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ABSTRACT 

Wine yeast Saccharomyces cerevisiae and wild yeasts e.g. Torulaspora delbrueckii forms an integral 

part of wine production by converting relatively ‘neutral’ flavoured Sauvignon blanc grape must into 

varietal aromatic wines. Yeast derived and mediated metabolites which contribute to Sauvignon blanc 

wine aroma and flavour, are regulated by yeast proteins (enzymes) that are differentially expressed 

during the course of fermentation. Inoculation with an appropriate yeast strain can, therefore, increase 

commercial wines sales as resultant wines will have sought-after aromas and flavours. Likewise, 

inoculation with the incorrect strain can have an undesirable effect on wine quality. Subsequently, the 

development of yeasts for the production of varietal aromatic Sauvignon blanc with lower volatile 

acidity (VA) was also identified as a South African industry priority. Although genetic modification can 

address this, the use of genetically modified organisms (GMO) is illegal. The South African wine 

industry is also too dependent on the highly sensitive European market for exports, which are largely 

against GM food products. Therefore, classical mating was deployed to breed S. cerevisiae intra-genus 

and S. cerevisiae/T. delbrueckii inter-genus hybrids with desired traits, whilst maintaining the green 

image of wine production. Subsequently, a trial was undertaken during 2013 to evaluate intra-genus 

hybrids for the production of laboratory-scale Sauvignon blanc wine. Recommended commercial ‘thiol-

releasing’ wine yeast (TRWY) were included as references. Most intra-genus hybrids produced wines 

with lower VA levels than wines produced with TRWY. Some of these intra-genus hybrids produced 

wines with even less acetic acid, but more enhanced tropical fruit aroma compared to wines produced 

by all TRWY references. Contour clamped homogeneous electric field (CHEF) DNA karyotyping and 

matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/MS) 

biotyping was successfully deployed to accurately differentiate wine yeast strains in this study. Small-

scale winemaking trials during 2014 to evaluate protein expression and metabolite release of 

promising S. cerevisiae intra-genus hybrids identified during lab-scale vinification trials were initiated. 

Promising intra-genus hybrids were identified as they showed enhanced thiol-releasing, specifically 3-

mercaptohexan-1-ol (3MH), and lower volatile acidity (VA) formation during the production of 
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Sauvignon blanc wines compared to commercial TRWY references. It is noteworthy that, intra-genus 

hybrid NH 56 produced wines with the second highest 3MH levels after intra-genus hybrid NH 84, and 

lowest acetic acid of all strains included in this study. This yeast was also the only strain to have down-

regulated, amongst others, dehydrogenases previously reported to be involved in the production of 

acetic acid. Therefore, dehydrogenases are potential biomarkers for VA formation. Furthermore, 

differences in protein expression were reflected in the variation of metabolite release by different 

strains, thereby complementing notion that proteins are the final effectors for metabolite release. 

Sequential inoculation of grape must using T. delbrueckii and S. cerevisiae strains was previously 

reported to result in aromatic wines with lower VA levels, similar to results generated in this study. 

Additionally, a S. cerevisiae/T. delbrueckii inter-genus hybrid previously produced white wine with 

enhanced aroma. Therefore, intra-genus and inter-genus hybrids were trialled for the production of 

varietal aromatic small-scale Sauvignon blanc wines with lower VA during 2015. The inter-genus 

hybrid, NH 07/1 produced wine with a more positive association with the volatile thiol 3MHA than 

wines produced with commercial TRWY, Zymaflore X5 and Zymaflore VL3, and the wine also had a 

negative association with VA and acetic acid. Three intra-genus hybrids, NH 56, NH 57 and NH 88 

produced wines with a negative association with VA and acetic acid, whilst having a positive association 

with tropical fruit aroma. These wines also had a stronger association with 3MH than all commercial 

TRWY included in this study. Hybrid NH 07/1 and Zymaflore VL3 also over-expressed the 

lactoylglutathione lyase protein responsible for the release of the volatile thiol, 4-mercapto-4-methyl-

pentan-2-one (4MMP) by cleaving its carbon-sulfur bonds. Therefore, lactoylglutathione lyase is a 

potential biomarker for 3MH-release, as this thiol also contains a carbon-sulfur bond. Dehydrogenase 

proteins might also be useful biomarkers for VA formation by fermenting wine yeasts. Three intra- and 

one inter-genus hybrids with the abiliy to produce aromatic Sauvignon blanc wines with lower VA 

compared to commercial TRWY references were identified.  
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Chapter 1: General introduction and aims 

1.1. INTRODUCTION 

South African enologists are continually striving to increase wine quality in an ever-increasing 

competitive market (Hart & Jolly, 2008; Moore et al., 2008; Alonso et al., 2013). The selection and 

development of new yeast is directly linked to improvement of wine quality as the wine yeast strain is 

responsible for fermenting ‘neutral’ grape must (juice) to wine with enhanced aroma and flavour 

(Swiegers et al., 2006b; 2009; King, 2010; King et al., 2011; Dennis et al., 2012; Van Breda et al., 2013; 

Jolly et al., 2014). A criterion for yeast improvement identified by industry involves yeast specifically 

targeted for the production of varietal white wine. The full aroma potential of white wine, especially 

Sauvignon blanc, is often not achived due to the inability of yeasts to release bound aroma-inactive 

non-volatile thiols (metabolites) (Swiegers et al., 2006b; 2007b; King, 2010; King et al., 2011). As a 

result, a large source of aroma and flavour associated with volatile thiols e.g. 3-mercaptohexan-1-ol 

(3MH) and 3-mercaptohexyl acetate (3MHA), primarily responsible for passion fruit, tropical fruit and 

citrus nuances originating from Sauvignon blanc grapes remains unexpressed. Subsequently, the use 

of commercial ‘thiol-releasing’ wine yeasts (TRWY) for the production of aromatic Sauvignon blanc 

increased in popularity. However, anecdotal evidence suggests that some TRWY might be associated 

with formation of undesirable metabolites e.g. volatile acidity (VA), which could have a negative 

commercial impact. Excessive VA in wine is perceived as vinegar-like off-flavours (Du Toit and 

Pretorius, 2000; Swiegers et al., 2005; Ugliano et al., 2007; Vilela-Moura et al., 2011).  

 

The South African wine industry is an important contributor to the economy as wine forms an integral 

part of exports from the agricultural sector (Ponte & Ewert, 2009). The wine industry is estimated to 

contribute more than R36 billion to the local Gross Domestic Product (GDP), whilst offering 

employment to more than 300 000 people e.g. farm workers, technical assistants, researcher etc. 
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(SAWIS, 2015). International wine production exceeds consumption thereof by approximately 15%, 

due to competition from other alcoholic beverages (Pretorius, 2016). However, international wine 

sales is estimated to be R1,3 trillion per year, which highlights the commercial importance of the 

wine industry. Therefore, the industry caused by e.g. inferior wine, can have a large snowball effect 

on income, job stability and the image of the South African wine industry. 

 

1.2. RESEARCH AIMS AND OBJECTIVES  

This study was undertaken to evaluate a selection of intra-genus Saccharomyces cerevisiae hybrid 

yeasts and commercial reference thiol-releasing wine yeasts (TRWY) for the improvement of 

Sauvignon blanc wine organoleptic quality with regard to tropical fruit aroma and lower VA formation. 

A second objective was to investigate wine yeast protein expression and whether regulated proteins 

correlate with metabolites released and/or produced by different yeast strains during fermentation. A 

third objective of this study were to breed S. cerevisiae/T. delbrueckii inter-genus hybrids using classical 

mating, characterise and evaluate these inter-genus hybrids for their fermentation potential, thiol-

releasing abilities and low VA formation during the production of Sauvignon blanc wines.  

 

Wine yeast regulated proteins and aroma compounds, especially volatile thiols viz. 3-mercaptohexan-

1-ol (3MH) and 3-mercaptohexylacetate (3MHA) as well as volatile acidity viz. acetic acid present at 

the end of fermentation and their association with final wine aroma and flavour was also investigated. 

It is envisioned that potential protein biomarkers associated with aroma-enhancing metabolites and 

VA will be identified. These biomarkers could be used in rapid screening of wine yeasts to identify 

promising yeast strains with sought after properties and, therefore, eliminate costly wine production 

experiments that have  to be repeated over numerous vintages before a yeast will be considered for 

semi-commercial winemaking trials by yeast manufacturers.  
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Chapter 2: Chemical and organoleptic evaluation of Sauvignon blanc wine in 

conjunction with metabolomic and proteomic approaches towards 

enhancing varietal aroma 

2.1. ABSTRACT 

The wine yeast Saccharomyces cerevisiae forms an integral part of wine production by converting 

relatively ‘neutral’ flavoured grape juice (must) into varietal aromatic wines. Additionally, non-

Saccharomyces yeast strains can also be used in co-inoculation strategies with S. cerevisiae for the 

production of wines with more complexity. Yeast strains, to varying extents produce and/or mediate 

the release of a range of key metabolites, which in turn contribute to enhanced wine aroma and 

flavour of final wine. These metabolites, amongst others, volatile thiols can impart desired aroma 

notes to Sauvignon blanc, but are dependent on yeast-expressed enzymes (proteins) during 

fermentation. Inoculation with an appropriate yeast will therefore lead to more commercial wines 

sales due to resultant wines with sought-after aroma and flavour. Likewise, inoculation with the 

incorrect yeast can lead to less desirable wines that will have a negative effect on sales. It is also 

important that the inoculated yeast strain dominates the fermentation. This should be monitored 

throughout the fermentation process by having quality control measures in place. DNA karyotyping 

by contour clamped homogeneous electric field gel electrophoreses (CHEF) and matrix-assisted laser 

desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) biotyping was shown to be 

reliable in this regard, as both methods could accurately differentiate yeast strains. Standard chemical 

and descriptive sensory analyses of wine also served as evaluation and characterisation tools of yeast 

starter cultures. Metabolomic and proteomic approaches using gas chromatography (GC) and liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) also proved to be instrumental yeast 

evaluation tools. The association between final wine chemical and sensory parameters as well as wine 
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yeast expressed proteins and released metabolites, and their effect on final wine organoleptic quality 

will be discussed. 

 

2.2. INTRODUCTION  

The production of varietal wines with enhanced aromatic characteristics from relatively ‘neutral’ 

flavoured grape juice (must) can be achieved by deploying the wine yeast Saccharomyces cerevisiae 

(Swiegers et al., 2006a; 2009; King, 2010; King et al., 2011; Dennis et al., 2012; Erten et al., 2016). Final 

wine aroma and flavour can, subsequently be attributed to the yeast starter culture’s metabolism 

during alcoholic fermentation (Nedović et al., 2015). Wine yeasts are, therefore, important for the 

production of aromatic white wines from grapes of non-aromatic grape cultivars such as Sauvignon 

blanc (Lambrechts & Pretorius, 2000; Cadière et al., 2012). However, the onus rests with the 

winemaker to make knowledgeable decisions as to what wine yeast starter culture to use for wine 

production in order to harvest the maximum potential of wine grapes (Pretorius, 2016).  

Sauvignon blanc grapes gained popularity in the Loire Valley and Bordeaux vineyards in France during 

the early 18th century (Bowers & Meredith, 1997). This cultivar continues to grow in popularity, 

especially in new world winemaking countries e.g. South Afica, Chile, New Zealand, Australia and the 

United States renowed for Sauvignon blanc production (Cozzolino et al., 2011; Benkwitz et al., 2012). 

Sauvignon blanc is estimated to be the second most planted white cultivar in the world after 

Chardonnay . Internationally, South Africa is only surpassed by France and New Zealand in terms of 

total Saugvignon blanc vines planted (Sweet, 2010). Although nationally, Chenin Blanc still remains 

the most planted cultivar, local viticulturalists are producing higher proportions of higher quality 

Sauvignon blanc grapes (Ponte & Ewert, 2009). Resultant Sauvignon blanc grapes are used to produce 

wines with diverse sensory profiles or styles e.g. vegetative/herbaceous aroma nuances (e.g. grassy, 

green bellpeppers), especially when grapes originate from cooler climatic regions (Marais, 1994). 

Other styles vary from floral (e.g. orange blossom, elderflower) to tropical aroma notes (e.g. passion 
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fruit, guava), especially when grapes orginates from warmer climatic regions (Swiegers et al., 2009; 

Van Wyngaard, 2013; Von Mollendorf, 2013). Another distinguished Sauvignon blanc style that is 

synonymous with Bordeaux, France and California, United States known as Pouilly-Fumé and Fumé 

Blanc due to pronounced “smoky” aroma nuances following barrel fermentation (Tominaga et al., 

2003; Sweet, 2010). Aforementioned complexity of Sauvignon blanc is key to its worldwide appeal to 

viticulturists, enologist and consumers.  

 

2.3. YEAST USED FOR SAUVIGNON BLANC WINE PRODUCTION 

Wine yeasts are instrumental in the amplification of Sauvignon blanc grape aroma during 

fermentation (Swiegers et al., 2005; Murat et al., 2009). However, wine yeasts vary in their ability to 

develop the full aroma potential of Sauvignon blanc, due to differences in their ability to release 

volatile aromatic metabolites from their bound aroma-inactive precursors, an important contributor 

to the tropical fruit and floral aromas expected in these wines (Roland, et al., 2011; Pinu et al., 2012; 

Van Wyngaard, 2013; Von Mollendorf, 2013). However, the presence of S. cerevisiae on wine grapes 

is negligible compared to other ubiquitous non-Saccharomyces genera e.g. Cryptococcus spp., 

Rhodotorula spp. Sporobolomyces spp., Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia 

spp., Zygosaccharomyces spp., and Torulaspora spp. (Fleet, 2003; Jolly et al., 2006; Barata et al., 2012; 

Cray et al., 2013; Jolly et al., 2014). This observation, therefore, highlights the vigour required by S. 

cerevisiae to be the dominant yeast strain at the end of fermentation, and so be responsible for the 

organoleptic quality and profile of the final wine (Carrau et al., 2008; Álvarez-Pérez et al., 2014). As 

the organoleptic profile of wines produced by means of spontaneous fermentation varies between 

fermentations, commercial S. cerevisiae starter cultures are used to obtain a more consistent product. 

As mentioned above, spontaneous fermentations have shortcomings, as the chemical and sensory 

profiles of resultant wines are unpredictable, and in some instances less preferred than wines 

produced solely with S. cerevisiae strains (Sturm et al., 2006; Navarrete-Bolaños, 2012; Velázquez et 
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al., 2015). Spontaneous fermentations also open the doors for spoilage organisms (e.g. 

Brettanomyces) to proliferate, resulting in wines with undesirable metabolites e.g. acetic acid 

(Romano et al., 2008) and 4-ethylphenol (Petrozziello et al., 2014), which impart ‘vinegar-like’ and 

‘horse sweat’ odours, respectively. 

Non-Saccharomyces spp. nonetheless are still being explored for production of wine with more 

complexity (Pretorius, 2000; Fleet, 2003; Ocón et al., 2010; Jolly et al., 2014). However, the use of 

non-Saccharomyces commercial starter cultures still requires co-fermentation by an S. cerevisiae 

strain to complete fermentation, as non-Saccharomyces are not able to completely ferment grape 

must due to lower alcohol tolerance. However, Jolly et al. (2003) and Van Breda et al. (2013) reported 

that some non-Saccharomyces spp. produced wine with similar chemical and sensory quality 

compared to wines produced with a S. cerevisiae strains. Non-Saccharomyces such as Torulaspora 

delbrueckii yeast starter cultures have also became commercially available to enhance wine 

complexity. 

The use of a T. delbrueckii starter culture was shown to be advantageous as it resulted in wines with 

lower volatile acidity (VA) levels, and thereby enhanced final wine organoleptic quality (Bely et al., 

2008; Renault et al., 2009). Another T. delbrueckii strain was reported to produce wine with enhanced 

varietal aromas as a single inoculum or in conjunction with S. cerevisiae (Van Breda et al., 2013; Belda 

et al., 2015; Renault et al., 2016). Therefore, T. delbrueckii would also be a good candidate to be 

utilised in a hybrid breeding program to develop new yeast strains towards the production aromatic 

white wines, especially Sauvignon blanc with lower VA, a yeast development criterion identified by 

industry (M Fundira, Personal communication, 2015).  

Wine yeasts produce a whole range of metabolites during fermentation, referred to as its 

metabolome, which include monosaccharide sugars, organic acids, fatty acids, amino acids, volatile 

thiols (imparts tropical fruitiness in Sauvignon blanc and Chenin Blanc), esters (imparts fruitiness), and 

alcohol which all contribute to the organoleptic characteristics of the wine (Carrau et al., 2008; 
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Chambers et al., 2009; Von Mollendorf, 2013; Rollero et al., 2016; Varela, 2016). Wine is,  therefore, 

the ‘metabolic footprint’ of the yeast strain that carried out the fermentation (Howell et al., 2006; 

Mapelli et al., 2008). Wine yeasts, however, can also produce undesirable metabolites e.g. acetic acid 

and/or VA, which impart unpleasant off-flavours as previously mentioned (Vilela-Moura et al., 2011; 

Luo et al., 2013). Subsequently, wine organoleptic quality will be negatively affected. 

Yeast derived and mediated metabolites are dependent on enzymes (proteins) expressed by yeasts 

during fermentation (De Klerk, 2009; Holt et al., 2011; Roncoroni et al., 2011). Anecdotal evidence 

suggests that different yeast strains express proteins differentially despite being in the same growth 

medium. Therefore, different yeast strains will produce wines with different sensory properties, since 

expressed proteins will affect metabolite release responsible for final wine organoleptic quality 

(Roncoroni et al., 2011; Juega et al., 2012; Moreno-García et al., 2015).  

 

2.4. HYBRID YEAST AND THEIR ROLE IN WINE PRODUCTION 

The importance of wine yeasts for the production of quality wines were neglected until the late 1980’s, 

as improvement of wine quality focused exclusively on viticultural practises (Pretorius & van der 

Westhuizen 1991). As a result, the development of novel yeast strains was not a priority. Paradigm 

shifts were, however observed as more research showed the importance of yeast starter cultures to 

improve wine quality (Pretorius, 2000; Mateo et al., 2001; Bartowsky, 2009; Meersman, 2015; 

Pretorius, 2016). Traditionally, wines were the product of spontaneous fermentations due to the 

natural micro-flora, but microbiological advantages during the late 1800’s saw the use of pure 

S. cerevisiae wine yeast starter cultures to improve wine organoleptic quality and reproducibility 

thereof (Pretorius & van der Westhuizen 1991). These starter cultures were natural isolates originating 

from vineyard soil and vines (Martini, 1993). However, the use of single inoculums for wine production 

was reported to produce wines lacking complexity and mouthfell (Bellon et al., 2012). This dilemma 

was resolved by deploying non-genetic modification tools to improve underperformances of pure 
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starter cultures. Crossbreeding (classical mating) was shown to be a powerful tool that enabled 

biotechnologists to select desirable wine yeast characteristics, whilst eliminating undesirable 

characteristics of natural isolates in resultant intra-genus S. cerevisiae hybrid yeasts (Van der 

Westhuizen & Pretorius, 1992; Bellon et al., 2011; Cordente et al., 2012). A good example was the 

breeding of intra-genus S. cerevisiae hybrids with lower hydrogen suphide (imparts rotten egg odours) 

production (Bizaj et al., 2012). One of the first hybrid yeasts to be bred and commercialised was strain 

VIN 13 (Van der Westhuizen, 1990), and was soon followed by other yeasts as yeast producers realised 

the vigour and advantages of hybridisation. 

Hybrids have since then developed into innovative tools for improved wine quality. Intra-genus 

hybridisation was followed by inter-genus hybridisation, as a S. cerevisiae and non-Saccharomyces 

hybrid was reported to positively effect wine aroma and flavour due to its metabolic activity (Santos 

et al., 2008). Indications, therefore, are that T. delbrueckii in conjunction with S. cerevisiae have a 

commercial role to play in the production of wines. Overall, inter-genus hybrids potentially can 

produce aromatic wines with more complexity, whilst showing the robustness associated with the 

wine yeast S. cerevisae (Bellon, 2013).  
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WINE YEAST CHARACTERISATION 

The use of commercial wine yeast starter cultures, S. cerevisiae in particular, have revolutionised 

earlier methods of winemaking by allowing winemakers to consistently produce wines with 

comparable organoleptic properties (Mateo et al., 2001; Bartowsky, 2009; Meersman, 2015; 

Pretorius, 2016). The wine yeast S. cerevisiae, whether a natural isolate or a hybrid has an unsurpassed 

fermentation ability in comparison to yeasts from other genera due to, amongst others, higher alcohol 

tolerance (Pretorius, 2000). Yeast starter cultures commercially available undergo thorough 

evaluation that involves fermentation trials and classical and molecular characterisation prior to 

release (Garcia et al., 2012; Bonciani, 2016). Currently enologists and wine technologists have a large 

variety of molecular tools at their disposal for the rapid characterisation of food related microbes, 

amongst others, wine yeast strains (Ivey & Phister, 2011). This enables them to follow their presence 

during fermentation and their contribution to the wine. 

Wine organoleptic quality varies based on the yeast starter culture used to conduct the fermentation 

(Capece et al., 2010; Sharma et al., 2012; Usbeck et al., 2014). Furthermore, some wine 

microorganisms are implicated in spoilage of wine, resulting in financial loss (Loureiro and Malfeito-

Ferreira, 2003; Bartowsky, 2009). Differentiation of yeast strains during winemaking, therefore, is of 

utmost importance (Sharma et al., 2012; Usbeck et al., 2014). Inoculation with the incorrect starter 

culture can result in wine with undesirable chemical parameters and sensory flavours, which in turn 

will have undesirable financial implications. Similarly, inoculation with the “correct” starter culture 

resulting in wines with sought-after aroma and flavour is always lucrative, since more than a million 

litres of wines are annually produced and sold on a commercial-scale (South African Wine Industry 

Information and Systems [SAWIS], 2015). Yeast manufacturers also benefit from increased commercial 

sales of yeast starter cultures, especially those exhibiting characteristics of producing sought-after 

varietal aromatic wines (M. Fundira, Personal communication, 2015). Therefore, a reliable and fast 

differentiation method is a useful tool to ensure the correct identification of microorganisms during 

the production of varietal wines (Chovanová et al., 2011; Panda et al., 2015). 
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Chemical and sensory analyses of wine are routinely conducted, and fundamentally serve as a means 

of evaluating and characterising experimental yeast strains used for wine production (Hart & Jolly, 

2008; Ezeama & Ebia, 2015). Coupled to this are metabolomic and proteomic characterisation, as 

some yeast expressed proteins during fermentation are responsible for the release and mediation of 

sought-after and undesirable metabolites, which in turn have an effect on wine organoleptic quality 

(De Klerk, 2009; Holt et al., 2011; Roncoroni et al., 2011; Juega et al., 2012; Moreno-García et al., 

2015). Aforesaid yeast evaluation and characterisation tools will be discussed further. 

 

2.3.1. Contour clamped homogeneous electric field (CHEF) DNA karyotyping 

A popular molecular-based tool to characterise wine yeast, namely pulsed-field gel electrophoresis 

(PFGE) has been used over many decades for the evaluation of experimental yeast strains (Van der 

Westhuizen and Pretorius, 1992; Hoff, 2012; Van Breda et al., 2013). Contour clamped homogeneous 

electric field (CHEF) DNA karyotyping, a variation of PFGE, is a reliable technique to distinguish 

between yeast strains based on chromosomal DNA karyotypes (Hoff, 2012; Choi, Woo, 2013). The 

CHEF system comprises of electrodes that are hexagonally arranged (Carle, Olson, 1985; Basim and 

Basim, 2001; Parizad et al., 2016). The DNA sample is placed in an agarose gel and separated by 

sequentially alternating the electric field between electrodes (Figure 2.1) based on pre-programmed 

pulse times (McEllistrem et al., 2000). Subsequently, smaller and larger DNA chromosomes are 

efficiently separated as the latter requires more time to re-orientate and migrate every time the 

electric field is alternated, whilst the reverse applies to the former. 
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Other gel electrophoresis-based yeast differentiation tools that involve alteration of the electric field 

during separation of DNA include orthogonal-field-alternation gel electrophoresis (OFAGE), field 

inversion gel electrophoresis (FIGE) and transverse alternating field electrophoresis (TAFE), 

programmable autonomously controlled gel electrophoresis (PACE), pulsed homogeneous orthogonal 

field gel electrophoresis (PHOFE) and rotating gel electrophoresis (REG) (de Jonge et al., 1986; 

Pretorius, Van der Westhuizen, 1991; Van der Westhuizen, Pretorius, 1992). Amongst these, CHEF 

DNA karyotyping has been widely and successfully deployed to differentiate wine yeasts to ensure 

that the correct yeast strain was used to inoculate and complete the fermentation (Maoura et al., 

2005; Hage and Houseley, 2013). Subsequently, a positive association between final wine organoleptic 

quality and yeast starter culture/s could be established. A drawback of CHEF DNA karyotyping is that 

FIGURE 2.1: Schematic depiction of principle behind pulsed-field gel electrophoresis (PFGE)/contour 
clamped homogeneous electric field (CHEF) used to separate large chromosomal DNA bands by 
alternating the direction of the electric field at an angle of 120° that is regulated by programmed 
pulse times. 
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it is a lengthy process, requiring up to eight days to yield the identity of a pure culture (Van Breda et 

al., 2013).  

 

2.3.2. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR), which entails the amplification of internal transcribed spacers (ITS) 

is a faster molecular characterisation tool compared CHEF DNA karyotyping (Hoff, 2012; Colabella & 

Libkind, 2016). However, PCR was repeatedly shown to have a limitation in differentiating closely 

related yeasts strains as rDNA amplicons every so often have similar sizes that can’t be resolved by gel 

electrophoresis (Pincus et al., 2007; Hierro et al., 2004). This predicament is circumvented by 

subjecting amplicons to expensive sequencing procedures (Chen et al., 2004; Hulin and Wheals, 2014). 

Contour clamped homogeneous electric field DNA karyotyping does not have this limitation and it can 

be envisioned that the longer time required for PCR and sequencing will be similar to that required 

for CHEF DNA karyotyping. 

 

2.3.3. Phenotypic and biochemical tests 

Conventional microbiology e.g. sub-culturing, phenotypic characterisation, biochemical tests etc. was 

shown to be a relative cheaper alternative compared to CHEF DNA karyotyping (Van Breda et al., 

2013). However, conventional microbiology also have limitations, as it is time-consuming and labour 

intensive. Moreover, some of those techniques are also susceptible to misidentification (Ciardo et al., 

2006).  A commonly used biochemical characterisation approach, namely ID 32 C AUX system 

(BioMérieux, South Africa) in conjunction with apiweb™ identification software was previously shown 

to differentiate yeasts on a genus level (Pincus et al., 2007; Van Breda et al., 2013). However, 

anecdotal evidence suggests that the ID 32 C approach can incorrectly identify some yeast strains used 

http://etd.uwc.ac.za/

http://www.sciencedirect.com/science/article/pii/S016816051300576X
http://www.sciencedirect.com/science/article/pii/S016816051300576X


 

 

 

 

Chapter 2: Literature review 
 

18 
 

for wine production due to a clinical yeast orientated database. It is, therefore, advised that the 

ID 32 C AUX technique be used in conjunction with other complementary yeast differentiation tools.  

 Cellular fatty acids analyses (CFAA) was shown to be a reliable tool to differentiate between closely 

related yeast strains (Augustyn, 1989; Augustyn & Kock, 1989). However, the physiological conditions 

are to be completely standardised for successful differentiation. If not, the cellular fatty acid profile of 

any given yeast strain will vary, which essentially means that a single strain will have different profiles 

in different fermentation matrices. Therefore, CHEF DNA karyotyping is a more practical and reliable 

characterisation method as this level of rigidity is not required (Van der Westhuizen and Pretorius, 

1992; Van Breda et al., 2013). 

 

2.3.4. Matrix-assisted laser desorption/ionisation-time of flight mass  spectrometry (MALDI-

TOF/MS) biotyping 

Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry biotyping was shown to 

be a relatively fast, accurate and dependable method to differentiate between closely related 

microorganisms (Chalupová et al., 2013; Moothoo-Padayachie et al., 2013; Pavlovic et al., 2013; Deak 

et al., 2015). Biotyping involves the extraction of ribosomal protein and subsequent generation of 

peptide mass spectral fingerprints using a tandem mass spectrometry (Figure 2.2). Ribsomal proteins 

are praticable for this application, as they are constitutively expressed even when the test organism 

are grown under different physiological conditions (Valentine et al., 2005; Clark et al., 2013; Gekenidis 

et al., 2014; Emami et al., 2015). These proteins are frequently expressed in abundance, and 

expression thereof is reproducible (Gekenidis et al., 2014). Peptide spectra are automatically 

processed with the appropriate software e.g. MALDI Biotyper Real Time Classification (Bruker 

Daltonics, Bremen, Germany). The software performs smoothing and baseline correction using 

Savitsky-Gloay, Multipolygon algorithms. Identification of unknown yeasts are achieved by comparing 

their mass spectra to a Bruker Daltonics BioTyper library database (Rizzato et al., 2016). Furthermore, 
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yeast cells cultivated under different nutritional conditions differentially expressed proteins involved 

in biological processes (Querin et al., 2008; Zhao et al., 2014). As a result, proteins required for 

biological processes are impractical for MALDI-MS biotyping.  

