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Abstract
This paper focuses on the newly revived interest to model free approach in finance. Instead of postulating
some probability measure it emerges in a form of an outer-measure. We review the behavior of a market
stock price and the stochastic assumptions imposed to the stock price when deriving the Black-Scholes
formula in the classical case. Without any stochastic assumptions we derive the Black-Scholes formula
using a model free approach. We do this by means of protocols that describe the market/game. We
prove a statement that prices a European option in continuous time.
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1. Introduction
Pricing of options, commodities, securities, or even currencies has been a study given much attention in
economics and finance. The Black-Scholes formula was introduced in 1973, in two celebrated articles,
one by (Black and Scholes, 1973), the other by (Merton, 1973). This formula, has been used to price a
lot of derivatives, simple and complex and has led to growth in markets for options and other derivatives,
it remains the foundation for option pricing. This formula does not only price options but also gives a
broad idea on how to hedge the risk involved in these markets. It can be adjusted until pricing is done
by supply and demand. The formula was recognized by a Nobel Prize in 1997.

We note that a derivative is a contract whose payoff depends on the future movements of the prices
of one or more commodities, securities or currencies. We will focus on European options whose payoff
depend only on the price of a single security at a fixed date of maturity. A European option U on an
underlying security S is characterised by its maturity date, say T and its payoff function, say U . Its
payoff at time T is given by

U(T ) := U(S(T )). (1.0.1)

The problem is to price U at a time t before time T . What price should a bank charge at time 0, say,
for a contract that requires it to pay (1.0.1) at time T? The Black-Scholes pricing formula has been
used to answer this problem.

The Black-Scholes formula relies on the assumption that the price of the underlying stock follows a
geometric Brownian motion. It has been observed in (Shafer and Vovk, 2001) that this assumption
limits the wildness of fluctuations in S(t) and that it uses the law of large numbers on a relatively fine
time scale. The appeal to the law of large numbers present challenges in real applications.

To circumvent the above mentioned difficulties, a model free approach has been suggested, see (Shafer
and Vovk, 2001). This approach has received much attention and much work is being done on this, see
(Takeuchi et al., 2009), (Perkowski and Prömel, 2016), (Cont, 2006), (Łochowski, 2015), (Vovk, 2008b)
and (Vovk, 2015). The model free approach does not require the assumption that the market price
of the underlying security follows a geometric Brownian motion. In particular, no a priori probabilistic
assumption is needed. In a model free approach we do not start with any probability measure or some
structure at outset, however, it does emerge. We look at this measure as an outer-measure. In this short
project we derive the Black-Scholes pricing formula for European options using a model free approach.

This project is organised as follows: In Chapter 2 we look at the notations and symbols used in this
project, we also look at background information, not leaving out definitions and examples where nec-
essary. In Chapter 3 we examine the random behaviour of stock market prices and we show how the
stochastic assumption is used to derive the Black-Scholes formula in the classical sense. In Chapter
4 we show how the Black-Scholes formula is derived using the model free approach. We prove the
Black-Scholes pricing formula using the model free approach and we give a brief conclusion in Chapter
5.
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2. Preliminaries
Here we give definitions that form the building blocks and understanding towards later sections and
chapters. We also outline some notation used in this project.

2.1 Notations

Below we give a layout of the meanings to the notations used in this project.

S(t) : Stock price
σ : Volatility
µ : Drift
Ω : Sample space
F : σ-algebra
Ft : Filtration
P : Probability measure
R+ : Set of positive real numbers
Nµ,σ2 : Normal distribution with mean µ and variance σ2

LHS : Left hand side
RHS : Right hand side
:= : LHS is equal to RHS by definition
T > 0 : Maturity time
T := {ndt | 0 ≤ n ≤ N} : Set of time points
W (t) : Wiener process
I(t) : Investor’s capital process
GBM : Geometric Brownian motion
SDE : Stochastic differential equation
pde : Partial differential equation
w.r.t : with respect to

2.2 Basic concepts and results

Most of the material in this section were taken from Chapter 1 of (Shafer and Vovk, 2001), and the
papers (Vovk, 2008b) and (Vovk, 2009).

We consider a game between two players, Investor and Market, over the time interval [0,∞). For each
time t ∈ [0,∞), the value ω(t) represents the price of the financial asset at time t. First Investor
chooses his trading strategy and then Market chooses a continuous function ω : [0,∞)→ R (the price
path of a security).

2.2.1 Definition. (Sample space) Let Ω be the set of all continuous functions ω : [0,∞)→ R.

For each t ∈ [0,∞), Ft is defined to be the smallest σ-algebra that makes all functions ω 7→ ω(s),
s ∈ [0, t], measurable. A process S is a family of functions St : Ω → R, t ∈ [0,∞), each St being
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Section 2.2. Basic concepts and results Page 3

Ft-measurable. Its sample paths are the functions t 7→ St(ω). An element of the σ-algebra F∞ := ∨tFt
(also denoted by F) is called an event.

2.2.2 Definition. (Filtration) A filtrtation on Ω is a family {Ft : t ∈ T} of sub-σ-fields of F with
Fs ⊆ Ft if s < t. A process S on (Ω,F) is adapted to the filtration (Ft) if St is Ft-measurable for
each t. We define

F∞ := σ

(⋃
t∈T
Ft

)
.

A filtration is said to be right-contionuous if Ft = Ft+ := ∩s>tFs, for each t ∈ T .

2.2.3 Definition. (Stopping time) A function τ : Ω→ T such that {ω : τ(ω) ≤ t} ∈ Ft for each time
t ∈ T is called a stopping time for the filtration. For a stopping time τ we define

Fτ = {F ∈ F∞ : F{τ ≤ t} ∈ Ft} for each t ∈ T.

2.2.4 Remark. The following statements are true for stopping times:

a. If the filtration is right continuous and if {τ < t} ∈ Ft for each t ∈ T then τ is a stopping time.

b. Fτ is a σ-field.

c. τ is F∞-measurable.

d. An F∞-measurable random variable Z is Fτ -measurable if and only if Z{τ ≤ t} is Ft-measurable
for each t ∈ T .

2.2.5 Definition. For any arbitrary set A ∈ F we define

IA(ω) :=
{

1 if ω ∈ A,
0 otherwise.

This is called an indicator function.

If (Ft) is right-continuous, it is equivalent to demand that {τ < t} belongs to Ft for every t. In this
case, τ is a stopping time if and only if the process St = I(0,τ ](t) is adapted. The class of sets A in
F∞ such that A∩ {τ ≤ t} ∈ Ft for all t is a σ-algebra denoted by Fτ . The constants, i.e τ(ω) ≡ s for
every ω are stopping times and in that case Fτ = Fs.

Stopping times therefore appear as generalizations of constant times for which one can define a past
which is consistent with the pasts of constant times. A stopping time may be thought of as the first
time some physical event occurs.

