1 fs lifetime requires the detector be placed at 0◦ to the beam
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where sensitivity to the Doppler shift is maximal. Furthermore, restricting

the acceptance angles for the ejectiles and γ rays also improves the sensitivity

significantly. However this comes at a cost of efficiency, which has not been

taken into consideration yet.

This was further investigated with a Geant simulation, which indepen-

dently calculated the energy losses using its own libraries. The simulation is

discussed below.

5.2.3 Geant4 Simulations

GEANT is an ongoing project with collaborators around the world. It pro-

vides a toolkit allowing users to model the GEometry ANd Transport of

particles in various media. Geant4 is a C++ package which was developed

from the earlier FORTRAN codes of GEANT3, allowing users the benefits

of object oriented programming in the simulations [43].

Structure of a Geant4 Application

Geant4 provides various classes with the intention of separating the simula-

tion into multiple parts. Thus, the general structure of an application is a

single application file containing the main() function which initialises the run

manager and handles user initialisations. The user is responsible for setting

the conditions of a run after which the rest of the simulation is controlled

through the run manager which takes control at the beginning of each run.

A run is the largest subdivision of a simulation which consists of events cor-

responding to the physics involved in the process. The events themselves

contain all the different particle trajectories that have been generated by the

simulation. Finally, the trajectories record information from each step of the

simulation and are each associated with a particle object.
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I now briefly describe selected user defined classes derived from classes

provided by the toolkit which are relevant to later discussions

1. the DetectorConstruction class

� defines the volumes in the geometry in terms of shape and place-

ment

� assigns materials to volumes

� defines electromagnetic fields in the volumes

� registers volumes as detectors

2. the PhysicsList class

� defines the processes and interactions to be simulated

3. the PrimaryGeneratorAction class

� fetches definitions of the primary particles

� performs any calculations necessary to define the initial state of

the primary particles

� sets the primary particles in motion at the beginning of each event

4. the SteppingAction class

� provides information on the status of the simulation at each step

5. the RunAction class

� Collects information from each event and allows recording of the

events in real time.
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Figure 5.8: General outline of the flow through the Geant code while the
simulation runs.

5.2.4 Lineshape and Efficiency Determination from Geant4

The algorithm for this part of the simulation is similar as before, with the

main difference that the detection efficiencies and energy losses are deter-

mined from the Geant software itself. This minimizes our reliance on several
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approximations. Figure 5.8 illustrates the general flow of this algorithm.

The DetectorConstruction and PhysicsList classes are called during

the user initialization phase. A simplified geometry of the experimental set

up used in the simulation is shown in figure 5.9. The scattering chamber was

constructed as a steel tube with wall thickness matching that of the Solid

Edge design (2.7 mm). The target was simplified to a gold disc of thickness

25 µm and the ∆E −E telescope was constructed as a pair of silicon wafers

with thickness 25 µm and 500 µm. The germanium detector was constructed

as a cylindrical crystal of radius 39 mm and length 79 mm with a 12 mm

diameter hole up to a depth of 65 mm. This matches the manufacturer’s

specifications of a 100% n-type CANBERRA HPGe detector that has already

been purchased and is planned to be used for the actual experiment. The

germanium detector is enclosed in a 1.5 mm thick aluminium housing which is

usual for such detectors. Several such geometries were constructed for varying

collimator openings (for the ejectiles) and target to detector distances. For

the data described in this section I used collimator apertures of 4.9 mm,

7.6 mm or 10.4 mm respectively, which correspond to acceptance angles of

7◦, 11◦ or 15◦ for the α particles. The PhysicsList is constructed next,

which includes electromagnetic interactions and decay events. Control is

then passed to the user to set parameters for a run.

Once the user starts a run the simulation jumps straight into the first

event. At the start of each event the PrimaryGeneratorAction looks up par-

ticle masses and randomizes variables similarly as explained in section 5.2.2

with a few important differences

1. the direction for each γ ray is chosen to be uniformly distributed over

the full 4π solid angle so that the γ rays are emitted isotropically.

2. the centre of mass scattering angle for the ejectiles (θ′α) is chosen sim-
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Figure 5.9: Visualization of the detector set up in the Geant code. The beam
is assumed to be in the +ẑ direction.

ilarly so that the ejectiles are scattered isotropically in the centre-of-

mass frame5.

3. the reaction site is now also randomized so that the reaction products

do not all originate in the same place.

Both the γ-ray direction and the ejectile scattering angles were randomized

by picking a cos θ uniformly in the interval (−1, 1) for the polar angle and φ

uniformly in the range (0, 2π).

The reaction site was chosen by assuming a uniform beam spot over a

circular area with radius 1.5 mm. A TRIM [42] calculation for a 40 keV

3He beam implanted onto a Au foil shows that the 3He target nuclei will

have a short range of ≈ 81 nm in the foil. This is shown in figure 5.10.

Thus, a randomization of the reaction site involves randomly selecting the

x and y coordinates from a circle of radius 1.5 mm and a z coordinate by

5This is in contrast to the previous simulations where ejectile momenta were chosen
in a cone in the laboratory frame.
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making the assumption that the distribution in figure 5.10 is a Gaussian

distribution. The x and y positions were chosen by selecting randomly the

polar angle and radial parameters of the circle and then converting them to

Cartesian coordinates. While the randomization of the polar angle in the

range (0, 2π) is trivial, the radial parameter was randomized using random

deviate u ε (0, 1) so that radius r was picked using the inverse transformation

r =
√
uR, where R = 1.5 mm. This procedure avoids the clustering of points

near the origin of the circle6.

Figure 5.10: Ion ranges for a 40 keV 3He beam on a Au target.

