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ABSTRACT 

Neuroblastoma (NB) represents 8-10% of all childhood tumours and accounts for 

approximately 15% of all cancer-related deaths in the paediatric population. Approximately 

half of newly diagnosed children with this tumour will present with metastatic disease or 

histologically aggressive large tumours that are at high risk for treatment failure. Since NBs 

are often widely disseminated and the tumours genetically heterogeneous in terms of their 

growth and metastatic behaviour, it is challenging to pinpoint their origin and predict disease 

prognosis. Several risk factors have been identified to play a role in disease progression, 

including age at the time of initial presentation, tumour stage, histology and ploidy of the 

tumour, and cytogenetic aberrations such as MYCN amplification, anaplastic lymphoma kinase 

(ALK), loss of heterozygosity of 11q and gain of 17q chromosomes.  

Heredity is an important risk factor in about 1% to 2% of all NBs as children inherit an 

increased risk of developing NB from a parent. The stages and risk groups for NB are complex 

and can be perplexing. Advances in our knowledge of the biology and genetic basis of NB 

have led to the development of targeted and potentially useful therapeutic modalities. Many 

aggressive NBs exhibit multidrug resistance (MDR), attributable to p53 mutations and/or a 

loss of p53 function acquired during chemotherapy, which escalates the likelihood of relapse 

and thus presents a major obstacle to effective tumour eradication. Most metastatic drug-

resistant NBs derive from the selection of clones (side population cells) that express the MDR1 

(ABCB1), MRP1/ABCC1 and MRP4/ABCC4) gene family, which may or may not correlate 

with MYCN amplification and poor outcome.  

In NB, ganglioside signatures may influence tumour behaviour and clinical outcome. Thus, 

NB glycobiology impact on tumour growth and antitumour therapy. Targeted immunotherapy 

of NB with antibodies directed against disialoganglioside (GD2) has been amply documented. 

Direct and coordinate transcriptional targets of MYCN include several of the ATP-binding 
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cassette (ABC) transporters—ABCB1 (P-glycoprotein/P-gp/MDR1). The expression of these 

MDR transporters are strongly prognostic of NB outcome since they extrude a wide array of 

structurally- and functionally-related or -unrelated chemotherapeutic drugs. The ABC 

transporters are thus promising candidates for therapeutic suppression in high-risk NB (HR-

NB), the rationale behind increasing drug bioavailability (therapeutic efficacy) in refractory 

tumours which overexpress these glycans.  

P-gp is known to be overexpressed in NB, including the SK-N-BE(2) cell line selected for this 

study. Glycosylation of P-gp is critical for its location and function as a drug efflux pump to 

mediate MDR. In this study, the effects of aspirin (acetyl salicylic acid, a non-steroidal anti-

inflammatory drug known to activate PERK and upregulate pro-apoptotic transcription factor 

CHOP (GADD153) which, together with cleavage of caspase-12, are hallmarks of ERS-

mediated responses); bacitracin (an antibiotic that ablates glycoprotein synthesis at its first 

stage and interferes with P-glycoprotein (P-gp) expression and localization); castanospermine 

(a plant alkaloid that specifically inhibits α-glycosidases I and II, thus blocking elongation of 

glycan chains and formation of mature glycoproteins); brefeldin A (a metabolic inhibitor of N-

glycosylation and disruptor of microtubule and actin cytoskeleton organization) and 

thapsigargin (a potent inducer of GRP78 expression and ERS, and activator of the UPR through 

non-competitive inhibition of the sarcoplasmic/endoplasmic reticulum calcium 

ATPase/SERCA) on SK-N-BE(2) cells were investigated.  

The methods used to determine these effects were dose-response analysis, triplex-based 

fluorescence and luminescence cell cytotoxicity, viability and apoptosis assays, Annexin-V 

Cy3 fluorescence microscopy for apoptosis visualization and measurement of P-gp-mediated 

calcein efflux function. In this study, aspirin produced cytotoxicity towards SK-N-BE(2) cells, 

but viability was not affected. Aspirin had no effect on cell apoptosis at low concentrations, 

but at higher concentrations it decreased apoptosis induction. Bacitracin was shown to exert 

concentration-dependent effects on apoptosis in SK-N-BE(2) cells, i.e., at low concentrations 
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it increased caspase-dependent apoptosis, but at higher concentrations it reduced apoptosis. 

Such duality of effects is difficult to explain in the absence of mechanistic studies, especially 

since it was observed that bacitracin also decreased cytotoxicity commensurate with increased 

viability, but had no impact on P-gp efflux function. Results obtained in this study showed that 

castanospermine at all concentrations tested produced no cytotoxic effects, but at high 

concentrations resulted in contrasting effects, viz, increased viability and apoptosis, but no 

effect on calcein retention.  

Brefeldin A, regarded as an inhibitor of P-gp, induced cytotoxicity and apoptosis in SK-N-

BE(2) cells, but no inhibition of P-gp function was evident in the concentration range tested. 

Thapsigargin increased cytotoxicity and apoptosis in SK-N-BE(2) cells, but had no effect on 

P-gp function as measured by the calcein retention assay. It is concluded that efficacy of these 

ERS aggravators (ERSAs) may offer a cogent translational targeted cancer chemotherapeutic 

approach to treating NB. However, further mechanistic studies are needed to explain the 

responses observed. 

Keywords: childhood cancer, neuroblastoma, inhibitors of N-glycosylation, endoplasmic 

reticulum stress inducers, neuroblastoma drug resistance, cytotoxicity, P-glycoprotein-

mediated drug efflux 

  

http://etd.uwc.ac.za/



 

 

 

 

LIST OF ABBREVIATIONS 

viii 

LIST OF ABBREVIATIONS 

ABMT Autologous Bone Marrow Transplantation 

ABC ATP-Binding Cassette 

ADCC Antibody Mediated Cell Cytotoxicity 

ALK Anaplastic Lymphoma Kinase 

AnnCy3 Annexin-Cy3 

ANOVA One-Way Analysis of Variance 

ANS Autonomic Nervous System 

ASCT Autologous Stem-Cell Transplantation 

ATCC American Type Culture Collection 

ATRA All-Trans Retinoic Acid 

AURKA Aurora A Kinase 

BAC Bacitracin 

BDNF Brain-Derived Neurotropic Factor 

BFA Brefeldin A 

BMP Bone Morphogenetic Protein 

BMT Bone Marrow Transplantation 

Calcein-AM Calcein–Acetoxymethylester 

CAMs Cell Adhesion Molecules 

CBC Complete Blood Count 

CCG Children’s Cancer Group 

CCK-8 Cell Counting Kit-8 

CD102 Cluster of Differentiation 102 

6-CF 6-Carboxyfluorescein 

6-CFDA 6-Carboxyfluorescein Diacetate 

95%CI 95% Confidence Interval 

COG Children’s Oncology Group 

COX Cyclooxygenase 

CRA 13-Cis-Retinoic Acid (Isotretinoin) 

CSCs Cancer Stem Cells 

http://etd.uwc.ac.za/



 

 

 

 