2.2.6 Proposition. If E is a metric space, A is a closed subset of E and X the coordinate process on
W = C(R+, E) and if we set

DA(ω) = inf{t ≥ 0;Xt(ω) ∈ A}

with the understanding that inf(∅) = +∞, then DA is a stopping time w.r.t the natural filtration
Ft = σ(Xs, s ≤ t). It is called the entry time of A.

Proof. For a metric d on E we have

{DA ≤ t} = {ω : inf
s∈Q,s≤t

d(Xs(ω), A) = 0}

and the RHS set obviously belongs to Fτ .
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2.2.7 Proposition. If A is an open subset of E and Ω is the space of right-continuous paths from R+

to E, the time
τA = inf{t > 0 : Xt ∈ A}

is a stopping time w.r.t Ft+ . It is called the hitting time of A.

Proof. As already observed, τA is a F◦t+-stopping time if and only if {τA < t} ∈ Ft for each t. If A
is open and Xs(ω) ∈ A, by the right-continuity of paths, Xt(ω) ∈ A for every t ∈ [s, s + ε) for some
ε > 0. As a result

{τA < t} =
⋃

s∈Q,s<t
{Xs ∈ A} ∈ Ft.

An elementary trading strategy G consists of an increasing sequence of stopping times 0 ≤ τ1 ≤ τ2 ≤ · · ·
such that limn→∞ τn(ω) =∞ for each ω ∈ Ω, and, of a sequence of bounded Fτn-measurable functions
hn, n = 1, 2, . . .. To such a G and an initial capital c ∈ R corresponds the elementary capital process

KG,ct (ω) := c+
∞∑
n=1

hn(ω) (ω(τn+1 ∧ t)− ω(τn ∧ t)) , t ∈ [0,∞), (2.2.1)

where the value of the sum is finite for each t. The value hn(ω) will be called Investor’s bet at time τn,
and KG,ct (ω) will be called Investor’s capital at time t.

A positive continuous capital process is any process S that can be represented in the form

St(ω) :=
∞∑
n=1
KGn,cn
t (ω), (2.2.2)

where the elementary capital processes KGn,cn
t (ω) are required to be nonnegative, for all t and all ω,

and the positive series
∑∞
n=1 cn converges (Vovk, 2008b). Since KGn,cn

0 (ω) = cn does not depend on ω,
S0(ω) =

∑∞
n=1 cn also does not depend on ω and will be abbreviated to S0. Any real-valued function

on Ω is called a variable.

2.2.8 Definition. (Upper probability) We define the upper probability of a set E ⊆ Ω as the upper
price of the indicator function of E, IE , and will be denoted as P(E). That is

P(E) := inf{S0 | ∀ω ∈ Ω lim inf
t→∞

St ≥ IE(ω)}, (2.2.3)

where S ranges over positive capital processes.

2.2.9 Remark. The definition of positive capital process corresponds to the idea where Investor divides
his initial capital into a sequence of independent accounts, without him risking being bankrupt.

E ⊆ Ω is said to be null if P(E) = 0. A set E ⊆ Ω is almost sure if P(Ec) = 0, where Ec := Ω \ E is
the complement of E. The lower probability is defined as:

P(E) := 1− P(Ec). (2.2.4)

2.2.10 Example. The upper and lower probability obey the following properties, see Chapter 1 of Shafer
and Vovk (2001),

0 ≤ P(E) ≤ P(E) ≤ 1 (2.2.5)
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and
P(E) = 1− P(Ec), (2.2.6)

here Ec is the complement of E ∈ Ω. What meaning can be related to P(E) and P(E)? Now, let
P(E) = 0.0002. Since P(E) is between 0 and 0.0002, then is very close to zero, by (2.2.5). Then
Skeptic can spend 0.0002 on IE , because IE ≥ 0, this purchase does not expose him to possibile
bankruptcy, and if E happens then that will result in his investment increasing drastically. But this
increase is unlikely happen, which means E is also unlikely to happen. In a similar way, we can say that
E is very like to happen if P(E) is very close to one, which means by (2.2.5) P(E) is also very close to
one. By (2.2.6) if P(E) is close to one, then P(Ec) is close to zero and Ec is unlikely to happen which
means E is likely to happen.

The upper probability is countably subadditive (see Vovk (2008a)).

2.2.11 Lemma. For any subsequence of events E1, E2, . . . of Ω we have

P
( ∞⋃
n=1

En

)
≤
∞∑
n=1

P(En)

P is an outer-measure in carathèodory’s sense. A set A ∈ Ω is P-measurable if for each E ⊂ Ω

P(E) = P(E ∩A) + P(E ∩Ac).

The following result was taken from (Vovk, 2008a).

2.2.12 Theorem. Each event A ∈ F is P-measurable and the restriction of P to F coincide with the
Wiener measure W on Ω,F . In particular, P(A) = P(A) = W (A) for each A ∈ F .

 

 

 

 



3. Behaviour of stock market prices

Figure 3.1: Stock market prices for oil on CRB and Dollar index from January 1990 to January 2008
(J. Michael Steele).

Louis Bachelier on his doctoral dissertation ‘Theory of Speculation’, published in 1900 (Bachelier, 2011),
noticed that stock market prices has an irregular and random character of changes. Having a look at
Figure 3.1, we can see the irregular behaviour of stock market prices. This behaviour is now called
Brownian motion. However, the Brownian motion or Bachelier’s model as is also known had a short-
coming in allowing prices to be negative. The price of a corparate share cannot be negative. But this
can be overcomed by assuming that the logarithm of the share price follows a Brownian motion. That
is, the share price itself follows a geometric Brownian motion.

Now that we mentioned a Brownian motion and geometric Brownian motion, let us give their definitions
and examples.

3.0.1 Definition. (Linear Brownian motion) A real-valued stochastic process {B(t) : t ≥ 0} is called a
(linear) Brownian motion with start x if the following holds:

• B(0) = x;

• the process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn the increments
B(tn)−B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1) are independent random variables;

• for all t ≥ 0 and s > 0, the increments B(t+ s)−B(t) are normally distributed with mean zero
and variance s;

• almost surely, the function t 7→ B(t) is continuous.

3.0.2 Remark. We say that {B(t) : t ≥ 0} is a standard Brownian motion if x = 0. In this project we
refer to the standard Brownian motion simply as the Brownian motion.

3.0.3 Definition. (Wiener process) A real-valued continuous function W on [0,∞) is called a Wiener
process if the following holds:

• W (0) = 0,

• W (t) is Gaussian with mean zero and variance t, for each t > 0, and
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Page 7

• if the intervals [t1, t2] and [s1, s2] do not overlap, then the random variables W (t2)−W (t1) and
W (s2)−W (s1) are independent.

Alternatively, given a Wiener process W (t), we can define any process S of the form

S(t) = µt+ σW (t), (3.0.1)

where µ ∈ R and σ ≥ 0 are constants, as a Brownian motion.