A further advantage of ribosomal proteins is that a single yeast strain isolated from different matrices, 

e.g. wine, beer or synthetic medium etc. can be accurately identified by the generated spectra. The 

different phenotypes when yeast is subjected to different physiological conditions, is a difficulty that 

is easily circumvented by deploying MALDI-TOF MS biotyping (Gekenidis et al., 2014; Emami et al., 

2015). Another advantage is that the database includes both the anamorphic and teleomorphic 

species names (Turvey et al., 2016; Du Plessis et al. 2017). However, despite the faster yeast 

identification obtainable using MALDI-TOF MS biotyping, this method still remains relatively 

expensive, especially if the unknown isolate is not in the database (Croxatto et al., 2012; Panda et al., 

2015). Singhal et al. (2015) also highlighted that identification of unknown isolates is highly unlikely if 

the database does not contain a peptide mass spectral fingerprint of the relevant strain. 

Unfortunatelty, the preloaded database cannot be extended by inclusion of novel ribosomal peptide 

spectra (G Mohamed, Personal communication, 2016). A novel database can, however, be developed 

from scratch to accodomate spectra originating from excluded or novel microbes (Rizzato et al., 2016). 

This aspect warrants the establishment of a wine yeast database, as wine is an important contributor 

to the agricultural sector economy. Nevertheless, MALDI-TOF-MS biotyping provides fast and reliable 

differentiation of microorganisms, more so in circumstances where molecular differentiation of 

different isolates is impractical due to identical internal transcribed spacer (ITS) regions (Korabecná et 

al., 2003; Emami et al., 2015). 
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FIGURE 2.2: Schematic depiction of steps involved during matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/MS) 
biotyping. 
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2.3.5. Fermentation potential 

Establishment of the fermentation potential of a yeast strain involves various criteria such as  

determination of fermentation rate, measurement of wine chemical and sensory parameters, 

metabolite levels. As formerly mentioned, evaluating the fermentation potential of promising 

experimental yeast strains is critical before commercial trials and subsequent commercialisation of 

the yeast (Gonzalez et al., 2007; Pérez-Torrado et al., 2015). However, determining the fermentation 

potential of yeast strains through a series of laboratory-, small-, pilot- and semi-commercial (≥1000 L) 

scale vinification (winemaking) trials at e.g. a research cellar have drawbacks, and can easily take up 

to 10 years to identify an experimental yeast strain worthy for commercialisation purposes (Hart and 

Jolly, 2008). Firstly, a new criterion for yeast development will be identified by industry, whereafter 

fermentation trials are initiated using a large number of experimental and commercial reference yeast 

strains (Hart & Jolly, 2008; Heymann et al., 2013). Promising experimental yeast strains will be re-

evaluated during subsequent trials and/or vintages to establish that results obtained are repeatable, 

and to eliminate the effect of vintage. Subsequently, trials will be scaled-up to e.g. semi-commercial 

scale at commercial cellars as opposed to a research cellar, once observations during re-evaluations 

are satisfactory. This approach in all probability will ensure the development and identification of the 

most promising yeast strains with the ability to produce good quality wines irrespective of vintage 

(Von Mollendorf, 2013; Canonico et al., 2015; Padilla et al., 2016). 

 

2.3.6. Fermentation rate 

A classical method to investigate the fermentation rate following inoculation with a yeast strain, in 

laboratory-scale fermentations involves labour-intensive weighing of the fermentation vessels to 

monitor carbon dioxide (CO2) -weight loss (Rosenfeld et al., 2003; Fairbairn, 2012; Parcunev et al., 

2012). Other technological advances that also allow for monitoring of fermentation rate and wine 

parameters involves the use of state of the art bioreactors (fermenters) in conjunction with computer 
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software (Nerantzis et al., 2007; Sonego et al., 2016). This approach is advantageous, as data are 

rapidly generated and physical weighing circumvented. However, installation and operation of 

bioreactors are expensive, making this approach difficult especially in developing countries where 

budget constraints applies (Svasti, 2001; Hashimura et al., 2012; University World News [UWN], 2013). 

Therefore, traditional monitoring of CO2-weight loss remains a viable and cheaper option. 

 

2.3.7. Chemical characterisation 

Monitoring of chemical parameters e.g. sugar utilisation, alcohol production, progression of pH, free 

amino nitrogen (FAN), yeast assimilable nitrogen (YAN), total sulphur dioxide (SO2) etc. of ferments 

constitutes chemical characterisation of the wine yeast strain used to conduct the alcoholic 

fermentation (Heymann et al., 2013; Cramer et al., 2014). Traditionally, analyses of fermenting grape 

must and/or wine basic chemical parameters involves wet chemistry techniques that are still useful 

today to monitor sugar utilisation and alcohol accumulation etc. by deploying e.g. Rebelein titrations 

and a hydrometer (Jones & Ough, 1985; Hoon, 2015). Wet chemistry techniques are advantageous, 

because they do not require expensive computerised equipment that deploy, amongst others, near-

infrared (NIR) based technologies (King & Heymann, 2014; Friedel et al., 2016). Unfortunately, some 

wet chemical techniques e.g. the Rebelein method involves observing a critical colour change that is 

indicative of the reducing sugar level, which is in essence an anomaly as different technicians will 

perceive the critical colour-change differently. 

The hydrometer is a sealed glass tube with a weight at the bottom and a potential alcohol (%) or 

specific gravity scale on the opposite end. Readings are taken at the start of fermentation and again 

towards the end of fermentation by observing the depth (meniscus) at which the tube is floating in 

the ferment, and calculating the actual alcohol from the difference in the depths (Figure 2.3). As with 

the Rebelein titrations, different technicians might interpret the floating level differently. This can 

potentially give contradictory results. Another drawback of wet chemistry is the reagents required for 
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the analysis, some of which are costly or the preparation and discarding of the resultant waste are 

time-consuming. Nonetheless, both methods are relatively cheap and can serve as guidelines 

whereafter results can be confirmed using more technologically advanced tools mentioned above. It 

is noteworthy that above-mentioned NIR-based instruments are calibrated using wet chemistry 

and/or hand analytical methods, which in itself is a predicament. A major advantage of NIR-based 

instruments is that they give quick and relative accurate results, whilst requiring little sample (analyte). 

These instruments also do not require chemical reagents. However a drawback is that they are digital 

instruments, and like any computer are prone to software malfunctioning. Lack of regular calibrations 

can result in less accurate measurements of relevant chemical parameters. Consequently, both wet 

chemical and more advanced technologies have advantages as well as disadvantages, and both 

approaches still have a role to play in a wine chemical laboratory. 
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2.3.8. Sensory characterisation 

Sensory evaluation of ferments and wine by a panel of trained judges also fundamentally constitutes 

sensory characterisation of the wine yeast strain used to conduct the alcoholic fermentation (Noble 

& Shannon, 2005; Molina et al., 2009; Campo et al., 2010). Arroyo et al. (2009), and Bhattacharyya 

and Bandhopadhyay (2010) reported that the human olfactory system, has a wider range for detecting 

aroma and flavour compounds compared to sophisticated analytical gas chromatographic equipment. 

Perception of wine aroma and flavour involves smelling and tasting of wines, which enables multiple 

nerve fibers (filaments) within the olfactory system, referred to as the olfactory bulb (receptor) cells, 

that detects aroma compounds e.g. esters, thiols (Araneda et al., 2000; Rolls, 2005; Swiegers et al., 

2005; Shepherd, 2006; Tham et al., 2009; Bushdid et al., 2014). These receptor cells in conjunction 

with various regions within the brain makes an association with preconceived aromas and flavours 

e.g. banana, passionfruit etc. as schematically depicted in Figure 2.4. Various approaches are deployed 

to conduct experimental wine sensory analyses e.g. descriptive sensory analyses using an intensity 

FIGURE 2.3: Schematic depiction of steps involved to determine the potential alcohol (%) in fermenting 
grape must by measuring the specific gravity using a hydrometer. The hydrometer floats higher in 
higher °Balling grape must (A), and with gradually floats lower as density of ferment decreases due to 
sugar depletion and alcohol (%) accumulation (B) 
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scale, unipolar numerical scale, multi-wine preference sorting, sensory profiling using “check-all-that-

apply” (CATA) questions etc. Descriptive sensory evaluation involves visual (colour), aroma (nose) and 

flavour (taste) characterisation of wine, based on the perceived intensity on an unstructured line-scale 

of aroma and flavour descriptors. For Sauvignon blanc these include  grassy, herbaceous, vegetative, 

green bellpeppers, floral (e.g. orange blossom, elderflower), passion fruit, grapefruit, peach, guava, 

banana etc. Aforementioned aroma notes may vary based on e.g. climatic conditions and the yeast 

strain used to conduct the alcoholic fermentation (Marais, 1994; Coetzee & Du Toit, 2015; Van 

Wyngaard, 2013; Von Mollendorf, 2013). Sensory evaluation using a unipolar numerical scale are 

conducted in a similar manner, except that judges on sensory panel are required to indicate aroma 

intensities on e.g. a unipolar six-point numerical scale (absent [0], very low [1], low [2], medium [3], 

high [4] and very high [5]). Additonally, judges must also specify the most prominent aromas and 

flavours perceived.  

Multi-wine preference sorting instead, is a discriminative analysis which involves sorting of wines in 

at least two groups based on similarities and differences (Valentin et al., 2016). Other variants of 

method allows for more than two groups. This is a useful approach to rapidly determine whether 

treatments (e.g. yeast inoculum) differ or are similar (Singh-Ackbarali & Maharaj, 2013; Weightman 

et al., 2016). Favoured wines can subsequently be subjected to descriptive sensory evaluation in order 

to generate data that can be statistically analysed. Napping (Projective mapping), another 

advantageous wine sensory evaluation tool that is comparable to sorting, requires a sensory panel to 

evaluate wines based on similarities as well as their differences (Brand & Nieuwoudt, 2016a). Wines 

are also described separately, whilst sorting allows for wines that share similar aroma and flavour 

notes to be clustered together. Nonetheless, both approaches have a role to play as practicable wine 

sensory evaluation tools. 

Wine sensory profiling using “check-all-that-apply” [CATA] questions has also increased in popularity 

(Brand & Nieuwoudt, 2016b). As the name says, CATA requires judges to highlight all perceived aroma 
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and flavour descriptors from a provided list (Ares et al., 2015). However, this approach differs from 

descriptive sensory evaluation as it is not quantitative. As with descriptive sensory analyses, wines are 

served individually to the judges in a randomised order. Check-all-that-apply is a useful tool to rapidly 

profile wines as a trained panel is used and their interpretation of the aroma and flavour descriptors 

are similar or assumed to vary marginally. Combining CATA and descriptive sensory analyses might 

lead to paradigms shifts with regard to wine sensory profiling, as the benefits of both techniques can 

be amalgamated into one protocol. Statistical analyses of data might be more complicated, but this 

prospect merits futher investigations. 

 

FIGURE 2.4: Schematic depiction of the human olfactory system and the process of olfaction that 
allows for the perception of wine aroma and flavour.   Olfactory bulb (receptor) consisting of multiple 
fibers transfer regular ortho-nasal (blue arrow) and retro-nasal (orange arrow) smell to brain for 
interpretation and/or identification. 
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2.3.9. Metabolomic characterisation 

Wine contains various metabolites referred to as the yeast’s exo-metabolome e.g. monosaccharide 

sugars, organic acids, fatty acids, amino acids, volatile thiols, esters, higher alcohols, some of which 

are yeast-derived (Howell et al., 2006; Mapelli et al., 2008; Chambers et al., 2009; Varela, 2016). 

Various gas chromatographic (GC) based techniques e.g. gas chromatography coupled to a flame 

ionisation detector (GC-FID), gas chromatography-mass spectrometry (GC-MS), solid-phase extraction 

(SPE) coupled with GC-MS/MS analysis, and ultra-pressure liquid chromatography-tandem mass 

spectrometry (UPLC–MS/MS) are routinely used to measure these metabolite levels in wines following 

fermentation (Carrau et al., 2008; Von Mollendorf, 2013; Schueuermann et al., 2016). These analyses, 

in essence, constitute metabolomic characterisation of the yeast starter culture used to produce the 

wine (Dziadas & Jelen 2010; Jewison et al., 2012; Kong et al., 2014). 

Tominaga et al. (1998), Aggio et al. (2014), and Savolainen et al. (2016) reported that GC-MS based 

methods are advantageous, since they allow for the simultaneous identification and quantification of 

various volatile thiols in Sauvignon blanc wines. Gas chromatography coupled with mass spectrometry 

also complements sensory descriptive analyses, as correlations between detection thresholds and 

sensory perception thresholds can easily be established (Schmidtke et al., 2013). Vas & Vekey (2004) 

and Howard et al. (2014) reported that capillary GC-MS in conjunction with solid-phase 

microextraction (SPME) allows for fast and reliable characterisation of metabolites in wines. Gas 

chromatography-mass spectrometry based metabolite analyses can also distinguish between wines 

produced from different cultivars e.g. Chardonnay, Sauvignon blanc and Chenin Blanc, as well as wine 

produced from the same cultivar grown in different terroirs (Vas et al., 1998; Bosch-Fusté et al., 2007; 

Sagratini et al., 2012). 
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2.3.9.1. Metabolites associated with tropical fruit aroma in Sauvignon blanc 

A bottled wine with a desirable organoleptic profile can mostly be attributed to the yeast starter 

culture produced and mediated metabolites (Carrau et al., 2008; Von Mollendorf, 2013; Rollero et al 

2016). It has been reported that volatile thiols such as 4-mercapto-4-methylpentan-2-one [4MMP], 3-

mercaptohexan-1-ol (3MH), 3-mercaptohexyl acetate [3MHA] are important contributors to the 

tropical fruit aroma associated with Sauvignon blanc wines (Swiegers et al., 2006; King, 2010, Coetzee 

& Du Toit, 2012; Bovo et al., 2015). Vela et al. (2017) echoed the association of these volatile thiols 

(mercaptans) with the varietal tropical fruit aromas of Sauvignon blanc. It is noteworthy that, that the 

new convention pertaining to 4MMP, 3MH, and 3MHA is  

4-methyl-4-sulfanylpentan-2-one (4MSP), 3-sulfanylhexan-1-ol (3SH), and 3-sulfanylhexyl acetate 

(3SHA), respectively (Renault et al., 2016). However, Williams (2018) reported that the former 

conventions is still acceptable, hence they will be used hereafter. These aromatic compounds emanate 

directly from wine grapes where they are found as aroma-inactive, cysteine-bound precursors that 

are released through wine yeast mediated activity during fermentation. Other compounds are a direct 

result of yeast metabolic activity e.g. ethyl acetate, ethyl butyrate, 2-phenyl ethyl acetate, 2-phenyl 

ethanol, i-amyl alcohol and hexanol. Subsequently, Sauvignon blanc wine aroma and flavour can be 

enhanced by using a wine yeast starter culture with the ability to release bound non-volatile aroma 

compounds (Swiegers et al., 2006; 2009). It is noteworthy that a non-Saccharomyces yeast strain was 

reported to increase the release of the volatile thiol i.e. 3MH during the production of Sauvignon blanc 

(Anfang et al., 2009). As mentioned previously, non-Saccharomyces yeast strains are important for 

producing aromatic wines, and to be used for genetic improvement with regard to e.g. volatile release. 

Additionally, yeast synthesized esters e.g. isoamyl acetate, ethyl octanoate and isobutyl acetate were 

reported to contribute to the tropical fruit aromas e.g. banana associated with warmer climate 

Sauvignon blanc wines (Benkwitz et al., 2012). 
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2.3.9.2. Metabolites associated with vegetative and/or herbaceous aroma in Sauvignon blanc 

Marais (1994), Ryona et al. (2010), Sidhu et al. (2015), and Gregan and Jordan (2016) reported that 

besides tropical fruit aromas, vegetative and herbaceous aromas are also associated with Sauvignon 

blanc wine due to metabolites e.g. methoxypyrazines commonly found in Sauvignon blanc grapes. This 

is especially apparent when grown and harvested under cooler climatic conditions. Sauvignon blanc 

grapes originating from vineyards in the Constantia valley situated between the Table Mountain range 

and False Bay, Western Cape, South Africa comes to mind due to resultant wines’ prominent 

vegetative and herbaceous aromas (Marais, 1994). Other cooler climate regions within the Cape 

Winelands include Overberg (Elgin valley), Cape Agulhas (Strandveld) and West Coast (Doringbaai). 

Vegetative Sauvignon blanc is not limited to South Africa as wines originating from the world renowed 

Malborough region, New Zealand, are known for their vegetative aromas and flavour namely, mint, 

peas and asparagus due to higher methoxypyrizaine levels (Benkwitz et al., 2012). Yeast synthesised 

metabolites namely, higher alcohols e.g. 3-hexenol (E), 3-hexenol (Z), 2-hexenol (E) and 2-hexenol was 

also reported to contribute to the vegetative aromas e.g. green cut grass usually associated with 

cooler climate Sauvignon blanc wines (Benkwitz et al., 2012; Harsch et al., 2013). 

 

2.3.9.3. Metabolites associated with floral aroma in Sauvignon blanc 

Besides the traditional vegetative and tropical fruit aromas, floral aromas are also associated with 

Sauvignon blanc wine due to grape derived metabolites e.g. monoterpenes (Marais 1994; Van 

Wyngaard, 2013; Von Mollendorf, 2013). Monoterpenes were also shown to be associated with citrus 

aromas in Sauvignon blanc wines (Marais, 1994; Carrau et al., 2008; Coetzee & du Toit, 2015). 

Aromatic monoterpenes present in wine are metabolised by yeasts from their grape-derived aroma-

inactive glucose-bound precursors (Carrau et al., 2005; Swiegers et al., 2005; Pardo et al., (2015). 

These citrus-aroma enhancing metabolites are also de novo synthesised by wine yeast during 

fermentation (Gamero et al., 2011; Pardo et al., 2015). Various cellars within the Cape Winelands, 
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South Africa produce Sauvignon  blanc wines with floral aroma notes, which can be attributed to 

aforementioned monoterpenes. Sauvignon blanc wines with floral, rose and geranium nuances and 

hints of citrus aromas are also commonly produced in the Malborough region due to various yeast-

derived monoterpenes e.g. terpineol, nerol, citronellol, geraniol and linalool (Benkwitz et al., 2012). 

 

2.3.9.4. Undesirable yeast produced and/or mediated metabolites in Sauvignon blanc 

Du Toit and Pretorius (2000), Ugliano et al. (2007), Vilela-Moura et al. (2011) and Fairbairn et al. (2015) 

reported that wine yeast strains, some of which are commercially available, can produce wines with 

undesirable volatile acidity (VA) levels. Volatile acidity e.g. acetic acid, lactic acid, formic acid, butyric 

acid, propionic acid, octanoic acid, are produced as by-products of wine yeast metabolic processes 

during the fermentation process (Swiegers et al., 2006; King, 2010; Bovo et al., 2015; Moss, 2015). 

However, acetic acid is the main VA in wine with a sensory detection threshold of at least 0.7 g/L 

(Byarugaba-Bazirake, 2008; Vilela-Moura et al., 2010). Acetic acid levels in faulty wine can be as high 

as 3 g/L, which is almost thrice the legal limit of 1,2 g/L permitted for VA in a white wine (OIV, 2012; 

Sirén et al., 2015).) Excessive acetic acid levels can impart vinegar-like and nail polish odours in wines 

(Molina et al., 2007). Subsequently, wine chemical and sensory quality are negatively affected (Du 

Toit, 2000; Ferreira, 2004; Muratore et al., 2007), and are undesirable to consumers. Financial loss 

can, therefore, be incurred by winemakers due to lower wine sales and use of expensive techniques 

e.g. reverese osmosis to remove the excessive VA from wine (Zoecklein et al., 1999; Vilela et al., 2013).  

Excessive acetic acid also has an inhibitory effect on wine yeasts during winemaking, causing sluggish 

or stuck fermentations (Mira et al., 2010; Ding et al., 2013; Shang et al., 2016). In worst case scenarios 

the entire affected wine tank may need to be discarded, which will also result in financial loss. 

Furthermore, commercial yeast manufacturers will also incur financial losses if, and when a 

commercial yeast strain is implicated in excessive VA formation. Preventative measures involve the 

use of vigorous wine yeast strains that are known to be low VA producers. Vigorous yeast strains will 
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also inhibit the growth of acetic acid bacteria (AAB) that have the ability of producing acetic acid from 

glucose and ethanol. 

Another undesirable compound namely, hydrogen suphide (H2S) associated with all wines, including 

Sauvignon blanc, imparts rotten egg and sewage odours (Ugliano et al., 2011; Bizaj et al., 2012). Some 

wine yeasts inherently produce H2S as a stress response when fermenting a nitrogen deficient grape 

must (Ogata, 2013). Therefore, addition of relatively costly yeast nutrients during rehydration or early 

during the fermentation are preventative measures to reduce the risk of H2S formation during 

fermentation. Contrariwise, H2S was reported to act as precursor for the sought-after volatile thiols 

mentioned above when available in excess in grape juice (Harsch et al., 2013). This is a proverbial 

double-edged sword, as H2S are also known to mask wine fruity aromas, even when levels are below 

its sensory detection threshold. Nonetheless breeding of novel hybrids that are not predisposed to 

H2S production when challenged with low nitrogen grape musts is an avenue of yeast development 

that should be investigated. 

 

2.3.10. Proteomic characterisation 

Wine yeast expressed proteins are instrumental in the production of varietal aromatic wines, as yeast 

derived and mediated aroma compounds (metabolites) derives from the activities of these proteins 

(enzymes), which play a key role in metabolic pathways of yeast cells  (De Klerk, 2009; Holt et al., 2011; 

Roncoroni et al., 2011; Juega et al., 2012; Moreno-García et al., 2015). Yeast strains differentially 

express proteins even though a standard medium or grape juice is used for fermentation (Mostert, 

2013). Additionally, proteins that are always associated with a certain physiological condition e.g. high 

aroma compounds, can be used as biomarkers for said conditions (Zhu et al., 2000; Tao et al., 2007). 

The advantage of using a protein biomarker above a gene biomarker is that an organism’s genome is 

relatively constant, irrespective of the physiological condition, whilst protein expression varies based 

on physiological conditions (Herrero et al., 2003; Bisson et al., 2007; Gómez-Pastor, 2010). 
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Transcriptomics (study of the sum of all RNA transcripts of a organism referred to as its transcriptome) 

is also a viable characterisation tool, however, mRNA, which is directly transcribed from an expressed 

gene are less stable compared to proteins and are degraded more rapidly than proteins (Belinchón et 

al., 2004; Parker, 2014). Furthermore, mRNA can be translated into more than one protein, each with 

a different function (Gygi et al., 1999; Gingold & Pilpel, 2011). It is therefore, evident that proteomic 

analyses of wine yeasts can be used as a practical characterisation tool to differentiate between 

fermenting yeast strains (Kobi et al., 2004; Hansen et al., 2006; Mostert, 2013). 

Proteomic characterisation involves qualitative and quantitative analyses of protein extracts (Rigaut 

et al., 1999; Goodlett & Eugene, 2002; Gillet et al., 2012). Protein quality can be determined using 

basic gel-based approaches in conjunction with innovative liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) techniques (Silva et al., 2006; Jiang et al., 2008; Pressey et al., 2011; Milac 

et al., 2012; Nowakowski et al., 2014). The most basic gel-based proteomic analyses involve one-

dimensional (1D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), whereby 

extracted proteins are separated based on their molecular weight (MW) (Kolkman et al., 2005; 2006). 

However, the disadvantage of 1D-PAGE is that proteins with a similar molecular weight cannot be 

separated and are visualised as one protein band.  

Abovementioned predicament is easily circumvented by means of two-dimensional (2D) PAGE, 

whereby proteins are separated in two steps based on two independent properties (Ndimba et al., 

2010; Pressey et al., 2011). The first step entails separation of proteins according to their isoelectric 

points (pH where protein have a neutral net charge) followed by the second step which is a basic SDS-

PAGE (Kolkman et al., 2005; 2006; Pressey et al., 2011).  Individual proteins normally manifest as 

different spots on poly-acrylamide gels following a staining technique using, e.g. Coomassie blue, 

Silver staining etc. (Shevchenko et al., 1996; Westermeier, 2006).  It is improbable that two or more 

expressed proteins from the same organism will have identical molecular weights and isoelectric 

points (Shevchenko et al., 1996). Differentially expressed proteins are then excised and characterised 
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by means of peptide mass fingerprinting (PMF) using MALDI-TOF/MS (Ngara et al., 2012; Zhou et al., 

2012). The major drawback of gel-based proteomics is that protein identification is limited to a specific 

molecular weight- and pH-range (Aggarwal et al., 2006). Nonetheless, 2D-PAGE is a useful tool to 

identify and characterise single proteins associated with certain wine chemical (lower VA) and sensory 

profiles (enhanced tropical fruit aroma), and these proteins can serve as biomarkers for experimental 

yeast starter cultures during winemaking trials. 

Protein quantitation can be conducted by subjecting protein lysate to a rapid and simple 

spectrophotometric analyses e.g. Bradford Coomassie G-250 assay (Zor & Selinger, 1996; Ngara et al., 

2012). A major drawback of this type of protein quantitation is that complex protein lysates might 

have different adsorption properties compared to bovine serum albumin (BSA) protein used to 

construct the standard curve. As a result, various proteins will bind differently to the Coomassie G-

250 compared to BSA, therefore giving incorrect measurements when extrapolated on a BSA-based 

standard curve (Zaia et al., 2005). Cutting-edge liquid chromatography-mass spectrometry (LC-MS) 

based isobaric peptide tags for relative and absolute quantification (iTRAQ), where unknown protein 

peptides are tagged with reporter molecules that allows for quantification, is a practical alternative 

(Ross et al., 2004; Ernst & Zor, 2010; Unwin et al., 2010; Kim et al., 2012; Nie et al., 2013). A key 

advantage of iTRAQ is that complex protein samples originating from different yeast strains can be 

analysed simultaneously (Aggarwal et al., 2006; Latosinska et al., 2015). Therefore, protein expression 

of an experimental yeast strain can simultaneously be compared to various commercial yeast strains, 

respectively.  

Unlike gel-based proteomics, iTRAQ protein identification is not limited to a given molecular weight 

(MW)- and pH-range, thereby allowing for quantification and identification of vast numbers of 

proteins during a single analysis. This approach does, however, require expensive state-of-the-art 

equipment e.g. Linear trap quadrupole (LTQ) Orbitrap Velos MS that is not always readily available, 

especially in developing countries. Label-free MS, contrariwise to iTRAQ-labelling, is also a practical 
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alternative for identifying complex protein samples originating from different sources simultaneously, 

but also requires above-mentioned LTQ Orbitrap Velos MS (Ross et al., 2004; Li et al., 2012; Latosinska 

et al., 2015). Nevertheless, label-free approaches are significantly cheaper, as the use of expensive 

iTRAQ labels is not required (M Vlok, Personal communication, 2016). Quantitative and qualitative 

proteomic analysis procedures discussed are graphically illustrated in Figure 2.5. 
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FIGURE 2.5: Schematic depiction of qualitative and quantitative proteomic analysis tools. a) Two-
dimensional polyacrylamide gel-electrophoresis (2D-PAGE), followed by peptide mass fingerprinting 
(PMF) using matrix-assisted laser desorption ionization-time of flight coupled mass spectrometry 
(MALDI-TOF/MS) to identify differentially expressed proteins; and b) quantification and identification 
of proteins using liquid chromatography-mass spectrometry (LC-MS) based isobaric peptide tags for 
relative and absolute quantification (iTRAQ). 