LIST OF ABBREVIATIONS 

ix 

CST Castanospermine 

CT Computed Tomography 

DBH Dopamine Beta-Hydroxylase Promoter 

DEVD Aspartic Acid, Glutamic Acid, Valine, Aspartic Acid 

2dGlc/2-DG 2-Deoxyglucose 

DLTs Dose-Limiting Toxicities 

DMEM Dulbecco’s Modified Eagle Medium 

DMSO Dimethylsulfoxide 

DNJ/DMJ Deoxynojirimycin/Deoxymannojirimycin 

Dol-PP Dolichol Pyrophosphate 

DON 6-Diazo-5-Oxo-L-Norleucine 

GD2 Diganglioside (Disialoganglioside) 

EC Epidural Compression 

ECM Extracellular Matrix 

EFS Event-Free Survival 

EMT Epithelial-to-Mesenchymal Transition 

ER Endoplasmic Reticulum 

ERAD Endoplasmic Reticulum-Associated Degradation 

ERQC Endoplasmic Reticulum Protein Quality Control System 

ERS Endoplasmic Reticulum Stress 

ERSAs Endoplasmic Reticulum Stress Aggravators 

FDA Food and Drug Administration 

FDG 18-Fluorodeoxy-Glucose (18F-FDG) 

FDG-PET Fluorodeoxyglucose Positron Emission Tomography 

FGF Fibroblast Growth Factor 

FISH Fluorescence In Situ Hybridization 

FKBP12 FK-Binding Protein 12 

GAGs Glycosaminoglycans 

GATA GATA transcription factors are a family of transcription factors characterized by 
their ability to bind to the DNA sequence “GATA”. 

GBPs Glycan-Binding Proteins 

GM-CSF Granulocyte Macrophage Colony-Stimulating Factor 

http://etd.uwc.ac.za/



 

 

 

 

LIST OF ABBREVIATIONS 

x 

GN Ganglioneuroma 

GPI Glycosylphosphatidiylinositol 

GRP/ GRPR Gastrin-Releasing Peptide/Gastrin-Releasing Peptide Receptor 

HAND2 Heart- and Neural Crest Derivatives-Expressed Protein 

hESCs Human Embryonic Stem Cells 

HIF Hypoxia-Inducing Factor 

HIFBS Heat-Inactivated Foetal Bovine Serum 

HPR/4-HPR N-(4-Hydroxyphenyl) Retinamide 

HR-NB High-Risk Neuroblastoma 

HSCR Hirschsprung’s Disease 

HSCT Haematopoietic Stem Cell Transplantation 

HSR Homogeneously Staining Region(s) 

hNCSCs Human Neural Crest Stem Cells 

HVA Homovanillic Acid 

IC50 The Half Maximal Inhibitory Concentration of a Drug 

ICAM-2 Intercellular Adhesion Molecule-2 

IDRFs Image-Defined Risk Factors 

IGF2BP1 Insulin-Like Growth Factor-2 MRNA-Binding Protein 1 

IMT Inflammatory Myofibroblastic Tumour 

INRG International Neuroblastoma Risk Group 

INRGSS International Neuroblastoma Risk Group Staging System 

INSS International Neuroblastoma Staging System 

INPC International Neuroblastoma Pathology Classification 

IUPAC International Union of Pure and Applied Chemistry 

IV Intravenous 

JNK c-Jun Amino N-Terminal Kinase 

LNN Large Nucleolar Neuroblastoma 

LOH Loss of Heterozygosity 

67LR 67-kDa Laminin Receptor 

mAbs Monoclonal Antibodies 

MAPK Mitogen-Activated Protein Kinase 

MAT Myeloablative Therapy 

http://etd.uwc.ac.za/



 

 

 

 

LIST OF ABBREVIATIONS 

xi 

MASH1 Mammalian Achaete Scute Homologue-1 

MDM2 Mouse Double Minute 2 Homologue 

MDR Multidrug Resistance 

MEM Modified Eagles Medium 

MIBG Meta-Iodobenzylguanidine 

MKI Mitosis-Karyorrhexis Index 

MMPs Matrix Metalloproteases 

MRD Minimal Residual Disease 

MRI Magnetic Resonance Imaging 

MRP1 Multidrug Resistance-Associated Protein-1 

MTDs Maximal-Tolerated Doses 

mTOR Mammalian Target of Rapamycin 

MSCs Mesenchymal Stromal Cells 

MYCL Myelocytomatosis Viral Oncogene 

MYCN The v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived 
homolog. MYCN remains the best-characterized genetic marker of risk in 
neuroblastoma.  

NB(s) Neuroblastoma(s) 

NC Neural Crest 

NCAM Neural Cell Adhesion Molecule 

NGF Nerve Growth Factor 

NKT Natural Killer T Cells 

NMP Nucleophosmin 

NTRK Neurotrophic Tyrosine Receptor Kinase(S) 

NSAIDs Nonsteroidal Anti-Inflammatory Drugs 

NSCLC Non-Small-Cell Lung Carcinoma 

NT3 Neurotrophin-3 Growth Factor 

ODC1 Ornithine Decarboxylase 1 

OMS Opsoclonus-Myoclonus Syndrome 

OS Overall Survival 

PAH Pulmonary Arterial Hypertension 

PBS Phosphate Buffered  Saline 

PBSCT Peripheral Blood Stem Cell Transplantation 

http://etd.uwc.ac.za/



 

 

 

 

LIST OF ABBREVIATIONS 

xii 

PCD Programmed Cell Death 

PET Positron Emission Tomography 

PFS Progression-Free Survival 

PI3K Phosphoinositide-3-Kinase 

Pgp P-glycoprotein 

PHOX2B Paired-Like Homeobox 2b 

PLC Phospholipid C 

pNTs Peripheral Neuroblastic Tumours 

POG Paediatric Oncology Group 

PPM1D Protein Phosphatase Magnesium-Dependent 1 Delta 

PS Phosphatidylserine 

PSA Polysialic Acid 

PTMs Post-Translational Modifications 

RA Retinoic Acid 

RARs/RXRs Retinoic Acid Receptors/Retinoic Acid X (Rexinoid) Receptors 

RAREs Retinoic Acid Response Elements 

RH Relative Humidity 

RTK Receptor Tyrosine Kinase(s) 

SEER Surveillance, Epidemiology, and End Results Programme 

SERCA Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 

SNS Sympathetic Nervous System 

SPECT Single-Photon Emission Computed Tomography 

SWSN Swainsonine 

RET Rearranged During Transfection 

TAFs Tumour-Associated Fibroblasts 

TAMs Tumour-Associated Macrophages 

TGFß Transforming Growth Factor Beta 

TH Tyrosine Hydroxylase 

TM Tunicamycin 

TME Tumour Microenvironment 

TICs Tumour-Initiating Cells 

TRK/Trk Tyrosine Receptor Kinase 

http://etd.uwc.ac.za/



 

 

 

 

LIST OF ABBREVIATIONS 

xiii 

TSG(s) Tumour Suppressor Gene(s) 

UPR Unfolded Protein Response 

VEGF Vascular Endothelial Growth Factor 

VIP Vasoactive Intestinal Peptide 

VMA Vanillylmandelic Acid 

Wnt Wingless/Integrated Proto-Oncogene 

β-D-Xyl β-D-Xyloside 

 

 

 

http://etd.uwc.ac.za/



 

 

 

 

CONTENTS 

xiv 

 