The z position was randomized using the Box-Müller transformation as

explained below. If x1 and x2 are uniform deviates over the range (0, 1) and

y1 =
√
−2ln(x1) cos(2πx2) (5.43)

y2 =
√
−2ln(x1) sin(2πx2), (5.44)

6This is because in polar coordinates, the differential area element has dimensions of
r2. Therefore if r is randomized uniformly in (0, R) the probability density will be higher
near the origin.
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then

x1 = e−
1
2

(y21+y22) (5.45)

x2 =
1

2π
tan−1

(
y2

y1

)
. (5.46)

As mentioned previously in Eq. (5.7), the joint probability density functions

of the x’s and y’s are related through the Jacobian determinant, which for

this case is ∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣ = −
[

1√
2π
e
−y21
2

] [
1√
2π
e
−y22
2

]
. (5.47)

The Jacobian gives independent functions of y1 and y2 so that each of them

is normally distributed about 0 with a variance of 1. This is known as

the Box-Müller transformation for generating pairs of deviates that follow

a Gaussian distribution with unit variance and a mean at the origin. After

choosing a y in this way from either of these functions, it is easy to multiply

by the required variance and add the required mean to obtain the desired

distribution. A useful trick for applying the Box-Müller transform is to pick

v1 and v2 as coordinates defining a point inside a unit circle7 and further

defining x1 and x2 as

x1 = v2
1 + v2

2 (5.48)

x2 = tan−1

(
v2

v1

)
. (5.49)

The advantage of this method is that the trigonometric functions in Eqs. (5.43)

and (5.44) can be replaced with v2/
√
x1 and v1/

√
x1 respectively, which con-

siderably speeds up computation time.

7This is typically done using an acceptance-rejection type function which keeps choos-
ing v1 and v2 in (−1, 1) until v21 + v22 < 1.
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Once the reaction site is randomized, the time of the decay event is ran-

domly chosen using the same method as before. This time is to be used later

in the simulation. Next, the PrimaryGeneratorAction part of the code in-

vokes the kinematics code8 to find the initial momenta of the ejectile and

recoil and sets the primary particles in motion. While transporting the re-

coil through the simulation, the SteppingAction class monitors the recoil

position and momentum and at decay time this information is extracted to

be used for calculating the Doppler shifts for the gamma rays. Once all the

particles have either lost all their energy or left boundaries of the simulation,

the simulation records the results and moves on to the next event.

Results

The Geant4 simulations were run using 12 different geometries for 4 million

events each. The 12 geometries varied the ejectile acceptance angle with 3

different collimators (4.9 mm, 7.6 mm and 10.7 mm apertures) and placed

the HPGe crystal at distances from the target ranging from 85 mm up to

175 mm. The simulated events were histogrammed using ROOT and are

shown in the following pages.

8This is the same kinematics code discussed before, with minor modifications.
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Figure 5.19: Spectra from the ∆E − E detector for different collimators
(4.9 mm in green and 10.7 mm in black). These particle spectra were gated
on to obtain the coincidence data presented earlier. The effect of this is
shown in figures 5.20 and 5.21
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Figure 5.20: Comparison between a raw γ spectrum and one obtained by
gating on the particle spectrum. Both spectra were generated with a 4.9 mm
collimator and a detector distance of 85 mm from the target.

Figure 5.21: Comparison between a raw γ spectrum and one obtained by
gating on the particle spectrum. Both spectra were generated with a 10.7 mm
collimator and a detector distance of 85 mm from the target.
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Efficiencies

The Geant simulations were also used investigate the absolute γ-detection

efficiencies for the various possible configurations of the set up. The particle

detection efficiencies were purely dependent on the solid angle subtended by

the collimator. Clearly this had a bearing on the extracted γ-ray lineshapes,

as established previously (see fig.5.5). Our coincidence information in fig-

ures 5.19, 5.20 and 5.21 unfortunately lack the statistics required to make

this conclusion. The simulation can however be run with higher statistics

to prove our claim. Nevertheless, given the available data, the extracted γ-

ray efficiencies are shown in Table 5.1 and are plotted in figures 5.22, 5.23

and 5.24.
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Table 5.1: Absolute photopeak efficiencies at 7180 keV obtained from the
Geant4 simulation.

Collimator Detector Absolute photopeak

aperture [mm] distance [mm] efficiency [%]

4.9 85 0.0306± 0.0012

4.9 115 0.0199± 0.0010

4.9 145 0.0129± 0.0008

4.9 175 0.0088± 0.0006

7.6 85 0.0707± 0.0019

7.6 115 0.0441± 0.0015

7.6 145 0.0302± 0.0013

7.6 175 0.0201± 0.0010

10.7 85 0.0772± 0.0020

10.7 115 0.0485± 0.0016

10.7 145 0.0343± 0.0013

10.7 175 0.0214± 0.0011
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Figure 5.22: The α−γ coincidence efficiency for the 4.9 mm collimator setting
as a function of detector distance. As expected, the efficiency is reduced at
large distances.

Figure 5.23: The coincidence efficiency for the 7.6 mm collimator setting as
a function of detector distance.
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Figure 5.24: The coincidence efficiency for the 10.7 mm collimator setting
as a function of detector distance. The efficiencies for this collimator setting
are very similar to those for the 7.6 mm collimator.

As an example, we can estimate the beam time requirements for a mea-

surement of the τ ' 1 fs lifetime of the 6791 keV state in 15O with the

4.9 mm collimator and the HPGe detector distance at 175 mm from the tar-

get9. Based on approximate estimates [32], if one assumes σ3He,α ∼ 1.5 mb,

for production of the state of interest, and a target density of ≈ 1018 3He

atoms/cm2 in the foil, with a beam current of 10 pnA, it will take ∼80 hours

to get ∼3000 counts in the photopeak. This amounts to around two weekends

of beam time at iThemba LABS, which is not unreasonable.

9This combination offers lowest efficiency and maximum sensitivity to the lineshape
from our simulation data sets described in chapter 5.
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Chapter 6

Conclusions

In conclusion we have designed and developed a new experimental set up and

simulations for the measurement of short nuclear level lifetimes, particularly

related to nuclear astrophysics, using the Doppler Shift Attenuation Method.