Equation (3.0.1) implies that for any positive real number dt, we may write

dS(t) = µdt+ σdW (t). (3.0.2)

We get a wider class of stochastic processes when the drift and volatility are allowed to depend on S
and t in (3.0.2), that is,

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dW (t). (3.0.3)

All stochastic processes satisfying stochastic differential equations of the form of (3.0.3) are called
diffusion processes. This is because of the relationship with the heat equation and because the Wiener
process W diffuses the probabilities for the position of the path as time goes on. A diffusion process S
that satisfies (3.0.3) has the Markov property: the probabilities of the next state of S depend only on
the current state, S(t). This can be generalized, the drift and volatility depend on the whole preceding
path of S rather than just the current value S(t). This gives a wider class of processes known as Itô
processes.

An American astrophysicist M. F. Maury Osborne published the first detailed study of the hypothesis
that S(t) follows a geometric Brownian motion. This led to the geometric Brownian motion also being
called Osborne’s log-Gaussian model, see (Shafer and Vovk, 2001) page 201

If lnS(t) follows a Brownian motion, then we have

d lnS(t) = µdt+ σdW (t). (3.0.4)

It follows that dS(t)
S(t) satisfy a SDE of the form

dS(t)
S(t) = µdt+ σdW (t). (3.0.5)

The Equation (3.0.5) can be written as

dS(t) = µS(t)dt+ σS(t)dW (t), (3.0.6)

whose solution is given by
S(t) = S(0)e(µ−

1
2σ

2)t+σW (t). (3.0.7)

3.0.4 Example. Let S(t) be the price of FMC stock at time t from the present. Assume that S(t) is
a GBM (geometric Brownian motion) with drift µ = −0.05 and volatility σ = 0.4. If the current price
of FMC stock is $2.50, what is the probability that the price will be at least $2.60 one year from now.

Since S(t) is a GBM, ln(S(t)) is a regular Brownian motion with drift µ = −0.05 and volatility σ = 0.4.
We want to know the probability that ln(S(1)) ≥ ln(2.60) given that ln(S(0)) ≥ ln(2.50). This means

ln(S(1))− ln(S(0)) ≥ ln(2.60)− ln(2.50) = ln
(2.60

2.50

)
= ln(1.04) ≈ 0.0392.

 

 

 

 



Section 3.1. The variation spectrum Page 8

In this case Z = (ln(S(1))− ln(S(0))− µt)/σ is a standard normal random variable. So

P(ln(S(1))− ln(S(0)) > 0.0392) = P(ln(S(1))− ln(S(0)) + 0.05 > 0.0392 + 0.05)
= P(Z > 0.223)
= 1− P(Z ≤ 0.293)
= 1− Φ(0.293)
= 1− 0.5884
= 0.4116

where Φ(Z) = P(Z ≤ z) is the distribution function of standard normal random variable. Hence, the
probability that the price will be at least $2.60 one year from now is 41%.

In the following sections we follow the work of (Shafer and Vovk, 2001), also the definitions were taken
from the above mentioned source.

3.1 The variation spectrum

We use nonstandard analysis, because it allows us to derive into continuous time the fundamental idea
in which two players alternate moves. Our time interval include all real numbers between 0 and T
inclusive. But we divide this interval into an infinitely large number N of steps of equal infinitesimal
length dt := T

N . The set of the time points is given by

T := {ndt | 0 ≤ n ≤ N}.

The infinitely large N is the number of rounds of play between the players (Investor and Market), where
by the infinitesimal number dt is the time taken to complete each round.

Given a function f on T, we set
df(t) := f(t+ dt)− f(t)

whenever t ∈ T \ {T}. We call f a continuous function if supt∈T\{T} |df(t)| is infinitesimal.

3.1.1 Definition. Given a continuous function f on T, and a real number p ∈ R+, we define

varf (p) :=
∑

t∈T\{T}
|df(t)|p ,

the p-variation of f .

vexf is said to be the variation exponent of f .

3.1.2 Lemma. Suppose f is a continuous function on T. Then there exists a unique real number (we
sometimes include −∞ and ∞) vexf ∈ [1,∞] such that

(a) varf (p) is infinitely large when 1 ≤ p < vexf , and

(b) varf (p) is infinitesimal when p > vexf .

Proof. If f is a constant function, then varf (p) = 0 for all p ∈ [1,∞). This means that vexf = 1.
Suppose that f is not a constant function. Then it suffices to consider p1, p2 ∈ R satisfying 1 ≤ p1 < p2
and to show that the ratio ∑

t

| df(t) |p2

/∑
t

| df(t) |p1 , (3.1.1)

 

 

 

 



Section 3.2. The relative variation spectrum Page 9

where t ∈ T \ {T}, is infinitesimal. To do this, we need to show that the ratio (3.1.1) is less than ε, for
an arbitrary ε ∈ R+. Suppose that ε1 > 0 and is so small that εp2−p1

1 < ε. Now, since f is continuous,
| df(t) |≤ ε1 ∀t. So we have∑

t

| df(t) |p2 =
∑
t

| df(t) |p2−p1 | df(t) |p1

≤ εp2−p1
1

∑
t

| df(t) |p1

< ε
∑
t

| df(t) |p1 ,

dividing both sides by the positive sum on the RHS of the inequality we obtain our ratio

∑
t

| df(t) |p2

/∑
t

| df(t) |p1< ε.

In many games between Investor and Market, the ability of Investor to hedge the sale of an option
depends on Market choosing his moves so that varN (2 + ε) for some small postive ε.

1
vexf the Hölder exponent, denoted by H(f). f is said to have a bounded variation if vexf = 1.
vexf = 1 when f is bounded and monotonic (entirely nonincreasing or nondecreasing function), then
varf (1) =

∑
t | df(t) |=| f(T ) − f(0) |, which is not infinitesimal but finite. One can reach the

same conclusion when f is bounded and [0, 1] can be divided into finite number of intervals where
f is monotonic. This justifies that ordinary well-behaved functions have variation exponent 1. We
call f stochastic when H(f) = 1

2 , substochastic when H(f) < 1
2 and superstochastic when H(f) >

1
2 . A diffusion process is expected to be stochastic, a substochastic process is less irregular, while a
superstochastic process is more irregular, compared to a diffusion process.

3.2 The relative variation spectrum

3.2.1 Definition. A function f on T is said to be positive if f(t) > 0 ∀t ∈ T. We call a positive
function f relatively continuous if supt∈T\{T} df(t)/f(t) is infinitesimal, and we set

varrel
f (p) :=

∑
t

∣∣∣∣df(t)
f(t)

∣∣∣∣p ,
for a relatively continuous f . We call varrel

f (p) the relative p-variation of f and varrel
f the relative

variation spectrum.

3.2.2 Lemma. If f is a relatively continuous function on T, then there exists a unique real number
vexrelf ∈ [1,∞] such that

(a) varrel
f (p) is infinitely large for 1 ≤ p < vexrelf , and

(b) varrel
f (p) is infinitesimal for p > vexrelf .
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The proof to this result is similar to that of Lemma 3.1.2. We call vexrelf the relative variation exponent
of f .

A function f on T is said to be strictly positive if there exists a real number ε > 0 such that f(t) >
ε ∀t ∈ T. It is bounded if there exists a finite real number C such that supt | f(t) |< C.