CONTENTS 

DECLARATION...................................................................................................................................................... ii 
DEDICATION ........................................................................................................................................................iii 
ACKNOWLEDGEMENTS .................................................................................................................................... iv 
ABSTRACT .............................................................................................................................................................. v 
LIST OF ABBREVIATIONS ............................................................................................................................... viii 
CONTENTS .......................................................................................................................................................... xiv 
LIST OF FIGURES ............................................................................................................................................ xviii 
LIST OF TABLES ................................................................................................................................................. xx 
CHAPTER 1 ............................................................................................................................................................. 1 
INTRODUCTION AND LITERATURE REVIEW .................................................................................................................. 1 
SECTION A: NEUROBLASTOMA .................................................................................................................................. 1 
A1. Introduction ......................................................................................................................................................... 1 
A2. What is Neuroblastoma? ..................................................................................................................................... 2 
A3. The Sympathetic Nervous System....................................................................................................................... 3 
A4. Epidemiology of Neuroblastoma: Incidence and Mortality Statistics ................................................................. 4 
A5. Risk Factors for Neuroblastoma .......................................................................................................................... 7 
A6. Staging of Neuroblastoma ................................................................................................................................... 9 
A7. Prognostic Markers for Neuroblastoma ............................................................................................................. 11 
A8. Other Autonomic Nervous System Tumours in Children.................................................................................. 15 
A9. Detection, Diagnosis and Prognosis of Neuroblastoma ..................................................................................... 17 
A9.1 Imaging and Laboratory Tests ......................................................................................................................... 17 
A9.2 Histopathology of Neuroblastoma ................................................................................................................... 24 
A10. Clinical Presentation, Signs and Symptoms of Neuroblastoma ....................................................................... 30 
A10.1 Signs or Symptoms Caused by the Main Tumour ......................................................................................... 32 
A10.1.1 Tumours in the Abdomen or Pelvis ............................................................................................................ 32 
A10.1.2 Tumours in the Chest or Neck .................................................................................................................... 32 
A10.2 Signs or Symptoms Caused by Metastatic Spread of the Cancer .................................................................. 33 
A10.3 Signs or Symptoms Caused by Hormones Secreted by the Tumour ............................................................. 34 
A11. Molecular Pathogenesis, Genetics and Genomics of Neuroblastoma .............................................................. 34 
A11.1 Neural Development and Neuroblastoma ...................................................................................................... 35 
A11.2 EMT and MET Transitions in the Neural Crest ............................................................................................ 35 
A11.3 Hallmarks of the Neuroblastoma Tumour Microenvironment ...................................................................... 37 
A11.4 Genetic Lesions, Transcriptional Networks and Oncogenic Drivers in Neuroblastoma ................................ 40 
A11.4.1 Familial Genetic Lesions ............................................................................................................................ 40 
A11.4.2 PHOX2B Germline Mutations ................................................................................................................... 43 
A11.4.3 Anaplastic Lymphoma Kinase ................................................................................................................... 44 
A11.4.4 Chromosome Gain and Oncogene Activation ............................................................................................ 45 
A11.4.5 Amplification of MYCN and the 2p24 Locus ............................................................................................ 45 

http://etd.uwc.ac.za/



 

 

 

 

CONTENTS 

xv 

A11.4.6 Gain of Chromosome Arm 17q .................................................................................................................. 48 
A11.4.7 Amplification and Chromosome Gain of Other Loci ................................................................................. 50 
A12.4 Chromosome Loss and Tumour Supressor Genes ......................................................................................... 50 
A12.4.1 Loss of Heterozygosity of Chromosome 1p and CHD5, miR-34, KIF1Bβ ................................................ 50 
A12.4.2 Loss of Heterozygosity of 11q and TSLC1 ................................................................................................ 52 
A12.4.3 Loss of Heterozygosity of 14q ................................................................................................................... 53 
A13. Treatment and Management of Neuroblastoma............................................................................................... 53 
A13.1 Overall Therapeutic Landscape of Neuroblastoma ....................................................................................... 53 
A13.1.1 Spontaneous Regression and Stage 4S Disease .......................................................................................... 54 
A13.1.2 Surgery ....................................................................................................................................................... 55 
A13.1.3 Chemotherapy ............................................................................................................................................ 56 
A13.1.4 Radiotherapy .............................................................................................................................................. 59 
A13.1.5 Haematopoietic / Peripheral Blood Stem Cell Transplantation .................................................................. 60 
A13.1.6 Management of Minimal Residual Disease and Relapse ............................................................................ 61 
A13.1.7 Multidrug Resistance and Monitoring Response to Treatment .................................................................. 63 
A13.1.8 Alleviating the Burden of Late Effects ....................................................................................................... 65 
A13.2 Current Research Milestones and Proposed Novel Therapies ....................................................................... 66 
A13.2.1 Differentiation and Retinoids ..................................................................................................................... 66 
A13.2.2 mTOR Inhibitors ........................................................................................................................................ 69 
A13.2.3 Aurora A Kinase and MDM2 as MYCN Targets ....................................................................................... 72 
A13.2.4 Tyrosine Receptor Kinase Neurotrophin Receptor Inhibitors .................................................................... 73 
A13.2.5 Targeted Immunotherapy and Disialoganglioside ...................................................................................... 74 
A13.2.6 Angiogenesis and VEGF Signalling Inhibitors .......................................................................................... 75 
A13.2.7 The PI-3 Kinase-Akt-MDM2-Survivin Signalling Axis in High-Risk Neuroblastoma .............................. 75 
A13.2.8 Gastrin-Releasing Peptide Receptors ......................................................................................................... 76 
A13.2.9 Anaplastic Lymphoma Kinase ................................................................................................................... 76 
A13.2.10 Future Therapeutic Perspective ................................................................................................................ 78 
SECTION B: GLYCOBIOLOGY AND GLYCOMICS OF NEUROBLASTOMA.................................................................... 78 
B1. Orientation to Glycans ....................................................................................................................................... 78 
B2. Protein Glycosylation in Neuroblastoma ........................................................................................................... 81 
B2.1 General Principles of Glycosylation ................................................................................................................ 81 
B2.2 Gangliosides .................................................................................................................................................... 81 
B2.3 Intercellular Adhesion Molecule-2 .................................................................................................................. 84 
B2.4 Anaplastic Lymphoma Kinase ......................................................................................................................... 86 
B2.5 Cell-Surface Mucin-Type O-Glycans .............................................................................................................. 86 
B2.6 Polysialic Acid ................................................................................................................................................ 87 
B2.7 Lectins (Glycan-Binding Proteins) .................................................................................................................. 87 
B2.8 Glycosyltransferases ........................................................................................................................................ 89 
B2.9 ATP-Binding Cassette Multidrug Transporters ............................................................................................... 90 
B2.10 Inhibitors of N-Linked Glycosylation............................................................................................................ 92 
SECTION C: PROTEIN GLYCOSYLATION, ENDOPLASMIC RETICULUM STRESS AND THE UNFOLDED PROTEIN 
RESPONSE ................................................................................................................................................................ 97 
C1. Introduction ....................................................................................................................................................... 97 

http://etd.uwc.ac.za/



 

 

 

 

