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Abstract

On the Method of Lines for Singularly Perturbed Partial Differential

Equations

Nana Adjoah Mbroh

MSc Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

Many chemical and physical problems are mathematically described by par-

tial differential equations (PDEs). These PDEs are often highly nonlinear and

therefore have no closed form solutions. Thus, it is necessary to recourse to

numerical approaches to determine suitable approximations to the solution

of such equations. For solutions possessing sharp spatial transitions (such as

boundary or interior layers), standard numerical methods have shown limi-

tations as they fail to capture large gradients. The method of lines (MOL)

is one of the numerical methods used to solve PDEs. It proceeds by the

discretization of all but one dimension leading to systems of ordinary differ-

ential equations. In the case of time-dependent PDEs, the MOL consists of

discretizing the spatial derivatives only leaving the time variable continuous.

The process results in a system to which a numerical method for initial value

problems can be applied. In this project we consider various types of singu-

larly perturbed time-dependent PDEs. For each type, using the MOL, the

spatial dimensions will be discretized in many different ways following fitted

numerical approaches. Each discretisation will be analysed for stability and

convergence. Extensive experiments will be conducted to confirm the analyses.
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Chapter 1

Introduction

In this chapter, we give a general description of singularly perturbed problems and their

numerical treatments. In line with the objective of this thesis, we introduce the fitted

finite difference methods and the method of lines. Subsequently, we review some related

literature and also present the summary of this thesis in the last section of this chapter.

1.1 Singularly perturbed problems

Many practical problems arising from the development of science and technology are de-

scribed by parameter dependent differential equations. These equations underly pertur-

bation problems. There are two categories of perturbation problems: regular and singular

perturbation problems. A problem Pε is called regular if the smoothness of its solution

u(x, ε) depends on a parameter 0 < ε << 1. Else, Pε is a singular perturbation problem

(SPP). In SPPs, the parameter ε, called the singular perturbation parameter, multiplies

the highest derivative term of the differential equation underlying the problem Pε. As a

consequence, if one sets ε = 0, the order of the equation drops. This is not the case for

regular perturbation problems.

To be more precise, setting ε = 0, we obtain a reduced problem which we denote by

P0 whose solution we denote by u(x, 0). If

lim
ε→0

u(x, ε) = u(x, 0),

then Pε is a regular perturbation problem, otherwise it is an SPP.
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Solutions of SPPs typically contain layers. For the purpose of this research we consider

only linear time-dependent problems. To illustrate the layer behaviour, we follow the

works of [34, 55] and present some examples.

Example 1.1.1. Consider the reaction-diffusion problem

Lu ≡ ut − εuxx + b(x, t)u = f, (x, t) ∈ Q = Ω× (0, T ], Ω = (0, 1), (1.1.1)

with the conditions u(0, t) = η0, u(1, t) = η1 and u(x, 0) = ϕ(x). (1.1.2)

Here and in the rest of this work, ut ≡ ∂u/∂t, uxx ≡ ∂2u/∂x2. Setting ε = 0 in

(1.1.1) gives the initial value problem ut + b(x, t)u = f, along with the conditions (1.1.2).

Clearly, when solving the reduced problem, we require none of the boundary conditions,

thus the solution will exhibit two boundary layers in the respective boundaries of the

spatial domain. Figure 1.1 illustrates the two boundary layers occurring in the solution

of problem (1.1.1)-(1.1.2) at a fixed time.

Figure 1.1: Solution of Example 1.1.1 displaying the two boundary layers at a prescribed

time.

Example 1.1.2. Consider the convection-diffusion problem

Lu ≡ ut − εuxx + a(x, t)ux + b(x, t)u = f, (x, t) ∈ Q = Ω× (0, T ], Ω = (0, 1), (1.1.3)

with the conditions, u(0, t) = η0, u(1, t) = η1, and u(x, 0) = ϕ(x). (1.1.4)

Here, setting ε = 0 will result in the first order equation ut + a(x, t)ux + b(x, t) = 0,

along with the conditions (1.1.4). It turns out that only one boundary condition and
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the initial condition are required for the determination of the analytic solution. Thus a

boundary layer will occur at x = 1. Note that for a negative convective term, the layer

will occur at the neighbourhood of x = 0. We illustrate the boundary layer in the solution

of (1.1.3) in Figure 1.2.

Figure 1.2: Solution of Example 1.1.2 showing the boundary layer near x = 1.

For a demonstration purpose we give a general two-point non-linear boundary value

problem which has an interior layer.

Example 1.1.3.

−εd
2u

dx2
+ u

du

dx
+ u = 0, u(−1) = u−1, u(1) = u1. (1.1.5)

When ε = 0, we have v(x)v′(x) + v(x) = 0, as the reduced problem with the solutions

v(x) = 0 and v(x) = −x+ k. Using the boundary conditions gives v(x−) = −x+ u−1 − 1

and v(x+) = −x + u1 + 1. Thus the layer will occur at the interior (u−1 + u1)/2 of the

domain. We display the interior layer in Figure 1.3.

3
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v−0

x

v+
0

u−1

u1

1−1

interior layer

Figure 1.3: Solution of Example 1.1.3 with interior layers.

Since SPPs play a predominant role in applied sciences and engineering, finding their

solutions is a necessity. However, in most cases, determining analytical solutions to such

problems is difficult, if at all possible. Now the idea is to determine the best approximation

to the analytical solution. The choice of strategies to determine such approximations is

dictated by many factors. One important factor to be considered is the physical systems of

concern [38] so that the physical properties of the solution is preserved after the problem

has been solved. Two broad categories of these methods are the Asymptotic Methods

and the Numerical Methods.

Asymptotic methods describe the qualitative behaviour such as the location and width

of the layers in the solution. Examples of these asymptotic methods include, the Suc-

cessive Complementary Expansions, Matched Asymptotic Expansion and the Method of

Multiple Scales. The most used of these asymptotic methods are the Matched Asymptotic

Expansion and the Method of Multiple Scales. For more insight on the use of asymptotic

methods, interested readers are referred to [60, 47, 61, 62] and the references therein .

4

 

 

 

 

http://etd.uwc.ac.za



Numerical methods, on the other side provide the quantitative behaviour of the so-

lution. These numerical methods include the Finite Difference, Finite Element, Finite

volume and Spectral Methods. However, in SPPs, the classical numerical methods we

mentioned earlier do not give satisfactory results as the singular perturbation parame-

ter approaches zero, [16]. This is due to the fact that these classical numerical methods

do not take into account the behaviour of the solutions in the layer regions. This leads

to large errors when compared with the exact solutions, unless a large number of mesh

points is used in the approximation process. However, this renders the numerical method

computationally inefficient. Sometimes, the increase in mesh points also causes the re-

sulting systems of algebraic equations to be ill conditioned. Therefore, there is a need

for methods which are not prone to these computational difficulties and can serve as a

better approximations of the exact solution. These methods are said to be ε−uniformly

convergent and are defined in 1.1.1 according to the following definition .

Definition 1.1.1 ([34]). Consider a family of mathematical problems parametrized by a

singular perturbation parameter ε, where ε lies in the semi-open interval 0 < ε ≤ 1. As-

sume that each problem in the family has a unique solution denoted by uε is approximated

by a sequence of numerical solutions {Uε, Ω̄n}∞n=1, where Uε is defined on the mesh Ω̄ and

n is the discretization parameter. Then the numerical solutions Uε are said to converge ε-

uniformly to the exact solution uε, if there exist a positive integer n0 and positive numbers

C and p, where n0, p and C are all independent of n and ε, such that, for all n ≥ n0,

sup
0<ε≤1

||Uε − uε||Ω̄nτ ≤ Cn−p.

Here p is called the ε-uniform rate of convergence and C is called the ε-uniform error

constant.

In this definition we used the maximum norm. In the rest of the thesis, whenever a

norm is required we will use the discrete or the continuous maximum norm according to

the situation at hand.

This dissertation is concerned with the design and implementation of ε−uniform

convergent methods (according to Definition 1.1.1) in the context of finite difference
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schemes. Two classes of such schemes exist namely the fitted mesh finite difference meth-

ods (FMFDM) and the fitted operator finite difference methods (FOFDM).

Next we describe these two classes with more details.

1.2 Finite difference methods

In the context of SPPs, two categories of finite difference methods (FDMs) have been

used by researchers. These FDMs, called fitted FDMs, are designed in such a way that

they handle the numerical ”instabilities” created by the presence of the perturbation

parameter.

Now, we show how the FOFDMs and the FMFDMs are designed for the reaction-

diffusion and convection-diffusion problems.

1.2.1 Fitted operator finite difference methods

Fitted Operator Finite Difference Methods (FOFDMs) were introduced by Lubuma and

Patidar ([30, 31]) by applying the modelling rules of Mickens which gave rise to the Non-

standard Finite Difference Methods (NSFDMs) [32]. The FOFDMs consist of replacing

the classical finite difference operator by one which captures the layer behaviour of the

problem on a uniform mesh/grid.

In the two examples below, we see how these FOFDMs are designed in practice for

time-dependent SPPs.

The case of a reaction-diffusion problem

We consider the problem in Example 1.1.1. According to [33], the concept of sub-equations

is the major tool to derive the denominator function for a PDE. The denominator function

in pivotal is the process of replacing the classical finite difference operator by a fitted

operator. Thus we write (1.1.1) as

−εd
2u

dx2
+ bu = 0,

∂u

∂t
− ε∂

2u

∂x2
= 0 ,

du

dt
+ bu = 0,

6
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and design the scheme for each sub-equation. Let n and K denote positive integers.

Consider the uniform sub-divisions of Ω = [0, 1] and [0, T ] as follows:

x0 = 0, xi = x0 + i∆x, i = 1(1)n− 1, ∆x = xi − xi−1, xn = 1.

t0 = 0, tk = t0 + kτ, k = 1(1)K − 1, τ = tk − tk−1, tK = T.

We denote the approximation of u(xi) ≡ ui and u(tk) in the case of ODEs by Ui and

Uk respectively. For the solution u(xi, tk) = uki of a PDE, we use the notation Uk
i . Using

the theory of finite difference methods we obtain the schemes

−εUi − 2Ui + Ui−1

φ
+ bUi = 0, (1.2.6)

Uk+1
i − Uk

i

τ
= ε

Uk
i − 2Uk

i + Uk
i−1

φ
,

Uk+1 − Uk

τ
+ bUk = 0.

We calculate the denominator function φ in (1.2.6) as follows: the exact solution of the first

equation is the linear combination of the terms exp
(
−
√
b/ε∆x

)
and exp

(√
b/ε∆x

)
.

Now we follow [32] to construct a second order difference equation as follows∣∣∣∣∣∣∣∣∣
Ui U1;i U2;i

Ui+1 U1;i+1 U2;i+1

Ui+2 U1;i+2 U2:i+2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
Ui exp

(
−
√

b
ε
∆xi

)
exp

(√
b
ε
∆xi

)
Ui+1 exp

(
−
√

b
ε
∆xi+1

)
exp

(√
b
ε
∆xi+1

)
Ui+2 exp

(
−
√

b
ε
∆xi+2

)
exp

(√
b
ε
∆xi+2

)
∣∣∣∣∣∣∣∣∣ = 0. (1.2.7)

Simplifying the determinant (1.2.7) and lowering the index i by one give the difference

scheme

Ui+1 − 2 cosh

(√
b

ε
∆xi

)
Ui + Ui−1 = 0 (1.2.8)

But sinh(∆x/2) = ±
√

(cosh(∆x)− 1)/2, thus from (1.2.6) and (1.2.8) we obtain the

scheme

−ε Ui+1 − 2Ui + Ui−1

(4ε/b) sinh2(
√
b/ε∆xi/2)

+ bUi = 0,

with the denominator function φ = (4ε/b) sinh2(
√
b/ε∆xi/2). Now combining the sub-

discrete difference schemes above we obtain

Uk
i − Uk−1

i

τ
− ε

Uk
i+1 − 2Uk

i + Uk
i−1(

4 ε
b

sinh
(√

b
ε
∆xi

)) + bUk
i = fki .

7
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The case of a convection-diffusion problem

We consider the problem in 1.1.2 and follow the basic procedure in [33] to calculate the

denominator function of the scheme.

Similarly, we write the sub-equations

∂u

∂t
− ε ∂u

∂x2
= 0,

∂u

∂t
+ a

∂u

∂x
= 0,

du

dt
+ bu = 0,

−εd
2u

dx2
+ a

du

dx
= 0, −εd

2u

dx2
+ bu = 0, a

du

dx
+ bu = 0.

Following the same procedure as before and using the same notations we obtain the

difference schemes for each sub-equation as

Uk+1
i − Uk

i

τ
= ε

Uk
i+1 − 2Uk

i + Uk
i−1

φ2
,
Uk+1
i − Uk

i

τ
= −a

Uk
i − Uk

i−1

∆x
,
Uk+1 − Uk

τ
− = bUk

ε
Ui+1 − 2Ui + Ui−1

φ
= a

Ui − Ui−1

∆x
,
Ui+1 − 2Ui + Ui−1

φ2
= bUi, a

Ui − Ui−1

∆x
= bUi.

We calculate φ from the scheme

ε
Ui+1 − 2Ui + Ui−1

φ
= a

Ui − Ui−1

∆x
,

as follows: the sub-equation

−εd
2u

dx2
+ a

du

dx
= 0,

can be rewritten as a system of two first order coupled differential equations as

du

dx
= y,

dy

dx
=
a

ε
y.

Now to obtain the discrete difference scheme for y we use the first order forward difference

scheme

yi =
Ui+1 − Ui

∆x
.

The discrete form of dy/dx is given by

a

ε
yi =

yi+1 − yi
∆x

⇒ yi+1 =
a∆x

ε
yi + yi, yi+1 = yi

(
a∆x

ε
+ 1

)
.

Since (a∆x/ε+ 1) occurs in the finite difference scheme, we replace the denominator ∆x

by εa−1 exp (a∆x/ε− 1) . Combining these two equations and replacing the y gives

ε∆x

a
exp

(
a∆x

ε
− 1

)
,
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as the value of the denominator function φi. Combining the sub-schemes, we obtain the

difference scheme

Uk
i − Uk−1

i

τ
− ε

Uk
i+1 − 2Uk

i U
k
i−1

φi
+ a

(
Uk
i − Uk

i−1

∆x

)
+ bUk

i = fki , φ =
ε∆x

a
exp

(
a∆x

ε
− 1

)
.

1.2.2 Fitted mesh finite difference methods

The family of Fitted Mesh Finite Difference Methods (FMFDMs) consist of discretizing

the continuous problems via a classical finite difference scheme on a appropriately modified

mesh. The mesh is modified in such a way that the method captures the difficulties

inherent to the presence of the perturbation parameter. The meshes/grids employed are

basically non-uniform and are of various types. There are piecewise uniform meshes (also

known as meshes of Shishkin type) which are a union of two or more uniform meshes with

different step-sizes, usually fine inside the layer(s) region(s) and coarse outside. There

are also graded meshes which include Bakhvalov’s and Vulanovic’s meshes. These meshes

are uniform outside the layer(s) region(s) and graded from very fine to coarse inside the

layer(s) region(s). In either case, the location of the layers as well as their sizes must be

determined before designing the meshes.

In this dissertation, reference to FMFDMs implies usage of piecewise uniform meshes.

Now we show, in practice, how these meshes are designed.

Let Ωn be the non-uniform discrete domain. Here, n is the number of mesh points,

defined to satisfy n > 2r, r ≥ 2 and σ is the transition point which separates the layer re-

gion and the non-layer region. As indicated earlier problem (1.1.1)-(1.1.2) is characterized

with two boundary layers. Thus we sub-divide the domain [0, 1] into three sub-domains;

[0, σ], [σ, 1− σ] and [1− σ, 1], each with the step size 4σ/n, 2(1− 2σ)/n and 4σ/n. That

is [0, σ], [1− σ, 1], are for the respective layer regions near x = 0 and x = 1, and [σ, 1− σ]

for the non-layer region. The step size for the entire domain [0, 1] is given by

∆xi = xi − xi−1 :=


4σn−1, i = 1, 2, ..., n/4,

2(1− 2σ)n−1, i = n/4 + 1, ..., 3n/4,

4σn−1 i = 3n/4 + 1, ..., n.
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The transition parameter σ is given by

σ = min

{
1

4
, σ0

√
ε lnn

}
and satisfies 0 < σ < 1/4. Note that when σ = 1/4, then Shishkin mesh is a uniform

mesh. Now we obtain the mesh points

Ωn = {0 = x0 < ... < xn = 1}.

Figure 1.4 below illustrates the Shishkin mesh for problem (1.1.1).

1− σ0 1σ

Figure 1.4: Shishkin mesh for n = 16 for the reaction-diffusion problem (1.1.1).

Problem (1.1.3)-(1.1.4) has a single boundary layer thus we divide the interval [0, 1]

into [0, 1− σ] and [1− σ, 1] each with the step size n/2 and n/2 + 1 mesh points. For this

problem σ lies in the interval 0 < σ < 1/2 and it is given by

σ = min

{
1

2
, σ0ε lnn

}
.

Also, when σ = 1/2, then the mesh is a uniform mesh. We obtain the mesh width

∆xi = xi − xi−1 :=

 2(1− σ)n−1, i = 1, 2, ..., n/2,

2σn−1, i = n/2 + 1, ..., n.

Figure 1.5 illustrates Shishkin mesh for the spatial domain in problem (1.1.3)-(1.1.4).

0 1σ

Figure 1.5: Shihskin mesh for a layer near x = 1.

Similarly when the layer is at the left of the domain Ω we use the mesh width

∆xi = xi − xi−1 :=

 2σn−1, i = 1, 2, ..., n/2

2(1− σ)n−1, i = n/2 + 1, ..., n,
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with σ defined as before.

0 1σ

Figure 1.6: Shihskin mesh for a layer near x = 0.

In this thesis we employ the method of lines to approximate singularly perturbed

problems. Next, we discuss the method of lines.

1.3 Method of Lines

A two-stage approach where the independent variables in the initial-boundary value prob-

lem are decoupled, solved and analysed separately is what is termed as Method of Lines

(MOL). More specifically, the spatial domain is discretized and at the same time the

spatial differential operator is replaced with a discrete difference operator. Usually this

depends on the order of the spatial differential operator and the choice of numerical

method intended for the spatial approximation. At this stage the time variable is held

continuous on it domain. This results in systems of initial value problems with incorpo-

rated boundary conditions known as Differential Algebraic Equations (DAE). Solutions

of these DAEs can be obtained with standard integrators as described in [1] or can still

be discretized to achieve the desired result. Actually one major advantage of using this

approach is the many options one has on the availability of vast sophisticated software’s

for integrating the DAEs. This approach is sometimes called the longitudinal method of

Lines [17].

Another school of thought suggests that the Method of Lines can be viewed as a con-

tinuous spatial domain with a discrete time domain. Hence the time differential operator

is replaced with a discrete difference operator whilst the spatial differential operator is

maintained, resulting in boundary value problems. For instance elliptic problems will be

the outcome of parabolic problems with more than one spatial variables after the time

discretization. From here the resulting DAEs which is a combination of boundary value

problems and initial conditions can be solved with boundary value methods like the fitted
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operator finite difference methods, the moving mesh methods or even the finite element

methods. This is known as the transversal method of lines [17] or the Rothe’s method

[54]. We refer to these two approaches here and there after as the method of lines and

the Rothe’s method.

These two approaches are sometimes called the semi-discrete methods either in space

for the former or in time for the latter. Both methods have the advantage of being

computationally efficient over the methods which discretize all the independent variables

at the same time. This is due to the fact that they reduce computational effort, time as

well as the cost of computations. All because it allows the computation of one independent

variable at a time. Also, with this semi-discrete approach a higher order PDE with more

than one spatial variables can be solved computationally without any difficulties. Hence

they are sometimes referred to as the standard tools or approaches for solving complex

and practical electromagnetic problems [56].

In the second part of the MOL, the ODEs are then integrated in time. In the selection

of an ODE solver properties such as accuracy and computational complexities are consid-

ered so that the physical properties of the PDE are preserved. Usually, the spectrum of

the discrete spatial operator serves as a guide in the selection.

Remark 1.3.1. Note that the effectiveness of this method requires that the eigenvalues of

the spatial discrete operator scaled by the time step should lie in the stability region of the

ODE solver.

There are several numerical techniques for solving these ODEs. These include the

Euler method, the Midpoint Rule, Crank Nicholson’s method, Runge Kutta methods,

etc. In this thesis we employ the implicit Euler method to integrate the IVPs which

result from the spatial discretization. This method is known to be a strong stability

preserving numerical method. A numerical method which enjoys the following properties

is a strong stability preserving method [18].

a. Monotonicity

If um and um−1 are the solutions at the times tm and tm−1 times respectively, then
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it holds that either

||um|| ≤ ||um−1|| or ||um−1|| ≤ ||um||,

b. Contractivity

Given two approximate solutions um−1 and ũm−1 at the time tm−1, and um and

ũm at the time tm. Where these two solutions represent the solution of the original

problem and a perturbed problem we have

||um − ũm|| ≤ ||um−1 − ũm−1||,

or vice versa.

c. Positivity

um ≥ 0, ∀ tm

If the numerical method admits the above properties then it also satisfies the absolute

monotonicity condition

||I + τL|| ≤ 1. (1.3.9)

Below we demonstrate the method of lines in practice.

1.3.1 Case 1: Example 1.1.1

Spatial discretization

We suppose ε = 1 and partition the domain Ω as follows:

x0 = 0, xi = x0 + i∆x, ∆x = xi − xi−1, i = 1(1)n, xn = 1, (1.3.10)

where ∆x is the step size and n is the number of sub-intervals. We denote the approxima-

tion of u(xi, t) ≡ ui(t) via the spatial discretization by U(xi, t) ≡ Ui(t). The discretization

in space yields the semi-discrete problem

LnUi(t) ≡
d

dt
Ui(t)−

Ui+1(t)− 2Ui(t) + Ui−1(t)

∆x2
+ bi(t)Ui(t) = fi(t), (1.3.11)
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with the semi-discrete boundary and initial conditions U0(t) = η0, Un(t) = η1 and

Ui(0) = ϕi, i = 1, 2, ..., n− 1. Equation (1.3.11) can be written in the matrix notation as

U ′(t) + A(t)U(t) = F (t), (1.3.12)

with the initial condition Ui(0) = ϕi, i = 1, ..., n − 1, where F (t) ∈ Rn−1, is the semi-

discrete form of fi(t) and the boundary conditions, U(t) ∈ R(n−1) and A(t) ∈ R(n−1)×(n−1).

The entries of these variables are given as

Aii(t) = 2∆x−2 + bi(t), i = 1, 2, ..., n− 1,

Ai,i+1(t) = −∆x−2, i = 1, 2, ..., n− 2,

Ai,i−1(t) = −∆x−2, i = 2, 3, ..., n− 1,

F1(t) = f1(t) + η0∆x−2,

Fi = fi(t), i = 2, 3, ..., n− 2,

Fn−1(t) = fn−1(t) + η1∆x−2.

It is to be noted that the coefficient matrix A(t), is usually sparse and has a banded

structure which depends on the finite difference formula used for the spatial discretization.

Thus A is a square triadiagonal matrix.

The second order central difference approximation is known to be stable and consistent

of order two.

IVP-integration

We integrate equation (1.3.12) on a uniform mesh. Here we take advantage of the

shelf solvers. We consider an example in [13] to show this numerically. We take b =

1, f = 0, u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx) and the exact solution is u(x, t) =

exp(−(π2 + 1)t) sin(πx). We compute the maximum pointwise error and the numerical

rate of convergence. The exact solution of this problem is given, thus we compute the

error with the formula

En = max
(xi,tk)∈Qn,K

|U(xi, tk)− u(xi, tk)|, (1.3.13)
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where U(xi, tk) is the numerical solution and u(xi, tk) is the exact solution. To compute

the numerical rate of convergence we use the formula

r = log2 (En/E2n) . (1.3.14)

Table 1.1: Maximum pointwise error and rate of convergence for Problem (1.1.1)-(1.1.2)

via MOL as presented above.

n En r

16 1.10E − 03 2.04

32 2.67E − 04 2.05

64 6.65E − 05 2.04

128 1.62E − 05 2.14

256 3.67E − 06 2.75

512 5.45E − 07

1.3.2 Case 2: Example 1.1.2

Following the same procedure as previously and using the partition (1.3.10) we have the

following discretization

LnUi(t) ≡
d

dt
Ui(t)−

Ui+1(t)− 2Ui(t) + Ui−1(t)

∆x2
+ ai(t)

(
Ui(t)− Ui−1(t)

∆x

)
+bi(t)Ui(t) = fi(t), (1.3.15)

with the semi-discrete boundary and initial conditions U0(t) = η0 Un(t) = η1, and Ui(0) =

ϕi, i = 1, 2, ..., n− 1. We write equation (1.3.15) in the matrix notation

U ′(t) + A(t)U(t) = F (t), (1.3.16)

with the initial condition Ui(0) = ϕi, i = 1, 2, ..., n − 1. Where U(t), F (t) ∈ Rn−1, and

A(t) ∈ R(n−1)×(n−1). Their entries are given as

Aii(t) = 2∆x−2 + ai(t)∆x
−1 + bi(t), i = 1, 2, ..., n− 1,
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Ai,i+1(t) = −∆x−2, i = 1, 2, ..., n− 2,

Ai,i−1(t) = −∆x−2 − ai(t)∆x−1, i = 2, 3, ..., n− 1,

F1(t) = f1(t) + (∆x−2 + a1(t)∆x−1)η0,

Fi = fi(t), i = 2, 3, ..., n− 2,

Fn−1(t) = fn−1(t) + ∆x−2η0.

Similar to the previous example we integrate the IVPs (1.3.16) with the built a built-in

MATLAB integrators. In our computations, we take Ω = [−2, 2], a = 1, b = 0, T = 4,

and the initial condition u(x, 0) = exp(−x2). The boundary conditions are such that the

exact solution is given by (
√

1 + 4t)−1 exp(−(x− t)2/(1 + 4t)).