 

a b 
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2.4. CONCLUSION 

The wine industry is an important contributor to the South African economy, as wine forms an integral 

part of exports from the agricultural sector. Furthermore, anecdotal evidence suggests that many of 

the yeasts commercially available are inadequate to fully meet the requirements of both South African 

winemakers and international winemakers. Therefore, South African oenologists are continually 

striving to increase wine quality in an ever increasing competitive market, especially in light of varietal 

aromatic new world wines lacking undesirable attributes becoming increasingly popular. Swiegers et 

al. (2007) and Holt et al. (2011) reported that yeasts strains with sought-after characteristics can be 

generated by deploying genetic modification (GM). However, the use of genetically modified 

organisms (GMO) for wine production is illegal. Furthermore, the Cape Winemakers Guild (CWG) and 

South African Wine Industry Council (SAWIC) is also largely against the use of GMO in wine production 

(CWG, 2015). Both organisations emphasised the dependence of the SA wine industry on the highly 

sensitive European market, which are largely against GM food products. Nonetheless, improvements 

in yeast starter cultures used for the wine production is of utmost importance, as it is directly linked 

to wines with improved organoleptic quality. Failure to improve yeast strains as industry criteria are 

changing will result in financial loss due to lower wine and yeast sales. In future, climate change with 

its impact on viticulture and possibly grape physiology, will create new fermentation challenges for 

the winemaker. As a result, continuous yeast development by means of classical mating is important 

and relevant in order for the SA industry to remain globally competitive. 
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Chapter 3: Characterisation of Saccharomyces cerevisiae hybrid yeasts 

selected for low volatile acidity formation and the production of aromatic 

Sauvignon blanc wine 

3.1. ABSTRACT  

Wine yeasts, namely Saccharomyces cerevisiae vary in their ability to develop the full aroma potential 

of Sauvignon blanc wine due to an inability to release volatile thiols. Therefore, the use of ‘thiol-

releasing’ wine yeasts (TRWY) has increased in popularity. However, anecdotal evidence suggests that 

some commercially available TRWY intermittently exhibit undesirable characteristics e.g. volatile 

acidity (VA) formation. Therefore, a trial was undertaken to select and evaluate S. cerevisiae hybrid 

yeasts for the production of Sauvignon blanc wine with enhanced fruity and tropical aromas, but low 

VA. Hybrids were characterised by CHEF DNA karyotyping and MALDI-TOF MS biotyping, and 

subsequently trialled against top commercial TRWY i.e. Zymaflore VL3 and Zymaflore X5 (Laffort 

Oenologie, France), and Fermicru 4F9 (DSM Oenology, Netherlands) in laboratory-scale Sauvignon 

blanc vinifications during 2013. Most hybrids produced wines with VA levels significantly lower than 

those produced with Zymaflore VL3, Zymaflore X5 and Fermicru 4F9. Low VA forming hybrids also 

produced wines with tropical wine aroma notes. Wines produced by Fermicru 4F9 had the lowest 

acetic acid (the main volatile acid) of the commercial TRWY in this study.  However, some hybrid yeasts 

produced wines with less acetic acid on average than wines produced by Fermicru 4F9. Overall, hybrids 

NH 6, NH 48, NH 56, NH 88 and NH 145 produced wines with enhanced tropical fruity aroma, but lower 

VA compared to wines produced by commercial TRWY. 
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3.2. INTRODUCTION 

Wine aroma is comprised of compounds emanating directly from the grapes, compounds produced by 

the yeast such as esters and higher alcohols, and yeast mediated compounds e.g. volatile thiols (King, 

2010; Bovo et al., 2015). Wine yeasts (Saccharomyces cerevisiae) vary in their ability to develop the 

full aroma potential of Sauvignon blanc wine due to an inability to release volatile thiols (King et al., 

2011). Retention of these bound thiols implies that the full aroma potential of the wine is not realised, 

as the bound thiols can only be released by wine yeasts during fermentation (Swiegers et al., 2006; 

Holt et al., 2011). Therefore, the use of ‘thiol-releasing’ S. cerevisiae commercial wine yeasts (TRWY) 

for the production of aromatic Sauvignon blanc wine has increased in popularity (Swiegers et al., 2009). 

These yeast strains can release 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-1-ol 

(3MH) and 3-mercaptohexyl acetate (3MHA) from the respective cysteine-bound precursors.  Other 

yeast strains can convert the aromatic 3MH (passion fruit aroma) to 3MHA (tropical and 

citrus aromas). However, anecdotal evidence suggests that some commercial TRWY intermittently 

produce undesirable high levels of volatile acidity (VA), which imparts vinegar-like nuances to the 

wines (Du Toit & Pretorius, 2000; Ugliano et al., 2007; Vilela-Moura et al., 2011). Acetic acid is the main 

contributor to VA in wine with odour detection levels ranging between 0.7 to 1.1 g/L (Byarugaba-

Bazirake, 2008; Vilela-Moura et al., 2010). Even though, excessive levels of VA are mainly caused by 

lactic acid bacteria, acetic acid bacteria and wild yeasts, wine yeasts also contribute to VA, by producing 

acetic acid during alcoholic fermentation (Cordente et al., 2013; Luo et al., 2013). Other steam 

distillable acids i.e. lactic, formic, butyric, and propionic acids can also contribute to VA (Erasmus et al., 

2004; Moss, 2015). Currently, in South Africa the legal limit of VA permissible in wine is 1.2 g/L (OIV, 

2012; Sirén et al., 2015). However, the sensory threshold of VA is generally accepted to be 0.8 g/L 

(Du Toit, 2000).   

Reduction of yeast derived VA formation can be done by using genetically modified (GM) yeasts 

(Swiegers et al., 2007) or improved S. cerevisiae hybrid yeasts bred through classical mating (Pérez-
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Torrado et al., 2015). Although genetic modification can address VA formation by wine yeasts, the use 

of genetically modified organisms (GMO) is illegal (Berrie, 2011). The Cape Winemakers Guild (CWG) 

and South African Wine Industry Council (SAWIC) is also largely against the use of GMO in wine 

production (CWG, 2015). Both CGW and SAWIC emphasises that the SA wine industry is too dependent 

on the highly sensitive European market for exports, which are largely against GM food products. 

Sauvignon blanc was chosen for this study because this cultivar was previously shown to produce 

grapes containing aroma-inactive, non-volatile, bound thiols (metabolites) that can only be released 

by the wine yeast Saccharomyces cerevisiae during fermentation (von Mollendorf, 2013). Therefore, 

the aim of this study was to select and evaluate Saccharomyces cerevisiae hybrid yeasts for the 

production of wine with enhanced fruity and tropical fruit aromas, but low VA. 

 

3.3. MATERIALS AND METHODS 

3.3.1 Wine yeast strains  

One hundred and thirty-six hybrid strains (NH 1 to 10, 12, 13, 15 to 18, 20, 22 to 25, 27 to 78, 80 to  95, 

97 to 104, 106 to 119, and 121 to 145), four S. cerevisiae parental yeast strains (PS 1 to 4), three 

commercial TRWY references (Zymaflore VL3, Zymaflore X5 [Laffort Oenologie, France], and Fermicru 

4F9 [DSM Oenology, Netherlands]) used in this study are conserved in the ARC Infruitec-Nietvoorbij 

micro-organism culture collection (ARC Inf-Nvbij CC). Hybrids were bred at the ARC Infruitec-

Nietvoorbij microbiology laboratory through classical mating, as part of an ongoing hybrid breeding 

programme similar to that described by Steensels et al. (2014) and Snoek et al. (2015). 
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3.3.2 Pulsed-field gel electrophoresis (PFGE)/Contour clamped homogeneous electric field 

 (CHEF) DNA karyotyping 

DNA karyotyping of yeast strains was conducted according to the embedded agarose procedure 

described by Carle & Olson (1985), and Van der Westhuizen et al. (1992). The procedure was adapted 

by conducting chromosome separation in TBE (50 mM Tris, 41.3 mM boric acid, and 0.5 mM EDTA 

[Sigma-Aldrich, USA]) buffer at 14 °C with pulse-times of 30 and 215 sec for 34 hours using clamped 

homogenous electric field (CHEF) gel electrophoresis (CHEF-DR II, Bio-Rad Laboratories, Richmond, 

USA). Yeast strain PS1 was run parallel to CHEF DNA size marker #1703605 (Bio-Rad, Madrid, Spain) as 

an internal standard to determine respective chromosomal band sizes. Chromosomal banding patterns 

were visualised on a Bio-Rad image analyser following staining with 0.01% (v/v) ethidium bromide. 

Subsequently, the genetic relatedness of the various yeast strains was determined by subjecting CHEF 

DNA karyotypes to cluster analysis using FP Quest software FP 4.5 software (Bio-Rad, Madrid, Spain). 

Cluster analysis was based on the Dice coefficient and an un-weighted pair group method with 

arithmetic mean (UPGMA), with 1% tolerance and 0.5% optimisation.   

 

3.3.3 Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/ 

 MS) biotyping 

Yeast strains were also identified by matrix-assisted laser desorption/ionisation-time of flight mass 

spectrometry (MALDI-TOF/MS) biotyping as an alternative to CHEF DNA karyotyping. Formic acid 

protein extraction for subsequent MALDI-TOF biotyping was conducted as described by Pavlovic et al. 

(2013). One microliter of wine yeast protein extract was spotted onto a MTP 384 polished steel target 

plate as described by Moothoo-Padayachie et al. (2013) and Deak et al. (2015). Thereafter, the spotted 

target plate was inserted into a Bruker UltrafleXtreme MALDI-TOF/MS (Bruker Daltonics, Bremen, 

Germany) apparatus. Generation of yeast protein mass spectra using MALDI-TOF/MS was conducted 

according to the standard National Agricultural Proteomics Research & Services Unit method 
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(obtainable from the National Agricultural Proteomics Research & Services Unit (NAPRSU), University 

of the Western Cape, South Africa). Mass spectra for all strains were acquired in triplicate. 

 

3.3.4 Laboratory-scale fermentation trials 

Wet culture wine yeasts were evaluated in laboratory-scale fermentation trials as described by 

Rossouw et al. (2010) and Maarman et al. (2014). Frozen Sauvignon blanc grape must (total sugar = 

21.9 °B; total acidity = 9.3 g/L; pH = 3.28) was thawed and 250 mL aliquots were transferred into 

fermentation vessels (340 mL glass bottles). The yeast cultures were grown at 28 °C for 48 h in 10 mL 

YPD (1 % [w/v] yeast extract, 2 % [w/v] peptone, and 2 % [w/v] dextrose [Biolab, Merck, South Africa]), 

and subsequently used to inoculate the Sauvignon blanc grape must at a concentration of 2% (v/v).  

Commercial TRWY Zymaflore VL3, Zymaflore X5 (Laffort Oenologie, France), and Fermicru 4F9 (DSM 

Oenology, Netherlands) were included in fermentation trials as references. Fermentation vessels were 

stoppered with a fermentation lock filled with water. Fermentations were conducted on an orbital 

shaker in an insulated temperature-controlled room, which were electronically regulated at 14.5 °C, 

and monitored by CO2 weight loss for 30 days. All fermentations were conducted in triplicate in a 

completely randomised block design (Addelman, 1970).  

 

3.3.5 Fourier transform infra-red (FTIR) spectroscopy 

Wines were subjected to residual glucose/fructose, ethanol, VA, total acidity (TA) and pH analyses 

using an OenofossTM Fourier transform infrared (FTIR) spectrometer (FOSS Analytical A/S, Denmark) 

after fermentations stabilised. 
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3.3.6 Gas chromatography (GC) analysis 

Wines with the most prominent fruity aromas as determined by the sensory panel were subjected to 

GC-MS analysis. Flavour compounds viz. esters, total fatty acids and higher alcohols were quantified 

by means of calibration mixtures of the applicable aroma compounds in conjunction with gas 

chromatography (GC) as described by Zhang et al. (2012) and Vilanova et al. (2013).  

 

3.3.7 Sensory evaluation 

Wines were subjected to descriptive sensory evaluation by a panel of 14 experienced wine judges. 

Judges were requested to indicate aroma intensities on a unipolar six-point numerical scale (absent 

[0], very low [1], low [2], medium [3], high [4] and very high [5]), and also to specify the most prominent 

aroma/s perceived i.e. ‘tropical fruit’ e.g. banana, guava, peach, passion fruit and citrus; ‘vegetative’ 

e.g. asparagus, herbaceous, green pepper, green beans, cut grass, green olive and gooseberry; or 

‘floral’ e.g. rose, orange blossom etc. The wines were served as coded samples in international wine 

tasting glasses (approximately 50 mL) in a completely randomised order for each judge.  

 

3.3.8 Statistical analyses 

Chemical and sensory analyses data were subjected to principal component analysis (PCA) to 

determine the relationship between variables and treatments (yeasts) (Pearson, 1896; 1901; Zou et 

al., 2006). The data matrix consisted of four chemical variables i.e. VA, ethanol, total acidity and pH; 

and three sensory aroma descriptors i.e. ‘tropical fruit’, ‘vegetative’ and ‘floral’. Pearson’s correlation 

was performed to study the linear relationship between the chemical and sensory variables. The 

Pearson’s correlation matrix was used to standardise the data before performing the PCA. The PCA 

was performed using XLSTAT software (Addinsoft, 2013) with the principal components (PC’s) as 

factors (i.e. F1 and F2). 
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3.4. RESULTS AND DISCUSSION 

3.4.1 Pulsed-field gel electrophoresis (PFGE)/Contour clamped homogeneous electric field (CHEF) 

 DNA karyotyping 

Wine chemical and sensory quality are affected by the yeast strain used to carry out the alcoholic 

fermentation (Sharma et al., 2012; Usbeck et al., 2014). As a result, differentiation of yeast strains is 

essential to ensure that the correct yeast strain is used to inoculate grape must. Previous studies 

showed that Pulsed-field gel electrophoresis (PFGE)/Contour clamped homogeneous electric field 

(CHEF) DNA karyotyping DNA karyotyping allowed for the delineation of closely related yeast strains 

(Sheehan et al., 1991; van Breda et al., 2013). Similarly, CHEF DNA karyotyping was useful in this 

investigation to differentiate closely related S. cerevisiae hybrid strains descending from mutual 

parental yeast strains (Figure 3.1). Distinctive variations in the DNA karyotypes between hybrids can 

be seen, especially for the smaller chromosomes (bottom bands). Four pairs of hybrids that is, NH 33 

and NH 34; NH 63 and NH 64; NH 75 and NH 76; and NH 86 and NH 89 had similar DNA karyotypes, 

whilst the remainder of yeast strains had distinguishable DNA karyotypes. Therefore, 139 CHEF DNA 

karyotyping profiles of the 143 strains were generated with genetic similarity ranging from 58 to 100%.  

The larger chromosomes (top bands) were common to most hybrids and parental yeast strains.  It is 

evident that chromosomal DNA of the hybrids originated from more than one parental strain. It can 

be envisaged that some characteristics, including flavour compound (metabolite) release during 

fermentation, should be similar, different or enhanced compared to parental strains.
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 1 
2 

FIGURE 3.1: Dendogram showing the genetic similarity among three commercial ‘thiol-releasing’ wine yeasts (TRWY)(red arrows), four parental yeast (PS)(blue 
arrows) and 136 hybrid yeast (NH) strains. Cluster analyses was performed using a UPGMA algorithm. Yeast strains with 80% similarity (dotted line) were assigned 
to the same cluster indicated by Roman numerals. Dice (Opt:0.50%) (Tol 1.0%-1.0%) (H>0.0% S>0.0%) [0.0%-100.0%]  Cluster I: NH 143, NH 132, ZYMAFLORE X5, 
NH12, NH 68, NH 66, NH 67, NH 125, NH 69, NH 24, NH 73, NH 10, NH 112, NH 107, NH 42, NH 113, NH 114, NH 133, NH 135, NH 134, NH 138, NH 35, NH 36, 
NH 117, NH 6, NH 9, NH 3, NH 47, NH 41, NH 15, NH 17, NH 54, NH 53, NH 94, NH 5, NH 7, NH 16, NH 52, NH 22, NH 25, NH 1, NH 106, NH 37, NH 13, NH 20, NH 
91, NH 99, NH 33, NH 34, NH 32, NH 31, NH 4, NH 70, NH 30; Cluster II: NH 43, NH 55, NH 78; Cluster III: NH 130, NH 98, NH 48, NH 62; Cluster IV: NH 27, NH 81, 
NH 49, NH 97; Cluster V: NH 108, NH 127, NH 129, NH 136, NH 137; Cluster VI: NH 28, NH 50, NH 110, NH 29, NH 139, NH 142, NH 11, NH 18; Cluster VII: NH 39, 
NH 40, NH 38; Cluster VIII: NH 109, NH 2, NH 115, NH 116, NH 100, NH 45, NH 88, NH 23, NH 95, NH 44, NH 72, NH 77, NH 92, NH 93, NH 61, NH 75, NH 76, NH 
74, NH 128, NH 86, NH 89, NH 83, NH 85, NH 87, NH 90; Cluster IX: NH 80, NH 101, NH 144, NH 71, NH 118; Cluster X: NH 123, NH 141, NH 103, NH 119; Cluster 
XI: NH 122, NH 8, NH 126, NH 82; Cluster XII: NH 121, NH 131, NH 84; Cluster XIII: NH 124, PS 2,  NH 145, NH 140, NH 46; Cluster XIV: NH 63, NH 64, FERMICRU 4F9, 
NH 56, NH 59, NH 58, NH 60, NH 65; Cluster XV: NH 51, PS 1, PS 3, PS 4; Cluster XVI: NH 102, NH 104, ZYMAFLORE VL3, NH 57. 
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Cluster analysis of yeast CHEF DNA karyotypes allowed for the differentiation of yeast strains with 

common ancestry as described by Hoff (2012), Choi & Woo (2013) and Gallego et al. (2014). A 

dendogram comprising of sixteen clusters (I – XVI) was observed at a genetic similarity limit of 80% for 

all 143 strains (Figure 3.1). Four hybrids that is, NH 6, NH 67, NH 73 and NH 112 exhibiting the ability 

to produce wines with tropical fruit aroma (hereafter abbreviated as TFPH) clustered with the 

commercial TRWY reference Zymaflore X5, whilst another two TFPH and low VA producing hybrids 

(LVPH) that is, NH 56 and NH 57 cclustered with the commercial TRWY references Fermicru 4F9 and 

Zymaflore VL3, respectively. Both hybrids also clustered with tropical fruit wine producing PS 1 at a 

74% genetic similarity cut-off. Moreover, both hybrids clustered with the lower VA producing PS 2, PS 

3 and PS 4 (Figure 3.1). Therefore, these hybrids exhibiting the sought-after tropical fruit aroma 

enhancing and low VA forming qualities, inherited it from the respective parental strains.   

 

3.4.2 Yeast profiling with MALDI-TOF/ MS Biotyping  

Biotyping using MALDI-TOF/MS was successfully deployed to match ribosomal protein originating from 

commercial TRWY references, PS, and NH strains to that of a database described by Ghosh et al. (2015). 

All strains were identified as Candida robusta, the anamorph to S. cerevisiae (Diddens and Lodder, 

1942; Kurtzman et al., 2011) following biotyping (mass spectra can be requested from the National 

Agricultural Proteomics Research & Services Unit (NAPRSU), University of the Western Cape, South 

Africa). Overall 79.72 % of the strains were reliably identified as Candida robusta with scores of >2 as 

described by Moothoo-Padayachie et al. (2013). Nonetheless no cut-off score for reliable MALDI-

TOF/MS biotyping was established, as all strains were shown by DNA karyotyping to be S. cerevisiae. 

Also noteworthy is that Cheng et al. (2013) showed that a lower cut-off score (1.7) sufficiently 

differentiate different Candida yeast strains. Therefore, the lowest cut-off score (>1.8) for some strains 

used during this trial is acceptable.  
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A dendogram consisting of nine clusters (I – IX) was generated following cluster analysis of the mass 

spectra at phylogenetic distance level of 0.80 indicated by dotted line (Figure 3.2). Hybrid strains were 

spread throughout the various mass spectral clusters. Some of the mass spectral clustering 

complemented DNA karyotype clustering, since TFPH, that is, NH 56 and NH 57, clustered with the 

commercial TRWY reference Zymaflore VL3. Moreover, LVPH, that is, NH 124; and NH 3, NH 88, 

NH 140, NH 13 and NH 81, were shown by MALDI-TOF/MS biotyping (Bruker Daltonics, Bremen, 

Germany) to have a close phylogenetic relationship with the low VA producing PS 3 and PS 4, 

respectively (Figure 3.2). Also noteworthy, is that TFPH and LVPH, that is, NH 6, NH 132 and NH 134 

was shown by biotyping to have a close phylogenetic relationship with parental strains that is, PS 1 

and PS 2, and PS 3, which was shown to produce wines with tropical fruit aroma (hereafter abbreviated 

to as TFPP). This provides more evidence supporting the notion that promising hybrids inherited 

desirable traits from the respective PS. 

 

Identification of microorganisms according to ribosomal protein spectra was reported by Gekenidis et 

al. (2014) and Oumeraci et al. (2015). In this study, distinctive ribosomal protein mass spectra of hybrid 

yeasts compared to parental strains were observed (Figure 3.3) (all data can be obtained from the 

National Agricultural Proteomics Research & Services Unit (NAPRSU), University of the Western Cape, 

South Africa). This study complemented research done by Bărbulescu et al. (2015), and shows that 

MALDI-TOF/MS biotyping is a reliable yeast strain identification method that complemented CHEF DNA 

karyotyping.  Biotyping proved to be a rapid identification method resulting in 143 mass spectra, whilst 

the laborious CHEF DNA karyotyping generated 139 karyotypes. However, CHEF DNA karyotyping still 

remains the cheaper option. Both techniques allowed for the delineation of genetically related hybrids. 
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FIGURE 3.2: Principal component analysis (PCA) dendogram generated from matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF 
MS) biotyping spectra of three commercial ‘thiol-releasing’ wine yeasts (TRWY)(red arrows), four parental yeast (PS)(blue arrows) and 136 hybrid yeast (NH) 
strains, generated by cluster analysis using BIOTYPER software (Bruker Daltonics). Dendrogram based on identification score values and distance level is 
indicative of phylogenetic distance amongst yeast strains. Blue and red arrows indicate parental and commercial reference strains, respectively. Yeast strains 
were assigned to the same cluster at a 0.80 distance level (dotted line) indicated by Roman numerals.  

Cluster I: NH 104, NH 123, NH 24, NH 16, NH 47, NH 108, NH 90, NH 2, NH 9, NH 20, NH 23, NH 22, NH 44, NH 111, NH 75, NH 89, NH 145, NH 52, NH 114, 
NH 126, PS 1, NH 92, NH 144, NH 66, NH 107,  PS 2, NH 6, NH 43, NH 82, NH 127, NH 72, NH 106, NH 29, NH 122, NH 115, NH 18 ; Cluster II: PS 3, NH 141, 
NH 103, NH 15, NH 124, NH 41, NH 93, NH 143; Cluster III: NH 37, NH 73, NH 86, NH 74, NH 31, NH 68, NH 132, NH 78, NH 125, NH 55, NH 87, NH 35, NH 38, 
NH 39, NH 134, NH 139, NH 137, NH 83, NH 36, NH 77, NH 131, NH 133, NH 46; Cluster IV: ZYMAFLORE VL3, NH 84, NH 91, NH 110, NH 33, NH 17, NH 56, 
NH 109, NH 57, NH 76, NH 61, NH 94, NH 135, NH 69, NH 112, NH 85; Cluster V: NH 7, NH 25, NH 48, NH 49, NH 102, NH 60, NH 65, NH 59; Cluster VI: NH 8, 
NH 50, NH 71, NH 42, NH 53; Cluster VII: FERMICRU 4F9, NH 40, NH 142, NH 54, NH 129, NH 51, NH 99, NH 100; Cluster VIII: NH 1, NH 10, NH 97, NH 101; 
Cluster IX: ZYMAFLORE X5, NH 30, NH 36, NH 140, NH 3, NH 13, NH 4, NH 5, NH 138, NH 80, NH 63, NH 32, NH 58, NH 67, NH 81, NH 98, NH 130, NH 116, 
NH 64, NH 45, NH 62, NH 88, NH 27, NH 28, NH 70, NH 95, NH 34, NH 118, NH 119, PS 4, NH 11. 
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 FIGURE 3.3: Matrix assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) 
spectral fingerprints of four parental strains (PS) and ten hybrid strains (NH). The absolute intensities of the ions 
and mass-to-charge (m/z) ratios are represented on the y- and x-axis, respectively. 
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3.4.3 Laboratory-scale fermentation trials 

Most hybrids were able to ferment the grape must at a rate similar to commercial TRWY references 

and PS 1, PS 2, PS 3 and PS 4 (Figure 3.4). Most fermentations were shown to stabilise after 25 days 

following inoculation with the respective yeast strains. However, hybrids NH 36 and NH 34 fermented 

at rates noticeably different than the remaining strains included in this trial. Both hybrids produced 

wines with more vegetative aroma descriptors. Therefore, it can be tentatively surmised that 

fermentation rates nearby those of commercial TRWY references and TFPP are linked to production 

of wines with the sought-after fruity and tropical fruit aroma notes, since TFPH (for example, NH 56, 

NH 48, NH 88, NH 57, NH 3, NH 77, NH 124, NH 24, NH 29, NH 6) had similar rates to that of the 

commercial references and parental strains. This study complemented previous research which 

showed that faster fermentation rates improved the sensory quality of wines (Bell & Henschke, 2005). 

Also noteworthy is that, Shinohara et al. (1994) showed that hybrid yeast strains with similar 

fermentation rates as aromatic wine producing parental strains, was able to produce wines with 

aroma enhancing metabolites.  Nonetheless, both NH 36 and NH 34 were shown to be LVPH and will 

be used in further breeding programs to improve progeny in this regard.  

 

3.4.4 Fourier transform infra-red (FTIR) spectroscopy 

The PCA biplot of standard wine chemical data showed that promising hybrids, including NH 56, NH 

48, NH 88, NH 57, NH 3, NH 77, NH 124, NH 24, NH 29, NH 6 situated in the left quadrants produced 

wines had a negative correlation with VA (Figure 3.5). The same observation was made with regard to 

PS 3, PS 2, PS 4, which was shown to be low VA producers (hereafter referred to as LVPP) and the 

commercial TRWY reference Fermicru 4F9. Overall, most hybrid strains produced wine with VA below 

0.20 g/L (data not shown), whereas commercial TRWY references Zymaflore VL3 (0.31 ± 0.20 g/L) and 

Zymaflore X5 (0.50 ± 0.21 g/L) produced wines with significantly higher VA. These results support 

anecdotal evidence that some commercially available yeast strains can be implicated in VA formation. 
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However, all commercial references produced wines with VA levels that comply with legislation. Strain 

PS 3 (0.02 ± 0.02 g/L) produced wines with the lowest VA of all the PS included in this study. Low VA 

forming hybrids must have inherited this trait from the respective PS that displayed this quality. Most 

TFPH produced wines with a more positive association with pH compared to wines produced with 

commercial TRWY references, Fermicru 4F9, Zymaflore VL3 and Zymaflore X5 (Figure 3.5). However, 

all yeast strains included in this study on average produced wines with desired pH values (pH 3.3 ± 

0.01) as described (Gauntner, 1997; Pambianchi, 2001). It was also observed that plenty of hybrids, 

including the TFPH mentioned above, produced wines that was perceived to be “fruity”, a wine aroma 

that can be accentuated at this pH. 

Also noteworthy is that, climate change together with a desire by wine producers to harvest grapes at 

optimal ripeness has led to grapes harvested with high sugar levels (Palliotti et al., 2014).  

Consequently, these wines have undesirable high alcohol levels.  Wine yeast strains suitable for the 

production of lower alcohol from grapes with higher sugar were identified as a global industry priority 

(Gardner et al., 2007; Contreras et al., 2014). Therefore, this study adds value to this priority, since 

promising LVPH (for example, NH 24, NH 73, NH 77, NH 124 and NH 145) also produced wines with 

lower alcohol levels (negative association ethanol). It is envisioned that this observation will be 

investigated further as part of another study. 
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3.4.5 Sensory evaluation 

The biplot of wine sensory data showed no distinct clusters, but rather a spread over the entire sensory 

space (Figure 3.6). Both commercial TRWY references Zymaflore VL3 and Zymaflore X5 produced wines 

with a positive association with tropical fruit aromas (Figure 3.6). Moreover, both TRWY were 

previously recommended for the production of aromatic white wines due to the yeast’s ‘thiol-

releasing’ abilities (Anonymous, Personal communication, 2005). The TRWY Fermicru 4F9 produced 

wines with relative less tropical fruit aroma than afore-mentioned TRWY, however the wines had a 

greater association with tropical aroma compared to wine produced with for example, PS 3.  It is 

noteworthy that the Zymaflore VL3 produced wines had hints of vegetative aromas, whilst Fermicru 

4F9 produced wine with a slight hint of floral aroma. It can tentatively be said that marginal vegetative 

aromas perceived in the Zymaflore VL3 produced wine is the result of the positive association with VA 

(Figure 3.5), whilst the hints of floral aroma perceived in the Fermicru 4F9 produced wines were due 

to overpowering tropical aroma. Therefore, higher VA levels observed in wines produced by 

Zymaflore X5 and Zymaflore VL3 were somehow masked by the overall positive aromas perceived. 