CONTENTS 

xvi 

C2. Endoplasmic Reticulum Stress and the Unfolded Protein Response ................................................................. 98 
C3. ER Stress and the UPR in Cancer .................................................................................................................... 101 
C4. Targeting ER Stress and the UPR .................................................................................................................... 104 
C5. The ERS and UPR in Perspective .................................................................................................................... 113 
SECTION D: RESEARCH CONTEXT ......................................................................................................................... 113 
D1. Problem Statement and Research Questions ................................................................................................... 113 
D2. Purpose of the Study ....................................................................................................................................... 116 
D3. Aims of the Study............................................................................................................................................ 116 
D4. Objectives of the Study ................................................................................................................................... 117 
D5. Hypothesis ....................................................................................................................................................... 117 
SECTION E: SUMMARY........................................................................................................................................... 117 
CHAPTER 2 ......................................................................................................................................................... 118 
RESEARCH METHODOLOGY ..................................................................................................................................... 118 
2.1 Experimental Design ........................................................................................................................................ 118 
2.2 Drugs and Chemicals ....................................................................................................................................... 118 
2.3 Culture and Maintenance of SK-N-BE(2) Neuroblastoma Cells ...................................................................... 119 
2.4 Growth Curve Analysis of SK-N-BE(2) Neuroblastoma Cells ........................................................................ 122 
2.5 Cell Counting Kit-8 (CCK-8) Cell Viability Assays ........................................................................................ 122 
2.6 Apotox-Glo™ Triplex Cell Cytotoxicity, Viability and Apoptosis Assays...................................................... 123 
2.6.1 Principle of the Apotox-Glo™ Triplex Assay ............................................................................................... 123 
2.6.2 Assay Conditions for the ApoTox-Glo™ Triplex Assay .............................................................................. 124 
2.7 Measurement of P-Glycoprotein-Mediated Efflux Function ............................................................................ 125 
2.8 Annexin-V Cy3™ Apoptosis Assay ................................................................................................................ 126 
2.8.1 Principle of Annexin-V Cy3™ Apoptosis Assay .......................................................................................... 126 
2.8.2 Assay Conditions for Annexin-V Cy3™ Apoptosis Assay ........................................................................... 127 
2.9 Statistical Analysis ........................................................................................................................................... 128 
CHAPTER 3 ......................................................................................................................................................... 129 
RESULTS AND DISCUSSION ...................................................................................................................................... 129 
3.1 Introduction ...................................................................................................................................................... 129 
3.2 Morphology of SK-N-BE(2) Neuroblastoma Cells .......................................................................................... 130 
3.3 Expression of P-Glycoprotein in SK-N-BE(2) Neuroblastoma Cells ............................................................... 130 
3.4 Growth Curve Analysis of SK-N-BE(2) Neuroblastoma Cells ........................................................................ 131 
3.5 Cell Counting Kit-8 (CCK-8) Cell Viability Assays ........................................................................................ 133 
3.6 Apotox-Glo™ Triplex Cell Cytotoxicity, Viability and Apoptosis Assays...................................................... 136 
3.7 Annexin-V Cy3™ Apoptosis Assays ............................................................................................................... 144 
3.8 Measurement of P-Glycoprotein-Mediated Efflux Function ............................................................................ 150 
3.9 Summary .......................................................................................................................................................... 152 
CHAPTER 4 ......................................................................................................................................................... 154 
CONCLUSIONS AND FUTURE PERSPECTIVES ............................................................................................................ 154 
4.1 Introduction ...................................................................................................................................................... 154 
4.2 Research Hypothesis and Objectives of the Study ........................................................................................... 154 
4.3 Context and Significance of the Study ............................................................................................................. 155 

http://etd.uwc.ac.za/



 

 

 

 

CONTENTS 

xvii 

4.3.1 P-Glycoprotein, Endoplasmic Reticulum Stress and Glycosylation .............................................................. 155 
4.3.2 Aspirin .......................................................................................................................................................... 156 
4.3.3 Bacitracin ...................................................................................................................................................... 157 
4.3.4 Castanospermine ........................................................................................................................................... 157 
4.3.5 Brefeldin A.................................................................................................................................................... 158 
4.3.6 Thapsigargin ................................................................................................................................................. 158 
4.4 Limitations of the Study ................................................................................................................................... 159 
4.5 Conclusions and Future Outlook ...................................................................................................................... 159 
REFERENCES ..................................................................................................................................................... 161 
APPENDIX 1 ........................................................................................................................................................ 194 
COPYRIGHT CLEARANCE: WILEY GLOBAL PERMISSIONS ......................................................................................... 194 
APPENDIX 2 ........................................................................................................................................................ 195 
COPYRIGHT CLEARANCE: CANCER, JOHN WILEY AND SONS .................................................................................... 195 
APPENDIX 3 ........................................................................................................................................................ 196 
COPYRIGHT CLEARANCE: SEMINARS IN CANCER BIOLOGY, ELSEVIER .................................................................... 196 
APPENDIX 4 ........................................................................................................................................................ 197 
COPYRIGHT CLEARANCE: ANNUAL REVIEW OF MEDICINE ...................................................................................... 197 
APPENDIX 5 ........................................................................................................................................................ 198 
COPYRIGHT CLEARANCE: CANCER LETTERS ........................................................................................................... 198 
APPENDIX 6 ........................................................................................................................................................ 199 
COPYRIGHT CLEARANCE: GENOME MEDICINE ........................................................................................................ 199 
APPENDIX 7 ........................................................................................................................................................ 200 
COPYRIGHT CLEARANCE: CANCER LETTERS ........................................................................................................... 200 
APPENDIX 8 ........................................................................................................................................................ 201 
COPYRIGHT CLEARANCE: CANCER LETTERS ........................................................................................................... 201 
APPENDIX 9 ........................................................................................................................................................ 202 
COPYRIGHT CLEARANCE: CURRENT OPINION IN CELL BIOLOGY ...................................................................................... 202 
APPENDIX 10 ...................................................................................................................................................... 203 
COPYRIGHT CLEARANCE: JOURNAL OF LEUKOCYTE BIOLOGY ......................................................................................... 203 
APPENDIX 11 ...................................................................................................................................................... 204 
COPYRIGHT CLEARANCE: FRONTIERS IN ONCOLOGY ...................................................................................................... 204 
APPENDIX 12 ...................................................................................................................................................... 205 
COPYRIGHT CLEARANCE: ELSEVIER ............................................................................................................................ 205 

 

  

http://etd.uwc.ac.za/



 

 

 

 