Table 1.2: Maximum pointwise error and rate of convergence for Problem (1.1.3)-(1.1.4)

via MOL as presented above.

n En r

32 6.51E − 02 0.88

64 3.53E − 02 0.96

128 1.82E − 02 0.98

256 9.26E − 03 0.99

512 4.67E − 03 0.99

1024 2.35E − 03

1.4 Literature review on numerical methods for time-

dependent singularly perturbed problems

Quite often, it is difficult, if at all possible, to determine the exact solution of singularly

perturbed partial differential equations that model real life situations. From the theory of

differential equations, it is always possible to establish existence and uniqueness of such

solution even if they cannot be calculated analytically. Numerical methods are therefore

necessary to provide approximations to the solution. However, the challenges that face
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numerical analysts is to be able to design numerical methods which produce better ap-

proximations. It is in that context that standard numerical methods are inadequate for

SPPs. In an attempt to resolve this issue, several works were published since the Third

International Congress of Mathematicians held in Heidelberg in 1904 [51]. We now give

a brief account on some of these works accomplished in the last two decades.

Linß [28] studied a time-dependent reaction-diffusion problem. He employed the clas-

sical finite element method on a layer adapted mesh to approximate the spatial derivative

along with the backward Euler for the time discretization. The method was shown to be

of first order accuracy in time and second order in space.

Miller et al. [35] used the backward Euler method along with the classical finite

difference method on a piecewise uniform mesh to approximate the time and the space

derivatives. Their analysis which made use of solution decomposition and special barrier

functions gave a first order accuracy and almost second order accuracy in time and space.

Using the Green functions, Linß and Madden [29] provided a more general analysis the

methods designed in [35] and showed that the method is first order accurate in time and

almost second order accurate in space.

Clavero and Gracia [9] combined the backward Euler and the classical finite difference

method on a layer adapted mesh for their approximation. They resorted to three different

meshes namely the Shishkin, the Bahkvalov and the Vulanovic for the spatial discretiz-

tion. They analysed their schemes for convergence and obtained an almost second order

accuracy for the Shishkin and the Vulanovic meshes, with that of the Bakhavalov mesh

yielding a second order accuracy.

Natesan and Deb in [46] proposed a numerical method which is ε-uniform of order

O(n−2
x ln2 nx + n−1

t ). Here nx and nt are the number of sub-intervals in the space and

time variables respectively. They employed a hybrid scheme on a piecewise uniform mesh

to discretize the spatial variable along with the backward Euler for the time derivative.

Note that their hybrid scheme was a combination of the cubic spline which approximated

the boundary layer part and the central difference approximation which also dealt with

the non layer part.

In [43], Munyakazi and Patidar proposed a discretisation of a reaction diffusion poblem
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in which they used the fitted operator finite difference method to approximate the spatial

derivative and the backward Euler for the time derivative. This scheme was shown to be

second and first order accurate in space and time, respectively.

The variational-perturbation theory was used by Zhou and Wu in [63] to integrate

a time-dependent reaction-diffusion problem exhibiting both boundary layer and outer

regions. The authors showed that their method is accurate.

Kopteva and Savscu [23] considered a time-dependent semi-linear reaction-diffusion

problem. They employed both Bakhavalov and Shishkin types of meshes for the spatial

discretization together with the backward Euler method for the time discretization. Using

the discrete upper and lower solutions they obtained the error bounds C(τ +n−2 ln2) and

C(τ + n−2) for the Shishkin and the Bakhavalov mesh respectively. Here and thereafter

τ is the width of the mesh spacing in time and ε, n are as defined earlier.

In the case of systems of time-dependent reaction-diffusion problems, Gracia and Lis-

bona [19] used the implicit Euler method and the classical finite difference method on

a piecewise uniform mesh for the time and space discretizations. They analysed their

scheme for convergence and obtained a second order accuracy in space and a first order

in time.

Ramos [52] studied a time-dependent convection-diffusion problems. He used an expo-

nentially fitted finite difference method to discretize the spatial variable and the backward

Euler for the time variable. His analysis gave a first order accuracy in both space and

time variables.

Lenferink [25] considered a time-dependent convection-diffusion problem in the frame-

work of method of lines. He employed the classical finite element method on a Bakhavalov-

Shishkin type of meshes to approximate the spatial derivatives and the implicit midpoint

rule for the time integration. Analysis of both discretization gave a second order accuracy

in both space and time variables.

Ng-Stynes et al. [45] used the semi-discrete Petrov-Galerkin finite element method to

integrate a time-dependent convection-diffusion problem with variable coefficients. Their

analysis gave a first order accuracy in both variables. Kadalbajoo et al. [22] studied the

same problem via the Rothe’s method. They used the standard implicit finite difference
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scheme for the temporal discretization and the B-spline collocation method on a piecewise

uniform mesh for the spatial discretization. They showed that their method is first order

accurate in time and second in space.

Similarly, Kadalbajoo and Awasthi [21] developed a parameter uniform numerical

method to approximate a time-dependent convection-diffusion problem. They combined

the Crank Nicholson finite difference method and the second order upwind scheme on a

piecewise uniform mesh to approximate the time and space variables respectively. Their

analysis gave a second order accuracy in time and an almost first order in space.

Clavero and Gracia [5] also studied a one-dimensional time-dependent convection-

diffusion problem. They used the implicit Euler method for the time discretization and

the simple upwind scheme on a special non-uniform mesh for the spatial discretization.

They proved that their method is of first order accuracy in time and almost first order in

space.

Still on the same problem, Natesan and Gowrisankar [44] used the backward Euler

and the classical upwind finite difference method on a layer adapted mesh for the time

and space variables respectively. Their analysis gave a first order accuracy in time and

almost first order in space.

In [2], Cheng and Liu used a positive monitor function to develop an adaptive grid for

the spatial discretization and the backward Euler for the time discretization. The analysis

of each discretization gave a first order uniformly convergent rate.

Rao and Srivastava [53] treated a time-dependent weakly coupled linear system of sin-

gularly perturbed convection-diffusion equations. These authors combined the backward

Euler method on a uniform mesh and the HODIE (high order differences with identity

expansion) scheme together with the classical finite difference scheme on Shishkin mesh

to discretize the time and space variables respectively. Their analysis gave a first order

accuracy in time and an almost second order in space. Munyakazi [39] studied a two

parameter convection-diffusion problem via the Rothe’s method. He used the backward

Euler method for the time discretization and the FOFDM for the space discreization. His

analysis gave a first order accuracy in both space and the time variables. Still on the two

parameters affecting the first and the second spatial derivatives, Miller et al. [36] con-
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structed a monotone finite difference method on a piecewise uniform mesh of first order

in both variables except for a logarithmic factor in the spatial variable.

For a two-dimensional reaction-diffusion problems, Clavero et al. [4] used the alternat-

ing direction method and the classical finite difference method on a non-uniform mesh to

discretize the time and the space variables respectively. Their analysis gave a first order

accuracy in both variables.

Clavero et al. [3] discretized the spatial variables of a convection-diffusion problem with

the classical upwind finite difference method on non-uniform mesh and the time variable

with the fractional step method. Their analysis gave a first order accuracy in time and an

almost first order accuracy in space. In [8], Clavero et al. used the Peaceman and Rachford

methods to descretize the time variable and HODIE (high order differences with identity

expansion) finite difference method to discretize the space variables. The authors proved

their method to be second order accurate in time and an almost second order accurate in

space. In [12], Clavero and Jorge treated both two-dimensional convection and reaction-

diffusion time-dependent problems. The spatial discretization of both problems were done

with the FMFDM particularly on a Shishkin mesh and the implicit Euler integrating

method on a uniform mesh was used for the time discretization. Their analysis resulted

in an almost first order accuracy in space for the convection-diffusion problem and an

almost second order accuracy in space for the reaction-diffusion problem. Both with

respect to the perturbation parameter and the implicit Euler also yielding a first order

accuracy.

From the above, we observe that a large amount of work has been done on time-

dependent singularly perturbed problems as far as designing and analysing numerical

methods for their integration is concerned. In most of these works, FMFDMs have been

adopted. Moreover, the method of lines has received very little attention from the research

community. In this thesis we consider time-dependent singularly perturbed problems.

We will solve problems in the framework of the method of lines. On one side we will

review the existing FMFDMs and on the other, we will design, analyse and implement

FOFDMs.
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1.5 Objectives and organisation

The method of lines involves a step by step discretization. First, the spatial variable is

discretized followed by the discretization of the time variable. Discretization of the spatial

variable results in a system of semi-discrete problems. These are in turn discretized in

time via the backward Euler method.

We will review some existing methods where the spatial discretization is done via

FMFDMs. In this case we will refer to the method as the Fitted Mesh Finite Difference

Method of lines (FMFDMLs). We will also design methods where the discretization in

space is performed via FOFDMs. The resulting scheme will be termed the Fitted Operator

Finite Difference Method of Lines (FOFDMLs).

The summary of each chapter is as follows. In Chapter 2, we consider a time-dependent

reaction-diffusion problem. The chapter begins with some qualitative properties of the

continuous problem whose replication in the semi-discrete form are used to analyse the

numerical methods in later sections. Next, we design fitted numerical methods (FMFDM

and FOFDM) to integrate the PDE in space. Subsequently, we provide some properties

of the semi-discrete problem which are then used to give a detailed analysis of each spatial

discretization. We integrate the IVPs with the backward Euler method and analyse it

for convergence. To support the analysis we perform numerical experiments with a text

example.

Following the procedures in Chapter 2, we study a convection dominated one-dimensional

time-dependent problem in Chapter 3. Chapter 4 treats a two-dimensional time-dependent

reaction-diffusion whilst its corresponding convection-diffusion problem is studied in Chap-

ter 5.

In the final Chapter, we give a brief discussion of the thesis with some concluding

remarks of the whole picture as well as future direction of this research.

21

 

 

 

 

http://etd.uwc.ac.za



Chapter 2

Methods of Lines for

One-Dimensional Reaction-Diffusion

Problems

In the previous chapter we gave an overview of singularly perturbed problems and the

method of lines. Also, we introduced some ε-uniform numerical methods to solve such

problems. Our objective in this chapter is to use the FMFDM of lines and the FOFDM

of lines for time-dependent singularly perturbed reaction-diffusion problem. First, we

discretize the space variable with a FMFDM and analyse it for convergence. Then we do

the same with a FOFDM. The resulting systems of initial value problems for each method

is then solved with the backward Euler integration technique. To illustrate the method

in practice, we integrate a test example.

2.1 Continuous problem

We consider the one-dimensional time-dependent reaction-diffusion problem

Lu(x, t) ≡ ut − εuxx + b(x, t)u = f(x, t), (x, t) ∈ Q = Ω× (0, T ], Ω = (0, 1), (2.1.1)

with the boundary and initial conditions

u(0, t) = η0, u(1, t) = η1, and u(x, 0) = ϕ(x), x ∈ Ω̄, t ∈ [0, T ], (2.1.2)
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where η0 and η1 are given constants and 0 < ε << 1. The functions b(x, t) and f(x, t)

are assumed to be sufficiently smooth such that b(x, t) ≥ β > 0, ∀ (x, t) ∈ Q and b, f ∈

C4,2(Q̄). Also we impose the compatibility conditions

f(0, 0) = f(1, 0) = 0, fxx(0, 0) + b(0, 0)f(0, 0) = ft(0, 0), fxx(1, 0) + b(1, 0)f(1, 0) = ft(1, 0),

for the solution of problem (2.1.1)-(2.1.2) to be compatible at the corners of Q. Setting

ε = 0, we obtain the reduced problem

Lu0 ≡ u0
t + b(x, t)u0 = f 0, (x, t) ∈ Q, (2.1.3)

u0(x, 0) = ϕ(x), u0(0, t) = η0, u
0(1, t) = η1. (2.1.4)

The reduced problem (2.1.3)-(2.1.4) is an Initial Value Problem (IVP) which has two

boundary conditions and an initial condition. Integration of this IVP will not make use

of the two boundary conditions. As a result, there will be two boundary layers at the

ends of the spatial domain each of width O(
√
ε| ln ε|), see [11]. Note that these boundary

layers are of parabolic type. The differential operator

L =
∂

∂t
− ε ∂

2

∂x2
+ bI

admits the continuous maximum principle which ensures the stability of the solution.

Next we provide qualitative properties of the solution to problem (2.1.1)-(2.1.2) with its

derivatives.

Qualitative properties of the continuous problem

We follow [34] to present some properties of the continuous problem. These properties

ensure the existence and uniqueness of the solution to problem (2.1.1)-(2.1.2).

Lemma 2.1.1. (Continuous maximum principle). Let ξ be a sufficiently smooth function

defined on Q which satisfies ξ(x, t) ≥ 0, ∀ (x, t) ∈ ∂Q. Then Lξ(x, t) > 0, ∀ (x, t) ∈ Q

implies that ξ(x, t) ≥ 0, ∀ (x, t) ∈ Q̄.

Proof. Let (x∗, t∗) be such that

ξ(x∗, t∗) = min
(x,t)∈ Q̄

ξ(x, t)
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and suppose ξ(x∗, t∗) < 0. It is clear that ξ(x∗, t∗) 6∈ ∂Q. We have

Lξ(x∗, t∗) = ξt(x
∗, t∗)− εξxx(x∗, t∗) + b(x∗, t∗)ξ(x∗, t∗).

Since ξxx(x
∗, t∗) ≥ 0 and ξt(x

∗, t∗) = 0, we obtain L(x∗, t∗) < 0, which contradicts with

the initial assumption that L(x, t) > 0, ∀ (x, t) ∈ Q. Therefore, ξ(x, t) ≥ 0, ∀ (x, t) ∈

Q̄.

Lemma 2.1.2. (Stability estimate). Let u(x, t) be the solution of the continuous problem

(2.1.1)-(2.1.2). Then we have the bound

||u|| ≤ β−1||f ||+ max(ϕ(x),max(η0, η1)).

Proof. We define two comparison functions Ψ± as

Ψ±(x, t) = β−1||f ||+ max(ϕ(x),max(η0, η1))± u(x, t).

At the initial stage we have

Ψ±(x, 0) = β−1||f ||+ max(ϕ(x),max(η0, η1))± u(x, 0)

= β−1||f ||+ max(ϕ(x),max(η0, η1))± ϕ(x)

≥ 0,

at the boundaries we obtain

Ψ±(0, t) = β−1||f ||+ max(ϕ(0),max(η0, η1))± u(0, t)

= β−1||f ||+ max(ϕ(0),max(η0, η1))± η0

≥ 0,

Ψ±(1, t) = β−1||f ||+ max(ϕ(1),max(η0, η1))± u(1, t)

= β−1||f ||+ max(ϕ(1),max(η0, η1))± η1

≥ 0,

and

LΨ±(x, t) = Ψ±t (x, t)− εΨ±xx(x, t) + b(x, t)Ψ±(x, t)

= b(x, t)(β−1||f ||+ max(ϕ(x),max(η0, η1)))± Lu(x, t)

= b(x, t)(β−1||f ||+ max(ϕ(x),max(η0, η1)))± f(x, t)

≥ 0, since b(x, t) > β.

24

 

 

 

 

http://etd.uwc.ac.za



Therefore Ψ±(x, t) ≥ 0, ∀ (x, t) ∈ Q̄. This ends the proof.

To be able to carry out a fully fledge analysis of the numerical methods we will see in

later sections, the bounds on the solution and its derivatives are needed. To obtain these

bounds we follow [35].

These authors proved that under the smoothness and the compatibility conditions

imposed on problem (2.1.1)-(2.1.2), its exact solution and its derivatives satisfy the bound∣∣∣∣∣∣∣∣∂i+kuε∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ Cε−
i
2 ,

where i, k are integers which lie in the interval 0 ≤ i + 2k ≤ 4 and C is a constant

independent of ε. However, this bound cannot be used to obtain the ε-uniform bound of

the numerical method we will see in later sections. Thus to obtain the ε-uniform bound

we write the exact solution u(x, t) as the sum

u(x, t) = v(x, t) + w(x, t),

where v(x, t) and w(x, t) are the regular and the layer components of u(x, t), respectively.

The regular component is the solution to the problem

Lv = f, (x, t) ∈ Q, v = 0, on x ∈ Ω, t = 0,

v = v0, on x ∈ Ω, t ∈ (0, T ].

Furthermore, we split v into the components

v(x, t) = v0(x, t) + εv1(x, t),

where v0(x, t) is the solution of the reduced problem and v1(x, t), satisfies the equation

Lv1(x, t) =
∂2v0

∂x2
, (x, t) ∈ Q, v1 = 0, x ∈ (0, 1), t ∈ (0, T ].

Also, we have the layer part of the solution to satisfy the homogeneous problem

Lw = 0, (x, t) ∈ Q, w = 0, on x ∈ Ω, t = 0.

w = −v0, on x ∈ Ω, t = (0, T ].
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Similar to the regular component, we divide w(x, t) into

wl(x, t) + wr(x, t),

with the definitions

Lwl = 0, (x, t) ∈ Q, wl = −v0, x = 0, t ∈ (0, T ], wl = 0, x = 1, t ∈ (0, T ],

Lwr = 0, (x, t) ∈ Q, wr = −v0, x = 1, t ∈ (0, T ], wr = 0, x = 0, t ∈ (0, T ],

respectively. Clearly, wl and wr are the respective boundary layers at x = 0 and x = 1.

To obtain the bounds of each component, recall that v0 is the solution of the reduced

problem, thus it is independent of ε and hence, satisfies the bound∣∣∣∣∣∣∣∣∂i+kv0

∂xi∂tk

∣∣∣∣∣∣∣∣
Q̄

≤ C.

Also, v1 is a solution to a problem of the same manner as the original problem and so has

the bound ∣∣∣∣∣∣∣∣∂i+kv1

∂xi∂tk

∣∣∣∣∣∣∣∣
Q̄

≤ Cε
i
2 .

In addition, we have ∣∣∣∣∣∣∣∣ ∂i+kv∂xi∂tk

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∂i+kv0

∂xi∂tk

∣∣∣∣∣∣∣∣+ ε

∣∣∣∣∣∣∣∣∂i+kv1

∂xi∂tk

∣∣∣∣∣∣∣∣
Q̄

,

= C + Cεε−
i
2 ,

≤ C(1 + ε(2−i)/2),

as the bound of the regular component of the solution. The bound of the left layer function

is given as ∣∣∣∣∣∣∣∣∂i+kwl(x, t)∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ Cε−
i
2 exp

(
−x√
ε

)
.

To prove this bound, we define two comparison functions Ψ± as

Ψ±(x, t) = C exp

(
−x√
ε

)
exp(αt)± wl(x, t).

At the boundaries and the initial stages we have

Ψ±(0, t) = C exp

(
−0√
ε

)
exp(αt)± wl(0, t)
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= C exp(αt)± v0

≥ 0,

Ψ±(1, t) = C exp

(
−1√
ε

)
exp(αt)± wl(1, t)

= C exp

(
−1√
ε

)
exp(αt)± 0

≥ 0,

Ψ±(x, 0) = C exp

(
−x√
ε

)
exp(α0)± wl(x, 0)

= C exp

(
−x√
ε

)
± 0

≥ 0,

and

LΨ±(x, t) = Ψ±t − εΨ±xx + b(x, t)Ψ±

= [α− 1 + b(x, t)] exp
(
−x/
√
ε
)

exp (αt)± Lwl

= [α− 1 + b(x, t)]C exp

(
−x√
ε

)
exp(αt)

≥ [α− 1 + β]C exp

(
−x√
ε

)
exp(αt)

≥ 0.

From the maximum principle the left layer function satisfies the bound

||wl(x, t)|| ≤ C exp

(
− x√

ε

)
exp(αt)

≤ C exp

(
−x√
ε

)
exp(αT )

≤ C exp

(
−x√
ε

)
.

To obtain the bounds on the derivatives of wl we set x̃ = x/
√
ε so that the left layer

function becomes the solution of

w̃lt − εw̃lxx + b̃wl = 0, Q̃ =

(
0,

1√
ε

)
× (0, T ].

In [24], the authors showed that with respect to the position of the stretched function x̃

two distinct cases are considered, one for the case when x̃ is in (0, 2]× (0, T ] and the other
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is when x̃ lies in the neighbourhood (2, 1/
√
ε) × (0, T ]. When x̃ is in (2, 1/

√
ε) × (0, T ]

then we have

||w̃l(x̃, t)|| ≤ C||w̃l||, x̃ ∈ (0, 2]× (0, T ],

which results in ∣∣∣∣∣∣∣∣∂i+kwl∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ C exp

(
−x√
ε

)
x ∈ (0, 1),

when we transform it back to the original variable x/
√
ε. Also, in the other half of the

domain we have the bound as∣∣∣∣∣∣∣∣∂i+kwl∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ C

(
1 + exp

(
−x√
ε

))
, x ∈ (0, 1).

The proof of the bound on the right layer function wr can be obtained analogously to

that of the left layer function. Collecting the individual bounds together, we obtain

||u(i,k)(x, t)|| ≤ C
[
1 + ε−

i
2

(
exp(−x/

√
ε) + exp(−(1− x)/

√
ε)
)]
. (2.1.5)

Next we discretize problem (2.1.1)-(2.1.2) in space with the FMFDM.

2.2 Spatial discretization with the FMFDM

In this section we explore a FMFDM to discretize the spatial variable in problem (2.1.1)-

(2.1.2). Problems of type (2.1.1)-(2.1.2) are known to be characterised by two boundary

layers, thus we employ the transition parameter σ, defined as

σ = min

{
1

4
, σ0

√
ε lnn

}
,

and the mesh width

∆xi = xi − xi−1 :=


4σn−1, i = 1, 2, ..., n/4,

2(1− 2σ)n−1, i = n/4 + 1, ..., 3n/4,

4σn−1 i = 3n/4 + 1, ..., n,

which leads to the partition

{0 = x0 < .. < σ < ... < 1− σ < ... < xn = 1}.

Here σ0 is a constant and n is the number of sub-intervals.
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2.2.1 The FMFDM

We denote the approximation of u(xi, t) by Ui(t) and discretize problem (2.1.1)-(2.1.2) in

space to obtain the semi-discrete ordinary differential equations (ODEs)

LnUi(t) ≡
dUi(t)

dt
− 2ε

∆xi + ∆xi+1

(
Ui+1(t)− Ui(t)

∆xi+1

− Ui(t)− Ui−1(t)

∆xi

)
+ bi(t)Ui(t)

= fi(t), for i = 1, 2, ...n− 1, (2.2.6)

with the semi-discrete boundary and initial conditions

U0(t) = η0, Un(t) = η1 and Ui(0) = ϕi. (2.2.7)

Incorporating the boundary conditions, we write the scheme (2.2.6)-(2.2.7) in matrix

notation

U ′(t) + A(t)U(t) = F (t). (2.2.8)

Here A(t) ∈ Rn−1×Rn−1, is a tridiagonal matrix and F (t), U(t) are in Rn−1. The entries

of A(t) and F (t) are given as:

Aii(t) =
2ε

∆xi + ∆xi+1

(
1

∆xi+1

+
1

∆xi

)
+ bi(t), i = 1, 2, ..., n− 1,

Ai,i+1(t) = − 2ε

∆xi+1(∆xi + ∆xi+1)
, i = 1, 2, ..., n− 2,

Ai,i−1(t) = − 2ε

∆xi(∆xi + ∆xi+1)
, i = 2, 3, ..., n− 1,

F1(t) = f1(t) +

(
2ε

∆x1(∆x1 + ∆x2)

)
η0,

Fi(t) = fi(t), i = 2, 3, ..., n− 2,

Fn−1(t) = fn−1(t) +

(
2ε

∆xn(∆xn−1 + ∆xn)

)
η1.

It is to be noted that the difference scheme considered here produces a coefficient ma-

trix A(t) which is positive definite, thus it is an M-matrix [55] and hence the solution

of equation (2.2.8) exist and is unique. Next we analyse the scheme (2.2.6)-(2.2.7) for

convergence. .

2.2.2 Error analysis

Before we proceed with the error analysis, we highlight some properties of the semi-discrete

problem (2.2.6)-(2.2.7) which play a major role in the said analysis. These properties have
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been established from [12].

Lemma 2.2.1. (Semi-discrete maximum principle). Let ξi(t) be a semi-discrete function

defined on Ω̄n × [0, T ] and satisfies ξ0(t) ≥ 0, ξn(t) ≥ 0, ∀ 0 ≤ i ≤ n, t ∈ [0, T ]. Then

Lnξi(t) > 0, ∀ (xi, t) ∈ Ωn × [0, T ] implies ξi(t) ≥ 0, ∀ (xi, t) ∈ Ω̄n × [0, T ].

Proof. Let l be an index such that

ξl(t) = min
xi∈Ω̄n; t∈[0,T ]

ξi(t),

holds and assume ξl(t) < 0. Clearly l 6= 0, l 6= n. We have (ξl(t))t = 0, ξl+1(t)− ξl(t) ≥

0, and ξl(t)− ξl−1(t) ≥ 0. It follows that

Lnξi(t) = (ξl(t))t − εδ2ξl(t) + bl(t)ξl(t)

= (ξl(t))t −
2ε

hi+1 + hi

[
ξl+1(t)− ξl(t)

hi+1

− ξl+1(t)− ξl(t)
hi

]
+ bl(t)ξl(t)

≤ 0,

which is a contradiction. Therefore, ξi(t) ≥ 0, ∀ (xi, t) ∈ Ω̄n × [0, T ].

Lemma 2.2.2. (Uniform stability estimate). If ui(t) is the solution of the semi-discrete

problem (2.2.6)-(2.2.7), then it satisfies the bound

|ui(t)| ≤ β−1 max
(xi,t)∈Ω̄n×[0,T ]

|Lnui(t)|+ max
(xi,t)∈Ω̄n×[0,T ]

(|ϕi|,max(η0, η1)).

Proof. We consider the functions Ψ±i (t) defined by

Ψ±i (t) = p± ui(t),

where we have used the definition

p = β−1 max
(xi,t)∈Ω̄n×[0,T ]

|Lnui(t)|+ max
(xi,t)∈Ω̄n×[0,T ]

(|ϕi|,max(η0, η1)).

At the boundaries we have

Ψ±0 (t) = p± u0(t) = p± η0 ≥ 0,

Ψ±n (t) = p± un(t) = p± η1 ≥ 0.

