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An Investigation of Benthic Epifauna to Support Classification and 

Mapping of Outer Shelf Ecosystems in KwaZulu-Natal 

ABSTRACT 

Ecosystem classification and mapping are foundational steps for effective ecosystem-based 

marine spatial planning, marine ecosystem assessment and integrated ocean management. 

The aims of this study were to interrogate and refine existing ecosystem classification and 

maps using quantitative data for epifaunal communities and to investigate the potential 

physical drivers which may contribute most to the distribution patterns of these ecosystem 

types. A total of 27 sites between Pennington and Ballito on the east coast of South Africa, 

including unconsolidated sediment, mixed and reefs habitat types, in the 48 to 85m depth 

range, was examined. Epifauna data were quantified from seabed imagery collected by 

remotely-operated vehicle covering more than 13 130 epifaunal individuals counted 

representing over 170 morphospecies from five taxa. Multivariate analyses of data from 17 

sites surveyed in southern KwaZulu-Natal (KZN) revealed that epifauna at unconsolidated 

sediment sites were significantly different to that occurring on either mixed or reef substrates 

and epifauna occurring on mixed substrates were also significantly different to those 

occurring on reefs. Epifauna at mixed sites were more similar to epifaunal assemblages at 

reef sites than epifauna at unconsolidated sediment sites. The significantly different epifaunal 

communities detected did not align with the existing national or provincial habitat 

classifications. To further investigate the patterns and potential drivers of epifaunal 

assemblages on deep reefs, epifauna data were analysed from 17 reef sites (including the 

eight reef sites from southern KZN i.e. south of Durban; and nine additional reefs from 

central KZN i.e. north of Durban). Multivariate analyses revealed a potential biogeographic 

break off Durban with reef assemblages north and south of this break differing by 

approximately 65%. Reefs located north of Durban were characterised by a mix of octocorals 

and porifera morphospecies while southern reefs hosted more porifera morphospecies. 

Potential environmental drivers of these patterns were investigated and distance from shelf 

edge, latitude, sea surface temperature, phosphate and bottom temperature were identified as 

key potential drivers. In all, four biotopes along with their characteristic and distinguishing 

species were classified and described with three additional potential biotopes requiring 

further sampling effort. One biotope was described from sandy outer shelf habitats, one 

mixed habitat biotope was recognised and two clear deep reef biotopes were determined. This 
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study advances classification, description and mapping of outer shelf ecosystem types for 

improved spatial biodiversity assessment and management in KZN.  

Key words: Epifauna, Outer shelf, Ecosystems, KwaZulu-Natal, Classification and 

mapping, Marine Spatial Planning, Remotely Operated Vehicle, Biotopes, Epifaunal 

assemblages, Deep reef 
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1 Introduction and background to the study 

1.1 Introduction 

The South African Biodiversity Act (2004) defines ecosystems as ―the dynamic complex of 

animal, plant and microorganism communities and their non-living environment, interacting 

as a functional unit‖ (Government Gazette, 2004). This definition allows for ecosystems to be 

recognised at multiple scales. For the purpose of this thesis the term ‗ecosystem‘ has been 

used to represent habitats (defined by physical components such as depth and substrate) and 

‗biotopes‘ (defined as a distinct biological assemblage that characterises a specific habitat) 

(Diaz et al. 2004, Connor et al. 2004, SANBI 2016). South Africa‘s marine environment 

supports high biodiversity (Costello et al. 2010) and the sponge, scleractinian and octocoral 

dominated ecosystems of the warm, north eastern coastal waters of KwaZulu-Natal (KZN) 

political province are no exception (Williams 1993).  

The KZN political province has a rich diversity of marine ecosystems due to its tropical and 

subtropical nature (Palmer et al. 2011). There is limited knowledge of benthic invertebrate 

ecosystems in the outer continental shelf of KZN (deeper than 30 m) due to complexities and 

challenges of the environment (Lutjeharms et al. 2010) with knowledge decreasing with 

depth (Fennessy et al. 2016, Untiedt and MacKay 2016). Existing research below 30 m has 

focused on benthic infauna and fish assemblages and is sampled mostly by benthic grab and 

trawl. Few visual surveys and limited work on epifauna have been conducted in the region; as 

a result this study focuses on the epifauna of the KZN outer shelf.  

1.1.1 Status of marine ecosystems 

Ecosystem services provide fundamental benefits to human survival, well-being, health and 

livelihoods (Liquete et al. 2013, Costanza et al. 2014). Many studies have dealt with the 

assessment of food production (fisheries) services, but less research has been done on the 

other services that marine ecosystems provide (Liquete et al. 2013). The diverse array of 

South Africa‘s marine ecosystems plays a vital role in the overall health of marine 

environments, such as transferring energy from primary production to higher trophic levels 

(Blanchard et al. 2013) and as food sources for resource species (Snelgrove 1998, Reiss et al. 

2011). Studies have shown that many marine ecosystems are being damaged by 

anthropogenic factors such as pollution, overfishing, invasive species and climate change 

(Schleyer and Tomalin 2000, Diaz et al. 2004, Leslie 2005 Costello et al. 2010, Weeks et al. 

2010). It has been reported that about 47% of South Africa‘s marine and coastal habitats are 
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classified as ‗threatened‘ (Sink et al. 2012). Opportunities exist to restore impacted habitats, 

secure remaining healthy habitats, prevent further damage and improve marine biodiversity 

management (Sink et al. 2012). Government initiatives such as Operation Phakisa aim to 

―implement an overarching integrated governance framework for sustainable growth of the 

ocean economy that maximises socio-economic benefits while ensuring adequate ocean 

environmental protection‖ (Marine Protection Services and Governance 2014). Globally, 

studies are underway to build marine biodiversity knowledge to support informed decision 

making and marine ecosystem conservation (Spalding et al. 2007, Howell 2010). It is 

important to support ecosystem sustainability through processes such as science-based 

Marine Spatial Planning (MSP) and systematic conservation planning (Ehler and Douvere 

2009, Cogan et al. 2009, Holness and Biggs 2011, Roberson et al. 2017).  

1.1.2 Marine conservation and spatial planning 

Marine conservation planning, if undertaken with a systematic planning approach, requires 

priority setting in a geographically explicit manner, making efficient use of limited resources 

and promoting persistence of biodiversity (Leslie 2005, Weeks et al. 2010, Osmond et al. 

2010). Marine conservation planning forms part of the suite of tools that can be implemented 

to improve biodiversity management. Conservation planning involves developing a planning 

framework and bringing together all major users of the ocean such as government, industry, 

conservation and recreation sectors, to make informed decisions about sustainable use of the 

marine environment and its resources (Leslie 2005, Osmond et al. 2010, Weeks et al. 2010, 

Knowlton et al. 2010). The process of marine conservation planning requires standardised 

classifications and terminology for habitats (in the form of policies or guidelines) to ensure 

consistent mapping of the environment across all possible regions (Costello 2009, Osmond et 

al. 2010, Sink et al. 2011). These policies will provide guidelines for the implementation and 

identification of areas which require protection for better understanding of biodiversity 

patterns and sensitive ecosystems. The current study provides biodiversity information about 

some habitats (unconsolidated sand, mixed and reefs) of the KZN outer shelf; supporting 

identification of areas for conservation with proper management strategies.  

MSP is the planning process that enables integrated, visionary and consistent decision 

making on the human uses of the sea (Douvere 2008, Pomeroy and Douvere 2008). The 

process of MSP in South Africa is still in its infancy and the main purpose of South Africa‘s 

recently developed MSP Bill (2017) is to provide a statuary basis for the implementation of 

marine protected area (MPA) networks for the country (Government Gazette, 2017). 
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Integrated ocean management (IOM) promotes the management of various ocean areas as 

one (Guenette and Alder 2007). IOM is implemented through the collaboration of all 

interested groups (stakeholders) based on sound science and ecosystem based management 

(Rutherford et al. 2005). Globally this integration is often achieved in collaboration with 

implementation of MPA networks. IOM often results in targeted social and economic 

development as well as conservation goals (Rutherford et al. 2005, Guenette and Alder 

2007).  

Approaches to MSP often emphasize the need for protecting a representative coverage of 

habitat types while aiming to minimize impacts on resource users (Edgar et al. 2008). Ball 

and Possingham (2000) developed a conservation planning tool called Marxan that covers the 

important basic steps in designing effective marine reserves. This tool provides users 

additional information about the proposed reserve such as costs, boundary length, 

fragmentation and representation requirements for conservation features. Naidoo et al. (2006) 

review the importance of costs associated with conservation and how costs can be estimated 

or modelled in a spatially explicit manner. Naidoo et al. (2006) also give empirical examples 

of how plans differ when costs are formally considered. Objectives of conservation planners 

include i) to achieve representation of all marine biological diversity ii) to achieve 

quantitative targets of biodiversity representation at a minimal cost iii) to develop solutions 

on how marine resources and services are utilised without compromising marine ecosystem 

health and biodiversity conservation and iv) to preserve spiritual and cultural values, sustain 

ecosystem services and provide places for research and education e.g. marine reserves and 

other types of MPAs (Leslie 2005, Weeks et al. 2010, Howell et al. 2010, Sink et al 2011). 

1.1.3 Marine ecosystem classifications and mapping  

Marine ecosystems are classified for various reasons including identifying biologically 

meaningful areas for conservation (Gregr and Bodtker 2007) and for proper management of 

these ecosystems (Costello 2009). Many ecosystem classification systems have been 

developed by research, fishery, intergovernmental and conservation organisations (Allee et al. 

2000, Fox et al. 2014). One approach to ecosystem classification requires knowledge of 

species distributions within an area of concern (Heiskanen et al. 2016), others include 

physical or environmental based approaches (McArthur et al. 2010). Studies have shown that 

marine species are sensitive towards their surroundings and distribution patterns are driven 

by the surrounding environmental factors (McArthur et al. 2010). There is no universal 

agreement on the method for conducting marine environmental classifications; however, 
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methods employed depend on the user‘s requirements and resources. Marine ecosystem 

classification systems allows natural resource managers to effectively identify representative 

or threatened biological communities, so that these ecosystems can be better managed or 

protected and conserved as deemed necessary (Allee et al. 2000). These classification 

systems are developed with the main aim of organizing and providing information in the 

form of maps and reports that can enable comparisons between areas and support unbiased 

decision making during processes such as MSP, marine ecosystem assessment and integrated 

ocean management (IOM) (Costello 2009).  

Numerous marine ecosystem classifications exist and some provide accessible online data, 

such as the International Union for Conservation of Nature (IUCN) and Global Open Oceans 

and Deep Seas (GOODS) (Costello 2009). Organisations such as the Global Biodiversity 

Information Facility (GBIF) provide global databases of various species with tools to map 

species against environmental data (http://data.gbif.org). Spalding et al. (2007) reports on a 

biogeographic classification for global coastal and shelf areas, also known as Marine 

Ecoregions of the World (MEOW) that relies mainly on existing literature. Spalding et al. 

(2007) defines ecoregions as areas of relatively homogenous species composition, clearly 

distinct from adjacent systems. Ecoregions can also be defined based on the effect of 

temperature, geology and biological interactions on species‘ ranges and distributions (Heyns 

2015).  

1.1.4 South African National marine ecosystem classification 

The South African National Biodiversity Institute (SANBI) provides ecosystem type maps of 

both terrestrial and aquatic ecosystems (http://bgis.sanbi.org retrieved on 2015/08/19) 

through their in-house platform the Biodiversity Geographic Information System (BGIS). 

This website also provides the results from the National Biodiversity Assessment (NBA), 

South Africa‘s national scientific assessment that reports on the status of marine and 

terrestrial biodiversity and ecosystems; most recently assessed in 2011 but is repeated every 

five to seven years using updated information (Driver et al. 2012). The NBA primarily aims 

to provide a high level summary of the state of South Africa‘s biodiversity with a strong 

focus on spatial assessment (Sink et al. 2012). Factors which have been used to classify 

national coastal and marine habitats include depth, slope, substrate type, geology, grain size, 

wave exposure, terrestrial and benthic-pelagic connectivity and biogeography. The resulting 

2011 habitat map of marine ecosystems (Figure 1.1) incorporates the biogeographic and 

depth divisions in the South African marine environment, defining six ecoregions with 22 

http://data.gbif.org/
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ecozones at the finest scale and 14 broad ecosystem types (Sink et al. 2012, Driver et al. 

2012). 

 
Figure 1.1: The South African coastal and marine inshore and offshore ecoregions and their 
ecozones (Sink et al. 2012). 

 

The 2011 NBA was produced by updating the 2004 National Spatial Biodiversity Assessment 

(NSBA). The NSBA dealt only with the spatial aspects of biodiversity, while the 2011 NBA 

included both the spatial and non-spatial aspects of biodiversity such as a summary of the 

state of invasive species and species of special concern (Driver et al. 2012). Changes 

incorporated in the 2011 NBA included a change of terms such as ‗bioregions‘ and ‗biozones‘ 

into ‗ecoregions‘ and ‗ecozones‘ respectively (Lombard et al. 2004, Sink et al. 2012). Many 

ecosystem assessments make use of ecoregions (Olson and Dinerstein 2002, Spalding et al. 

2007, Costello 2009). Ecoregions were defined based on broad-scale biological variability 

and biogeography, also considering broad-scale habitat differences related to different ocean 

current systems with different temperatures and productivity. Ecozones incorporate distinct 

species assemblages in different depth strata and this needs to be considered in biodiversity 

assessments and planning for representative MPA networks (Lombard et al. 2004, Spalding et 

al. 2007, Sink et al. 2012). The South African 2011 NBA defined six ecoregions namely 
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Benguela, Agulhas, Natal, Delagoa, Southeast Atlantic and Southwest India (Figure 1.1). The 

current study focus lies within the Natal ecoregion which is further divided into three 

ecozones namely Natal inshore, Natal shelf and Natal shelf edge. There are several studies 

that have documented the coast and inshore of the KZN shelf; however there is less research 

beyond 30m i.e. beyond scuba diving depth (Schleyer and Tomalin 2000, Bolton et al. 2004, 

Celliers and Schleyer 2008, Porter et al. 2017) although recent studies on benthic macrofauna 

and deep demersal fish assemblages have been published (Fennessy 2016, MacKay et al. 

2016, Untiedt and MacKay 2016). These studies were not able to employ visual techniques, 

relying mostly on grab sampling of benthic infauna and trawl sampling of demersal fish. 

Finally, a recent study by Roberson et al. (2017) used remote-sensing data to create a 

bioregional map of the upper-mixed layer of the South African continental marine realm.  

At a provincial scale Ezemvelo KwaZulu-Natal Wildlife (EKZNW), a South African 

provincial conservation organisation, developed the KZN Coastal and Marine Biodiversity 

Plan through their fine-scale planning project, also known as SeaPLAN (Harris et al. 2011, 

Mills et al. 2015). SeaPLAN is a systematic conservation plan for the marine environment of 

the KZN province and includes collection and compilation of fine-scale spatial data on 

biodiversity features (species, habitats and processes). The SeaPLAN project also includes 

mapping of threats and resource use activities from the coastline out to the Economic 

Exclusive Zone (EEZ) of KZN (Harris et al. 2011). Factors which were used to classify 

habitats in SeaPLAN include nutrient availability (organic carbon and phosphate), depth, 

sediment type and temperature. Currently, the SeaPLAN classification delineates five 

biozones (or five benthic clusters) which are based on varying charecteristics of the above-

mentioned factors (Figure 1.2). Research conducted in the current study incorporates sites in 

biozones 1 and 2. Biozone 1 is described as a shallow sandy shelf with low organic carbon 

and phosphate levels and overlying warm but oxygen-depleted waters. Biozone 2 is described 

as a shallow gravel area with low organic carbon and phosphate and warm oxygenated 

bottom water (Livingstone 2016).  
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Figure 1.2: The Ezemvelo KwaZulu-Natal wildlife’s SeaPLAN map, with the five described 
biozones also referred to as benthic clusters in this figure. 
 

1.1.5 Use of benthic epifauna  

Marine epifauna are defined as species that protrude from, live on, are anchored in or are 

attached to benthic substrates (Jennings and Kaiser 1998 as cited in Atkinson 2009). They are 

preferred organisms for biological monitoring studies, due to their limited mobility which 

prevents them rapidly moving away from unfavourable habitat changes (Tűrkmen and 

Kazanci 2010). Epifauna have longer life cycles than infauna, which help inform ecology and 

studies of potential impacts of long-term environmental change. The species composition of 

epifaunal communities is known to change in response to environmental changes (Tűrkmen 

and Kazanci 2010). Furthermore, epifauna provide useful indices to evaluate the status of 

marine ecosystems in monitoring long-term responses and site specific impacts (Atkinson 

2009, Monk et al. 2016). 

Maintenance of marine biodiversity is essential to sustain healthy marine ecosystems 

(Costanza et al. 2014, Heiskanen et al. 2016) and such diversity plays an important role in 

ecosystem processes such as nutrient cycling, pollutant metabolism, secondary production 

and dispersion (Snelgrove 1998, McArthur et al. 2010, Heiskanen et al. 2016). Benthic-
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pelagic coupling processes such as nutrient, carbon and oxygen cycling are driven by marine 

epifaunal species (Dale et al. 2017). Appropriate consideration of these processes in regional 

modelling of species distribution is important. The two way exchange of matter between the 

benthos and the overlying water body is important for both benthic and pelagic components 

as these define the link between organisms on the seafloor to those at the surface (Raffaelli et 

al. 2003). 

The current study aims to explore benthic ecosystem types off the KZN coast using epifaunal 

data quantified from seabed imagery and to investigate the potential environmental drivers 

that contribute to their species distribution patterns. This study incorporates epifauna data to 

refine the underlying maps of ecosystem types in this province on the east coast of South 

Africa. The results from this study will inform ecosystem type delineation for future 

conservation plans and assessments of the region. 

The aim of this research is therefore to examine patterns and understand potential drivers of 

patterns in epifaunal assemblages, and to test and refine existing ecosystem classifications 

and maps for the outer shelf of KZN. Three specific objectives were set. 