LIST OF FIGURES 

xviii 

LIST OF FIGURES 

Figure 1.1: Organization of the nervous system ........................................................................................................ 4 
Figure 1.2: Structure and pathways of the sympathetic division of the nervous system ........................................... 5 
Figure 1.3: Rare and common genomic variants that predispose to neuroblastoma ................................................ 10 
Figure 1.4: Histology of peripheral neuroblastic tumours ....................................................................................... 28 
Figure 1.5: Microscopic views of typical neuroblastoma histopathology ............................................................... 29 
Figure 1.6: Neural crest programmed epithelial-to-mesenchymal transition .......................................................... 36 
Figure 1.7: Clinicopathologic correlations of neuroblastoma ................................................................................. 38 
Figure 1.8: Contribution of the cells and ECM in the TME to the ten hallmarks of neuroblastoma ....................... 39 
Figure 1.9: Pathways activated via communication between neuroblastoma and TME cells in the ECM .............. 40 
Figure 1.10: Chromosome regions and genes known to be involved in neuroblastoma oncogenesis ..................... 42 
Figure 1.11: Mechanisms of MDR and the concept of MDR targeting based on collateral sensitivity ................... 64 
Figure 1.12: The mechanism of action of retinoids and rexinoids .......................................................................... 67 
Figure 1.13: Overview of the mTOR signalling pathway in cancer ........................................................................ 70 
Figure 1.14: Major human glycans ......................................................................................................................... 79 
Figure 1.15: Theme and variation in the human glycome ....................................................................................... 80 
Figure 1.16: Schematic representation of the major ganglioside biosynthesis pathways ........................................ 83 
Figure 1.17: Altered glycans and related pathophysiological events involved in NB progression .......................... 84 
Figure 1.18: Neuroblastoma glycobiology impact on tumour growth and antitumour therapy ............................... 85 
Figure 1.19: Glycosylation defining malignancy—invasive and metastatic phenotype of tumours ........................ 89 
Figure 1.20: Endoplasmic reticulum protein folding function under normal physiological conditions................... 99 
Figure 1.21: Core elements of the UPR signalling network .................................................................................. 100 
Figure 1.22: The three branches of the UPR ......................................................................................................... 101 
Figure 1.23: Endoplasmic reticulum protein folding function under ERS conditions ........................................... 102 
Figure 1.24: Involvement of UPR signaling during cell transformation and tumour growth ................................ 103 
Figure 1.25: Tumour microenvironment and activation of ERS and UPR responses in cancer ............................ 104 
Figure 1.26: Cellular impact of ERS aggravators that weigh on the yin vs yang balance ..................................... 105 
Figure 1.27: An overview of therapeutic ERS-based targeting of the main hallmarks of cancer .......................... 106 
Figure 2.1: Experimental design: Assays and drugs used in this study ................................................................. 120 
Figure 3.1: Morphology of SK-N-BE(2) neuroblastoma cells .............................................................................. 130 
Figure 3.2: Upregulation of P-glycoprotein expression in neuroblastoma cell lines ............................................. 132 
Figure 3.3: Growth curve analysis of SK-N-BE(2) neuroblastoma cells in culture .............................................. 133 
Figure 3.4: CCK-8 dose-response curves for test compounds assessed at varying concentrations ....................... 134 
Figure 3.5: Effects of aspirin on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis ................................ 137 
Figure 3.6: Effects of bacitracin on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis ........................... 138 
Figure 3.7: Effects of castanospermine on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis ........................ 139 
Figure 3.8: Effects of brefeldin A on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis ........................ 140 
Figure 3.9: Effects of thapsigargin on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis .............................. 141 
Figure 3.10: Fluorescence micrographs of the effects of aspirin on SK-N-BE(2) cell apoptosis .......................... 145 
Figure 3.11: Fluorescence micrographs of the effects of bacitracin on SK-N-BE(2) cell apoptosis ..................... 146 

http://etd.uwc.ac.za/



 

 

 

 

LIST OF FIGURES 

xix 

Figure 3.12: Fluorescence micrographs of the effects of castanospermine on SK-N-BE(2) cell apoptosis .......... 147 
Figure 3.13: Fluorescence micrographs of the effects of brefeldin A on SK-N-BE(2) cell apoptosis ................... 148 
Figure 3.14: Fluorescence micrographs of the effects of thapsigargin on SK-N-BE(2) cell apoptosis ................. 149 
Figure 3.15: Effects of test compounds on P-glycoprotein function in SK-N-BE(2) neuroblastoma cells ........... 151 

  

http://etd.uwc.ac.za/



 

 

 

 

LIST OF TABLES 

xx 

LIST OF TABLES 

Table 1.1: Epidemiological information on childhood and adolescent cancers 2016 ................................................ 6 
Table 1.2: Trends in 5-year relative survival rates for children (birth to 14 years) by year of diagnosis .................. 8 
Table 1.3: The International Neuroblastoma Staging System (INSS) ..................................................................... 12 
Table 1.4: The International Neuroblastoma Risk Group Staging System (INRGSS) ............................................ 13 
Table 1.5: Children’s Oncology Group (COG) risk groups .................................................................................... 14 
Table 1.6: International Neuroblastoma Risk Group (INRG) classification ............................................................ 15 
Table 1.7: Prognostic markers for neuroblastoma ................................................................................................... 16 
Table 1.8: Survival of neuroblastoma patients by Children’s Oncology Group (COG) risk group ......................... 17 
Table 1.9: Other autonomic nervous system tumours in children ........................................................................... 17 
Table 1.10: Contemporary procedures and approaches used in confirming a diagnosis of neuroblastoma ............. 18 
Table 1.11: INPC classification of neuroblastic tumours ........................................................................................ 26 
Table 1.12: Comparison of the INPC and the Shimada classification of neuroblastic tumours .............................. 27 
Table 1.13: Specific classes and examples of N-glycosylation inhibitors ............................................................... 93 
Table 1.14: Pharmacologic modulators commonly used in targeting ERS and UPR signalling ............................ 108 
Table 3.1: Relative expression of known drug-resistance genes in neuroblastoma cell lines ................................ 131 
Table 3.2: Regression analysis data and summary of dose-response parameters .................................................. 135 

 

 

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 1 | Introduction and Literature Review  

1 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

SECTION A: NEUROBLASTOMA 

A1. Introduction 

Neuroblastoma (NB) is the most common extracranial and deadly solid tumour in children and 

its origin has been clearly linked to the development of the sympathetic nervous system (SNS) 

because it originates from sympathetic precursor neuroblasts derived from the neural crest. 

Neuroblastoma represents 8-10% of all childhood tumours and accounts for approximately 

15% of all cancer-related deaths in the paediatric population. The incidence of neuroblastoma 

is 10.2 cases per million children under 15 years of age, and nearly 500 new cases are reported 

annually. While 90% of cases are diagnosed before the age of 5, 30% of those are within the 

first year. The median age of diagnosis is 22 months. Rarely does it present in adolescence and 

adulthood, but outcomes are much poorer in this age group.  

There does not appear to be an increased prevalence among races, but there is a slight 

predilection for males (1.2:1). With a family history noted in 1-2% of diagnoses, there are 

several reports of autosomal dominant patterns of inheritance. In such pedigrees, patients are 

frequently diagnosed at an earlier age (median age of 9 months) than those with sporadic 

disease and are more likely to have associated multiple primary cancers. Neuroblastoma has 

also been diagnosed in conjunction with other congenital conditions such as Hirschsprung’s 

disease, congenital hypoventilation disorder and neurofibromatosis type 1. There was early 

interest in the co-occurrence of neuroblastoma and neurofibromatosis, as they are both 

disorders of neural crest cells. However, this may represent coincidence rather than a true 

association.1,2
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Approximately half of newly diagnosed children with this tumour will present with metastatic 

disease or histologically aggressive large tumours that are at high risk for treatment failure. 

Neuroblastomas found in patients older than 1 year are usually aggressive and eventually kill 

the patients despite intensive therapy, whereas those in patients younger than 1 year often 

regress spontaneously or maturate, resulting in a more favourable prognosis. Because of the 

unique biological features of NBs, the neoplasm shows a wide range of clinical hallmarks, 

including the highest rate of spontaneous regression of any human malignancy, a potential for 

undergoing both induced and spontaneous maturation and also aggressive clinical courses with 

poor survival outcomes. The biological characteristics of NB are complex aneusomies, 

aneuploidies and ploidy shifts acquired by the tumour cells, and some of these chromosomal 

changes are known to be associated with clinical behaviour. The most commonly observed 

aneusomies include gains of 17q and deletions or allelic losses of 1p and 11q. 