3.2.3 Lemma. If a strictly positive and bounded function f is relatively continuous, then vexrelf
coincides with its absolute counterpart: vexrelf = vexf .

3.2.4 Proposition. The path W : [0, T ]→ R of a standard Wiener process satisfies vexW = 2 almost
surely. Moreover, varW (2) ≈ T almost surely.

Proof. Let ε > 0 be arbitrarily small. For each N = 1, 2, . . ., we have

P
((

W

(
(n+ 1) T

N

)
−W

(
n
T

N

))2
≥ T + ε

)
≤ e−Nc(ε), (3.2.1)

P
((

W

(
(n+ 1) T

N

)
−W

(
n
T

N

))2
≤ T + ε

)
≤ e−Nc(ε), (3.2.2)

where c(ε) is a positive constant. These inequalities follow from

E
(
W

(
(n+ 1) T

N

)
−W

(
n
T

N

))2
= T

N

and the standard large-deviation results, where P and E denote the usual probability and expectation,
respectively. Combining (3.2.1) and (3.2.2) with the Borel-Cantelli lemma (Chung and Erdos, 1952) we
obtain that, with probability 1,∣∣∣∣∣

N−1∑
n=0

(
W

(
(n+ 1) T

N

)
−W

(
n
T

N

))2
− T

∣∣∣∣∣ ≥ ε
only for finitely many N , hence, |varW (2) − T | < ε almost surely. Since ε is arbirarily small, then
varW (2) ≈ T almost surely.

3.2.5 Proposition. The path S : [0, T ] → R of the diffusion process governed by (3.0.6) satisfies
vexS = 2 almost surely, where T > 0.

Proof. Since the solution to the diffusion process (3.0.6) is given by (3.0.7) for a standard Wiener
process W , we have

dS(t) = S(t)e(µ− 1
2σ

2)dt+σdW (t) − S(t)

= S(t)eθ(t)((µ− 1
2σ

2)dt+σdW (t))
(

(µ− 1
2σ

2)dt+ σdW (t)
)

�
(
µ− 1

2σ
2
)

dt+ σdW (t),

where θ(t) ∈ (0, 1) and a(t) � b(t) means that |a(t)| ≤ c|b(t)| and |b(t)| ≤ c|a(t)| for some constant
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c > 0 (may be dependent on the path S(t)). Hence

varS(2) �
∑

t∈T\{T}

(
(µ− 1

2σ
2)dt+ σdW (t)

)2

=
(
µ− 1

2σ
2
)2 ∑

t∈T\{T}
(dt)2 + 2(µ− 1

2σ
2)σ

∑
t∈T\{T}

dtdW (t) + σ2 ∑
t∈T\{T}

(dW (t))2

≈ σ2varW (2).

For a standard Wiener process W , varW (2) ≈ T almost surely (see proposition 3.2.4). This shows that
varS(2) is neither infinitesimal nor infinitely large, almost surely.

3.2.6 Remark. The propositions 3.2.4 and 3.2.5 together shows that the diffusion process of the form
(3.0.6) satiisfies vexS = 2 almost surely. Investor can multiply his capital significantly unless Market
makes vexS = 2, we are going to prove this claim in the next chapter.

3.3 Black-Scholes formula

In derivative pricing, it is important to consider factors that influence the price an investor would be
willing to pay, including the investor’s attitude towards risk and the prospects of the underlying security.
The formula derived by Black and Scholes consists of only time to maturity T , the option’s payoff
function U , the current price S(t) and the volatility of the price.

In discussion with Merton, it came up that the formula requires very little economic theory for its
justification.

For a game between Investor and Market in which Investor is allowed to continuously adjust the amount
of stock S, and the following protocol is from (Shafer and Vovk, 2001).

The Black-Scholes Protocol

Parameters: T > 0 and N ∈ N; dt := T/N

Players: Investor, Market

Protocol:

Market announces S(0) > 0.
I(0) := 0
FOR t = 0,dt, 2dt, . . . , T − dt :

Investor announces δ(t) ∈ R.
Market announces dS(t) ∈ R.
S(t+ dt) := S(t) + dS(t).
I(t+ dt) := I(t) + δ(t)dS(t). (3.3.1)

I is Investor’s capital process. The move δ(t) by Investor is the number of shares of the stock over the
time t to t+ dt, and again over t to t+ dt, Market’s move dS(t) is the change in the stock price, then
δ(t)dS(t) is Investor’s gain or loss.
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The Black-Scholes formula for pricing options relies on the assumption that the market price S(t) follows
a diffusion process/geometric Brownian motion. This assumption is used in two essential ways:

Taming the Market: The diffusion model of the form (3.0.3) limits the fluctuations in S(t). The
√

dt
effect: the change in S(t) over dt has the magnitude of the order (dt)1/2. This is the wildness of the
fluctuations of S(t), however, one can imagine even wilder fluctuations.

Averaging Market changes: Equation (3.0.3) allows the use of the law of large numbers on a fine
time scale. It says that comparable changes in S(t) are independent over some nonoverlapping time
intervals.

Model free approach does not require the diffusion model (3.0.3) for any of these purposes.

To the Black-Scholes protocol given above, Black and Scholes added the assumption that S(t) follows
a geometric Brownian motion. This means that Market’s moves must obey the stochastic differential
equation,

dS(t) = µS(t)dt+ σS(t)dW (t). (3.3.2)

To derive the Black-Scholes formula using model free approach we do not need the full force of this
assumption. In fact, the assumption boils down to the three following assumptions:

1. The
√

dt effect. That is, the dS(t) have order of magnitude (dt)1/2, from the stochastic differential
Equation (3.3.2) and the fact that dW (t) is an increment of a Wiener process we have this order of
magnitude. In Equation (3.3.2), we can neglect the term, µS(t)dt, because dt is much smaller than
(dt)1/2.

2. Standard deviation proportional to price. Squaring both sides of Equation (3.3.2)

(dS(t))2 = µ2S2(t)(dt)2 + 2µσS2(t)dtdW (t) + σ2S2(t)(dW (t))2

= S2(t)
(
µ2(dt)2 + 2µσdtdW (t) + σ2(dW (t))2

)
. (3.3.3)

Since dW (t) is of order (dt)1/2, then (dW (t))2 is of order dt and dominates the other terms, and
to approximate (dS(t))2 in Equation (3.3.3) we can drop the (dW (t))2 term and replace it by its
expected value dt.

3. Authorization to use the law of large numbers. (dW (t))2 has mean dt and variance 2(dt)2, since
dW (t) ∼ N(0, dt). That is,

(dW (t))2 = dt+ z (3.3.4)

where z has mean zero and variance 2(dt)2.