Our design is based on using direct nuclear reactions in inverse kinematics

with heavy ion beams on light implanted targets. Our simulations show that

for maximal sensitivity to the shortest lifetimes it is imperative to place the

γ-ray detector at 0◦ to the beam and to collimate the light ejectiles from

the reaction at forward angles. However sensitivity to γ-ray lineshape also

comes with a cost in efficiency. Nevertheless, we are now equipped with a

tool to plan actual measurements using these simulations. Depending on the

reaction used and the lifetime that needs to be measured, the placement of

the HPGe detector and the acceptance angle of the particle collimator can

be optimized for each individual measurement using these codes.
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Appendix A

Cross sections

A.1 Scattering Theory

Let us begin by considering the case of a beam of nearly monoenergetic

particles scattering elastically off a target nucleus at the origin. Assume the

beam particles can be approximated reasonably well by plane waves, and

choose the z-axis parallel to the beam so that for the initial state ψinitial we

have in the position basis

ψinitial = A0e
i(k·r)ΨprojectileΨtarget (A.1)

where ΨprojectileΨtarget represents the internal degrees of freedom of both nu-

clei and is a function of their internal coordinates. The functions labelled by

Ψ will in general be model dependent, a common choice is to use results from

one of the many shell model codes available. In the absence of any potential

no scattering would take place and the final state would be exactly the same.

Introducing a scattering potential at the origin prompts us to modify this
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initial guess at the final state to

ψfinal = A0

[
ei(k·r)ΨprojectileΨtarget + f(θ, φ)

ei(k·r)

r
ΨejectileΨresidual

]
, (A.2)

with the scattering amplitude f(θφ) representing the probability of the pro-

jectile being scattered in the direction (θ, φ). So far the scenario described

involves only one channel (elastic scattering), in reality many channels may

be open and their individual contributions should be summed. Additionally,

we should allow for projectiles and targets to become excited as well as the

possibility of particles being exchanged in the scattering event so that now

the final state in the limit r →∞ becomes

r
lim−→∞ ψfinal = A0

[
ei(k·r)ΨprojectileΨtarget

+
∑
b

fb(θ, φ)
ei(kb·r)

rb
ΨejectileΨresidual

]
, (A.3)

where the subscript b represents a range of elastic and inelastic processes

which may contribute to the final wavefunction [36].

In general the scattering amplitude will be a function of the momentum

direction of the scattered particles, or equivalently the coordinates of the

detector, as well as the energy of the beam, the state of the scattered particles,

and the specifics of the interaction that mediates the scattering process. Thus

the scattering amplitude is associated with a specific exit channel and should

be marked with a subscript indicating this association.

In some sense fb(θ, φ) represents the probability that an incident particle

will be scattered in the direction (θ, φ) in channel b and so clearly, due to

conservation laws,

|fb(θ, φ)|2 ≤ 1. (A.4)
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In addition to this, the dependence of fb on the angle φ is the result of angular

momentum effects; if both the beam and target are unpolarized, this can be

dropped.

Keeping in line with the interpretation of fb being related to probability,

we expect to be able to calculate the differential cross-section using

dσb
dΩ

=
vb
va

ψ∗bψb
ψ∗initialψinitial

(A.5)

dσb
dΩ

=
vb
va

|fb(θ)|2ψ∗finalψfinal
ψ∗initialψinitial

(A.6)

dσb
dΩ

=
vb
va
|fb(θ)|2, (A.7)

where va and vb have been introduced as the velocities of particles in the

entrance and exit channels respectively to convert particle density to flux

and the notation ψb denotes the contribution of channel b to the final wave-

function.

A.2 Resonant Scattering

Now consider the problem of particles carrying no charge and no angular

momentum (s-wave or ` = 0 neutrons) that are scattered off a nucleus. If

we assume there is some limiting range R on the scattering potential, such

that the particles are unaffected by it at large distances, we would expect

the radial component of the wavefunction to be of a form

Ψout(r) = A
eikr

r
+B

e−ikr

r
(A.8)

Ψin(r) = C
eikr

r
+D

e−ikr

r
(A.9)
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and we can impose boundary conditions to ensure that these functions meet

smoothly at the edge of the potential. Let us now look more closely at

the wavefunction in the outer region which can be modified such that the

incoming waves have an amplitude of unity

u(r) =
Ψout(r)

r
(A.10)

u(r) = e−ikr − ηeikr (A.11)

with η = −A
B

. If every particle entering a sphere of radius R, concentric with

the scattering potential, were to leave again we would expect η = 1. Values

of η < 1 would suggest that some of the particles are being taken out of the

elastic channel through processes that occur within this imaginary sphere1.

We should expect this quantity to be related to the reaction cross section.

Looking at the logarithmic derivative we find

g =

(
R

u

du

dr

)
=

(−ikR)(u+ 2ηeikr)

u
(A.12)

and we can solve for η now

ug = −ikRu− 2ikRηeikR

u(g + ikR) = −2ikRηeikR

(e−2ikR − η)(g + ikR) = −2ikRη

e−2ikR(g + ikR)

−2ikR
= η(1 +

(g + ikR)

−2ikR
)

e−2ikR(g + ikR)

−2ikR
= η(

(g + ikR)− 2ikR

−2ikR
)

η =
(g + ikR)

(g − ikR)
e−2ikR (A.13)

1Note the similarity between η and the scattering amplitude f(θ, φ) mentioned earlier.
In fact η can be thought of as the scattering amplitude integrated over the solid angle Ω.
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Now to find reaction scattering cross section we have

σre,0 = πλ̄2
∑
`

(2`+ 1)(1− |η|2) =
π

k2
(1− |η|2) (A.14)

where (1− |η|2) is the probability of any reaction taking particles out of the

elastic scattering channel. If we now expand this bracket and express g as

real and imaginary parts we obtain

1− |η|2 = 1−
∣∣∣∣Re(g) + i(Im(g) + kR)

Re(g) + i(Im(g)− kR)

∣∣∣∣2
= 1− [Re(g) + i(Im(g) + kR)]

[Re(g) + i(Im(g)− kR)]

[Re(g)− i(Im(g) + kR)]

[Re(g)− i(Im(g)− kR)]

= 1− (Re(g))2 + (Im(g) + kR)2

(Re(g))2 + (Im(g)− kR)2

=
(Re(g))2 + (Im(g)− kR)2 − (Re(g))2 − (Im(g) + kR)2

(Re(g))2 + (Im(g)− kR)2

=
−4kRIm(g)

(Re(g))2 + (Im(g)− kR)2
(A.15)

which now relates the reaction cross section to the logarithmic derivative [3].