Combinations of these and other less prevalent genetic changes are detected in different genetic 

and clinical subsets of NB, and shown to be associated with tumour phenotype. 

Notwithstanding intensive investigation to map the shortest region of overlaps at deleted 

segments of 1p and 11q, a consistently involved candidate tumour suppressor gene has not yet 

been identified. Similarly, although PPM1D has been reported to be the most likely target 

genes with a recurrent oncogenic role at the minimal common region of gains at 17q remains 

to be identified. For years, MYCN was the only oncogene known to be involved recurrently in 

approximately 22% of tumours, and the MYCN protein is overexpressed via high copy number 

gains of the gene in tumours with advanced stages and aggressive clinical behaviour. The 

sections that follow will describe the global disease landscape of neuroblastoma in greater 

detail. 

A2. What is Neuroblastoma? 

Neuroblastoma (NB) is a paediatric cancer that originates from undifferentiated migratory 

neural crest (NC) progenitor or stem cells of the developing sympathetic nervous system 
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present in an embryo or foetus.3-6 These early precursor nerve cells are called neuroblasts—the 

term neuro signifies nerves, while blastoma denotes a cancer that affects immature or 

developing cells. Thus, neuroblastoma is a solid tumour that stems from the developing 

sympathetic nervous system (SNS) and can be found anywhere along this system.7 

Neuroblastoma is prevalent in infants and young children—it rarely occurs in children older 

than 10 years.8 About 1 out of 3 neuroblastomas start in the adrenal glands and 1 out of 4 begin 

in sympathetic nerve ganglia in the abdomen, whereas the rest start in sympathetic ganglia near 

the spine in the chest or neck, or in the pelvis.6  

Since NBs are often widely disseminated and the tumours genetically heterogeneous in terms 

of their growth and metastatic behaviour—some grow and spread quickly, while others grow 

slowly—it is challenging to pinpoint their origin and predict disease prognosis.9-11 Sometimes 

in very young children, the cancer cells die for no reason and the tumour regresses 

spontaneously.12 In other cases, the cells sometimes mature on their own into normal ganglion 

cells and stop dividing. This terminal differentiation makes the tumour a ganglioneuroma 

(GN).8 In order to understand neuroblastoma, it is essential to reflect on how the SNS 

functions.13 Therefore, the SNS is described briefly in the subsection that follows.  

A3. The Sympathetic Nervous System 

The nervous system consists of the brain, spinal cord and the nerves that reach out from them 

to all areas of the body. The nervous system is essential for cognitive function, sensation, 

movement and many sensory and motor functions that we are hardly ever aware of, including 

heart rate, breathing, blood pressure, and digestion. This division of the nervous system is 

known as the autonomic nervous system (ANS). Figure 1.1 shows the organization of the 

nervous system.  

The SNS is a subdivision of the ANS. The SNS includes nerve fibres that run along either side 

the spinal cord. Clusters of nerve cells called ganglia (plural of ganglion) occur at certain points 
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along the path of the nerve fibres. Nerve-like cells are found in the medulla (centre) of the 

adrenal glands located superiorly to each kidney. These glands produce hormones (such as 

adrenaline (epinephrine) that help control heart rate, blood pressure, blood glucose and how 

the body reacts to stress. The main cells that make up the nervous system are called nerve cells 

or neurons. These cells interact with other types of cells in the body by releasing small amounts 

of chemical messengers (hormones). This is important, because neuroblastoma cells often 

release certain hormones that can cause symptoms of the tumour. 

 

Figure 1.1: Organization of the nervous system 

Figure 1.2 shows the greater structure of the SNS and thirty-one pairs of spinal nerves 

connected to the spinal cord, namely, 8 cervical nerve pairs (C1 through C8), 12 thoracic nerve 

pairs (T1 through T12), 5 lumbar nerve pairs (L1 through L5), 5 sacral nerve pairs (S1 through 

S5) and 1 coccygeal fused nerve pair. 

A4. Epidemiology of Neuroblastoma: Incidence and Mortality Statistics 

Neuroblastoma is by far the most common cancer in infants (less than 1 year old).14 

Neuroblastoma accounts for about 6% of all cancers in children, with about 700 new cases 

reported each year in the United States. This number has remained constant for many years. 

The average age of children when they are diagnosed is about 1 to 2 years.   
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Source:15 Solid lines represent preganglionic axons; dashed lines represent postganglionic axons. Although the 
innervated structures are shown for only one side of the body for diagrammatic purposes, the sympathetic division 
actually innervates tissues and organs on both sides. Reproduced form Tortora GJ, Derrickson B. Principles of 
Anatomy & Physiology. 14 ed. Hoboken, NJ: John Wiley & Sons; 2014, with clearance from Wiley Global 
Permissions (Appendix 1) 

Figure 1.2: Structure and pathways of the sympathetic division of the nervous system 

In rare cases, NB is detected by ultrasound even before birth, but most cases (about 90%) are 

diagnosed by age 5. The malignancy is very rare in individuals over the age of 10 years. In 

about 2 of 3 cases, the disease has already spread to the lymph nodes or to other parts of the 

body when it is diagnosed. Table 1.1 summarizes USA survey and epidemiological data on 

childhood and adolescent cancers retrieved from Cancer Facts & Figures 2014—Special 

Section: Childhood and Adolescent Cancers at cancer.org/statistics. Table 1.2 outlines 5-year 
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survival rates for childhood cancers.16 Cancer is the second most common cause of death 

among children aged 1 to 14 years in the United States, exceeded only by accidents. In 2016, 

an estimated 10,380 children (birth to 14 years) will be diagnosed with cancer. 

Table 1.1: Epidemiological information on childhood and adolescent cancers 2016 

New Cases An estimated 10,380 new cases of childhood cancers (ages 0-14 years) 
are expected to occur in 2016. 

Incidence Trends Childhood cancer incidence rates have gradually increased by 0.6% per 
year since 1975, when population-based cancer registration began in the 
US. 

Deaths An estimated 1,250 cancer deaths are expected to occur among children 
in 2016. Cancer is the second leading cause of death in children aged 1-
14 years, eclipsed only by accidents. 

Mortality Trends Childhood cancer death rates dropped by 66% from 1969 (6.5 per 
100,000) to 2012 (2.2 per 100,000), mainly as a result of improved 
treatment and high rates of participation in clinical trials. From 2003 to 
2012, the childhood cancer death rate declined by 1.3% per year. 

Survival Survival for all invasive childhood cancers combined has improved 
markedly over the last 30 years due to novel and improved treatment 
strategies. The five-year relative survival rate increased from 58% in the 
mid-1970s to 83% in most recent times (2005-2011). However, rates 
differ considerably according to cancer type, patient age and other 
variables (see also Tables 1.1 and 1.2).  

Some paediatric cancer patients experience treatment-induced side effects long after treatment, including 
impairment of function of specific organs (e.g., cognitive defects) and secondary cancers.17 The Children’s 
Oncology Group (COG) has delevoped guidelines for screening and managing of late effect survivors of 
childhood cancer (see COG website at survivorshipguidelines.org). The Childhood Cancer Survivor Study has 
followed more than 14,000 long-term childhood cancer survivors and posted valuable information on 
ccss.stjude.org. 