Summing Equation (3.3.4) over all N increments

dW (0),dW (dt), dW (2dt), . . . ,dW (T − dt)

we obtain
N−1∑
n=0

(dW (ndt))2 = T +
N−1∑
n=0

zn

for dt sufficiently small, we expect the zn terms to average to zero.
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3.4 The classical derivation of the Black-Scholes formula

We want to find the price of a European option U(t) at time t that pays U(S(T )) at maturity time T .
We first suppose that there is such a price and let it depend only on time, t, and on the current price
of the stock, S(t), such that U(t) = U(S(t), t). To find U , we use Taylor’s series expasion on U and
we only consider terms of order dt and smaller, we get

dU(S(t), t) ≈ ∂U

∂s
dS(t) + ∂U

∂t
dt+ 1

2
∂2U

∂s2 (dS(t))2. (3.4.1)

The term in dS(t) is of order (dt)1/2. The term in dt and the term in (dS(t))2 are each of order dt.
These dt terms have coefficients who are always positive, hence their cumulative effect is nonnegligible.
The dS(t) are much larger, but their overall effect may be comparable to that of the dt terms, this
is because they oscillate between negative and positve values and their coefficient varies slowly. We
substitute the RHS of (3.3.3) for (dS(t))2 in (3.4.1) we obtain

dU(S(t), t) ≈ ∂U

∂s
dS(t) + ∂U

∂t
dt+ 1

2
∂2U

∂s2 S
2(t)(µ2(dt)2 + 2µσdtdW (t) + σ2(dW (t))2), (3.4.2)

retaining terms of order (dt)1/2 and dt only, we get

dU(S(t), t) ≈ ∂U

∂s
dS(t) + ∂U

∂t
dt+ 1

2σ
2S2(t)∂

2U

∂s2 (dW (t))2. (3.4.3)

The term in (dW (t))2 varies slowly because of its coefficients, we can replace (dW (t))2 with dt in
(3.4.3)

dU(S(t), t) ≈ ∂U

∂s
dS(t) +

(
∂U

∂t
+ 1

2σ
2S2(t)∂

2U

∂s2

)
dt. (3.4.4)

Here we used the law of large numbers. But it is only valid if the coefficient S2(t)∂2U
∂s2 holds steady

during enough dt for the (dW (t))2 to average out. We now look at Black-Scholes protocol. According
to (3.3.1),

dI(t) = δ(t)dS(t),

where δ(t) is the amount of stock Investor holds from t to t+ dt. If we compare this with (3.4.4), we
notice that our goal is achieved by setting

δ(t) := ∂U

∂s
(S(t), t), (3.4.5)

provided we have
∂U

∂t
(S(t), t) + 1

2σ
2S2(t)∂

2U

∂s2 (S(t), t) = 0 (3.4.6)

for all t, any value S(t) takes. The problem is then reduced to a mathematical. We need to find a
function U(s, t), for 0 < t < T and 0 < s <∞, that satisfies the pde

∂U

∂t
+ 1

2σ
2s2∂

2U

∂s2 = 0 (3.4.7)

and the final condition U(s, t) → U(s) as t → T . Notice that this is a heat equation. This pde has a
solution,

U(s, t) =
∫ ∞
−∞

U(sez)N−σ2(T−t)/2,σ2(T−t)(dz). (3.4.8)
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So an approximate price at time t for the European option U with maturity T and payoff U(S(T )) is
given by

U(t) =
∫ ∞
−∞

U(S(t)ez)N−σ2(T−t)/2,σ2(T−t)(dz), (3.4.9)

where S(t) is the price of the stock at time t, D(t) = σ2(T − t) is the remaining volatility, Nµ,φ is
the normal distribution with mean µ and variance φ. This is the Black-Scholes formula for an arbitrary
European option.

3.4.1 Remark. The volatility parameter, σ, plays a role in the derivation while the drift parameter, µ,
does not appear in the Black-Scholes formula. The use of law of large numbers enables us to move
from Equation (3.4.3) to Equation (3.4.4).

Alternatively, we can derive the Black-Scholes formula as follows:

We again make use a Taylor’s series expansion, and taking terms of order dt and smaller, we get

dU(S(t), t) ≈ ∂U

∂s
dS(t) + ∂U

∂t
dt+ 1

2
∂2U

∂s2 (dS(t))2. (3.4.10)

The RHS of the approximation is the increment in the capital process of an investor who holds shares
of two securities over the period of time t to t+ dt:

• ∂U
∂s shares of S, and

• −σ2 ∂U
∂t shares of a security D whose price per share at t is σ2(T −t), and which pays a continuous

dividend per share amounting, over the period from t+ dt, to

− σ2

∂U
∂t

1
2
∂2U

∂s2 (S(t))2. (3.4.11)

The second term on the RHS of (3.4.10) is the capital gain from holding the −σ−2 ∂U
∂t shares of

D, and the third term is the total dividend.

The Black-Scholes equation tells us to choose the function U so that the dividend per share, (3.4.11),
reduces to

(
dS(t)
S(t)

)2
, and the increment in the capital process, (3.4.10), becomes

dU(S(t), t) ≈ ∂U

∂s
dS(t) + ∂U

∂t
dt− ∂U

∂t

(dS(t))2

σ2S2(t) . (3.4.12)

Now the stochasticity assumption comes into play, that is, S(t) follows a geometric Brownian motion.
This assumption tells us that (dS(t))2 ≈ σ2S2(t)dt, using the rules that (dt)2 = dtdW (t) = 0 and
(dW (t))2 = dt, so that (3.4.12) reduces to

dU(S(t), t) ≈ ∂U

∂s
dS(t) + ∂U

∂t
dt− ∂U

∂t
dt,

it is easier to interpret in the following form

dU(S(t), t) ≈ ∂U

∂s
dS(t)− σ−2∂U

∂t
(−σ2dt)− σ−2∂U

∂t
(σ2dt).
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The capital gain on each share of D, −σ2dt, is cancelled by the dividend, σ2dt. So there is no point in
holding any number of shares of D. The increment in the capital process is

dU(S(t), t) ≈ ∂U

∂s
dS(t),

which we achieve by holding ∂U
∂s shares of S. This shows how the stochasticity assumption is being

eliminated. If the market does really price D like we just explained, then we can do without the stochastic
assumption.

 

 

 

 



4. Option pricing formula in model free approach

4.1 The model free derivation of the Black-Scholes formula

We now focus on the model free version of the Black-Scholes formula. We require that Market prices
both security S which pays no dividends and a derivative security D that pays dividends (dS(t)/S(t))2,
and the constraints on how wild the price changes can be are adopted as constraints on how Market
make his moves. Let us describe how these give a Black-Scholes formula.

Assume that between time 0 and T , Investor trades in two securities:

(1) a security S which pays no dividends, and

(2) a security D, each share of which pays the dividend (dS(t)/S(t))2.