Objectives:  

 To investigate patterns in benthic epifauna and describe benthic biotopes on the outer 

shelf (45−85m) of KwaZulu-Natal. 

 To identify potential drivers of observed epifaunal biodiversity patterns. 

 To test and refine existing ecosystem classifications in southern and central KwaZulu-

Natal. 

Research questions:  

 What are the characteristic and distinguishing epifaunal species for the marine 

habitats defined in the study area? 

 What are the potential key drivers of epifaunal biodiversity patterns in the study area? 

 Do existing national and provincial habitat classifications reflect habitats as defined 

by the benthic epifaunal assemblages quantified in the study area?  
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Table 1.1: Definition of key terms used in this study. 
Term  Definition 

Biotope A distinct biological assemblage that characterises a specific habitat. This 

represents the smallest geographical scale for defining ecosystem types in this 

study. Biotopes in this context are defined based on biodiversity pattern data 

(i.e. their biota) rather than abiotic or physical habitat characteristics. A 

biotope was only recognised in this study when represented by three or more 

sites. Single sites that did not cluster with any other sites were considered as 

outliers and when only two sites emerged as significantly different these were 

considered potential biotopes. 

Deep reef Reefs of the mesophotic zone (30-100m) (Linklater et al. 2016) 

Ecosystem A dynamic complex of animal, plant and micro-organisms communities and 

their non- living environment interacting as a functional unit. In this study 

ecosystems were defined using the definition from NEMBA (Government 

gazette, 2004) 

Ecosystem type An ecosystem unit or set of ecosystem units that has been identified and 

delineated as part of a hierarchical classification system, based on biotic and/or 

abiotic factors. Ecosystems of the same type are likely to share broadly similar 

ecological characteristics and functioning (SANBI 2016). 

Epifaunal assemblage Community of marine invertebrates living on the seafloor, reef or other benthic 

environment. In this study, sessile taxa greater than 1 cm in size were 

quantified to represent the epifaunal assemblages in reef, mixed substrata and 

unconsolidated sediment habitats. 

Habitat The physical environment occupied by species, assemblages and biotopes. 

Morphospecies A species distinguished from others only by its morphology (i.e. distinction 

from others is based solely on their particular form, shape or structure). 

 

1.2 Study area  

The KZN coastline extends approximately 570 km along the east coast of South Africa (Sink 

et al. 2005, Untiedt and MacKay 2016). The coast can be divided into three regions; the 

Northern (from Mozambique boarder to Richards Bay), Central (from Richards Bay to 

Durban) and the Southern (from Durban to the Mtamvuna Estuary) regions (Palmer et al. 

2011). The Northern coastal region lies on a sandy plain, with very few rivers that drain 

across the wide coastal plain. The input of inland matter into the nearshore northern region, 

together with the warm temperature of the coast, allows tropical coral species to flourish in 

greater abundance on the Northern reefs than in other regions (Celliers and Schleyer 2008). 

Both the Central and Southern regions have numerous rivers draining to the sea, with more 
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than 60 rivers flowing into the sea from Thukela River southward. This results in major sea 

influx with high loads of discharged sediment washing down the rivers into the nearshore 

environment during summer (Anderson et al. 2009, de Lecea et al. 2016, Porter et al. 2017). 

Within part of the Northern and Central regions lies the KZN Bight; a widened area of the 

continental shelf from Cape St Lucia to just below Durban (Lamont et al. 2016). The KZN 

Bight is characterised by increased turbidity and sediment load resulting from inflow from 

the Thukela, Umfolozi and other rivers (Green & MacKay 2016, Livingstone 2016). The 

topography of this area supports well-defined sand, mud and gravel sediments (Mackay et al. 

2016) with predominately northward flowing currents (Lutjeharms et al. 2010, Roberts and 

Nieuwenhuys 2016). The KZN Bight has recently received much attention with various 

studies being conducted here as described by Fennessy et al. (2016). Sites surveyed in the 

current study are located in parts of the Central and Southern regions of KZN, with few sites 

within the KZN Bight. 

The fast flowing Agulhas Current is regarded as one of the largest and swiftest currents on 

earth, it also plays an important role in weather patterns and influences the diversity of 

marine species along the KZN coast (Lutjeharms et al. 2010). The Agulhas Current plays an 

important oceanographic role along the KZN coast; flowing through the southern KZN 

region carrying warm water towards the Agulhas Bank where it meets with the cold Benguela 

Current (Meyer et al. 2002, Lamont et al. 2016); cooling slightly as it travels to the South. 

The Agulhas Current reaches a depth of 2000m and a maximum speed of 4 knots, carrying 

about 70 x 10
6
 m

3
/s of seawater past the eastern shores of South Africa (Lutjeharms et al. 

2010). Moving to south of Durban, the Agulhas Current drives the Durban Eddy which is the 

lee-trapped, semi-permanent cold core cyclonic eddy that occurs off the east coast of South 

Africa (Roberts et al. 2010). The Durban eddy provides the nutrient source for primary 

production and therefore plays an important role in ecosystem functioning of the region 

(Guastella et al. 2012).  

The reefs of the Southern KZN region host a rich diversity of marine communities, and 

provide popular diving locations such as Aliwal shoal and Protea Banks. The reef ecosystems 

of KZN are comprised of rocks heavily encrusted with marine life such as sponges, corals 

and seaweeds (Olbers et al. 2009). The Northern region supports more subtropical reefs that 

are covered with rich layers of hard and soft coral, many of which lie within the Isimangaliso 
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Wetland Park Marine Protected Area (Schleyer and Tomalin 2000, Palmer et al. 2011, Porter 

et al. 2017).  

1.3 Survey Approach  

The development of underwater video tools such as baited remote underwater video (BRUV), 

remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) has 

enabled breakthroughs in marine research by providing access to previously inaccessible 

environments (Williams et al. 2012, Monk et al. 2016). These instruments allow surveys in 

remote, hazardous environments (often cold and dark) beyond normal scuba diving range 

(Heyns-Veale 2016). The SAAB Seaeye falcon 121777 ROV model (Figure 1.3) can operate 

to depths of up to 300m. It is controlled from aboard an anchored research vessel, and is 

tethered with an umbilical cord that connects the ROV to the surface unit controls. Two laser 

pointers installed on the ROV 6.42 cm apart are used to estimate the processed area coverage 

in images and the length of organisms in observations. The ROV provides data in the form of 

images, video recordings and depth. Other than stationary video recording, ROV video 

transects allow observations of the surrounding habitat. Furthermore estimates of density 

and/or percentage cover of non-motile benthic species can be extracted from images (Guinan 

et al. 2009, Dumas et al. 2009). Although research-focused ROV surveys have increased in 

recent years in South Africa (Sink et al. 2010, Franken 2015, Heyns 2015) little has been 

formally published about the work done to date (Heyns et al. 2016, Heyns-Veale et al. 2016, 

Makwela et al. 2016).  
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Figure 1.3: The SAIAB Seaeye falcon 121 777 remotely operated vehicle (ROV) during 
deployment. 

 

Makwela et al. (2016) showed that the use of ROV footage to survey reef fish species 

provides similar results to methods such as BRUVs, based on fish species accumulation 

curves. ROV surveys however provided more additional information than stationary video 

sampling methods as they allowed wider observations of the surrounding seafloor. 

Limitations of using the ROV to survey habitats include identification of organisms to 

species level from images, as often organisms are not in focus and the colour can be 

misleading (Trenkel et al. 2014, Makwela et al. 2016). Dumas et al. (2009) reports that 

formal testing for the efficiency of video/photo studies is often difficult as it requires 

intensive, time consuming field work in contrasted habitats. An additional limitation of using 

the ROV in the KZN study area is the fast flowing Agulhas Current (average speed of 2.06 

m/s) which often hinders sampling. Apart from the Franken (2015) study on the 

unconsolidated sediment sites of the KZN coast, this study is the first to use ROV imagery to 

quantify epifauna and unlike Franken (2015) which only covered soft sediment habitats, ths 

study covers both consolidated and unconsolidated habitats of KZN. 
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1.4 Thesis Overview 

This thesis has five chapters and the contents per chapter are outlined below. 

Chapter 1: Introduction−This Chapter introduces the study, the rationale for this work and the 

aims and objectives of this research. It includes a literature review that covers marine 

ecosystem classifications, the study area and methods used.  

Chapter 2: Testing existing marine ecosystem classifications and establishing the effect of 

substrate in shaping epifaunal assemblages in southern KwaZulu-Natal outer shelf.  

This Chapter includes the analyses of imagery to quantify epifaunal communities from three 

different substrate types. Existing classifications are tested using epifaunal data, and the 

potential effect of substrate as a factor correlating with the observed epifaunal patterns is 

examined. The key characteristic and distinguishing species of epifauna from different 

substrate types are identified and biotopes from different substrate types were described.  

Chapter 3: Identification of the potential drivers of patterns in deep reef epifaunal 

assemblages in KwaZulu Natal.  

This Chapter incorporates additional reef sites and focuses on biodiversity assemblage 

patterns in reef epifauna. The potential key physical drivers of observed patterns in epifaunal 

assemblages of reef sites are investigated. Reef biotopes are described including 

characteristic and distinguishing epifaunal species.  

Chapter 4: Synthesis 

This Chapter summarises the overall key results from this thesis, discusses relevance and 

limitations of the study and draws conclusions with suggestions for future work.  

Chapter 5: References 

A full list of all used referenced material in this thesis.  
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2 Testing existing marine ecosystem classifications and assessing the 

effect of substrate in shaping epifaunal assemblages in southern 

KwaZulu-Natal outer shelf 

2.1 Abstract 

Despite their diverse temperate and subtropical fauna, marine ecosystems of the KwaZulu-

Natal (KZN) outer shelf have received limited attention in terms of incorporating this 

diversity into existing ecosystem classifications. This Chapter aims to test two existing 

ecosystem classifications in the outer shelf using epifauna data. A total of 17 sites, including 

habitats comprised of reef, mixed and unconsolidated substrate types, were surveyed between 

depths of 48 and 85 m in southern KZN. Epifauna abundance data were quantified from 

seabed imagery collected by remotely-operated vehicle (ROV). Indices of diversity were 

calculated in order to estimate species composition and diversity across substrate types. 

Unconsolidated habitats yielded the lowest total number of species, followed by mixed 

substrates with reef habitats having the highest number of species per sample. For non-

parametric species estimators, species accumulation curves were generated from the 17 sites 

to estimate the species richness of the biotope types. For both mixed substrates and reef 

habitats the curves reached an asymptote after 25 quadrats but for unconsolidated habitats the 

curves did not reach an asymptote, even after 60 quadrats. Cluster analysis and non-metric 

multi-dimensional scaling (nMDS) were used to visualize patterns in species assemblages 

across substrates. Epifauna at unconsolidated sediment sites were significantly different to 

that occurring on both mixed substrates or reef substrate and epifauna occurring on mixed 

substrates were also significantly different to those occurring on reefs. Epifaunal assemblages 

at sites with mixed substrates were more similar to those at reef sites than epifaunal 

assemblages at unconsolidated sediment sites. Simper analysis was used to characterise three 

distinct biotopes, at least one from each of the substrate types and characteristic and 

distinguishing taxa were identified. The significantly different epifaunal communities 

detected did not align with the existing national or provincial ecosystem classifications 

signaling the need for improvement in both classifications. The current study provides key 

insights that can be used to revise the existing ecosystem classifications and provides the first 

description of three distinct biotopes in southern KZN. Two potential biotopes were also 

tentatively recognized and further sampling, spanning a greater area and depth range, is 

recommended.  
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2.2 Introduction 

Habitat can be defined as the chemical or physical environment which provides suitable 

conditions for the survival of a particular species or organism, an environment where a 

particular species lives or where a biotic community is normally found (Costello 2009, 

Gaillard et al. 2010). Marine ecosystems can be classified and distinguished in various ways 

and this includes methods based on characteristic species, substrate type, intertidal zonation 

and pelagic or benthic nature (Costello 2009). Environmental managers and conservation 

planners require standardised classifications and terminology to enable consistent mapping of 

the environment across all possible habitats (Brown et al. 2011). Ecosystem classification 

aids the understanding and ranking of biodiversity areas to support management actions, such 

as Marine Spatial Planning (MSP) and, the design and implementation of Marine Protected 

Areas (MPAs). Ecosystem classification also provides a language through which data and 

information regarding ecosystems can be communicated and managed (Mace et al. 2012). 

Brown et al. (2011) define marine ecosystem mapping as the use of spatially continuous 

environmental data sets to represent and predict biological patterns on the seafloor in a 

continuous or discontinuous manner. Marine ecosystem mapping is an essential tool to 

support modelling and management of marine ecosystems (Cogan et al. 2009). Ecosystem 

mapping can encompass various maps such as geological maps that are produced from 

acoustic surveys of the seabed combined with maps that represent biological assemblages or 

biotopes e.g. coral reef, sea grass bed and mangroves (Kurland and Woodby 2008). Habitat 

mapping plays an important part in assessing the role of the ecosystem and how it changes 

over time. Various instruments and survey techniques have evolved to support habitat 

mapping. Appropriate techniques are selected depending on the objective(s) of a project, 

particularly with respect to the scale and distribution of the seafloor features of interest and 

the required resolution of the resulting maps (Diaz et al. 2004). 

Costello (2009) explains the three general approaches used in habitat mapping, namely: in 

situ sampling, remote sensing and expert opinion. In situ sampling can provide both physical 

and biological data. This type of sampling includes the use of visual tools, grabs, cores, 

dredges, nets and traps. Remote sensing methods include satellite, aerial and acoustic 

sampling of the sea and seafloor (Kenny et al. 2003, Diaz et al. 2004). Data gathered using 

remote sensing provide different information at different spatial and temporal scales to in situ 

sampling. In situ sampling, however, provides a more accurate report of the species-habitat 
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relationship than remote sensing. Expert opinions are generally used when there is 

insufficient or no data available from a particular habitat (Costello 2009).  

2.3 Biodiversity surrogates for ecosystem mapping 

Habitat classification generally employs surrogate information as appropriate detailed levels 

of data are often not available at a national level (Przeslawski et al. 2011). There are two 

main types of biodiversity surrogates namely: taxonomic and environmental surrogates 

(Grantham et al. 2010). Taxonomic surrogates use well known groups of species (i.e. 

biological data), which are extrapolated geographically using statistical techniques (Setersdal 

and Gjerde 2011). Environmental surrogates are based on the use of both physical and 

biological data. These kinds of surrogates are further divided into those that are based on 

discrete classes (usually biological data) and those that use continuous data from selected 

areas. Classifications based on biological data as a surrogate are referred to as ecological 

classifications (also known as biotopes). Ecological classification surrogacy has been widely 

used in conservation planning, with the idea that they represent the larger number of the 

subsumed species (Grantham et al. 2010).  

The use of biological data as biodiversity surrogates for ecosystem mapping beyond scuba 

diving depths is still in its infancy (Howell 2010) when compared to other methods used. 

Many studies use acoustic ground truthing methods and deploy oceanographic instruments 

such as echo sounders, while other studies use physical and abiotic marine measures to create 

ecosystem maps (Beaman and Harris 2005, McDougall et al. 2007, Dumas et al. 2009, 

Davies et al. 2014). Kobryn et al. (2013) demonstrated that, hyperspectral remote sensing 

techniques can offer an efficient and cost effective approach to mapping and monitoring reef 

habitats of remote and inaccessible areas. Brown and Collier (2008) classified and produced 

an ecosystem map from high resolution side scan sonar data and further verified their habitat 

map using biological data derived from underwater video footage. Their study reports that 

side scan sonar is able to predict biological communities to an acceptable level of accuracy. 

2.3.1 The effect of substrate on biodiversity patterns 

Benthic environments support a significant and vital component of the ocean‘s productivity 

and biodiversity. Substrate is used in ecosystem classifications globally (Howell et al. 2010, 

Sink et al. 2012), and it is regarded as the primary determinant of community structure and 

biodiversity (Kostylev et al. 2001, McArthur et al. 2010). Hard substrate hosts a large portion 

of sessile suspension feeders such as encrusting sponges and most corals, while soft substrate 
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hosts small, discretely motile invertebrates and some small corals that have adapted to 

survive here (McArthur et al. 2010).  

2.3.2 Photographic imagery derived data versus data from physical samples 

Photographic imagery data and data derived from physical samples provide realistic estimates 

on species abundance and richness, respectively (Costello 2009). The combination of 

physical sampling and imagery-based methods to describe benthic diversity yields a better 

understanding of the habitat and provides more informed results on benthic diversity 

(Williams et al. 2015). It is however not always possible to get physical samples from deep 

sea habitats in comparison to obtaining imagery from such habitats—this is due to 

technological limitations, frequent adverse conditions and high costs of working in depths 

beyond scuba diving.  

The use of imagery provides a good platform to count abundance of epifaunal data (Solan et 

al. 2003), whereas physical samples provide richness and biomass data (Gotelli and Colwell 

2001, Diaz et al. 2004). Furthermore data derived from imagery can be used to support 

ecosystem conservation and it is easier to conduct repeat studies using images (Lam et al. 

2006, Williams et al. 2015). However, a downfall of imagery analysis is that it is often 

difficult to identify organisms to genus or species level without having physical samples to 

verify against (Deter et al. 2012, Davies et al. 2014).  

2.3.3 Habitat classification studies in South Africa 

Most recent habitat classification studies conducted in South Africa include that of Olbers et 

al. (2009), Heyns (2015), Franken (2015), Karenyi et al. (2016) and Roberson et al. (2017). 