30

 

 

 

 

http://etd.uwc.ac.za



Further on the domain 0 < i < n we obtain

LnΨ±i (t) = − 2ε

∆xi + ∆xi+1

(
p± ui+1(t)− p± ui(t)

∆xi+1

− p± ui(t)− p± ui−1(t)

∆xi

)
+bi(t)(p± ui(t)) + (p± ui(t))t

= bi(t)p± Lnui(t)

= bi(t)

[
β−1 max

(xi,t)∈Ωn×[0,T ]
|Lnui(t)|+ max

(xi,t)∈Ωn×[0,T ]
(|ϕi|,max(η0, η1))

]
± fi(t)

≥ 0, bi(t) ≥ β,

Therefore, from the semi-discrete maximum principle 2.2.1, Ψ±i (t) ≥ 0, ∀ (xi, t) ∈ Ω̄n ×

[0, T ]. This ends the proof.

Now we decompose the numerical solution Ui(t) into its regular and singular compo-

nents

Ui(t) = Vi(t) +Wi(t).

This decomposition is done in order to obtain the ε-uniform bound of the error. Each

term satisfies the differential equation

LnVi(t) = fi(t), on Ωn × (0, T ], Vi(t) = vi(t), on ∂Ωn × (0, T ],

LnWi(t) = 0, on Ωn × (0, T ], Wi(t) = −vi(t), on ∂Ωn × (0, T ].

Now we write the error as

|Ui(t)− ui(t)| ≤ |Vi(t)− vi(t)|+ |Wi(t)− wi(t)|,

and estimate each term separately.

Error of the regular component

We define the truncation error of the smooth component as

Ln(Vi(t)− vi(t)) = fi(t)− Lnvi(t),

= (L − Ln)vi(t),

= −ε
(
∂2

∂x2
− δ2

)
vi(t).
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This does not include the time derivative term thus we estimate the error as though the

problem is a stationary problem. Following [34] we present the theoretical error analysis.

To achieve this goal we consider two cases; one is when xi lies in the layer region and the

other is when it lies outside the layer region. If xi ∈ [σ, 1 − σ] then we have the error

estimate as

|Ln(Vi(t)− vi(t))| =
∣∣∣∣−ε [(vxx(t))i − 2

∆xi + ∆xi+1

(
vi+1(t)− vi(t)

∆xi+1

− vi(t)− vi−1(t)

∆xi

)]∣∣∣∣ .
A truncated Taylor series expansions of vi+1(t) and vi−1(t) using the integral remainder

terms gives

vi+1(t)− vi(t)
∆xi+1

− vi(t)− vi−1(t)

∆xi
=

∆xi+1

2
(vxx(t))i +

∆xi
2

(vxx(t))i

+
1

2!∆xi+1

∫ xi+1

xi

(xi+1 − s)2(vxxx(t))ids

+
1

2!∆xi

∫ xi−1

xi

(xi−1 − s)2(vxxx(t))ids.

Thus we have the error as

|Ln(Vi(t)− vi(t))| =

∣∣∣∣−ε [vxx(t))i − 2

∆xi + ∆xi+1

(
∆xi+1

2
(vxx(t))i +

∆xi
2

(vxx(t))i

+
1

2!∆xi+1

∫ xi+1

xi

(xi+1 − s)2(vxxx(t))ids

+
1

2!∆xi

∫ xi−1

xi

(xi−1 − s)2(vxxx(t))ids

)]∣∣∣∣
=

∣∣∣∣ ε

(∆xi + ∆xi+1)

(
1

∆xi+1

∫ xi+1

xi

(xi+1 − s)2(vxxx(t))ids+

1

∆xi

∫ xi−1

xi

(xi−1 − s)2(vxxx(t))ids

)∣∣∣∣
≤ ε |(vxxx(t))i|

(∆xi + ∆xi+1)

[
1

∆xi+1

∫ xi+1

xi

(xi+1 − s)2ds− 1

∆xi

∫ xi

xi−1

(s− xi−1)2ds

]

≤ ε
|(vxxx(t))i|

(∆xi + ∆xi+1)

[
1

3∆xi+1

(xi+1 − xi)3 − 1

3∆xi
(xi − xi−1)3

]
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≤ ε|(vxxx(t))i|
3(∆xi + ∆xi+1)

[
(xi+1 − xi)2 − (xi − xi−1)2

]

≤ ε

3
(xi+1 − xi−1)|(vxxx(t))i|.

Note that the mesh is very fine in the layer region, thus we bound the error as

|Ln(Vi(t)− vi(t))| =
∣∣∣∣−ε [(vxx(t))i − vi+1(t)− 2vi(t) + vi−1(t)

∆x2
i

]∣∣∣∣ .
Again using appropriate Taylor series expansion yields

vi+1(t)− 2vi(t) + vi−1(t)

∆x2
i

= (vxx(t))i +
∆x2

i

12
(vxxxx(t))i

|Ln(Vi(t)− vi(t))| =

∣∣∣∣−ε [(vxx(t))i − (vxx(t))i −
∆x2

i

12
(vxxxx(t))i

]∣∣∣∣
≤ ε

∆x2
i

12
|(vxxxx(t))i|.

Collecting these two results together, we obtain the error estimate of the regular compo-

nent as

|LnVi(t)− vi(t)| ≤

 Cε(xi+1 − xi−1)|(vxxx(t))i|, xi ∈ [σ, 1− σ],

Cε(xi − xi−1)2|(vxxxx(t))i|, otherwise.

Using the bounds (vxxx(t))i, (vxxxx(t))i and xi − xi−1 < Cn−1 gives

|Ln(Vi(t)− vi(t))| ≤

 C
√
εn−1, xi ∈ [σ, 1− σ],

Cn−2, otherwise.

The choice of transition parameter indicates a second order method, however, the results

of the truncation error says otherwise. Thus we introduce the comparison function

Φ(xi, t) = C(n−2 + n−2 σ√
ε
θ(xi)), where θ is a piecewise linear polynomial defined by

θ(xi) =


xσ−1, 0 ≤ xi ≤ σ,

1, σ ≤ xi ≤ 1− σ,

(1− xi)σ−1, 1− σ ≤ xi ≤ 1,

δθ(xi) =

 −nσ−1, x ∈ (σ, 1− σ),

0, otherwise.

From the value of the transition parameter we have that for all xi ∈ Ωn, and t ∈ (0, T ],

the barrier function yields

Φ(xi, t) = Cn−2 + cn−2 σ√
ε
,
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≤ Cn−2 + Cn−2(σ0 lnn),

≤ Cn−2 lnn.

When xi ∈ [σ, 1− σ], the semi-discrete operator on the barrier function gives

LnΦ(xi, t) = Φt(xi, t)− εδ2Φ(xi, t) + b(xi, t)Φ(xi, t)

= −εδΦ(xi, t) + b(xi, t)Φ(xi, t)

=
√
εbi(t)n

−1 + Cn−2 ≥ C(
√
εn−1 + n−2),

and when xi lies in the two layer regions we have

LnΦ(xi, t) ≥ Cn−2.

Combing these two estimates gives

LnΦ(xi, t) ≥

 C
√
εn−1 + cn−2, xi ∈ [σ, 1− σ],

Cn−2, otherwise.

Now we introduce the functions

Ψ±i (t) = Φ(xi, t)± Vi(t)− vi(t).

From Lemma 2.2.1 Ψ±i (t) ≥ 0, ∀ (xi, t) ∈ ∂Ωn × [0, T ], thus at each point (xi, t) ∈ Ωn ×

[0, T ], LnΨ±i (t) ≥ 0. It follows that

Ψ±(xi, t) ≥ 0, ∀ (xi, t) ∈ Ω̄n × [0, T ],

and hence |Vi(t)− vi(t)| ≤ Φ(xi, t) ≤ Cn−2 lnn. Which implies

|Vi(t)− vi(t)| ≤ Cn−2 lnn.

Error of the singular component

To estimate the error corresponding to the singular part, we write Wi(t) analogously to

the singular component of the exact solution as Wi(t) = Wri(t) +Wli(t), where each term

also satisfies

LnWl(t) = 0, (xi, t) ∈ Ωn × (0, T ], Wl = −v0, xi ∈ Ωn, t ∈ (0, T ],

Wl = 0, t ∈ (0, T ],

LnWr(t) = 0, ∈ (xi, t) ∈ Ωn × (0, T ], Wr = −v0, xi ∈ Ωn, t ∈ (0, T ],

Wr = 0, t ∈ (0, T ].
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Now the error is of the form

|Wi(t)− wi(t)| = |Wl(xi, t)− wl(xi, t)|+ |Wr(xi, t)− wr(xi, t)|.

To bound the error of the left layer function, there are two possibilities depending on the

value of the transition parameter σ, that is, either σ = 1
4

or σ = σ0

√
ε lnn. In the former

case the mesh is uniform and thus the classical error estimate used for standard finite

difference methods can be used. In the latter case the mesh is piecewise uniform and

so the estimate will depend on the mesh spacing. Here we consider only the latter case

because the difference scheme considered here is on a piecewise uniform mesh. Depending

on the mesh spacing, we have two distinct error cases which are; the error in sub-intervals

[0, σ] and [1−σ, 1] with the spacing 4σ/n and the spacing 2(1−2σ)/n for the sub-interval

[σ, 1− σ].

Note that in the sub-intervals (0, σ) and (1− σ, 1) the mesh is very fine so we bound

the error as follows

|Ln(Wl(t)− wl(t))(xi)| = −ε
(
∂2

∂x2
− δ2

)
wl(t).

Using appropriate Taylor series expansions gives the estimate

|Ln(Wl(t)− wl(t))(xi)| ≤ Cε(xi − xi−1)2|(wlxxxx(t))i|

From the bounds on the fourth derivative and the step size ∆xi = 4σn−1, we have

|Ln(Wl(t)− wl(t))(xi)| ≤ Cε

(
4σ

n

)2

ε−2 exp

(
−x√
ε

)
≤ Cn−2σ

2

ε
exp

(
− x√

ε

)
However, σ = σ0

√
ε lnn and hence the error becomes

|Ln(Wl(t)− wl(t))(xi)| ≤ Cn−2 (σ0

√
ε lnn)2

ε
exp

(
− x√

ε

)
≤ Cn−2 lnn2 exp

(
− x√

ε

)
≤ Cn−2 lnn2.

When xi ∈ [σ, 1− σ) the error is given as

|Ln(Wl(t)− wl(t))(xi)| = −ε|(wlxx(t)− δ2wl(t))(xi)|.
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But |δ2(wl(t))(xi)| ≤ maxxi−1,xi+1
|wlxx(t)(xi)|, therefore we have

|Ln(Wl(t)− wl(t))(xi)| ≤ 2ε max
xi−1,xi+1

|(wlxx(t))(xi)|.

Now using the step size 4σ
n

we have −xi−1 = −σ + 4σ
n

and so

|Ln(Wl(t)− wl(t))(xi)| ≤ C exp

(
−xi−1√

ε

)
≤ C exp

(
−σ√
ε

)
exp

(
4σn−1

√
ε

)
≤ C exp (−2 lnn) exp (8n−1 lnn)

≤ Cn−2(n
1
n )8

≤ Cn−2.

Adding the results in each domain gives

|Ln(Wl(t)− wl(t))(xi)| ≤ Cn−2 lnn2 + Cn−2,

≤ Cn−2 lnn2,

for all (xi, t) ∈ Ω̄n × [0, T ] which results in

|(Wl(t)− wl(t))(xi)| ≤ C(n−1 lnn)2

on the application of Lemma 2.2.2. The estimate for the right layer function can be

obtained in a similar manner and it is given as

|(Wr(t)− wr(t))(xi)| ≤ C(n−1 lnn)2.

Lemma 2.2.3. Let ui(t) be the exact solution of (2.1.1)-(2.1.2) and Ui(t) the solution of

(2.2.6)-(2.2.7) at x = xi. Then we have

max
0<ε≤1

max
0≤i≤n

|Ui(t)− ui(t)| ≤ C(n−1 lnn)2,

where C is a constant independent of n and ε.

Next, we design a fitted operator finite difference method to discretize in space.
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2.3 Spatial discretization with the FOFDM

Now, we develop a FOFDM to discretize problem (2.1.1)-(2.1.2)in space. Then, we will

analyse the method for convergence.

2.3.1 The FOFDM

Let n be a positive integer and divide the interval [0, 1] into the uniform sub-intervals

x0 = 0, xi = x0 + i∆x, i = 1(1)n− 1, ∆x = xi − xi−1, xn = 1.

Denoting the approximation u(xi, t) by Ui(t), we discretize the space variable to obtain

the scheme

L∆xUi(t) ≡
dUi(t)

dt
− εUi+1(t)− 2Ui(t)− Ui−1(t)

φ2
i (ε,∆x, t)

+ bi(t)Ui(t) = fi(t), (2.3.9)

together with the semi-discrete boundary and initial conditions

U0(t) = η0, Un(t) = η1 and Ui(0) = ϕi, i = 1, ..., n− 1. (2.3.10)

Here the denominator function φ is given by

φi(ε,∆x, t) =
2

ρ2
i

sinh

(
ρi∆x

2

)
,

where ρi =
√
bi(t)/ε. Similar to the previous section, we write the difference scheme

(2.3.9)-(2.3.10) as

U ′(t) + A(t)U(t) = F (t), (2.3.11)

where U(t), F (t) ∈ Rn−1 and A(t) ∈ Rn−1 ×Rn−1. The entries of A(t) and F (t) are given

by

Aii(t) =
2ε

φ2
i (ε,∆x, t)

+ bi(t), i = 1, 2, ..., n− 1,

Ai,i+1(t) = − ε

φ2
i (ε,∆x, t)

, i = 1, 2, ..., n− 2,

Ai,i−1(t) = − ε

φ2
i (ε,∆x, t)

, i = 2, 3, ..., n− 1,

F1(t) = f1(t) +
ε

φ2
1(ε,∆x, t)

η0,

Fi(t) = fi(t), i = 2, 3, ..., n− 2,

Fn−1(t) = fn−1(t) +
ε

φ2
n−1(ε,∆x, t)

η1.
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Again, the coefficient matrix A(t) is also an M-matrix and thus the semi-discrete problem

(2.3.9)-(2.3.10) admits the maximum principle which also ensures stability of the solution.

Note that these properties have been stated in Lemmas 2.2.1 and 2.2.2 so we will refer to

them when the needed arises to avoid repetition.

Now, we analyse the spatial discretization for convergence.

2.3.2 Error analysis

The following lemma will be needed to prove the uniform convergence of the numerical

method (2.3.9)-(2.3.10) [41].

Lemma 2.3.1. For all integers j on a fixed mesh , we have that

lim
ε→

max
1<i<n−1

exp(−Cxi
√
ε)

εj/2
= 0

and

lim
ε→

max
1<i<n−1

exp(−C(1− xi)/
√
ε)

εj/2
= 0,

where xi = i∆x, ∆x = 1/n, ∀ i = 1(1)n− 1.

Proof. When the domain [0, 1] is converted in to the discrete domain [0 = x0 < x1 <

x2 < · · · < xn−1 < xn = 1], we see that the interior grid point satisfy the inequalities

max
1<i<n−1

exp(−Cxi/
√
ε)

εj/2
≤ exp(−Cx1/

√
ε)

εj/2
=

exp(−C∆x/
√
ε)

εj/2
,

and

max
1≤i≤n−1

exp(−C(1− xi)/
√
ε)

εj/2
≤ exp(−C(1− xn)/

√
ε)

εj/2
= C

exp(−C∆x/ε)

εj/2

Since x1 = ∆x, 1−xn−1 = 1− (n−1)∆x = 1−n∆x+ ∆x = ∆x. Applying L’Hospitals’s

rule results in

lim
ε→0

exp(−C∆x/
√
ε)

εj/2
= lim

p=1/
√
ε→∞

pj

exp(C∆xp)
≡ lim

p→∞

j!

(C∆x)j exp(C∆xp)
= 0.
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Now we estimate the truncation error as follows:

L∆x(Ui(t)− ui(t)) = fi(t)− L∆xui(t)

=
(
L − L∆x

)
ui(t),

= ε

[
−(uxx(t))i +

ui+1(t)− 2ui(t) + ui−1(t)

φ2
i (ε,∆x, t)

]
.

Since the time derivative does not appear in the expression above, the analysis will be

done as for a stationary problem. Using a truncated Taylor series expansion of ui+1(t)

and ui−1(t) gives

L∆x(Ui(t)− ui(t)) = −ε(uxx(t))i +
ε

φ2
i

(
∆x2(uxx(t))i +

∆x4

12
(uxxxx(t))iξ

)
ξ ∈ (ui+1, ui−1).

We expand the denominator function φ−2
i in Taylor series to obtain 1/∆x2 − ρ2

i /12

+ρ4
i∆x

2/240. The error yields

L∆x(Ui(t)− ui(t)) =

(
ε

∆x2
− ερ2

i

12
+
ερ4

i∆x
2

240

)(
∆x2(uxx(t))i +

∆x4

12
(uxx(t))iξ

)
−ε(uxx(t))i, ξ ∈ (ui+1, ui−1),

= −ε(uxx(t))i + ε(uxx(t))i + ε
∆x2

12
(uxxxx(t))iξ − ε

ρ2
i∆x

2

12
(uxx(t))i −

ε
ρ2
i∆x

4

144
(uxxxx(t))iξ + ε

ρ4
i∆x

4

240
(uxx(t))i + ε

ρ4
i∆x

6

2880
(uxxxx(t))iξ

=

(
ε

12
(uxxxx(t))iξ − ε

ρ2
i

12
(uxx(t))i

)
∆x2 −+

(
ε
ρ4
i

2880
(uxxxx(t))iξ

)
∆x6(

ε
ρ2
i

144
(uxxxx(t))iξ − ε

ρ4
i

240
(uxx(t))i

)
∆x4

Applying the bounds on the derivatives and Lemma 2.3.1 results in

|L∆x(Ui(t)− ui(t))| =

(
ε

12
− ερ

2
i

12

)
∆x2 −

(
ε
ρ2
i

144
− ε ρ

4
i

240

)
∆x4 +

(
ε
ρ4
i

2880

)
∆x6

≤ C∆x2,

where we have used the relation ∆x2 > ∆x4 > ..., . Invoking Lemma 2.2.2 yields

|Ui(t)− ui(t)| ≤ C∆x2.
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Lemma 2.3.2. The fitted operator finite difference scheme (2.3.9)-(2.3.10) satisfies the

theoretical error

max
0<ε≤1

max
0≤i≤n

|Ui(t)− ui(t)| ≤ C∆x2,

where ui(t) is the exact solution of (2.1.1)-(2.1.2), Ui(t) the numerical solution of (2.3.9)-

(2.3.10) and C is a constant independent of ∆x and ε.

2.4 Time discretization

In this section we integrate the IVPs which resulted from the schemes (2.2.6)-(2.2.7)

and (2.3.9)-(2.3.10) using the backward Euler integration technique on a uniform mesh.

Before we proceed, we suppose u(t) ∈ C2((0, T ]). Throughout this thesis, we use τ and

K to denote the mesh width and the number of sub-intervals. Also, we denote the

approximation of ui(tk) := uki by Uk
i , however for notational simplicity, we drop the

subscript index. Now we define τ by T/K, and thus write the fully discrete scheme as

Uk − Uk−1

τ
+ A(tk)U

k = F (tk), for k = 1, ..., K, (2.4.12)

with initial condition U(0) = ϕ. Rearranging equation (2.4.12) we obtain

Uk = (I + τA(tk))
−1 (τF (tk) + Uk−1).

Now we estimate the error associated with this discretization. Let u(tk) be the exact

solution at a time tk and Uk be the numerical solution. Then local truncation error ek for

the time integration is given by

ek = u(tk)− Uk

= u(tk)− [I + τA(tk)]
−1 (τF (tk) + u(tk−1).

Using a truncated Taylor series expansion of the term u(tk−1)

u(tk−1) ≡ u(tk)− τu′(tk) +
τ 2

2
u
′′
(tk)−

τ 3

3!
u
′′′

(tk) +Oτ 4,

and u′(tk) = F (t)− A(tk)u(t), gives

u(tk−1) = u(tk)− τ [F (tk)− A(tk)u(tk)] +
τ 2

2
u
′′
(tk)−

τ 3

3!
u
′′′

(tk) +Oτ 4.
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The local truncation error ek yields

ek =u(tk)− [I + τA(tk)u]−1

[
u(tk) + τA(tk)u(tk) +

τ 2

2
u′′(tk)−

τ 3

3!
u
′′′

(tk) +Oτ 4

]
=u(tk)− [I + τA(tk)]

−1

[
[I + τA(tk)]u(tk) +

τ 2

2
u′′(tk)−

τ 3

3!
u
′′′

(tk) +Oτ 4

]
.

= [I + τA(tk)]
−1

(
τ 2

2
u′′(tk)−

τ 3

3!
u
′′′

(tk) +Oτ 4

)
.

From the absolute monotonicity condition 1.3.9

ek =
τ 2

2
u′′(tk)−

τ 3

3!
u
′′′

(tk) +Oτ 4,

follows. Now using the relation τ 3 < τ 2 for small τ, and u(t) ≤ C, we obtain

||ek|| ≤ Cτ 2.

Lemma 2.4.1. The local truncation error associated with the time integration satisfies

||ek|| ≤ Cτ 2

where C is a constant independent of ε and K.

From here, the global error EK is given by

EK ≤
K∑
k=1

ek ≤ CKτ 2 ≤ Cτ. (2.4.13)

Lemma 2.4.2. The global error EK of the time discretization, satisfies

||EK || ≤ Cτ.

The main results in this chapter is summarized in Theorem 2.4.1 below.

Theorem 2.4.1. Let u ∈ C4,2(Q̄) be the exact solution of the continuous problem (2.1.1)-

(2.1.2) and Uk
i be the numerical solution obtained via the FMDML (2.2.6-(2.2.7) along

with (2.4.12) or the FOFDML (2.3.9)-(2.3.10) along with (2.4.12). Then the errors of

these methods are as follows:

sup
0<ε≤1

max
0≤i≤n;0≤k≤K

||Uk
i − uki || ≤ C((n−1 lnn)2 + τ), for the FMFDML

and

sup
0<ε≤1

max
0≤i≤n;0≤k≤K

||Uk
i − uki || ≤ C(∆x2 + τ), for the FOFDML.
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2.5 Numerical example

In this section, we verify the theoretical results on the test problem below. We compute the

maximum pointwise error and the numerical rate of convergence for both the FMFDML

and FOFDML. In computations involving the FMFDML, we use σ0 = 2. The exact

solution of the test problem is not known. Therefore, we use the double mesh principle

to compute the maximum pointwise error as follows.

Eε
n,τ = max

0≤i≤n;0≤k≤K
|Uk;K

i;n − U
k;4K
i;2n |, (2.5.14)

where Uk;K
i;n is the numerical solution and Uk;K

i;2n is also a numerical solution but on the

mesh µ(2n, 4K). We have used 2n and 4K in order to balance the error between the time

and space variables in the fully discrete scheme. Also, we compute the rate of convergence

using the formula

rl = log2

(
Eε
n,τ/E

ε
2n,τ/4

)
, l = 1, 2, ... (2.5.15)

The error analysis shows a first order accuracy for the backward Euler, an almost second

order accuracy for the FMFDML and a second order accuracy for the FOFDML, all

with respect to the perturbation parameter. These results which are summarized in

Theorem 2.4.1, are in conformity with the numerical results in Tables 2.1-2.4. Tables

2.1-2.2 display the results obtained for the maximum pointwise error for the FMFDML

and the FOFDML. Likewise Tables 2.3-2.4 show the rate at which the numerical solution

is converging to the exact solution.

Example 2.5.1. [43] Consider the problem

ut − εuxx +
1 + x2

2
u = exp(x)− 1 + sin(πx) (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ Ω̄, u(0, t) = u(1, t) = 0, t ∈ (0, 1].
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Table 2.1: Maximum pointwise error for Example 2.5.1 using the FMFDML

ε n = 32 64 128 256 512

K = 10 40 160 640 2560

100 1.68E − 02 5.74E − 03 1.58E − 03 4.04E − 04 1.02E − 04

10−1 2.43E − 02 6.48E − 03 1.65E − 03 4.14E − 04 1.04E − 04

10−2 2.63E − 02 6.86E − 03 1.73E − 03 4.35E − 04 1.09E − 04

10−3 3.40E − 02 1.08E − 02 2.77E − 03 6.98E − 04 1.75E − 04

10−4 3.38E − 02 1.13E − 02 3.46E − 03 1.04E − 03 3.10E − 04

10−5 3.38E − 02 1.13E − 02 3.45E − 03 1.04E − 03 3.10E − 04

10−6 3.38E − 02 1.13E − 02 3.45E − 03 1.04E − 03 3.10E − 04

10−7 3.38E − 02 1.13E − 02 3.45E − 03 1.04E − 03 3.10E − 04

10−8 3.38E − 02 1.13E − 02 3.45E − 03 1.04E − 03 3.10E − 04

10−9 3.38E − 02 1.13E − 02 3.45E − 03 1.04E − 03 3.10E − 04

10−10 3.38E − 02 1.13E − 02 3.45E − 03 1.04E − 03 3.10E − 04

Table 2.2: Maximum pointwise error for Example 2.5.1 using the FOFDML

ε n = 32 64 128 256 512

K = 10 40 160 640 2560

100 1.68E − 02 5.74E − 03 1.58E − 03 4.04E − 04 1.02E − 04

10−1 2.42E − 02 6.47E − 03 1.64E − 03 4.13E − 04 1.03E − 04

10−2 2.59E − 02 6.75E − 03 1.71E − 03 4.28E − 04 1.07E − 04

10−3 3.26E − 02 9.49E − 03 2.51E − 03 6.37E − 04 1.60E − 04

10−4 3.26E − 02 2.40E − 02 1.12E − 02 3.55E − 03 9.67E − 04

10−5 2.34E − 02 7.94E − 03 1.65E − 02 1.66E − 02 7.20E − 03

10−6 2.35E − 02 6.07E − 03 1.61E − 03 5.50E − 03 1.81E − 02

10−7 2.35E − 02 6.07E − 03 1.53E − 03 3.83E − 04 7.13E − 04

10−8 2.35E − 02 6.07E − 03 1.53E − 03 3.83E − 04 9.59E − 05

10−9 2.35E − 02 6.07E − 03 1.53E − 03 3.83E − 04 9.59E − 05

10−10 2.35E − 02 6.07E − 03 1.53E − 03 3.83E − 04 9.59E − 05
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Table 2.3: Rate of convergence for Ex-

ample 2.5.1 using the FMFDML

ε r1 r2 r3 r4

100 1.55 1.86 1.96 1.99

10−1 1.91 1.97 1.99 2.00

10−2 1.94 1.98 2.00 2.00

10−3 1.66 1.96 1.99 2.00

10−4 1.59 1.70 1.73 1.75

10−5 1.59 1.70 1.73 1.75

10−6 1.59 1.70 1.73 1.75

10−7 1.59 1.70 1.73 1.75

10−8 1.59 1.70 1.73 1.75

10−9 1.59 1.70 1.73 1.75

10−10 1.59 1.70 1.73 1.75

Table 2.4: Rate of convergence for Ex-

ample 2.5.1 using the FOFDML

ε r1 r2 r3 r4

100 1.55 1.86 1.96 1.99

10−1 1.91 1.97 1.99 2.00

10−2 1.94 1.98 2.00 2.00

10−3 1.78 1.92 1.98 1.99

10−4 0.44 1.09 1.66 1.87

10−5 1.56 −1.05 −0.01 1.20

10−6 1.95 1.92 −1.78 −1.72

10−7 1.95 1.99 2.00 −0.89

10−8 1.95 1.99 2.00 2.00

10−9 1.95 1.99 2.00 2.00

10−10 1.95 1.99 2.00 2.00

2.6 Conclusion

In this chapter, we considered one-dimensional reaction diffusion problems. We started

by presenting qualitative properties pertaining to these problems. Then we reviewed a

special case of the fitted mesh finite difference method of lines (FMFDML) of [12]. This

FMFDML is second order convergent in space (except for a logarithmic factor) and first

order convergent in time. Further we designed a fitted operator finite difference method

of lines (FOFDML). This method consists of a space discretization via fitted operator

finite difference method followed by a time discretization using a backward Euler method.