Notice that only the imaginary component of g contributes to the reaction

cross section and so g being purely real would imply that the scattering was

purely elastic.
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Appendix B

Cubic Splines

A spline is a piecewise defined polynomial which is used to interpolate a

tabulated set of values xi and yi. The spline is chosen so that it is continuous

over the interval [x1, xn]. In addition to this, the derivatives of the spline

are also continuous up to some order [39]. In particular the cubic spline has

continuous first and second derivatives.

In general for some set of values x1, x2, x3, . . . , xn with corresponding

values y1, y2, y3, . . . , yn a cubic spline can be constructed from n − 1 cubic

functions Si (one for each subinterval). The Si’s are defined by

Si(x) = yi + ai(x− xi) + bi(x− xi)2 + ci(x− xi)3, (B.1)

when i is a natural number in the interval [1, n − 1]. The coefficients ai, bi

and ci give a set of 3(n−1) free parameters and we need a matching number

of constraints in order to solve for these coefficients. Since the spline must

be continuous we have

Si(xi+1) = Si+1(xi+1) = yi+1, (B.2)
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at each interior point which produces n− 2 constraints. An additional con-

tinuity condition is that

Sn−1(xn) = yn. (B.3)

Next there are smoothness conditions requiring the derivatives to be contin-

uous as well

S ′i(xi+1) = S ′i+1(xi+1) (B.4)

S ′′i (xi+1) = S ′′i+1(xi+1), (B.5)

at each interior point. These produce n−2 further constraints each. In total

this makes 3n − 5 constraints. The final two constraints can be derived in

a few different ways. One option is for the user to define what the second

derivative is at the end points. Another option, known as the ‘natural’ spline,

is to set the second derivative equal to zero at the end points.

For this thesis work we used a cubic spline to interpolate a table of stop-

ping powers obtained from a SRIM calculation. Since we were only interested

in values far from the endpoints of the table a ‘natural’ spline was used.
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Appendix C

Relativistic Kinematics Code

/*Class file containing functions for running kinematic

calculations*/

#include <math.h>

#include <stdlib.h>

#include <fstream>

#include <iostream>

#include <iomanip>

#include <string>

/*Data structures for storing Centre of Mass(com) and

* Lab(lab) related information. The first label denotes

* masses, energies, momenta and scattering angles in that

* order with the second label being used to identify each

* particle. eg. lab[1][2] is the energy for particle 3 in

* the lab frame (zero subscripting)*/

double lab[4][4];

double com[4][4];
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double Elab, Ecom, Ebeam, Eth, Qgs, Q, alpha, beta, gam,

temp, pz, pPerp, altE, altTheta, altP;

const double pi = 3.14159265359;

//char str[100];

/*Array for scattering angles for particle 3. The first

* label is CoM angle, Lab equivalent, E3 and E4. The

* second label goes from CoM angle 1 to 180 in degrees.*/

double angles[4][180];

//std::setprecision(9);

/*Function to set all data values to zero*/

void clearKin()

{

for(int i = 0 ; i < 4; i++)

{

for(int j = 0; j < 4; j++)

{

lab[i][j] = com[i][j] = 0;

}

}

for(int i = 0; i < 180; i++)

{

angles[0][i] = i + 1;

angles[1][i] = angles[2][i] = angles[3][i] = 0;

}

Elab = Ecom = Ebeam = Qgs = Q = altE = 0;
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}

/*Function to set masses for the 4 particles, the beam

* energy, scattering angle and Q-value of the reaction.

* Performs a check to see if the Q-value is valid,

* converts the scattering angle to radians and performs

* some other intial calculation.*/

void readKin1()

{

for(int i = 0; i < 4; i++)

{

std::cout << "Enter mass of particle " << i + 1

<< " in MeV:\t";

std::cin >> lab[0][i];

printf("%10.8f",lab[0][i]);

com[0][i] = lab[0][i];

}

Qgs = lab[0][0] + lab[0][1] - lab[0][2] - lab[0][3];

std::cout << Qgs;

std::cout << "Enter the Q-value:\t";

std::cin >> Q;

std::cout << Q;

if (Q - Qgs > 1e-9)

{

std::cout << "Invalid Q-value. Program crashed.
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Press enter and start over.";

std::cin >> Q;

exit(0);

}

//Find threshold energy

Eth = lab[0][0] - Q*(lab[0][0] + lab[0][1]

+ lab[0][2] + lab[0][3])/(2*lab[0][1]);

//add the excitation energy (Qgs - Q) to the mass of

//particle 4

com[0][3] = lab[0][3] = lab[0][3] + Qgs - Q;

std::cout << "Enter the beam energy:\t";

std::cin >> Ebeam;

std::cout << "Enter the lab scattering angle for

particle 3:\t";

std::cin >> lab[3][2];

lab[3][2] = lab[3][2]*pi/180;

}

/*Does the same as readKin1, except it takes all the data

* in as arguments rather than input from the keyboard.*/

void readKin2(double m1, double m2, double m3, double m4,

double Qv, double beam, double theta)

{
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com[0][0] = lab[0][0] = m1;

com[0][1] = lab[0][1] = m2;

com[0][2] = lab[0][2] = m3;

com[0][3] = lab[0][3] = m4;

Qgs = lab[0][0] + lab[0][1] - lab[0][2] - lab[0][3];

Q = Qv;// printf("%7.6f \n", Q);

if (Q - Qgs > 1e-9)

{

std::cout << "Invalid Q-value. Program crashed.