Roberson et al. (2017) selected relevant variables and parameters (such as sea surface 

temperature, Chlorophyll-a, net primary productivity, sea slope and depth data) that best 

reflected key ecosystem properties at broad-, meso- and fine-scales to create a bioregional 

map of South Africa‘s pelagic realm. Karenyi et al. (2016) used physical variables such as 

sediment grain size, depth and upwelling-related variables (such as maximum chlorophyll a 

concentration, summer bottom oxygen concentration and sediment organic carbon content) to 

classify unconsolidated sediment seascapes of the South African west coast. Heyns (2015) 

incorporated the use of baseline data (collected by underwater video methods) to compare the 

classifications of community structure and functioning of the well-studied, shallow (< 25 m) 

and poorly studied, deep (45−75 m) reefs of the Agulhas Ecoregion.  
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Franken (2015) investigated the patterns and potential drivers of benthic communities in 

unconsolidated sediment habitats of KwaZulu-Natal (KZN), incorporating epifaunal 

communities into marine ecosystem classifications. Olbers et al. (2009) described and zoned 

the benthic communities of the subtropical Aliwal shoal, an MPA along the KZN region. Few 

studies have been conducted in the southern region of KZN that specifically examine the 

benthic biota with respect to proposed ecosystem maps. Studies conducted by Bolton and 

Stegenga (2002) and Schleyer et al. (2006), report that the region largely consists of 

subtropical reefs which host temperate and tropical fauna. Species dominating this region 

include sponge, algae, corals, echinoderms, ascidians and anemones, many of which colonise 

reef habitats. Sink et al. 2005 described the intertidal reef communities of the east coast of 

South Africa while Porter et al. 2013 described shallow subtidal reef communities of this 

area; however their studies extended further up to Mesali Island in northern Tanzania. Porter 

et al. 2017 identified depth, turbidity and suspendednsediment as potential abiotic 

determinants of shallow reef community composition in the Natal region (i.e. central KZN). 

Benthic communities in the southern region of KZN appeared to be influenced by 

topography, sediment cover and wave energy (Olbers et al. 2009). The current study 

incorporates epifaunal data from unconsolidated sediments and findings presented in Franken 

(2015) and further investigate benthic communities occurring in mixed and reef habitats of 

the southern KZN shelf.  

The South African national ecosystem classification as reported in the National Biodiversity 

Assessment (NBA), defined three main categories of ecosystem types, based on the stability 

of their substrate, as consolidated, unconsolidated and mixed ecosystem types (Sink et al. 

2012, Karenyi et al. 2016); while the KZN regional classification developed by the SeaPLAN 

project, defined five biozones (or benthic clusters) in the region including shallow sandy 

shelf, shallow gravel area, shallow mud banks, deep sloping sandy gravel shelf and the deep 

sloping muddy shelf (Livingstone 2016). The main difference between the national habitat 

classification and regional biozone classification is the approach employed in classifying 

ecosystem types. The national classification drew from biodiversity pattern data and expert 

derived divisions in physical data. The regional classification was based purely on physical 

data sets and did not take expert knowledge or any biodiversity data into account. The 

regional classification did however incorporate additional physical variables which were not 

incorporated in the national classification (Sink et al. 2011). This Chapter tests the existing 
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ecosystem classifications (national and regional) for a shelf region in southern KZN, using 

epifauna data derived from seabed photographic imagery as biodiversity surrogates. 

2.3.4 Aim and Objectives 

The aim of the current study is to test and support the improvement of existing ecosystem 

classifications using epifaunal assemblages of outer shelf ecosystems in southern KZN. 

Objectives:  

 To examine the effect of substrate type on epifaunal assemblages on the outer shelf of 

KwaZulu-Natal  

 To identify and define potential biotopes in the study area.  

 To examine the validity of existing ecosystem types proposed by the National (NBA) 

and Provincial (SeaPLAN) ecosystem classifications and maps, using epifauna data. 

Key Questions: 

 Is there a significant difference between the epifaunal assemblages in deep reef, 

mixed substrate and unconsoidated habitats of the southern KwaZulu-Natal outer 

shelf? 

 What are the biotopes and their characteristic and distinguishing taxa in the study 

area? 

 Do existing national and provincial ecosystem classifications reflect habitats as 

defined by the benthic epifaunal assemblages? 

Hypotheses: 

 H0: There are no significant differences in epifaunal communities between substrate 

types (i.e. reef, mixed and unconsolidated habitats) on the outer shelf of southern 

KwaZulu-Natal. 

 H0: The existing national and provincial ecosystem classifications reflect the same 

biodiversity pattern as those defined by benthic epifaunal assemblages. 

2.4 Methods 

2.4.1 Data collection 

Data were collected as part of the Biodiversity Surrogacy Project, a collaboration enabled by 

the African Coelacanth Ecosystem Programme (ACEP). Surveys were conducted aboard M.Y. 
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Angra Pequena vessel during May to June 2014, and June 2015. Images of the seabed and 

epifauna were obtained using a SAAB Seaeye falcon 121 777 remotely-operated vehicle 

(ROV) at 17 sites along the KZN shelf (Figure 2.1) from depths between 48–85 m, in 

unconsolidated sediment (sand, mud and gravel), mixed (both sand sediment and reef) and 

deep reef habitats.  

 
Figure 2.1: The southern KwaZulu-Natal shelf map showing the 17 study sites. 

 

At each site, the ROV was deployed from the vessel but remained tethered by an umbilical at 

all times. Once the ROV had settled on the seafloor, images of the seafloor and biota were 

captured using a fixed 45 degree camera angle. A two-point laser measure, 6.42 cm apart, was 

displayed at all times to enable calibration of the seabed area. Complementary seabed videos 

were also captured at all sites, which were used to supplement still images to increase sample 

size when necessary. The ROV was kept on or as close to the seabed as possible. All survey 

sessions were conducted while the vessel remained on anchor during daylight hours (07h00 

to 17h00), and each session took approximately 1 hour per site. For the purposes of this 
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Chapter, 17 sites were sampled off the southern KZN shelf: 8 reefs, 4 mixed and 5 

unconsolidated ecosystem types with depth ranges between 48–85 m (Table 2.1).  

Table 2.1: Unconsolidated sediment (S), mixed (XR) and reef (RF), sites sampled off the 
southern KwaZulu-Natal region for this study. The ecosystem types were categorised 
quantitatively based on visual observations during the current study: unconsolidated 
sediment (sand, mud and gravel), mixed (constitute both sand and reef) and deep reef 
habitat. 

 

2.4.2 Image analysis 

Image manipulating software (Adobe Photoshop CC 2015) was used to merge each quadrat 

with a digital grid which was designed to estimate the constant area of all images processed. 

The digital grid (Figure 2.2) was designed using R Version 3.2.2 software package, with two 

solid middle lines, set at a distance of 6.42 cm apart, and replicating the distance between the 

laser pointers of the ROV (Franken 2015).  

 Sampling 

Site 

Latitude 

(South) 

Latitude 

(East) 

Depth 

(meters) 

Regional Classification 

(SeaPLAN) 

National Ecosystem Classification 

(NBA) 

U
n

co
n

so
li

d
a

te
d

 

se
d

im
e
n

ts
 

S1 -30.34983 30.80083 69 Shallow Sandy Shelf  Natal Sandy Shelf  

S2 -30.28983 30.84583 65 Shallow Sandy Shelf Natal Shelf Reef  

S3 -30.23478 30.8924 67 Shallow Sandy Shelf Natal Sandy Shelf 

S4 -30.14445 30.92768 66 Shallow Gravel Area  Natal Sandy Shelf 

S5 -30.02950 30.98850 60 Shallow Gravel Area Natal Sandy Shelf 

M
ix

ed
 

XR1 -30.33530 30.81038 66 Shallow Sandy Shelf Natal Sandy Shelf 

XR2 -30.22483 30.89872 66 Shallow Sandy Shelf Natal Sandy Shelf 

XR3 -30.21858 30.89437 65 Shallow Sandy Shelf Natal Sandy Shelf 

XR4 -30.24305 30.86848 64 Shallow Sandy Shelf Natal Sandy Shelf 

R
ee

f 

RF1 -30.33530 30.81038 60 Shallow Sandy Shelf Natal Sandy Shelf 

RF2 -30.29788 30.84845 72 Shallow Sandy Shelf Natal Shelf Reef 

RF3 -30.25530 30.89207 75 Shallow Sandy Shelf  Natal Shelf Edge Reef  

RF4 -30.18508 30.93528 85 Shallow Sandy Shelf  Natal Sandy Shelf 

RF6 -30.14357 30.94132 69 Shallow Gravel Area  Natal Sandy Shelf 

RF7 -30.13972 30.91843 48 Shallow Gravel Area  Natal Shelf Reef 

RF5 -30.16893 30.91910 60 Shallow Gravel Area  Natal Shelf Reef 

RF8 -30.13065 30.95433 72 Shallow Gravel Area Natal Sandy Shelf 
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Figure 2.2: The designed 0.278 m2 grid used to help define the processed area with the 
middle red solid lines being overlaid on laser points of the image being processed. 

 

The grid was overlaid on all images (Figure 2.3), with the two red colour lines aligned over 

the laser point markers, therefore denoting a fixed distance and enabling a constant area of 

analysis on each image. The total area processed was calculated by using the standard area of 

the grid multiplied by the number of images processed. This study includes re-analysis of 

data from the unconsolidated sediment sites presented by Franken (2015), with Makwela and 

Franken working together to ensure consistency and a standard approach. Data from all reef 

and mixed sites were acquired by Makwela.  

All biota greater than 1 cm
2
 in size, visible within each standardized grid-defined area, were 

quantified (individual counts) and identified to the lowest possible taxon level. Taxonomic 

guides as well as taxonomic expert opinions were used for identification of taxa. A minimum 

of 25 images per study site were quantified in mixed and deep reef habitats, and 60 images 

per site in unconsolidated sediment habitat. The current study excluded identification of 

mobile epifauna, although they were observed in the footage. 
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Figure 2.3: An exemplar image captured from a mixed ecosystem type with an overlaid grid. 
Only species within the blue square area (0.278 m2) were quantified. 

 

2.4.3 Diversity Indices 

The following indices of diversity were calculated in order to estimate species composition 

and diversity of the three different ecosystem types: Shannon Wiener (H‘ (loge)), Pielou‘s 

Evenness (J‘), Species Richness (D), Total individuals (N) and Total species (S). Diversity 

indices were calculated using the DIVERSE function in PRIMER v6 (Clarke and Gorley 

2006). The Shannon Wiener diversity index is a commonly used diversity index, which 

accounts for both abundance and evenness of the species present. Pielou‘s evenness index is 

derived from the Shannon Wiener index (Heip et al. 1998, Tűrkmen and Kazanci 2010) and 

represents a measure of how evenly the relative abundance of species diversity (richness) is 

distributed in an environment. 

2.4.4 Non-parametric species estimator 

Species accumulation curves were generated using PRIMER v6 and PERMANOVA software 

(Clarke and Gorley 2006, Anderson et al. 2008) from each of the 17 sites to assess the 

cumulative species estimation over the full sample size. Additionally, three species 

accumulation curves were generated to represent combined data from each ecosystem type. 

The following non-parametric species estimators, which use abundance data, were selected to 

generate the species accumulation curves: observed richness (Sobs) and species estimators 

(Chao1, Bootstrap and Jacknife1). Sobs determines the number of species in the sample by 

randomising the species collected. Chao1 calculates the estimated true species diversity of a 

sample. It uses the number of singletons (only one individual) and doubletons (two 



http://etd.uwc.ac.za

 

 

 

 

2-33 

individuals) i.e. the rare species, to estimate the number of missing species, whereas 

Jacknife1 uses only the number of singletons to estimate the number of missing species 

(Chao et al. 2009, Gotelli and Chao 2013). Bootstrap species estimator uses abundance data 

and was originally developed for quadrat sampling (Gotelli and Chao 2013). The Bootstrap 

estimator method was generated to obtain a variance estimator and confidence interval (Chao 

et al. 2008).  

2.4.5 Statistical analysis 

Two existing ecosystem classifications, SeaPLAN and the NBA, were assessed using 

quantified epifaunal data collected from 17 sites. PRIMER v6 and PERMANOVA software 

(Clarke and Gorley 2006, Anderson et al. 2008) was used to perform multivariate analyses of 

the epifauna abundance data and to identify characteristic and distinguishing taxa among the 

different, pre-defined ecosystem types.  

The epifaunal abundance data were pre-treated with 4th root transformation and a Bray Curtis 

measure of resemblance. The 4th root transformation down-weights the dominance of over-

abundant species and increases possible inclusion of all species without being over-shadowed 

by the dominant species (Field et al. 1982). Furthermore the 4th root transformation prevents 

unusually large-bodied species from influencing the Bray Curtis dissimilarity measures 

(Clarke and Gorley 2006).  

Measures of (dis)similarity were explored with a cluster dendrogram (constructed with group 

average linkage), which defines species assemblages by grouping them according to their 

level of similarity. Similar samples were clustered within the same group while dissimilar 

samples were represented on a separate part of the dendrogram. A similarity profile analysis 

(SIMPROF) was run in conjunction with the cluster dendrogram to identify the significantly 

different groupings of sites as represented in the cluster dendrogram. SIMPROF results were 

superimposed on the dendrogram. A multi-Dimensional Scaling (nMDS) plot was generated 

to visualise sites with high similarity in epifauna community composition. The significantly 

different groups identified in the SIMPROF analysis were superimposed on the nMDS to 

reflect the proposed biotopes.  

A three-way PERMANOVA analysis was performed to test for significant differences in 

community structure among the three defined ecosystem types based on epifauna abundance 

data. Fixed factors, substrate type, SeaPLAN biome type and NBA ecosystem type were 
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included in the analysis, with type III sum of squares. PERMANOVA pairwise tests were 

used to test the significant differences within the groups of the substrate type only.  

Similarity percentage (SIMPER) analysis was conducted to detect which species characterise 

each ecosystem type and which species distinguish the ecosystem types, i.e. those species 

which contribute most to differences detected among groups. Furthermore SIMPER analysis 

was conducted to identify characteristic and distinguishing species of the proposed biotopes. 

2.5 Results 

2.5.1 Description of dataset 

The total area processed ranged between 6.95 m
2
 and 11.12 m

2
 per site for reef and mixed 

ecosystems and between 13.90 m
2
 and 16.69 m

2
 for unconsolidated sediment ecosystem type. 

A total of 166 morphospecies was recorded, with most being octocorals, followed by 

Porifera, bryozoans, ascidians and anemones. The total number of quadrats processed was 

623, resulting in a total of 13 128 individual fauna counted. 

2.5.2 Diversity and evenness indices  

 
Figure 2.4: Average total number of individuals (N) recorded per ecosystem type with 
standard error bars (± SE). 

 

As expected, results obtained for both average total number of individuals (N) and average 

total number of species (S) per ecosystem type (Figure 2.4 and 2.5) showed that reef 

ecosystem type had more species and more individuals than the other two ecosystem types. 

Unconsolidated sediment had the lowest total number of species.  
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Figure 2.5: Average total number of species (S) per ecosystem type with standard error bars 
(± SE). 

 

In terms of species richness (Figure 2.6), reef ecosystem type had a relatively high number of 

species per sample when compared to the other two ecosystem types, followed by mixed 

ecosystem type and unconsolidated sediment which had relatively low number of species.  

 
Figure 2.6: Average species richness of the three ecosystem types with standard error bars 
(± SE). 

 

The Shannon Wiener index of diversity (Figure 2.7) indicated that both reef and mixed 

habitats had values above 3, indicating that these ecosystem types displayed greater diversity 

than unconsolidated sediment which had a value of around two. Pielou‘s Evenness index 

(Figure 2.8), showed that species distribution in all three ecosystem types had similar eveness 
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(between 0.974−0.987), however there was relatively high level of inconsistency (skewed 

distribution) in eveness among sites from unconsolidated sediment. 

 
Figure 2.7: Shannon Wiener index diversity of the three ecosystem types with standard error 
bars (± SE). 

 

 
Figure 2.8: Pielou’s evenness of the three ecosystem types with standard error bars (± SE). 

 

2.5.3 Non-parametric species estimator 

Species accumulation curves (Figure 2.9-11) were plotted to observe and estimate the species 

richness of the three ecosystem types.  
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RF1 

 

RF2 

 

RF3 

 

RF4 

 

RF6 

 

RF7 

 

RF5 

 

RF8 

Figure 2.9: The species accumulation curves generated from eight reef sites through non-
parametric approaches. Sobs determines number of species; Chao1 calculates the 
estimated true species diversity, Jacknife 1 uses only the number of singletons while 
bootstrap obtains variance estimator and confidence interval. 
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For both reef (Figure 2.9) and mixed ecosystem (Figure 2.10) types, most curves reached an 

asymptote after 25 quadrats, indicating that 25 samples were sufficient to identify most 

species present in those ecosystem types. The results, however, implied that more samples 

needed to be processed in order to reach an asymptote for curves of sites RF1, RF6, XR1 and 

XR3. At site XR4 (Figure 2.10) the Sobs, Jacknife1 and Bootstrap curves flatten out after 

approximately 25 samples, but the Chao1 curve showed some interesting results in which the 

curve flattened out initially but thereafter started to show an increase in species count with an 

increase in quadrats.  

 

XR1 

 

XR2 

 

XR3 

 

XR4 

Figure 2.10: Species accumulation curves generated from four mixed ecosystem sites 
through non-parametric approaches. 

 

The results for unconsolidated sediment sites (Figure 2.11) were different from the other two 

ecosystem types results, in that the species accumulation curves did not reach asymptotes (in 

particular Bootstrap and Sobs results at S1, S2, S3 and S4) even after processing a maximum 

of 60 quadrats (13.9m
2
) per site. It was only at Site S5 where the Sobs curve reached an 

asymptote and met with the Chao1 curve. This implied that after processing 60 samples from 

Site S5, both the observed richness and estimator agree that all species of this area are likely 

to be detected. The Jacknife estimator curve of S5 showed an overestimation of rare species. 
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More interesting results were observed with the Chao1 curves at sites S1, S3 and S4 showing 

an overestimation of rare species in these samples.  