Convergence analysis shows that this FOFDML is second order accurate uniformly with

respect to the perturbation parameter ε. To illustrate this method in practice, we con-

ducted numerical simulations on a test example. The computed results confirmed our

theoretical results.
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Chapter 3

Methods of Lines for

One-Dimensional

Convection-Diffusion Problems

In this chapter, devoted to one-dimensional convection-diffusion problems, we first explore

a particular case of the FMFDML in [12]. Then, we develop a FOFDML. After presenting

some qualitative results relating to the convection-diffusion problems under study, we

present the methods, their convergence analysis and some numerical results to illustrate

the performance of the algorithms.

3.1 Continuous problem

We consider the problem

Lu(x, t) ≡ ut − εuxx + a(x, t)ux + b(x, t)u = f(x, t), (x, t) ∈ Q = Ω× (0, T ], Ω = (0, 1).

(3.1.1)

Subject to the boundary and the initial condition

u(0, t) = η0, u(1, t) = η1, u(x, 0) = ϕ(x), x ∈ Ω̄, t ∈ [0, T ]. (3.1.2)
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The perturbation parameter ε is such that 0 < ε << 1, the coefficient functions a(x, t), b(x, t)

and f(x, t) are sufficiently smooth and satisfy

a(x, t) ≥ α > 0, b(x, t) ≥ β > 0, ∀ (x, t) ∈ Q̄.

We assume enough compatibility conditions so that the solution will match at the corners

of the domain. It is well known that the exact solution of problem (3.1.1)-(3.1.2) is

characterised with layers at the neighbourhood x = 1, of Q. Similar to problem (2.1.1)-

(2.1.2) in Chapter 2, problem (3.1.1)-(3.1.2) admits the continuous maximum principle as

well as the uniform stability estimate in Lemmas 2.1.1 and 2.1.2 respectively.

Under the hypothesis of these two lemmas, the exact solution and its derivatives satisfy∣∣∣∣∣∣∣∣∂i+ku(x, t)

∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ C

(
1 + ε−i exp

(
−α(1− x)

ε

))
, ∀ (x, t) ∈ Q̄. (3.1.3)

Where i and k are positive integers such that 0 ≤ i ≤ 3 and 0 ≤ i + j ≤ 3, [21]. Also, it

admits the decomposition

u(x, t) = v(x, t) + w(x, t),

which represents the regular and singular components respectively. The regular compo-

nent is the solution to the non-homogeneous problem

Lv(x, t) = f(x, t), (x, t) ∈ Q, v(0, t) = u(0, t), t ∈ [0, T ], v(x, 0) = ϕ, x ∈ Ω̄,

and the layer component is the solution to the homogeneous problem

Lw(x, t) = 0, (x, t) ∈ Q, w(x, 0) = 0, x ∈ Ω, w(0, t) = 0, t ∈ [0, T ],

w(1, t) = u(1, t)− v(1, t), t ∈ [0, T ].

Further, the regular component can be written in the form

v(x, t) = v0(x, t) + εv1(x, t) + ε2v2(x, t), (x, t) ∈ Q̄.

Where v0 is the solution to the reduced problem

Lv0 ≡ v0
t (x, t) + a(x, t)v0

x(x, t) + b(x, t)v0(x, t) = f(x, t), (x, t) ∈ Q

v0(x, 0) = ϕ, x ∈ Ω, v0(0, t) = 0, t ∈ [0, T ],
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and v1, v2 are the respective solutions to the problems

Lv1 ≡ v1
t (x, t) + a(x, t)v1

x(x, t) + b(x, t)v1(x, t) = v0
xx(x, t), (x, t) ∈ Q,

v1(x, 0) = 0, x ∈ Ω̄, v1(0, t) = 0, t ∈ [0, T ],

Lv2 ≡ v2
t (x, t)− εv2

xx(x, t) + a(x, t)v2
x(x, t) + b(x, t)v2(x, t) = v1

xx(x, t), (x, t) ∈ Q,

v2(x, t) = 0, (x, t) ∈ Q̄.

The functions vj, j = 0, 1, are solutions to a problem which is independent of ε, hence

they satisfy the bound ∣∣∣∣∣∣∣∣∂i+kvj∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ C.

For v2 it is the solution to a problem similar to the original problem therefore it satisfies∣∣∣∣∣∣∣∣∂i+kv2

∂xi∂tk

∣∣∣∣∣∣∣∣ ≤ C

(
1 + ε−i exp(

−α(1− x)

ε

)
.

When we add these two results, we obtain∣∣∣∣∣∣∣∣∂i+kv∂xi∂k

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∂i+kv0

∂xi∂k

∣∣∣∣∣∣∣∣+ ε

∣∣∣∣∣∣∣∣∂i+kv1

∂xi∂k

∣∣∣∣∣∣∣∣+ ε2

∣∣∣∣∣∣∣∣∂i+kv2

∂xi∂k

∣∣∣∣∣∣∣∣
≤ C + Cε+ Cε2

(
1 + ε−i exp(

−α(1− x)

ε

)
≤ C(1 + ε2−i exp

(
−α(1− x)

ε

)
≤ C(1 + ε2−i), since e−α(1−x)/ε ≤ 1.

Also the layer part w(x, t) satisfies the bound as

||w(x, t)|| ≤ C exp

(
−α(1− x)

ε

)
.

To prove this bound we define the barrier function Ψ±(x, t) by

Ψ±(x, t) = C exp

(
−α(1− x)

ε

)
exp(t)± w(x, t).

At the boundaries and the initial stages we obtain

Ψ±(0, t) = C exp

(
−α
ε

)
exp(t) + w(0, t) ≥ 0,

Ψ±(1, t) = C exp(t)± w(1, t) ≥ 0,

Ψ±(x, 0) = C exp

(
−α(1− x)

ε

)
± w(x, 0) ≥ 0,
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On the domain Q we have

LΨ±(x, t) = Ψt − εΨxx + a(x, t)Ψx + b(x, t)Ψ

≥ C exp

(
−α(1− x)

ε

)
exp(t)

[
1− α2

ε
+
a(x, t)α

ε
+ b(x, t)

]
≥ C exp

(
−α(1− x)

ε

)
exp(t)[1 + β] ≥ 0.

By the maximum principle, Ψ± ≥ 0, ∀ (x, t) ∈ Q̄. Therefore,

||w(x, t)|| ≤ C exp

(
−α(1− x)

ε

)
exp(t)

≤ C exp

(
−α(1− x)

ε

)
exp(T )

≤ C exp

(
−α(1− x)

ε

)
, ∀ (x, t) ∈ Q̄.

3.2 Spatial discretization with the FMFDM

In this section, we integrate the continuous problem (3.1.1)-(3.1.2) in space via FMFDM.

Recall that problem (3.1.1)-(3.1.2) has a single boundary layer, so we employ the transition

parameter σ

σ = min

{
1

2
, σ0ε lnn

}
,

to divide the domain Ω into the sub-intervals [0, 1 − σ] and [1 − σ, 1], each with the

mesh spacing 2(1− σ)/n and 2σ/n respectively. Thus if ∆xi is the mesh spacing, then it

satisfies the piecewise function

∆xi = xi − xi−1 :=

 2(1− σ)n−1, i = 1, 2, ..., n/2,

2σn−1, i = (n/2) + 1, ..., n.

3.2.1 The FMFDM

Discretizing problem (3.1.1)-(3.1.2) in space on the mesh described above we have

LnUi(t) ≡
dUi(t)

dt
− 2ε

∆xi + ∆xi+1

(
Ui+1(t)− Ui(t)

∆xi+1

− Ui(t)− Ui−1(t)

∆xi

)
+ ai(t)

×
(
Ui(t)− Ui+1(t)

∆xi

)
+ bi(t)Ui(t) = fi(t), i = 1, 2, ..., n− 1. (3.2.4)
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With the semi-discrete boundary and initial conditions

U0(t) = η0, Un(t) = η1 and Ui(0) = ϕi, (3.2.5)

respectively. In matrix notation, the scheme (3.2.4)-(3.2.5) takes the form

U ′(t) + A(t)U(t) = F (t), (3.2.6)

where A(t) ∈ Rn−1 × Rn−1 and F (t) and U(t) are in Rn−1. We write the entries of A(t)

and F (t) as

Aii(t) =
2ε

∆xi + ∆xi+1

(
1

∆xi+1

+
1

∆xi

)
+
ai(t)

∆xi
+ bi(t), i = 1, 2, ..., n− 1,

Ai,i+1(t) = − 2ε

∆xi+1(∆xi + ∆xi+1)
, i = 1, 2, ..., n− 2,

Ai,i−1(t) = − 2ε

∆xi(∆xi + ∆xi+1)
− ai(t)

∆xi
, i = 2, 3, ..., n− 1,

F1(t) = f1(t) +

(
2ε

∆x1(∆x1 + ∆x2)
+
a1(t)

∆x1

)
η0,

Fi(t) = fi(t), i = 2, 3, ..., n− 2,

Fn−1(t) = fn−1(t) +
2ε

∆xn(∆xn−1 + ∆xn)
η1,

respectively. Next we analyse the scheme (3.2.4)-(3.2.5) for convergence.

3.2.2 Error analysis

Below we highlight some properties of the semi-discrete problem (3.2.4)-(3.2.5) which will

be used in the error analysis. These lemmas have been adapted from [12, 57].

Lemma 3.2.1. The operator Ln defined by the difference scheme (3.2.4)-(3.2.5) satisfies

a semi-discrete maximum principle. That is if Φi(t) and Ψi(t) are two mesh functions

which satisfy Φ0(t) < Ψ0(t), Φn(t) < Ψn(t) and LnΦi(t) ≤ LnΨi(t), ∀ (xi, t) ∈ Ωn× [0, T ],

then Φi(t) ≤ Ψi(t), ∀ (xi, t) ∈ Ω̄n × [0, T ].

Proof. The coefficient matrix A(t) in the linear system (3.2.6) has negative off diagonals

and positive main diagonal entries. Thus it is an M-matrix with positive inverse. Therefore

the solution ui(t), 1 ≤ i ≤ n− 1, 0 ≤ t ≤ T, exist and unique.
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Lemma 3.2.2. The solution ui(t) of the semi-discrete problem (3.2.4)-(3.2.5) is such that

|ui(t)| ≤ β−1 max
(xi,t)∈Ω̄n×[0,T ]

|Lnui(t)|+ max
(x,t)∈Ω̄n×[0,T ]

max(|ϕi|,max(η0, η1)).

Proof. Let p = β−1 max
(xi,t)∈Ω̄n×[0,T ]

|Lnui(t)|+max(|ϕ0|,max(η0, η1)), and define the function

Ψ±i (t) by

Ψ±i (t) = p± ui(t).

At the boundaries we have

Ψ±0 (t) = p± u0(t) = p± η0 ≥ 0,

Ψ±n (t) = p± un(t) = p± η1 ≥ 0.

On the domain 0 < i < n, we have

LnΨ±i (t) = (p± ui(t))′ − ε
(
p± ui+1(t)− 2(p± ui(t)) + p± ui−1(t)

φ2(ε,∆x, t)

)
+ ai(t)

×
(
p± ui(t)− p± ui(t)

∆x

)
+ bi(t)(p± ui(t))

= (bi(t))p± Lnui(t)

= (bi(t))β
−1 max

(xi,t)∈∂Ωn×[0,T ]
|Lnui(t)|+ max(|ϕ0|,max(η0, η1))± fi(t)

≥ 0, bi(t) ≥ β.

From Lemma 3.2.1, Ψ±i (t) ≥ 0, ∀ (xi, t) ∈ Ω̄n × [0, T ]. This completes the proof.

Following [21], we write the numerical solution as the sum

Ui(t) = Vi(t) +Wi(t).

Where Vi(t) and Wi(t) satisfy the respective problems

LnVi(t) = fi(t), ∈ Ωn × (0, T ], (3.2.7)

Vi(0) = vi(0), Vi(t) = vi(t), i = 0, n, t ∈ (0, T ],

LnW (t) = 0, ∈ Ωn × (0, T ], (3.2.8)

Wi(0) = wi(0), Wi(t) = wi(t), i = 0, n, t ∈ (0, T ].
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The error is given as

|Ui(t)− ui(t)| = |(Vi(t) +Wi(t))− (vi(t) + wi(t))|

≤ |Vi(t)− vi(t)|+ |Wi(t)− wi(t)|.

Now we bound each term separately. We write the error of the regular component as

Ln(Vi(t)− vi(t)) = fi(t)− Lnvi(t)

= (L − Ln)vi(t)

= −ε
(
∂2

∂x2
− δ2

)
vi(t) + ai(t)

(
∂

∂x
−D−

)
vi(t)

Using appropriate Taylor series expansions, we obtain the estimate

|Ln(Vi(t)− vi(t))| ≤ −ε
(

1

3
(xi+1 − xi−1)|(vxxx(t))i|

)
+ ai(t)

(
1

2
(xi − xi−1)|(vxx(t))i|

)
,

≤ C(n−1)[ε|(vxxx(t))i|+ |(vxx(t))i|]

≤ C(εn−1(1 + ε−1))

≤ Cn−1(ε+ 1)

≤ Cn−1, since ε << 1.

Application of Lemma 3.2.2 results in

|(Vi(t)− vi(t))| ≤ Cn−1.

To bound the error in the singular component, it is important to note that its domain

has the transition point σ, which is either 1/2 or σ0ε lnn. In the former case the mesh is

uniform and the error can be estimated as the case of classical finite difference methods.

Since our mesh is non-uniform we give the error bound when σ = σ0ε lnn. In this case

the spatial domain is divided into two sub-domains [0, 1 − σ] and [1 − σ, 1], each with

the respective mesh spacing 2(1− σ)/n and 2σ/n. It is well known that the mesh is very

coarse outside the layer region and so the derivatives of the solution in that region is very

large. Therefore, we bound the error in each domain separately. Now we write the error

in the non-layer region [0, 1− σ], as

|Wi(t)− wi(t)| ≤ |Wi(t)|+ |wi(t)|.
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From the value of the transition point σ and w(x, t) < C exp(−α(1 − x)ε−1), for all

x ∈ [0, 1− σ] and t ∈ (0, T ] we have

|wi(t)| ≤ C exp(−α(1− x)ε−1)

≤ C exp(−ασε−1)

≤ C exp(−αε lnn

α
ε−1)

≤ C exp(− lnn)

≤ Cn−1.

To bound the numerical solution Wi(t), we follow [58]. We define the barrier functions

for all t ∈ (0, T ]

Zi(t) =
i∏

j=1

(
1 +

α∆xj
ε

)
, on Ω̄n,

where Z0(t) = 1, for i = 0. Note that Zi(t) is the first order Taylor series expansion of the

boundary layer term exp(−α(1− x)ε−1). Now for 1 ≤ i ≤ n− 1, the inequality

LnZi(t) ≥
α

ε+ α∆xi
Zi(t), (3.2.9)

holds and for 0 ≤ i ≤ n, we have

exp

(
−α(1− xi)

ε

)
≤

n∏
j=i+1

(
1 +

α∆xj
ε

)−1

. (3.2.10)

Proof. The proof of (3.2.9) is as follows:

D+Zi(t) =

(1 + α∆xi+1/ε)

(
i∏

j=1

(1 + α∆xj/ε)

)
−

(
i∏

j=1

(1 + α∆xj/ε)

)
∆xi+1

=

(
i∏

j=1

(1 + α∆xj/ε)

)
[(1 + α∆xi+1/ε)− 1]

∆xi+1

=
α

ε
Zi(t), (3.2.11)

D−Zi(t) =

(1 + α∆xi/ε)

(
i−1∏
j=1

(1 + α∆xj/ε)

)
−

(
i−1∏
j=1

(1 + α∆xj/ε)

)
∆xi
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=

(
i−1∏
j=1

(1 + α∆xj/ε)

)
[(1 + α∆xi/ε)− 1]

∆xi

=
α

ε+ α∆xi
Zi(t), (3.2.12)

From equations (3.2.11) and (3.2.12) it follows that

LnZi(t) =

[
− 2ε

∆xi + ∆xi+1

(
α

ε
− α

ε+ α∆xi

)
+ ai(t)

(
α

ε+ α∆xi

)
+ bi(t)

]
Zi(t)

=
1

ε+ α∆xi

[
− 2α2∆xi

∆xi + ∆xi+1

+ ai(t)α + bi(t)(ε+ α∆xi)

]
Zi(t)

=
1

ε+ α∆xi

[
− 2α2∆xi

∆xi + ∆xi+1

+ α2 + β(ε+ α∆xi)

]
Zi(t)

LnZi(t) ≥
C

ε+ α∆xi
Zi(t), (3.2.13)

giving us the right results. We give the proof of (3.2.10). For each j, we have

exp

(
−α∆xj

ε

)
= exp

(
α∆xj
ε

)−1

≤
(

1 +
α∆xj
ε

)−1

.

Multiplying the inequalities for j = i+ 1, ..., n, completes the proof.

Now we define the barrier function

ψi(t) = C1

n∏
j=i+1

(
1 +

α∆xj
ε

)−1

= C1

n∏
j=1

(
1 +

α∆xj
ε

)−1

Zi(t),

and show that when C1 is chosen to be sufficiently large ψi(t) is a barrier function for

Wi(t). We observe that at the boundaries we obtain

W0(t) = |w(0, t)| ≤ exp(−α/ε) = C

n∏
j=1

exp(−α∆xj/ε) ≤ C

n∏
j=1

(
1 +

α∆xj
ε

)−1

Wn(t) = |w(1, t)| ≤ C,

for Wi(t) and

ψ0(t) = C1

n∏
j=1

(
1 +

α∆xj
ε

)−1

≥ W0(t)

ψn(t) = C1

n∏
j=1

(
1 +

α∆xj
ε

)−1

Zn(t) ≥ Wn(t),
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also holds when C1 is chosen to be sufficiently large. At the interior mesh points

Lnψi(t) ≥
C1

ε+ α∆xi

n∏
j=1

(
1 +

α∆xj
ε

)−1

Zi(t) ≥ LnWi(t) = 0.

Since Wi(t) ≤ ψi(t) holds at the boundaries and LnWi(t) ≤ Lnψi(t), for i = 1, ..., n − 1

also holds, ψi(t) is a discrete barrier function for Wi(t), ∀ i. Thus for i = 0, ..., n/2, we

have

ψi(t) ≤ ψn/2(t) =
n∏

j=1+n/2

(
1 +

α∆xj
ε

)−1

≤ C exp(−α(1− xn/2)/ε)

= C exp(−α(1− (1− σ))/ε)

= C exp(−α(σ))/ε)

= C exp(−α(ε/α lnn)/ε)

≤ Cn−1.

Further on the sub-interval (1−σ, 1], as indicated earlier the mesh is very fine and thus we

estimate the error with consistency and barrier function argument. Now for all n/2 + 1 ≤

i ≤ n− 1, we have

|Ln(Wi(t)− wi(t))| = −ε
(
∂2

∂x2
− δ2

)
wi(t) + ai(t)

(
∂

∂x
−D−

)
wi(t)

≤ C(−ε1

3
(xi+1 − xi−1)|(wxxx(t))i|+

ai(t)

2
(xi − xi−1)|(wxx(t))i|

Application of the bounds gives

|Ln(Wi(t)− wi(t))| ≤ Cε−2∆xi exp(−α(1− xi)/ε)

≤ Cε−2σn−1,

with |W1(t)− w1(t)| = 0. Now we follow [21] to define the barrier functions

Ψ±i (t) = (xi − (1− σ))C1ε
−2σn−1 + C2n

−1 ±Wi(t)− wi(t).

It satisfies Ψ±n
2

+1(t) ≥ 0, Ψ±n (t) ≥ 0, at the boundaries, and LnΨ±i ≥ 0, ∀ n/2+1 < i < n.

It follows from Lemma 3.2.1 that Ψ±i ≥ 0, ∀ n/2 + 1 ≤ i ≤ n, t ∈ [0, T ], therefore

|(Wi(t)− wi(t))| ≤ (xi − (1− σ))C1ε
−2σn−1 + C2n

−1
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≤ C1ε
−2σ2n−1 + C2n

−1

≤ Cn−1(lnn)2.

Combing the results in each sub-domain gives

|Wi(t)− wi(t)| ≤ Cn−1 lnn2,

as the error in the singular component. Addition of the error of the regular component

gives the total error bound

|Ui(t)− ui(t)| ≤ |(V − v)(xi, t)|+ |(W − w)(xi, t)|

≤ Cn−1 + Cn−1(lnn)2

≤ Cn−1 lnn2.

Lemma 3.2.3. The error of the spatial discretization with the fitted mesh finite difference

method satisfies

max
0<ε<1

max
0≤i≤n

|Ui(t)− ui(t)| ≤ Cn−1(lnn)2.

3.3 Spatial discretization with the FOFDM

This section is concerned with the spatial discretization of problem (3.1.1)-(3.1.2) using

the FOFDM.

3.3.1 The FOFDM

Let n to be a positive integer and consider the following partition of the interval [0, 1]

x0 = 0, xi = x0 + i∆x, i = 1(1)n− 1, ∆x = xi − xi−1, xn = 1.

We use the notation in Chapter 2 and perform the space discretization as follows

L∆xUi(t) ≡
dUi(t)

dt
− εUi+1(t)− 2Ui(t) + Ui−1(t)

φ2
i (ε,∆x, t)

+ ai(t)
Ui(t)− Ui−1(t)

∆x

+bi(t)Ui(t) = fi(t), i = 1, 2, ..., n− 1, (3.3.14)

subject to the semi-discrete boundary and initial conditions

U0(t) = η0, and Un(t) = η1, and Ui(0) = ϕi. (3.3.15)
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The denominator function φ2
i (ε,∆x, t) is given as

φ2
i (ε,∆x, t) =

ε∆x

ai(t)
exp

(
ai(t)∆x

ε
− 1

)
.

The above systems of initial value problems in equation (3.3.14) can be represented in the

matrix notation

U ′(t) = A(t)U(t) + F (t). (3.3.16)

Here A(t) is tridiagonal matrix ∈ Rn−1 × Rn−1 and U(t) and F (t) ∈ R(n−1). The entries

of A(t) and F (t) are given as:

Aii(t) =
2ε

φ2
i (ε,∆x, t)

+
ai(t)

∆x
+ bi(t), i = 1, 2, ..., n− 1,

Ai,i+1(t) = − ε

φ2
i (ε,∆x, t)

, i = 1, 2, ..., n− 2,

Ai,i−1(t) = − ε

φ2
i (ε,∆x, t)

− ai(t)

∆x
, i = 2, ..., n− 1,

F1(t) = f1(t) +

(
ε

φ2
1(ε,∆x, t)

+
a1(t)

∆x

)
η0,

Fi(t) = fi(t) i = 2, 3, ..., n− 2,

Fn−1(t) = fn−1(t) +
ε

φ2
n−1(ε,∆x, t)

η1,

respectively. Now we analyse this spatial discretization for convergence. Note that the

semi-discrete operator L∆x also satisfies the maximum principle and the uniform stability

estimate. These properties and their proofs are similar to that of the Lemmas 3.2.1 and

3.2.2.

3.3.2 Error analysis

The truncation error of the scheme (3.3.14)-(3.3.15) is

L∆x(Ui(t)− ui(t)) = fi(t)− L∆xui(t)

= (L − L∆x)ui(t)

−ε(uxx(t))i + ai(t)(ux(t))i + ε
ui+1(t)− 2ui(t) + ui−1(t)

φ2
i (ε,∆x, t)

−ai(t)
ui(t)− ui−1(t)

∆x
.
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Using Taylor series expansion of ui+1(t) and ui−1(t) leads to

L∆x(Ui(t)− ui(t)) = −ε(uxx(t))i +
ε

φ2
i (ε,∆x, t)

(
∆x2(uxx(t))i +

∆x4

12
(uxxxx(t))iξi

)
,

+
ai(t)∆x

2
(uxx(t))i, ξi ∈ (ui+1(t), ui−1(t)).