Press enter and start over.";

std::cin >> Q;

exit(0);

}

//Find threshold energy

Eth = lab[0][0] - Q*(lab[0][0] + lab[0][1] + lab[0][2]

+ lab[0][3])/(2*lab[0][1]);

/*add the excitation energy (Qgs - Q) to the mass of

*particle 4*/

com[0][3] = lab[0][3] = lab[0][3] + Qgs - Q;

// std::cout << "Enter the beam energy:\t";

Ebeam = beam;
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lab[3][2] = theta;

// lab[3][2] = lab[3][2]*pi/180;

}

/*Does the same as readKin1, except it takes all the data

* in as arguments rather than input from the keyboard.*/

void readKin3(double m1, double m2, double m3, double m4,

double Qv, double beam, double theta)

{

com[0][0] = lab[0][0] = m1;

com[0][1] = lab[0][1] = m2;

com[0][2] = lab[0][2] = m3;

com[0][3] = lab[0][3] = m4;

Qgs = lab[0][0] + lab[0][1] - lab[0][2] - lab[0][3];

Q = Qv;// printf("%7.6f \n", Q);

if (Q - Qgs > 1e-9)

{

std::cout << "Invalid Q-value. Program crashed.

Press enter and start over.";

std::cin >> Q;

exit(0);

}
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//Find threshold energy

Eth = lab[0][0] - Q*(lab[0][0] + lab[0][1] + lab[0][2]

+ lab[0][3])/(2*lab[0][1]);

/*add the excitation energy (Qgs - Q) to the mass

*of particle 4*/

com[0][3] = lab[0][3] = lab[0][3] + Qgs - Q;

// std::cout << "Enter the beam energy:\t";

Ebeam = beam;

com[3][2] = theta;

// lab[3][2] = lab[3][2]*pi/180;

}

//Prints out the data.

void printKin()

{

std::cout << "1\t2\t3\t4\n";

for(int i = 0 ;i < 4; i++)

{

for(int j = 0; j < 4; j++)

{

std::cout << lab[i][j] << "\t";

}

std::cout << "\n";

133

 

 

 

 



}

std::cout << "The ejectile energy is "

<< std::setprecision(10) <<lab[1][2] - lab[0][2];

std::cout << "Enter to continue";

std::cin >> temp;

}

/*Prints only the E3 (energy of the scattered particle)

*value. Really just for debugging*/

double getE3()

{

return (lab[1][2] - lab[0][2]);

}

/**/

double getE(int a)

{

return (lab[1][a-1] - lab[0][a-1]);

}

/**/

double getTheta(int a)

{

return lab[3][a-1];

}

/**/
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double getAltTheta()

{

return altTheta;

}

/**/

double getThetaCom(int a)

{

return com[3][a-1];

}

/**/

double getP(int a)

{

return lab[2][a-1];

}

/*Does the main work of the kinematics code.*/

void calc1()

{

lab[1][0] = lab[0][0] + Ebeam;

lab[1][1] = lab[0][1];

lab[2][0] = sqrt(lab[1][0]*lab[1][0]

- lab[0][0]*lab[0][0]);

Elab = lab[1][0] + lab[1][1];
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Ecom = sqrt(lab[0][0]*lab[0][0]

+ lab[0][1]*lab[0][1] + 2*lab[0][1]*lab[1][0]);

com[1][0] = (lab[0][0]*lab[0][0]

+ lab[0][1]*lab[1][0])/Ecom;

com[1][1] = (lab[0][1]*lab[0][1]

+ lab[0][1]*lab[1][0])/Ecom;

com[1][2] = (Ecom*Ecom + lab[0][2]*lab[0][2]

- lab[0][3]*lab[0][3])/(Ecom*2);

com[1][3] = (Ecom*Ecom + lab[0][3]*lab[0][3]

- lab[0][2]*lab[0][2])/(Ecom*2);

com[2][0] = com[2][1] = lab[2][0]*lab[0][1]/Ecom;

com[2][2] = sqrt(com[1][2]*com[1][2]

- com[0][2]*com[0][2]);

com[2][3] = com[2][2];

alpha = lab[2][0]/Elab;

alpha = alpha*(1 + (lab[0][2]*lab[0][2]

- lab[0][3]*lab[0][3])/(Ecom*Ecom));

alpha = alpha/sqrt((1 - ((lab[0][2]+lab[0][3])/Ecom)

*((lab[0][2]+lab[0][3])/Ecom))

*(1 - ((lab[0][2]-lab[0][3])/Ecom)

*((lab[0][2]-lab[0][3])/Ecom)));

if(alpha > 1){

std::cout << "alpha:\t" << alpha << "\n";
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altE = lab[0][1]*lab[1][0] + (lab[0][0]*lab[0][0]

+ lab[0][1]*lab[0][1] - lab[0][2]*lab[0][2]

- lab[0][3]*lab[0][3])/2;

altE = altE*altE - lab[0][2]*lab[0][2]

* lab[0][3]*lab[0][3] - lab[2][0]*lab[2][0]

* lab[0][2]*lab[0][2]

* sin(lab[3][2])*sin(lab[3][2]);

altE = Elab*(lab[0][1]*lab[1][0]

+ (lab[0][0]*lab[0][0] + lab[0][1]*lab[0][1]

+ lab[0][2]*lab[0][2] - lab[0][3]*lab[0][3])/2)

- lab[2][0]*cos(lab[3][2])*sqrt(altE);

altE = altE/(Elab*Elab - lab[2][0]*lab[2][0]

*cos(lab[3][2])*cos(lab[3][2]));

}

lab[1][2] = lab[0][1]*lab[1][0] + (lab[0][0]*lab[0][0]

+ lab[0][1]*lab[0][1] - lab[0][2]*lab[0][2]

- lab[0][3]*lab[0][3])/2;

lab[1][2] = lab[1][2]*lab[1][2] - lab[0][2]*lab[0][2]

* lab[0][3]*lab[0][3] - lab[2][0]*lab[2][0]

* lab[0][2]*lab[0][2] * sin(lab[3][2])