 

S1 

 

S2 

 

S3 

 

S4 

 

S5 

 

Figure 2.11: Species accumulation curves generated from five unconsolidated sediment 
sites through non-parametric approaches. 
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2.5.4 Benthic epifauna community types 

The cluster dendrogram (Figure 2.12a) and nMDS plot (Figure 2.13) showed a clear 

separation between epifaunal assemblages from unconsolidated sediment and those from 

mixed and reef sites. The solid black lines in the dendrogram represented significant 

differences among groups defined by SIMPROF analysis while dotted red lines indicated no 

significant differences. All unconsolidated sediment sites namely S1, S2, S4 and S3, S5 

clustered together and within this cluster there were further subgroups, with S1, S2 and S4 

sites forming biotope 1 and a potential biotope A made up of sites S3 and S5. The second 

cluster of the mixed and reef ecosystem types consist of RF1, RF2, RF3, RF4, RF5, 

RF6,RF7, RF8, XR2, XR3 and XR4, with XR1 being an outlier. The sites were further 

divided into subgroups of sites RF1and RF4 (forming a potential biotope B for mixed sites), 

grouping away from XR2, XR3 and XR4 (forming biotope 2 made up of mixed sites); and 

the second subgroup sites are RF6, RF7, RF5 and RF8 (forming biotope 3 made up of reef 

sites) grouping away from RF2 and RF3 which were outliers within the reef group.  
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b) Key: NSS = Natal Sandy Shelf, NSR = Natal Shelf Reef and NSER = Natal shelf Edge Reef

 
 
c) Key: SSS = Shallow Sandy Shelf and SGA = Shallow Gravel Area

 
Figure 2.12: A dendrogram with SIMPROF showing two distinct groupings one from 
unconsolidated sediment sites and the other group from reef and mixed substrate sites 
combined. Figure 2.12 b and c show classification of sites according to the existing 
ecosystem classifications (NBA and SeaPLAN respectively). SIMPROF dashed lines implies 
that there is no significant difference within the groups. 
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b) 

 
Figure 2.13: Multi-dimensional scaling plot (a) showing epifaunal assemblage separation 
between unconsolidated sediment sites and the mixed and reef sites. Reef and mixed sites 
grouped together except for one mixed site (XR1) which seemed to be an outlier. (b) The 
nMDS plot showing sites labelled with newly assigned three biotopes and two potential 
biotopes based on significantly different groupings from the SIMPROF analysis. 
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2.5.5 Testing existing ecosystem types with epifauna 

Ecosystem types depicted by epifauna data in the current study contradicted both the NBA 

and SeaPLAN ecosystem classifications. The NBA (Figure 2.12b) grouped site S2 as Natal 

shelf reef while the current study grouped site S2 as unconsolidated sediments. Sites XR1, 

XR2, XR3 and RF1, RF8 and RF6, which were categorised as mixed and reef ecosystem 

types in this study, were all classified as Natal sandy shelf in the NBA. Some similarity was 

observed among sites S1, S3, S4 and S5 which were classified as unconsolidated sediment 

sites in both the NBA classification and the current study. SeaPLAN (Figure 2.12c) classified 

sites S4 and S5 as reef; however epifauna data from this study classified those reefs as 

unconsolidated sediment sites. All sites defined as mixed ecosystems in the current study 

were classified as shallow sandy shelf sites in SeaPLAN. The four sites classified as shallow 

gravel area in SeaPLAN clustered together in the current study as reef sites. 

2.5.6 Testing the significance of epifauna for three factors (substrate type, NBA, and 

SeaPLAN) 

The PERMANOVA analysis revealed a significant difference in substrate types defined in 

this study as unconsolidated sediment, mixed and reef (p = 0.0001, pseudo F = 7.0368, d.f. = 

2; Table 2.2). Pairwise tests of the significantly different substrate types indicated that the 

epifaunal communities in all three substrates types were significantly different to each other 

(Table 2.2). Results from the PERMANOVA analysis showed no significant difference 

among the NBA ecosystem types depicted by the epifauna community (p = 0.6457, pseudo-F 

= 0.78, d.f. = 2; Table 2.2). Similarly, there was no significant difference among the 

SeaPLAN ecosystem types depicted by the epifauna community in this study (p = 0.2164, 

pseudo F = 1.27, d.f. = 1; Table 2.2). 
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Table 2.2: Three-way PERMANOVA results for the three factors namely substrate type, NBA 
type and SEAPlan with pairwise test performed for substrate type factor. 
Main Factors Df SS MS Pseudo-f P(perm) Unique perm 

 Substrate 

type 

2 23496 11748 7.03684 0.0001 9893 

 NBA 2 3578.7 3578.7 0.78026 0.6457 6807 

 SeaPLAN 1 4700.3 2350.2 1.24 0.2164 8515 

 

Pairwise Factors  Groups t-value  P (perm) Unique perm 

 Substrate 

type 

      

   Sand, Mixed 2.4827  0.0064 126 

   Sand, Reef 3.2748  0.0009 1286 

   Mixed, Reef 1.785  0.0029 495 

 

2.5.7 Distinguishing species between ecosystem types 

A SIMPER dissimilarity analysis showed high dissimilarity between epifauna from 

unconsolidated sediment and mixed habitats (average dissimilarity = 99.43%, Figure 2.14(a)) 

and between unconsolidated sediment and reef habitats (average dissimilarity = 99.75%, 

Figure 2.14(b)). The  average dissimilarity between the mixed and reef epifauna was 93.83% 

(Figure 2.14(c)) indicating that epifaunal communities occurring in mixed and reef habitats 

were more similar than those occurring in unconsolidated sediment. 

In Figure 2.14(a) Sclerobelemnon sp., Homophyton verrucosum and Ciocalypta sp. were the 

top three species which contributed most to the difference between epifaunal assemblages in 

unconsolidated sediment and mixed habitat. Species such as Sclerobelemnon sp. and 

Capnella thyrsoidea occurred in unconsolidated sediment ecosystems only. In Figure 2.14(b) 

the top three species which contributed most to the difference between unconsolidated 

sediment and reef ecosystem were Halichondriidae sp., Ciocalypta sp. and Sclerobelemnon 

sp. In Figure 2.14(c) Halichondriidae sp., Ciocalypta sp. and Astromuricea fusca were the 

top three species which contributed to the difference between epifauna at mixed and reef 

habitats. Sclerobelemnon sp. is a burrowing sea pen which occurred only on the sand habitat, 

whereas sponges Ciocalypta sp. and Halichondriidae sp. preferred reef and mixed habitat. 

The warty twig coral Homophyton verrucosum occurred in all ecosystem types, but with a 

greater abundance in mixed ecosystem than in the other two habitats. 



http://etd.uwc.ac.za

 

 

 

 

2-45 

a) 

b) 

 

c)

 
Figure 2.14: Graphical presentation of SIMPER results between the three ecosystem types, 
showing standard error bars with the average dissimilarity (AD). A to c shows the 
distinguishing species between (a) unconsolidated sediment and mixed, (b) between 
unconsolidated sediment and reef and between mixed and (c) reef ecosystem types 
respectively. The x-axis denotes average abundance of species.   
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2.5.8 The characteristic and distinguishing species of the observed biotopes and the 

potential biotopes as determined by SIMPER analysis 

The average similarity within the biotopes 1, 2 and 3 were 53.60 %, 58.98 % and 60.51 % 

respectively; while the average similarity within potential biotopes A and B were 19.56 % 

and 64.22 % respectively. The average dissimilarity between biotope 1 and potential biotope 

A was 83.57 % while the average dissimilarity between biotope 2 and potential biotope B 

was 54.20 % (Table 2.3). 

Table 2.3: SIMPER analyses of the three biotopes and two potential biotopes, black cells 
indicate average similarity (%) within each biotope or potential biotope while white cells 
indicate average dissimilarity (%) between any two biotopes or potential biotopes. 
 Biotope 1 (3 

sites) 

Biotope 2 (3 

sites) 

Biotope 3 (5 

sites) 

Potential 

biotope A (2 

sites) 

Potential 

biotope B 

(2 sites) 

Biotope 1 (3 

sites) 

53.60     

Biotope 2 (3 

sites) 

88.18 58.94    

Biotope 3 (5 

sites) 

92.25 58.57 60.51   

Potential biotope 

A (2 sites) 

83.57 97.78 99.36 19.56  

Potential biotope 

B 

(2 sites) 

91.52 54.20 54.29 96.66 64.22 

 

The top five species characteristic to biotope 1 were all octocorals (sea pens and seafans), 

while in potential biotope A only one octocoral species served as a characteristic species. In 

both biotope 2 and potential biotope B the top five characteristic species were a mix of 

octocorals, sponge and bryozoan; while characteristic species of biotope 3 were all Porifera 

(sponge) morphospecies (Table 2.4).  

An octocoral Homophyton verrucosum and sponge Ciocalypta sp. were the two top 

distinguishing species between biotope 1 and biotope 2, while Porifera morphospecies 

Halichondriidae sp. and Ciocalypta sp. were the two top distinguishing species between 

biotope 1 and biotope 3. The top two distinguishing species between biotope 2 and biotope 3 

were two Porifera morphospecies Halichondriidae sp. and Hemiasterella sp. 2 (Table 2.5). 
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Table 2.4: Similarity percentages breakdown analysis (SIMPER analysis) of all biotopes and 
potential biotopes, presenting top five characteristic taxa and their average contribution (%) 
to the overall similarity of the biotopes. 

Biotope / 

Potential 

biotope 

Sampling 

sites 

Characteristic 

species 

Contribution 

(%)  

Common name 

Biotope 1 S1, S2, S4 Capnella thyrsoidea 

Cf. Echinomuricea 

fusca 

Biemnidae sp. 

Leptogorgia gilchristi 

Melithaea sp. 1 

18.71 

13.90 

 

12.43 

12.07 

11.33 

Cauliflower coral 

Octocoral 

 

Sponge 

Soft coral 

Octocoral 

Biotope 2 XR2, XR3, XR4 Homophyton 

verrucosum 

Astromuricea fusca 

Ciocalypta sp. 

Reteporella lata 

Axinellida sp. 

5.62 

 

4.30 

4.17 

3.57 

3.51 

Seafan Octocoral 

 

Seafan Octocoral 

Sponge 

Bryozoan 

Sponge 

Biotope 3 RF3, RF5, Rf6, 

Rf7, RF8 

Ciocalypta sp. 

Halichondriidae sp. 

Axinellida sp. 

Hemiasterella sp. 2 

Tetractinellida sp. 2 

6.01 

4.60 

3.95 

3.78 

3.37 

Sponge 

Sponge 

Sponge 

Sponge 

Sponge 

Potential biotope A S3, S5 Sclerobelemnon sp.  100 Seapen 

Potential biotope B RF1, RF4 Cf. Bicellariella sp. 

Ciocalypta sp. 

Clavularia sp. 

Flustramorpha sp. 

Parasphaeroscleridae 

sp. 

4.53 

4.31 

3.79 

3.68 

3.65 

 

Bryozoan 

Sponge 

Soft Coral 

Bryozoan 

Seapen 
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Table 2.5: Similarity percentages breakdown analyses (SIMPER analysis) of all biotopes 
(and or potential biotopes) with distinguishing taxa between any two biotopes (including 
potential biotopes). Average abundance = counts per unit area 
Community types 

compared 

Distingushing 

species 

Common name Average abundance 

(in brackets) for 

each biotope  

Contribution % 

Biotope 1 & 2 Homophyton 

verrucosum 

Ciocalypta sp. 

Parasphaeroscleridae 

sp. 

Clathria sp. 1 

Axinellida sp. 

 B 2(0.00), B 3(1.14) 

 

B 2(0.00), B 3(1.13) 

B 2(0.00), B 3(0.97) 

 

B 2(0.00), B 3(0.94) 

B 2(0.00), B 3(0.86) 

3.25 

 

3.24 

2.75 

 

2.64 

2.41 

Biotope 1 & 3 Halichondriidae sp. 

Ciocalypta sp. 

Hemiasterella sp. 2 

Lithochela conica 

Tetractinellida sp. 1 

 B 1(1.63), B 2(0.00) 

B 1(1.53), B 2(0.00) 

B 1(1.12), B 2(0.00) 

B 1(1.07), B 2(0.00) 

B 1(0.93), B 2(0.00) 

3.32 

3.27 

2.38 

2.27 

1.90 

Biotope 3 & 2 Halichondriidae sp.  

Hemiasterella sp. 2 

Lithochela conica 

Parasphaeroscleridae 

sp. 

Helicogorgia cf. 

capensis sp. 

 B 1(1.63), B 3(0.22) 

B 1(1.12), B 3(0.00) 

B 1(0.93), B 3(0.00) 

B 1(0.47), B 3(0.97) 

 

B 1(0.00), B 3(0.73) 

3.18 

2.44 

1.98 

1.60 

 

1.59 

 

A seapen Sclerobelemnon sp. and seafan cf. Echinomuricea atlantica (contributing 12.91 and 

8.32 % respectively) were the top two distinguishing species between potential biotope A and 

biotope 1, while bryozoan cf. Bicellariella sp. and sponge Ciocalypta sp. (contributing 2.92 

and 2.85 % respectively) were the top two distinguishing species between potential biotope B 

and biotope 2 (Table 2.6).  
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Table 2.6: Similarity percentages breakdown analyses (SIMPER analysis) of all community 
types with distinguishing taxa between any two biotopes or potential biotopes. Average 
abundance = counts per unit area 
Biotopes & / 

Potential Biotopes 

compared 

Distinguishing 

species 

Common name Average abundance (in 

brackets) for each 

Biotope/Potential 

biotope  

Contribution % 

Potential biotope A & 

Biotope 1 

Sclerobelemnon sp. 

Cf. Echinomuricea 

atlantica 

Leptogorgia gilchristi 

Capnella thyrsoidea  

Biemnidae sp. 

Sea pen 

Sea fan 

 

Octocoral 

Cauliflower coral 

Sponge 

Pb B(0.77), B 2(0.72) 

Pb B(0.00), B 2(0.63) 

 

Pb B(0.00), B 2(0.53) 

Pb B(0.24), B 2(0.74) 

Pb B(0.00), B 2(0.48) 

12.91 

8.32 

 

7.04 

6.89 

6.76 

Potential biotope B &  

Biotope 2 

Cf. Bicellariella sp. 

Helicogorgia cf. 

capensis sp. 

Dendronephthya sp. 

Homophyton 

verrucosum 

Clavularia sp. 

Bryozoan 

Sea fan 

 

Octocoral 

Octocoral 

 

Octocoral 

Pb A(1.24), B 3(0.00) 

Pb A(0.97), B 3(0.00) 

 

Pb A(0.88), B 3(0.00) 

Pb A(0.32), B 3(1.14) 

 

Pb A(1.02), B 3(0.23) 

3.05 

2.39 

 

2.17 

2.07 

 

1.95 

 

2.6 Discussion 

This Chapter presents the first set of results obtained from visually surveying epifauna from 

three different substrate types (unconsolidated sediment, reef and mixed habitat) on the outer 

shelf in the southern region of KZN. The current study tested the effectiveness of the South 

African national ecosystem classifications (NBA) and the KZN provincial biozone 

classification (SeaPLAN) in reflecting benthic epifaunal diversity.  

2.6.1 Testing the existing classifications 

The results obtained from the current study indicated a mismatch between epifaunal patterns 

and both existing classifications. When testing for significant difference in epifaunal 

assemblages between different ecosystem types as defined by existing ecosystem 

classifications, there was no significant difference between shallow sandy shelf (SSS) and the 

shallow gravel area (SGA) groups as defined by SeaPLAN. There were no significant 

differences among epifauna between Natal sandy shelf (NSS), Natal shelf reef (NSR) and 

Natal shelf edge reef (NSER) as defined by the national ecosystem classification (Sink et al. 

2012). However, the p-values obtained (Table 2.2) show significant differences between the 

different substrate types (reef, mixed and unconsolidated sediment). 
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The first null hypothesis, which states that there is no significant difference among reef, 

mixed and unconsolidated sediment epifaunal communities of the study area, was rejected. 

The epifauna at unconsolidated sediment sites were significantly different to both mixed and 

reef substrates and epifauna occurring on mixed substrates were also significantly different to 

those occurring on reef. The significantly different epifaunal communities detected in sand, 

mixed and reef habitats are not reflected in the ecosystem types represented in either of the 

existing ecosystem classifications tested. The second null hypothesis, which states that 

existing national and provincial ecosystem classifications reflect the same habitats as those 

defined by benthic epifaunal assemblages, was also rejected by the study findings.  

2.6.2 SeaPLAN and NBA versus the current study classifications 

There was a mismatch in classifying sites using the SeaPLAN and the NBA ecosystem 

typologies. According to the NBA ecosystem classification, sites RF1, RF6 and RF8 are 

classified as NSS, which contradict this study finding as they are grouped within the Natal 

reefs. Site S2 is classified as a NSR on the NBA ecosystem classification however it was 

established as an unconsolidated site in this study. The SeaPLAN ecosystem classification 

classified RF1, RF2, RF3 and RF4 as SSS while this study classified them as reef sites. Sites 

S4 and S5 were classified as SGA in SeaPLAN, while in this study they were found to be 

unconsolidated sediment sites.  

This mismatch shows some gaps which are produced by the methods used in developing the 

two existing ecosystem classifications using broad-scale (produced from available remote 

sensing data (SeaPLAN), physical data and expert opinion, Sink et al. 2012), versus the 

narrow-scale of using biodiversity surrogates as done in the current study through in situ 

sampling. Costello (2009) reports that in situ sampling provides a more accurate report on 

species-ecosystem relationships than remote sensed methods. Expert opinion provides low 

cost maps as the information relies on the knowledge of experts in the field. Combining these 

various methods will provide well informed classifications with better maps and fewer data 

gaps.  
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2.6.3 Species composition and diversity 

Owing to their limited mobility and ability to integrate environmental conditions, benthic 

macro-invertebrates are widely used in biological monitoring studies (Tűrkmen and Kazanci 

2010). The current study reports that of the three ecosystem types in KZN southern region, 

both reef and mixed habitats have more diverse species than unconsolidated habitats. These 

species require hard substrate to anchor and grow on, such as hard corals, soft corals and 

encrusting species (Porifera morphospecies). Non-parametric analyses showed that both reef 

and mixed ecosystems have greater diversity of epifaunal communities that are evenly and 

equally distributed. Furthermore, results obtained from non-parametric species estimators 

(species accumulation curves) for both reef and mixed sites reached asymptotes, indicating 

that sufficient samples were processed to capture most species present in these ecosystem 

types. It is however observed that results from site XR4 suggested that there was possibility 

of detecting more rare species with an increase in sampling effort.  