Again using a truncated Taylor series expansions of φ−2
i = 1/∆x2 − ai(t)/(2∆xε) +

a2
i (t)/(12ε2), we obtain

L∆x(Ui(t)− ui(t)) = −ε(uxx(t))i +

(
∆x2(uxx(t))i +

∆x4

12
(uxxxx(t))iξi

)
×
(

ε

∆x2
− ai(t)

2∆x
+
a2
i (t)

12ε

)
+
ai(t)∆x

2
(uxx(t))i

= −ε(uxx(t))i +

(
ε

∆x2
− 1

2

(
ai(t)− ai−1(t)

∆x

)
+
a2
i (t)

12ε

)
×
(

∆x2(uxx(t))i +
∆x4

12
(uxxxx(t))iξi

)
+
ai(t)∆x

2
(uxx(t))i

= ε
∆x2

12
(uxxxx(t))iξi −

(ax(t))i∆x
2(uxx(t))i

2
− (ax(t))i∆x

4(uxxxx(t))i
24

+
a2
i (t)∆x

2(uxx(t))i
12ε

+
a2
i (t)∆x

4(uxxxx(t))i
144ε

ξi +
ai(t)∆x(uxx(t))i

2

=
ai(t)∆x(uxx(t))i

2
+

(
−(ax(t))i(uxxxx(t))i

24
+
a2
i (t)(uxxxx(t))i

144ε
ξi

)
∆x4

+

(
ε

12
(uxxxx(t))iξi −

(ax(t))i(uxx(t))i
2

+
a2
i (t)(uxx(t))i

12ε

)
∆x2

Applying the bounds of the solution and its derivatives (3.1.3) and Lemma 2.3.1 gives

|L∆x(Ui(t)− ui(t))| ≤
ai(t)∆x

2
+

(
ε

12
− (ax(t))i

2
+
a2
i (t)

12ε

)
∆x2 +

(
−(ax(t))i

24
+
a2
i (t)u

144ε
ξi

)
∆x4.

From the relation ∆x > ∆x2 > ∆x4 and the uniform stability estimate 3.2.2, we obtain

Ui(t)− ui(t)| ≤ C∆x.

Lemma 3.3.1. Let ui(t) be the exact solution of (3.1.1)-(3.1.2) and Ui(t) the solution of

(3.3.14)-(3.3.15) at x = xi. Then we have

max
0<ε≤1

max
0≤i≤n

|Ui(t)− ui(t)| ≤ C∆x,

where C is a constant independent of ∆x and ε.
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3.4 Time discretization

In this section, we integrate the systems of IVPs which resulted from the spatial dis-

cretization. Similar to the early chapter we use the backward Euler integration method

on a uniform mesh. Now we write the fully discrete scheme as

Uk − Uk−1

τ
+ A(tk)U

k = F (tk), for k = 1, ..., K, (3.4.17)

with initial condition U(0) = ϕ. Further simplification of equation (4.4.29) gives

Uk = (I + τA(tk))
−1 (τF (tk) + Uk−1).

Since the backward Euler has already been analysed for convergence in Chapter 2 we

combine the result with the Lemmas 3.2.3 and 3.3.1 to give the main results in this

chapter.

Theorem 3.4.1. Let u ∈ C4,2(Q̄) be the exact solution of the continuous problem (3.1.1)-

(3.1.2) and Uk
i be the numerical solution obtained via the FMDML (3.2.4)-(3.2.5) along

with (3.4.17) or the FOFDML (3.3.14)-(3.3.15) along with (3.4.17). Then the errors of

these methods are as follows:

sup
0<ε≤1

max
0≤i≤n;0≤k≤K

||Uk
i − uki || ≤ C(n−1(lnn)2 + τ), for the FMFDML

and

sup
0<ε≤1

max
0≤i≤n;0≤k≤K

||Uk
i − uki || ≤ C(∆x+ τ), for the FOFDML.

Next we perform numerical simulations to support these theoretical findings.

3.5 Numerical example

Here we validate Theorem 3.4.1 with an example. We compute the maximum pointwise

error and the rate of convergence for different values of n, K and ε. These results are

then displayed in table formats.
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Example 3.5.1. [15] Consider the problem

ut− εuxx +

(
1 + x2 +

1

2
sin(πx)

)
ux + (1 + x2 + sin(πt/2))u= f, (3.5.18)

f = x3(1− x)3 + t(1− t) sin(πt), (x, t) ∈ Ω× (0, 1],

u(x, 0) = u(0, t) = u(1, t) = 0. (3.5.19)

The exact solution of this problem is unknown. Thus to calculate the error we use the

formula

Eε
n,τ = max

0≤i≤n;0≤k≤K
|Uk;K

i;n − U
k;2K
i;2n |, (3.5.20)

where Uk;K
i;n is the numerical solution and Uk;2K

i;2n is also a numerical solution but on the

mesh µ(2n, 2K). Note the we have used the 2n and the 2K because the FMFDL and the

FOFDML are first order accurate in space (except for a logarithmic factor in the case of

FMFDML) and first order accurate in the time variable. Also, we compute the rate of

convergence using the formula

rl = log2

(
Eε
n,τ/E

ε
2n,τ/2

)
, l = 1, 2, ... (3.5.21)

Table 3.1: Maximum pointwise error for Example 3.5.1 using the FMFDML

ε n = K = 32 64 128 256 512 1024

10−1 1.81E − 02 9.03E − 03 4.35E − 03 2.14E − 03 1.10E − 03 5.84E − 04

10−2 2.19E − 02 1.67E − 02 1.18E − 02 7.25E − 03 3.81E − 03 1.79E − 03

10−3 1.78E − 02 1.20E − 02 8.23E − 03 6.01E − 03 4.72E − 03 3.63E − 03

10−4 1.72E − 02 1.10E − 02 6.66E − 03 3.94E − 03 2.42E − 03 1.68E − 03

10−5 1.71E − 02 1.09E − 02 6.48E − 03 3.67E − 03 2.03E − 03 1.13E − 03

10−6 1.71E − 02 1.09E − 02 6.46E − 03 3.64E − 03 2.00E − 03 1.07E − 03

10−7 1.71E − 02 1.09E − 02 6.46E − 03 3.64E − 03 2.00E − 03 1.07E − 03

10−8 1.71E − 02 1.09E − 02 6.46E − 03 3.64E − 03 2.00E − 03 1.07E − 03

10−9 1.71E − 02 1.09E − 02 6.46E − 03 3.64E − 03 2.00E − 03 1.07E − 03

10−10 1.71E − 02 1.09E − 02 6.46E − 03 3.64E − 03 2.00E − 03 1.07E − 03
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Table 3.2: Maximum pointwise error for Example 3.5.1 using the FOFDML

ε n = K = 32 64 128 256 512 1024

100 2.45E − 04 1.25E − 04 6.30E − 05 3.16E − 05 1.59E − 05 7.94E − 06

10−1 1.23E − 03 6.20E − 04 3.11E − 04 1.56E − 04 7.79E − 05 3.89E − 05

10−2 2.29E − 03 1.09E − 03 4.99E − 04 2.34E − 04 1.13E − 04 5.54E − 05

10−3 2.51E − 03 1.39E − 03 7.35E − 04 3.61E − 04 1.62E − 04 7.07E − 05

10−4 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.72E − 05

10−5 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.73E − 05

10−6 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.73E − 05

10−7 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.73E − 05

10−8 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.73E − 05

10−9 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.73E − 05

10−10 2.51E − 03 1.39E − 03 7.39E − 04 3.81E − 04 1.93E − 04 9.73E − 05

Table 3.3: Rate of convergence for Ex-

ample 3.5.1 using the FMFDML

ε r1 r2 r3 r4 r5

100 0.95 0.98 0.99 0.99 1.00

10−1 0.79 0.83 0.93 0.97 0.99

10−2 0.78 0.83 0.86 0.89 0.90

10−3 0.77 0.82 0.85 0.88 0.90

10−4 0.77 0.81 0.85 0.88 0.90

10−5 0.77 0.81 0.85 0.88 0.90

10−6 0.77 0.81 0.85 0.88 0.90

10−7 0.77 0.81 0.85 0.88 0.90

10−8 0.77 0.81 0.85 0.88 0.90

10−9 0.77 0.81 0.85 0.88 0.90

10−10 0.77 0.81 0.85 0.88 0.90

Table 3.4: Rate of convergence for Example

3.5.1 using the FOFDML

ε r1 r2 r3 r4 r5

100 0.98 0.99 0.99 1.00 1.00

10−1 0.99 1.00 1.00 1.00 1.00

10−2 1.07 1.13 1.09 1.05 1.03

10−3 0.85 0.92 1.03 1.16 1.19

10−4 0.85 0.92 0.96 0.98 0.99

10−5 0.85 0.92 0.96 0.98 0.99

10−6 0.85 0.92 0.96 0.98 0.99

10−7 0.85 0.92 0.96 0.98 0.99

10−8 0.85 0.92 0.96 0.98 0.99

10−9 0.85 0.92 0.96 0.98 0.99

10−10 0.85 0.92 0.96 0.98 0.99
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3.6 Conclusion

This chapter was devoted to one-dimensional convection-diffusion problems. First, we

followed the idea of [12] in designing a FMFDML to integrate these problems. The

FMDML consists of a FMFDM for the spatial variable and the backward Euler method

to integrate the time variable. We showed that this method is of order O(Cn−1(lnn)2+τ),

where n is the number of sub-intervals in space and τ is the temporal step size. Then, we

developed a FOFDML which is also a combination of a FOFDM and the backward Euler

method for the space and the time respectively. A rigorous error analysis showed that the

present FOFDML is uniformly convergent with respect to the perturbation parameter ε.

In other words, the method satisfies O(∆x+ τ), where ∆x is the discretisation parameter

in space. For illustrative purposes, simulations on a test example were conducted and

numerical results thereof confirmed the theoretical findings.
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Chapter 4

Methods of Lines for

Two-Dimensional Reaction-Diffusion

Problems

In the early chapters, we introduced SPPs, numerical methods for their solutions in the

framework of the method of lines. Also, we used the FMFDML and the FOFDML to in-

tegrate both one-dimensional time-dependent reaction-diffusion and convection-diffusion

problems.

In this chapter and in the next, we extend the methods of chapters 2 and 3 to solve

two-dimensional time-dependent reaction-diffusion problems. We discretize in space with

the FMFDM and the FOFDM to obtain semi-discrete ordinary differential equations

(ODE) in time and then solve the ODEs with the backward Euler method. We give the

theoretical estimate of the errors in connection with the spatial discretization and also

compute numerical examples for illustration purpose.

4.1 Continuous problem

We consider the time-dependent reaction-diffusion problem

Lu ≡ ∂u

∂t
− ε∆u+ b(x, y, t)u = f(x, y, t), (x, y, t) ∈ Q ≡ Ω = (0, 1)2 × (0, T ], (4.1.1)
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with the initial and boundary conditions

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω̄, u(x, y, t) = g(x, y, t) ∈ ∂Ω× (0, T ]. (4.1.2)

Here ε ∈ (0, 1] and b(x, y, t), f(x, y, t) are sufficiently smooth and the coefficient function,

b(x, y, t) satisfies b(x, y, t) ≥ β > 0, ∀ (x, y, t) ∈ Q. Also, we impose the compatibility

conditions

g(x, y, 0) = ϕ(x, y), in ∂Ω,

∂g

∂t
(x, y, 0) = ε M ϕ− b(x, y, 0)ϕ+ f(x, y, 0), in ∂Ω,

∂2g

∂t2
(x, y, 0) = (−ε M +b(x, y, 0))2ϕ+

∂

∂t
f(x, y, 0) + (ε M −b(x, y, 0)) f(x, y, 0), in ∂Ω,

f(x, y, 0) =

(
∂

∂t
− ε M +b(x, y, 0)

)
g(x, y, t), in (0, 1)× (0, 1)× (0, T ],

for the exact solution to be differentiable at the corners of Q. Even for the smooth data

and the compatibility conditions, solutions to problem (4.1.1)-(4.1.2) experience some

abrupt changes (layers) around the boundaries of Ω. Figure 4.1 illustrates the layers on

the domain Ω.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Boundary layer

Boundary layer

Boundary layer Boundary layer

Corner layer
Corner layer

Corner layer

Corner layer

Figure 4.1: Parabolic layers for the elliptic reaction-diffusion problem.
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Under the smoothness assumption and compatibility conditions the differential oper-

ator L = ∂/∂t − ε (∂2/∂x2 + ∂/∂y2) + bI, satisfies the continuous maximum principle as

well as the uniform stability estimate below. These properties have been adapted from

[34] and they show the existence and uniqueness of the solution to problem (4.1.1)-(4.1.2).

Lemma 4.1.1. Continuous maximum principle. Let ψ ∈ C4,2(Q̄) be such that ψ ≥

0, on ∂Q. Then L(x, y, t) ≥ 0, ∀ (x, y, t) ∈ Q implies that ψ(x, y, t) ≥ 0, ∀ (x, y, t) ∈

Q̄.

Proof. Suppose (x∗, y∗, t∗) ∈ Q̄ and satisfies ψ(x∗, y∗, t∗) = min
(x,y,t)∈Q̄

ψ(x∗, y∗, t∗) and

ψ(x∗, y∗, t∗) ≤ 0. It is evident that (x∗, y∗, t∗) ∈ Q.We know ψt(x
∗, y∗, t∗) = 0, ψxx(x

∗, y∗, t∗) ≥

0, ψyy(x
∗, y∗, t∗) ≥ 0, thus we observe that

L(x∗, y∗, t∗) = ψt(x
∗, y∗, t∗)− ε∆ψ(x∗, y∗, t∗) + b(x∗, y∗, t∗)ψ(x∗, y∗, t∗) < 0,

which is a contradiction, therefore, ψ(x, y, t) ≥ 0, ∀ (x, y, t) ∈ Q̄.

Lemma 4.1.2. If u is the solution of problem (4.1.1)-(4.1.2) then it satisfies the bound

u ≤ β−1||f ||+ max(ϕ(x, y), g(x, y, t)).

Proof. We define the barrier functions Ψ± by

Ψ±(x, t) = β−1||f ||+ max(ϕ(x, y), g(x, y, t))± u(x, y, t).

The values of Ψ±(x, t) at the initial stage and the boundaries are

Ψ±(x, y, 0) = β−1||f ||+ max(ϕ(x, y), g(x, y, t))± u(x, y, 0)

= β−1||f ||+ max(ϕ(x, y), g(x, y, t))± ϕ(x, y)

≥ 0,

Ψ±(x, y, t) = β−1||f ||+ max(ϕ(x, y), g(x, y, t))± u(x, y, t)

= β−1||f ||+ max(ϕ(x, y), g(x, y, t))± g(x, y, t)

≥ 0.
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Further on the domain Q, we have

LΨ±(x, y, t) = Ψ±t (x, y, t)− ε∆Ψ±(x, y, t) + b(x, y, t)Ψ±(x, y, t)

= b(x, y, t)(β−1||f ||+ max(ϕ(x, y), g(x, y, t))± Lu(x, y, t)

= b(x, y, t)(β−1||f ||+ max(ϕ(x, y), g(x, y, t))± f(x, y, t)

≥ 0, since b(x, y, t) ≥ β.

Thus from Lemma 4.1.1, Ψ±(x, y, t) ≥ 0, ∀ (x, y, t) ∈ Q̄.

In reference to lemma 4.1.1 and 4.1.2 the exact solution u(x, y, t) of problem (4.1.1)-

(4.1.2) and its derivatives satisfy [40]

|uxx(x, y, t)| ≤ (1 + ε−1(exp
(
−βx/

√
ε
)
) + exp

(
−β(1− x)/

√
ε)
)
,

|uyy(x, y, t)| ≤ (1 + ε−1(exp
(
−βy/

√
ε
)
) + exp

(
−β(1− y)/

√
ε)
)
.

The exact solution can be written as [12]

u = v +
4∑
p=1

wp +
4∑
p=1

zp, (4.1.3)

where v is the regular component, wp, p = 1, .., 4 are the edge layer functions around

the sides x = 0, y = 0, x = 1 and y = 1 and zp = 1, .., 4 are the corner layer functions

around the four corners (0, 0) (1, 0), (0, 1), (1, 1) respectively. Furthermore, they satisfy

the respective bounds

∂i+j+kv(x, y, t)

∂xi∂yj∂tk
≤ C (4.1.4)

∂i+j+kw1(x, y, t)

∂xi∂yj∂tk
≤ Cε−i/2 exp

(
−
√
β/εx

)
(4.1.5)

∂i+j+kw2(x, y, t)

∂xi∂yj∂tk
≤ Cε−i/2 exp

(
−
√
β/ε(1− x)

)
(4.1.6)

∂i+j+kw3(x, y, t)

∂xi∂yj∂tk
≤ Cε−j/2 exp

(
−
√
β/εy

)
(4.1.7)
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∂i+j+kw4(x, y, t)

∂xi∂yj∂tk
≤ Cε−j/2 exp

(
−
√
β/ε(1− y)

)
(4.1.8)

∂i+j+kz1(x, y, t)

∂xi∂yj∂tk
≤ Cε−(i+j)/2 min

{
exp

(
−
√
β/εx

)
, exp

(
−
√
β/εy

)}
(4.1.9)

∂i+j+kz2(x, y, t)

∂xi∂yj∂tk
≤ Cε−(i+j)/2 min

{
exp

(
−
√
β/ε(1− x)

)
, exp

(
−
√
β/εy

)}
(4.1.10)

∂i+j+kz3(x, y, t)

∂xi∂yj∂tk
≤ Cε−(i+j)/2 min

{
exp

(
−
√
β/εx

)
, exp

(
−
√
β/ε(1− y)

)}
(4.1.11)

∂i+j+kz4(x, y, t)

∂xi∂yj∂tk
≤ Cε−(i+j)/2 min

{
exp

(
−
√
β/ε(1− x)

)
, exp

(
−
√
β/ε(1− y)

)}
,

(4.1.12)

where i + j + 2k ≤ 4. In the next section, we discretize the space variables with the

FMFDM.

4.2 Spatial discretization with the FMFDM

In this section, we discretize in space the continuous problem (4.1.1)-(4.1.2). Note that

the FMFDM which is considered in this chapter is the one derived by [12]. Problems

of types (4.1.1)-(4.1.2) are known to have two boundary layers each at the x and the y

directions. Thus to obtain the mesh for the entire spatial domain Ω = (0, 1)2, we use

the tensor product of the two one-dimensional meshes in x and y directions. That is

Ωn = Ix,n ⊗ Iy,n, where Ix,n = {0 = x0 < ... < xn = 1}, Iy,m = {0 = y0 < ... < ym = 1}.

Supposing n = m ≥ 4 we use the transition parameter σx = σy, given by

σx = σy = min

{
1

4
, 2

√
ε

β
lnn

}
,

to sub-divide the x domain (0, 1) into [0, σx], [σx, 1− σx] and [1− σx, 1]. This distributes

the mesh into n/2 + 1 uniform mesh points in the sub-interval [σx, 1 − σx], and n/4 + 1

uniform mesh points in the sub-intervals [0, σx], [1−σx, 1]. The mesh spacing ∆xi in this
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case is given by

∆xi = xi − xi−1 :=


4σn−1, i = 1, 2, ..., n/4,

2(1− 2σ)n−1, i = n/4 + 1, ..., 3n/4,

4σn−1 i = 3n/4 + 1, ..., n.

The mesh in y direction can be obtain in an analogous manner and since we have already

assumed that n = m, σx = σy, it implies that ∆yj = ∆xi. Figure 4.2 gives a picture of

the mesh on the square domain Ω.

(0, 0) (1, 0)

(0, 1) (1, 1)1− σx

1− σy

1− σx

1− σy

σy

σx

σy

σx

Figure 4.2: Shishkin mesh for n = 16 for an elliptic reaction-diffusion problem

4.2.1 The FMFDM

Now we adopt the notation ωij(t) = ω(xi, yj, t) and denote by Uij(t) the approximation

of u(xi, yj, t). We perform the discretization as follows

Ln,mUij(t) ≡
dUij(t)

dt
− 2ε

∆xi + ∆xi+1

(
Ui+1,j(t)− Uij(t)

∆xi+1

− Uij(t)− Ui−1,j(t)

∆xi

)
− 2ε

∆yj + ∆yj+1

(
Ui,j+1(t)− Uij(t)

∆yj+1

− Uij(t)− Ui,j−1(t)

∆yj

)
+ bij(t)Uij(t)

= fij(t), i = 1(1)n− 1, j = 1(1)m− 1. (4.2.13)

With the semi-discrete boundary and initial conditions

U0j(t) = g0j(t), Unj(t) = gnj(t), Ui0(t) = gi0(t), Uim(t) = gim(t), (xi, yj) ∈ ∂Ωn,
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t ∈ [0, T ], Uij(0) = ϕij, (xi, yj, t) ∈ ∂Ωn,m × [0, T ], (xi, yj, t) ∈ Ωn,m. (4.2.14)

The scheme (4.2.13)-(4.2.13) can be written in the matrix notation

U ′(t) + A(t)U(t) = F (t), (4.2.15)

where, U(t) and F (t) are in R(n−1)(n−1) and the coefficient matrix A(t) is a pentadiagonal

matrix and satisfies A(t) ∈ R(n−1)2×R(m−1)2 . In what follows p = (i−1)(n−1) + j unless

otherwise stated. The entries of A(t) and F (t) are given by

App(t) =
2ε

∆xi + ∆xi+1

(
1

∆xi+1

+
1

∆xi

)
+

2ε

∆yj + ∆yj+1

(
1

∆yj+1

+
1

∆yj

)
+ bij(t),

i = 1(1)n− 1, j = 1(1)m− 1,

Ap,p−1(t) = − 2ε

∆yj + ∆yj+1

(
1

∆yj

)
, i = 1(1)n− 1, j = 2(1)m− 1,

Ap,p+1(t) = − 2ε

∆yj + ∆yj+1

(
1

∆yj+1

)
, i = 1(1)n− 1, j = 1(1)m− 2,

Ap,p−(n−1)(t) = − 2ε

∆xi + ∆xi+1

(
1

∆xi

)
, i = 2(1)n− 1, j = 1(1)m− 1,

Ap,p+(n−1)(t) = − 2ε

∆xi + ∆xi+1

(
1

∆xi+1

)
, i = 1(1)n− 2, j = 1(1)m− 1.

Fp(t) = fp(t) +

(
2ε

∆x1(∆x1 + ∆x2)

)
u(0, y1, t) +

(
2ε

∆y1(∆y1 + ∆y2)

)
u(x1, 0, t),

Fp(t) = fp(t) +

(
2ε

∆x1(∆x1 + ∆x2)

)
u(0, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t) +

(
2ε

∆x1(∆x1 + ∆x2)

)
u(0, yn−1, t) +

(
2ε

∆ym(∆ym−1 + ∆ym)

)
u(x1, 1, t),

Fp(t) = fp(t) +

(
2ε

∆y1(∆y1 + ∆y2)

)
u(xi, 0, t), i = 2(1)n− 2,

Fp(t) = fp(t), i = 2(1)n− 2, j = 2(1)m− 2,

Fp(t) = fp(t) +

(
2ε

∆ym(∆ym−1 + ∆ym)

)
u(xi, 1, t), i = 2(1)n− 2,

Fp(t) = fp(t) +

(
2ε

∆xn(∆xn−1 + ∆xn)

)
u(1, ym−1, t) +

(
2ε

∆y1(∆y1 + ∆y2)

)
u(xi, 0, t),

Fp(t) = fp(t) +

(
2ε

∆xn(∆xn−1 + ∆xn)

)
u(1, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t)

(
2ε

∆xn(∆xn−1 + ∆xn)

)
u(1, ym−1, t) +

(
2ε

∆ym(∆ym−1 + ∆ym)

)
u(xn−1, 1, t).

Next we estimate the error associated with this spatial discretization.
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4.2.2 Error analysis

Below we analyse the FMFDM for convergence. To be able to carry out the said analysis,

the following lemmas are needed. These lemmas have been established from [12].

Lemma 4.2.1. (Semi-discrete maximum principle) Let ξij(t) be sufficiently smooth semi-

discrete function defined on Ω̄n,m× [0, T ]. If ξij(t) satisfies ξ0j(t) ≥ 0, ξi0(t) ≥ 0, ξnj(t) ≥

0, ξim(t) ≥ 0, ∀ (xi, yj, t) ∈ Ω̄m,n× [0, T ] and Ln,mξij(t) > 0, ∀ (xi, yj, t) ∈ Ωn,m× [0, T ],

then ξij(t) ≥ 0, ∀ (xi, yj, t) ∈ Ω̄n,m × [0, T ].

Proof. Let (l, s) be indices such that

ξls(t) = min
(xi,yj ,t)∈Ω̄n,m×[0,T ]

ξls(t),

holds and suppose ξls(t) < 0. Then (l, s) ∈ {1, 2, ..., n− 1}× {1, 2, ...,m− 1}. We see that

(ξls(t))t = 0, ξls(t) < ξl+1,s(t), ξl−1,s(t) < ξls(t), ξls(t) < ξl,s+1(t), ξl,s−1(t) < ξls(t), thus

we have Ln,mξls(t) < 0, which is a contradiction.

Lemma 4.2.2. The solution uij(t) of the semi-discrete problem (4.2.13)-(4.2.14), satisfies

the bound

||uij(t)||≤ β−1 max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

||Ln,muij(t)||+ max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

(||ϕij||, gij(t)).

Proof. Let p = β−1 max
(xi,yj ,t)∈Ω̄n,m×(0,T )

||Ln,muij(t)|| + max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

(||ϕij||, gij(t)), and

define the function ψ±ij(t) by

ψ±ij(t) = p± uij(t).