Nevertheless, commercial references produced wines with desired aroma notes and VA levels that 

complies with legislation.  
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FIGURE 3.4: CO2 weight loss of Sauvignon blanc grape must fermented at an ambient temperature of 
14.5°C at the ARC Infruitec-Nietvoorbij microbiology laboratory using three commercial ‘thiol-releasing’ 
wine yeasts (TRWY), four parental yeast (PS) and 136 hybrid yeast (NH) strains. 
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Numerous hybrids, amongst others, NH 112, NH 98, NH 88, NH 84, NH 73, NH 67, NH 57, NH 56, NH 48 

and NH 6 are considered TFPH, since they produced wines with enhanced tropical fruit aromas 

compared to commercial TRWY and TFPP. Some of these TFPH were similarly identified as LVPH 

(Figure 5). These hybrids, therefore, comply with both criteria put forward in the overall objective of 

this study. Wines with tropical fruit aroma and low VA levels are an industry priority, and the 

production thereof was previously achieved using co-inoculations and/or GMO (Swiegers et al., 2007). 

However, the use of GMO for wine production is currently illegal (Berrie, 2011). Therefore, it is 
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FIGURE 3.5: Biplot of basic chemical parameters of laboratory-scale Sauvignon blanc wine following 
fermentation by three commercial ‘thiol-releasing’ wine yeasts (TRWY), four parental yeast (PS) and 
136 hybrid yeast (NH) strains. Average values of triplicate fermentations. 
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envisioned that afore-mentioned TFPH and LVPH have a commercial role to play, since the 

fermentation potential of the parental strains were improved through natural occurring classical 

mating. Moreover, other hybrid strains, NH 78, NH 46, NH 40, NH 34, NH 29, NH 28 and NH 18; and 

NH 136, NH 130, NH 124, NH 123, NH 92, NH 87, NH 82 and NH 77 that produced wines with 

pronounced vegetative and floral aromas, were also identified as LVPH. Two TFPP i.e. PS 1 and PS 2 

produced wines with tropical fruit and floral aromas, whilst the two LVPP i.e. PS 3 and PS 4 produced 

wines with vegetative and floral aromas, respectively. In general, LVPH strains were evenly distributed 

on the sensory biplot, irrespective of wine sensory attributes. 

 

3.4.6 Gas chromatography-mass spectrometry (GC-MS)   

Gas chromatography-mass spectrometry analyses were performed on wines with the most prominent 

fruity aromas according to the descriptive sensory evaluation to determine aroma compounds that is, 

esters, total fatty acids and higher alcohols (Lambrechts and Pretorius, 2000). The PCA biplot of GC-

MS data showed that the commercial TRWY reference strains Zymaflore VL3 and Fermicru 4F9 

produced wines with high ester levels (Figure 3.7). In contrast, Zymaflore X5 and PS 1 produced wines 

with a positive association with total acids, amongst others, acetic acid. Three TFPH (for example, 

NH 56, NH 118, and NH 145) produced wines with a negative association with total fatty acids, and 

therefore comply with both criteria indicated in the aims. The commercial TRWY reference Fermicru 

4F9 produced wines with the highest ester levels (5.58  1.42 mg/L). However, NH 48 produced wines 

with ester levels (4.07  0.17 mg/L) that were comparable to wines produced by Zymaflore VL3 (4.80  

0.94 mg/L) and Zymaflore X5 (4.02  0.80 mg/L), respectively. It is noteworthy that aforesaid TFPH viz. 

NH 56 (48.74  0.11 mg/L); NH 118 (63.75  1.03 mg/L); and NH 145 (75.26  2.43 mg/L) produced 

wines with less acetic acid, the main volatile acid than wines produced by Fermicru 4F9 (79.01  1.23 

mg/L). The latter produced wines with the lowest acetic acid of the all commercial references included 
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in this study. Therefore, GC-MS complemented FTIR spectroscopy, since LVPH also produced wines 

with lower acetic acid. 
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FIGURE 3.6: Biplot of descriptive sensory evaluation of laboratory-scale Sauvignon blanc wine following 
fermentation by three commercial ‘thiol-releasing’ wine yeasts (TRWY), four parental yeast (PS) and 136 
hybrid yeast (NH) strains. Average values of triplicate fermentations. 
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3.5. CONCLUSIONS 

In conclusion, improved hybrid strains were identified compared to commercial TRWY references and 

TFPP (for example, PS 1 and PS 2) and LVPP (for example, PS 3 and PS 4) included in this study. These 

hybrids showed lower VA formation, whilst producing aromatic and/or typical Sauvignon blanc wines. 

Moreover, observations during this study indicate that some commercially available yeast strains can 

be associated with VA formation. However, VA formation is also dependent on vintage and 

generalisation should be avoided. This study showed that classical mating is still practical to produce 
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FIGURE 3.7: Biplot of aroma compounds in laboratory-scale Sauvignon blanc wine following fermentation 
by three commercial ‘thiol-releasing’ wine yeasts (TRWY), four parental yeast (PS) and selected hybrid yeast 
(NH) strains that produced wines with the fruitiest aroma.  Average values of triplicate fermentations. 
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novel yeast strain with desired traits, whilst maintaining the green image of wine production. As it was 

also reported that yeast derived enzymes (proteins) are involved in the release of wine quality 

enhancing or reducing metabolites during fermentation (Holt et al., 2011; Moreno-García et al., 2015), 

it is envisioned that wine yeast protein expression will be investigated to establish an association with 

regulated proteins and  metabolites released and/or produced during fermentation. 
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Chapter 4: Characterisation of thiol-releasing and lower volatile acidity 

forming intra-genus hybrid yeast strains for Sauvignon blanc wine 

4.1. ABSTRACT 

A single Saccharomyces cerevisiae wine yeast strain produces a range of aroma and flavour metabolites 

(e.g. volatile thiols), as well as unfavourable metabolites (e.g. volatile acidity [VA]) during the alcoholic 

fermentation of white wine, especially Sauvignon blanc. The former contributes to the organoleptic 

quality of the final wine. Previous research showed that yeast derived enzymes (proteins) are involved 

in the release of wine quality enhancing or reducing metabolites during fermentation. Small-scale 

winemaking trials were initiated to evaluate protein expression and metabolite release of tropical fruit 

aroma wine producing S. cerevisiae hybrid yeasts. Commercial ‘thiol-releasing’ wine yeasts (TRWY) 

were included in winemaking trials as references. Improved hybrids which showed enhanced thiol-

releasing abilities, specifically 3-mercaptohexanol (3MH), and lower VA formation during the 

production of Sauvignon blanc wines, were identified and compared to some commercial TRWY 

references. It is noteworthy that the hybrid NH 56 produced wines with the second highest 3MH levels 

after hybrid NH 84, and lowest acetic acid of all strains included in this study. This yeast was also the 

only strain to have down-regulated proteins linked to amino acid biosynthesis, pentose phosphate 

pathway, glycolysis and fructose and galactose metabolism during the lag phase. Furthermore, 

differences in protein expression were reflected in the variation of metabolite release by different 

strains, thereby confirming that enzymes (proteins) are the final effectors for metabolite release. 
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4.2. INTRODUCTION 

During alcoholic fermentation of grape must, the metabolic activity of Saccharomyces cerevisiae leads 

to a range of compounds (metabolites) in wine (Pinu et al., 2015). These metabolites include, amongst 

others, monosaccharide sugars, organic acids, fatty acids, amino acids, esters, higher alcohols 

(Chambers et al., 2009). In addition, wine yeasts also mediate the release of metabolites that enhance 

tropical fruit aroma (e.g. volatile thiols) from their grape-derived bound aroma-inactive precursors 

(King, 2010; Bovo et al., 2015). Some wine yeast strains are implicated in the over-production of 

undesirable metabolites (e.g. acetic acid). Acetic acid accounts for 90% of volatile acidity [VA]), and 

results in vinegar-like off-flavours in wine (Du Toit & Pretorius, 2000; Swiegers et al., 2005; Ugliano et 

al., 2009). All these yeast derived and mediated metabolites contribute to the organoleptic character 

of the wine, and it has been suggested that wine is the ‘metabolic footprint’ of the wine yeast strain 

used to carry out the fermentation (Howell et al., 2006; Mapelli et al., 2008). Excessive VA levels in 

wines will have a negative commercial impact, as these wines will not be marketable. Financial loss 

can also be incurred by commercial yeast manufacturers, should a commercial wine yeast strain within 

their portfolio be implicated in excessive VA formation.  

Strains of S. cerevisiae vary in their ability to produce and/or release volatile thiols, an important aroma 

compound in Sauvignon blanc, as well as the unfavourable metabolite, acetic acid (Swiegers et al., 

2006a; 2007a; Holt et al., 2011).  Therefore, the preferred wine yeast strain for Sauvignon blanc should 

produce varietal aromatic compounds, without production of undesirable off-flavours (Vilela-Moura 

et al., 2011; Coetzee & du Toit, 2012). Wine yeast strains suitable for the production of aromatic wine 

with enhanced tropical fruit aroma were identified as a wine industry priority (Swiegers et al., 2006b; 

2007b; King, 2010; King et al., 2011). Previous laboratory scale vinification trials with intra-genus 

hybrids, showed differences in wine chemical and sensory properties (Hart et al., 2016). It was also 

reported that yeast derived enzymes (proteins) are involved in the release of wine quality enhancing 
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or reducing metabolites during fermentation (Holt et al., 2011; Roncoroni et al., 2011; Juega et al., 

2012; Moreno-García et al., 2015). However, protein expression and metabolite production and/or 

release of above-mentioned intra-genus hybrids during fermentation of Sauvignon blanc must, was 

never investigated. This necessitated an in-depth study into wine yeast protein expression and 

metabolite release and the effect thereof on the organoleptic quality of wine, especially if the South 

African wine industry is to remain globally competitive. The Sauvignon blanc cultivar is ideally suited 

for this type of investigation as the grapes contain bound aroma-inactive metabolites that can only be 

released by wine yeast during fermentation (Swiegers et al., 2006a; Holt et al., 2011).  Therefore, this 

study was undertaken to evaluate a selection of yeasts for the improvement of Sauvignon blanc wine 

organoleptic quality with regard to tropical fruit aroma and low VA formation. A second objective was 

to investigate wine yeast protein expression and whether regulated proteins correlate with 

metabolites released and/or produced during fermentation. Isobaric tags for relative and absolute 

quantitation (iTRAQ) in conjunction with liquid chromatography-tandem mass spectrometry (LC-

MS/MS) was used to classify down-regulated and overexpressed proteins originating from three 

commercial ‘thiol-releasing’ wine yeasts (TRWY) and five hybrid yeast strains. 
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4.3. MATERIALS AND METHODS 

4.3.1 Yeast strains 

A hybrid that was provisionally characterised as having the ability to produce wines with tropical fruit 

aroma will henceforth be referred to as TFPH. Subsequently, nine TFPH i.e. NH 48, NH 56, NH 57, NH 

84, NH 88, NH 118, NH 140, NH 143 and NH145. Likewise, a hybrid that was provisionally characterised 

as a low VA producer will henceforth be referred to as LVPH. Subsequently, five LVPH i.e. NH 18, NH 

29, NH 34, NH 40 and NH 97 were used in this study. These hybrids are conserved in the ARC Infruitec-

Nietvoorbij micro-organism culture collection (ARC Inf-Nvbij CC). Top TRWY strains, i.e. VIN 7 and 

VIN 13 (Anchor Yeast, South Africa), Zymaflore VL3, Zymaflore X5 (Laffort Oenologie, France), and 

Fermicru 4F9 (DSM Oenology, Netherlands) were included as references. The commercial strain N 96 

(Anchor Yeast, South Africa) and an additional experimental hybrid P 35, were also included in this 

study as they have the ability to produce wine with tropical fruit aromas. 

 

4.3.2 Matrix-assisted laser desorption/ionisation (MALDI) biotyping 

All yeast strains were characterised by matrix-assisted laser desorption/ionisation (MALDI) biotyping 

using a Bruker UltrafleXtreme MALDI-TOF/MS (Bruker Daltonics, Bremen, Germany) as described (Hart 

et al., 2016). 

 

4.3.3 Small-scale winemaking trials 

Sauvignon blanc grapes were routinely sampled and submitted to the cellar laboratory for sugar (°B) 

and total acidity (TA) analyses. The grapes were harvested from vines grown on the ARC Nietvoorbij 

Research farm once the °B/TA ratio was ± 2.5. Subsequently, small-scale wines were made in triplicate 

according to the standard cellar method included in the ARC Infruitec-Nietvoorbij harvest programme 
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2014 (ARC Infruitec-Nietvoorbij experimental wine evaluation committee).  Briefly, the harvested 

grapes were chilled to 15 °C prior to mechanical destemming. Destemmed grape berries were crushed, 

followed directly by pressing grape must and skins at 1 Bar. Free-run grape must (juice) was transferred 

to a sedimentation tank, where after Novozymes (0.5 g/hL) and SO2 (50 mg/L) were added to aid 

sedimentation and prevent oxidation, respectively. The skins were discarded. A must sample was 

subjected to pH, TA, sugar and SO2 analyses. Thereafter the total SO2 of the must was adjusted to 50 

mg/L and allowed to clarify overnight at 14 °C. Subsequently, clarified must was racked off the 

sediments by siphoning into a new fermentation container. Nine litres Sauvignon blanc grape must 

(total sugar 21.9 °B; TA 9.3 g/L; pH 3.28) were dispensed into stainless steel canisters and inoculated 

with the respective wine yeast starter cultures as described by Hart et al. (2016). The method was 

adjusted by having the respective yeast inoculums cultured for 24 hours in 800 mL yeast extract, 

peptone, and dextrose (YPD) broth (Biolab, Merck) medium. Subsequently, 180 mL of the 24 hour 

cultures were used to inoculate clarified Sauvignon blanc grape must (2% inoculum). Thereafter, 50 

g/hL diammonium phosphate (DAP) was added. Ninety mL bentonite solution (7.5 %) was added to 

fermenting must after 48 hours following inoculation. Fermenting must samples were taken every 48 

hours using food-grade CO2 to analyse residual glucose/fructose, ethanol, VA, total acidity and pH using 

an OenofossTM Fourier transform infrared (FTIR) spectrometer (FOSS Analytical A/S, Denmark) until 

fermentations went to dryness (R/S < 5 g/L). The OenofossTM FTIR was calibrated using wine chemical 

parameters, determined by wet chemistry and external accredited laboratories. The SO2 was analysed 

upon completion of the respective fermentations. The wines were racked off the yeast lees and the 

free-SO2 adjusted to 35 mg/L, followed by cold stabilisation at 0 °C for at least two weeks. 
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4.3.4 Gas chromatography (GC) analysis 

Wine aroma compounds (e.g. esters, total acids and higher alcohols [fusel oils]), were quantified by 

means of calibration mixtures in conjunction with gas chromatography (GC) as described by Louw 

(2007). The GC system used in this study comprised of a HP 5890 Series II GC equipped with an HP 

7673 Injector and HP 3396A Integrator (Hewlett Packard, Vienna, Austria). Aroma compounds were 

separated using 60 m x 0.32 mm x 0.5 µm Polyethylene Glycol column (Lab Alliance, State College, PA, 

USA). 

 

4.3.5 Solid-phase extraction (SPE) and GC-MS/MS analysis  

Solid-phase extraction was used to pre-concentrate key wine volatile thiols, i.e. 3-mercaptohexan-1-ol 

(3MH) and 3-mercaptohexylacetate (3MHA) in wines as described by Mateo-Vivaracho et al. (2009). 

Subsequently, GC coupled to tandem mass spectrometry (GC-MS/MS) was used to quantify thiol levels 

as described by Mattivi et al. (2012). However, the GC-MS/MS system used in this study comprised of 

a GC Trace 1300/ TSQ8000 mass selective detector equipped with an AI 1310 auto sampler (Thermo 

Scientific™ Inc, USA). Aroma compounds were separated using 30 m x 0.25 mm x 0.25 µm Zebron WAX 

plus column (Phenomenex Inc., Torrance, CA, USA). Volatile thiol analyses was conducted an 

accredited laboratory. 

 

4.3.6 Sensory evaluation 

Descriptive sensory evaluation of bottled wines was conducted by an experienced panel consisting of 

14 members who were requested to indicate the prominence of listed aroma descriptors on a unipolar 

six-point numerical scale (absent [0], very low [1], low [2], medium [3], high [4] and very high [5]). In 

addition, panel members had to specify listed aroma descriptors associated with Sauvignon blanc that 
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they perceived. All wines were coded and served in a randomised order using international wine 

tasting glasses (approximately 50 mL). 

 

4.3.7 Quantitative LC-based iTRAQ proteomic analysis 

4.3.7.1 Protein sample preparation 

Eight yeast strains (VIN 7, Zymaflore X5, Zymaflore VL3, N 96, P 35, NH 56, NH 57 and NH 97) were 

subjected to protein extraction based on chemical (lower VA and total fatty acids) and sensory (tropical 

fruit aroma) analyses.  Fermenting Sauvignon blanc grape must were sampled (50 mL) during the lag 

phase (48 hours following inoculation) and stationary phase (end of fermentation). Thereafter, 

samples were aliquoted into micro-centrifuge and pelleted at 14000 rpm for 30 seconds. The 

supernatant was discarded and the previous steps repeated until the yeast pellet weighed 50 mg, 

whereafter protein extraction was conducted according to the method described by Von den Haar 

(2007). Briefly, yeast pellet were dissolved in 400 µL lysis buffer (0.1 M NaOH, 0.05 M EDTA, 2 % (w/v) 

SDS and 2 % (v/v) 2-mercaptoethanol and sterile distilled water). Cell mixture was heated for 10 min 

at 90 °C to disrupt cells, whereafter 10 µL of acetic acid was added to the lysates and heated for an 

additional 10 min at 90 °C. Protein quantification and characterisation were conducted by deploying 

an iTRAQ 8-plex reagent kit (AB Sciex, USA), in accordance with the manufacturer’s instructions.  

 

4.3.7.2 Protein alkylation, digestion and isobaric labelling 

Cysteine-residues of proteins were alkylated using 200 mM methane methylthiosulphonate (MMTS) 

as described by Boutureira & Bernardes (2015). Thereafter, proteins were digested overnight at 37 °C 

using 1 µg/µL trypsin solution (Promega, Madison, WI, USA).   Subsequently, tryptic digests were air-

dried and dissolved in water containing 2% acetonitrile/0.1% formic acid (Sigma-Aldrich, South Africa).  

The solution was again air-dried with the exception that it was re-suspended in triethylamonium 
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bicarbonat (TEAB). Tryptic digests extracted from the yeast strains were tagged with iTRAQ labels 113, 

114, 115, 116, 117, 118, 119 and 121, respectively as described by Kim et al. (2012). 

 

4.3.7.3 Liquid chromatography–tandem mass spectrometry (LC-MS/MS) 

Mass spectrometry for protein characterisation was performed using a mass spectrometer equipped 

with a Nanospray flex ionisation source (Thermo Scientific™ Inc, USA). Samples were introduced 

through a stainless steel emitter as described by Vehus et al. (2016). Data was generated using 

synchronised pre-cursor selection with MS3 reporter ion generation. Subsequently, the raw files were 

imported into Proteome Discoverer v1.4 and processed using the Mascot algorithm (Matrix Science, 

London, UK), as well as the SequestHT algorithm included in Proteome Discoverer. Protein quantitation 

was performed using the iTRAQ quantitation algorithm. Only proteins with more than 2 peptides, but 

less than 20% variation, and iTRAQ ratios below 0.5 and above 2 were considered down-regulated and 

over-expressed, respectively. 

 

4.3.7.4 Bioinformatics analysis 

Proteins that were shown to be differentially expressed using quantitative iTRAQ were subjected to 

Protein ANalysis THrough Evolutionary Relationships (PANTHER, www.pantherdb.org/) to establish 

their involvement in biological processes, molecular function and protein classes (Sharma et al., 2014). 

 

4.3.7.5 Statistical analyses 

Data generated following chemical, sensory and metabolomic analyses were subjected to analysis of 

variance (ANOVA) and principal component analysis (PCA) as described (Pearson,1896; 1901; Zou et 

al., 2006). A Pearson’s correlation was performed to study the linear relationship between the 
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chemical, sensory and metabolomic variables and standardise data prior to performing the PCA using 

XLSTAT software (Addinsoft, 2013) with the principal components (PC’s) as factors (i.e. F1 and F2). 

 

4.4. RESULTS AND DISCUSSION 

4.4.1 Matrix-assisted laser desorption/ionisation (MALDI) biotyping 

All 21 yeast strains were shown to have distinctive mass spectra (Figure 4.1), and belonged to the 

species S. cerevisiae (Table 4.1) as decribed (Hart et al., 2016). 

 

4.4.2 Fourier transform infra-red (FTIR) spectroscopy 

The PCA biplot of standard wine chemical showed that the LVPH NH 18, NH 29, NH 34 and NH 97 and 

the TFPH NH 48, NH 56, NH 57, NH 88, NH 143, and NH 145, were positioned in the left and bottom 

quadrants, and the wines had a negative association with VA (Figure 4.2). Indications, therefore, are 

that these TFPH are also LVPH. The same observation was made with regard to commercial TRWY 

references, despite some producing wines with a more positive association with VA. However, Hart et 

al. (2016) reported that aforesaid yeast strains produced wines with VA levels that comply with 

legislation. None of the wines were perceived to be undesirable during descriptive sensory evaluation 

(Figure 4.3). 
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Figure 4.1: Matrix assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/MS) biotyping of commercial wine yeasts and experimental yeast 
strains conserved in the ARC Infruitec-Nietvoorbij microbial culture collection, selected for the production of aromatic white. 
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Mass 
spectra 
number 

Yeast strain 

 
 

MALDI-TOF 
MS log (score) 

value 
 Identification 

1 VIN 72 (Reference 1)  2,1  Candida Robusta1 

2 VIN 132 (Reference 2)  2,1  Candida Robusta1 

3 Zymaflore VL33 (Reference 3)  2,1  Candida Robusta1 

4 Zymaflore X53 (Reference 4)  1,9  Candida Robusta1 

5 Fermicru 4F94 (Reference 5)  2,2  Candida Robusta1 

6 N 962 (Reference 6)  2,0  Candida Robusta1 

7 P 355 (Reference 7)  2,0  Candida Robusta1 

8 NH 185  2,0  Candida Robusta1 

9 NH 295  2,1  Candida Robusta1 

10 NH345  2,1  Candida Robusta1 

11 NH 405  1,9  Candida Robusta1 

12 NH 485  2,0  Candida Robusta1 

13 NH 565  2,0  Candida Robusta1 

14 NH 575  2,0  Candida Robusta1 

15 NH 845  1,9  Candida Robusta1 

16 NH 885  2,1  Candida Robusta1 

17 NH 975  2,1  Candida Robusta1 

18 NH 1185  2,1  Candida Robusta1 

19 NH 1405  2,0  Candida Robusta1 

20 NH 1435  2,0  Candida Robusta1 

21 NH 1455  2,1  Candida Robusta1 

1Candida robusta (anamorph of Saccharomyces cerevisiae); 2Commercial yeast (Anchor Wine Yeast, 
South Africa); 3Commercial yeast (Laffort Oenologie, France); 4Commercial yeast (DSM Oenology, 
Netherlands). 5Experimental yeast (ARC Infruitec-Nietvoorbij).  

 

 

TABLE 4.1: Matrix assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF 
MS) real time classification of yeast strains used for the production of varietal Sauvignon blanc wines. 

time classification of yeast strains used for the production of varietal Sauvignon blanc wines. 
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4.4.3 Sensory evaluation 

The PCA biplot of descriptive sensory evaluation showed that two commercial TRWY references 

Zymaflore X5 and VIN 7 produced wines with a positive association with tropical fruit aromas, whilst 

Zymaflore VL3 and Fermicru 4F9 produced wines positively associated with floral and vegetative 

aromas (Figure 4.3). The TRWY VIN 13 produced wines positively associated with both tropical fruit 

and vegetative aromas. Marais (1994) and Lapalus (2016) reported that green pepper and/or 

vegetative aromas can be attributed to Sauvignon blanc grape-derived aroma compounds (e.g. 2-

isobutyl-3-methoxypyrazine [IBMP]). In this trial, these compounds could have masked the sought-

Fermicru 4F9

N 96

NH 118
NH 140

NH 143

NH 145

NH 18

NH 29

NH 34

NH 40NH 48

NH 56

NH 57

NH 84

NH 88
NH 97

P 35

VIN 13

VIN 7

Zymaflore VL 3

Zymaflore X 5

Total acidity (g/L)

pH

Ethanol (%)

Volatile acidity (g/L)

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4 5

F2
 (

2
0

.9
1

 %
)

F1 (67.33 %)

Biplot (axes F1 and F2: 88.24 %)

Figure 4.2: Biplot of basic chemical parameters of small-scale Sauvignon blanc wine following 
fermentation by five ‘thiol-releasing’ commercial wine yeasts (TRWY), two ‘neutral’ yeasts strains, 
nine hybrids shown to produce wines with tropical fruit aroma (TFPH), and five low VA producing 
hybrids (LVPH). Average values of triplicate fermentations. 
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after tropical fruit aroma of the VIN 13 produced wine. Nonetheless, production of wines with tropical 

fruit aromas, is indicative of volatile thiol release and/or production which supports yeast 

manufacturers recommendations that above-mentioned TRWY strains are volatile “thiol-releasers” 

(Swiegers et al., 2009). This was further confirmed by Swiegers et al. (2006a) and Srisamatthakarn 

(2011) who reported that commercial TRWY references included in this study do in fact have enhanced 

thiol releasing abilities. 

Reference strains, namely N 96 and P 35 also produced wines with a positive association with tropical 

fruit and vegetative aromas, respectively as previously reported by Hart et al. (2016). Two TFPH 

namely, NH 57 and NH 140, produced wines that were perceived to have tropical fruit aromas, whilst 

NH 56 produced wines with almost equally intense tropical fruit and vegetative aromas. In contrast, 

three TFPH, namely NH 48, NH 118 and NH 145, produced wine with a positive association with floral 

aromas. The remainder of the TFPH, namely NH 84, NH 88 and NH 143, produced wines with 

prominent tropical aroma with hints of floral aromas. Floral aroma can also be a characteristic of new 

world Sauvignon blanc wines (Von Mollendorf, 2013). These hybrids produced wines that also had a 

negative association with vegetative aromas. 

Sensorially, most TFPH included in this trial produced wine with equivalent and more pronounced 

tropical fruit and floral aromas compared to wines produced by TRWY references.  The LVPH, namely 

NH 29 and NH 40, produced wines that had a positive association with tropical fruit aromas, whereas 

wines produced by NH 18 and NH 97 had a positive association with vegetative and tropical fruit 

aromas. The LVPH, namely NH 34 on the other hand produced wines with floral aroma and tropical 

fruit aromas. Indications, therefore, are that some LVPH are also TFPH. Overall, most TFPH produced 

wines with more tropical fruit than vegetative aromas. 
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4.4.4 Gas chromatography (GC) analysis 

Esters, total fatty acids and higher alcohol levels of all small-scale wines were analysed, as these aroma 

compounds (metabolites) contribute positively to ‘fermentation bouquet’ when present in moderate 

concentration (Lambrechts & Pretorius, 2000; Coetzee & du Toit, 2015). The PCA biplot showed that 

the TRWY reference, VIN 7, produced wines with the most positive association with esters compared 

to any other yeast strain included in this study (Figure 4.4). The TRWY references Zymaflore X5, 

Fermicru 4F9 and VIN 13 and the commercial reference strain N 96, positioned in the upper quadrants, 

also produced wines with a positive association with esters. This observation complements the sensory 
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Figure 4.3: Biplot of descriptive sensory evaluation of small-scale Sauvignon blanc wine following 
fermentation by five ‘thiol-releasing’ commercial wine yeasts (TRWY), two ‘neutral’ yeasts strains, 
nine hybrids shown to produce wines with tropical fruit aroma (TFPH), and five low VA producing 
hybrids (LVPH). Average values of triplicate fermentations. 
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evaluation results, where aforesaid yeast strains had a positive association with fruity aroma (Fig. 3). 

Wine esters are the main contributors to wine fruity aromas (Coetzee & du Toit, 2015). In contrast, 

TRWY reference, Zymaflore VL3, and the hybrid, P 35, produced wines with a negative association with 

esters, although P 35 produced wine that had a positive association with fruity aromas following 

sensory evaluation. 

Hybrids NH 34 and NH 48 produced wines with a positive association with volatile fatty acids (e.g. 

octanoic acid, decanoic acid), which can be associated with faint fruity and citrus wine aroma 

(Lambrechts & Pretorius, 2000). However, wine fatty acids include acetic acid, the main acid 

responsible for vinegar-like off-flavours at higher concentrations (Vilela-Moura et al., 2011). 

Furthermore, Zoecklein et al. (1995) reported that other steam distillable carboxylic acids (e.g. lactic 

acid, formic acid, butyric acid and propionic acid) also contribute to total acid content of wine.  