On the contrary, unconsolidated sediments results for non-parametric species estimators 

implied that it was unlikely to capture all species occurring using random sampling due to the 

sparseness of species found in unconsolidated sand. The unconsolidated sediment ecosystem 

had sparse species distribution, mostly comprised of sea pens and some soft corals such as 

Sclerebelemnon sp. and Capnella thyrsoidea; these epifauna require soft substrate to grow on. 

Due to their physical nature, unconsolidated sediment habitats are easily disturbed and highly 

mobile, and they are therefore not able to support long-lived sedentary epifaunal species. The 

current study agrees with other international studies (Kostylev et al. 2001, Olenin and 

Ducrotoy 2006, Howell 2010) in that species composition and community patterns are 

strongly determined by the nature of the ecosystem (surrounding abiotic conditions) with a 

greater abundance of species found on hard substrate than on soft substrate. 

The current study shows the strong relationship between the substrate type and its fauna, as 

also indicated by Howell (2010). Reef ecosystem sites were mostly composed of gorgonians 

and Porifera species, agreeing with literature, as these species are known to occur on hard 

substrates (Ofwegen and Schleyer 1997, Samaai et al. 2010, Mohammad et al. 2016). It is 

however noted that the results from this study need to be interpreted with caution as some of 

the species which are known to be found on hard substrate (reef) were observed on 

unconsolidated sediment — these include octocoral species such as Melithaea sp. 1, cf. 

Echinomuricea atlantica and Menella sp. We suspect that unconsolidated sediment sites 
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which have reef species are actually reefs covered by sand, and therefore should be classified 

as mixed habitat. 

Furthermore, mixed ecosystem sites were composed of species which are generally 

associated with both hard (reef) and soft (unconsolidated sediment) substrates, with most 

species being from reef rather than unconsolidated sediment. An octocoral, cf. Echinomuricea 

atlantica, was observed in both mixed and reef habitat, but showed a greater abundance in 

mixed habitat. This implies that although this species anchors on hard substrate it does 

however tolerate sand very well. Mixed ecosystem types were observed to be reef/rock 

inundated by sand, hence the presence of hard ground species in mixed habitat, especially 

those which appeared to be sand sites. De Clerk et al. (2005) reported some low-lying flat 

reefs that experience sand burial in the study area. Periodic sand inundation might result from 

topography and the fast flowing Agulhas current which frequently flows at more than 4 knots 

through the study region (Lutjeharms et al. 2010, Porter et al. 2017). Thomson et al. (2014) 

reported that close coupling between sediments chararacteristics and reef communities are 

due to possible change in water flow that affect translocation on materials or organisms 

between reef and soft-sediments habitats. Their study further highlights the importance of 

sand as a physical surrogate, indicating that measures of habitat are good predictors of 

biodiversity when using predictive methods. 

2.6.4 Other study findings from the current study area 

The current study identified three biotopes (biotope 1, 2 and 3) and two potential biotopes 

(potential biotope A and B) from the three substrate types. The unconsolidated sediments 

sites which formed community type 1 were composed of pure sand and gravel sites as 

defined by Franken (2015), who investigated patterns of benthic epifaunal communities in 

unconsolidated sediments habitats of the KZN shelf. The current study findings revealed a 

clear separation within unconsolidated sediment sites, with pure sand sites forming biotope 1 

and the gravel sites forming a potential biotope A. The current results from unconsolidated 

sites agreed with the results of Franken (2015) in which the two sites which form potential 

biotope A identified here were grouped with other gravel sites. Biotope 2 and potential 

biotope B were mixed sites (reefs with high sand cover) while biotope 3 consisted of high 

profile reefs that appear to be less vulnerable to sand inundation. We recommend further 

sampling in the study area in order to understand the current potential biotopes especially for 

mixed substrate types, as this substrate type appeared to be characterised by species 

originating from both unconsolidated sediments and reef ecosystems. 
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Findings from the current study conform with the earlier reports of Schleyer et al. (2006), and 

Bolton and Stegenga (2002), except that their findings include identification of algae and 

echinoderms because their study was much shallower than the current study. The current 

study excluded identification of mobile epifauna such as echinoderms, although they were 

observed in the footage. There were no record of algae in the current study; this is due to the 

different depth range of the current study compared to that used in earlier studies (light 

penetration is limited in the current study). 

Results from this study should be interpreted with care, as they contradict the findings of 

Olbers et al. (2009), who reported that the Aliwal Shoal (which forms part of this study as 

sites RF1, RF2 and RF3) has three communities, while this study only recognised two 

different community types (Figure 2.7). The reason the results from these two studies are not 

comparable is most likely because of the different depth range. In their study (Olbers et al. 

2009) collected data using underwater photography at a shallower depth than the current 

study and analysed the data by point intercept method. 

A complementary project conducted by Franken (2015) visually surveyed epifauna of the 

unconsolidated sediment habitats on the KZN shelf. The results from the Franken (2015) 

study agree with the current study results, as both the national and provincial ecosystem 

classifications were found to poorly represent the epifaunal community distributions when 

tested against the benthic epifauna data. Franken (2015) further states that biological 

verification of the existing ecosystem classifications is important as they form the basis for 

marine ecosystem assessments. 

2.6.5 Conclusion and future study suggestions 

Despite assistance from experts and taxonomic guides, a limitation of this study lies in the 

identity and taxonomy of observed taxa (Deter et al. 2012, Davies et al. 2014). It was 

frequently difficult or impossible to accurately identify taxa to species level due to poor 

image resolution quality; and lack of specimens which required laboratory and microscopic 

work to accurately identify to species level. Due to limited field time for the current study, we 

were unable to collect specimens by specialist diving or using the ROV manipulator arm. 

Collection of specimens is strongly recommended when preparing future investigations 

similar to the current study. Further investigations of monitoring the KwaZulu-Natal seabed 

should be implemented to improve understanding of the constantly changing seabed which 

might be due to the extremely fast current speed in the area and other environmental factors. 
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The results from the investigations have improved the understanding of the seabed 

ecosystems and will contribute to updating relevant ecosystem maps. The next Chapter 

focuses on investigating key potential drivers of marine biodiversity patterns of KwaZulu-

Natal reef ecosystems.  
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3 Identification of potential drivers of patterns in deep reef epifaunal 

assemblages in KwaZulu-Natal  

3.1 Abstract 

Benthic epifaunal assemblages are strongly influenced by their surrounding environment. The 

aim of this study was to identify the key potential environmental drivers of reef epifaunal 

assemblage patterns in the 48 to 85m depth range between Pennington and Ballito on the 

KwaZulu-Natal (KZN) outer shelf. Epifauna data were extracted from seabed imagery 

collected using a remotely-operated vehicle (ROV). Environmental data were collected 

during project cruises, supplemented with data collated from collaborative research and 

online resources such as ocean colour data. Multivariate analysis of epifaunal data showed a 

significant difference between the reefs north and south of Durban. This is interpreted as a 

possible biogeographic break off Durban with reef assemblages north and south of this break 

differing by approximately 65%. Reefs located north of Durban had higher abundance of 

octocorals such as Leptogorgia gilchristi, Paraspaeraschleridae sp. and cf. Echonomuricea 

atlantica, while south of Durban, reefs hosted more Porifera morphospecies such as 

Halichondriidae sp., Hemiasterella sp. 2 and bryozoan cf. Bicellariella sp. The species 

Ciocalypta sp. was identified as characteristic of all deep reefs across the study area. 

SIMPER analysis revealed two biotopes and two potential biotopes each from North and 

South of Durban. DISTLM analysis was used to examine the relationship between observed 

patterns in epifauna and 12 potential environmental drivers. Distance from shelf edge, 

latitude, sea surface temperature, phosphate and distance from shore showed a significant 

relationship with patterns in epifauna, while bottom temperature, turbidity, light attenuation, 

bottom oxygen and depth did not emerge as significant potential drivers of epifaunal patterns. 

There were limitations to the study including the restricted sampling area, relatively narrow 

depth range and the challenges due to poor knowledge of reef distribution and high current in 

the area. This study is the first to provide quantitative descriptions of epifaunal assemblages 

on the deep reefs of KZN and contributes to the understanding of the relationship between 

epifaunal assemblages and their physical environment. 
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3.2 Introduction 

Marine environments can be classified and mapped in various ways depending on the user 

requirements and resources (Kenny et al. 2003). Classification systems can be developed by 

defining habitats according to their physical environment and their associated fauna and flora. 

Benthic biodiversity is readily incorporated into classification systems and reflects physical 

components of ecosystems (e.g. benthic assemblages vary with depth, wave exposure and 

substrate) and serves as an appropriate ecosystem component to test ecosystem classification 

(Blanchard et al. 2013, Thomson et al. 2014, Porter et al. 2017). Approaches to classification 

have been driven by geophysical structure, oceanographic and biological processes, species-

habitat relationships and their combinations (Costello 2009). There are various factors which 

contribute to the growth and productivity of an ecosystem, regardless of the environment 

being terrestrial or marine. Among others, physical factors play an important role in 

predicting the relationship between the environment and its living organisms; hence the role 

of physical factors cannot be overlooked in ecosystem classification processes (Bremner et 

al. 2006, Howell et al. 2010, Przeslawski et al. 2011). Studying these factors gives a better 

understanding of the habitat structure and the biodiversity of the area (McArthur et al. 2010, 

Richmond and Stevens 2014, Smit et al. 2017). 

3.2.1 Definition of environmental drivers 

Douglass et al. (2014) define environmental drivers as the physico-chemical processes and 

other factors that determine habitat conditions and influence the distribution and abundance 

of taxa, including their connectivity between similar habitats. The strength of environmental 

drivers depends on the scale of the sampling area. Some drivers are more influential at finer 

scales while others are more influential at broader scales (Bremner et al. 2006, Blanchard et 

al. 2013). For example, seabed morphology is important for structuring species assemblages 

at local scales while salinity can play an important determinant of broad scale species 

assemblages (Bremner et al. 2006).  

3.2.2 Using environmental variables as surrogates 

The use of environmental variables to define species distributions and the link between 

abiotic and biotic components of marine environments remains poorly defined (Post et al. 

2006). Depth is one of the commonly used biodiversity surrogates, since many species have a 

predictable and restricted depth range (Howell 2010, Howell et al. 2010, Fennessy 2016). 

Across the globe studies have established the importance of depth and it is the most studied 
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factor in marine species distribution studies (Bergen et al. 2001, Lesser et al. 2009, 

Richmond and Stevens 2014, Heyns et al. 2016). Depth serves as one of the widely accepted 

surrogates for the combined influence of environmental parameters, such as topography, food 

supply, light, sediment type and slope, on benthic biological communities (Howell 2010). The 

influence of environmental variables on species distributions often depends on more than one 

environmental variable; for example sediment grain size is not the only determinant of 

species distribution and community structure, however currents may also play an important 

role in defining species distribution and community structure (Post et al. 2006). Spatial 

variables such as latitude, latitude, and depth are not direct drivers of biodiversity patterns but 

they often correspond with driving gradients and may assist with prediction of these patterns 

(McArthur et al. 2010, Anderson et al. 2011). On the contrary, variables such as temperature, 

salinity, oxygen concentration, light availability and sediment composition have been 

reported to have strong influence over benthic species distributions (Post et al. 2006, 

McArthur et al. 2010). 

Variables such as temperature, salinity and pH often have a direct influence on presence and 

abundance of benthic species and differ over spatial and temporal scales. However studies 

have shown that there are no fixed primary factors for species distribution as they are unique 

to different study regions (Bergen et al. 2001, Bremner et al. 2006, Post et al. 2006). The 

shelf edge zone or continental margin including the shelf break has been reported to form a 

distinct habitat type due to the upwelling events and nutrient rich waters associated with this 

zone (Meyer et al. 2002, Sink et al 2012, Richmond and Stevens 2014). 

3.2.3 Global studies on physical drivers  

Monk et al. (2016) quantified the diversity of morphotype classes occurring on the 

outcropping reef system in Southern Australia. They outlined the importance of outcropping 

reef features (drivers of biodiversity patterns) in representing epibenthic faunal diversity and 

the relevance of these habitats to conservation planning. Furthermore, their study 

demonstrated the difference in epibenthic morphotype assemblages between outcropping reef 

edge features and adjacent sediment inundated reefs. Post et al. (2006) investigated the link 

between physical and biological data sets for the Southern Gulf of Carpentaria (Australia). 

Their results revealed that the distribution of benthic macrofauna changed gradually across 

the Gulf and that fine scale species-environment relationships were long-term, consistent 

with the broader associations observed for some organisms within the Gulf. The study of 

Blanchard et al. (2013) investigated factors that drive macrofaunal distributions of the 
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northeast Chukchi Sea using benthic macrofauna and environmental characteristics. Their 

studies report that variations in study sites were correlated with depth and bottom 

temperature, whereas topographic control rather than circulation appeared to be a primary 

driver in structuring benthic communities of this region. Neumann et al. (2009) found that the 

cold winter temperature influenced shallow area epifauna whereas the increased sea surface 

temperature during the warming season influenced the entire epifauna through increased food 

supply. This suggests that there is a link between temperature and food supply.  

The Ocean Colour Climate Change Initiative (OC-CCI), was launched in 2010 by the 

European Space Agency with the goal to create long term, consistent, stable, error-

characterised merged ocean-colour products (MODIS-Aqua, SeaWiFS and MERIS), for use 

in climate change and other studies (Brewin et al. 2015, https://www.oceancolour.org/). The 

use of MODIS satellite data allows for investigation of ocean colour data which often are 

difficult to obtain due to limited resources. Miller et al. (2015) incorporated satellite imagery 

data of Chlorophyll and Sea Surface Temperature (SST) to identify zones of ecological 

importance in the process of defining marine protected areas. Álvarez-Romero et al. (2013) 

report that MODIS-Aqua true-colour satellite imagery data were useful to map river plumes 

and to qualitatively assess exposure to land-based pollutants across the Great Barrier Reef. 

Furthermore their results produced maps of exposure to suspended sediment and dissolved 

inorganic nitrogen. These studies present the importance of MODIS-Aqua data in monitoring 

the exposure of coastal and marine ecosystems to riverine flow and plumes (Constantin et al. 

2016) and their ecological influences.  

3.2.4 Studies on physical drivers in South Africa 

Karenyi et al. (2016) conducted infauna studies in unconsolidated sediments of the west coast 

of South Africa, defining seascapes for shelf sediments in this eastern boundary upwelling 

region. They measured geophysical variables including depth, sediment grain size and 

sediment organic carbon; resulting in the recognition of depth and sediment type as key 

drivers of the marine benthic ecosystems. Franken (2015) described the community structure 

of the epifauna of unconsolidated sediment habitat types for KwaZulu-Natal (KZN); the 

following five factors emerged as their potential drivers: percentage gravel, chlorophyll-a 

levels in August, mean annual bottom temperature, distance from shore and percentage 

sediment organic carbon. Franken (2015) reported that the distribution of benthic 

macrofaunal communities was most frequently related to depth and sediment type; their 

results agreeing with Karenyi et al. (2016) findings. Porter et al. (2017) investigated the 
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abiotic determinants of community composition on shallow subtidal reefs along the East 

African coast including the Natal region. Depth, turbidity and suspended sediments were 

strongly associated with community composition within the Natal region. Heyns et al. (2016) 

established depth-related distribution patterns and drivers of macrobenthos between shallow 

(11-25 m) and deep (45-75 m) reef communities of the Tsitsikamma Marine Protected Area 

(MPA) (south coast of South Africa). Heyns et al. (2016) report the first survey of 

macrobenthos using a remotely-operated vehicle (ROV) in South Africa; however the study 

was conducted at a smaller area compared with the current study. 

Various studies have been conducted on the KZN continental shelf (Sink et al. 2005, Samaai 

et al. 2010, Franken 2015, Fennessy et al. 2016, MacKay et al. 2016, Porter et al. 2017). Sink 

et al. (2005) investigated biogeographic patterns by characterising and identifying the 

differences in intertidal community structure at a broad scale along the KZN coast. Species 

characteristic of the Natal region were identified to be subtropical, differing from Maputaland 

species which were identified to have tropical affinities, forming a biogeographic break 

between these regions. Samaai et al. (2010) recorded a total of 96 sponge species surveyed 

within the iSimangaliso Wetland Park which is a MPA located in the northern part of KZN 

province. Sponges play an important ecological role in substrate modification, nutrient 

cycling and microbial associations; and they are increasingly used in biodiversity and impact 

assessments (Samaai et al. 2010, Van Soest et al. 2012, Przeslawski et al. 2015). They are 

regarded as one of the major ecosystem engineers of the sea floor that provide habitat for 

different types of species (Ilan et al. 1999, Przeslawski et al. 2015). 

In addition to the studies mentioned above, various studies have focused on the KZN Bight as 

part of the African Coelacanth Ecosystem Programme (ACEP) (Fennessy et al. 2016). 

MacKay et al. (2016) investigated the local habitat drivers of macrobenthos in different parts 

of the KZN Bight, concluding that the variances of overall sediment type were the habitat 

drivers underlying the macrofaunal abundance distribution in the region. Green and MacKay 

(2016) examined distribution patterns of unconsolidated sediments in the KZN Bight; their 

results showed that sediment distribution reflected the partitioning between sediment 

populations that were influenced by current and associated with submerged shorelines. 

Fennessy (2016) reports on subtropical demersal fish communities on soft sediments in the 

KZN Bight, concluding that species composition was structured mainly by depth and 

proximity to the Thukela River.  
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Studies of marine ecosystem classification and mapping need to investigate the species 

distribution patterns in order to understand the diversity of the area and to gain insight into 

the ecological processes in marine ecosystems (Reiss et al. 2011). This is also important in 

decision making for MPA designs and marine spatial planning (MSP). As part of these 

investigations, it is important to know the driving factors of species distribution pattern; and 

to have a firm understanding of the principle factors that contribute to species distribution 

patterns of a particular area when developing classification systems for use in representing 

the biological diversity of the area (Cogan et al. 2009, Howell 2010, Lecours et al. 2015). 