A the boundaries we have

ψ±0j(t) = p± u0j(t) = p± g0j(t) ≥ 0,

ψ±nj(t) = p± unj(t) = p± gnj(t) ≥ 0,

ψ±i0(t) = p± ui0(t) = p± gi0(t) ≥ 0,

ψ±im(t) = p± uim(t) = p± gim(t) ≥ 0,

and for the domain 0 < i < n, 0 < j < m, we obtain

Ln,mψ±ij(t) = −ε
[

2

∆xi + ∆xi+1

(
p± ui+1,j(t)− p± uij(t)

∆xi+1

− p± uij(t)− p± ui−1,j(t)

∆xi

)
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+
2

∆yj + ∆yj+1

(
p± ui,j+1(t)− p± uij(t)

∆yj+1

− p± uij(t)− p± ui,j−1(t)

∆yj

)]
+bij(t)(p± uij(t)) + (p± uij(t))t

= bij(t)p± Ln,muij(t)

= bij(t)p± fij(t)

= bij(t)

[
β−1 max

(xi,yj ,t)∈Ωn,m×[0,T ]
||Ln,muij(t)||+ max

(xi,yj ,t)∈Ωn,m×[0,T ]
(||ϕij||, gij(t))

]
± fij(t)

≥ 0, since bij(t) ≥ β.

Therefore ψ±ij(t) ≥ 0, ∀ (xi, yj, t) ∈ Ω̄m,n × [0, T ], and this completes the proof.

Now we bound the error. For simplicity we assume throughout the analysis that

n = m, σ = σx = σy. Similar to the exact solution, we write the numerical solution Ui(t)

as the sum

Uij(t) = Vij(t) +
4∑
p=1

Wpij(t) +
4∑
p=1

Zpij(t), ∀ (xi, yj, t) ∈ Ωn × (0, T ],

representing the regular component, the four edge layer functions and the four corner

layer functions respectively. For all (xi, yj, t) ∈ Ω̄n × (0, T ], each term satisfies

LnVij(t) = f(t), Vij(0) = vij(0), (4.2.16)

LnWpij(t) = gpij(t) +
∂gij(t)

dt
, Wpij(0) = wpij(0), p = 1, 2, 3, 4, (4.2.17)

LnZpij(t) = g̃pij +
∂g̃ij(t)

∂t
, Zpij(0) = zpij(0), p = 1, 2, 3, 4. (4.2.18)

Here gpij(t) is defined as some boundary conditions located at the four edges of Ωn and

g̃pij has the boundary conditions at the four corners.

Error of the regular component

To bound the error of the regular part of the numerical solution we write it as

Ln(Vij(t)− vij(t)) = fij(t)− Lnvij(t)

= (L − Ln) vij(t).

Note that like the one-dimensional case the error analysis does not include the time

derivative term thus we follow [6] to present the analysis. When x = σx, 1 − σx or yj =
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σy, 1− σy, we obtain the estimate

Ln(Vij(t)− vij(t)) =

∣∣∣∣∣∣∣∣−ε [(vxx(t))ij + (vyy(t))ij −
2

∆xi + ∆xi+1

(
vi+1,j(t)− vij(t)

∆xi+1

−vij(t)− vi−1,j(t)

∆xi

)
− 2

∆yj + ∆yj+1

(
vi,j−1(t)− vij(t)

∆yj+1

−vij(t)− vi,j−1(t)

∆yj

)]∣∣∣∣∣∣∣∣ .
Using appropriate Taylor series expansions transforms the error into

Ln(Vij(t)− vij(t)) ≤
(

1

∆xi+1

∫ xi+1

xi

(xi+1 − s)2ds+
1

∆xi

∫ xi−1

xi

(s− xi−1)2ds

)

×ε||(vxxx(t))ij||
∆xi + ∆xi+1

+
ε||(vyyy(t))ij||
∆yj + ∆yj+1

×

(
1

∆yj+1

∫ yj+1

yj

(yj+1 − s)2ds+
1

∆yj

∫ yj−1

yj

(s− yj−1)2ds

)
.

Evaluating the integral gives

Ln(Vij(t)− vij(t)) ≤
ε||(vxxx(t))ij||
∆xi + ∆xi+1

(
1

3∆xi+1

(xi+1 − xi)3 − 1

3∆xi
(xi − xi−1)3

)
+
ε||(vyyy(t))ij||
∆yj + ∆yj+1

(
1

3∆yj+1

(yj+1 − yj)3 − 1

3∆yj
(yj − yj−1)3

)

=
ε||(vxxx(t))ij||

3(∆xi + ∆xi+1)

(
(xi+1 − xi)2 − (xi − xi−1)2

)
+

ε||(vyyy(t))ij||
3(∆yj + ∆yj+1)

×
(
(yj+1 − yj)2 − (yj − yj−1)2

)
≤ ε

3
(xi+1 − xi−1)||(vxxx(t))ij||+

ε

3
(yj+1 − yj−1)||(vyyy(t))ij||.

When (xi, yj) ∈ (σ, 1− σ), we have the truncation error as

Ln(Vij(t)− vij(t)) =

∣∣∣∣∣∣∣∣−ε [(vxx(t))ij + (vyy(t))ij −
(
vi+1,j(t)− 2vij(t) + vi−1,j(t)

(∆x)2
i

)
−
(
vi,j−1(t)− 2vij(t) + vi,j−1(t)

(∆y)2
j

)]∣∣∣∣∣∣∣∣
≤ ε

12
(∆x)2

i ||(vxxxx(t))ij||+
ε

12
(∆y)2

j ||(vyyyy(t))ij||.

Now putting these two truncation errors together, we obtain

||Ln(Vij(t)− vij(t))|| ≤


Cε((xi+1 − xi−1)||(vxxx(t))ij||+ (yj+1 − yj−1)||(vyyy(t))ij||),

if xi = σx, 1− σx or yj = σy, 1− σy,

Cε((∆x)2
i ||(vxxxx(t))ij||+ (∆y)2

j ||(vyyyy(t))ij||), otherwise.
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Applying the bound (4.1.4) gives

||Ln(Vij(t)− vij(t))|| ≤


Cε((xi+1 − xi−1) + (yj+1 − yj−1)),

if xi = σx, 1− σx or yj = σy, 1− σy,

Cε((∆x)2
i + (∆y)2

j), otherwise,

and from the inequality (4.1.4) we obtain

Ln(Vij(t)− vij(t)) ≤

 Cεn−1, if xi = σx, 1− σx or yj = σy, 1− σy,

cεn−2, otherwise.

Now we follow [6] to define the barrier function

Φ(xi, yj, t) =
σxσy
ε

n−2(θ(xi) + θ(yj)) + cn−2,

where θ(γ) is as defined in Chapter 2. From the value of the transition point we have

0 ≤ Φ(xi, yj, t) ≤ C(n−1 lnn)2,

and for Ln on the barrier function when xi = σx, 1− σx or yj = σy, 1− σy, we obtain

LnΦ(xi, yj, t) = Φt − ε
[
σxσy
ε

n−2

(
− n

σx
− n

σy

)]
+ bij(t)Φ

= Cn−1(σx + σy) + bij(t)Φ.

Otherwise, we have LnΦ(xi, yj, t) = bij(t)Φ.

LnΦ(xi, yj) ≥

 Cn−1(σx + σy) + bij(t)Φ, if x = σx, 1− σx or yj = σy, 1− σy,

bij(t)Φ, otherwise.

Using the barrier function Ψ±(xi, yj, t) = Φ(xi, yj, t)± (V (t)− v(t))(xi, yj), it satisfies

Ψ±(xi, yj, t) ≥ 0, ∀ (xi, yj, t) ∈ ∂Ωn × [0, T ] and

LnΨ±(xi, yj, t) ≥ 0, ∀ (xi, yj, t) ∈ Ωn × [0, T ].

Thus from Lemma 4.2.2 it follows that Ψ±(xi, yj, t) ≥ 0, (xi, yj, t) ∈ Ω̄n× [0, T ], therefore

||Vij(t)− vij(t)|| ≤ Φ(xi, yj, t) ≤ C(n−1 lnn)2.

Proposition 4.2.1. The error of the regular component satisfies

||Vij(t)− vij(t)|| ≤ C(n−1 lnn)2.
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Error around the edges of the domain

To bound the error around the edge W1ij(t), we consider two different regions in the i

domain; the region 0 < i < n/4, 0 < j < n, 0 < t ≤ T and the region n/4 ≤ i ≤ n, 0 ≤

j ≤ n, 0 < t ≤ T . To bound the error in the region 0 < i < n/4, 0 < j < n, 0 < t ≤ T

we follow the same argument we used to bound the error in the regular component since

the mesh is very fine. Now we estimate the error as follows

Ln(W1ij(t)− w1ij(t)) = −ε
[(

∂2x

∂x2
− δxx

)
+

(
∂2y

∂y2
− δyy

)]
w1ij(t).

Using appropriate Taylor series expansions and following the same calculations we did for

the regular component, we obtain the estimate

Ln(W1ij(t)− w1ij(t)) ≤



Cε
[
(∆xi)

2||(w1xxxx(t))ij||+ (yj+1 − yj−1)||(w1yyy(t))ij||
]
,

j = n/4, 3n/4,

Cε
[
(∆xi)

2||(w1xxxx(t))ij||+ (∆yj)
2||(w1yyyy(t))ij||

]
,

otherwise.

From the bound (4.1.5) we have

||Ln(W1ij(t)− w1ij(t))|| ≤

 C(∆xi)
2ε−1 + Cε∆yj, j = n/4, 3n/4,

C(∆xi)
2ε−1 + Cε(∆yj)

2, otherwise.

||Ln(W1ij(t)− w1ij(t))|| ≤

 C(n−1 lnn)2 + Cεn−1, j = n/4, 3n/4,

C(n−1 lnn)2, otherwise.

We employ the barrier function

Φ(xi, yj, t) = C
σy√
ε
n−2θ(yj) + C(n−1 ln)2,

where θ(yj) is as defined in Chapter 2. At the transition point the barrier function yields

0 ≤ Φ(xi, yj) ≤ C(n−1 lnn)2,

and the semi-discrete operator on the barrier function when yj = σy, 1− σy, is

LnΦ(xi, yj, t) = Φt − ε
[
σy√
ε
n−2

(
− n

σy

)]
+ bij(t)Φ

= Cn−1
√
ε+ bij(t)Φ.
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Otherwise, we have LnΦ(xi, yj, t) = bij(t)Φ. Collecting these results together gives

LnΦ(xi, yj, t) ≥

 C
√
εn−1 + bij(t)Φ, j = n/4, 3n/4,

bij(t)Φ, otherwise.

From the maximum principle

Φ0j(t) = (Cn−1 lnn)2 ≥ 0,

Φn/4j(t) = (Cn−1 lnn)2 ≥ 0, ∀ 0 ≤ i ≤ n/4, 0 < j < n, 0 ≤ t ≤ T,

LnΦij(t) = (Cn−1 lnn)2 ≥ 0, ∀ 0 < i < n/4, 0 < j < n, 0 ≤ t ≤ T.

∴ Φij(t) = (Cn−1 lnn)2 ≥ 0,

holds and thus we obtain

||W1ij(t)− w1ij(t)|| ≤ C(n−1 lnn)2, ∀ 0 < i < n/4, 0 < j < n, 0 ≤ t ≤ T. (4.2.19)

To bound the error in the region n/4 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ t ≤ T, we follow [7] to

define the barrier function

Bw1i(t) =


i∏

s=1

(1 + ∆xs
√
β/ε)−1, i 6= 0,

1, i = 0,

,

which is a first order Taylor series expansion of the boundary layer terms exp(−
√
β/εx).

For all i we have the inequality

exp(−
√
β/εxi) =

i∏
s=1

exp(−
√
β/ε∆xs).

Since for each s such that 1 ≤ s ≤ i,

exp(−∆xs
√
β/ε) ≤ 1

1 + ∆xs
√
β/ε

,

we have
i∏

s=1

exp(−
√
β/ε∆xs) ≤ Bw1i(t).

For σ < 0.25 and n/4 ≤ i ≤ n, we have

Bw1i(t) ≤ Bw1n/4(t) =

(
1 +

8 lnn

n

)−n/4
≤ Cn−2. (4.2.20)
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For more details of the inequality (4.2.20) refer to page 32 of [34].

also holds Now for the semi-discrete operator on the barrier function Bi(t), we have

D+
xBw1i(t) =

i+1∏
s=1

(
1 + ∆xs

√
β/ε
)−1

−
i∏

s=1

(
1 + ∆xs

√
β/ε
)−1

∆xi+1

= −
√
β/ε(1 + ∆xi+1

√
β/ε)−1

i∏
s=1

(1 + ∆xs
√
β/ε)−1

D−xBw1i(t) =

i∏
s=1

(
1 + ∆xs

√
β/ε
)−1

−
i−1∏
s=1

(
1 + ∆xs

√
β/ε
)−1

∆xi

= −
√
β/ε

i∏
s=1

(1 + ∆xs
√
β/ε)−1

LnBw1i(t) = (Bw1i(t))t − ε(δ2
x + δ2

y)Bw1i(t) + bij(t)Bw1i(t)

= − 2ε

∆xi + ∆xi+1

(
−
√
β/ε(1 + ∆xi+1

√
β/ε)−1 +

√
β/ε+ bij(t)

)
Bw1i(t)

=

(
bij(t)−

2β

∆xi + ∆xi+1(1 + ∆xi+1

√
β/ε)

)
Bw1i(t)

≥ (bij(t)− Cβ)Bw1i(t). (4.2.21)

At the boundary of the domain n/4 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ t ≤ T, the numerical

solution is equal to the exact solution. Thus from the bound (4.1.5), we have

W1ij(t) = w1ij(t) ≤ C exp(−
√
β/εxi) ≤ CBw1i(t), ∀ (xi, yj) ∈ ∂Ωn , t ∈ (0, T ].

Now when we consider the mesh points 0 < i, j < n, from equation (4.2.17), we have

LnW1ij(t) = g1ij(t) +
∂gij(t)

∂t
, (4.2.22)

and from the inequality (4.2.21)

LnBw1i(t) ≥ (bij(t)− Cβ)Bw1i(t) ≥ LnW1ij(t)

also holds. It follows that Bw1i(t) is a barrier function for W1ij(t), thus we have

W1ij(t) ≤ Bw1i(t). (4.2.23)
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Using the bound (4.1.5), and the inequality (4.2.20), we obtain the estimate

||W1ij(t)− w1ij(t)|| ≤ ||W1ij(t)||+ ||w1ij(t)||

≤ CBw1i ≤ Cn−2, ∀ 0 < i < n/4, 0 < j < n, 0 < t ≤ T.

Combining the results in each domain yields the bound

||(W1(t)− w1(t))(xi, yj)|| ≤ C(n−1 lnn)2, (xi, yj) ∈ Ωn, t ∈ (0, T ]. (4.2.24)

The error bound around the other three edges can be obtained in an analogous manner.

Proposition 4.2.2. For p = 1, 2, 3, 4, the error bound associated with the four edges

satisfy

||(Wpij(t)− wpij(t))|| ≤ C(n−1 lnn)2 (xi, yj) ∈ Ωn, t ∈ (0, T ].

Where wpij(t) and Wpij(t) are the exact and the numerical solutions respectively.

Error around the corners of the domain

Similar to the estimate of the edge W1ij(t), we bound the error in the domain n/4 ≤ i, j ≤

n, and the domain Ωn \n/4 ≤ i, j ≤ n. In the domain n/4 ≤ i, j ≤ n, the error is given as

Ln(Z1ij(t)− z1ij(t)) = −ε
[(

∂2x

∂x2
− δxx

)
+

(
∂2y

∂y2
− δyy

)]
z1ij(t).

Using appropriate Taylor series expansions and the bound (4.1.9) gives

||Ln(Z1ij(t)− z1ij(t))|| ≤ Cε(∆x)2
i (|||(z1xxxx(t))ij||+ ||(z1yyyy(t))ij||

≤ Cε(σn−1)2ε−2

≤ (Cn−1 lnn)2.

Following [19], we define the barrier function

Φ(xi, yj, t) = C(n−1 lnn)2.

Which satisfies the inequalities

Φn/4n/4(t) = (Cn−1 lnn)2 ≥ 0,

Φnn(t) = (Cn−1 lnn)2 ≥ 0, ∀n/4 ≤ i, j ≤ n, t ∈ [0, T ],

LnΦij(t) = (Cn−1 lnn)2 ≥ 0, ∀n/4 < i, j < n, t ∈ [0, T ].
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Thus from the semi-discrete maximum principle 4.2.1,

||Z1(t)− z1(t))(xi, yj)|| ≤ (Cn−1 lnn)2,

follows. Now to bound the error in the domain Ωn \ n/4 ≤ i, j ≤ n, we know that the

numerical solution is equal to the exact solution at the boundaries thus we have

||Z1(t)(xi, yj)|| = ||z1(t)(xi, yj)|| ≤ C min
{

exp
(
−
√
β/εxi

)
, exp

(
−
√
β/εyj

)}
.

When (xi, yj) ∈ Ωn \ n/4 ≤ i, j ≤ n, t ∈ (0, T ], we use the barrier function

Bw2j(t) =


j∏
s=1

(1 + ∆ys
√
β/ε)−1, j 6= 0,

1, j = 0.

together with Bw1i(t). Now following the same reasoning like before, the error around

(0, 0) satisfies

||(Z1ij(t)− z1ij(t))|| ≤ C min{Bw1i, Bw2j}.

From the inequality 4.2.20 we have

||Z1(t)(xi, yj)− z1(t)(xi, yj)|| ≤ Cn−2.

Adding the preceding error yields

||Z1(t)(xi, yj)− z1(t)(xi, yj)|| ≤ C(n−1 lnn)2.

Similar bounds holds for the other three corner layer functions.

Proposition 4.2.3. Let zp(t) and Zp(t) be the exact and the numerical solutions respec-

tively then for all (xi, yj, t) ∈ Ωn × (0, T ], we have

||(Zpij(t)− zpij(t))|| ≤ C(n−1 lnn)2. (4.2.25)

Lemma 4.2.3. From propositions 4.2.1-4.2.2 and 4.2.3 the error of the spatial semi-

descretization with the FMFDM satisfies

||Uij(t)− uij(t)|| ≤ C(n−1 lnn)2.

Next we discretize in space with the FOFDM.
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4.3 Spatial discretization with the FOFDM

Here we descretize problem (4.1.1)-(4.1.2) in space via a fitted operator finite difference

scheme.

4.3.1 The FOFDM

We consider the following partitions of the interval [0, 1] :

x0 = 0, xi = x0 + i∆x, i = 1(1)n− 1, ∆x = xi − xi−1, xn = 1,

y0 = 0, yj = x0 + j∆y, j = 1(1)m− 1, ∆y = yj − yj−1, ym = 1.

Note that the tensor product of these two partitions gives the mesh grid on the entire

domain Ω. Using the theory of difference schemes and the notations from 4.2.1, we design

the scheme as follows:

L∆x,∆yUij(t)≡
dUij(t)

dt
− ε
(
Ui+1,j(t)−2Uij(t) + Ui−1,j(t)

(φij)2(ε,∆x, t)
+
Ui,j+1(t)− 2Uij(t) + Ui,j−1(t)

(φij)2(ε,∆y, t)

)
+bij(t)Uij(t) = fij(t), i = 1(1)n− 1, j = 1(1)m− 1, (4.3.26)

subject to the semi-discrete boundary and initial conditions

U0j(t) = g0j(t), Unj(t) = gnj(t), Ui0(t) = g0j(t), Uim(t) = gim(t), (xi, yj, t) ∈ Ω̄n,m,

Uij(0) = ϕij, (xi, yj) ∈ Ω̄n. (4.3.27)

The denominator functions φij(ε,∆y, t) and φij(ε,∆y, t), are given as

φij(ε,∆x, t) =
2

ρij
sinh

(
ρij∆x

2

)
,

φij(ε,∆y, t) =
2

ρij
sinh

(
ρij∆y

2

)
,

with ρij =
√

bij(t)

ε
. We represent the difference scheme (4.3.26)-(4.3.27) in the matrix

notation

U ′(t) + A(t)U(t) = F (t), (4.3.28)
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where A(t) ∈ R(n−1)(m−1)×R(n−1)(m−1) and F (t) ∈ R(n−1)(m−1) and have the entries given

below.

App(t) =
2ε

(φij)2(ε,∆x, t)
+

2ε

(φij)2(ε,∆y, t)
+ bij(t), i = 1(1)n− 1, j = 1(1)m− 1,

Ap,p+1(t) = − ε

(φij)2(ε,∆y, t)
, i = 1(1)n− 1, j = 1(1)m− 2,

Ap,p−1(t) = − ε

(φij)2(ε,∆y, t)
, i = 1(1)n− 1, j = 2(1)m− 1,

Ap,(n−1)+p(t) = − ε

(φij)2(ε,∆x, t)
, i = 1(1)n− 2, j = 1(1)m− 1,

Ap,p−(n−1)(t) = − ε

(φij)2(ε,∆x, t)
, i = 2(1)n− 1, j = 1(1)m− 1.

Fp(t) = fp(t) +

(
ε

(φ11)2(ε,∆x, t)

)
u(0, y1, t) +

(
ε

(φ11)2(ε,∆y, t)
+

)
u(x1, 0, t),

Fp(t) = fp(t) +

(
ε

(φ1j)2(ε,∆x, t)

)
u(0, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t) +

(
ε

(φ1,m−1)2(ε,∆x, t)

)
u(0, ym−1, t) +

(
ε

(φ1,m−1)2(ε,∆y, t)

)
u(x1, 1, t),

Fp(t) = fp(t) +

(
ε

(φi1)2(ε,∆y, t)

)
u(xi, 0, t), i = 2(1)n− 2,

Fp(t) = fp(t), i = 2(1)n− 2, j = 2(1)m− 2,

Fp(t) = fp(t) +

(
ε

(φi,m−1)2(ε,∆y, t)

)
u(x1, 1, t), i = 2(1)n− 2,

Fp(t) = fp(t) +

(
ε

(φn−1,1)2(ε,∆x, t)

)
u(1, y1, t) +

(
ε

(φn−1,1)2(ε,∆y, t)

)
u(xn−1, 0, t),

Fp(t) = fp(t) +

(
ε

(φn−1,j)2(ε,∆x, t)

)
u(1, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t)

(
ε

(φn−1,m−1)2(ε,∆x, t)

)
u(1, ym− 1, t) +

(
ε

(φn−1,m−1)2(ε,∆y, t)

)
u(xn−1, 1, t).

4.3.2 Error analysis

Below we provide the theoretical error analysis of the scheme (4.3.26)-(4.3.27). The

truncation error is given by

L∆x,∆y(Uij(t)− uij(t)) = fij(t)− L∆x,∆yuij(t)

=
(
L − L∆x,∆y

)
uij(t)
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= −ε(uxx(t))ij − ε(uyy(t))ij + ε

(
ui+1,j(t)− 2uij(t) + ui−1,j(t)

(φij)2(ε,∆x, t)

)
+ε

(
ui,j+1(t)− 2uij(t) + ui,j−1(t)

(φij)2(ε,∆y, t)

)
Using Taylor series expansions of the terms ui+1,j(t), ui−1,j(t), ui,j+1(t), ui,j−1(t) gives

L∆x,∆y (Uij(t)− uij(t)) ≤ −ε(uxx(t))ij − ε(uyy(t))ij +
ε

(φij)2(ε,∆x, t)

×
(

∆x2(uxx(t))ij +
∆x4

12
(uxxxx(t))ijξ1

)
, ξ1 ∈ (ui+1,j(t), ui−1,j(t))

+
ε

(φij)2(ε,∆y, t)

(
∆y2(uyy(t))ij +

∆y4

12
(uyyyy(t))ijξ2

)
,

ξ2 ∈ (ui,j+1(t) + ui,j−1(t)).

Again using Taylor series expansions of φij gives

L∆x,∆y (Uij(t)− uij(t)) ≤ −εuxx(t)− εuyy(t) +

(
ε

∆x2
− bij(t)

12
+

(bij(t))
2∆x2

240ε

)
(

∆x2(uxx(t))ij +
∆x4

12
(uxxxx(t))ijξ1

)
+

(
ε

∆y2
− bij(t)

12
+

(bij(t))
2∆y2

240ε

)
×
(

∆y2(uyy(t))ij +
∆y4

12
(uyyyy(t))ijξ2

)
= ε

∆x2

12
(uxxxx(t))ijξ1 −

bij(t)∆x
2

12
(uxx(t))ij

−bij(t)∆x
4

144
(uxxxx(t))ijξ1 +

(bij(t))
2∆x4

240ε
(uxx(t))ij

+ε
(bij(t))

2∆x6

2880ε
(uxxxx(t))ijξ1 + ε

∆y2

12
(uyyyy(t))ijξ2

−εbij(t)∆y
2

12
(uyy(t))ij − ε

bij(t)∆y
4

144
(uyyyy(t))ijξ2

+ε
bij(t)

2∆y4

240ε
(uyy(t))ij + ε

(bij(t))
2∆y6

2880ε
(uyyyy(t))ijξ2

Applying the bounds on the derivatives and the use of Lemma2.3.1 results in

L∆x,∆y(Uij(t)− uij(t)) =

(
ε

12
− bij(t)

12

)
∆x2 −

(
bij(t)

144
− (bij(t))

2

240ε

)
∆x2 +

(
(bij(t))

2

2880ε

)
∆x2

+

(
ε

12
− bij(t)

12

)
∆y2 −

(
bij(t)

144
− (bij(t))

2

240ε

)
∆y2 +

(
(bij(t))

2

2880ε

)
∆y2

≤ C(∆x2 + ∆y2).
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Invoking Lemma 4.2.2 yields

||Uij(t)− uij(t)|| ≤ C(∆x2 + ∆y2).

Lemma 4.3.1. Let ui(t) be the exact solution of (4.1.1)-(4.1.2) and Uij(t) the solution

of (4.3.26)-(4.3.27) at x = xi and y = yj. Then we have

max
0<ε≤1

max
0≤i≤n;0≤j≤m

|Uij(t)− uij(t)| ≤ C(∆x2 + ∆y2),

where C is a constant independent of ∆x,∆y and ε.

In the next section we perform the second stage of the method of lines.

4.4 Time discretization

Like the early chapter we discretize the IVPs (4.2.14)-(4.2.14) and (4.3.26)-(4.3.27) with

the backward Euler method on a uniform mesh. Now we perform the time discretization

as follows:
Uk − Uk−1

τ
+ A(tk)U

k = F (tk), for k = 1, ..., K, (4.4.29)

with initial condition U(0) = ϕ. Rearranging equation (4.4.29) gives the approximate

solution

Uk = (I + τA(tk))
−1 (τF (tk) + Uk−1).