This gives the following protocol (the protocol is taken from Shafer and Vovk (2001)):

The New Black-Scholes Protocol

Parameters: T > 0 and N ∈ N; dt := T/N

Players: Investor, Market

Protocol:

Market announces S0 > 0 and D0 > 0.
I(0) := 0
FOR t = 0,dt, 2dt, . . . , T − dt :

Investor announces δ(t) ∈ R and λ(t) ∈ R.
Market announces dS(t) ∈ R and dD(t) ∈ R.
S(t+ dt) := S(t) + dS(t).
D(t+ dt) := D(t) + dD(t).
I(t+ dt) := I(t) + δ(t)dS(t) + λ(t)(dD(t) + (dS(t)/S(t))2). (4.1.1)

Additional Constraints on Market:

(1) D(t) > 0 for 0 < t < T and D(T ) = 0,

(2) S(t) ≥ 0 for all t, and

(3) the wildness of Market’s moves is constrained.

Once D pays its last dividend, at time T , it becomes worthless: D(T ) = 0. So Market is required to
make his dD(t) add to −D(0). We assume zero interest rate and Investor starts with zero capital.

We consider a European option U with maturity T and a payoff function U . Assume that the price of
U before T is given in terms of the current prices of S and D by

U(t) = U(S(t), D(t)),

with the function U(s,D) satisfying the initial condition

U(s, 0) = U(s). (4.1.2)

16
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We approximate the increment in the option’s price, U , from t to t + dt by means of a Taylor’s series
expansion:

dU(S(t), D(t)) ≈ ∂U

∂s
dS(t) + ∂U

∂D
dD(t) + 1

2
∂2U

∂s2 (dS(t))2. (4.1.3)

We assume that the rules of the game constrain Market’s moves dS(t) and dD(t) such that terms of
higher order are negligible in the Taylor’s expansion. Putting together Equation (4.1.1) in the protocol
and Equation (4.1.3), shows that we need

δ(t) = ∂U

∂s
, λ(t) = ∂U

∂D
, and λ(t)

S2(t) = 1
2
∂2U

∂s2 .

Putting together the two equations involving λ(t) above shows that we require U to satisfy the pde

− ∂U

∂D
+ 1

2s
2∂

2U

∂s2 = 0, (4.1.4)

for all s and all D > 0. This is the Black-Scholes equation, for the market where both S and D are
traded. Making use of the initial condition (4.1.2), the solution to the pde is

U(s,D) =
∫ ∞
−∞

U(sez)N−D/2,D(dz). (4.1.5)

The Blackk-Scholes formula for this market is given by (4.1.5). The price for the European option U in
this market is

U(t) =
∫ ∞
−∞

U(S(t)ez)N−D(t)/2,D(t)(dz). (4.1.6)

To hedge this price, one needs to hold a continuously changing portfolio, containing ∂U
∂s (S(t), D(t))

shares of S and ∂U
∂D (S(t), D(t)) shares of D at time t. If S(t) follows a GBM, then the derivative D

is unnecessary. In this case, the dividends of the derivative D are independent nonnegative random
variables with expected value σ2dt + (µdt)2 ≈ σ2dt. The remaining dividends at time t will add to
almost excatly σ2(T − t), this is by the law of large numbers, and which gives the classical case.

In the following sections we follow closely the work of Shafer and Vovk (2001), Chapter 10 and Chapter
11.

4.2 Bachelier pricing in continuous time

For simplicity and better understanding, we begin with the Bachelier game, even though it allows
negative market stock prices. In the Bachelier game, Investor trades in two securities: a security S,
which pays no dividends, and a security D, which pays regular dividend equal to the square of the most
recent change in the price of S. Market sets prices for S and D at each time step; prices S0, . . . , SN
for S and D0, . . . , DN for D. At point n, the dividend paid by D is (∆Sn)2, where ∆Sn := Sn−Sn−1.
But N is infinitely large, and the sequences S0, . . . , SN and D0, . . . , DN define functions S and D,
respectively, on the time interval T:

S(ndt) := Sn and D(ndt) := Dn

for n = 0, . . . , N .

 

 

 

 



Section 4.2. Bachelier pricing in continuous time Page 18

The following protocol is taken from Shafer and Vovk (2001)

Bachelier’s Protocol with Constrained Variation

Parameters: N, I0, δ ∈ (0, 1)

Players: Investor, Market

Protocol:

Market announces S0 ∈ R and D0 > 0.
FOR n = 1, . . . , N :

Investor announces Mn ∈ R and Vn ∈ R.
Market announces Sn ∈ R and Dn ≥ 0.
In := In−1 +Mn∆Sn + Vn((∆Sn)2 + ∆Dn). (4.2.1)

Additional Constraints on Market: Market must set DN = 0, Dn > 0 for n < N and must make
S0, . . . , SN and D0, . . . , DN satisfy the following condition

inf
ε∈(0,1)

max(varS(2 + ε), varD(2− ε)) < δ for a small δ > 0.

We can write (4.2.1) as follows

In+1 = In +Mn+1(Sn+1 − Sn) + Vn+1((Sn+1 − Sn)2 + (Dn+1 −Dn))

or
dIn = Mn+1dSn + Vn+1((dSn)2 + dDn) (4.2.2)

for n = 0, . . . , N − 1. Investor chooses moves Mn and Vn in the situation

S0D0 · · ·Sn−1Dn−1. (4.2.3)

So a strategy for Investor is a pair of functions, M and V, each of which maps each situation of the
form (4.2.3) to a real number. If Market’s moves are given by S and D, and Investor decides to use
the strategy (M,V), (4.2.2) becomes

dIn =M(S0D0 · · ·SnDn)dSn + V(S0D0 · · ·SnDn)((dSn)2 + dDn). (4.2.4)

If Investor follows the strategy (M,V) and Market plays (S,D), then Investor’s total change in capital
is denoted by IM,V(S,D). Summing the increments (4.2.4) we obtain

IM,V(S,D) =
N−1∑
n=0

(
M(S0D0 · · ·SnDn)dSn + V(S0D0 · · ·SnDn)((dSn)2 + dDn)

)
. (4.2.5)

Investor’s final capital will be α + IM,V(S,D) at time T for some initial capital α at time 0. If his
decision on how many shares of each security to hold over the time period depends on the current prices
of S and D, thenM and V are just functions of two variables and (4.2.5) reduces to

IM,V(S,D) =
N−1∑
n=0

(
M(Sn, Dn)dSn + V(Sn, Dn)((dSn)2 + dDn)

)
.

This can also be written as

IM,V(S,D) =
∑

t∈T\{T}
M(S(t), D(t))dS(t) +

∑
t∈T\{T}

V(S(t), D(t))
(
(dS(t))2 + dD(t)

)
.
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4.3 Black-Scholes formula in continuous time in model free

Assume now that over some period of time, say 0 < n ≤ N , Investor trades in two securities:

(1) a security S that pays no dividends, and

(2) a security D, each share of which pays the dividend (∆Sn/Sn−1)2.

This produces the following protocol:

The Black-Scholes Protocol in Continuous Time (Shafer and Vovk, 2001)

Players: Investor, Market

Protocol:

I0 := 0
Market announces S0 > 0 and D0 > 0.
FOR n = 1, . . . , N :

Investor announces Mn ∈ R and Vn ∈ R.
Market announces Sn > 0 and Dn ≥ 0.
In := In−1 +Mn∆Sn + Vn((∆Sn/Sn−1)2 + ∆Dn).