This study is the first to examine patterns in epifaunal assemblages of the KZN deep reefs. In 

this Chapter we aim to identify the physical drivers of the benthic epifaunal reef communities 

of the KZN outer shelf. 

3.2.5 Aim and objectives 

This Chapter aims to investigate the potential environmental drivers of patterns in epifaunal 

assemblages of the KwaZulu-Natal deep reefs. 

Objectives: 

 To examine patterns in epifaunal assemblages on the deep reefs of KwaZulu-Natal. 

 To define and describe deep reef biotopes with a focus on characteristic and 

distinguishing species. 

 To identify potential environmental drivers of patterns in epifaunal assemblages of the 

study area. 

 

Key Questions: 

 What are the patterns of epifaunal assemblages in the deep reef communities of 

KwaZulu-Natal outer shelf? 

 What are the environmental factors potentially driving patterns in epifaunal 

assemblages of the study area? 

Hypotheses: 

 H0: There are no significant differences in deep reef epifaunal assemblages between 

pre-defined regions (previous chapter) in KwaZulu-Natal. 

 H0: There is no significant relationship between environmental variables and the 

epifaunal assemblages on deep reefs in KwaZulu-Natal 
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3.3 Methods  

This Chapter focused on deep reef ecosystems across a portion of the KZN outer shelf 

(Figure 3.1). In total, 17 reef sites were surveyed by a ROV ranging from a depth of 48 to 85 

metres in an area between Ballito and Scottburgh. The sites in this Chapter were categorised 

into four a-priori regions (on the basis of their geographic location) as north, central, south 

and far south reefs (Appendix Table 1). The detailed data collection method is explained in 

Chapters 1 and 2. In summary, seabed imagery were collected using a ROV at each site, with 

a 45 degree fixed-camera angle. Images were processed to quantify visible biota using a 

photo-grid overlay which allowed for easy measurement and standardisation of area (Figure 

3.2). Between 25 and 30 images were processed per site, depending on suitability.  

3.3.1 Abiotic variables 

Environmental data used in this study were similar to that of Livingstone (2016) who collated 

information to characterise the marine environment of the east coast of South Africa as part 

of the ACEP Surrogacy project. Physical data were collected in-situ and supplemented with 

additional longer term abiotic data collated from the broader ACEP Surrogacy project and 

online sources (http://www.esa-oceancolour-cci.org/). Depth was recorded in-situ from the 

live feed of the ROV at all sites. The Global Positioning System (GPS) coordinates (latitude 

and latitude) were also recorded in-situ upon anchoring at each site. The physical variable 

'distance from shore', defined as distance from sampled position to shore line for all sites, was 

measured manually in metres using Quantum Geographic Information System (QGIS version 

2.10.1-Pisa) software. The physical variable ‗distance from shelf break,‘ defined as the 

shortest distance from the sampled position to the shelf edge (for the purpose of this study, as 

defined by Sink et al. 2012,), was also measured manually in metres using QGIS. Sand 

inundation (SI %) was measured on individual images for each site by counting the number 

of squares (or parts thereof) of the grid overlay that were covered by sand. The total number 

of squares covered with sand was then converted to percentage of sand cover or inundation 

per image (Figure 3.2). 

http://www.esa-oceancolour-cci.org/
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Figure 3.1: The study area located on the east coast of South Africa between Pennington 
and Ballito in the KwaZulu-Natal province. The shelf break as reflected in the national habitat 
classification (Sink et al. 2012) is shown. 

 

 
Figure 3.2: An exampler image of the photo grid used to calculate the sand inundation cover 
(SI %) and area standardisation for each site. 
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Chlorophyll a (mg/m
3
) and the 'attenuation coefficient for down-welling irradiance (m-

1
)' 

(KD 490nm) seasonal data (which is used in this study to represent a measure of light 

attenuation) were extracted at a 4km resolution from the online Ocean Colour-Climate 

Change, Phase 2 version 3.0 standard Mapped Image (http://www.esa-oceancolour-cci.org). 

The mean chlorophyll a and KD 490nm (light attenuation) levels from the best single-day 

image per month over a period of 17 years (1999 to 2015) were calculated for each site. Data 

were accessed from http://www.esa-oceancolour-cci.org/ retrieved on 14th, 16th and 17th 

March 2017 as NetCDF format files. NetCDF operators and MatLab were used to read and 

convert the obtained NetCDF files into text files which are compatible with PRIMER 

software. 

Mean Sea Surface Temperature (SST) and mean turbidity were acquired from Livingstone 

(2016). Livingstone (2016) processed time series analysis of turbidity data downloaded from 

the NASA ocean colour website (http://oceancolor.gsfc.nasa.gov/cgi/level3.pl), from July 

2001 up to December 2004. SST was obtained from NOAA website and processed by 

Oceanspace Institute (University of KwaZulu-Natal). The SST data resolution was 1.01km, 

and was supplied as text files representing the best single-day image per month over a four-

year period from January 2001 to December 2004 (Livingstone 2016). Livingstone (2016) 

mapped phosphate distribution over the KZN continental shelf at 1.021km
2
 resolution using 

ArcGIS from data provided in Birch (1996). Distribution of phosphate concentration was 

tested as a potential environmental driver of epifauna pattern. 

Additional oceanographic data analysed in this study included the mean, maximum and 

minimum values for bottom oxygen and bottom temperature for each study site. These data 

were provided by Fiona Duff (University of Cape Town), who amalgamated data from the 

South African Data Centre for Oceanography (SADCO), Marine and Coastal Management 

(MCM) and the Bayworld Centre for Research and Education (BCRE) and provided this as a 

raster data set (Livingstone 2016). These data were based on a collection of hydrographic 

data over a time period from 1930 to 2005.  

3.3.2 Statistical analysis 

PRIMER V6 with PERMANOVA+ software was used to perform non-parametric, 

multivariate analysis (Anderson et al. 2008). Epifauna abundance data were 4
th

 root 

transformed and a Bray Curtis (dis)similarity measure used to generate a resemblance matrix. 

http://oceancolor.gsfc.nasa.gov/cgi/level3.pl
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The 4
th

 transformation down-weights excessive contributions of dominant species, (Field et 

al. 1982, Clarke and Gorley 2006).  

To evaluate the spatial pattern of epifauna from the KZN deep reefs, a cluster analysis 

(dendrogram) with Similarity Profile permutation test (SIMPROF), was performed on 

averaged (standardised) epifauna abundance per site. A cluster analysis defines species 

assemblages by grouping them according to their level of similarity. SIMPROF identifies the 

significantly different groupings of sites represented by solid black lines in the cluster 

dendrogram.  

A main effects permutational multivariate ANOVA (PERMANOVA, Anderson et al. 2008) 

was used to test the significance between the a-priori groups north, central, south and far 

south (9999 unrestricted permutations). PERMANOVA tests the dissimilarity values 

generated by the resemblance matrix on which permutations are based, generating a pseudo-F 

(or pseudo-t for pair-wise) test statistic. Due to the low number of unique permutations 

possible (less than 100), the Monte Carlo P-values (P (MC)) were included in the analysis 

and used for interpretation. Pair-wise PERMANOVA analyses were conducted for factors that 

were significantly different in the main effects test.  

A non-metric multi-dimensional scaling (nMDS) plot was generated to visualise the multi-

dimensional distribution among samples and/or groups. The significantly different groups 

identified in the SIMPROF analysis were superimposed on the nMDS to reflect proposed 

biotopes. Similarity of percentages (SIMPER) analysis was conducted to determine key 

distinguishing and characteristic species that contributed to the observed patterns in the north 

of Durban and south of Durban reefs, furthermore to identify the characteristic and 

distinguishing species of proposed biotopes. 

Many abiotic factors are predicted to potentially impact patterns of species composition and 

distribution in the study area (Appendix Table 1). Abiotic factors further examined in this 

study were selected based on their potential relevance as suggested by literature reviews and 

data availability. Draftsman plots were examined to assess for correlated environmental 

variables. Where the correlation between two variables was greater than 0.85, only one 

variable was selected for further analyses. The environmental data were normalised and the 

resemblance matrix was compiled using the Euclidian distance measure. Normalizing data 

helps to assess variability among environmental variables which usually have different 
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measurement scales e.g. depth in meters, salinity in ‰ and temperature in ͦ
 
C (Clarke & 

Warwick 2001).  

The relationship between epifaunal distribution patterns at each site and the measured 

environmental variables were investigated using a distance based linear model (DistLM). 

DistLM provides quantitative measures and tests the variation explained by the predictor 

variables. The ‗Best‘ procedure which examines the value of selection criteria for all possible 

combinations of predictor variables, and R
2
 criteria (the proportion of explained variation for 

the model) options (Anderson et al. 2008) were selected in this study. The environmental 

variables selected for the model were: distance from shelf-edge, distance from shore, 

turbidity (mean), bottom temperature, bottom oxygen, SST mean, phosphate, KD 490nm 

(light attenuation), latitude, sand inundation (SI %) and depth (Appendix Table 1).  

3.4 Results 

3.4.1 Description of dataset 

This study surveyed 17 reef sites in a portion of KZN with the total area per reef site 

processed ranging between 6.95 m
2
 and 11.12m

2
. A total of 491 image quadrants were 

processed resulting in a total count of 15 310 epifaunal individuals. The most commonly 

occurring morphospecies at these sites were octocorals, followed by sponges, bryozoans, 

ascidians and anemones with an overall total of 164 morphospecies. 

3.4.2 Testing community distribution  

The cluster analyses with SIMPROF (Figure 3.3) of site-averaged epifauna abundance 

showed six significant groups with similarity cut off at 64.07%. Two of these groups were 

outliers consisting of single sites (RF2 and RF17). The sites south of Durban (RF1 to RF8) 

clustered separately from the sites north of Durban (RF9 to RF17). Sites RF1 and RF4 

clustered together forming potential biotope B south of Durban, while sites RF3, RF5, RF6, 

RF7 and RF8 clustered together forming biotope 3 and RF2 was an outlier (Figure 3.3). In 

the area north of Durban, sites RF10 and RF15 clustered together forming potential biotope 

C, sites RF9, RF11, RF12, RF13, RF14 and RF16 cluster together forming biotope 4 and site 

RF17 was an outlier (Figure 3. 3 a and b). 

The one-way main effects PERMANOVA generated P (perm) = 0.0001, pseudo F = 23.137 

for regions indicating that epifauna were significantly different among the four a-priori 

regions. A pair-wise PERMANOVA analysis among the a-priori regions showed that there 
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was no significant difference between the north and central regions (P (MC) = 0.632, Table 

3.1) and between far south and south regions (P (MC = 0.46, Table 3.1). There were 

significant differences between far south and central, south and central and between south 

and north regions (Table 3.1). There was no significant difference between far south and 

north regions (P (MC) = 0.0645, Table 3.1). The nMDS plot (Figure 3.4) also showed a clear 

separation of the reef sites north of Durban from reefs south of Durban, while sites RF2 and 

RF17 were outliers. The biotopes and potential biotopes identified within the clearly 

separated sites south of Durban and the sites north of Durban, were further shown in the map 

(Figure 3.5).   

a) 

 
 
b) Representing identified biotopes and potential biotopes 

 
Figure 3.3: The cluster analysis with SIMPROF showing the significantly different (solid 
lines) groups of deep reef epifaunal communities in KwaZulu-Natal. SIMPROF dashed lines 
implies that there was no significant difference within groups. 
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Table 3.1: PERMANOVA pairwise test results for the four regions. P-values in bold indicate 
significantly different at 95% level. 
Groups pseudo t value P - value  Unique perm P (Monte-Carlo) 

Far South, South 0.97946 0.5731 56 0.46 

Far South, Central 1.6978 0.0177 56 0.0345 

Far South, North 1.5624 0.0291 35 0.0645 

South, Central 2.2636 0.0083 126 0.0023 

South, North 2.0672 0.0074 126 0.0072 

Central, North 0.83467 0.7772 126 0.632 

 

 
Figure 3.4: The multi-dimensional scaling plot (averaged epifauna abundance data) showing 
separation between sites north of Durban to sites south of Durban. 
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Figure 3.5: Map of the study area showing the distribution of two biotopes and the two 
potential biotopes of the south and north of Durban. Please note sites RF14 and RF15 
overlay each other although they were classified as a biotope 4 and potential biotope C 
respectively. 

 

3.4.3 Characteristic and distinguishing species of the two main groups, north and south 

of Durban. 

SIMPER analysis showed that the three characteristic species that contributed the greatest 

average abundance at north of Durban sites were octocoral Parasphaerascleridae sp., sponge 

Ciocalypta sp. and seafan cf. Echinomuricea atlantica with their average abundance of 3.37, 

2.97 and 2.83 respectively (Table 3.2). The sites south of Durban were characterised by the 

sponges Ciocalypta sp., Halichondriidae sp. and bryozoan cf. Bicellariella sp. with their 

average abundance of 3.32, 1.98 and 1.90 counts per unit area respectively (Table 3.2). The 

species Ciocalypta sp. occurred in both regions in high abundance throughout the study area.  

The results for SIMPER analyses of distinguishing species (Figure 3.6) showed that most 

epifauna occurred in both regions however they occurred in different quantities. Some were 
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abundant north of Durban while others were more abundant south of Durban. For example 

octocorals such as cf. Echinomuricea atlantica, cf. Menella sp. and Parasphaerascleridae sp. 

were characteristic of sites north of Durban while species such as cf. Bicellariella sp. 

(bryozoan), sponge Hemiasterella sp. 2 and Lithochela conica were more abundant south of 

Durban. Species such as Pteroides cf. isosceles and Helicogorgia cf. capensis occurred only 

in the southern region (Figure 3.6). The top three species which contributed most to the 

dissimilarity between regions north and south of Durban are cf. Echinomuricea atlantica, cf. 

Menella sp., which were more abundant at northern sites, and cf. Bicellariella sp. which was 

more abundant at southern sites (Figure 3.6). 

The results of further SIMPER analyses of the four community types are outlined in Table 3.3 

and 3.4. The potential biotope B comprised of only two sites had 62.23% similarity in 

epifaunal assemblages with cf. Bicellariella sp., Ciocalypta sp. and Clavularia sp. being the 

top three characteristic species (Table 3.4). Biotope 3, consisting of 5 sites, had 55.27 % 

similarity in epifaunal assemblages with Ciocalypta sp., Axinella sp. and Hemiasterella 

vasiformis being the top three characteristic species. Ciocalypta sp., Parasphaerascleridae 

sp. and Stellidae sp. were the top three characteristic species in potential biotope C (two sites) 

while Parasphaerascleridae sp., Leptogorgia gilchristi and Ciocalypta sp. were the top three 

characteristic species of biotope 4 (six sites) with 58.14 % and 60.01 % similarity in 

epifaunal assemblage of the two biotopes respectively. The dissimilarity between south of 

Durban biotopes (potential biotope B and biotope 3) was 54.70 %; while the dissimilarity 

between north of Durban biotopes (potential biotope C and biotope 4) was 48.12 % (Table 

3.3). Furthermore the average similarities within community types were highest in potential 

biotope B and lowest in biotope 3 (Table 3.3). 
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Figure 3.6: The SIMPER results for the two main groups showing species which contributed 
most to the dissimilarity between the two areas (north and south of Durban). The species are 
ordered from the most distinguishing species (top) to the least distinguishing species 
(bottom). Black circles highlight the top three species which contributed to the dissimilarity 
while the black stars highlight species which were only found south of Durban. The x-axis 
denotes average abundance of species. 

 

 
Table 3.2: SIMPER analyses of the identified two biotopes and two potential biotopes. Black 
cells indicate average similarity (%) within each biotope / potential biotope while white cells 
indicate average dissimilarity (%) between any two biotopes / potential biotopes. 
 Potential biotope B 

(three sites) 

Biotope 3 (five 

sites) 

Potential biotope C 

(two sites) 

Biotope 4 (six sites) 

Potential biotope B 62.23    

Biotope 3 54.70 55.27   

Potential biotope C 60.25 61.27 58.14  

Biotope 4 63.29 63.04 48.12 60.01 
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Table 3.3: The top 10 characteristic epifaunal species of the two main groups, sites north of 
Durban and sites south of Durban, as determined by SIMPER analyses with the average 
similarity of 54.57% and 48.83% respectively. Average abundance = Counts per unit area 

North of Durban (Average similarity 54.57%) South of Durban (Average similarity 

48.83%) 

Species  Av. 

Abund 

Av. 

Sim 

Contrib 

(%) 

Species  Av. 

Abund 

Av. 

Sim 

Contrib 

(%) 

Parasphaerascleri

dae sp., Octocoral 

3.37 4.10 7.52 Ciocalypta sp., 

Sponge 

3.32 3.22 6.60 

Ciocalypta sp. 

Sponge  

2.97 3.31 6.07 Halichondriidae 

sp., Sponge 

1.98 1.98 4.05 

cf. Echinomuricea 

atlantica, 

Octocoral 

2.83 3.23 5.93 cf. Bicellariella 

sp., Bryozoan 

1.90 1.52 3.12 

Leptogorgia 

gilchristi, 

Octocoral 

2.43 2.84 5.20 Hemiasterella 

sp. 2, Sponge 

1.93 1.40 2.86 

Halichondriidae 

sp., Sponge 

2.30 2.68 4.91 Leptogorgia sp. 

3, Octocoral 

1.44 1.34 2.74 

cf. Menella sp., 

Octocoral 

2.07 2.50 4.57 Irciniidae sp. 1, 

Sponge 

1.62 1.23 2.52 

Hemiasterella sp. 