*sin(lab[3][2]);

// lab[1][2] = lab[2][0]*cos(lab[3][2])*sqrt(lab[1][2]);

lab[1][2] = Elab*(lab[0][1]*lab[1][0]

+ (lab[0][0]*lab[0][0] + lab[0][1]*lab[0][1]

+ lab[0][2]*lab[0][2] - lab[0][3]*lab[0][3])/2)

+ lab[2][0]*cos(lab[3][2])*sqrt(lab[1][2]);
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lab[1][2] = lab[1][2]/(Elab*Elab - lab[2][0]*lab[2][0]

*cos(lab[3][2])*cos(lab[3][2]));

std::cout << "E:\t" << lab[1][2] << "\t"

<< "altE:\t" << altE << "\n";

lab[1][3] = Elab - lab[1][2];

lab[2][2] = sqrt(lab[1][2]*lab[1][2]

- lab[0][2]*lab[0][2]);

altP = sqrt(altE*altE - lab[0][2]*lab[0][2]);

lab[2][3] = sqrt(lab[1][3]*lab[1][3]

- lab[0][3]*lab[0][3]);

beta = lab[2][0]/Elab;

gam = Elab/Ecom;

pPerp = lab[2][2]*sin(lab[3][2])/com[2][2];

pz = gam*(lab[2][2]*cos(lab[3][2])

+ beta*lab[1][3])/com[2][2];

com[3][2] = atan(pPerp/pz);

if(pz < 0) com[3][2] = pi + com[3][2];

pPerp = altP*sin(lab[3][2])/com[2][2];

pz = gam*(altP*cos(lab[3][2])

- beta*lab[1][3])/com[2][2];

altTheta = atan(pPerp/pz);
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if(pz < 0) altTheta = pi + altTheta;

com[3][3] = pi - com[3][2];

lab[3][3] = atan(lab[2][2]*sin(lab[3][2])

/(lab[2][0] - lab[2][2]*cos(lab[3][2])));

if(cos(lab[3][2]) < 0)

{

lab[3][3] = lab[3][3] + pi;

}

//std::cout << atan(pPerp/pz)+pi << "\n";

//std::cout << com[3][2] << "\n";

}

void calc2()

{

/*Set lab (total) energies for particles

*1 and 2*/

//E1 = m1 + Ebeam

lab[1][0] = lab[0][0] + Ebeam;

//E2 = m2

lab[1][1] = lab[0][1];

/*Calculate lab momentum of particle 1*/

//p1 = (E1**2 + m1**2)**0.5

lab[2][0] = sqrt(lab[1][0]*lab[1][0]

- lab[0][0]*lab[0][0]);

139

 

 

 

 



/*Calculate total lab energy and convert

*to CoM frame*/

//Elab = E1 + E2

Elab = lab[1][0] + lab[1][1];

//Ecom = (m1**2 + m2**2 + 2*m2*E1)**0.5

Ecom = sqrt(lab[0][0]*lab[0][0]

+ lab[0][1]*lab[0][1]

+ 2*lab[0][1]*lab[1][0]);

/*Calculate the CoM energies for

*all particles*/

//E’1 = (m1**2 + m2*E1)/Ecom

com[1][0] = (lab[0][0]*lab[0][0]

+ lab[0][1]*lab[1][0])/Ecom;

//E’2 = (m2**2 + m2*E1)/Ecom

com[1][1] = (lab[0][1]*lab[0][1]

+ lab[0][1]*lab[1][0])/Ecom;

//E’3 = (Ecom**2 + m3**2 - m4**2)/(2*Ecom)

com[1][2] = (Ecom*Ecom + lab[0][2]*lab[0][2]

- lab[0][3]*lab[0][3])/(Ecom*2);

//E’4 = (Ecom**2 + m4**2 - m3**2)/(2*Ecom)

com[1][3] = (Ecom*Ecom + lab[0][3]*lab[0][3]

- lab[0][2]*lab[0][2])/(Ecom*2);

/*Calculate CoM momenta*/

//p’1 = p’2 = p1*m2/Ecom

com[2][0] = com[2][1] = lab[2][0]*lab[0][1]/Ecom;
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//p’3 = (E’3**2 - m3**2)**0.5

com[2][2] = sqrt(com[1][2]*com[1][2]

- com[0][2]*com[0][2]);

//p’4 = p’3

com[2][3] = com[2][2];

/*Calculate beta for the CoM and

*check that beta < 1*/

//beta = p1/Elab

beta = lab[2][0]/Elab;

if(beta >= 1)

{

std::cout << "Error invalid beta value";

exit(0);

}

/*Calculate gamma from beta*/

gam = 1/sqrt(1 - beta*beta);

/*Calculate the lab momentum for particle 3

* First relsolve the CoM momentum of particle

* 3 into a component along the z-axis(pz) and

* one in the xy-plane(pPerp)

* Apply a Lorentz transformation to take pz

* into the lab frame (The Lorentz transformation

* does not change pPerp)

* Finally recostruct the momentum of particle 3
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* in the lab frame and calculate the scattering

* angle from there.*/

pz = gam*(com[2][2]*cos(com[3][2])

- beta*com[1][2]);

pPerp = com[2][2]*sin(com[3][2]);

lab[2][2] = sqrt(pz*pz + pPerp*pPerp);

//std::cout << pPerp << "\t" << pz << "\n";

//std::cout << pPerp/lab[2][2] << "\n";

lab[3][2] = asin(pPerp/lab[2][2]);

//std::cout << lab[3][2] << "\n";

/*Calculate lab energies for particles 3 and 4*/

lab[1][2] = sqrt(lab[2][2]*lab[2][2]

+ lab[0][2]*lab[0][2]);

lab[1][3] = Elab - lab[1][2];

/*Calculate lab momentum for particle 4*/

lab[2][3] = sqrt(lab[1][3]*lab[1][3]

- lab[0][3]*lab[0][3]);