Volschenk et al. (2006) and Jackson (2014) reported that besides distillable acids, nonvolatile acids 

(e.g. malic and tartaric acid) also contribute to TA that was traditionally measured as an indicator of 

VA. Hybrids NH 34 and NH 48 are not necessarily high VA producers, since they were reported to be 

LVPH (Hart et al., 2016). The TRWY references, namely Zymaflore VL3, Fermicru 4F9, VIN 13 and hybrid 

P 35, produced wines with a negative association with total fatty acids. The same observation was 

made with regard to five hybrids, namely NH 29, NH 57, NH 84, NH 88, and NH 140 that also produced 

wines with prominent tropical fruit aromas (Figure 4.3). Therefore, these strains comply with yeast 

selection criteria based on the ability to produce wine with tropical fruit aroma and low VA formation. 

Overall, the level of higher alcohols in all wines were 242 ±37.18 mg/L. Five hybrids, namely NH 34, 

NH 40, NH 48, NH 143 and NH 145 were shown to produce wines with a positive association with 

higher alcohols. Higher alcohol concentrations below 300 mg/L add complexity to wines (Muñoz et al., 

2006; Styger, 2011; Von Mollendorf, 2013; Moss, 2015). Complexity of above-mentioned wines is 

evident as NH 48 and NH 145 produced wines with a positive association with floral aromas 

(Figure 4.3), whilst NH 34, NH 40 and NH 143 produced wines associated with tropical fruit and floral 
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aromas (Figure 4.3). Lambrechts & Pretorius (2000) reported that higher alcohols are key precursors 

involved in ester formation during alcoholic fermentation, which complements this study as these 

hybrids produced wines with a positive association with tropical fruit aroma (Figure 4.3) and esters 

(Figure 4.4). 

 

 

4.4.5 Solid-phase extraction (SPE) and GC-MS/MS analysis 

Volatile thiols contribute positively to ‘varietal aroma’ of Sauvignon blanc wines (Fedrizzi et al., 2007; 

Pinu et al., 2012). Two thiols in particular viz. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl 

acetate (3MHA) are the key aroma enhancing metabolites in white wines, especially Sauvignon blanc, 
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Figure 4.4: Biplot of aroma compounds, i.e. esters, higher alcohols and fatty acids in small-scale 
Sauvignon blanc wine following fermentation by five ‘thiol-releasing’ commercial wine yeasts (TRWY), 
two ‘neutral’ yeasts strains, nine hybrids shown to produce wines with tropical fruit aroma (TFPH), 
and five low VA producing hybrids (LVPH). Average values of triplicate fermentations. 
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and are produced by wine yeasts during fermentation from odourles precursors present in grape juice 

(Swiegers et al., 2007b; Roland et al., 2011; Harsch et al., 2013). The SPE-GC-MS/MS data of the 

analysed wines is presented as a PCA biplot in Figure 4.5. The TRWY references, VIN 7 and 

Fermicru 4F9, and hybrid P 35, produced wines with a positive association with both thiols. The TRWY 

namely, VIN 13 and Zymaflore VL3 produced wines positively associated with 3MH, whilst the TRWY 

Zymaflore X5 and the commercial reference strain N 96 produced wines positively associated with 

3MHA (Figure 4.5). Overall, 3MH levels in these wines were, 270, 258, 280, 266, 155, 140 and 150 ng/L. 

It is noteworthy that 3MH levels in the VIN 7 produced wine was at least five times its sensory 

detection threshold (van Wyngaard, 2013), explaining the positive association with tropical fruit aroma 

(Figure 4.3). The TRWY references,  Zymaflore X5 and Zymaflore VL3 produced wines with the lowest 

3MH and 3MHA of all TRWY references. This is contrary to results from Dubourdieu (2006) and Bowyer 

et al. (2008) who reported both yeasts to be high thiol-releasers. Nonetheless, 3MH levels in both 

wines were twice their sensory detection thresholds and these wines had a positive association with 

tropical fruit and floral aromas (Figure 4.3). 

Seven hybrids (NH 48, NH 56, NH 57, NH 84, NH88, NH 118, NH 140 and NH 143) produced wines with 

varying 3MH levels (264, 360, 196, 493, 315, 234, 217 and 206 ng/L). These hybrids also produced 

wines with the strongest association with 3MH and 3MHA compared to wines produced with 

Zymaflore X5, VIN 13 and Zymaflore VL3 (Figure 4.5). The 3MH levels in the TFPH NH 84 produced wine 

was at least eight times its sensory detection threshold (van Wyngaard, 2013), and twice that observed 

for the commercial TRWY reference VIN 7.  Some of these hybrids were shown to produce wines with 

a more positive association with tropical fruit aromas (Figure 4.3) and lower total fatty acids (Figure 

4.4) than wines produced with the commercial references namely Zymaflore VL3 and Fermicru 4F9.  

Hybrids NH 56, NH 84 and NH 88 that produced wines with a positive association with esters (Figure 

4.4) also produced wines with the highest 3MH levels of all yeast strains included in this study. The 

remaining TFPH also produced wines with a stronger association with 3MH and 3MHA than some of 

the commercial references. The hybrid yeast P 35 that was also utilised as a parental yeast in the hybrid 
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breeding programme produced wines with higher 3MH levels than any of the commercial TRWY 

references. Therefore, TFPH that produced wines with a strong association with previously mentioned 

thiols, could have inherited this trait from P 35. 

 

 

4.4.6 Quantitative LC-based iTRAQ proteomic analysis 

Yeast derived enzymes (proteins) are involved in the release of wine quality enhancing or reducing 

metabolites during fermentation (Juega et al., 2012; Moreno-García et al., 2015). In this study, selected 

TRWY references VIN 7, Zymaflore VL3 and Zymaflore X5, commercial yeast reference strain N 96, 

experimental hybrid yeast P 35, and promising TFPH NH 56, NH 57 and one LVPH NH 97, were selected 
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Figure 4.5: Biplot of volatile thiols, i.e. 3MH and 3MHA in small-scale Sauvignon blanc wine following 
fermentation by five thiol-releasing commercial wine yeasts (TRWY), two ‘neutral’ yeasts strains, nine 
hybrids shown to produce wines with tropical fruit aroma (TFPH), and five low VA producing hybrids 
(LVPH). Average values of triplicate fermentations. 
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for quantitative LC-based iTRAQ analysis to investigate protein expression during the lag phase (48 

hours following inoculation) and stationary phase (end of fermentation). The TRWY VIN 7 was chosen 

as reference for iTRAQ quantification, as it is a known ‘thiol-releaser’ and producer of wines with 

tropical aroma (Swiegers et al., 2006b; Borneman et al., 2012; Howe, 2016). 

In order to minimise false positives during relative iTRAQ quantification and identification of proteins, 

cut-off ratios of 0.5 and 2.0 with less than 20% variation, were applied for down-regulated and 

overexpressed proteins, respectively. Analysis of the combined datasets in conjunction with Uniprot 

S. cerevisiae database (2015 edition) identified a total of 808 and 658 S. cerevisiae derived proteins 

during the lag and stationary phases of fermentation, respectively (Table 4.2). All yeast strains showed 

variation in the number of up- and down-regulated proteins in comparison to the VIN 7 reference 

expressed proteins. Overall 54 proteins (6.68%) were down-regulated and 201 proteins (24.88%) were 

overexpressed during the lag phase of fermentation, whilst 113 proteins (17.17%) were down-

regulated and 28 proteins (4.25%) were overexpressed during the stationary phase of fermentation. 

Non-Saccharomyces expressed proteins originating from Schizosaccharomyces pombe and Candida 

tropicalis were observed during the lag phase, whilst none were detected at the end of fermentation. 

This observation complements previous research, since non-Saccharomyces genera are prominent in 

grape must, but are vanquished by Saccharomyces spp. as the fermentation progresses (Varela et al., 

2012; Jolly et al., 2014; Wang et al., 2016). Only three and 20 of the non-Saccharomyces derived-

proteins were down-regulated and over-expressed, respectively. As the base must (juice) was 

homogenous and standard for all strains evaluated, the different reference and hybrid strain 

inoculums is the only variable (treatment). 
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Yeast strains 

 Lag phase  Stationary phase 

 Down-

regulated 

Over-

expressed 

 Down-

regulated 

Over-

expressed 

VIN 7 TRWY Reference  808 characterised  658 characterised 

     

     

VL3 TRWY Reference  0 22  2 4 

X5 TRWY Reference  0 43  22 0 

N 96 Reference  0 57  25 0 

P 35 Reference  0 45  35 0 

NH 56 TFPH  35 0  18 0 

NH 57 TFPH  0 30  11 0 

NH 97 LVPH  19 4  0 26 

 

Proteomic analyses showed that all yeast strains, except NH 56, over-expressed between four and 57 

proteins during the lag phase, whilst NH 56 and NH 97 were the only strains to have down-regulated 

35 and 19 proteins, respectively. Over-expression of proteins linked to the rate and process of 

glycolysis, nitrogen and carbohydrate metabolism during the lag phase of fermentation is to be 

expected, because the yeast is actively generating energy whilst adapting to the new environment 

prior to proliferation (Zuzuarregui et al., 2006; Salvado et al., 2008). The yeast NH 56 down-regulated 

proteins were linked to the amino acid biosynthesis, pentose phosphate pathway, glycolysis and 

fructose and galactose metabolism pathways (e.g. dehydrogenases, reductases, synthetases, 

hydrolases, proteases, signalling molecules, dehydratases and transfer/carrier proteins). It can, 

therefore, be speculated that the yeast strain reduced its metabolic rate compared to the VIN 7 TRWY 

reference as well as to other strains included in this trial. Anecdotal evidence suggests that this delay 

might be instrumental in volatile thiol-release, since NH 56 produced wines had the highest positive 

association with 3MH (Figure 4.5). It is noteworthy that NH 56 did not regulate β-lyases (carbon-sulfur 

TABLE 4.2: Number of proteins originating from fermenting commercial thiol-releasing wine yeasts 
(TRWY) and experimental hybrid yeast strains during the fermentation of 2013 Sauvignon blanc grape 
juice that was differentially expressed. 
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lyases), enzymes previously reported to be responsible for the release of volatile thiols (Howell et al., 

2005; Swiegers et al., 2007a).  

Proteomic analyses showed that all strains down-regulated proteins during the stationary phase, 

except for Zymaflore VL3 and NH 97, that over-expressed four and 28 proteins, respectively. It was 

also observed that both strains produced wines with significantly lower 3MH compared to NH 56 

produced wines. The remaining strains that did not over-express any proteins during the stationary 

phase produced wines with similar 3MH levels. Indications, therefore, are that down-regulation of 

proteins linked to, amongst others, amino acid biosynthesis, pentose phosphate pathway, glycolysis 

and fructose and galactose metabolism during the lag phase will enhance volatile thiol-release. 

Furthermore, Holt et al. (2011) and Ljungdahl & Daignan-Fornier (2012) reported that amino acids and 

their linked metabolic pathways are directly linked to the release and production of wine aroma 

compounds (e.g. thiols). 

Hybrid yeast NH 56 produced wines with the least association with total acids compared to wines 

produced with the remaining yeast strains. Vilela-Moura et al. (2011) and Vilela et al. (2013) reported 

that acetic acid, the main VA responsible for vinegar-like off-flavours, is a major contributor to total 

fatty acids. Therefore, down-regulation of proteins associated with, amongst others, pentose 

phosphate pathway, glycolysis and fructose and galactose metabolism, and lack of overexpression of 

any other proteins at the start of fermentation, was instrumental in lower VA levels observed in wines 

produced with NH 56. Varela et al. (2012) and Walkey et al. (2012) reported that dehydrogenase 

enzymes are involved in excessive acetic acid production. Yeast strains that produced wines with a 

stronger association with acetic acid than NH 56, over-expressed dehydrogenases at the start of 

fermentation. Hybrid yeast NH 56 contrariwise down-regulated dehydrogenase at the start of 

fermentation. It is evident that different yeast strains expressed proteins differentially in response to 

the same grape must matrix. Subsequently, final wine organoleptic quality is affected by protein 

expression of the yeast starter culture. 
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Properties and relative expression of down-regulated and overexpressed proteins of promising TFPH 

(e.g. NH 56, NH 57) and LVPH (e.g. NH 97) during the lag and stationary phases of fermentations 

following iTRAQ quantification, are summarised in Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. Isobaric tags 

for relative and absolute quantification proved to be a practical approach for identification of proteins 

extracted from eight different yeast strains simultaneously, as opposed to the laborious gel-based 

proteomics which only makes provision for visualisation of one sample at a time (May et al., 2012). 

Consequently, the molecular weights (MW) and isoelectric points (pI) of regulated proteins during the 

lag (88) and stationary (55) phases originating from NH 56, NH 57 and NH 97, were determined using 

two iTRAQ runs as opposed to six two-dimensional poly-acrylamide gel electrophoresis (2D-PAGE) 

runs. Blasco et al. (2011) reported that yeast derived proteins present in must and/or wine are mainly 

glycoproteins. This study supports those observations, as regulated proteins include those associated 

with glycolysis. In general, regulated proteins during the different phases of fermentation were shown 

to be heterogeneous, as their molecular weight ranged from 7.10 to 351.40 kDa and pI ranged from 

pH 4.10 to 11.71. 

Proteins differentially expressed by the yeast strains during the lag and stationary phases of Sauvignon 

blanc grape must fermentation were classified according to molecular function (Figure 4.6a & b), 

biological process (Figure 4.6c & d), and protein class (Figure 4.6e & f) using PANTHER (Sharma et al., 

2014). Classification of proteins showed that differentially expressed proteins during the lag phase of 

fermentation related to seven molecular functions viz. transporter, translation regulator, structural 

molecule, receptor, catalytic, binding and antioxidant activities (Figure 4.6a), whilst differentially 

expressed proteins during the stationary phase of fermentation are associated with the same 

molecular functions (Figure 4.6b). Therefore, regulated proteins during the start and end of 

fermentation are associated with the same molecular functions. 

Classification of proteins showed that differentially expressed proteins during the lag phase of 

fermentation are associated with six biological processes viz. response to stimulus, metabolic, 
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localization, cellular, biogenesis and biological regulation (Figure 4.6c), whilst differentially expressed 

proteins during the stationary phase of fermentation are associated with five biological processes viz. 

metabolic, localisation, cellular, biogenesis and biological regulation (Figure 4.6d). Therefore, no 

proteins associated with ‘stimulated response’ were regulated towards the end of fermentation. It can 

tentatively be speculated that aroma-inactive bound thiol pre-cursors typically found in abundance in 

Sauvignon blanc grape must at the start of fermentation were depleted (Helwi et al., 2016; O’Kennedy, 

2016), hence the fermenting yeast strains were not stimulated to express proteins associated with the 

release volatile aromatic thiols. Classification of proteins showed that differentially expressed proteins 

during the lag phase clustered into sixteen protein classes (Figure 4.6e), whilst differentially expressed 

proteins during the stationary phase are associated with twelve different protein classes (Figure 4.6f). 

It was observed that regulated proteins were mutual to eleven protein classes during the two phases 

of fermentation. However, five protein classes were exclusively observed during the lag phase, i.e. 

transporter, transfer/carrier, transcription factors, signalling molecule and defence. Luyten et al. 

(2002), Henricsson et al. (2005) and Young et al. (2011) reported that transporter proteins that play a 

pivotal role during the transport of molecules (e.g. hexose sugars) from the grape must into the cell 

are over-expressed during the lag phase, as cells are adapting to their environment prior to active 

proliferation. Perez et al. (2005) reported that carrier proteins responsible for the transport of glucose 

and fructose into cells were only expressed during the lag phase. Rossignol et al. (2006) reported that 

many genes associated with transcription and/or protein synthesis were regulated during the 

initiation of fermentation. It can be concluded that resultant protein expression will be higher. In 

accordance with Rossignol et al. (2006) transcription factors (proteins) in this study were also 

regulated during the lag phase. The wine yeast S. cerevisiae is known to secrete signalling molecules 

(proteins) to communicate to surrounding haploid S. cerevisiae with the intention to mate whilst 

growing in a rich medium (Lodish et al., 2000; Merlini et al., 2013). Proteomic analyses of fermenting 

must during this study showed that signalling molecules were also regulated during the lag phase 

(Figure 5e). Wine yeasts were also shown to undergo oxidative stress during fermentation, resulting in 
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the up-regulation of defence related genes during fermentation of a high-sugar-containing medium 

(Gómez-Pastor et al., 2010; Navarro-Tapia et al., 2016). The Sauvignon blanc base must used in this 

study had an initial sugar content of 221 g/L. It can, therefore, be concluded that this physiological 

condition also induced oxidative stress in yeast investigated as the data showed that defence proteins 

were only expressed during the lag phase. 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

118/113          

ratio 

P04807 Hexokinase-2  111,96 41,15% 7 53,90 5,30 0,06 

P51401 60S ribosomal protein L9-B  106,12 70,68% 2 21,60 9,66 0,07 

P40581 Peroxiredoxin HYR1  25,70 47,24% 3 18,60 8,19 0,08 

P05738 60S ribosomal protein L9-A  107,89 74,35% 2 21,60 9,73 0,08 

P15891 Actin-binding protein  126,05 39,86% 9 65,50 4,68 0,08 

P0CX33 P0CX33 40S ribosomal protein  28,70 46,03% 2 7,10 11,68 0,10 

P35997 40S ribosomal protein S27-A  37,76 56,10% 3 8,90 9,14 0,10 

P00815 Histidine biosynthesis trifunctional 183,54 41,80% 14 87,70 5,29 0,11 

P0CX43 60S ribosomal protein L1-A  63,76 46,08% 5 24,50 9,72 0,11 

P0C2H8 60S ribosomal protein L31-A  197,45 70,80% 12 12,90 9,99 0,12 

P53912 Uncharacterised protein YNL134C  100,98 47,34% 6 41,10 6,21 0,13 

P39522 Dihydroxy-acid dehydratase 121,14 44,10% 10 62,80 7,83 0,13 

P0CX35 40S ribosomal protein S4-A  165,32 55,56% 11 29,40 10,08 0,13 

P06105 Protein SCP160  125,71 23,16% 6 134,70 5,85 0,14 

P14120 60S ribosomal protein L30  301,21 77,14% 13 11,40 9,80 0,15 

P32445 Mitochondrial ssDNA-binding 95,40 72,59% 7 15,40 8,34 0,17 

 

 

TABLE 4.3: Differentially expressed proteins by the TFPH NH 56 relative to the commercial TRWY reference VIN 7 during the lag phase of fermentation 
in 2013 Sauvignon blanc grape must. 
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Table 4.3: (continued). 

Accession Description Score Coverage 
Unique 

peptides 
MW  [kDa] calc, pI 

118/113          

ratio 

P41056 P41056 60S ribosomal 49,24 56,07% 1 12,20 11,08 0,17 

P05744 P05744 60S ribosomal protein  73,64 55,14% 2 12,10 11,08 0,17 

Q12118 SGT2 / YOR007C Protein 186,28 68,21% 9 37,20 4,79 0,17 

P13663 Asp-semialdehyde_DH 128,70 44,38% 8 39,50 6,73 0,19 

P31539 Heat shock protein 104  130,12 39,43% 7 102,00 5,45 0,20 

P35691 TCTP 112,58 48,50% 7 18,70 4,56 0,20 

Q12363 Transcriptional modulator WTM1  64,72 37,53% 7 48,40 5,36 0,21 

P14772 Bile pigment transporter 1  130,37 33,10% 1 176,80 7,65 0,22 

A6ZZH2 NADH-cytochrome b5 reductase 2  42,26 32,78% 6 34,10 8,65 0,24 

P53163 Mitochondrial-nucleoid protein 1 55,51 41,75% 6 20,60 9,19 0,25 

P49723 Ribonucleoside-diphosphate reductase 67,61 30,14% 4 40,00 5,21 0,26 

P32463 Acyl carrier protein, mitochondrial  147,68 73,60% 3 13,90 4,97 0,30 

P0C0T4 40S ribosomal protein S25-B  41,22 62,04% 4 12,00 10,32 0,31 

P11633 Non-histone chromosomal protein 6B  51,80 41,41% 2 11,50 9,89 0,34 

Q12513 ADC17 229,44 84,00% 9 16,80 4,73 0,34 

Q12287 Cyt_c_oxidase_Cu-chaperone 27,45 14,49% 1 8,10 4,92 0,35 

P39939 40S ribosomal protein S26-B  51,90 33,61% 1 13,40 10,90 0,35 

P38999 Saccharopine reductase 134,12 50,00% 7 48,90 5,27 0,36 

P26637 Leucine--tRNA ligase, cytoplasmic  82,03 21,65% 5 124,10 5,85 0,49 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

118/113          

ratio 

P32911 Protein translation factor SUI1 54,45 68,52% 3 12,30 7,97 0,23 

P39994 Putative 2-hydroxyacyl-CoA lyase 78,84 49,82% 1 61,20 7,66 0,29 

P05744 60S ribosomal protein L33-A 81,02 64,49% 1 12,10 11,08 0,30 

P41277 (DL)-glycerol-3-phosphatase 1 232,6 80,80% 11 27,90 5,55 0,33 

P40106 (DL)-glycerol-3-phosphatase 2 142,33 84,00% 5 27,80 6,16 0,33 

P23301 Eukaryotic translation initiation factor 5A 42,43 50,32% 2 17,10 4,96 0,36 

P19211 Hypusine-containing protein HP2 44,02 64,33% 2 17,10 4,96 0,36 

P49089 ASNS1 58,73 36,89% 3 64,40 6,11 0,36 

P07246 Alcohol dehydrogenase III 111,34 51,20% 1 40,30 8,43 0,37 

Q756A9 Acyl-coenzyme A oxidase OS 103,61 58,25% 1 81,80 8,16 0,38 

P41920 Ran-specific GTPase-activating protein 23,04 16,92% 2 22,90 6,10 0,39 

P0CX48 40S ribosomal protein S11-B 109,24 57,69% 7 17,70 10,78 0,40 

Q3E841 Uncharacterized protein YNR034W-A  85,68 76,53% 4 10,80 8,97 0,42 

P14120 60S ribosomal protein L30 OS 145,86 83,81% 6 11,40 9,80 0,42 

Q74ZK3 40S ribosomal protein S6 OS 102,94 46,19% 1 26,80 10,42 0,42 

P15019 Transaldolase  75,2 53,43% 6 37,00 6,43 0,45 

P0CX27 60S ribosomal protein L42-A 35,08 48,11% 2 12,20 10,59 0,47 

P02400 60S acidic ribosomal protein P2 165,09 66,36% 5 11,00 4,15 0,49 

 

TABLE 4.4: Differentially expressed proteins by the TFPH NH 56 relative to the commercial TRWY reference VIN 7 during the stationary phase of 
fermentation in 2013 Sauvignon blanc grape must. 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 4: Characterisation of thiol-releasing and lower volatile acidity forming intra-genus hybrid yeast strains for Sauvignon blanc wine 
 

123 
 

 

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

119/113          

ratio 

P43612 SIT4-associating protein 65,87 24,65% 1 114,90 4,72 2,03 

P19262 Acyltransferase 71,56 41,90% 4 50,40 8,85 2,23 

P33317 dUTP pyrophosphatase 50,73 57,14% 3 15,30 7,25 2,46 

Q12306 Ubiquitin-like protein SMT3 109,69 46,53% 3 11,60 5,02 2,63 

P25443 40S ribosomal protein S2 114,12 62,99% 9 27,40 10,43 2,70 

P11633 Non-histone chromosomal protein 6B  51,80 41,41% 2 11,50 9,89 2,73 

P37302 Aminopeptidase Y  65,43 22,16% 2 60,10 5,31 2,89 

P00812 Arginase 36,95 30,93% 1 35,60 5,64 2,97 

P0CX55 40S ribosomal protein S18-A 57,36 39,73% 3 17,00 10,27 3,13 

C7GL62 Arginine biosynthesis protein ArgJ 66,33 47,62% 2 47,80 7,14 3,38 

P47178 Cell wall protein DAN1  98,82 29,53% 1 29,60 4,56 3,53 

P38137 Peroxisomal-coenzyme A synthetase  51,55 45,86% 5 60,50 9,20 3,74 

P32472 Peptidyl-prolyl cis-trans isomerase FPR2  11,25 38,52% 1 14,50 5,50 4,30 

P32179 3'(2'),5'-bisphosphate nucleotidase 17,26 19,33% 1 39,10 6,20 4,35 

P38791 Deoxyhypusine synthase  64,22 45,99% 2 42,90 5,77 4,45 

P26637 Leucine-tRNA ligase, cytoplasmic  82,03 21,65% 5 124,10 5,85 4,47 

 

 

 

TABLE 4.5: Differentially expressed proteins by the TFPH NH 57 relative to the commercial TRWY reference VIN 7 during the lag phase of fermentation 
in 2013 Sauvignon blanc grape must. 
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Table 4.5: (continued). 

Accession Description Score Coverage 
Unique 

peptides 
MW  [kDa] calc, pI 

119/113          

ratio 

Q03973 High mobility group protein 1  37,20 32,52% 4 27,50 8,51 4,91 

P00447 Superoxide dismutase mitochondrial  27,16 54,08% 1 25,80 8,48 4,97 

P39111 V-type proton ATPase subunit F  54,17 47,46% 4 13,50 5,05 5,09 

P32628 UV excision repair protein RAD23  63,73 46,48% 5 42,30 4,32 5,23 

P53301 Probable glycosidase CRH1 52,61 40,24% 4 52,70 4,65 5,26 

Q05016 L-allo-threonine dehydrogenase 45,18 57,30% 4 29,10 6,81 5,51 

P17536 Tropomyosin-1  111,43 35,18% 8 23,50 4,61 6,45 

P17695 Glutaredoxin-2, mitochondrial  58,04 76,92% 6 15,90 7,28 7,39 

Q12305 Thiosulfate sulphurtransferase RDL1 55,15 58,27% 3 15,40 6,38 10,27 

P01094 Protease A inhibitor 3  42,39 51,47% 4 7,70 7,40 11,96 

P38077 ATP synthase subunit gamma 63,73 44,05% 3 34,30 9,31 12,49 

P19158 Inhibitory regulator protein IRA2 351,71 29,78% 1 351,40 7,05 13,34 

P34227 Mitochondrial peroxiredoxin PRX1  67,02 49,81% 6 29,50 8,87 15,30 

P20081 FK506-binding protein 1  62,06 56,14% 3 12,20 6,04 22,61 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

119/113          

ratio 

P39994 Putative 2-hydroxyacyl-CoA lyase  78,84 49,82% 1 61,20 7,66 0,10 

P0CX41 60S ribosomal protein L23-A  80,90 74,45% 5 14,50 10,33 0,18 

P07260 mRNA cap-binding protein 11,46 24,88% 1 24,20 5,49 0,23 

E7KS00 Protein HRI1  21,88 51,23% 1 27,50 5,21 0,28 

P53334 Probable family 17 glucosidase SCW4  33,57 59,33% 3 40,10 4,83 0,29 

Q756A9 Acyl-coenzyme A oxidase  103,61 58,25% 1 81,80 8,16 0,31 

P04807 Hexokinase-2  78,46 67,28% 3 53,90 5,30 0,33 

O43137 Uncharacterized protein YBR085C-A  11,62 27,06% 1 9,40 5,35 0,36 

P49166 60S ribosomal protein L37-A  11,89 40,91% 2 9,80 11,63 0,38 

P02293 Histone H2B.1  132,25 64,12% 6 14,20 10,10 0,45 

P04911 Histone H2A.1  65,32 80,30% 3 14,00 10,67 0,47 

 

 

 

 

 

 

 

 

TABLE 4.6: Differentially expressed proteins by the TFPH NH 57 relative to the commercial TRWY reference VIN 7 during the stationary phase of 
fermentation in 2013 Sauvignon blanc grape must. 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

121/113          

ratio 

P40303 Proteasome subunit alpha type-4 11,36 15,35% 1 28,40 7,36 0,06 

P36105 60S ribosomal protein L14-A 198,49 55,07% 12 15,20 10,93 0,07 

P39938 40S ribosomal protein S26-A  53,94 33,61% 1 13,50 10,76 0,10 

Q12447 Polyamine N-acetyltransferase 1  24,95 25,13% 2 21,90 5,82 0,13 

P11633 Non-histone chromosomal protein 6B  51,80 41,41% 2 11,50 9,89 0,14 

P21243 Proteasome subunit alpha type-1  73,67 36,90% 2 28,00 6,24 0,19 

P06738 Glycogen phosphorylase  115,60 32,37% 6 103,20 5,62 0,20 

P41921 Glutathione reductase  116,67 37,89% 4 53,40 7,83 0,21 

P0CX55 40S ribosomal protein S18-A  57,36 39,73% 3 17,00 10,27 0,22 

P32610 V-type proton ATPase subunit D  86,68 65,63% 8 29,20 5,92 0,24 

P16521 Elongation factor 3A  136,38 34,39% 5 115,90 6,05 0,24 

P27616 SAICAR synthetase 99,87 53,59% 9 34,60 5,95 0,25 

Q12306 Ubiquitin-like protein SMT3  109,69 46,53% 3 11,60 5,02 0,27 

C7GL62 Arginine biosynthesis protein ArgJ 66,33 47,62% 2 47,80 7,14 0,27 

P0CX27 60S ribosomal protein L42-A  46,59 27,36% 2 12,20 10,59 0,29 

P53163 54S ribosomal protein L12 55,51 41,75% 6 20,60 9,19 0,39 

 

 

 

TABLE 4.7: Differentially expressed proteins by the LVPH NH 97 relative to the commercial TRWY reference VIN 7 during the lag phase of fermentation 
in 2013 Sauvignon blanc grape must. 
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Table 4.7: (continued). 