1, Sponge 

2.13 2.44 4.47 Clathria sp. 1, 

Sponge 

1.64 1.23 2.51 

Eleutherobia sp., 

Octocoral 

2.11 2.35 4.31 Pteroides cf. 

isosceles, 

Octocoral 

1.42 1.17 2.41 

Irciniidae sp. 2, 

Sponge 

1.86 2.29 4.20 Menella sp., 

Octocoral 

1.53 1.16 2.38 

Trichogorgia cf. 

flexilis, Octocoral 

1.91 2.10 3.84 Reteporella 

lata, Bryozoan 

1.55 1.16 2.37 
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Table 3.4: SIMPER analysis of the identified biotopes, presenting top five characteristic taxa 
and their average contribution (%) to the overall similarity of the biotope / potential biotope. 
Average abundance = Counts per unit area 

Potential biotope B Biotope 3 

Species  Av. 

Abund 

Av. 

Sim 

Contrib 

(%) 

Species  Av. 

Abund 

Av. 

Sim 

Contrib 

(%) 

cf. Bicellariella 

sp., Bryozoan 

2.77 3.08 4.94 Ciocalypta sp., 

Sponge 

3.45 3.50 6.34 

Ciocalypta sp., 

Sponge 

2.70 2.92 4.70 Axinella sp., 

Sponge 

2.41 2.30 4.17 

Clavularia sp., 

Octocoral  

2.28 2.57 4.14 Hemiasterella 

vasiformis, 

Sponge  

2.53 2.19 3.96 

Flustramorpha 

sp., Bryozoan 

2.21 2.50 4.02 Stellidae sp., 

Sponge 

1.96 1.96 3.55 

Parasphaerascleri

dae sp., Octocoral 

2.61 2.47 3.97 Helicogorgia cf. 

capensis sp., 

Octocoral 

 

1.91 1.76 3.19 

Potential biotope C Biotope 4 

Species Av. 

Abund 

Av. 

Sim 

Contrib 

(%) 

Species Av. 

Abund 

Av. 

Sim 

Contrib 

(%) 

Ciocalypta sp., 

Sponge  

3.63 3.46 5.94 Parasphaerascl

eridae sp., 

Octocoral 

3.15 4.07 6.79 

Parasphaerascleri

dae sp., Octocoral 

3.60 3.37 5.80 Leptogorgia 

gilchristi, 

Octocoral 

2.60 3.57 5.95 

Stellidae sp., 

Sponge 

2.75 2.86 4.92 Ciocalypta sp., 

Sponge 

2.88 3.35 5.58 

Paraminabea sp., 

Octocoral 

2.64 2.71 4.66 cf. 

Echinomuricea 

atlantica, 

Octocoral 

2.77 3.23 5.39 

Helicogorgia cf. 

capensis sp. 2, 

Octocoral 

2.39 2.43 4.18 Stellidae sp., 

Sponge 

2.49 3.17 5.28 
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3.4.4. Testing the potential drivers of the community distribution patterns 

The draftsman plot indicated strong correlation between some environmental variables (Table 

3.5). Only one of the two correlated variables with a correlation value above 0.85 was 

selected for further analyses as listed in Table 3.5. 

Table 3.5: Results from draftsman plots of variables that showed correlations >0.85. 
Environmental variables Correlation  Variables selected for 

further analysis 

Latitude + Longitude 0.98 Latitude 

Latitude + Distance from shelf edge 0.87 Distance from shelf edge 

Light attenuation + Chl a 0.98 Light attenuation 

 

Table 3.6: Results from DISTLM marginal test, with the significant P-values in bold.  
Environmental 

Variables 

SS (trace) Pseudo-F P Prop. 

Latitude 6966.5 5.5428 0.0001 0.2698 

Depth 1278.1 0.78119 0.6432 4.9501 

Bottom Oxygen 

(ml/l) 

2179.2 1.3827 0.1702 8.4400 

Bottom temp (
o
C) 1765.6 1.101 0.3006 6.8381 

SST (mean) 5878.8 4.4222 0.0003 0.2276 

Phosphate 4762.6 3.3926 0.003 0.1844 

Distance from shore 

(km) 

3288.8 2.1896 0.0327 0.1273 

Distance from 

shelf-edge (km) 

6828 5.393 0.0001 0.2644 

SI % 2035.3 1.2836 0.2054 7.8830 

KD 490nm 1709.8 1.0638 0.3292 6.6221 

Turbidity (mean) 1159.8 0.7055 0.7468 4.4921 

  

The distance based linear model (DistLM) (Figure 3.7) explained 54.4% of the total fitted 

variation and 43.1% of the total variation in epifauna distribution. Distance from shelf edge, 

latitude, SST (mean), phosphate and distance from shore significantly contributed to the 

separation among sites (P = 0.0001, 0.0002, 0.0003, 0.003 and 0.0327, respectively, Table 

3.6); however bottom O2, sand inundation, bottom temperature, light attenuation (KD 

490nm), depth and turbidity did not significantly influence site separation (P = 0.1702, 

0.2054, 0.3006, 0.3292, 0.6432 and 0.7468 respectively, Table 3.6). 
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Figure 3.7: The distance-based redundancy analysis (dbRDA) plot of the DistLM analysis, 
based on the environmental parameters fitted to the variation of patterns in epifaunal 
assemblages of the 17 study sites. 

 

‗Distance from shelf edge‘ had the strongest influence on the distribution of two central sites 

(RF11 and RF17) and contributed most to the separation of these sites from other central 

region sites. ‗Distance from shore,‘ ‗latitude‘, bottom temperature, ‗depth‘ and phosphate 

influenced (but not necessarily significantly) the species assemblages of other ‗north of 

Durban‘ sites (RF14, RF15, RF10 and RF12) while RF9, RF13 and RF16 were influenced 

(but not significantly so) by down-welling irradiance (KD 490nm). SST (mean) influenced 

the species assemblages south of Durban (Far South and South), and influenced the 

separation between northern and southern region sites. Turbidity, sand inundation (SI %) and 

bottom O2 also contributed to the separation (but not significantly so) of some south of 

Durban sites (Figure 3.7).  
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3.5 Discussion 

The aim of the current study was to investigate physical drivers of epifaunal communities of 

the deep reefs in an area of KZN. One of the challenges in investigating the relationships 

between organisms and their environment is to select environmental parameters that have a 

direct, or at least a predictable, association to the organisms. The five measured 

environmental drivers that most influenced patterns in epifaunal assemblages of the KZN 

deep reefs were distance from shelf edge, latitude, sea surface temperature (SST mean), 

phosphate and distance from shore. Latitude, distance from shelf edge, phosphate and 

distance from shore strongly influenced epifaunal assemblages of many sites north of Durban 

whereas sea surface temperature had a greater influence on the reef epifauna assemblages 

south of Durban.  

3.5.1 Potential biogeographic break 

There was a distinct difference in epifauna north and south of Durban with 60% dissimilarity 

in community structure between these two regions. This may constitute a biogeographic 

break or transition, as these two regions are known to be more tropical (north of Durban) and 

subtropical (south of Durban; see Chapter 1, Sink et al. 2005, Porter et al. 2013). The current 

study identified two definitive biotopes, two potential biotopes (which had two sites each 

hence further sampling required in the study area) and two outliers from each region. The 

currently identified biotope 3, and the potential biotope B from south of Durban, is the same 

biotope 3 (with additional site, RF3) and potential biotope B identified for reefs in Chapter 2 

of the current study. However in Chapter 2 the sites forming potential biotope B clustered 

with the mixed reef group. The current Chapter was based entirely on reefs and did not 

include mixed substrate sites; however, a preliminary analysis performed (results not shown) 

indicated that the addition of mixed sites to the analysis did not have a significant effect on 

the results. Biotope 4 and potential biotope C were identified from sites north of Durban.  

Most species occured across the entire study area; however, in different quantities, some 

species were more abundant to the north of Durban than the south of Durban and vice versa. 

While there were few species which were rare and appeared in low abundance in one region. 

Encrusting Porifera species dominated the reefs to the south of Durban, while upright seafans 

and other octocorals and Porifera were more prevalent north of Durban. Octocorals 

Parasphaeroscleridae sp., cf. Echinomuricea atlantica and Leptogorgia gilchristi were 

among the most abundant species in the northern region, while sponges Halichondriidae sp., 
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Hemiasterella sp. 2 and bryozoan cf. Bicellariella sp. were more abundant in the southern 

reefs, with sponge Ciocalypta sp. being prevalent throughout the study region. Sink et al. 

(2005) identified a clear biogeographic break between Maputaland and Natal Provinces in the 

rocky intertidal shores along the KZN coast. Their study identified the Natal region to host 

different rocky intertidal species from Maputaland and the warm-temperate south coast 

Agulhas province. Porter et al. (2013) identified the subtidal reefs of the current study area to 

be subtropical Natal bioregion, with no difference in species composition between subtidal 

reefs north of Durban to those located to the south. The current study identified two biotopes 

from deep reefs north and south of Durban. No study has reported the biogeographic break 

around Durban for deep reefs; however Emanuel et al. (1992) described a break just north of 

Durban for rocky shores, and Bolton and Anderson (1997) identified an eastern overlap in 

community structure from around East London to Durban, and regarded the area north of 

Durban as part of the Tropical Indo-West Pacific Province. The difference in community 

composition between shallow subtidal reefs and deep reefs need to be accounted for when 

comparing the current study findings to other studies conducted in this region. The current 

study suggests a biogeographic break around Durban, and further sampling is required in the 

region. 

3.5.2 Key characteristic species of the study area  

Ciocalypta sp. was among the top three characteristic species in all biotopes and potential 

biotopes making it one of the most common epifaunal species of the current study area. It is a 

genus that has been described as characteristic of temperate and subtropical waters with a 

depth range reported from 12–49 m (Carballo 2001, Carvalho et al. 2003). The northern 

regions (north and central sites) are mostly dominated by octocorals such as 

Parasphaerascleridae sp., Leptogorgia gilchristi and cf. Echinomuricea atlantica. The 

subclass Octocorallia has received recent global attention due to the recognition of these taxa 

being important habitat forming species (Reed and Ross 2005, Berrue and Kerr 2008, Cairns 

and Bayer 2009, Cúrdia et al. 2012, Haverkort-Yet et al. 2013, Mohammad et al. 2016). In 

South Africa, the soft coral fauna of the KZN reefs have been the subject of numerous studies 

(Riegl 1996, Ofwegen and Schleyer 1997, Williams 2000) due to their ecological importance 

and abundance. Regardless of these studies, many species of octocorals have not yet been 

described and studies on Octocorallia taxonomic classifications for the KZN reefs are 

required.  
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The southern regions (south and far south sites) were dominated by Porifera morphospecies 

such as Ciocalypta sp., Halichondriidae sp., Hemiasterella sp. 2, and bryozoan cf. 

Bicellariella sp. The narrowing of the shelf edge in the southern part of KZN results in a 

faster Agulhas Current flow (Lutjeharms et al. 2010), which might be contributing to the 

different epifaunal species occurring north and south of Durban. The southern region is 

further influenced by the Durban Eddy which draws cold water upwards, facilitating 

biological production in the region (Guastella et al. 2012, Robetrts et al. 2010). The most 

abundant, characteristic species of this region are encrusting Porifera species, which are well 

adapted to the harsh conditions caused by the fast flowing current and the effects of this eddy. 

Sponges have an important ecological role in marine habitats and are considered to be 

ecosystem engineers (Beazley et al. 2015, Przeslawski et al. 2015). Przeslawski et al. (2015) 

report that environmental factors that regulate sponge species distributions include wave 

exposure, temperature, light, sediment load and substrate type, while depth, slope and 

distance offshore relate to sponge assemblage structure and abundance. However, in the 

current study, only sea surface temperature emerged as a key driver of general species 

distributions of the southern regions. Samaai et al. (2010) observed a consistent decrease in 

sponge species richness with increasing depth linked to changes in environmental factors 

such as light attenuation, wave action, productivity, temperature or seasonality. Due to limited 

data availability and resources, factors such as wave exposure, current velocity, slope and 

sediment load were not readily available for the study area. Future investigation of the 

potential role of these variables in structuring species assemblage patterns is required.  

3.5.3 Environmental drivers of species distribution patterns  

It should be noted that for the purpose of this study (systematic conservation planning 

purposes), the following environmental variables: ‗latitude, distance from shelf edge, distance 

from shore and depth‘; were used as proxies for reef epifaunal assemblages patterns but they 

are not actual drivers of patterns. These environmental variables cannot explain biological 

patterns but they are often convenient descriptors of some other environmental variables 

which might not have been described or sampled.  

As expected, latitude proved to be the best proxy which contributed significantly to the 

observed pattern in epifaunal reef assemblages; possibly signalling a potential biogeographic 

break around Durban along the KZN coast. Blanchard et al. (2013) reported that latitude and 

latitude were the significant predictors of bottom temperature of the northeastern Chukchi 

Sea. Similarly, in the current study latitude and bottom temperature were shown to have 
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strong link signalling patterns in epifaunal assemblages of some northern region sites. 

However the mean SST is mostly correlated with the species assemblages of the southern 

reefs. Long term mean SST has been reported to have an important role in determining 

species distributions in marine environments (Bremner et al. 2006, Blanchette et al. 2008, 

Neumann et al. 2009). 

Distance from shelf edge served as a proxy for environmental variables that mostly influence 

central region epifaunal patterns. The shelf-edge is known to be an area of high diversity due 

to the steep change in slope and depth, and is often regarded as an enhanced region of 

upwelling (Buhl-Mortensen et al. 2012, Kämpf 2012, Richmond and Stevens 2014). In KZN, 

species distribution patterns along the shelf edge were reported to be influenced by the 

Agulhas Current (Untiedt and MacKay 2016). Untiedt and MacKay (2016) reported that 

shelf-edge upwelling along the KZN Bight, which was caused by the meeting of Thukela 

River inflow and Agulhas Current, provided ideal conditions for suspension feeding. Species 

dominating the reefs north of Durban were observed to be mostly emergent, upright species 

(e.g. cf. Echinomuricea atlantica and Leptogorgia gilchristi) while those to the south of 

Durban were mostly encrusting sponges. This may be due to the narrowing shelf edge south 

of Durban were the current speed is much greater than towards the northern reefs were the 

shelf region is wider. Furthermore the south of Durban region is affected by the Durban Eddy 

(Roberts et al. 2010). 

Phosphate serves as a proxy of turbidity (Lannergård 2016). We suspect turbidity has a strong 

correlation on the epifaunal assemblages patterns of the northern sites, based on the current 

study findings (Figure 3.7). This partially agrees with the study of Porter et al. (2017) which 

revealed that turbidity and suspended sediments are strongly associated with shallow subtidal 

communities‘ composition of the Natal region. However in contrast, turbidity measured for 

the current study did not significantly influence the epifaunal species assemblages. 

Livingstone (2016) showed an increased phosphate content stretching northwards and 

eastwards of the KZN Bight off Durban, with poor phosphate and organic matter south of 

Durban. The high turbidity and suspended sediments present in the KZN Bight region might 

be due to high riverine inflow of the region (Meyer et al. 2002, Porter et al. 2014); in 

particular the flow of the Thukela River (De Lecea and Cooper 2016). 

The water column at nearshore reef sites was expected to have higher sediment and nutrient 

content than offshore reef sites due to their exposure to high riverine inflow nearshore (Green 
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and MacKay 2016). The riverine inflow is known to influence the patterns of species 

distribution in this region (Mallela 2007, MacKay et al. 2016). Although the current study did 

not measure the direct influence of riverine inflow, incorporating variables such as distance 

from shore, phosphate and down-welling irradiance somewhat serves as proxies for riverine 

inflow. The current study identified that ‗distance from shore‘ also served as a proxy for some 

environmental variable that had a significant influence on the species assemblages of the 

central region. 

Many of the KZN reefs are subject to some degree of sand inundation due to their topography 

and sediment movement attributed to the fast-flowing Agulhas Current (Porter et al. 2017b). 

The influence of substrate on species assemblages was addressed in Chapter 2 of this thesis 

and Porter et al. (2017) examined the potential of a reef to be inundated by sand, based on 

topographic potential of the reef to trap sand. Sand inundation, as measured by sand cover in 

this Chapter, did not seem to have significant influence in the current study, and this is in 

contrast to the findings in Chapter 2 that there are certain epifaunal species which thrive on 

sand inundated or mixed substrate reefs e.g. Homophyton verrucosum and Melithea sp. 1. 

The current results might be due to the fact that in Chapter 2, mixed habitat types, which are 

likely to experience a far greater degree of sand inundation were included in the analyses, 

while the current study only examined medium to high profile reef habitats (excluding sites 

of mixed habitat type). It is hypothesized that there is a correlation between current speed and 

extent of sand inundation with less sand inundation expected the higher the current speed. 

Further investigations on the relationship between the extent of sand inundation, species 

assemblages and the influence of current speed are recommended. Furthermore topography 

might be a determinant of sand inundated reefs (Adjeroud 1997, Porter et al. 2017b) in that 

reefs with greater topographic complexity are prone to higher sand inundation (Beisiegel et 

al. 2017, Monk et al. 2016, Porter et al. 2017b).  

Depth is widely included in conservation planning studies, it is inversely related to light 

penetration; light penetration is an important environmental variable that drives species 

distribution patterns as it has influence on primary production (Adjeroud 1997, Post et al. 

2006, Przeslawski et al. 2008, Anderson et al. 2011, MacKay et al. 2016). The current study 

is conducted in a relatively narrow depth range (between 48 to 85 m) and depth did not 

significantly influence the species distribution patterns observed within this narrow depth 

range. Untiedt and MacKay (2016) demonstrated differences in macrobenthic communities, 

sampled between Durban and Richards Bay, KZN from 16–184 m depth. The highest 
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numbers of individuals were found at inner (16–27 m) and mid-shelf (31–85 m) positions 

with the lowest number of individuals occurring on the outer shelf region (41–184 m). Lesser 

et al. (2009) also reported change in species composition from shallow to deeper waters in 

mesophotic reef communities. Heyns et al. (2016) investigated diversity patterns of epifauna 

on shallow and deep reefs of the Tsitsikamma MPA (south coast South Africa), and revealed 

higher species diversity and richness in shallow reefs (11–25 m) than in deep reefs (45–75 

m). Their study revealed that deep reefs in the south coast were characterised by epifaunal 

species having upright growth forms such as bryozoans, sponges, hydroids and seafans. This 

was also seen in the northern region of the current study where a greater abundance of upright 

octocorals and sponges were observed at similar depths to deep reefs of the Heyns et al. 