/*Calculate lab scattering angle for particle 4*/

lab[3][3] = atan(lab[2][2]*sin(lab[3][2])/(lab[2][0]

- lab[2][2]*cos(lab[3][2])));

if(cos(lab[3][2]) < 0) lab[3][3] = lab[3][3] + pi;

}
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Appendix D

Monte Carlo Doppler Shift

Code

#include "kinematics.cpp"

#include "MassData.cpp"

#include <fstream>

#include "Monte.cpp"

double getQ(double, double, double, double, double);

double energyLoss(double, double, double, double);

int main()

{

readMassTable();

readStopTable();

//srand(time(NULL));

std::fstream specOut;
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specOut.open("Spectrum0fs0d.txt");

double m1, m2, m3, m4, beam, t, dt, tau, thetaR,

thetaP, Q, phiR, thetaG, phiG, EG, ED, prx,

pry, prz, pgx, pgy, pgz, cosThetaD, beta,

cosLow, cosHi, betaLow, betaHi, ELow, EHi,

rotAng, temp1, temp2;

double spec[1000];

int bin = 0;

m1 = getMass(16, 8);

m2 = getMass(3, 2);

m3 = getMass(4, 2);

m4 = getMass(15, 8);

beam = 50;

ELow = 7.2;

EHi = 1;

EG = 6.791;

Q = getQ(m1, m2, m3, m4, EG);

rotAng = 0;

dt = 0.001;

tau = 0.000000000000001;

clearKin();

for(int i = 0; i < 1000; i++) spec[i] = 0;

for(int i = 0; i < 10000; i++)
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{

/*this is where the theta angle (scattering angle)

* for m3 is generated

* the function randomTheta takes a double argument

* which represents the maximum

* allowable scattering angle in the lab frame.*/

thetaP = randomTheta(0.26005);

readKin2(m1, m2, m3, m4, Q, beam, thetaP);

calc1();

/*this is where the time of the decay is randomly

* generated. Importantly the funtion requires a

* guess of the meanlife. */

t = randomTime(tau);

thetaR = getTheta(4);

phiR = randomPhi();

thetaG = randomTheta(0.18849);

phiG = randomPhi();

prx = getP(4)*sin(thetaR)*cos(phiR);

pry = getP(4)*sin(thetaR)*sin(phiR);

prz = getP(4)*cos(thetaR);

pgx = EG*sin(thetaG)*cos(phiG);

pgy = EG*sin(thetaG)*sin(phiG);

pgz = EG*cos(thetaG);

temp1 = pgy*cos(rotAng) + pgz*sin(rotAng);

temp2 = pgz*cos(rotAng) - pgy*sin(rotAng);

pgy = temp1;

pgz = temp2;
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cosThetaD = (prx*pgx + pry*pgy + prz*pgz)/(getP(4)*EG);

beta = energyLoss(getE(4), (m4 + EG), dt, t);

beta = sqrt(2*m4*beta + beta*beta)/m4;

ED = EG*(1 + beta*cosThetaD);

bin = (int) 10000*ED;

if (bin%10 > 4) bin = bin + 10;

bin = bin/10;

spec[bin - 6290]++;

//std::cout << "Done with gamma " << ED <<".\n";

}

//printKin();

for(int i = 0; i < 1000; i++) specOut << i+6290 << "\t"

<< spec[i] << "\n";

/*std::cout << cosLow << "\t" << betaLow << "\n" << cosHi

<< "\t" << betaHi << "\n";

readKin2(m1, m2, m3, m4, Q, beam, 0.26005);

calc1();

std::cout << (getP(4)/m4) << "\t" << getTheta(4);*/

return 0;

}

double getQ(double m1, double m2, double m3, double m4, double EG)

{

double gs = m1+m2-m3-m4;

return (gs - EG);

}
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double energyLoss(double energy, double m, double dt, double t)

{

double v = sqrt(2*m*energy + energy*energy)/m;

//std::cout << energy << "\n";

for(double time = 0; time < t; time = time+dt)

{

energy = energy - getStop(energy)*v*dt*3;

v = sqrt(2*m*energy + energy*energy)/m;

}

//std::cout << energy << "\n";

return energy;

}
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Appendix E

The Primary Action Generator

from the Geant Code

#include "G4RunManager.hh"

#include "G4Event.hh"

#include "G4ParticleGun.hh"

#include "G4ParticleTable.hh"

#include "G4NuclideTable.hh"

#include "G4VIsotopeTable.hh"

#include "G4RIsotopeTable.hh"

#include "G4IonTable.hh"

#include "G4ParticleDefinition.hh"

#include "G4Ions.hh"

#include "G4PhaseSpaceDecayChannel.hh"

#include "G4VDecayChannel.hh"

#include "G4DecayTable.hh"

#include "G4ChargedGeantino.hh"

#include "G4SystemOfUnits.hh"

148

 

 

 

 



#include "Randomize.hh"

#include "kinematics.hh"

//#include "gasdev.hh"

//#include "nr.hh"

//#include "ran1.hh"

#include <time.h>

#include <stdio.h>

#include <stdlib.h>

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....

extern G4double tau;

B3PrimaryGeneratorAction::B3PrimaryGeneratorAction()

: G4VUserPrimaryGeneratorAction(),

ejectileGun(0),

recoilGun(0)

{

G4int n_particle = 1;

ejectileGun = new G4ParticleGun(n_particle);

recoilGun = new G4ParticleGun(n_particle);

G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();

G4ParticleDefinition* particle

= particleTable->FindParticle("chargedgeantino");

ejectileGun->SetParticleDefinition(particle);

ejectileGun->SetParticlePosition(G4ThreeVector(0.,0.,0.));

ejectileGun->SetParticleEnergy(25*MeV);
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ejectileGun->SetParticleMomentumDirection(G4ThreeVector(1.,0.,0.));

recoilGun->SetParticleDefinition(particle);

recoilGun->SetParticlePosition(G4ThreeVector(0.,0.,0.));

recoilGun->SetParticleEnergy(25*MeV);

recoilGun->SetParticleMomentumDirection(G4ThreeVector(1.,0.,0.));

}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....