Accession Description Score Coverage 
Unique 

peptides 
MW  [kDa] calc, pI 

121/113          

ratio 

Q01976 ADP-ribose pyrophosphatase  29,57 42,42% 3 26,10 6,38 0,47 

P32288 Glutamine synthetase  112,72 53,51% 5 41,70 6,34 0,48 

P47178 Cell wall protein DAN1  98,82 29,53% 1 29,60 4,56 2,31 

P46672 tRNA-aminoacylation cofactor ARC1  43,50 18,88% 3 42,10 7,88 2,92 

P40513 Mitochondrial acidic protein MAM33  101,37 45,86% 7 30,10 4,58 5,29 

P14772 Bile pigment transporter 1  130,37 33,10% 1 176,80 7,65 23,43 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

121/113          

ratio 

P0CX37 40S ribosomal protein S6-A  249,14 67,37% 6 27,00 10,45 2,05 

O13516 40S ribosomal protein S9-A  186,60 79,19% 1 22,40 9,98 2,07 

P07260 mRNA cap-binding protein 11,46 24,88% 1 24,20 5,49 2,09 

P38788 DnaK-related protein SSZ1 88,79 51,49% 6 58,20 5,05 2,11 

P00817 Inorganic pyrophosphatase  204,58 69,34% 9 32,30 5,58 2,12 

P0CX23 60S ribosomal protein L20-A  168,44 60,47% 6 20,40 10,30 2,14 

P40106 (DL)-glycerol-3-phosphatase 2 142,33 84,00% 5 27,80 6,16 2,15 

P04911 Histone H2A.1  65,32 80,30% 3 14,00 10,67 2,15 

A6ZYI0 Adenylate kinase  89,48 81,98% 5 24,20 6,70 2,25 

P46784 40S ribosomal protein S10-B  60,57 71,43% 3 12,70 9,07 2,27 

P48570 Homocitrate synthase cytosolic isozyme  115,15 64,72% 10 47,10 7,27 2,33 

P04147 Poly(A)-binding protein 152,75 60,49% 11 64,30 5,97 2,40 

Q12458 Putative reductase 1  64,36 62,82% 3 34,70 7,12 2,45 

P39994 Putative 2-hydroxyacyl-CoA lyase  78,84 49,82% 1 61,20 7,66 2,47 

P0CX49 60S ribosomal protein L18-A  43,43 52,15% 3 20,60 11,71 2,54 

P32590 Heat shock protein homolog SSE2  72,03 44,16% 2 77,60 5,63 2,63 

 

 

 

TABLE 4.8: Differentially expressed proteins by the LVPH NH 97 relative to the commercial TRWY reference VIN 7 during the stationary phase of 
fermentation in 2013 Sauvignon blanc grape must.  
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Table 4.8: (continued). 

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

121/113          

ratio 

P27616 SAICAR synthetase 36,19 54,58% 3 34,60 5,95 2,63 

P12695 Pyruvate dehydrogenase complex E2 91,44 51,45% 3 51,80 7,80 2,71 

P21243 Proteasome subunit alpha type-1  42,58 45,63% 3 28,00 6,24 2,72 

P38616 Protein YGP1  182,36 51,13% 7 37,30 5,44 2,84 

P34227 Mitochondrial peroxiredoxin PRX1  114,37 43,30% 5 29,50 8,87 3,06 

P40185 Protein MMF1, mitochondrial  64,68 69,66% 5 15,90 9,28 3,10 

P53184 Nicotinamidase  43,10 45,37% 4 25,00 6,27 3,28 

Q03496 tRNA methyltransferase  114,01 40,99% 2 163,50 6,60 3,33 

P43616 Cys-Gly metallodipeptidase DUG1  43,56 49,06% 2 52,80 5,67 3,35 

P0CX41 60S ribosomal protein L23-A  80,90 74,45% 5 14,50 10,33 3,41 
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Figure 4.6: Classification of differentially expressed proteins by commercial TRWY, Zymaflore X5 and Zymaflore VL3, 
two ‘neutral’ wine yeast strains, N 96 and P 35; and two TFPH, NH 56 and NH 57 and one LVPH, NH 97 during the lag 
and stationary phases of Sauvignon blanc grape must fermentation according to a & b) Molecular function, c & d) 
Biological process, and e & f) Protein class using Protein ANalysis THrough Evolutionary Relationships (PANTHER, 
www.pantherdb.org/). 
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4.5. CONCLUSIONS 

In conclusion, seven LVPH (NH 29, NH 56, NH 57, NH 84, NH 88, NH 118 and NH 140) were identified, 

of which all but strain NH 29 were also identified as TFPH. These strains, therefore, conform to the 

initial yeast selection criteria set forth in the aims of study viz. enhanced thiol-releasing or tropical fruit 

aroma wine producing abilities and lower VA formation. The TFPH were shown to produce wines with 

a more positive association with 3MH and 3MHA compared to wines produced with commercial TRWY 

references. The LVPH and TFPH, therefore have the potential to play a commercial role in the 

production of varietal aromatic white wine.  The TFPH NH 56 produced wines with the second highest 

3MH levels after NH 84, but with the lowest acetic acid of all strains included in this study. This yeast 

was also the only strain to have down-regulated proteins during the lag phase, which were linked to 

amino acid biosynthesis, pentose phosphate pathway, glycolysis and fructose and galactose 

metabolism. Differences in protein expression were reflected in the variation of metabolite release by 

the different strains, thereby confirming that proteins are the final effectors for metabolite release. 

This study highlights the importance of said protein classes, besides β-lyases, in the release of volatile 

thiols. 
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Chapter 5: Characterisation of thiol-releasing and lower volatile acidity 

forming intra-genus and inter-genus hybrid yeast strains for Sauvignon blanc 

wine  

5.1. ABSTRACT 

Wine yeast expressed proteins are influential during the production of varietal aromatic Sauvignon 

blanc wines as they release or mediate aroma compounds and undesirable volatile acidity (VA). As 

Torulaspora delbrueckii in conjunction with Saccharomyces cerevisiae as well as a S. cerevisiae/T. 

delbrueckii inter-genus hybrid were previously shown to produce white wine with enhanced aroma 

and/or lower VA, intra- and novel inter-genus hybrids were trialled for the production of aromatic 

Sauvignon blanc with lower VA. The inter-genus hybrid NH 07/1 produced wine with a more positive 

association with the aroma compound 3-mercaptohexylacetate (3MHA) than two commercial thiol-

releasing wine yeast (TRWY) strains, Zymaflore X5 and Zymaflore VL3. The wine also had a negative 

association with VA, and a positive association with floral and tropical fruit aromas. Three intra-genus 

hybrids, NH 56, NH 57 and NH 88, produced wines with a negative association with VA, and a positive 

association with tropical fruit aroma. These wines also had a stronger association with the aroma 

compound, 3-mercaptohexan-1-ol (3MH) than wines produced with all commercial TRWY. The hybrid 

NH 07/1 and Zymaflore VL3 also over-expressed the lactoylglutathione lyase protein responsible for 

the release of the volatile thiol, 4-mercapto-4-methyl-pentan-2-one (4MMP) by cleaving its carbon-

sulfur bonds. Therefore, lactoylglutathione lyase is a potential biomarker for 3MH-release, as this thiol 

also contains a carbon-sulfur bond.  Dehydrogenase proteins might also be useful biomarkers for VA 

formation by fermenting wine yeasts. Three intra- and one inter-genus hybrids with the abiliy to 

produce aromatic Sauvignon blanc wines with lower VA compared to commercial TRWY references 

were identified. 
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5.2. INTRODUCTION 

Sauvignon blanc wines are associated world-wide with either vegetative (herbaceous) or tropical fruit 

and/or floral aromas (Marais, 1994; Von Mollendorf, 2013; Hart et al., 2016). Key to the production of 

high quality Sauvignon blanc wines with the desired properties are wine yeasts, namely S. cerevisiae 

that can convert relatively “neutral” grape must lacking varietal aromas into varietal-typical aromatic 

wines through their metabolic activity (Swiegers et al., 2006a; 2007a). Sauvignon Blanc wine aroma 

and flavour are the result of grape derived compounds (metabolites), e.g. methoxipyrazines, de novo 

synthesised metabolites or compounds released from aroma-inactive, non-volatile grape-derived 

precursors by wine yeast during fermentation (Bovo et al., 2015; Pinu et al., 2015). However, yeast 

also produce undesirable metabolites, e.g. acetic acid the main contributor to volatile acidity (VA). 

These compounds are responsible for vinegar-like off-flavours that are detrimental to overall wine 

organoleptic quality (Du Toit & Pretorius, 2000; Swiegers et al., 2005). Such wines will have negative 

financial implications as expensive reverse osmosis techniques have to be used to remove the 

excessive VA. Commercial yeast strains implicated in the production of wines with higher VA values 

will create negative perceptions for the yeast manufacturer and result in loss of revenue due to lower 

yeast sales (Margaret Fundira, Personal communication, 2016). 

Wine yeast expressed enzymes (proteins) during winemaking were previously reported to be key 

effectors of wine aroma and flavour compounds present in wines (Holt et al., 2011; Roncoroni et al., 

2011). Furthermore, Holt et al. (2012) and Pretorius (2016) reported that yeast expressed proteins 

with carbon-sulfur β-lyase activity are involved in the release of the aroma enhancing volatile thiol i.e. 

4-mercapto-4-methyl-pentan-2-one (4MMP). Dehydrogenase enzymes were also reported to be 

involved in the production of acetic acid, the main contributor to total fatty acids (Varela et al., 2012; 

Walkey et al., 2012). Additionally, it was reported that over-expression of dehydrogenase enzymes by 

wine yeast during fermentation of Sauvignon blanc grape must resulted in wines with elevated total 

fatty acids (Hart et al., 2016; 2017). 
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The use of the yeast Torulaspora delbrueckii was shown to produce wines with lower VA levels, and 

enhancing varietal aromas when inoculated singly or sequentially with S. cerevisiae (Albertin et al., 

2014; Renault et al., 2016). S. cerevisiae/T. delbrueckii inter-genus hybrids also produced wine with 

enhanced aroma and flavour upon completion of fermentation (Santos et al., 2008). Therefore, 

T. delbrueckii can be advantageous for the development of new hybrid strains with the ability to 

produce aromatic white wines with lower VA. For that reason, the aims of this study were to breed 

S. cerevisiae/T. delbrueckii inter-genus hybrids using classical mating which is naturally occuring 

phenomenon, characterise and evaluate these inter-genus hybrids for their fermentation potential, 

thiol-releasing abilities and low VA formation during the production of Sauvignon blanc wines.  

Promising S. cerevisiae intra-genus hybrids previously identified by Hart et al. (2016) for their ability to 

produce wines with enhanced tropical fruit aroma (henceforth referred to as TFPH) and lower VA 

(henceforth referred to as LVPH) compared to commercial ‘thiol-releasing’ wine yeasts (TRWY) were 

included in this study. Additionally, wine yeast regulated proteins and aroma compounds, especially 

volatile thiols viz. 3-mercaptohexanol (3MH) and 3-mercaptohexylacetate (3MHA) as well as volatile 

acidity viz. acetic acid present at the end of fermentation and their association with final wine aroma 

and flavour were investigated. It is envisioned that potential protein biomarkers associated with 

aroma-enhancing metabolites and VA will be identified. 

 

5.3. MATERIALS AND METHODS 

5.3.1. Origin of yeast strains 

5.3.1.1. Reference yeast strains 

The following commercial S. cerevisiae hybrid strains, namely NT 112 and NT 116 (Anchor Yeast, South 

Africa) served as references for the laboratory-scale fermentations, whilst the commercial thiol-

releasing wine yeast (TRWY) strains, VIN 7 and VIN 13 (Anchor Yeast, South Africa), Zymaflore VL3, 

Zymaflore X5 (Laffort Oenologie, France), and Fermicru 4F9 (DSM Oenology, Netherlands), were 
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included as references for the small-scale fermentations. All TRWY were previously recommended for 

the production of aromatic white wines due to the yeast’s ‘thiol-releasing’ abilities (Anonymous, 

Personal communication, 2005a; 2005b; 2017a; 2017b; 2017c). Another commercial strain, N 96 

(Anchor Yeast, South Africa) and an experimental strain, P 35 (ARC Infruitec-Nietvoorbij, South Africa) 

used in hybrid breeding programmes, were also included in this study as references. The latter strains 

have the ability to produce wine with tropical fruit aromas (henceforth abbreviated as TFPP). 

 

5.3.1.2. Intra-genus hybrids  

Ten S. cerevisiae intra-genus hybrids, NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, NH 140, 

NH 143 and NH 145, previously characterised as TFPH and LVPH were included in this study (Hart et 

al., 2016). 

 

5.3.1.3. Inter-genus hybrids  

Two inter-genus hybrids, NH 07/1 and NH 07/2, were generated through classical mating by fusing 

protoplasts originating from a S. cerevisiae strain MCB C6, isolated from Madeba cellar winery 

equipment, Robertson, South Africa and T. delbrueckii strain M2/1 (Van Breda et al., 2013), resulting 

in inter-genus hybrids as shown in figure 5.1. Briefly, freeze cultures containing diploid S. cerevisiae 

strain MCB C6 and the haploid T. delbrueckii (Sasaki & Ohshima, 1987; Kurtzman et al., 2011) strain 

M2/1 were thawed and streaked onto yeast extract peptone dextrose (YPD) agar (Biolab, Merck, South 

Africa). Agar plates were incubated at 28 °C for at least 48 h until single yeast colonies were visible. A 

single colony from the diploid (2n) S. cerevisiae yeast strain was aseptically transferred onto plates 

containing nitrogen-limiting growth media (0.25 % [w/v] yeast extract, 0.1 % [w/v] dextrose, 1 % [v/v] 

potassium acetate, and 1 % [w/v] agar) and incubated for 72 h at 28 °C until asci, each containing four 

haploid (n) spores could be observed. Thereafter, a single colony from the sporulated S. cerevisiae 
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MCB C6 culture and the T. delbrueckii M2/1 culture were transferred into separate tubes containing 

10% (w/v) β-d-glucuronidase enzyme, and mixed until the suspension appeared milky. Protoplasts 

were generated by incubation of suspensions at 30 °C for 30 min.  Thereafter, sterile water was added 

to each micro-centrifuge tube to rinse cell residue from protoplasts. Respective supernatants were 

gently removed and transferred into new tubes. Thereafter, 100 µL of each protoplast-containing 

supernatant were streaked onto different sections of a YPDA-plate, and placed on a Singer MSM 

system series 200 micro-manipulator (Singer Instruments, Watched, Somerset, UK) as described 

(Morin et al., 2009). Protoplasts were physically disrupted using a micro-fine needle, whereafter 

haploid spores from the two parental strains were placed in close proximity on the YPDA. Thereafter, 

the plates were incubated at 28 °C for at least 48 h to allow haploids to fuse (karyogamy) to form 

diploid (2n) inter-genus hybrids. 

 

5.3.2. Characterisation techniques 

5.3.2.1. Contour clamped homogeneous electric field (CHEF) DNA karyotyping 

The CHEF DNA karyotyping was conducted according to the embedded agarose procedure used for 

commercial TRWY and intra-genus hybrids described by Hart et al. (2016). A Bio-Rad image analyser 

(Bio-Rad, Madrid, Spain) was used to visualise chromosomal banding patterns on 0.01% (v/v) ethidium 

bromide-stained agarose gels. 

 

5.3.2.2. Matrix-assisted laser desorption/ionisation (MALDI) biotyping 

Yeast strains were characterised by MALDI biotyping using a Bruker UltrafleXtreme MALDI-TOF/MS 

(Bruker Daltonics, Bremen, Germany) used for commercial TRWY and intra-genus hybrids described by 

Hart et al. (2016). 
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FIGURE 5.1: Schematic depiction of intra- and inter-genus hybrid yeast breeding by means of classical mating in conjunction with protoplast fusion, using 
Saccharomyces cerevisiae and Torulospora delbrueckii as parental yeast strains. 
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5.3.3. Evaluation techniques  

5.3.3.1. Laboratory-scale fermentation trials 

Fermentation potential of wet culture inter-genus hybrids was evaluated in laboratory-scale 

vinifications of Chardonnay clarified grape must (juice) (total sugar 21.3 °B; total acidity (TA) 8.1 g/L; 

pH 3.10), similar to vinifications with TRWY and intra-genus hybrids as described by Hart et al., (2016). 

Commercial yeast strains, NT 112 and NT 116 (Anchor Yeast, South Africa) were included in the trials 

as references. All fermentations were conducted in triplicate in a completely randomised order 

(Addelman, 1970) at 15 °C, whilst gently shaking on an orbital shaker. Fermentations were monitored 

by CO2 weight loss. Subsequently, both inter-genus hybrids were trialled in small-scale winemaking 

after it was established that they fermented the grape must (juice) to dryness (residual sugar <5 g/L) 

using a portable DMA 35 density meter (Anton Paar, Southern Africa). 

 

5.3.3.2. Small-scale winemaking trials 

Small-scale Sauvignon blanc wines were made in triplicate using commercial TRWY, intra- and inter-

genus hybrids according to a standardised cellar method as described by Hart and Jolly (2008). For 

each treatment replicate, nine litres Sauvignon blanc grape must (total sugar 21.9 °B; TA 9.3 g/L; pH 

3.28) were dispensed into 10 L stainless steel canisters with fermentation caps, and inoculated with 

the respective wine yeast starter cultures. The method was adjusted by having the respective yeast 

inoculums cultured for 24 hours in 600 mL YPD broth (Biolab, Merck, South Africa) medium. 

Subsequently, 180 mL of the 24 hour cultures (optical density at 600 nm = 0.92 ± 0.05; cfu/mL = 107 ± 

106; viability = 97.93% ± 1.67) were used to inoculate clarified Sauvignon Blanc grape must (2% 

inoculum). Fermenting must was sampled every 48 hours to measure residual glucose/fructose (R/S), 

ethanol, VA, TA and pH, using an OenofossTM Fourier transform infrared (FTIR) spectrometer (FOSS 

Analytical A/S, Denmark) until fermentations went to dryness. This was repeated until the R/S 
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concentration were below 5 g/L, whereafter the free-SO2 of the wines was adjusted to 35 mg/L, 

following racking. Wines were cold stabilised at 0 °C for at least two weeks prior to bottling. 

 

5.3.3.3. Gas chromatography (GC) analysis 

Wine aroma metabolites, namely esters, total fatty acids and higher alcohols (fusel oils), were analysed 

by gas chromatography (GC) on wine samples (50 mL) taken on day 15 of fermentation (stationary 

phase) as described by Hart et al. (2016; 2017). 

 

5.3.3.4. Solid-phase extraction (SPE) and GC-MS/MS analysis  

The main wine volatile thiols, 3MH and 3MHA, were pre-concentrated by deploying solid-phase 

extraction (SPE) as described by Hart et al. (2016; 2017). Subsequently, GC coupled to tandem mass 

spectrometry (GC-MS/MS) as described by Mattivi et al. (2012) was used to quantify volatile aromatic 

thiols. The GC-MS/MS system used in this study comprised of a GC Trace 1300/ TSQ8000 mass selective 

detector equipped with an AI 1310 auto sampler (Thermo Scientific™ Inc, USA). Aroma compounds 

were separated using a 30 m x 0.25 mm x 0.25 µm Zebron WAX plus column (Phenomenex Inc., 

Torrance, CA, USA). 

 

5.3.3.5. Sensory evaluation 

An experienced panel consisting of 14 members as described by Hart et al. (2016) conducted 

descriptive sensory evaluation of bottled wines. The panel was requested to indicate the intensity of 

aroma descriptors on a unipolar six-point numerical scale (absent [0], very low [1], low [2], medium 

[3], high [4] and very high [5]).  Panel members also had to specify the most prominent aromas 

associated with Sauvignon blanc wines viz. ‘tropical fruit’ (e.g. banana, guava, peach, passion fruit and 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 5: Characterisation of thiol-releasing and lower volatile acidity forming intra-genus and inter-
genus hybrid yeast strains for Sauvignon blanc wine 

 

151 
 

citrus); ‘vegetative’ (e.g. asparagus, herbaceous, green pepper, green beans, cut grass, green olive and 

gooseberry); or ‘floral’ (e.g. rose, orange blossom), they perceived. 

 

5.3.3.6. Quantitative LC-based iTRAQ proteomic analysis 

Based on chemical (lower VA and total fatty acids) and sensory (tropical fruit aroma) analyses of final 

wines, yeast-containing ferments sampled (50 mL) in triplicate on day 15 of fermentation were 

selected for quantitative proteomic analysis using an iTRAQ 8-plex reagent kit (AB Sciex, USA) in 

conjunction with LC-MS/MS at the Mass spectroscopy unit, Proteomics laboratory, Central Analytical 

Facility (CAF), University of Stellenbosch (US). Briefly, proteins were extracted from the different 

strains, followed by alkylation in methylthiosulphonate (MMTS) and digestion at 37°C using 1 µg/µL 

trypsin solution (Promega, Madison, WI, USA) as described by Boutureira & Bernardes (2015). Tryptic 

digests originating from the eight yeasts (TRWY: VIN 7, Zymaflore VL3, Zymaflore X5, and 

Fermicru 4F9; the intra-genus TFPH and LVPH: NH 84; two promising natural isolates; MCB C6 and 

M 2/1; and one inter-genus hybrid: NH 07/1), were tagged according to manufacturer’s 

recommendations with iTRAQ labels 113, 114, 115, 116, 117, 118, 119 and 121, respectively, as 

described by Kim et al. (2012). The TRWY VIN 7 served as reference as the yeast was reported to be a 

high ‘thiol-releaser’ used for the production varietal aromatic Sauvignon blanc wines with enhanced 

tropical fruit aroma (Swiegers et al., 2006b; Howe, 2016). Subsequently, proteins were characterised 

using a mass spectrometer equipped with a Nanospray flex ionisation source (Thermo Scientific™ Inc, 

USA) in conjunction with Mascot algorithm (Matrix DiffScience, London, UK), and SequestHT algorithm 

included in Proteome Discoverer v1.4. Isobaric tags for relative and absolute quantitation algorithm 

were used for protein quantitation. Only proteins with more than two (2) peptides, but less than 20% 

variation, and iTRAQ ratios below 0.5 and above two (2) were considered down-regulated and over-

expressed, respectively. Differentially expressed proteins were also subjected to Protein ANalysis 
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THrough Evolutionary Relationships (PANTHER, www.pantherdb.org/) to establish their involvement 

in biological processes, molecular function and protein classes (Sharma et al., 2014). 

 

5.3.3.7. Statistical analyses 

Analysis of variance (ANOVA) and principal component analysis (PCA) were conducted on data from 

chemical, sensory and metabolomic analyses data (Pearson, 1896; 1901; Zou et al., 2006). The linear 

relationship between the chemical, sensory and metabolomic variables was analysed by means of a 

Pearson’s correlation using XLSTAT software (Addinsoft, 2013) with the principal components (PC’s) as 

factors (i.e. F1 and F2). 

 

5.4. RESULTS AND DISCUSSION 

5.4.1. Characterisation of yeast strains 

5.4.1.1. Contour clamped homogeneous electric field DNA karyotyping 

The CHEF DNA karyotyping technique was previously used to successfully differentiate between 

S. cerevisiae and T. delbrueckii yeast strains (Van Breda et al., 2013). Additionally, CHEF could also 

differentiate between commercial TRWY strains, S. cerevisiae parental strains and S. cerevisiae intra-

genus hybrids, NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, NH 140, NH 143 and NH 145 (Van 

der Westhuizen & Pretorius, 1992; Hoff, 2012; Hart et al., 2016).  Subsequently, CHEF successfully 

differentiated S. cerevisiae MCB C6 and T. delbrueckii M2/1 parental strains from inter-genus 

hybrids, NH 07/1 and NH 07/2 during this investigation. The inter-genus hybrid strains shared similar 

(yellow and blue text box) and different (red text box) chromosomes in terms of size with both parental 

strains (Figure 5.2). Both inter-genus hybrids had matching DNA karyotypes, so they may be the same 

strain, hence MALDI biotyping was deployed as a complementary characterisation tool. 
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5.4.1.2. Matrix-assisted laser desorption/ionisation (MALDI) biotyping 

Biotyping successfully differentiated between commercial TRWY strains, S. cerevisiae parental strains 

and S. cerevisiae intra-genus hybrids, NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, NH 140, 

NH 143 and NH 145 (Hart et al., 2016). Ribosomal proteins extracted from S. cerevisiae MCB C6 and 

T. delbrueckii M2/1 and inter-genus hybrids, NH 07/1 and NH 07/2 were matched to that of a database 

described by Hart et al. (2016) and (2017). Strains MCB C6, NH 07/1 and NH 07/2 were identified as 

Candida robusta, the anamorph to S. cerevisiae (Diddens & Lodder, 1942; Kurtzman et al., 2011), whilst 

strain M2/1 was identified as C. collucilosa, the anamorph to T. delburueckii (Table 5.1) (Van Breda et 

al., 2013; Jolly et al., 2014). It can tentatively be speculated that inter-genus hybdrids were classified 

as C. robusta, as the database does not have inter-genus reference accessions. It is envisioned that the 

database will be extended by including spectral data of both novel inter-genus hybrids. Parental strains 

MCB C6 and M2/1 and inter-genus hybrids i.e. NH 07/1 and NH 07/2 also had distinctive mass spectra 

(Figure 5.3). Therefore, MALDI-TOF/MS biotyping proved more reliable to distinguish closely related 

inter-genus hybrids compared to CHEF karyotyping. Nonetheless, the two methods were 

complementary, as inter-genus hybrids were distinguished from parental strains. 

 

5.4.2. Evaluation of yeast strains 

5.4.2.1. Laboratory-scale fermentation trials 

Hart et al. (2016) and (2017) previously reported on the fermentation potential of intra-genus hybrids 

NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, NH 140, NH 143 and NH 145 compared to 

commercial TRWY references used in this study. Laboratory-scale white wine fermentations showed 

that both inter-genus hybrids, NH 07/1 and NH 07/2 were also able to ferment grape must at a similar 

rate to commercial references, NT 112 and NT 116 as well as the S. cerevisiae strain MCB C6 parental 

yeast (Figure 5.3). The parental strain MCB C6 and inter-genus hybrids fermented at a similar rate, 

whilst the T. delbrueckii parental strain M2/1 fermented at a slower rate. Nonetheless, the latter was 
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chosen as parental strain for its lower VA formation as reported by Van Breda et al. (2013). 

Subsequently, both inter-genus strains were compared to intra-genus hybrids and commercial TRWY 

references for small-scale production of varietal aromatic Sauvignon blanc wines with lower VA. 

 

FIGURE 5.3: Matrix assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF 
MS) spectral fingerprints of parental strains, S. cerevisiae MCB C6 (blue-coloured spectrum) and 
T. delbrueckii M2/1 (red-coloured spectrum) and inter-genus hybrids, NH 07/1 (green-coloured 
spectrum) and NH 07/2 (purple-coloured spectrum) conserved in the ARC Infruitec-Nietvoorbij 
microbial culture collection. Inter-genus hybrids were selected for the production of aromatic white 
wine, especially Sauvignon blanc. The absolute intensities of the ions and mass-to-charge (m/z) ratios 
are represented on the y- and x-axis, respectively.  

FIGURE 5.2: Contour clamped homogeneous electric field (CHEF) DNA karyotypes of parental strains, 
S. cerevisiae MCB C6 and T. delbrueckii M2/1, and inter-genus hybrids, NH 07/1 and NH 07/2  
conserved in the ARC Infruitec-Nietvoorbij microbial culture collection (ARC Inf-Nvbij CC). Lane 1 - 
M2/1; Lanes 2 & 3 - NH 07/1 & NH 07/2; Lane 4 – MCB C6. 