Theorem 4.4.1 below gives the summary of the work in this chapter.

Theorem 4.4.1. Let u ∈ C4,2(Q̄) be the exact solution of the continuous problem (4.1.1)-

(4.1.2) and Uk
ij be the numerical solution obtained via the FMDML (4.2.13)-(4.2.14) along

with (4.4.29) or the FOFDML (4.3.26)-(4.3.27) along with (4.4.29). Then the errors of

these methods are as follows:

sup
0<ε≤1

max
0≤i≤n;0≤k≤K

||Uk
ij − ukij|| ≤ C((n−1 lnn)2 + τ), for the FMFDML

and

sup
0<ε≤1

max
0≤i≤n;0≤j≤m;0≤k≤K

||Uk
ij − ukij|| ≤ C(∆x2 + ∆y2 + τ), for the FOFDML.

Next, we illustrate practically the theoretical estimates with an example.
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4.5 Numerical example

Here we test the performance of the numerical method with the example below. We com-

pute the maximum pointwise error and the numerical rate of convergence. For simplicity

we use n = m in all computations. We use the double mesh principle to estimate the

error because the exact solution is not available. Thus we calculate the error using the

formula

Eε
n,τ = max

0≤i,j≤n;0≤k≤K
|Uk;K

ij;n − U
k;4K
ij;2n |, (4.5.30)

where Uk;K
ij;n is the numerical solution and Uk;4K

ij;2n is also a numerical solution but on a finer

mesh. Note that we have multiplied n by 2 and K by 4 to balance the error. Since the

numerical method constructed here converges at a second order rate in space and a first

order in time. Furthermore, we compute the rate of convergence with the formula

rεl = log2

(
Eε
n,τ/E

ε
2n,τ/4

)
, l = 1, 2, 3, ... (4.5.31)

Example 4.5.1. [4] Consider the problem

ut −∆u+ (2 + xy)u =
(
max{0, cos π((x− 0.5)2 + (y − 0.5)2)− exp(−t)}

)2
, (4.5.32)

(x, y, t) ∈ Ω,×(0, 1], u(x, y, 0) = 0, x, y ∈ [0, 1], g(x, y, t) = 0, t ∈ (0, 1]. (4.5.33)
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Table 4.1: Maximum pointwise error for Example 4.5.1 using the FMFDML

ε n = 4 8 16 32

K = 4 16 64 256

100 4.37E − 04 8.72E − 05 2.14E − 05 5.39E − 06

10−1 3.39E − 03 9.53E − 04 2.50E − 04 6.31E − 05

10−2 5.98E − 03 1.68E − 03 4.34E − 04 1.09E − 04

10−3 6.16E − 03 1.78E − 03 4.60E − 04 2.13E − 04

10−4 6.28E − 03 1.78E − 03 4.64E − 04 2.13E − 04

10−5 6.29E − 03 1.78E − 03 4.65E − 04 2.13E − 04

10−6 6.29E − 03 1.78E − 03 4.65E − 04 2.14E − 04

10−7 6.29E − 03 1.78E − 03 4.65E − 04 2.14E − 04

10−8 6.28E − 03 1.78E − 03 4.65E − 04 2.14E − 04

10−9 6.29E − 03 1.78E − 03 4.65E − 04 2.14E − 04

10−10 6.29E − 03 1.78E − 03 4.65E − 04 2.14E − 04

Table 4.2: Maximum pointwise error for Example 4.5.1 using the FOFDML

ε n = 4 8 16 32

K = 4 16 64 256

100 5.24E − 04 1.11E − 04 2.81E − 05 7.66E − 06

10−1 4.12E − 03 1.10E − 03 2.84E − 04 7.89E − 05

10−2 6.97E − 03 2.02E − 03 5.94E − 04 1.85E − 04

10−3 6.48E − 03 1.63E − 03 3.73E − 04 5.89E − 04

10−4 6.53E − 03 1.80E − 03 3.55E − 04 7.71E − 04

10−5 6.53E − 03 1.81E − 03 4.65E − 04 9.01E − 05

10−6 6.53E − 03 1.81E − 03 4.65E − 04 1.17E − 04

10−7 6.53E − 03 1.81E − 03 4.65E − 04 1.17E − 04

10−8 6.53E − 03 1.81E − 03 4.65E − 04 1.17E − 04

10−9 6.53E − 03 1.81E − 03 4.65E − 04 1.17E − 04

10−10 6.97E − 03 2.02E − 03 5.94E − 04 1.17E − 04
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Table 4.3: Rate of convergence for Ex-

ample 4.5.1 using the FMFDML

ε r1 r2 r3

100 2.32 2.02 1.99

10−1 1.83 1.93 1.97

10−2 1.83 1.95 1.98

10−3 1.83 1.95 1.98

10−4 1.78 1.96 1.98

10−5 1.81 1.95 1.98

10−6 1.82 1.94 1.98

10−7 1.82 1.94 1.98

10−8 1.82 1.93 1.98

10−9 1.82 1.93 1.98

10−10 1.82 1.93 1.98

Table 4.4: Rate of convergence for Ex-

ample 4.5.1 using the FOFDML

ε r1 r2 r3

100 2.24 1.98 1.88

10−1 1.91 1.95 1.85

10−2 1.79 1.77 1.68

10−3 1.99 2.13 −0.66

10−4 1.86 2.34 −1.12

10−5 1.85 1.96 2.37

10−6 1.85 1.96 1.99

10−7 1.85 1.96 1.99

10−8 1.85 1.96 1.99

10−9 1.85 1.96 1.99

10−10 1.85 1.96 1.99

4.6 Conclusion

We studied two-dimensional reaction-diffusion problems. After reviewing the FMFDML

developed in [12], we designed a FOFDML. The FOFDML consists of a spatial discretiza-

tion via a FOFDM and a spatial discretization using the backward Euler method. Anal-

yses showed that both methods are second order convergent in space (except for a log-

arithmic factor in the case of the FMFDML) and first order in time. To illustrate the

proposed numerical methods in this chapter we performed numerical simulations, where

the maximum pointwise error and rate of convergence were computed. These numerical

results are in accordance with the theoretical ones.

In the next chapter we study two-dimensional convection-diffusion problems.
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Chapter 5

Methods of Lines for

Two-Dimensional

Convection-Diffusion Problems

In the preceding chapter we employed the FMFDML and the FOFDML to approximate

a two-dimensional time-dependent reaction-diffusion problems. Theoretical error bounds

as well as computed numerical results of the designed methods showed that the methods

were ε−uniform. In this chapter, we study a two-dimensional time-dependent convection-

diffusion problem using the same procedure.

5.1 Continuous problem

Consider the time-dependent convection-diffusion problem

Lu ≡ ∂u

∂t
−ε∆u+a(x, y, t)∇u+b(x, y, t)u = f(x, y, t), (x, y, t) ∈ Q ≡ Ω = (0, 1)2×(0, T ],

(5.1.1)

subject to the boundary and initial conditions

u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ], u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω̄. (5.1.2)

Where ε is a small positive parameter, f and the coefficient functions are sufficiently

smooth. We assume a(x, y, t) = (a1(x, y, t), a2(x, y, t)), a1(x, y, t) ≥ α1 > 0, a2(x, y, t) ≥
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α2 > 0, b(x, y, t) ≥ β > 0, ∀ (x, y, t) ∈ Q, so that the exact solution satisfies u(x, y, t) ∈

C4,2(Q). Also, we impose the compatibility conditions

g(x, y, 0) = ϕ(x, y), in ∂Ω,

∂g

∂t
(x, y, 0) = ε M ϕ− a(x, y, 0)Oϕ− b(x, y, 0)ϕ+ f(x, y, 0), in ∂Ω,

∂2g

∂t2
(x, y, 0) = (−ε M +a(x, y, 0)O + b(x, y, 0))2ϕ+

∂

∂t
f(x, y, 0)

− (−ε M +a(x, y, 0)O + b(x, y, 0)) f(x, y, 0), in ∂Ω,

f(x, y, 0) =
∂

∂t
+ (−ε M +a(x, y, 0)O + b(x, y, 0)) g(x, y, t), in (0, 1)× (0, 1)× (0, T ].

The smoothness of the data and the compatibility conditions ensure an outflow boundary

layers in the solution of problem (5.1.1)-(5.1.2) these layers are exponential. Figure 5.1

below shows the boundary layers in the solution.

(1, 0) (1, 1)

(1, 0)(0, 0)

Corner layer

Boundary layer near x = 1

Boundary layer near y = 1

Figure 5.1: Outflow boundary layers in convection-diffusion probem

Thus the differential operator L satisfies the maximum principle as well as the uniform

stability estimate in Lemmas 4.1.1 and 4.1.2 of Chapter 4. Under the hypothesis of these

two Lemmas the exact solution and its derivatives satisfy the bound, [42, 12]∣∣∣∣∂i+j+ku(x, y, t)

∂xi∂yj∂tk

∣∣∣∣ ≤ C

(
1 + ε−(i+j)

(
exp

(
−α1(1− x)

ε

)
exp

(
−α2(1− y)

ε

)))
. (5.1.3)
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This bound can further be written as the sum [12]

u = v +
3∑
p=1

wp, (5.1.4)

where v represents the regular component, w1 and w2 are the two edge layer functions

around the neighbourhood of x = 1, y = 1 and w3 is the corner layer function around

(1, 1) respectively.

Each term satisfies the respective bounds

∂i+j+kv(x, y, t)

∂xi∂yj∂tk
≤ C (5.1.5)

∂i+j+kw1(x, y, t)

∂xi∂yj∂tk
≤ Cε−i exp (−α1(1− x)/ε) (5.1.6)

∂i+j+kw2(x, y, t)

∂xi∂yj∂tk
≤ Cε−j exp (−α2(1− y)/ε) (5.1.7)

∂i+j+kw3(x, y, t)

∂xi∂yj∂tk
≤ Cε−(i+j) min {exp (−α1(1− x)/ε) , exp (−α2(1− y)/ε)}

(5.1.8)

where i + j + 2k ≤ 4. The outline of this chapter is as follows. Section 5.2 describes

the spatial discretization with the FMFDM and the error analysis. In Section 5.3, we

discretize in space with the FOFDM and provide the error analysis. Section 5.4 integrates

the semi-discrete systems of IVPs. Numerical simulations are carried out in Section 5.5

and in Section 5.6, we give a summary of the chapter.

5.2 Spatial discretization with the FMFDM

Below we investigate the FMFDM derived by Clavero and Jorge in [12]. As indicated

earlier problem (5.1.1)-(5.1.2) is known to be characterised with an outflow boundary

layer of width Oε ln(1/ε) around the sides x = 1 and y = 1. Therefore in each spatial

direction we design a piecewise uniform mesh to resolve the layers. We use the transition
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parameters σx and σy, which are given respectively by

σx = min

{
1

2
, σ0

ε

α1

lnn

}
and σy = min

{
1

2
, σ0

ε

α2

lnm

}
.

To ensure that there are always some mesh points in every region of the rectangular

domain, n, m ≥ 4. In the x direction, the domain [0, 1] is sub-divided into [0, 1− σx] and

[1−σx, 1]. With each sub-domain having n/2+1 mesh points. This gives the mesh points

Ix,n = {0 = x0 < ... < xn = 1}, with the step size

∆xi = xi − xi−1 :=

 2(1− σx)n−1, i = 1, 2, ..., n/2

2σxn
−1, i = n/2 + 1, ..., n.

The mesh in the y direction can be obtain in a similar manner. Figure 5.2 illustrates the

mesh on the domain Ωn,m.

(0, 0) (1, 0)

(1, 0) (1, 1)1− σx

1− σy

1− σx

1− σy

Figure 5.2: Shishkin mesh for n = 16 for an elliptic convection-diffusion probem

5.2.1 The FMFDM

Using the FMFDM with the above features and the notations in Chapter 4, we discretize

the spatial derivatives in problem (5.1.1)-(5.1.2) as follows:

Ln,mUij ≡
dUij(t)

dt
− 2ε

∆xi + ∆xi+1

(
Ui+1,j(t)− Uij(t)

∆xi+1

− Uij(t)− Ui−1,j(t)

∆xi

)
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− 2ε

∆yj + ∆yj+1

(
Ui,j+1(t)− Uij(t)

∆yj+1

− Uij(t)− Ui,j−1(t)

∆yj

)
+ a1ij(t)

×
(
Uij(t)− Ui−1,j(t)

∆xi

)
+ a2ij(t)

(
Uij(t)− Ui,j−1(t)

∆yj

)
+ bij(t)Uij(t)

= fij(t), i = 1(1)n− 1,  = 1(1)m− 1, (5.2.9)

with the boundary and the initial conditions

Uij(t) = gij(t), (xi, yj, T ) ∈ ∂Ωn,m × [0, T ], Uij(0) = ϕij, (xi, yj) ∈ Ω̄n,m. (5.2.10)

We represent the scheme (5.2.9)-(5.2.10) in the matrix notation

U ′(t) + A(t)U(t) = F (t), (5.2.11)

where the coefficient matrix A(t) is a pentadiagonal matrix and satisfies A(t) ∈ R(n−1)2 ×

R(m−1)2 , and the vectors U(t) and F (t) are in R(n−1)(m−1). The entries of A(t) and F (t)

are given by

App(t) =
2ε

∆xi + ∆xi+1

(
1

∆xi+1

+
1

∆xi

)
+

2ε

∆yj + ∆yj+1

(
1

∆yj+1

+
1

∆yj

)
+
a1ij(t)

∆xi

+
a2ij(t)

∆yj
+ bij(t), i = 1(1)n− 1, j = 1(1)m− 1,

Ap,p−1(t) = − 2ε

∆yj + ∆yj+1

(
1

∆yj

)
−
a2ij(t)

∆yj
, i = 1(1)n− 1, j = 2(1)m− 1,

Ap,p+1(t) = − 2ε

∆yj + ∆yj+1

(
1

∆yj+1

)
, i = 1(1)n− 1, j = 1(1)m− 2,

Ap,p−(n−1))(t) = − 2ε

∆xi + ∆xi+1

(
1

∆xi

)
−
a1ij(t)

∆xi
, i = 2(1)n− 1, j = 1(1)m− 1,

Ap,(n−1)+p(t) = − 2ε

∆xi + ∆xi+1

(
1

∆xi+1

)
, i = 1(1)n− 2, j = 1(1)m− 1.

Fp(t)=fp(t) +

(
2ε

∆x1(∆x1 + ∆x2)
+
a111(t)

∆x1

)
u(0, y1, t) +

(
2ε

∆y1(∆y1 + ∆y2)
+
a211(t)

∆y1

)
×u(x1, 0, t),

Fp(t) = fp(t) +

(
2ε

∆x1(∆x1 + ∆x2)
+
a11j(t)

∆x1

)
u(0, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t) +

(
2ε

∆x1(∆x1 + ∆x2)
+
a11,m−1(t)

∆x1

)
u(0, ym−1, t) +

(
2ε

∆ym(∆ym−1 + ∆ym)

)
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×u(x1, 1, t),

Fp(t) = fp(t) +

(
2ε

∆y1(∆y1 + ∆y2)
+
a2i1(t)

∆y1

)
u(xi, 0, t), i = 2(1)n− 2,

Fp(t) = fp(t), i = 2(1)n− 2, j = 2(1)m− 2,

Fp(t) = fp(t) +

(
2ε

∆ym(∆ym−1 + ∆ym)

)
u(xi, 1, t), i = 2(1)n− 2,

Fp(t) = fp(t) +

(
2ε

∆xn(∆xn−1 + xn)

)
u(1, y1, t) +

(
2ε

∆y1(∆y1 + ∆y2)
+
a211(t)

∆y1

)
u(xn−1, 0, t),

Fp(t) = fp(t) +

(
2ε

∆xn(∆xn−1 + ∆xn)

)
u(1, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t) +

(
2ε

∆xn(∆xn−1 + ∆xn)

)
u(1, ym−1, t) +

(
2ε

∆ym(∆ym−1 + ∆ym)

)
u(xn−1, 1, t).

Next we analyse the FMFDM for convergence.

5.2.2 Error analysis

Here we give the theoretical error analysis of the scheme (5.2.9)-(5.2.10). Before we embark

on the error analysis, we first present two lemmas which will be used in the analysis.

Lemma 5.2.1. (Semi-discrete maximum principle) Let Lm,n be as defined in (5.2.9). We

say Ln,m satisfies a semi-discrete maximum principle if Ψ0j(t) ≥ 0, Ψi0(t) ≥ 0, Ψnj(t) ≥

0, Ψim(t) ≥ 0, ∀ 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ t ≤ T and Ln,mΨij(t) ≥ 0, 0 < i <

n, 0 < j < m, 0 ≤ t ≤ T.

Proof. Let (l, s) be indices such that

Ψls(t) = min
(xi,yj ,t)∈Ω̄n,m×[0,T ]

Ψij(t) and Ψls(t) < 0.

Then the indices (l, s) lie in the interval 0 < l < n, 0 < s < m. We see that (Ψls(t))t =

0, Ψl+1,s(t) > Ψls(t), Ψls(t) > Ψl−1,s(t), Ψl,s+1(t) > Ψls(t), Ψls(t) > Ψl,s−1(t), thus

Ln,mΨls(t) < 0, which is a contradiction.

Lemma 5.2.2. The solution uij(t) of the semi-discrete problem (5.2.9)-(5.2.10), is such

that

||uij(t)|| ≤ β−1 max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

||Ln,muij(t)||+ max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

(||ϕij||, gij(t)).
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Proof. We let p = β−1 max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

||Ln,muij(t)||+ max
(xi,yj ,t)∈Ω̄n,m×[0,T ]

(||ϕij||, gij(t)), and

define the function ψ±ij(t) by

ψ±ij(t) = p± uij(t).

When we consider the boundary conditions, we obtain

ψ±0j(t) = p± u0j(t) = p± g0j(t) ≥ 0,

ψ±nj(t) = p± unj(t) = p± gnj(t) ≥ 0,

ψ±i0(t) = p± ui0(t) = p± gi0(t) ≥ 0,

ψ±im(t) = p± uim(t) = p± gim(t) ≥ 0,

and for the domain Ωn,m × [0, T ], we have

Ln,mψ±ij(t) = (p± uij(t))′ − ε
[

2

∆xi + ∆xi+1

(
p± ui+1,j(t)− p± uij(t)

∆xi+1

− p± uij(t)− p± ui−1,j(t)

∆xi

)
+

2

∆yj + ∆yj+1

(
p± ui,j+1(t)− p± uij(t)

∆yj+1

− p± uij(t)− p± ui,j−1(t)

∆yj

)]
+a1ij(t)

(
p± uij(t)− p± ui−1,j(t)

∆xi

)
+ a2ij(t)

(
p± uij(t)− p± ui,j−1(t)

∆yj

)
+bij(t)(p± uij(t))

= bij(t)p± Ln,muij(t)

= bij(t)p± fij(t)

= bij(t)

[
β−1 max

(xi,yj ,t)∈Ωn,m×[0,T ]
||Ln,muij(t)||+ max

(xi,yj ,t)∈Ωn,m×[0,T ]
(||ϕij||, gij(t))

]
± fij(t)

≥ 0, since bij(t) ≥ β.

It follow from the semi-discrete maximum principle 5.2.1 that ψij(t) ≥ 0, ∀ 0 ≤ i ≤

n, 0 ≤ j ≤ m, 0 ≤ t ≤ T, which ends the proof.

For simplicity we set n = m through out the analysis. To be able to carry out a

rigorous analysis of the FMFDM, we split the numerical solution into

Uij(t) = Vij(t) +
3∑
p=1

Wpij(t), ∀ (xi, yj) ∈ Ωn, t ∈ (0, T ],

where Vij(t) is a solution to

LnVij(t) = fij(t), Vij(0) = vij(0), (5.2.12)
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and Wpij(t) also satisfies

LnWpij(t) = gpij(t) +
∂gij(t)

∂t
, Wpij(0) = wpij, p = 1, 2, 3. (5.2.13)

Where g1ij(t), g2ij(t) are some evaluated boundary conditions around the sides x = 1

and y = 1 and g3ij(t) contains evaluated boundary conditions around the corner (1, 1).

Having obtained this decomposition, we estimate the error in each component separately.

Error of the regular component

We write the error in this component as

Ln(Vij(t)− vij(t)) = fij(t)− Lnvij(t)

= (L − Ln)vij(t)

= −ε
(
∂2

∂x2
+

∂2

∂y2
− (δ2

x + δ2
y)

)
vij(t) + a1ij(t)

(
∂

∂x
−D−x

)
vij(t)

+a2ij(t)

(
∂

∂y
−D−y

)
vij(t).

Using Taylor series expansions with integral remainder term simplifies the truncation error

into

||Ln(V (t)− v(t))(xi, yj)|| ≤ −C1ε[(xi+1 − xi−1)||(vxxx(t))ij||+ (yj+1 − yj−1)||(vyyy(t))ij||]

+C2

[
a1ij(t)∆xi||(vxx(t))ij||+ a2ij(t)∆yj||(vyy(t))ij||

]
≤ Cεn−1 + Cn−1

≤ Cn−1,

where we have used appropriate bounds of the derivatives. Now we follow [12] to define

the barrier function ψvij(t) = Cn−1(xi + yj), which satisfies ψvij(t) ≥ 0, ∀ (xi, yj, t) ∈

Ω̄n × [0, T ]. Thus it follows that

||(Vij(t)− vij(t))|| ≤ Cn−1.

Error around the edges of the domain

To bound the boundary layer term W1ij(t), we consider the two sub-domains [0, 1−σx]×

[0, 1]× [0, T ] and [1−σx, 1]× [0, 1]× [0, T ] in the x direction. That is the layer region and
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the non-layer region in the x direction. In the sub-domain [0, 1− σx]× [0, 1]× [0, T ], the

mesh is very coarse, thus to bound the error we follow [26] to define the discrete barrier

function

Z1ij(t) =
i∏

s=1

(
1 +

α1∆xs
ε

)
, on Ωn, t ∈ (0, T ].

Similar to the one-dimensional case Z1ij(t) satisfies the inequalities

LnZ1ij(t) ≥
C1

ε+ α1∆xi
Z1ij(t), on Ωn, (5.2.14)

exp(−α1(1− xi)/ε) =
n∏

s=i+1

exp(−α1∆xs/ε) ≤
n∏

s=i+1

(
1 +

α1∆xs
ε

)−1

=

[
n∏
s=1

(
1 +

α1∆xs
ε

)−1
]
Z1ij(t).(5.2.15)

Now we let ψ1ij(t) = C1

[
n∏
s=1

(
1 +

α∆xs
ε

)−1
]
Z1ij(t), and show that ψ1ij(t) is a barrier

function for W1ij(t) when C1 is chosen to be sufficiently large. At the boundaries we have

W10j(t) = w(0, yj, t) ≤ exp(−α1/ε) = C
n∏
s=1

exp(−α1∆xs/ε) ≤ C
n∏
s=1

(
1 +

α1∆xs
ε

)−1

W1nj(t) = w(1, yj, t) ≤ C,

for W1ij(t) and

ψ10j(t) = C1

n∏
s=1

(
1 +

α1∆xs
ε

)−1

≥ W10j(t)

ψ1nj(t) = C1

n∏
s=1

(
1 +

α1∆xs
ε

)−1

Z1nj(t) ≥ W1nj(t),

also holds when C1 is chosen to be sufficiently large. From the inequality (5.2.14)

Lnψ1ij(t) ≥
C1

ε+ α1∆xi

[
n∏
s=1

(
1 +

α1∆xs
ε

)−1
]
Z1ij(t) ≥ 0LnWij(t) (5.2.16)

holds. Thus ψ1ij(t) is a barrier function for W1ij(t) ∀ (xi, yj) ∈ Ωn, t ∈ (0, T ]. Employing

the bounds 5.1.6 we have the estimate

||W1ij(t)− w1ij(t)|| ≤ ||w1ij(t)||+ ||W1ij(t)|| ≤ C exp(−α(1− xi)/ε) + ψ1ij(t)

≤ Cψ1ij(t) ∀ (xi, yj, t) ∈ Ωn × (0, T ].
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Now for all 0 ≤ i ≤ n/2, we show that ψ1ij(t) ≤ Cn−1. To do this it is suffices to show

that ψ1n/2j(t) ≤ Cn−1 since ψ1ij(t) ≤ ψ1i+1,j(t) for 0 ≤ i ≤ n/2, 0 ≤ j ≤ n, 0 ≤ t ≤ T.

Thus for all 0 ≤ i ≤ n/2, 0 ≤ j ≤ n, 0 ≤ t ≤ T, we have

Z1ij(t) ≤ Z1n/2,j(t) =
n∏

s=1+n/2

(
1 +

α1∆xs
ε

)−1

= C exp(−α1(1− xn/2)/ε)

= C exp(−α− 1(1− (1− σ))/ε)

= C exp(−α1(σ))/ε)

= C exp(−α1(ε/α1 lnn)/ε)

≤ Cn−1.

In the other half of the domain n/2 < i < n, 0 ≤ j ≤ n, the mesh is very fine therefore

we bound the error with consistency and the barrier function argument. Thus we have

the truncation error in this region as

Ln(W1ij(t)− w1ij(t)) = −ε
[(

∂2

∂x2
− δ2

x

)
+

(
∂2

∂y2
− δ2

y

)]
w1ij(t)

+

[
a1ij(t)

(
∂

∂x
−D−x

)
+ a2ij(t)

(
∂

∂y
−D−y

)]
w1ij(t)

≤ −Cε[(xi+1 − xi−1)(w1xxx(t))ij + (yj+1 − yj−1)(w1yyy(t))ij]

+a1ij(t)∆xi[w1xx(t))ij] + a2ij(t)∆yj[w1yy(t))ij]

≤ Cσn−1ε−2 exp(−α1(1− x)/ε) + Cεn−1 + Cn−1

≤ Cn−1 lnnε−1 exp(−α1(1− x)/ε) + Cεn−1 + Cn−1

≤ Cn−1 lnnε−1

[
n∏

s=i+1

(
1 +

α1∆xs
ε

)−1
]
,

where the bounds 5.1.6 and ∆x = 2σxn
−1 have been used. Now we define the barrier

function

ψ1ij(t) = Cn−1 lnn
n∏

s=i+1

(
1 +

α1∆xs
ε

)−1

. (5.2.17)

Which satisfies the inequalities

ψ1n/2j(t) = Cn−1 lnn
(

1 +
α1σx
nε

)−1

≤ Cn−1 lnn ≥ 0,
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ψ1nj(t) = Cn−1 lnn
(

1 +
α1σx
nε

)−1

≤ Cn−1 lnn ≥ 0, ∀n/2 ≤ i ≤ n

0 ≤ j ≤ n, t,∈ [0, T ],

Lnψ1ij(t) = Cn−1 lnn
(

1 +
α1σx
nε

)−1

≤ Cn−1 lnn ≥ 0, ∀n/2 < i < n,

0 < j < n , t ∈ [0, T ].