 

Approximately 1,250 children will die from the disease. Benign and borderline brain tumours 

are not included in the 2016 case estimates because the calculation method requires historical 

data and these tumours were not required to be reported until 2004. Leukaemia (76% of which 

are lymphoid leukaemias) accounts for 30% of all childhood cancers (including benign brain 

tumours). Cancers of the brain and other nervous system are the second most common cancer 

type (26%), followed by soft tissue sarcomas (7%, almost one-half of which are 

rhabdomyosarcoma), neuroblastoma (6%), non-Hodgkin lymphomas, including Burkitt’s 

lymphoma (6%), renal (Wilms) tumours (5%), and Hodgkin lymphomas (3%).16  
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The 5-year survival rate refers to the percentage of children who live at least 5 years after their 

cancer is diagnosed. Many children may live much longer than 5 years (and many are even 

cured). In order to obtain 5-year survival rates, doctors have to look at children who were 

treated at least 5 years ago. Improvements in treatment since then may result in a better outlook 

for children now being diagnosed with NB.8  

A5. Risk Factors for Neuroblastoma  

Neuroblastoma is one of the most common childhood (age 0-14 years) cancers, being only 

surpassed in the paediatric age group by leukaemia and brain tumours.1-3,14,18 A risk factor is 

any factor that affects an individual’s chance of getting a disease such as cancer. Different 

cancers have different risk factors. Lifestyle-related risk factors such as body weight, physical 

activity, diet and smoking play a major role in many adult cancers. However, these factors 

usually take many years to influence cancer risk, and are not usually associated with childhood 

cancers, including NBs. Also, no environmental factors (such as exposures during the mother’s 

pregnancy or in early childhood) are known to increase the child’s chance of getting NB.  

Neuroblastoma is a very heterogeneous disease with features ranging from spontaneous 

regression during the foetal period to disseminated metastasis at the time of diagnosis. Several 

risk factors have been identified to play a role in disease progression, including age at the time 

of initial presentation, tumour stage, histology and ploidy of tumour, and cytogenetic 

aberrations such MYCN amplification, loss of heterozygosity of 11q and gain of 17q.4,9,11,19-24 

According to the International Neuroblastoma Risk Group (INRG) task force report, age-range 

between 18 and 60 months is considered as a high risk group.25,26  

Heredity is an important risk factor in about 1% to 2% of all NBs as children inherit an 

increased risk of developing NB from a parent. Children with the familial form of NB (those 

with an inherited tendency to develop this cancer) usually come from families with one or more 

members who had NB as infants. 
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Table 1.2: Trends in 5-year relative survival rates for children (birth to 14 years) by year of diagnosis 

Childhood cancer 1975-1977 1978-1980 1981-1983 1984-1986 1987-1989 1990-1992 1993-1995 1996-1998 1999-2001 2002-2004 2005-2011 

All sites 58 62 67 68 72 76 77 79 81 83 83† 

Acute lymphocytic leukaemia 57 66 71 72 78 83 84 87 89 92 91† 

Acute myeloid leukaemia 19 26 27‡ 31‡ 37‡ 42 41‡ 49 58 61 67† 

Bones and joints 50‡ 48 57‡ 57‡ 67‡ 67 74 70 70 78 77† 

Brain & other nervous system 57 58 57 62 64 64 71 75 74 75 74† 

Hodgkin lymphoma 81 87 88 90 87 97 95 96 94 98 98† 

Neuroblastoma 53 57 55 52 63 76 67 66 72 73 74† 

Non-Hodgkin lymphoma 43 53 67 70 71 77 81 83 90 85 88† 

Soft tissue 61 74 69 73 66 80 77 71 77 85 79† 

Wilms tumour 73 79 87 91 92 92 92 92 94 89 94† 

Data are for surveys conducted in the United States, 1975 to 2011.  
*Survival rates are adjusted for normal life expectancy and are based on follow-up of patients through 2012. 

†The difference in rates between 1975 to 1977 and 2005 to 2011 is statistically significant (p<0.05). 
‡The standard error of the survival rate is between 5 and 10 percentage points. 

Source16 

Many other large epidemiological studies focusing on the incidence, prognostic factors, and the treatment outcomes in their patients have been carried out in different parts of the world, 
including Turkey,27 Norway,28 The European Neuroblastoma Study Group,29 The Surveillance, Epidemiology, and End Results Programme (SEER, http://seer.cancer.gov),30-32 Iran,33,34 
Mexico35 Australia, Europe, Japan, North America26 and Italy.36 
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The average age at diagnosis of familial cases is younger than the age for sporadic (not 

inherited) cases. Children with familial NB sometimes develop 2 or more of these cancers in 

different organs (for example, in both adrenal glands or in more than one sympathetic 

ganglion). It’s important to distinguish NBs that originate in more than one organ from those 

that have metastasized (spread) from one primary organ to secondary sites or organs 

(metastatic NBs). Frequently, tumours that have developed in several places at once implies a 

familial form. Both familial and sporadic NB can spread to other organs. 

A recent review encapsulates the current state of knowledge about NB genetics and genomics, 

highlighting the improved prognosis and potential therapeutic opportunities that have arisen 

from recent advances in understanding germline predisposition, recurrent segmental 

chromosomal alterations, somatic point mutations and translocations and clonal evolution in 

relapsed NB.37 Figure 1.3 shows rare and common genomic variants that predispose to NB. 

A6. Staging of Neuroblastoma 

The stages and risk groups for NB are complex and can be perplexing. A staging system is a 

standard approach used by a multidisciplinary cancer care team to classify the extent and 

burden of the cancer. Since the mid-1990s, most cancer centres have adopted the International 

Neuroblastoma Staging System (INSS) to stage NB.25 This postsurgical staging system takes 

into account the results of surgery to remove the tumour.  

Neuroblastoma belongs to a group collectively known as peripheral neuroblastic tumours, 

which also includes intermixed ganglioneuroblastoma, ganglioneuroma, and nodular 

ganglioneuroblastoma.38-40 Neuroblastoma can further be divided based on the degree of 

neuroblastic differentiation (undifferentiated, poorly differentiated, and differentiating) and the 

mitosis-karyorrhexis index (MKI) (low, intermediate, or high).41 Histologically, it has limited 

Schwannian cell production, is stroma-poor, and has abundant neuroblasts.  
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Source:37 Reproduced from Bosse KR, Maris JM. Advances in the translational genomics of neuroblastoma: From 
improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer 
2016;122(1):20-33, Copyright, American Cancer Society, with permission from John Wiley and Sons. See 
Appendix 2 for copyright clearance. 