B3PrimaryGeneratorAction::~B3PrimaryGeneratorAction()

{

delete ejectileGun;

delete recoilGun;

}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....

void B3PrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)

{

srand(time(NULL));

G4ParticleDefinition* particle = ejectileGun->GetParticleDefinition();

if (particle == G4ChargedGeantino::ChargedGeantino())

{

//This is where the particles are selected.

G4int Z = 2, A = 4;

G4double ionCharge = 2.*eplus;
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G4double excitEnergy = 0.*keV;

G4ParticleDefinition* ion

= G4IonTable::GetIonTable()->GetIon(Z,A,excitEnergy);

ejectileGun->SetParticleDefinition(ion);

ejectileGun->SetParticleCharge(ionCharge);

mass3 = ion->GetPDGMass()/MeV - Z*0.511;

Z = 8, A = 15;

ionCharge = 2.*eplus;

excitEnergy = 6791.*keV;

ion = G4IonTable::GetIonTable()->GetIon(Z, A, excitEnergy);

//std::cout << ion->GetParticleName() << "|\n";

//ion->SetDecayTable(table);

recoilGun->SetParticleDefinition(ion);

recoilGun->SetParticleCharge(ionCharge);

mass4 = ion->GetPDGMass() - Z*511*keV;

Z = 8, A = 16;

excitEnergy = 0.*keV;

ion = G4IonTable::GetIonTable()->GetIon(Z,A,excitEnergy);

mass1 = ion->GetPDGMass() - Z*511*keV;

Z = 2, A = 3;

excitEnergy = 0.*keV;
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ion = G4IonTable::GetIonTable()->GetIon(Z,A,excitEnergy);

mass2 = ion->GetPDGMass() - Z*511*keV;

}

// randomized position

//

double gunR, gunPhi, gunX, gunY, gunZ;

gunR = 1.5*((double) rand()/RAND_MAX);

gunPhi = 2*pi*((double) rand()/RAND_MAX);

gunX = sqrt(gunR)*cos(gunPhi);

gunY = sqrt(gunR)*sin(gunPhi);

gunZ = -1.0;

while(gunZ < 0)

{

gunZ = gauss()*390+808;

}

///G4double x0 = 0*cm, y0 = 0*cm, z0 = 0*cm;

///G4double dx0 = 0*cm, dy0 = 0*cm, dz0 = 0*cm;

G4double x0 = gunX*mm, y0 = gunY*mm, z0 = (gunZ/10)*nm;

//G4double dx0 = 3*mm, dy0 = 3*mm, dz0 = 3*mm;

//x0 += dx0*(G4UniformRand()-0.5);

//y0 += dy0*(G4UniformRand()-0.5);

//z0 += dz0*(G4UniformRand()-0.5);

double Qvalue = mass1/MeV+mass2/MeV-mass3/MeV-mass4/MeV;

double beamEnergy = 50;

/*
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int Z, A;

G4double ionCharge, excitEnergy;

Z = 2;

A = 4;

ionCharge = 2.*eplus;

excitEnergy = 0.*keV;

*/

double phiEjectile, thetaEjectile;

G4ThreeVector *pEjectile = new G4ThreeVector(0., 0., 1.);

G4ThreeVector *pRecoil = new G4ThreeVector(0., 0., 1.);

thetaEjectile = acos(1 + (cos(0.26) - 1)*(G4UniformRand()));

phiEjectile = (G4UniformRand())*2*pi;

tau = -log(G4UniformRand())*1e-6*ns;

pEjectile->rotate(0., thetaEjectile, phiEjectile);

clearKin();

readKin2(mass1,mass2,mass3,mass4,Qvalue,beamEnergy,thetaEjectile);

calc1();

pRecoil->rotate(0., getTheta(4), phiEjectile+pi);

ejectileGun->SetParticlePosition(G4ThreeVector(x0,y0,z0));

ejectileGun->SetParticleMomentumDirection(*pEjectile);

ejectileGun->SetParticleEnergy(getE(3)*MeV);

recoilGun->SetParticlePosition(G4ThreeVector(x0,y0,z0));
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recoilGun->SetParticleMomentumDirection(*pRecoil);

recoilGun->SetParticleEnergy(getE(4)*MeV);

//create vertex

//

ejectileGun->GeneratePrimaryVertex(anEvent);

recoilGun->GeneratePrimaryVertex(anEvent);

delete pEjectile;

delete pRecoil;

}

//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....

double B3PrimaryGeneratorAction::gauss()

{

double v1, v2, res;

v1 = 2.0*((double) rand()/RAND_MAX)-1.0;

v2 = 2.0*((double) rand()/RAND_MAX)-1.0;

res = v1*v1+v2*v2;

return v2*sqrt(-2.0*log(res)/res);

}

154

 

 

 

 



Bibliography

[1] J. Heese et al. Lifetime measurements in 70Se and 72Se. Z. Phys. A.,

325, 45, (1986).

[2] A.M. Hurst et al. Measurement of the Sign of the Spectroscopic

Quadrupole Moment for the 2+
1 State in 70Se: No Evidence for Oblate

Shape. Phys. Rev. Lett., 98, 072501, (2007).

[3] C. Iliadis. Nuclear Physics of Stars. Wiley-VCH., (2007).

[4] M. Marta. Precision study of ground state capture in the 14N(p, γ)15O

reaction. Phys. Rev. C, 78, 022802, (2008).

[5] A. Formicola et al. Astrophysical S-factor of 14N(p, γ)15O. Phys. Lett.

B, 591, 61, (2004).

[6] N. Galinski et al. Lifetime measurements of states in 15O. Phys. Rev.

C, 90, 035803, (2014).

[7] W. Gill et al. Lifetime measurements in mass-15 nuclei. Nucl. Phys. A,

121, 209, (1968).

[8] P.F. Bertone et al. Lifetime of the 6793-kev state in 15O. Phys. Rev.

Lett., 87, 152501, (2001).

155
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