Therefore ψ1ij(t) ≤ Cn−1 lnn ≥ 0, ∀n/2 ≤ i ≤ n, 0 ≤ j ≤ n, t ∈ (0, T ]. It follows that

||W1ij(t)− w1ij(t)|| ≤ Cn−1 lnn, n/2 < i < n, 0 ≤ j ≤ n, t ∈ [0, T ].

Combining the results in the two sub-domains gives the bound

||W1ij(t)− w1ij(t)|| ≤ Cn−1 lnn, ∀ 0 ≤ i, j ≤ n t ∈ (0, T ]. (5.2.18)

Analogous bound holds for the singular component in the y direction.

||W2ij(t)− w2ij(t)|| ≤ Cn−1 lnn, ∀ 0 ≤ i, j ≤ n, t ∈ [0, T ]. (5.2.19)

Error around the corners of the domain

Now to bound the corner layer function W3ij(t) we consider the layer region and the

non-layer region and follow the same procedure as the case of the bound W1ij(t). In

the non-layer region, the mesh is coarse thus we follow [26] to define the discrete barrier

function

Z3ij(t) =
i∏

s=1

(
1 +

α1∆xs
ε

) j∏
s=1

(
1 +

α2∆xs
ε

)
, on Ωn,

which is also the discrete equivalent of the boundary layer term

exp (−α1(1− x)/ε) exp (−α2(1− y)/ε) .

Similarly, it satisfies the inequalities

LnZ3ij(t) ≥ CZ3ij(t)

(
1

ε+ α1∆xi
+

1

ε+ α2∆yj

)
and

exp (−α1(1− x)/ε) exp (−α2(1− y)/ε) ≤
n∏

s=i+1

(
1 +

α1∆xs
ε

)−1 n∏
s=j+1

(
1 +

α2∆ys
ε

)−1

,

holds.

95

 

 

 

 

http://etd.uwc.ac.za



Proof.

D+
x Z3ij(t) =

(1 + α1∆xi+1/ε)

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆xi+1

−

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆xi+1

=

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
[(1 + α1∆xi+1/ε)− 1]

∆xi+1

=
α1

ε
Z3ij(t), (5.2.20)

D−x Z3ij(t) =

(1 + α1∆xi/ε)

(
i−1∏
s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆xi

−

(
i−1∏
s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆xi

=

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
[(1 + α1∆xi/ε)− 1]

∆xi

=
α1

ε+ α1∆xi
Z3ij(t), (5.2.21)

D+
y Z3ij(t) =

(1 + α2∆yj+1/ε)

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆yj+1

−

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆yj+1

=

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
[(1 + α2∆yj+1/ε)− 1]

∆yj+1

=
α2

ε
Z3ij(t), (5.2.22)
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D−y Z3ij(t) =

(1 + α1∆yj/ε)

(
i−1∏
s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆yj

−

(
i−1∏
s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
∆yj

=

(
i∏

s=1

(1 + α1∆xs/ε)

j∏
s=1

(1 + α2∆ys/ε)

)
[(1 + α2∆yj/ε)− 1]

∆yj

=
α2

ε+ α2∆yj
Z3ij(t), (5.2.23)

LnZ3ij(t) = (Z3ij(t))t − ε
[

2

∆xi+1 + ∆xi

(
D+
x −D−x

)
+

2

∆yj+1 + ∆yj

(
D+
y −D−y

)]
+a1ij(t)D

−
x + a2ij(t)D

−
y + bij(t)Z3ij(t)

= −ε
[

2

∆xi+1 + ∆xi

(
α1

ε
− α1

ε+ α1∆xi

)
+

2

∆yj+1 + ∆yj

(
α2

ε
− α2

ε+ α2∆yj

)
+a1ij(t)

(
α1

ε+ α1∆xi

)
+ a2ij(t)

(
α2

ε+ α2∆yj

)
+ bij(t)

]
Z3ij(t)

=

[
1

ε+ α1∆xi

(
− 2α2

1∆xi
∆xi + ∆xi+1

+ α2
1

)
+

1

ε+ α2∆yj

(
− 2α2

2∆yj
∆yj + ∆yj+1

+ α2
2

)
+ β

]
×Z3ij(t)

≥
[

C

ε+ α1∆xi
+

C

ε+ α2∆yj
+ β

]
Z3ij(t)

≥ CZ3ij(t)

(
1

ε+ α1∆xi
+

1

ε+ α2∆yj

)
, on Ωn, (5.2.24)

which completes the proof.

Now we set

ψ3ij(t) = C1

n∏
s=i+1

(
1 +

α1∆xs
ε

)−1 n∏
s=j+1

(
1 +

α2∆ys
ε

)−1

= C1

n∏
s=1

(
1 +

α1∆xs
ε

)−1 n∏
s=1

(
1 +

α2∆ys
ε

)−1

Z3ij(t),
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and show that ψ3ij(t) is a barrier function of W3ij(t) when C1 is chosen to be large. At

the boundaries we have

ψ300(t) = C1

n∏
s=1

(
1 +

α1∆xs
ε

)−1 n∏
s=1

(
1 +

α2∆ys
ε

)−1

≥ exp(−α1/ε) exp(−α2/ε) = W300(t)

ψ3nn(t) = C1

n∏
s=1

(
1 +

α1∆xs
ε

)−1 n∏
s=1

(
1 +

α2∆ys
ε

)−1

Z3nn(t) ≥ C = W3nn(t).

From equation (5.2.13) we have LnW3ij(t) = g3ij(t) +
∂gij(t)

∂t
, and from inequality (5.2.24)

Lnψ3ij(t) ≥ CZ3ij(t)
(

1
ε+α1∆xi

+ 1
ε+α2∆yj

)
≥ LnW3ij(t), also holds. Therefore ψ3ij(t) is a

barrier function for W3ij(t), and hence we have W3ij(t) ≤ ψ3ij(t). Thus the error gives

||W3ij(t)− w3ij(t)|| ≤ Cψij(t) =
n∏

s=i+1

(
1 +

α1∆xs
ε

)−1 n∏
s=j+1

(
1 +

α2∆s

ε

)−1

= C min(exp(−α1(1− xn/2)/ε) exp(−α2(1− yn/2)/ε))

= C min(exp(−α1(1− (1− σx))/ε)

exp(−α2 − 1(1− (1− σy))/ε))

= C min(exp(−α1(σx))/ε)C exp(−α2(σy))/ε))

= C min exp(−α1(ε/α1 lnn)/ε) exp(−α2(ε/α2 lnn)/ε))

≤ Cn−1.

The error satisfies

||W3ij(t)− w3ij(t)|| ≤ Cn−1 ∀ 0 ≤ i+ j ≤ 3n

2
0 ≤ t ≤ T.

In the other half of the domain we define the truncation error as

||Ln(W3ij(t)− w3ij(t))|| ≤ Cε(xi+1 − x1−1)||(w3xxx(t))ij||+ (yj+1 − yj−1)||(w3yyy(t))ij||

≤ Cε[∆xi(w3xxx(t))ij + ∆yj(w3yyy(t))ij]

≤ Cn−1 lnn.

From the results obtained from each component, the error of the FMFDM satisfies

||Uk
ij − ukij|| ≤ Cn−1 lnn.

Next we perform the spatial discretization with the FOFDM.
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5.3 Spatial discretization with the FOFDM

Below we discretize problem (5.1.1)-(5.1.2) in space via the FOFDM on a uniform mesh.

5.3.1 The FOFDM

Following the same partitioning of the space domain in Section 4.3.1 of Chapter 4, we

discretize in space as follows:

L∆x,∆yUij(t)≡
dUij(t)

dt
− ε

[
Ui+1,j(t)− 2Uij(t)− Ui−1,j(t)

(φij)2(∆x, ε, t)
+
Ui,j+1(t)− 2Uij(t)− Ui,j−1(t)

(φij)2(∆y, ε, t)

]

+a1ij(t)

[
Uij(t)− Ui−1,j(t)

∆x

]
+ a2ij(t)

[
Uij(t)− Ui,j−1(t)

∆y

]

+bij(t)Uij(t) = fij(t), for i = 1, 2, ..., n− 1, j = 1, 2, ...,m− 1, (5.3.25)

along with the semi-discrete initial and boundary conditions

Uij(0) = ϕij, (xi, yj) ∈ Ω̄n,m, Uij(t) = gij(t) ∈ ∂Ωn,m × [0, T ], respevtively. (5.3.26)

Here the denominator functions (φij)
2 are given by

(φij)
2(∆x, ε, t) =

∆xε

a1ij(t)

(
exp

(
a1ij(t)∆x

ε

)
− 1

)
, (5.3.27)

(φij)
2(∆y, ε, t) =

∆yε

a2ij(t)

(
exp

(
a2ij(t)∆y

ε

)
− 1

)
. (5.3.28)

Expanding equations (5.3.27) and (5.3.28) in Taylor series gives

(φij)
2(∆x, ε, t) = ∆x2 +O

(
a1ij(t)∆x

3

ε

)
,

(φij)
2(∆y, ε, t) = ∆y2 +O

(
a2ij(t)∆y

3

ε

)
,

respectively. In matrix notation the scheme (5.3.25)-(5.3.26) takes the form

U ′(t) + A(t)U(t) = F (t), (5.3.29)
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where A(t) ∈ R(n−1)(m−1) ×R(n−1)(m−1) and U(t) and F (t) are in R(n−1)(m−1). The entries

of A(t) and F (t) are given below.

App(t) =
2ε

(φij)2(ε,∆x, t)
+

2ε

(φij)2(ε,∆y, t)
+
a1ij(t)

∆x
+
a2ij(t)

∆y
+ bij(t),

i = 1(1)n− 1, j = 1(1)m− 1,

Ap,p+1(t) = − ε

(φij)2(ε,∆y, t)
, i = 1(1)n− 1, j = 1(1)m− 2,

Ap,p−1(t) = − ε

(φij)2(ε,∆y, t)
−
a2ij(t)

∆y
, i = 1(1)n− 1, j = 2(1)m− 1,

Ap,p+(n−1)(t) = − ε

(φij)2(ε,∆x, t)
, i = 1(1)n− 2, j = 1(1)m− 1,

Ap,p−(n−1)(t) = − ε

(φij)2(ε,∆x, t)
−
a1ij(t)

∆x
, i = 2(1)n− 1, j = 1(1)n− 1.

Fp(t) = fp(t) +

(
ε

(φ11)2(ε,∆x, t)
+
a111(t)

∆x

)
u(0, y1, t) +

(
ε

(φ11)2(ε,∆y, t)
+
a211(t)

∆y

)
×u(x1, 0, t),

Fp(t) = fp(t) +

(
ε

(φ1j)2(ε,∆x, t)
+
a11j(t)

∆x

)
u(0, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t) +

(
ε

(φ1,m−1)2(ε,∆x, t)
+
a11,m−1(t)

∆x

)
u(0, ym−1, t) +

(
ε

(φ1,m−1)2(ε,∆y, t)

)
×u(x1, 1, t),

Fp(t) = fp(t) +

(
ε

(φi1)2(ε,∆y, t)
+
a2i1(t)

∆y

)
u(xi, 0, t), i = 2(1)n− 2,

Fp(t) = fp(t), i = 2(1)n− 2, j = 2(1)m− 2,

Fp(t) = fp(t) +

(
ε

(φi,m−1)2(ε,∆y, t)

)
u(xi, 1, t), i = 2(1)n− 2,

Fp(t) = fp(t) +

(
ε

(φn−1,1)2(ε,∆x, t)

)
u(1, y1, t) +

(
ε

(φn−1,1)2(ε,∆y, t)
+
a2n−1,1(t)

∆y

)
×u(xn−1, 0, t),

Fp(t) = fp(t) +

(
ε

(φn−1,j)2(ε,∆x, t)

)
u(1, yj, t), j = 2(1)m− 2,

Fp(t) = fp(t)

(
ε

(φn−1,m−1)2(ε,∆x, t)

)
u(1, ym−1, t) +

(
ε

(φn−1,m−1)2(ε,∆y, t)

)
u(xn−1, 1, t).

Next we analyse the FOFDM for convergence.
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5.3.2 Error analysis

The operator L∆x,∆y as defined in the scheme (5.3.25)-(5.3.26) also satisfies the maximum

principle and the uniform stability estimate. These properties are analogous to those

found in the lemmas 5.2.1 and 5.2.2.

The truncation error of the scheme (5.3.25)-(5.3.26) is given by

L∆x,∆y(Uij(t)− uij(t)) =
duij(t)

dt
− ε∆uij(t) + a1ij(t)(ux(t))ij + a2ij(t)(uy(t))ij

+bij(t)uij(t)−
[
duij(t)

dt
− ε

(
ui+1(t)− 2ui(t) + ui−1(t)

(φij)2(ε,∆x, t)

)
−ε
(
ui,j+1(t)− 2uij(t) + ui,j−1(t)

(φij)2(ε,∆y, t)

)
+ a1ij(t)

uij(t)− ui−1,j(t)

∆y

+a2ij(t)
uij(t)− ui−1,j(t)

∆y
+ bij(t)uij(t)

]
= −ε∆uij(t) + a1ij(t)(ux(t))ij + a2ij(t)(ux(t))ij

−
(
ui+1,j(t)− 2uij(t) + ui−1,j(t)

(φij)2(ε,∆x, t)

)
−
(
ui,j+1(t)− 2uij(t) + ui,j−1(t)

(φij)2(ε,∆y, t)

)
+ a1ij(t)

uij(t)− ui−1,j(t)

∆x

+a2ij(t)
uij(t)− ui−1,j(t)

∆y
.

Using appropriate Taylor series expansions yields

L∆x,∆y(Uij(t)− uij(t)) ≤ −ε(uxx(t))ij − ε(uyy(t))ij +

[
∆x2(uxx(t))ij +

∆x4

12
(uxxxx(t))ij

]
× ε

(φij)2(ε,∆x, t)
+

[
∆y2(uyy(t))ij +

∆y4

12
(uyyyy(t))ij

]
× ε

(φij)2(ε,∆y, t)
+ a1ij(t)

[
∆x

2
(uxx(t))ij −

∆x2

6
(uxxx(t))ij

]
a2ij(t)

[
∆y

2
(uyy(t))ij −

∆y2

6
(uyyy(t))ij

]
.

Now using a truncated Taylor series expansion of the denominator function gives

L∆x,∆y(Uij(t)− uij(t)) ≤ −ε(uxx(t))ij − ε(uyy(t))ij +

(
ε

∆x2
−
a1ij(t)

∆x
+
a1

2
ij(t)

ε

−
a1

3
ij(t)∆x

ε2

)[
∆x2(uxx(t))ij +

∆x4

12
(uxxxx(t))ij

]
+

(
ε

∆y2
−
a2ij(t)

∆y
+
a2

2
ij(t)

ε
−
a2

3
ij(t)∆x

ε2

)
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×
[
∆y2(uyy(t))ij +

∆y4

12
(uyyyy(t))ij

]
+

[
a1ij(t)

2
∆x(uxx(t))ij −

a1ij(t)

6
∆x2(uxxx(t))ij

]
+

[
a2ij(t)

2
∆y(uyy(t))ij −

a2ij(t)

6
∆y2(uyyy(t))ij

]
= −

a1
3
ij(t)

12ε2
(uxxxx(t))ij∆x

5 +
a1

2
ij(t)

12ε
(uxxxx(t))ij∆x

4

+

[
a1ij(t)

12
(uxxxx(t))ij −

a1
3
ij(t)

ε2
(uxx(t))ij

]
∆x3

+

[
a1

2
ij(t)

ε
(uxx(t))ij −

a1
2
ij(t)

6
(uxxx(t))ij +

ε

12
(uxxxx(t))ij

]
∆x2

−
a1ij(t)∆x

2
(uxx(t))ij −

a2
3
ij

12ε2
(uyyyy(t))ij∆y

5 +
a2

2
ij

12ε
(uyyyy(t))ij∆y

4

+

[
a2ij

12
(uyyyy(t))ij −

a2
3
ij

ε2
(uyyy(t))ij

]
∆y3

+

[
a2

2
ij

ε
(uyy(t))ij −

a2
2
ij

6
(uyyy(t))ij +

ε

12
(uyyyy(t))ij

]
∆y2

−
a2ij∆y

2
(uyy(t))ij.

Application of the bound (5.1.3) and Lemma 2.3.1 gives

||L∆x,∆y(Uij(t)− uij(t))|| ≤ C(∆x+ ∆y).

From Lemma 5.2.2

||(Uij(t)− uij(t))|| ≤ C(∆x+ ∆y),

follows.

Lemma 5.3.1. The error associated with the FOFDM satisfies

max
0<ε≤1

max
0≤i≤n;0≤j≤m

||(Uij(t)− uij(t))|| ≤ C(∆x+ ∆y).

5.4 Time discretization

Here we integrate the semi-discrete problems (5.2.9)-(5.2.10) and (5.3.25)-(5.3.26) on the

domain (0, T ] using the backward Euler on a uniform mesh. Now we write the fully
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descretized scheme as

Uk − Uk−1

τ
+ A(tk)U

k = F (tk), k = 1, ..., K, (5.4.30)

with initial condition U(0) = ϕ.

The following theorem provides the main result of this chapter.

Theorem 5.4.1. Let u ∈ C4,2(Q̄) be the exact solution of the continuous problem (5.1.1)-

(5.1.2) and Uk
ij be the numerical solution obtained via the FMDML (5.2.9)-(5.2.10) along

with (5.4.30) or the FOFDML (5.3.25)-(5.3.26) along with (5.4.30). Then the errors of

these methods are as follows:

sup
0<ε≤1

max
0≤i≤n;0≤k≤K

||Uk
ij − ukij|| ≤ C(n−1 lnn+ τ), for the FMFDML

and

sup
0<ε≤1

max
0≤i≤n;0≤j≤m;0≤k≤K

||Uk
ij − ukij|| ≤ C(∆x+ ∆y + τ), for the FOFDML.

5.5 Numerical example

In this section, we present a numerical example to support the theoretical findings. Similar

to the earlier chapters, the exact solution of the problem is not known, thus to calculate

the maximum pointwise error we use the formula

Eε
n,τ = max

0≤i,j≤n;0≤k≤K
|Uk;K

ij;n − U
k;2K
ij;2n |. (5.5.31)

Furthermore, we compute the rate of convergence with the formula

rεl = log2

(
Eε
n,τ/E

ε
2n,τ/2

)
, l = 1, 2, 3, ... (5.5.32)

Example 5.5.1. [10]

ut − ε∆u+
(

1− xy

2

) ∂u
∂x

+
(

1 +
xy

2

) ∂u
∂y

= e−tt2(x(1− x) + y(1− y)), (5.5.33)

(x, y, t) ∈ Ω× (0, 1],

u(x, y, 0) = 0, (x, y) ∈ Ω̄, u(x, y, t) = 0, ∂Ω× [0, 1]. (5.5.34)
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Table 5.1: Maximum pointwise error for Example 5.5.1 using the FMFDML

ε n = K = 8 16 32

100 3.58E − 04 1.97E − 04 1.04E − 04

10−1 4.29E − 03 2.57E − 03 1.46E − 03

10−2 8.69E − 03 7.02E − 03 5.89E − 03

10−3 9.14E − 03 7.74E − 03 7.35E − 03

10−4 8.40E − 03 6.20E − 03 5.66E − 03

10−5 7.92E − 03 5.07E − 03 3.73E − 03

10−6 7.73E − 03 4.64E − 03 2.83E − 03

10−7 7.66E − 03 4.60E − 03 2.58E − 03

10−8 7.64E − 03 4.58E − 03 2.54E − 03

10−9 7.63E − 03 4.58E − 03 2.53E − 03

10−10 7.63E − 03 4.58E − 03 2.53E − 03

Table 5.2: Maximum pointwise error for Example 5.5.1 using the FOFDML

ε n = K = 8 16 32

100 5.05E − 05 2.82E − 05 1.52E − 05

10−1 7.32E − 04 4.75E − 04 2.69E − 04

10−2 3.91E − 03 2.00E − 03 7.49E − 04

10−3 3.95E − 03 2.28E − 03 1.24E − 03

10−4 3.95E − 03 2.28E − 03 1.24E − 03

10−5 3.95E − 03 2.28E − 03 1.24E − 03

10−6 3.95E − 03 2.28E − 03 1.24E − 03

10−7 3.95E − 03 2.28E − 03 1.24E − 03

10−8 3.95E − 03 2.28E − 03 1.24E − 03

10−9 3.95E − 03 2.28E − 03 1.24E − 03

10−10 3.95E − 03 2.28E − 03 1.24E − 03
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Table 5.3: Rate of convergence for Ex-

ample 5.5.1 using the FMFDML

ε r1 r2

100 0.8618 0.9225

10−1 0.7180 0.7829

10−2 0.4540 0.7148

10−3 0.4779 0.7154

10−4 0.4886 0.6970

10−5 0.4878 0.6970

10−6 0.4878 0.6970

10−7 0.4878 0.6970

10−8 0.4878 0.6970

10−9 0.4878 0.6970

10−10 0.4878 0.6970

Table 5.4: Rate of convergence for Ex-

ample 5.5.1 using the FOFDML

ε r1 r2

100 0.8400 0.8962

10−1 0.6257 0.8192

10−2 0.9638 1.4193

10−3 0.7911 0.8808

10−4 0.7911 0.8808

10−5 0.7911 0.8808

10−6 0.7911 0.8808

10−7 0.7911 0.8808

10−8 0.7911 0.8808

10−9 0.7911 0.8808

10−10 0.7911 0.8808

5.6 Conclusion

Two-dimensional convection-diffusion problems were considered. After inspected the

FMFDML of [12], we investigated a FOFDML to integrate these problems. The FOFDML

consists of a spatial discretization in both spatial variables followed by a temporal dis-

cretization using the backward Euler method. Error analyzes conducted showed that both

methods are second order convergent in space (except for a logarithmic factor in the case

of FMFDML) and first order in time. These theoretical findings are confirmed through

simulations on a test example.
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Chapter 6

Conclusion

To integrate numerically time-dependent problems, one can either resort to a step-by-

step discretization (each independent variable at a time) or to a full discretization (all

independent variables at once). Each strategy has its advantages and disadvantages.

In this thesis, we used the method of lines (MOL) to solve singularly perturbed time-

dependent problems. The MOL forms part of the step-by-step discretisation strategy. It

consists of spatial discretization followed by the temporal one. The choice of the MOL

was dictated by the relative ease in its analysis and implementation, like its counterpart

where one starts with the discretization of the time variable. Further, for the MOL, the

spatial discretization results in a system of initial value problems for which solvers are

readily available and popular.

This dissertation is articulated around one- and two-dimensional time-dependent sin-

gularly perturbed problems. In either case, we studied the reaction-diffusion and the

convection-diffusion problems.

Clavero and Jorge [12] studied the two-dimensional time-dependent singularly per-

turbed problems (both reaction-diffusion and convection-diffusion). They designed meth-

ods of lines based on fitted mesh finite difference methods (FMFDMs) for the space vari-

able and the backward Euler method for the time variable. We refer to these methods as

the fitted mesh finite difference methods of lines (FMFDMLs). We followed their idea to

study the one-dimensional case using FMFDMLs. We also inspected the two-dimensional

case.
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As alternatives to these FMFDMLs, we developed methods which we refer to as the

fitted operator finite difference methods of lines (FOFDMLs). They consist of spatial

discretization via the fitted operator finite difference methods (FOFDMs) followed by the

backward Euler method in the time variable. We adapted these new methods to each

case (one- and two-dimensional, reaction-diffusion and convection-diffusion).

In Chapter 1, we introduced singularly perturbed problems (SPPs) and the types of

finite difference methods that have been used to solve them. These are the FMFDMs

and the FOFDMs. We also explained what the MOL entails. Then, we conducted a

survey on the numerical methods for time-dependent SPPs. The chapter ended with the

presentation of the objectives of this dissertation and that of its structure.

Chapter 2 deals with one-dimensional reaction-diffusion problems. The chapter be-

gun by a presentation of some qualitative results regarding the exact solution and its

derivatives. We proceeded by exploring a FMFDML through which the spatial variable is

discretized on a piecewise uniform mesh (of Shishkin type). We showed that the system

resulting from the spatial discretization enjoys a maximum principle which also implies

that the discretization is stable. These properties of the spatial discretization guarantee

that the numerical solution may replicate the exact solution in the limit. Analysis of the

error of the FMFDML proved that the method is uniformly convergent of order almost

two in space and of order one in time, with respect to the perturbation parameter.

Further, in this chapter, we designed and analyzed a FOFDML. The semi-discrete

operator resulting from the spatial discretization uses an appropriately selected denomi-

nator function in accordance with the modelling rules of the nonstandard finite difference

schemes. This semi-discrete operator also satisfies a maximum principle. As a result,

the spatial discretization is stable. This fact is used in the convergence analysis. The

FOFDML above was shown to be uniformly convergent of order two in space and one in

time, with respect to the perturbation parameter.

Chapter 3 is concerned with one-dimensional convection-diffusion problems while chap-

ters 4 and 5 treat the two-dimensional reaction-diffusion and convection-diffusion prob-

lems, respectively. All three chapters are structured in a similar manner as Chapter 2.

We are currently investigating the possibility of improving the accuracy of the methods
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presented in this dissertation. We also intend to extend these methods to nonlinear

problems.
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