Additional Constraints on Market: Market must ensure that S is continuous, infn Sn is positive
and not infinitesimal, and supn Sn is finite. He must also ensure that D is continuous, Dn > 0 for
n = 1, 2, . . . , N − 1, DN = 0, supnDn is finite, and vexD < 2.

Investor’s move Mn is the number of shares of the security S he holds over time n, Vn is the number
of shares of the security D he holds over n. Market’s move is to announce the change in prices Sn
and Dn per share over n, and hence Mn∆Sn + Vn((∆Sn/Sn−1)2 + ∆Dn) is Investor’s gain or loss. I
denotes Investor’s capital process. Security D is worthless after paying its last dividend, at time N , that
is, DN = 0. Investor starts with zero capital, but can borrow money to buy stock or borrow stock to
sell at whatever price he pleases. We assume that the interest rate is zero, for simplicity. The following
Theorem is the main result of this study. In (Shafer and Vovk, 2001) the proof is not explicitly given
and here we give a detailed proof.

4.3.1 Theorem. Let U : (0,∞) → R be Lipschitzian and bounded below. Then in the Black-Scholes
protocol in continuous time, the price at time 0 (right after S(0) and D(0) are announced) for the
European option U(S(T )) is ∫

R
U(S(0)ez)N−D(0)/2,D(0)(dz) (4.3.1)

Before we give the proof let us state two well-known inequalities. For nonnegative sequences Xn and
Yn and p, q ∈ R+, Hölder’s inequality, says that if 1

p + 1
q = 1, then

N∑
n=1

XnYn ≤
(

N∑
n=1

Xp
n

) 1
p
(

N∑
n=1

Y q
n

) 1
q

, (4.3.2)

and Jensen’s inequality, says that if p ≤ q, then(
N∑
n=1

Xp
n

) 1
p

≥
(

N∑
n=1

Xq
n

) 1
q

. (4.3.3)
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The two inequalities imply that if 1
p + 1

q ≥ 1, then

N∑
n=1

XnYn ≤
(

N∑
n=1

X2+ε
n

)1/(2+ε)( N∑
n=1

Y 2−ε
n

)1/(2−ε)

. (4.3.4)

Proof. We assume that vexS ≤ 2 and that U is smooth with derivatives U (1) - U (4) all bounded. We
want to find a strategy (M,V) such that∫

R
U(S(0)ez)N−D(0)/2,D(0)(dz) + IM,V ≈ U(S(T )). (4.3.5)

For any D ≥ 0 and s > 0 we set

U(s,D) :=
∫
R
U(sez)N−D(t)/2,D(t)(dz), (4.3.6)

which is continuous and satisfies the initial condition U(s, 0) = U(s). It can be verified that the
Black-Scholes pde is

∂U

∂D
= 1

2s
2∂

2U

∂s2 , (4.3.7)

for all s ∈ R and all D > 0. In fact (4.3.6) with the given initial condition solves (4.3.7).

Applying Taylor’s formula to dU(s,D) we have

dU = ∂U

∂s
dS(t) + ∂U

∂D
dD(t) + 1

2
∂2U

∂s2 (dS(t))2 + ∂2U

∂s∂D
dS(t)dD(t) + 1

2
∂2U

∂D2 (dD(t))2. (4.3.8)

Applying the Taylor’s formula to ∂2U
∂s2 , we find

∂2U

∂s2 = ∂2U

∂s2 + ∂3U

∂s3 (∆S) + ∂3U

∂D∂s2 (∆D), (4.3.9)

where ∆S and ∆D satisfy |∆S| ≤ |dS| and |∆D| ≤ |dD| respectively. Substituting (4.3.7) and (4.3.9)
into (4.3.8) we obtain

dU = ∂U

∂s
dS + ∂U

∂D

(
dD +

(dS
S

)2
)

+ 1
2
∂3U

∂s3 (∆S)(dS)2

+ 1
2
∂3U

∂D∂s2 (∆D)(dS)2 + ∂2U

∂s∂D
(dS)(dD) + 1

2
∂2U

∂D2 (dD)2 (4.3.10)

We take Investor’s strategy as (
∂U(S,D)

∂s
,
∂U(S,D)

∂D

)
(4.3.11)

where the first argument is the share of S and the second argument is the share of D. Integrating from
0 to T , we obtain

| (U(S(T ), D(T ))− U(S(0), D(0)))− (I(S(T ), D(T ))) |

≤ 1
2 sup

∣∣∣∣∣∂3U

∂s3

∣∣∣∣∣ vars(3) + 1
2 sup

∣∣∣∣∣ ∂3U

∂D∂s2

∣∣∣∣∣∑
t

|dD| |dS|2 (4.3.12)

+ sup
∣∣∣∣∣ ∂2U

∂D∂s

∣∣∣∣∣∑
t

|dD| |dS|+ 1
2 sup

∣∣∣∣∣∂2U

∂D2

∣∣∣∣∣ varD(2),
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all suprema taken over the convex hull of {(S(t), D(t))|0 < t < T}. Now we prepare to bound the
suprema in (4.3.12). An application of (4.3.7) enables us to rewrite the partial derivatives as follows

∂3U

∂D∂s2 = 1
2
∂2

∂s2

(
s2∂

2U

∂s2

)
= ∂2U

∂s2 + 2s∂
3U

∂s3 + 1
2s

2∂
4U

∂s4 ,

∂2U

∂D∂s
= 1

2
∂

∂s

(
s2∂

2U

∂s2

)
= s

∂2U

∂s2 + 1
2s

2∂
3U

∂s3 , (4.3.13)

∂2U

∂D2 = 1
2
∂

∂D

(
s2∂

2U

∂s2

)
= 1

2s
2 ∂3U

∂D∂s2 .

To bound our partial derivatives we first note that for x ∈ R and a standard Gaussian variable ψ, we
have E

(
exψ

)
= ex

2/2. Therefore, applying Leibniz differential rule, we get∣∣∣∣∣∂nU∂sn
∣∣∣∣∣ =

∣∣∣∣∫
R
U (n)(sez)enzN−D/2,D(dz)

∣∣∣∣ ≤ ∣∣∣∣∣∣U (n)
∣∣∣∣∣∣ ∫

R
enzN−D/2,D(dz)

=
∣∣∣∣∣∣U (n)

∣∣∣∣∣∣E (en(−D/2+ψ
√
D)
)

=
∣∣∣∣∣∣U (n)

∣∣∣∣∣∣ e−nD/2en
2D/2 =

∣∣∣∣∣∣U (n)
∣∣∣∣∣∣ en(n−1)D/2. (4.3.14)