1                2                  3                     4 
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Mass spectra 
number 

Yeast strain 
 

 
MALDI-TOF MS log 

(score) value 
 Identification 

1 MCB C63   1.7  Candida robusta1 

2 M2/13   2.0  Candida colliculosa2 

3 NH 07/13   2.1  Candida robusta1 

4 NH 07/23   1.9  Candida robusta1 
1C. robusta (anamorph of S. cerevisiae); 2C. colliculosa (anamorph of T. delbrueckii); 3Experimental 
yeast (ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa). *It can tentatively be speculated that 
inter-genus hybdrids were classified as C. robusta, as the database does not have inter-genus reference 
accessions. 
 

 

 

TABLE 5.1: Matrix assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-
TOF/MS) real time classification of parental strains, Saccharomyces cerevisiae MCB C6 and 
Torulaspora delbrueckii M2/1 and inter-genus hybrids, NH 07/1 and NH 07/2 used for the production 
of aromatic Sauvignon blanc wine. 

FIGURE 5.4: Carbon dioxide (CO2) weight loss of Chardonnay grape must (juice) fermented at an 
ambient temperature of 15°C using S. cerevisiae strain MCB C6, T. delbrueckii strain M2/1 and inter-
genus hybrids, NH 07/1 and NH 07/2 in laboratory-scale vinifications. 
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5.4.3. Small-scale winemaking 

5.4.3.1. Fourier transform infra-red (FTIR) spectroscopy 

Principle component analysis biplot of standard wine chemical parameters showed that both parental 

strains S. cerevisiae MCB C6 and T. delbrueckii M2/1 and inter-genus hybrids NH 07/1 and NH 07/2 

produced final Sauvignon blanc with a negative association with VA (Figure 5.5). This observation with 

regard to T. delbrueckii M2/1 complements observations made by Jolly et al. (2003), Van Breda et al. 

(2013). The inter-genus hybrids can also provisionally be classified as LVPH a trait inherited from the 

non-Saccharomyces parental strain. Intra-genus hybrid strains provisionally characterised as LVPH, 

NH 48, NH 57, NH 143, and NH 145 were positioned in the left quadrants (Figure 5.5), and the wines 

also had a negative association with VA. The yeast Zymaflore VL3, positioned in the top-right quadrant, 

was the only commercial TRWY reference that produced wine with a positive association with VA 

(Figure 5.5). 

 

5.4.3.2. Sensory evaluation 

Overall, none of the wines were perceived to be undesirable during descriptive sensory evaluation, but 

differences were evident regarding expression of tropical fruit, floral and vegetative aroma notes 

(Figure 5.6). The PCA biplot of descriptive sensory evaluation data showed that two commercial TRWY 

references, VIN 7 and Zymaflore X5 positioned in the bottom left quadrant, produced Sauvignon blanc 

wines with a positive association with tropical fruit aromas, thereby supporting recommendations by 

yeast manufacturers for their use in the production of aromatic white wines, especially Sauvignon 

blanc (Figure 5.6). The commercial TRWY, Zymaflore VL3 and Fermicru 4F9 positioned in the top 

quadrants, on the other hand produced wines that positively associated with floral and vegetative 

aromas. The commercial TRWY VIN 13, two intra-genus TFPH and LVPH, NH 56 and NH 97 as well as 

the intra-genus hybrid parental strains, N 96 and P 35 positioned in the top left quadrant, produced 

wines that positively associated with both vegetative and tropical fruit aromas. Vegetative aromas 
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associated with Sauvignon blanc wines can be attributed to grape-derived aroma compounds e.g. 2-

isobutyl-3-methoxypyrazine (IBMP), especially when grapes were harvested and processed under 

cooler conditions (Marais, 1994; Lapalus, 2016). It can, therefore, be concluded that these compounds 

masked the effect of the sought-after volatile thiols (Marais, 1994) associated with tropical fruit aroma, 

as VIN 13 is a known TRWY strain (Swiegers et al., 2009; Von Mollendorf, 2013). 

Both inter-genus hybrids, NH 07/1 and NH 07/2 as well as two intra-genus TFPH, NH 118 and NH 145 

produced wines with a positive association with floral aromas (Figure 5.6). These hybrids can 

provisionally be characterised as having the ability to produce wines with floral aroma (henceforth 

referred to as FLPH). Both MCB C6 and M2/1, positioned in the bottom quadrants, produced wines 

that associated with floral and tropical fruit aromas. This supports previous observations that a 

T. delbrueckii strain (Belda et al., 2015; Renault et al., 2016) as well as an S. cerevisiae/T. delbrueckii 

inter-genus hybrid (Santos et al., 2008) produced aromatic wines. Floral aromas, frequently associated 

with Sauvignon blanc wines, are the result of yeast-mediated metabolites, namely monoterpenes 

produced from pre-cursors present in grape must (Von Mollendorf, 2013; Hart et al., 2017). It is 

apparent that the inter-genus hybrids inherited the ability to release monoterpenes from the parental 

strains. The intra-genus TFPH, NH 48, NH 84, NH 88 and NH 143 some of which were also shown to be 

LVPH (Figure 5.5), produced wines with a positive association with tropical fruit and floral aromas 

(Figure 5.5). These TFPH also produced wines with a negative association with vegetative aromas. Both 

inter-genus FLPH, NH 07/1 and NH 07/2, also produced Sauvignon blanc wines with a negative 

association with VA (Figure 5.5) and can provisionally be characterised as LVPH. Two intra-genus TFPH 

and LVPH, NH 57 and NH 145 produced wines with a negative association with VA (Figure 5.5), and a 

positive association with tropical fruit aroma (Figure 5.6). Therefore, these intra- and interspecfic TFPH, 

FLPH and LVPH yeasts showed promise for the production of typical varietal aromatic Sauvignon blanc 

wines with lower VA. 
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FIGURE 5.5: Biplot of basic chemical parameters of small-scale Sauvignon blanc wine following 
fermentation by five ‘thiol-releasing’ commercial wine yeasts (TRWY), VIN 7 and VIN 13, 
Zymaflore VL3, Zymaflore X5, and Fermicru 4F9, two yeast strains with ability to produce wine with 
tropical fruit aromas, N 96 and P 35, ten intra-genus hybrids with the ability to produce wines with 
enhanced tropical fruit aroma and low VA, NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, 
NH 140, NH 143 and NH 145; and MCB C6 and M2/1 and inter-genus hybrids, NH 07/1 and NH 07/2 
conserved in the ARC Infruitec-Nietvoorbij microbial culture collection. Average values of triplicate 
fermentations. 
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FIGURE 5.6: Biplot of descriptive sensory evaluation of small-scale Sauvignon blanc wine following 
fermentation by five ‘thiol-releasing’ commercial wine yeasts (TRWY), VIN 7 and VIN 13, 
Zymaflore VL3, Zymaflore X5, and Fermicru 4F9, two yeast strains with ability to produce wine with 
tropical fruit aromas, N 96 and P 35, ten intra-genus hybrids with the ability to produce wines with 
enhanced tropical fruit aroma and low VA, NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, 
NH 140, NH 143 and NH 145; and MCB C6 and M2/1 and inter-genus hybrids, NH 07/1 and NH 07/2 
conserved in the ARC Infruitec-Nietvoorbij microbial culture collection. Average values of triplicate 
fermentations. 
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5.4.3.3. Gas chromatography (GC) analysis 

Gas chromatography was deployed to quantify wine aroma compounds, namely esters, total fatty 

acids and higher alcohols, most of which are associated with wine ‘fermentation bouquet’ and/or 

‘fruitiness’ (Lambrechts & Pretorius, 2000; Coetzee & du Toit, 2015). The PCA biplot showed that strain 

T. delbrueckii M2/1 produced wines with a positive association with esters and higher alcohols 

compared to the remaining S. cerevisiae and hybrid yeast strains (Figure 5.7). Strains of T. delbrueckii 

were previously reported to produce wines with enhanced aroma (Van Breda et al., 2013; Renault et 

al., 2016). The TRWY reference VIN 7 and the intra-genus hybrids, NH 48 and NH 145, positioned in the 

right quadrant, also produced wines with a positive association with esters and higher alcohols, which 

imparts fruity aromas and complexity. These wines had positive associations with, amongst others, 

tropical fruit and floral aromas (Figure 5.6). 

The TRWY reference, Zymaflore X5, the TFPP, N 96 (Figure 5.7) as well as the intra-genus hybrid 

NH 143, positioned in the top right quadrant, produced wines with a positive association with total 

fatty acids also referred to as volatile fatty acids. Some volatile fatty acids (e.g. octanoic acid, decanoic 

acid) were reported to be associated with faint fruity and citrus wine aromas (Lambrechts & Pretorius, 

2000). However, acetic acid, responsible for vinegar-like off-flavours at higher concentrations still 

remains the main contributor to total fatty acids (Swiegers et al., 2005; Ugliano et al., 2009; Vilela-

Moura et al., 2011). Nevertheless, Zymaflore X5 still produced wines with a positive association with 

fruity aroma, specifically tropical fruit (Figure 5.6). The TRWY references VIN 13, Zymaflore VL3 and 

Fermicru 4F9, positioned in the left quadrants, produced wines with a negative association with total 

fatty acids (Figure 5.7). These wines also had a positive association with, amongst others, tropical fruit 

and floral aromas (Figure 5.6). 

Both inter-genus FLPH, NH 07/1 and NH 07/2 also produced wines with a negative association with 

volatile fatty acids. This can also be seen in Figure 5.5 and 5.6 respectively, where there was a negative 

association with VA (Figure 5.5) and positive association with floral aroma (Figure 5.6). The lower 
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production of VA by the inter-genus hybrids can be attributed to inheritance from the T. delbrueckii 

parent strain. 

Seven intra-genus hybrids provisionally characterised as TFPH and LVPH, namely NH 56, NH 57, NH 84, 

NH 88, NH 97, NH 118 and NH 140 also produced wines with a negative association with volatile fatty 

acids, including acetic acid (Figure 5.7). Two of these intra-genus hybrids were also shown to produce 

Sauvignon blanc wines with a negative association with VA (Figure 5.5) and positive association with 

floral aroma (Figure 5.6). These intra-genus hybrids also produced wines with a postive association 

with esters and higher alcohols (Figure 5.7). Yeast strains, namely VIN 7, M2/1, NH 48, NH 57, NH 84, 

NH 88, NH 140 and NH 143 produced wines with a positive association with ‘fruitiness’ (tropical fruit 

aroma) (Figure 5.6) and higher alcohols (Figure 5.7). Therefore, this observation compliments a 

previous study that showed higher alcohols to be the key precursors involved in ester formation 

(Patrianakou and Roussis, 2013). Based on this data set, intra- and inter-genus TFPH, FPH and LVPH 

have great potential for the production of varietal aromatic Sauvignon blanc wines with lower VA, as 

they comply with yeast selection criteria set forth in the objectives. 

 

5.4.3.4. Solid-phase extraction (SPE) and GC-MS/MS analysis 

Volatile aromatic thiols e.g. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), 

primarily responsible for passion fruit, tropical fruit and citrus aromas in Sauvignon blanc wines, are 

released by fermenting wine yeasts from aroma-inactive, bound precursors present in grape juice 

(Swiegers et al., 2007b; Roland et al., 2011; Harsch et al., 2013). The PCA biplot of volatile thiol analyses 

showed that the inter-genus hybrid NH 07/1 produced wine with a more positive association with 

volatile thiols, 3MHA in particular, than either parental strain as well as two known commercial TRWY 

yeasts, Zymaflore X5 and Zymaflore VL3 (Figure 5.8). It is noteworthy that NH 07/1 also produced wines 

with a negative association with VA (Figure 5.5) and acetic acid (Figure 5.7), whilst having a positive 

association with floral aroma (Figure 5.6). These wines also had hints of tropical fruit aroma, and data 
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suggests that inter-genus hybrids can be applied for the production of varietal aromatic Sauvignon 

blanc wines with lower VA. The inter-genus hybrid NH 07/2, on the other hand, produced wines with 

a negative association with 3MH and 3MHA (Figure 5.8). This observation compliments the descriptive 

sensory evaluation, as NH 07/2 produced wines with a positive association with vegetative aroma 

(Figure 5.6). Nonetheless, NH 07/2 produced wines with chemically detectable 3MH and 3MHA levels, 

albeit it lowest of all yeast strains included in this study. It can, therefore, be speculated that the 

tropical fruit aroma and effect of volatile thiols were masked by methoxypyrazines, another aroma 

compound naturally associated with this cultivar (Marais, 1994; Lapalus, 2016). 

Three intra-genus hybrids, NH 56, NH 84 and NH 88 produced wines with stronger association with the 

volatile thiol 3MH than the commercial TRWY VIN 7 reference. The latter was also reported to be the 

highest producer of another volatile thiol, 4MMP, associated with ‘fruity’ aroma in wine during 

previous studies (Swiegers et al., 2009; Borneman et al., 2012). Five more intra-genus yeasts,  NH 48, 

NH 118, NH 140, NH 143 and NH 145 also produced wines with a stronger association with 3MH than 

wines produced with the commercial TRWY Zymaflore X5 and Zymaflore VL3 (Dubourdieu, 2006; 

Bowyer et al., 2008). These hybrids also produced wines with a stronger association with 3MHA than 

wines produced with the commercial TRWY VIN 13. Three intra-genus TFPH and LVPH, NH 56, NH 57 

and NH 88 also produced wines with a negative association with VA (Figure 5.5) and acetic acid 

(Figure 5.7), whilst having a positive association with tropical fruit aroma (Figure 5.6). Therefore, 

observations made during this study is indicative that these intra-genus hybrids can be used for the 

production of varietal aromatic Sauvignon blanc wines with low VA. It is noteworthy that the intra-

genus TFPH, NH 84 produced wines with 3MH levels that were significantly higher than its sensory 

detection threshold (Van Wyngaard, 2013). The 3MH levels in these wines were also discernibly higher 

compared to wines produced by the best commercial TRWY reference VIN 7 in this study. The TFPP 

N 96, considered to be a ‘neutral’ yeast by the manufacturer (Anchor Yeast, South Africa - N 96 product 

data sheet), produced wines with a more positive association with 3MH (Figure 5.8) than the 

T. delbrueckii M2/1 previously shown to produce aromatic wines (Jolly et al., 2003; Van Breda et al., 
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2013). Indications, therefore, are that intra-genus TFPH inherited the ‘thiol-releasing’ abilities from 

both S. cerevisiae parental strains i.e. N 96 and P 35. The latter produced wines with a stronger 

association with 3MH than all commercial TRWY references included in this study (Figure 5.8). 
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FIGURE 5.7: Biplot of aroma compounds, esters, higher alcohols and fatty acids in small-scale 
Sauvignon blanc wine following fermentation by five ‘thiol-releasing’ commercial wine yeasts 
(TRWY), VIN 7 and VIN 13, Zymaflore VL3, Zymaflore X5, and Fermicru 4F9, two yeast strains with 
ability to produce wine with tropical fruit aromas, N 96 and P 35, ten intra-genus hybrids with the 
ability to produce wines with enhanced tropical fruit aroma and low VA, NH 48, NH 56, NH 57, NH 84, 
NH 88, NH 97, NH 118, NH 140, NH 143 and NH 145; and MCB C6 and M2/1 and inter-genus hybrids, 
NH 07/1 and NH 07/2 conserved in the ARC Infruitec-Nietvoorbij microbial culture collection. Average 
values of triplicate fermentations.fermentations. 
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FIGURE 5.8: Biplot of volatile thiols, 3MH and 3MHA in small-scale Sauvignon blanc wine following 
fermentation by five ‘thiol-releasing’ commercial wine yeasts (TRWY), VIN 7 and VIN 13, 
Zymaflore VL3, Zymaflore X5, and Fermicru 4F9, two yeast strains with ability to produce wine with 
tropical fruit aromas, N 96 and P 35, ten intra-genus hybrids with the ability to produce wines with 
enhanced tropical fruit aroma and low VA, NH 48, NH 56, NH 57, NH 84, NH 88, NH 97, NH 118, NH 
140, NH 143 and NH 145; and MCB C6 and M2/1 and inter-genus hybrids, NH 07/1 and NH 07/2 
conserved in the ARC Infruitec-Nietvoorbij microbial culture collection. Average values of triplicate 
fermentations. 
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5.4.3.5. Quantitative LC-based iTRAQ proteomic analysis 

Yeast-expressed enzymes (proteins) during fermentation regulate wine aroma compounds 

(metabolites) responsible for wine aroma and flavour (organoleptic quality) (Moreno-García et al., 

2015). Analysis of the combined datasets in conjunction with Uniprot S. cerevisiae database identified 

a total of 998 yeast derived proteins (Table 5.2) on day 15 of fermentation when fermentations 

stabilised and/or were dry. Commercial TRWY (VIN 7, Zymaflore VL3, Zymaflore X5, and Fermicru 4F9), 

naturally isolated parental strains (MCB C6 and M2/1), as well as both intra- and inter-genus hybrids 

(NH 84, NH 07/1) were shown to vary in their up- and down-regulated proteins compared to the TRWY 

VIN 7 reference expressed proteins. Overall 25 proteins (2.51%) were down-regulated and 122 

proteins (12.22%) were overexpressed.Properties and relative expression of down-regulated and 

overexpressed proteins of yeast strains, amongst others, the intra-genus TFPH and LVPH NH 84 and 

inter-genus FLPH and LVPH, NH 07/1 were established by using quantitative LC-based iTRAQ proteomic 

analysis (Tables 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 & 5.9). 

Proteomic analyses showed that the TRWY Zymaflore VL3 reference  over-expressed the 

lactoylglutathione lyase protein (Table 5.3), an enzyme responsible for cleaving a carbon-sulfur bond 

to release the volatile thiol 4MMP from its bound aroma-inactive precursor (Howell et al., 2005). 

Unfortunately, 4MMP was not quantified during this study. However, the TRWY produced wine with a 

moderate association with 3MH. It can, therefore, be speculated that above-mentioned carbon-sulfur 

lyase enzyme is also involved in the release of 3MH from its carbon-sulfur-containing precursor (Howell 

et al., 2005; Swiegers et al., 2007a). A gene encoding for β-lyase involved in the release of volatile 

thiols, 3MH and 4MMP was previously reported (Holt et al., 2011). Therefore, lactoylglutathione lyase 

might be used as a protein biomarker for volatile thiol release during production of varietal Sauvignon 

blanc wines. Additionally, Zymaflore VL3 produced wines with a positive association with floral aroma 

that is influenced by yeast-mediated released monoterpenes, which essentially are hydrocarbons 

and/or glycoconjugates, from its bound aroma-inactive precursors in grape juice (Von Mollendorf, 
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2013). Monoterpenes was shown to be released in abundance by using genetically modified (GM) S. 

cerevisiae strains expressing a S-linalool synthase (Pardo et al., 2015). Nevertheless, non-GM S. 

cerevisiae can release moderate geraniol and linalool levels (Lambrechts & Pretorius, 2000). The TRWY 

was also shown to produce wines with a moderate association with VA (Figure 5.5), which comprise 

acetic acid, an intermediate of long chain fatty acid production catalysed by fatty acid synthases. 

However, the yeast did not regulate any synthases. Nonetheless, the association between regulated 

proteins, especially synthases, and their effect on VA formation should be further investigated. 

 

 

 

Yeast strain 
  Stationary phase 

  Down-regulated Over-expressed 

VIN 7 TRWY Reference   998 proteins characterised 

VL3 TRWY    2 27 

X5 TRWY    4 9 

4F9 TRWY    1 60 

NH 84 TFPH & LVPH   0 6 

MCB C6   6 9 

M2/1   11 3 

NH 07/1  FLPH & LVPH   1 8 

1TRWY: thiol-releasing wine yeast 
2TFPH: hybrid with the ability to produce wines with tropical fruit aroma 
3LVPH: hybrid with the ability to produce wines with lower volatile acidity 
4FLPH: hybrid with the ability to produce wines with floral aroma 
 

 

 

TABLE 5.2: Number of differentially expressed proteins originating from fermenting commercial ‘thiol-
releasing’ wine yeasts (TRWY), with ability to produce wine with tropical fruit aromas, naturally 
isolated parental strains, intra- and inter-genus hybrid yeast strains during the fermentation of 2013 
Sauvignon blanc grape juice. 
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The TRWY Zymaflore X5 was shown not to regulate any lyases and synthases (Table 5.4), which 

complements FTIR analyses (Figure 5.5), descriptive sensory evaluation (Figure 5.6), GC-analyses 

(Figure 5.7) and SPE-GC/MS analyses (Figure 5.8), as the yeast produced wines with a negative 

association with VA and total fatty acids (comprised mainly of acetic acid), a positive association with 

tropical fruit aroma, and a negative association with volatile thiols, respectively. The TRWY 

Fermicru 4F9 on the other hand was shown to regulate dehydrogenases (Table 5.5). Proteins in the 

same class were previously implicated in excessive acetic acid production (Varela et al., 2012; Walkey 

et al., 2012). However, regulated dehydrogenases by Fermicru 4F9 do not seem to have stimulated VA 

formation as the yeast produced wines with a negative association with VA and total fatty acids 

(Figure 5.6 & 5.7). The yeast also did not regulate any carbon-sulfur lyases responsible for volatile 

‘thiol-release’ and, therefore, complements descriptive sensory evaluation as the yeast produce wines 

with a negative association with tropical fruit aroma (Figure 5.6).  The SPE-GC/MS analyses revealed 

that the TRWY produced wines with a positive association with volatile thiols 3MH and 3MHA (Figure 

5.7). This therefore, implies that more proteins might be involved in volatile thiol-release.  

Proteomic analyses further showed that the intra-genus TFPH and LVPH NH 84 was the only strain not 

to have down-regulated any proteins, whilst the remaining strains down-regulated from one to 11 

proteins (Table 5.6). Furthermore, NH 84 only overexpressed six proteins classed as nucleic acid 

‘binders’, hydrolases and transporters, some of which are associated with cell proliferation and protein 

synthesis. As NH 84 was the only strain to have regulated these proteins, they could also be associated 

with higher 3MH released by this strain. These proteins will in future be further investigated as 

potential biomarkers, as the yeast also produced wines with a positive association with tropical fruit 

aroma (Figure 5.6) and volatile thiols, especially 3MH (Figure 5.8). 

Both inter-genus parental strains, S. cerevisiae MCB C6 and T. delbrueckii M2/1 were shown not to 

regulate the lactoylglutathione lyase protein (Tables 5.7 & 5.8). Nevertheless, the inter-genus hybrid, 

NH 07/1 provisionally characterised as a FLPH and LVPH, as observed with the TRWY Zymaflore VL3, 
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over-expressed the lactoylglutathione lyase protein responsible for the release of the volatile thiol 

4MMP (Table 5.9) (Howell et al., 2005). As previously mentioned, 4MMP was not quantified during 

this study. The inter-genus hybrid not only produced wine with a positive association with 3MH, it was 

more pronounced than wines produced with both parental strains MCB C6 and M2/1 and TRWY 

Zymaflore VL3 and Zymaflore X5.  As 3MH release also involves enzymatic cleavage by a carbon-sulfur 

lyase, there is a possibility that this over-expressed protein could also be involved in the release of 

3MH from its carbon-sulfur-containing precursor (Howell et al., 2005; Swiegers et al., 2007a). This 

observation further supports the notion that lactoylglutathione lyase might be a useful biomarker for 

volatile thiol release by NH 07/1 during production of varietal Sauvignon blanc wines. 

The inter-genus FLPH and LVPH, NH 07/1 also produced wines with a positive association with floral 

aroma that is influenced by yeast-released monoterpenes, a metabolite that was released in 

abundance by a genetically modified (GM) S. cerevisiae strains expressing a S-linalool synthase as 

mentioned above (Von Mollendorf, 2013; Pardo et al., 2015). However, the inter-genus FLPH did not 

regulate any synthases, which suggests that other proteins are involved in monoterpene release. 

Strains belonging to the same species of parental strains S. cerevisiae MCB C6 and T. delbrueckii M2/1 

are known to produce monoterpenes (King & Dickinson, 2000). This warrants further investigation to 

identify protein biomarkers associated with floral wine aroma and monoterpene release. 

Differentially expressed proteins by the intra-genus TFPH and LVPH, NH 84 and inter-genus FLPH and 

LVPH, NH 07/1 during the stationary phase of Sauvignon blanc grape must fermentation were 

classified according to molecular function, biological process and protein class using PANTHER (Sharma 

et al., 2014). Classification of proteins according to molecular function showed that NH 84 regulated 

proteins were linked to translation regulator activity, catalytic activity and transporter activity, whilst 

that of NH 07/1 were linked to binding activity, structural molecule activity, catalytic activity and 

antioxidant activity (Figure 5.9a & b). Classification of proteins according to biological processes 

showed that NH 84 regulated proteins were linked to cellular processes, metabolic processes and 
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localisation, whilst those of NH 07/1 were linked to response to stimuli,  cellular processes, metabolic 

processes and cellular biogenesis (Figure 5.9c & d). Furthermore, NH 84 regulated proteins clustered 

into three protein classes viz. nucleic acid binding, hydrolase and transporter, whilst those of NH 07/1 

also clustered into different protein classes i.a. hydrolases, and oxidoreductases (Figure 5.9e & f). It is 

evident that regulated proteins differed between intra-genus and inter-genus strains, explaining the 

production of wines with different chemical (Figure 5.5) and sensory (Figure 5.6) properties, as well as 

differences in aroma and off-flavour compound levels (Figure 5.7 & 5.8). 
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FIGURE 5.9: Classification of differentially expressed proteins by intra-genus hybrids with the ability 
to produce wines with enhanced tropical fruit aroma (abbreviated as TFPH) and low VA (abbreviated 
as LVPH), NH 84 and the inter-genus hybrid, NH 07/1 during the end of Sauvignon blanc grape must 
fermentation according to a & b) Molecular function, c & d) Biological process, and e & f) Protein class 
using Protein ANalysis THrough Evolutionary Relationships (PANTHER, www.pantherdb.org/). 
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Table 3.  

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

114/113          

ratio 

A6ZQH2 Cell wall protein 157,45 68,29% 1 30,30 8,81 0,19 

P36110 Protein PRY2 OS 41,81 48,94% 2 33,80 4,60 0,40 

A5Z2X5 UPF0495 protein YPR 13,73 50,00% 1 7,90 8,73 2,13 

P12695 Dihydrolipoyllysine-residue acetyltransferase 98,66 68,26% 5 51,80 7,80 2,16 

P40961 Prohibitin-1 OS=Saccharomyces 42,49 67,94% 1 31,40 8,25 2,19 

P38791 Deoxyhypusine synthase OS 39,81 59,43% 2 42,90 5,77 2,22 

P07251 ATP synthase subunit 84,47 73,76% 3 58,60 9,04 2,23 

P32474 Protein disuphide-isomerase 40,73 38,88% 1 58,90 4,91 2,25 

P00445 Superoxide dismutase [Cu 406,09 73,38% 14 15,80 6,00 2,28 

P32347 Uroporphyrinogen decarboxylase OS 33,97 67,68% 2 41,30 7,08 2,35 

P38972 Phosphoribosylformylglycinamidine synthase 230,63 54,12% 2 148,80 5,27 2,41 

P50107 Lactoylglutathione lyase OS 25 25,46% 2 37,20 6,84 2,42 

P24000 60S ribosomal protein 21,73 56,13% 1 17,50 11,37 2,53 

P25567 RNA-binding protein 79,49 71,20% 2 48,00 8,90 2,53 

P25372 Thioredoxin-3, mitochondrial OS 4,76 65,35% 2 14,40 8,90 2,56 

 

 

 

 

 

TABLE 5.3: Differentially expressed proteins by the TRWY Zymaflore VL3 relative to the commercial TRWY reference VIN 7 during the 
stationary phase of fermentation in 2013 Sauvignon blanc grape must. 
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Table 5.3: continued. 