(2016) study.  

3.5.4 Limitations to the current study 

In the current study only 43.1% total variation was explained by the environmental drivers 

tested using the distance-based linear model (PERMANOVA, Anderson et al. 2008); from 

this analysis, it appears that there are additional, unmeasured abiotic/physical or other 

variables that contribute to the separation between north of Durban and south of Durban sites. 

However this total variation was relatively high compared to a similar study of Pitcher et al. 

(2012), in which they included 29 predictor variables and their total variation predicted was 

35% of the variation in species abundance distributions. Furthermore, Porter et al. (2017) 

included 9 abiotic variables which explained up to 32% of the total variation in species 

abundance for shallow reefs. Further analysis is required with examination of other 

environmental variables. These include wave exposure, current velocity, slope and sediment 

loads; however the total variation explained is further influenced by other determinants of 

species/ community compositions aside from abiotic variables.  The limited study area and 

depth range also confined the results and we recommend additional sampling with a more 

balanced study design, where feasible. The study demonstrated that our findings were 

affected by the area and depth range as some variables, such as depth, did not influence 

patterns in epifaunal assemblages, contradicting the expected results and literature. There is a 

need for additional sampling of reefs in the region including in between south and north of 

Durban to further test and validate the proposed biogeographic break. Furthermore additional 

sampling is required for sites to investigate the validity of the described potential biotopes. 
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3.5.5 Further studies and recommendations 

There is a possibility that fish and other invertebrates prey on some epifauna (Dulvy et al. 

2004). Changes in fish assemblages within regions can lead to altered predation pressure on 

the epifaunal species (Bremner et al. 2006). Cúrdia et al. (2012) report that in shallow waters, 

where there is similarity in abundance patterns of seafans, there is also low competition and 

high association among the seafans. de Juan et al. (2013) incorporated fishing effort as one of 

the important drivers of epifauna in soft sediments of Mediterranean continental shelves in 

depths between 32 to 82 m. Fennessy (2016) report diverse fish communities within the soft 

sediments of the KZN Bight which increased with depth from the inner shelf (28–71 m) to 

the upper slope (233–253 m) of the region. Further investigation of biological processes such 

as the influence of fish assemblages on epifauna in the region is required, and monitoring of 

the new MPAs might help develop this understanding as fish poplulations recover. 

Marine epifauna play an important role in ecosystem processes such as carbon, oxygen and 

nutrient cycling, and their assemblages, abundance and distributions are known to affect 

benthic-pelagic coupling processes (Dale et al. 2017). Few studies have examined the 

benthic-pelagic coupling process in the KZN Bight; however, Muir et al. (2016) investigated 

the prokaryotic biomass and heterotrophic productivity in the KZN Bight. Their study 

highlights the importance of bacterial populations in the region, and this may be incorporated 

in further understanding the benthic-pelagic coupling processes of the region. Benthic-pelagic 

processes can define spatial variability in benthic communities, as seasonal productions 

constantly change their environments. Carbon cycling studies revealed linkages between 

primary production in the water column and the distributions of epifauna (Blanchard et al. 

2013, Griffiths et al. 2017). It is therefore important that the benthic-pelagic coupling process 

be incorporated in future work to improve regional undestanding. This can be done by 

building on the current study with investigations of phytoplankton and or ichthyofauna 

diversity present in the study area. 

3.5.6 Conclusion 

The current study provides the first visual survey and assessment of deep reef epifauna in the 

KZN outer shelf. This study was limited in spatial extent; however it revealed a clear 

separation of deep reef epifauna north and south of Durban. The potential environmental 

drivers and proxies that significantly influenced epifaunal assemblages were ‗distance from 

shelf edge‘, ‗latitude‘, sea surface temperature, phosphate and ‗distance from shore‘. Further 

investigations are recommended to explore distributional differences resulting from an 



http://etd.uwc.ac.za

 

 

 

 

3-82 

increase in depth and distance from shore by expanding the research into the deeper offshore 

region and broadening the study area with increased sampling effort. The results from this 

study highlight limitations of using environmental variables for ecosystem classification at 

the local scale and the need for robust surveys to quantify patterns of biodiversity. 

Furthermore the study highlights patterns in epifaunal assemblages and diversity of the KZN 

outer shelf, with a dominance of Porifera and octocoral species, known to play an important 

ecological role (Cúrdia et al. 2012, Beazley et al. 2015, Beisiegel et al. 2017). The current 

study is the first to describe two deep reef biotopes; this will be useful for updating the South 

Africa‘s national ecosystem classification and mapping of the KZN outer shelf. 
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4 Synthesis  

The current study investigated the use of benthic epifauna to support ecosystem classification 

and mapping in the KwaZulu-Natal (KZN) outer shelf. The study was twofold; in Chapter 2, 

existing marine ecosystem classifications were tested using epifaunal data quantified from 

seabed imagery and the effect of substrate in shaping epifaunal assemblages was established 

for the southern KZN outer shelf. In Chapter 3, potential drivers and the proxies for 

environmental drivers of patterns in deep reef epifaunal assemblages were investigated for 

the entire study area. The results from this study provide information on ecosystem types of 

the KZN shelf which can be incorporated in future conservation plans, marine spatial 

planning (MSP) and assessments of the region. This is the first study to quantify epifaunal 

assemblages of deep reef communities of the KZN outer shelf.  

4.1  Key findings 

The current study identified four biotopes and three potential biotopes. Three biotopes were 

made up of reef, mixed substrate and sand ecosystem types of southern KZN, and one 

biotope from reef sites of central KZN (north of Durban) (Figure 4.1). One potential biotope 

originated from north of Durban reef sites, while the two other potential biotopes consisted of 

unconsolidated sediments and reefs south of Durban. The two reef sites from south of Durban 

which constitute a potential biotope, were not significantly different to the mixed substrate 

types. It is likely that some form of sand inundation occurs on these reefs. The potential 

biotopes each comprised two sites, and further sampling is required to explore these potential 

biotopes.  

Mixed ecosystems can be considered a subset of reef ecosystem types and they also host 

different biodiversity to unconsolidated sediments. We observed in Chapter 2 that most 

species occurring on reefs also occurred on mixed ecosystem types, although in different 

quantities. There were certain species which favoured mixed ecosystems more than reefs and 

vice versa. This may indicate that some species thrive on reefs with sand inundation while 

other species may not be adapted to cope with sand inundation. Furthermore, we learned in 

Chapter 2, that the existing ecosystem classifications for both national and regional 

classifications do not effectively represent the epifaunal assemblages of the study area. When 

testing the existing ecosystem classifications with epifaunal data, the results indicated a 

mismatch. Ecosystems which were classified as reefs were often found to be mixed or 
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unconsolidated sediments and vice versa. These observations highlight the importance of 

incorporating in situ sampling and epifauna in future ecosystem classifications and mapping. 

 

Figure 4.1: Most of the study sites are incorporated in the proposed KwaZulu-Natal MPA 
design. Proposed MPAs (uThukela Banks (north) and Aliwal Shoal (south)) in dashed 
squares, sites which form biotopes are represented by circles while sites which form 
potential biotopes are represented by square shapes. The outlier sites are represented by 
red triangles. 

 

Analyses conducted in Chapter 3 showed that there is a significant difference in epifaunal 

assemblage distribution patterns between the reefs north of Durban and that south of Durban. 

These findings suggest a possible biogeographic break offshore of Durban with different deep 

reef epifaunal assemblages occurring north and south of Durban. Further sampling is required 

in this region to explore this proposed break.  
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Although most species occurred throughout the study area, some were abundant on the reefs 

north of Durban while other species were abundant on the reefs south of Durban. Only a few 

species were unique to any particular region. Distance from shelf edge, latitude and distance 

from shore were the major proxies of environmental variables which contributed to patterns 

in epifaunal assemblages patterns of the KZN deep reefs; whereas sea surface temperature 

and phosphate were identified as the major potential driving factors of patterns in epifaunal 

assemblages of these reefs.  

4.2  Limitations 

4.2.1 Unbalanced design 

Time constraints, limited resources and the limited geographical location of the study resulted 

in the unbalanced design of Chapter 2. In this Chapter, images from 17 sites were processed; 

eight were reef sites, five were unconsolidated sediment sites while four were mixed sites. 

The data for the current study was collected as a subset of a collaborative research project in 

which planning was not designed to cater only for the current study but to cover requirements 

of different projects during the research expeditions. At some sites, sampling could not be 

completed as a result of adverse weather conditions which often hindered the remotely-

operated vehicle (ROV) operations. Furthermore some reef sites which were initially planned 

to be surveyed were omitted as no reef could be found (due to the unavailability of multi-

beam data). Despite several subsequent attempts to detect their reported positions in the area, 

they were not successful, limiting the number of sites that could be surveyed and data that 

could be collected. Other habitat classification studies have relied on multibeam data, both 

for sampling design and data interpretation (Kostylev et al. 2001, Kobryn et al. 2013). The 

lack of such data was a limitation to the current study. Time constraints and limited resources 

also influenced the design as it was not possible to revisit sites which were affected by the 

weather during the original sampling period. However the statistical tools used in this study 

helped in compensating in the analysis of the unbalanced project design. Future projects need 

to plan for these limitations.   

4.2.2 Challenges working with epifaunal imagery data 

Identifying epifauna from underwater images with limited knowledge and taxonomic 

resources proved to be challenging. In South Africa there are few taxonomic guides or 

experts in marine epifauna from deeper waters of the KZN subtropical region. Some experts, 

both local and international, were however consulted with identifications of the epifauna 
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from this study. The use of taxonomic guides and expertise to identify specimens from 

images is still limiting in that actual specimens and microscopic examination are required to 

accurately key out most species. Images can only be analysed to a coarse level of 

identification, with most species only being identified to genus level at best. Image 

processing is also likely to undersample obscure and camouflaged species and functional 

groups (Deter et al. 2012, Beisiegel et al. 2017). Some octocorals and encrusting sponges 

(e.g. Mycale sp.1) grew over other octocoral species in the study area. Przeslawski et al. 

(2015) reported that some sponge taxa were difficult to taxonomically identify even on well-

studied ecosystems. Where possible we recommend supplementary collection of physical 

samples of the most dominant species with the use of an ROV arm or benthic sled for 

accurate identifications. Further taxonomic studies and collaborations with international 

experts are encouraged to improve knowledge of the South African benthic epifauna, 

especially in the KZN region where few trawl surveys take place and modern epifaunal 

samples from beyond 30 m are scarce. Support is needed to develop detailed taxonomic 

guides and online databases for the region. Intense taxonomic training and collaborations 

with taxonomic experts are recommended for similar future studies. 

4.2.3 Environmental variables 

The implementation and success of marine management strategies relies on the knowledge of 

species distributions and diversity. Analyses in Chapter 3 revealed significant patterns in 

epifaunal assemblages of the KZN reefs and identified potential drivers of these patterns. 

However limitations with the size of the study area, number of sites and narrow depth range 

were experienced in the current study. The study is located along a narrow continental shelf 

thus limiting the possible depth range to be surveyed. Wind, strong current and limited 

detailed bathymetric information is also a hindrance. Additional sampling within the study 

area and within sites should be conducted to allow further investigation and interpretation of 

the observed biological patterns. The abiotic variable of sand inundation may also require 

further investigation as this variable clearly impacted on epifaunal assemblages in Chapter 2 

but in Chapter 3, this driver did not seem to contribute significantly to the observed pattern. 

Longer-term data to understand sand inundation at sites may be needed. 

4.2.4 Competition and predation 

Biological interactions, such as competition and predation, might further influence the 

epifaunal assemblages patterns observed in the current study (Chesson and Kuang 2008). 

Often competition for resources is proven to be a key interaction that limits diversity; and 
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predation of epifauna by subtropical fish and crown of thorns starfish has been reported 

elsewhere (Kayal et al. 2012, Strong et al. 2015). This study did not address such biological 

interactions despite their recognised importance in ecological studies.  

4.3 Management recommendations and future work 

Elsewhere in the world, an increased use of geomorphometry (the science of quantitative 

terrain analysis which originated from terrestrial investigations) has been adopted in marine 

research. This has resulted in the production of continuous acoustic seabed imagery which is 

important in understanding changes in marine habitats and the distribution of sediments 

(Cogan et al. 2009, Lecours et al. 2015). Coupling these forms of research with our current 

biodiversity surrogacy can improve marine habitat mapping and classifications that provide 

more accurate predictions of biodiversity patterns (Anderson et al. 2011, Lecours et al. 2015). 

The current study demonstrates the importance of biodiversity surrogates in marine habitat 

classification. Incorporating benthic biodiversity into the verification processes of existing 

classifications is essential as these habitats play an important part in marine ecosystem 

assessments (Cogan et al. 2009, Heiskanen et al. 2016). A good combination between 

mapping of physical habitat distribution and the ecological knowledge of patterns in species 

assemblages is required (de Juan et al. 2013). The current study provides valuable 

information about patterns in epifaunal assemblages of the KZN outer shelf and findings will 

be useful to inform future MSP projects of the region.  

The implementation of Operation Phakisa, which among other objectives, aims to unlock the 

potential of South Africa's ocean economy, has facilitated the fast tracking of research in the 

marine environment (Government gazette, 2016). Since the implementation of Operation 

Phakisa, 22 proposed Marine Protected Areas (MPAs) are under discussion, and will cover 5 

% of South Africa‘s Exclusive Economic Zone (Livingstone 2016, Sink 2016). Of the 26 sites 

sampled in this study, 18 are incorporated in two of the proposed KZN MPAs (Figure 4.1). 

Hence we recommend further sampling north of Ballito so as to investigate more sites within 

the proposed MPA. The current study suggests future work to investigate the proposed 

biogeographic or regional break off Durban; no previous studies have reported this and more 

sampling in this area is needed (i.e the deep reefs between north and south of Durban (that is 

between Tongaat and Pennington) and further north of Ballito).  
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4.4  Conclusions  

The primary aim of this study was to interrogate and refine existing national and provincial 

ecosystem classifications and maps using epifauna, and to identify the key potential drivers of 

observed epifaunal biodiversity patterns. Significantly different patterns in epifauna were 

detected among reef, mixed and sand habitats and this information needs to be incorporated 

into both regional and national classifications.The current study highlights the importance of 

ROV imagery data to contribute towards mapping community distribution patterns. Part of 

the study area is incorporated in two proposed MPAs which capture the diversity of epifauna 

occurring here (Figure 4.1). It is clear from the results obtained that additional sampling is 

required to further test the proposed biogeographic break off Durban and the three potential 

biotopes. The current study serves as a baseline for the implementation of MPA expansions 

and MSP; however we suggest further surveys in the region to better understand bioregional 

patterns and inform spatial management (the proposed MPA networks). The current study 

will support conservation management decisions in the KZN region and also represents an 

important contribution to the understanding of patterns in epifaunal assemblages of this 

region. 
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Appendix 

Table 1: All reef sites sampled in this study with environmental variables collated for the current study. 

Regions Sites Longitude Latitude Depth (m)

Distance 

from 

shore 

(km)

Distance 

from 

Shelf-

edge 

(km)

Bottom 

Oxygen 

(ml/l)

Bottom 

Temp 

(
o
C)

SST 

(mean) 

(oC)

Chlorophyll 

(Chl a ) 

(mg/m
3
) 

Turbidity 

(mean) 

(m
-1

)'

Phosphate 

(%)

Sand 

Inundation 

SI %

Light 

attenuation 

KD 490nm

Far South Rf 1 30.81038 -30.3353 60 8.376 3.542 5.328 19.550 23.860 0.606 22908.140 0.123 21.348 0.094

Far South Rf 2 30.84845 -30.2979 72 10.604 1.082 4.933 18.912 23.800 0.529 23403.830 0.124 30.533 0.085

Far South Rf 3 30.89207 -30.2553 75 13.036 0.004 3.637 17.039 23.800 0.505 22940.730 0.122 60.311 0.082

South Rf 4 30.93528 -30.1851 85 13.576 1.380 5.159 15.431 23.800 0.538 23003.030 0.129 17.926 0.085

South Rf 5 30.9191 -30.1689 48 10.942 3.974 5.300 17.937 23.760 0.538 23494.600 0.132 14.341 0.085

South Rf 6 30.94132 -30.1436 60 11.550 4.290 5.084 16.969 23.780 0.550 23280.297 0.130 24.756 0.086

South Rf 7 30.91843 -30.1397 69 8.781 6.335 5.483 16.783 23.770 0.642 23311.210 0.132 14.696 0.096

South Rf 8 30.95433 -30.1307 72 12.090 4.300 5.625 16.585 23.760 0.550 23391.380 0.132 15.768 0.086

Central Rf 9 31.18623 -29.8102 68 16.278 11.738 4.327 18.269 23.595 0.583 22689.990 0.184 8.711 0.091

Central Rf 10 31.21152 -29.8004 60 18.508 9.954 4.546 19.302 23.550 0.532 23331.960 0.168 29.067 0.086

Central Rf 11 31.1892 -29.735 72 11.888 16.196 4.708 16.827 23.560 0.539 22219.660 0.247 3.911 0.086

Central Rf 12 31.2514 -29.7343 74 18.710 10.576 4.640 16.988 23.570 0.519 22206.720 0.247 14.104 0.084

Central Rf 13 31.2112 -29.7127 55 12.901 15.438 4.766 17.773 23.400 0.560 23528.610 0.154 34.163 0.088

North Rf 14 31.3442 -29.6797 56 25.802 7.821 5.680 17.781 23.370 0.536 23802.910 0.122 32.430 0.086

North Rf 15 31.34570 -29.6787 71 25.768 8.040 4.459 17.646 23.710 0.536 23458.850 0.193 8.815 0.086

North Rf 16 31.31958 -29.5776 72 15.265 19.651 4.437 17.349 23.700 0.580 22908.170 0.204 18.815 0.091

North Rf 17 31.35832 -29.5211 49 14.556 23.295 4.6092 19.5548 23.550 0.617 23653.310 0.1975 2.741 0.095
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