From (4.3.13) and (4.3.14) we obtain ∣∣∣∣∣∂3U

∂s3

∣∣∣∣∣ ≤ c3e
3C , (4.3.15)∣∣∣∣∣ ∂3U

∂D∂s2

∣∣∣∣∣ ≤
∣∣∣∣∣∂2U

∂s2

∣∣∣∣∣+ 2C
∣∣∣∣∣∂3U

∂s3

∣∣∣∣∣+ 1
2C

2
∣∣∣∣∣∂4U

∂s4

∣∣∣∣∣ ≤ c2e
C + 2Cc3e

3C + 1
2C

2c4e
6C , (4.3.16)∣∣∣∣∣ ∂2U

∂D∂s

∣∣∣∣∣ ≤ C
∣∣∣∣∣∂2U

∂s2

∣∣∣∣∣+ 1
2C

2
∣∣∣∣∣∂3U

∂s3

∣∣∣∣∣ ≤ Cc2e
C + 1

2C
2c3e

3C , (4.3.17)∣∣∣∣∣∂2U

∂D2

∣∣∣∣∣ ≤ 1
2C

2
∣∣∣∣∣ ∂3U

∂D∂s2

∣∣∣∣∣ ≤ 1
2C

2c2e
C + C3c3e

3C + 1
4C

4c4e
6C , (4.3.18)

where c2, c3, c4 and C are constants. This completes the proof for the case of smooth U with bounded
derivatives U (1)-U (4).

Now we remove the restriction on ||U (2)||-||U (4)||. We introduce a new function V by

V (s) :=
∫
R
U(s+ z)N0,σ2(dz); (4.3.19)

where c3 = ||V (3)|| and c4 = ||V (4)||. Let us check that U(s) is close to V (s), we use the fact that U
is Lipschitzian with coefficient c:

|V (s)− U(s)| =
∣∣∣∣∫

R
U(s+ z)− U(s)N0,σ2(dz)

∣∣∣∣ ≤ ∫
R
|U(s+ z)− U(s)| N0,σ2(dz)

≤ c
∫
R
|z| N0,σ2(dz) = cσ

∫
R
|z| N0,1(dz) = cσ

√
2/π, (4.3.20)

where the last equality follows from
∫∞

0 y2n+1e−y
2/2dy = 2n

∫∞
0 xne−xdx = 2nΓ(n + 1) = 2nn!. We

also get∣∣∣∣∫
R
V (S(0) + z)− U(S(0) + z)N0,D(0)(dz)

∣∣∣∣ ≤ ∫
R
|V (S(0) + z)− U(S(0) + z)| N0,D(0)(dz)

≤ cσ
√

2/π. (4.3.21)
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Now we find the upper bounds for all derivatives V (n). For n = 0, 1, . . ., we have

V (n) = 1
σn+1

√
2π

∫
R
e−(x−s)2/(2σ2)Hn

(
x− s
σ

)
U(x)dx, (4.3.22)

where Hn are Hermite’s polynomials (proof of (4.3.22) is by induction on n, see (Shafer and Vovk,
2001)). Assuming, U(s) = 0, without loss of generality, for n = 1, 2, . . ., we get∣∣∣V (n)(s)

∣∣∣ ≤ 1
σn+1

√
2π

∫
R
e−(x−s)2/(2σ2)

∣∣∣∣Hn

(
x− s
σ

)∣∣∣∣ c |x− s| dx
= c

σn−1
√

2π

∫
R
e−y

2/2 |Hn(y)| |y| dy. (4.3.23)

We get the following bounds:∣∣∣∣∣∣V (3)
∣∣∣∣∣∣ ≤ c

σ2
√

2π

∫
R
e−y

2/2
∣∣∣y3 − 3y

∣∣∣ |y|dy ≤ c

σ2
√

2π

∫
R
e−y

2/2(y4 + 3y2)dy = 6c
σ2 , (4.3.24)

and ∣∣∣∣∣∣V (4)
∣∣∣∣∣∣ ≤ c

σ3
√

2π

∫
R
e−y

2/2
∣∣∣y4 − 6y2 + 3

∣∣∣ |y|dy ≤ 2c
σ3
√

2π

∫
R
e−y

2/2(y5 + 6y3 + 3y)dy

= 2c
σ3
√

2π
(8 + 12 + 3) = 46c

σ3
√

2π
. (4.3.25)

Equation (4.3.20) still holds for the new function, but (4.3.21) becomes∣∣∣V (S(0), D(0))− U(S(0), D(0))
∣∣∣ =

∣∣∣∣∫
R
V (S(0)ez)− U(S(0)ez)N−D(0)/2,D(0)(dz)

∣∣∣∣
≤
∫
R
|V (S(0)ez)− U(S(0)ez)| N−D(0)/2,D(0)(dz)

≤ cσ
√

2/π (4.3.26)

Now taking a small σ > 0. Combining (4.3.20), (4.3.26) and the boundedness of ||V (2)||-||V (4)|| shows
that our goal (4.3.5) can be obtained for any Lipschitzian U . The last thing to do is to remove the
assumption vexS ≤ 2. Since U is bounded from below, we can assume that Investor’s capital never
drops below some known constant (if it does that would mean Market violated some of his obligations,
then Investor can choose zero moves). But spending an arbitrary small ε > 0 on D will make sure that
Investor’s dividends ∑

t

(dS(t)
S(t)

)
≥ varS(2)

(inft S(t))2

from holding D will be infinitely large when vexS > 2 and will compensate any losses incurred by his
main hedging strategy.

Investor can multiply his capital significantly unless Market makes vexS = 2 (part of this result is
incorperated in the proof Theorem 4.3.1). If vexS > 2, one can become infinitely rich by buying the
security D, and if vexS < 2, one can become infinitely rich by selling D.

4.3.2 Proposition. For any arbitrarily small ε > 0 there exixts a strategy which, starting from ε at the
moment when S(0) and D(0) are announced, never goes to debt and earns more than 1 if:
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• S is continuous,

• sup0≤t≤T S(t) <∞,

• inf0≤t≤T S(t) is positive and non-infinitesimal, and

• vexS 6= 2.

Proof. Assume that the conditions are satisfied and we show how to get rich when vexS < 2 or
vexS > 2. We first show how to get rich when vexS > 2. Since vexS > 2, then varS(2) is infinitely
large, while D(0) is finite. Buying $ε worth of D, we will get an infinitely large amount,

ε
∑
t

(dS(t)
S(t)

)
≥ ε

(
sup
t
S(t)

)−2
varS(2),

in dividends, however, ε is arbitrarily small. Now assume that vexS < 2. In this case, varS(2) is
infinitesimal. Selling $1 worth of D, we will get at least 1 when vexS is different from 2.

 

 

 

 



5. Conclusion
In this paper we considered a market that prices two derivative securities, stock S and the security
D. We employed protocols for the market that prices stock S which pays no dividends and security D
which pay dividend (∆Sn/Sn−1)2 each time step. No stochastic assumptions or probability structures
are imposed on our securities for these protocols. Our aim was to price European options using model
free approach. Through Theorem 4.3.1, we achieved our goal. U(S(T )) is a fair price for the European
option with maturity T , this result is similar to the classical case, the difference is that we don’t start with
any probability structure at outset, but it emerges and the remaining volatility σ2(T − t) is equivalent
to the price of the security D at time 0.
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