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

114/113          

ratio 

P47068 Myosin tail region 148,86 62,58% 2 128,20 5,26 2,58 

P38999 Saccharopine dehydrogenase [NADP 91,22 61,21% 8 48,90 5,27 2,72 

P00812 Arginase OS=Saccharomyces 60,79 73,27% 1 35,60 5,64 2,87 

P05626 ATP synthase subunit 42,37 72,13% 2 26,90 9,13 3,03 

P38077 ATP synthase subunit 107,73 71,38% 2 34,30 9,31 3,26 

P05744 60S ribosomal protein 24,5 58,88% 1 12,10 11,08 3,32 

C8ZCR2 ABC transporter NFT 167,29 55,97% 1 176,20 8,60 3,95 

P33317 Deoxyuridine 5'-triphosphate 94,91 88,44% 2 15,30 7,25 4,25 

P05740 60S ribosomal protein 188,92 79,89% 1 20,50 10,92 4,26 

P40202 Superoxide dismutase 1 copper 61,52 68,67% 3 27,30 6,67 4,48 

P40581 Peroxiredoxin HYR1 OS 15,24 57,06% 4 18,60 8,19 4,93 

P39016 Suppressor protein MPT 233,23 73,22% 1 95,40 8,03 5,13 

P07560 Ras-related protein 47,27 64,65% 3 23,50 7,09 5,51 

P38788 Ribosome-associated complex 122,09 68,03% 4 58,20 5,05 11,90 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

115/113          

ratio 

A6ZQH2 Cell wall protein 157,45 0,68 1,00 30,30 8,81 0,14 

P53297 PAB1-binding protein 148,86 0,61 3,00 78,70 6,92 0,30 

P36110 Protein PRY2 OS 41,81 0,49 2,00 33,80 4,60 0,38 

A6ZP47 ATP-dependent RNA 204,95 0,80 2,00 65,50 7,83 0,42 

Q08193 1,3-beta-glucanosyltransferase GAS 68,61 0,67 5,00 51,80 4,64 2,07 

P38065 AP-2 complex subunit 172,82 0,66 1,00 114,90 8,63 2,07 

C8ZEN7 Eisosome protein 1 OS 74,59 0,56 2,00 93,20 6,42 2,13 

P43598 Inhibitor of glycogen 40,88 0,78 2,00 21,80 7,18 2,25 

P38841 Uncharacterized protein YHR 33,56 0,89 7,00 12,70 5,06 2,30 

P38431 Eukaryotic translation initiation 45,87 0,65 4,00 45,20 5,06 2,42 

Q07897 Protein CMS1 OS 15,81 0,43 1,00 33,40 8,19 2,61 

P30402 Orotate phosphoribosyltransferase 2 OS 77,50 0,78 3,00 24,80 8,51 4,67 

P15303 Protein transport protein 220,61 0,69 9,00 85,30 5,66 5,07 

 

 

 

 

TABLE 5.4: Differentially expressed proteins by the TRWY Zymaflore X5 relative to the commercial TRWY reference VIN 7 during the stationary 
phase of fermentation in 2013 Sauvignon blanc grape must. 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

116/113          

ratio 

P43612 SIT4-associating protein 139,55 0,64 2,00 114,90 4,72 0,35 

P07267 Saccharopepsin OS=Saccharomyces 36,79 0,70 9,00 44,50 4,84 2,04 

P38219 Obg-like ATPase 32,52 0,46 1,00 44,10 7,43 2,05 

Q08548 Lysophospholipid acyltransferase OS 34,90 0,46 1,00 72,20 9,48 2,07 

P53044 Ubiquitin fusion degradation 52,38 0,57 1,00 39,80 6,21 2,09 

P28737 Protein MSP1 OS 40,66 0,60 1,00 40,30 5,72 2,10 

P40312 Cytochrome b5 OS 9,95 0,83 1,00 13,30 4,49 2,10 

P07342 Acetolactate synthase catalytic 137,74 0,78 3,00 74,90 8,51 2,10 

P32473 Pyruvate dehydrogenase E 36,51 0,64 2,00 40,00 5,30 2,15 

P32347 Uroporphyrinogen decarboxylase OS 33,97 0,68 2,00 41,30 7,08 2,16 

P26309 APC/C activator 83,93 0,69 2,00 67,30 8,82 2,21 

P05744 60S ribosomal protein 24,50 0,59 1,00 12,10 11,08 2,22 

P24000 60S ribosomal protein 21,73 0,56 1,00 17,50 11,37 2,24 

P38075 Pyridoxamine 5'-phosphate 11,60 0,41 1,00 26,90 7,49 2,27 

P26785 60S ribosomal protein 18,06 0,54 2,00 22,20 10,55 2,30 

P0C0V8 40S ribosomal protein 40,64 0,64 2,00 9,70 6,06 2,40 

 

 

 

TABLE 5.5: Differentially expressed proteins by the TRWY Fermicru 4F9 relative to the commercial TRWY reference VIN 7 during the stationary 
phase of fermentation in 2013 Sauvignon blanc grape must. 
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TABLE 5.5: continued. 

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

116/113          

ratio 

P38115 D-arabinose dehydrogenase 35,10 0,72 4,00 38,90 5,96 2,40 

P45978 Protein SCD6 OS 53,11 0,64 1,00 39,20 7,42 2,41 

P54838 Dihydroxyacetone kinase 1 OS 130,43 0,74 7,00 62,20 5,41 2,43 

P43603 LAS seventeen-binding 100,28 0,85 3,00 49,30 7,96 2,44 

A6ZPY2 Translation machinery-associated 19,03 0,45 2,00 22,50 8,60 2,54 

P39676 Flavohemoprotein OS=Saccharomyces 60,50 0,62 3,00 44,60 6,28 2,63 

P39929 Vacuolar-sorting protein 32,57 0,59 3,00 27,00 4,72 2,66 

P36047 Protein phosphatase 1 regulatory 38,66 0,66 2,00 38,90 5,52 2,68 

P11633 Non-histone chromosomal 26,18 0,58 1,00 11,50 9,89 2,71 

P02294 Histone H2B 69,05 0,58 8,00 14,20 10,07 2,74 

Q12017 Phosducin-like protein 52,54 0,66 1,00 32,80 4,72 2,78 

Q02979 Glycerophosphodiester phosphodiesterase GDE 146,98 0,68 2,00 137,90 6,79 2,85 

Q12218 Cell wall protein 33,24 0,26 2,00 47,80 4,15 2,88 

Q05016 Uncharacterized oxidoreductase YMR 64,84 0,84 3,00 29,10 6,81 2,94 

P40472 Probable secreted beta 83,48 0,52 4,00 48,20 4,60 2,94 

P09064 Eukaryotic translation initiation 56,65 0,71 9,00 31,60 9,50 2,95 

P32628 UV excision repair 154,20 0,70 7,00 42,30 4,32 2,96 

Q12497 Protein FMP16, mitochondrial 12,41 0,53 1,00 10,80 9,64 2,96 

P05740 60S ribosomal protein 188,92 0,80 1,00 20,50 10,92 3,03 

 

 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 5: Characterisation of thiol-releasing and lower volatile acidity forming intra-genus and inter-genus hybrid yeast strains for Sauvignon blanc wine 
 

176 
 

TABLE 5.5: continued. 

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

116/113          

ratio 

P40961 Prohibitin-1 OS=Saccharomyces 42,49 0,68 1,00 31,40 8,25 3,10 

P34730 Protein BMH2 OS 509,64 0,88 2,00 31,00 4,88 3,17 

P00812 Arginase OS=Saccharomyces 60,79 0,73 1,00 35,60 5,64 3,18 

Q00055 Glycerol-3-phosphate dehydrogenase 121,94 0,69 2,00 42,80 5,47 3,22 

P25372 Thioredoxin-3, mitochondrial OS 4,76 0,65 2,00 14,40 8,90 3,26 

P33331 Nuclear transport factor 27,65 0,70 2,00 14,40 4,70 3,35 

P38788 Ribosome-associated complex 122,09 0,68 4,00 58,20 5,05 3,42 

P37302 Aminopeptidase Y OS 56,17 0,59 7,00 60,10 5,31 3,51 

P11972 Protein SST2 OS 77,95 0,55 2,00 79,70 8,57 3,56 

P43598 Inhibitor of glycogen 40,88 0,78 2,00 21,80 7,18 3,66 

O74700 Mitochondrial import inner 44,95 0,59 2,00 10,20 8,18 3,66 

P42222 Enolase-related protein 145,18 0,68 2,00 47,30 5,44 3,85 

P09457 ATP synthase subunit 35,29 0,76 4,00 22,80 9,57 3,90 

P20435 DNA-directed RNA 43,81 0,54 1,00 17,90 4,63 3,95 

P47068 Myosin tail region 148,86 0,63 2,00 128,20 5,26 4,32 

P23638 Proteasome subunit alpha 46,79 0,58 3,00 28,70 5,22 4,62 

A5Z2X5 UPF0495 protein YPR 13,73 0,50 1,00 7,90 8,73 4,77 

P40581 Peroxiredoxin HYR1 OS 15,24 0,57 4,00 18,60 8,19 4,91 

Q06135 1,3-beta-glucanosyltransferase GAS 35,18 0,33 1,00 62,30 4,97 5,36 
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TABLE 5.5: continued. 

Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

116/113          

ratio 

P33317 Deoxyuridine 5'-triphosphate 94,91 0,88 2,00 15,30 7,25 6,29 

Q07897 Protein CMS1 OS 15,81 0,43 1,00 33,40 8,19 6,84 

Q04951 Probable family 17 glucosidase 60,95 0,46 1,00 40,40 4,65 7,21 

Q04409 Putative glucokinase-2 OS 103,62 0,61 3,00 55,90 6,27 7,40 

P32773 Transcription initiation factor 40,40 0,61 2,00 32,20 4,39 8,78 

C8ZCR2 ABC transporter NFT 167,29 0,56 1,00 176,20 8,60 13,68 

Q08969 Protein GRE1 OS 223,34 0,89 7,00 19,00 4,77 25,08 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

117/113          

ratio 

P16521 Elongation factor 3A 217,18 0,66 4,00 115,90 6,05 2,00 

Q07653 Protein HBT1 OS 220,42 0,60 9,00 113,50 6,38 2,01 

Q12271 Polyphosphatidylinositol phosphatase INP 171,30 0,66 1,00 124,50 7,20 2,01 

P53094 Negative regulator of sporulation 244,84 0,56 1,00 166,90 7,43 2,06 

C8ZCR2 ABC transporter NFT 167,29 0,56 1,00 176,20 8,60 2,15 

P39676 Flavohemoprotein  60,50 0,62 3,00 44,60 6,28 4,47 

 

 

 

 

 

 

 

TABLE 5.6: Differentially expressed proteins by the intra-genus TFPH and LVPH NH 84 relative to the commercial TRWY reference VIN 7 during 
the stationary phase of fermentation in 2013 Sauvignon blanc grape must. 
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Accession Description Score Coverage 
Unique 

peptides 
MW [kDa] calc, pI 

118/113          

ratio 

P36110 Protein PRY2 OS 41,81 0,49 2,00 33,80 4,60 0,28 

Q12287 Cytochrome c oxidase 51,50 0,45 2,00 8,10 4,92 0,39 

P53221 60S ribosomal protein 75,36 0,76 2,00 14,20 10,46 0,39 

Q03219 Uncharacterized protein YMR 27,86 0,64 1,00 31,10 6,05 0,42 

P39743 Reduced viability upon 57,40 0,61 2,00 52,70 6,01 0,46 

P07342 Acetolactate synthase catalytic 137,74 0,78 3,00 74,90 8,51 0,49 

Q00055 Glycerol-3-phosphate dehydrogenase 121,94 0,69 2,00 42,80 5,47 2,12 

P05740 60S ribosomal protein 188,92 0,80 1,00 20,50 10,92 2,25 

P23638 Proteasome subunit alpha 46,79 0,58 3,00 28,70 5,22 2,46 

P40581 Peroxiredoxin HYR1 OS 15,24 0,57 4,00 18,60 8,19 2,49 

P39676 Flavohemoprotein OS=Saccharomyces 60,50 0,62 3,00 44,60 6,28 2,59 

P16521 Elongation factor 3A 217,18 0,66 4,00 115,90 6,05 2,61 

Q04409 Putative glucokinase-2 OS 103,62 0,61 3,00 55,90 6,27 6,90 

Q12458 Putative reductase 1 OS 26,94 0,52 3,00 34,70 7,12 7,38 

P39016 Suppressor protein MPT 233,23 0,73 1,00 95,40 8,03 24,61 

 

 

TABLE 5.7: Differentially expressed proteins by the promising natural isolate MCB C6 relative to the commercial TRWY reference VIN 7 during 
the stationary phase of fermentation in 2013 Sauvignon blanc grape must. 
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Accession Protein Score Coverage 
Unique 

Peptides) 
MW [kDa] calc. pI A3:119/113 

P36110 Protein PRY2 OS 41,81 0,49 2,00 33,80 4,60 0,33 

P40159 Uncharacterized protein YNL 174,98 0,97 2,00 20,10 7,64 0,39 

P38707 Asparagine--tRNA ligase 39,99 0,62 2,00 62,20 5,85 0,41 

P53903 Processing of GAS 26,59 0,55 1,00 15,00 5,76 0,42 

Q08972 [NU+] prion formation 176,50 0,49 1,00 134,20 5,86 0,43 

Q12497 Protein FMP16, mitochondrial 12,41 0,53 1,00 10,80 9,64 0,43 

Q04344 Hit family protein 14,31 0,52 3,00 17,70 6,95 0,44 

P26785 60S ribosomal protein 18,06 0,54 2,00 22,20 10,55 0,44 

P11632 Non-histone chromosomal 54,16 0,70 2,00 10,80 9,76 0,44 

Q12213 60S ribosomal protein 17,35 0,66 3,00 27,70 10,15 0,47 

P11633 Non-histone chromosomal 26,18 0,58 1,00 11,50 9,89 0,47 

Q07897 Protein CMS1 OS 15,81 0,43 1,00 33,40 8,19 2,62 

P15303 Protein transport protein 220,61 0,69 9,00 85,30 5,66 4,56 

Q04409 Putative glucokinase-2 OS 103,62 0,61 3,00 55,90 6,27 4,85 

 

 

 

TABLE 5.8: Differentially expressed proteins by the promising natural isolate M2/1 relative to the commercial TRWY reference VIN 7 during 
the stationary phase of fermentation in 2013 Sauvignon blanc grape must. 
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Accession Protein Score Coverage 
Unique 

Peptides 
MW [kDa] calc. pI A3:121/113 

P0CE86 Seripauperin-21 OS=Saccharomyces 55,48 0,72 3,00 17,70 6,79 0,17 

P32599 Fimbrin OS=Saccharomyces 82,48 0,76 4,00 71,70 5,48 2,02 

Q08193 1,3-beta-glucanosyltransferase GAS 68,61 0,67 5,00 51,80 4,64 2,07 

Q04894 NADP-dependent alcohol 55,82 0,56 2,00 39,60 6,74 2,09 

P50107 Lactoylglutathione lyase OS 25,00 0,25 2,00 37,20 6,84 2,12 

Q05584 Hydroxyacylglutathione hydrolase,  60,86 0,48 4,00 31,30 6,19 2,40 

P23638 Proteasome subunit alpha 46,79 0,58 3,00 28,70 5,22 2,58 

P40202 Superoxide dismutase 1 copper 61,52 0,69 3,00 27,30 6,67 2,91 

P30402 Orotate phosphoribosyltransferase 2 OS 77,50 0,78 3,00 24,80 8,51 4,49 

TABLE 5.9: Differentially expressed proteins by the promising inter-genus FLPH and LVPH NH 07/1 relative to the commercial TRWY reference 
VIN 7 during the stationary phase of fermentation in 2013 Sauvignon blanc grape must. 
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5.5. CONCLUSIONS 

The inter-genus FLPH and LVPH, NH 07/1, produced wine with a more positive association with volatile 

thiols, 3MHA in particular, than both parental strains, S. cerevisiae MCB C6 and T. delbrueckii M2/1, as 

well as commercial TRWY, Zymaflore X5 and Zymaflore VL3. This hybrid also produced wines with a 

negative association with VA and acetic acid, but a positive association with floral aroma with hints of 

tropical fruit aroma. Three intra-genus TFPH and LVPH, NH 56, NH 57 and NH 88 produced wines with 

a negative association with VA and acetic acid, but with a positive association with tropical fruit aroma. 

These intra-genus hybrids also produced Sauvignon blanc wines with a stronger association with 3MH 

than the commercial reference. Five more intra-genus yeasts, NH 48, NH 118, NH 140, NH 143 and 

NH 145 also produced wines with a stronger association with 3MH than wines produced with the 

commercial TRWY Zymaflore X5 and Zymaflore VL3. These hybrids also produced wines with a stronger 

association with 3MHA than wines produced with the commercial TRWY VIN 13.  Proteomic analyses 

showed that NH 07/1 and Zymaflore VL3 over-expressed the lactoylglutathione lyase protein 

responsible for the release of the volatile thiol 4MMP by cleaving its carbon-sulfur bonds. Since 3MH 

release also involves enzymatic cleavage by a carbon-sulfur lyase, there is a possibility that the above-

mentioned over-expressed protein could also be involved in the release of 3MH from its carbon-sulfur-

containing precursor. Lactoylglutathione lyase might be a useful protein biomarker for volatile thiol 

release by especially NH 07/1 during production of varietal Sauvignon blanc wines. As dehydrogenases 

were previously implicated in VA formation, these proteins might also be useful biomarkers for VA 

and/or acetic acid formation by fermenting wine yeasts. 
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Chapter 6: General discussion 

6.1. CONCLUDING REMARKS 

South African enologists are continually striving to increase wine quality in an ever-increasing 

competitive market (Moore et al., 2008; Alonso et al., 2013). The selection and development of new 

yeast is directly linked to improvement of wine quality as the wine yeast strain used to ferment 

‘neutral’ grape must (juice) enhances wine aroma and flavour (Swiegers et al., 2006b; Dennis et al., 

2012; Van Breda et al., 2013; Jolly et al., 2014). The production of varietal wines with enhanced 

aromatic characteristics from relatively ‘neutral’ flavoured grape juice (must) can be achieved by 

deploying the wine yeast Saccharomyces cerevisiae (Erten et al., 2006; Swiegers et al., 2009). 

Subsequently, the main objectives of this study was to evaluate a selection of intra-genus 

Saccharomyces cerevisiae hybrid yeasts and commercial thiol-releasing wine yeasts (TRWY) for the 

improvement of Sauvignon blanc wine organoleptic quality with regard to tropical fruit aroma and 

lower VA formation. A second objective was to investigate wine yeast protein expression and whether 

regulated proteins correlate with metabolites released and/or produced by different yeast strains 

during fermentation by on deploying metabolomic and proteomic approaches. A third objective of this 

study was to breed S. cerevisiae/T. delbrueckii inter-genus hybrids using classical mating, characterise 

and evaluate these inter-genus hybrids for their fermentation potential, thiol-releasing abilities and 

low VA formation during the production of Sauvignon blanc wines. 

Intra-genus hybrid yeast strains, with similar fermentation rates as aromatic wine producing parental 

and commercial strains, produced laboratory-scale wines with aroma enhancing metabolites 

(Chapter 3). Additionally, MALDI-TOF/MS biotyping was proven to be a faster alternative than CHEF 

DNA karyotyping for the identification and characterisation of these hybrids, despite the existing 

database comprising primarily of clinical strains (Hart et al., 2016). Furthermore, biotyping successfully 

differentiated inter-genus hybrids that could not be resolved using DNA karyotyping analyses. This 

study also pioneered the establishment of a MALDI-TOF/MS database pertaining to wine, wild and 

http://etd.uwc.ac.za/



 

 

 

 

Chapter 6: General discussion 
 

193 
 

hybrid yeasts that will receive further attention in another post-graduate study. It was also observed 

that relative faster fermentation rates resulted in wines with improved sensory quality (Hart et al., 

2016). Different commercial TRWY references and hybrid strains was shown to produce wines with 

different chemical and sensory profiles, due to varying levels of yeast derived and mediated 

metabolites. Improved intra-genus hybrids with the ability to produce laboratory-scale wines with 

positive correlation with tropical fruit aroma (abbreviated as TFPH) were identified during this study. 

These wines also had enhanced tropical fruit aromas compared to wines produced with commercial 

‘thiol-releasing’ wine yeasts (TRWY), and parental strains which produced wines with tropical fruit 

aromas (abbreviated as TFPP). Some of these TFPH were also identified as lower volatile acidity 

producing hybrids (abbreviated as LVPH) as they also produced wines with a negative association to 

VA.  

Overall intra-genus TFPH and LVPH, therefore, comply with both criteria put forward in the overall 

objective of this study in that they showed lower VA formation, whilst producing typical Sauvignon 

blanc wines with enhanced aromas. Moreover, observations during this study show that some 

commercially available yeast strains are associated with VA formation. This study further showed that 

classical mating is still a practical way to produce novel inter-genus hybrids with desired traits, thereby 

avoiding the controversial issue of the use of genetic modified organisms (GMOs) for wine production. 

Small-scale Sauvignon blanc wine production during the latter part of project confirmed the provisional 

characterisation of the hybrids as tropical fruit and lower VA producing yeast strains (Chapter 4). 

Commercial TRWY, references Zymaflore X5 and VIN 7 were shown to produce wines with a positive 

association with tropical fruit aromas, whilst Zymaflore VL3 and Fermicru 4F9 produced wines 

positively associated with floral and vegetative aromas. The TRWY, VIN 13 produced wines positively 

associated with both tropical fruit and vegetative aromas. Indications are that the lack of sought-after 

tropical fruit aroma in wines with vegetative nuances, could have been masked by Sauvignon blanc 

grape-derived aroma compounds, amongst others, 2-isobutyl-3-methoxypyrazine (IBMP) responsible 

for green pepper and vegetative aromas (Lapalus, 2016). Nonetheless, this study showed that the 
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production of wines with tropical fruit aromas positively associated volatile thiol release and/or 

production (Hart et al., 2017b), which supports yeast manufacturers assertions that above-mentioned 

TRWY strains are volatile thiol-releasers.  

Wines produced with the TFPH, NH 56 also had a more positive association with key aroma enhancing 

metabolites viz. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) in Sauvignon 

blanc in comparison to wines produced with top commercial TRWY references included in this study 

(Hart et al., 2017b). Strain NH 56 also produced wines with the second highest 3MH levels after NH 84, 

whilst producing wines with the lowest acetic acid of all strains included in this study. This yeast was 

also the only strain to have down-regulated proteins during the lag phase, which were linked to amino 

acid biosynthesis, pentose phosphate pathway, glycolysis and fructose and galactose metabolism. 

Differences in protein expression were reflected in the variation of metabolite release by the different 

strains, thereby confirming that proteins are the final effectors for metabolite release. This study is 

also the first to show a positive association between overexpression of other protein classes, besides 

β-lyases and higher volatile thiol release by hybrid strains. Similar to the findings of others (Varela et 

al., 2012; Walkey et al. 2012) who reported that dehydrogenase enzymes are involved in excessive 

acetic acid production, yeast strains that produced wines with a stronger association with acetic acid 

than NH 56, over-expressed dehydrogenases at the start of fermentation. Hybrid yeast NH 56, 

contrariwise down-regulated dehydrogenase at the start of fermentation. This supports the sensory 

data that this hybrid is also a LVPH. This study, therefore, successfully developed an improved 

S. cerevisiae intra-genus hybrid due to its enhanced 3MH release and lower acetic acid formation 

compared to commercial thiol-releasing reference strains. The novelty of this aspect of study was 

underlining the over-expression of the dehydrogenase protein as a potential biomarker for excessive 

acetic acid and VA formation by hybrids during fermentation. This yeast, as both a LVPH and TFPH, 

therefore has the potential to play a commercial role in the production of varietal aromatic white wine.  

The non-Saccharomyces yeasts, namely Torulaspora delbrueckii was previously shown to produce 

white wine with enhanced varietal aromas following fermentation of a “neutral” base must (juice) 
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when inoculated singly or sequentially to S. cerevisiae (Jolly et al., 2003; Van Breda et al., 2013). The 

use of T. delbrueckii was also shown to produce wine with lower VA levels. Additionally, a S. 

cerevisiae/T. delbrueckii inter-genus hybrid was shown to enhance wine aroma and flavour upon 

completion of fermentation (Santos et al., 2008). Subsequently, this study developed novel 

S. cerevisiae/T. delbrueckii inter-genus hybrids, NH 07/1 and NH 07/2 and investigated their role in the 

production of varietal aromatic Sauvignon blanc wines with lower VA and acetic acid levels (Chapter 5) 

alongside promising intra-genus TFPH and/or LVPH (Chapter 4). Chemical analyses showed that both 

inter-genus hybrids, NH 07/1 and NH 07/2 produced Sauvignon blanc with a negative association with 

VA, whilst intra-genus hybrid strains provisionally characterised as LVPH, NH 48, NH  57, NH 143, and 

NH 145 also produced wines with a negative association with VA (Hart et al., 2017a). This study showed 

that inter-genus hybrid strains are also LVPH, and it can be concluded that they inherited this trait from 

the non-Saccharomyces parental strain. Sensorially, both inter-genus, NH 07/1 and NH 07/2 produced 

Sauvignon blanc wines with a positive association with floral aroma, hence they were provisionally 

classified as FLPH. Nevertheless, these wines also had hints of tropical fruit aroma, and it can 

tentatively be said that inter-genus hybrids have application for the production of varietal Sauvignon 

blanc wines with low VA.   

Two intra-genus hybrids characterised as TFPH and LVPH, NH 57 and NH 140 also produced Sauvignon 

blanc wines with a positive association with tropical fruit aroma. Furthermore, both inter-genus, 

NH 07/1 and NH 07/2 and seven intra-genus hybrids characterised as TFPH and/or LVPH, NH 56, 

NH  57, NH 84, NH 88, NH 97, NH 118 and NH 140 produced wines with a negative association with 

volatile fatty acids e.g. acetic acid, which are responsible for undesirable vinegar-like off-flavours. 

Three intra-genus hybrids, namely NH 56, NH 84 and NH 88 produced wines with a stronger association 

with the volatile thiol 3MH than the top commercial reference TRWY VIN 7. This TRWY was also 

reported to be the highest producer of another volatile thiol, namely 4MMP associated with fruit 

aroma in wine (Swiegers et al., et al., 2009; Borneman et al., 2012). Five more intra-genus namely 

NH 48, NH 57, NH 118, NH 140, NH 143 and NH 145 also produced wines with a stronger association 
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with 3MH and 3MHA than wines produced with the commercial TRWY, namely VIN 13, Zymaflore X5, 

and Zymaflore VL3 known for their volatile thiol-releasing abilities (Dubourdieu, 2006; Bowyer et al., 

2008). The inter-genus hybrid NH 07/1 produced wine with a more positive association with 3MHA 

than T. delbrueckii M2/1 as well as top two commercial TRWY Zymaflore X5 and Zymaflore VL3 

previously shown to produce aromatic wines and/or have ‘thiol-releasing’ abiities abilities. This 

observation supports the third objective of this study as an improved S.cerevisiae/Torulaspora 

delbrueckii inter-genus hybrid was developed, due to its enhanced 3MHA and lower acetic acid 

formation compared to commercial thiol-releasing reference strains mentioned above. 

Proteomic analyses showed that the TRWY Zymaflore VL3 that produced wine with a moderate 

association with 3MH, over-expressed the lactoylglutathione lyase protein (Chapter 5), an enzyme 

responsible for cleaving a carbon-sulfur bond to release the volatile thiol 4MMP from its bound aroma-

inactive precursor (Howell et al., 2005). It is noteworthy that, the inter-genus hybrid, NH 07/1 

characterised as a FPH and/or LVPH, as observed with the TRWY Zymaflore VL3, also over-expressed 

the lactoylglutathione lyase protein (Hart et al., 2017a). It can, therefore, tentatively be said that 

above-mentioned carbon-sulfur lyase enzyme is involved in the release of said volatile thiol from its 

carbon-sulfur-containing precursor. Furthermore, as a β-lyase encoding gene was reported to be 

involved in the release of volatile thiols viz. 3MH and 4MMP (Holt et al., 2011), this study indicated 

that above-mentioned lactoylglutathione lyase protein can potentially be used as a biomarker for 

volatile thiol release during production of varietal Sauvignon blanc wines. 

This study, therefore, is an architype (model) as it is the first to report on deploying metabolomic and 

proteomic approaches in conjunction with wine chemical and sensory evaluation to characterise 

hybrid wine yeasts, towards production of varietal Sauvignon blanc wine with higher volatile thiols and 

lower VA. Furthermore, differential protein expression by S. cerevisiae intra-genus wine yeast starter 

cultures (strains) at the beginning of fermentation compared to the stationary phase of fermentation 

was elucidated. Intra- and inter-genus hybrid strains was also observed to “respond” differently to the 

same grape matrix during the same phase of the fermentation, as differences in protein down-
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regulation and over-expression was observed. The potential downside is that only 600 to 1000 

regulated yeast proteins was characterised and quantified, which represents altogether ~20% of the 

total yeast proteome. Nonetheless, a significant innovation of this study was the development of a 

S. cerevisiae/T. delbrueckii inter-genus hybrid, and showing its advantage compared to parental 

reference strains by deploying metabolomic and proteomic approaches in conjunction with chemical 

and sensory evaluation.  

In general, this study clearly demonstrated that intra- and inter-genus TFPH, LVPH and FPH have the 

potential to play a commercial role in the production of varietal aromatic white wines, especially 

Sauvignon blanc as they comply with yeast selection criteria set forth in the objectives.  The 

commercialisation of an inter-genus hybrid for wine production will also result in paradigm shifts, as 

none are currently commercially available. Therefore, this study was successful in developing novel 

intra- and inter-genus hybrids that met yeast selection criteria using classical mating to avoid the 

contentious issue of genetic modified organisms (GMOs) usage, thereby maintaining the green image 

of South African wine industry.   
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