Figure 1.3: Rare and common genomic variants that predispose to neuroblastoma 

Left: In addition to anaplastic lymphoma kinase (ALK)-associated and paired-like homeobox 2B (PHOX2B)-associated 
familial neuroblastoma, neuroblastoma can also arise in the setting of genetic syndromes with underlying rat sarcoma oncogene-
mitogen activated protein kinase (RAS-MAPK) pathway germline mutations, such as neurofibromin 1 (NF1) in 
neurofibromatosis type 1,50 protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) in Noonan syndrome,51,52 and 
Harvey rat sarcoma viral oncogene homolog (HRAS) in Costello syndrome. Tumour protein 53 (TP53) mutations associated 
with Li Fraumeni syndrome, 53 enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) mutations associated with 
Weaver syndrome, and succinate dehydrogenase complex, Subunit B, iron sulphur (Ip) (SDHB) mutations in familial 
paraganglioma/pheochromocytoma (PGL/PCC) are also rarely associated with neuroblastoma genesis. Middle: Low-frequency 
alleles in multiple DNA damage-response genes (BRCA1-associated ring domain 1 [BARD1], checkpoint kinase 2 [CHEK2], 
partner and localizer of BRCA2 [PALB2], and TP53) with an intermediate effect size also contribute to neuroblastoma 
predisposition. PINK1 indicates phosphatase and tensin homolog-induced putative kinase 1. Right: More common alleles with 
a modest effect size discovered using a genome-wide association study approach also collectively contribute to neuroblastoma 
genesis and, at times, specifically to a high-risk (white) or low-risk (orange) neuroblastoma phenotype. CASC15 indicates 
cancer susceptibility candidate 15; DDX4, DEAD (Asp-Glu-Ala-Asp) box polypeptide 4; DUSP12, dual specificity 
phosphatase 12; HACE1, HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1; HSD17B12, 
hydroxysteroid (17b) dehydrogenase 12; IL31RA, interleukin 31 receptor A; LIN28B, lin-28 homologue B; LMO1, LIM 
domain only 1; NBPF23, neuroblastoma breakpoint family, member 23; NEFL, neurofilament, light polypeptide. 

 

The International Neuroblastoma Pathology Classification has been used to predict prognosis 

based on the histopathology of the tumour and age of the patient. This system takes into 

account the degree of cell differentiation, MKI, and the presence of Schwann cells. Following 

these guidelines, the unfavourable group encompasses patients with any tumour over 60 

months; undifferentiated tumours with a high MKI at any age; and undifferentiated or poorly 
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differentiated tumours with intermediate or high MKI in children older than 18 months. In 

simplified form, the stages are summarized in Table 1.3. A risk-group staging system now 

coming into use is known as the International Neuroblastoma Risk Group Staging System 

(INRGSS).25 It is analogous to the INSS, but it does not use the results of surgery to help define 

the stage. This lets doctors determine a stage before surgery, based on the results of imaging 

tests, usually a computed tomography (CT) or magnetic resonance imaging (MRI) scan, and a 

meta-iodobenzylguanidine (MIBG) scan, as well as examinations and biopsies. The stage can 

then be used to help predict how resectable the tumour is—that is how much of it can be 

removed with surgery. The INRGSS uses image-defined risk factors (IDRFs) which are seen 

on imaging tests that might mean the tumour will be harder to remove. This includes features 

like the tumour growing into a nearby vital organ or growing around important blood vessels. 

The INRGSS divides NBs into 4 stages (Table 1.4).  

The Children’s Oncology Group (COG) uses major prognostic factors (section A7) combined 

with the INSS stage of the disease, to place children into 3 different risk groups: low, 

intermediate, and high (Table 1.5). These risk groups are used to help predict how likely it is 

that a child can be cured. For example, a child in a low-risk group can often be cured with 

limited treatment, such as surgery alone. With children in higher risk groups, the chance of 

cure is not as great, so more intensive treatment is often needed. A newer risk group 

classification system, the International Neuroblastoma Risk Group (INRG) classification 

(Table 1.6), is now being studied and may soon replace the COG system above. This system 

is based on the newer INRGSS staging system, which includes the image-defined risk factors 

(IDRFs), as well as many of the prognostic factors discussed in section A7 below. 

A7. Prognostic Markers for Neuroblastoma 

Prognostic markers are features that help predict whether the child’s outlook for cure is better 

or worse than would be predicted by the stage alone. Markers used to help determine a child’s 

prognosis are summarized in Table 1.7.  
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Table 1.3: The International Neuroblastoma Staging System (INSS) 

Stage Description 

1 Localized tumour with complete gross excision with or without microscopic residual disease; ipsilateral and contralateral lymph node (LN) negative for tumour microscopically. 
The cancer is still in the area where it started. It is on one side of the body (right or left). All visible tumour has been removed completely by surgery (although looking at the 
tumour’s edges under the microscope after surgery may show some cancer cells). Lymph nodes outside the tumour are free of cancer (although nodes enclosed within the tumour 
may contain neuroblastoma cells). 

2A Unilateral tumour with incomplete gross resection; ipsilateral and contralateral LN negative for tumour microscopically. The cancer is still in the area where it started and on one 
side of the body, but not all of the visible tumour could be removed by surgery. Lymph nodes outside the tumour are free of cancer (although nodes enclosed within the tumour 
may contain neuroblastoma cells). 

2B Unilateral tumour with or without complete gross excision with ipsilateral LN positive for tumour; contralateral LN negative microscopically. The cancer is on one side of the 
body, and may or may not have been removed completely by surgery. Nearby lymph nodes outside the tumour contain neuroblastoma cells, but the cancer has not spread to 
lymph nodes on the other side of the body or elsewhere. 

3 The cancer has not spread to distant parts of the body, but one of the following is true of the cancer: 

• Cannot be removed completely by surgery and it has crossed the midline (defined as the spine) to the other side of the body. It may or may not have spread to nearby lymph 
nodes. 

• Is still in the area where it started and is on one side of the body. It has spread to lymph nodes that are relatively nearby but on the other side of the body. 
• Is in the middle of the body and is growing toward both sides (either directly or by spreading to nearby lymph nodes) and cannot be removed completely by surgery. 

4A Any primary tumour with dissemination to distant LN, bone, bone marrow, liver, skin, or other organs (except as defined for stage 4S). Tumour infiltrating across the midline 
with or without regional LN involvement, localized unilateral tumour with contralateral regional LN involvement, or midline tumour with bilateral extension by infiltration 
(unresectable) or by LN involvement. The cancer has spread to distant sites such as distant lymph nodes, bone, liver, skin, bone marrow, or other organs (but the child does not 
meet the criteria for stage 4S) 

4S Localized primary tumor (as defined for stage 1 or 2) with dissemination limited to skin, liver, or bone marrow (limited to infants<1 yr of age). Also called “special” neuroblastoma. 
The child is younger than 1 year. The cancer is on one side of the body. It might have spread to lymph nodes on the same side of he body but not to nodes on the other side. The 
neuroblastoma has spread to the liver, skin, and/or the bone marrow. However, no more than 10% of marrow cells are cancerous, and imaging tests such as an meta-
iodobenzylguanidine (MIBG) scan do not show that the cancer has spread to the bones or the bone marrow. 

Recurrent While not formally part of the staging system, this term is used to describe cancer that has come back (recurred) after it has been treated. The cancer might come back in the area 
where it first started or in another part of the body. 
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Table 1.4: The International Neuroblastoma Risk Group Staging System (INRGSS) 

Stage Description 

L1 Localized disease that does not involve vital structures and is confined to one body compartment, i.e., a tumour that has not spread from where it started and has not grown into 
vital structures as defined by the list of IDRFs. It is confined to one body compartment, such as the neck, chest, or abdomen. 

L2 Localized disease with image-defined risk factors, i.e., a tumour that has not spread far from where it started (for example, it may have grown from the left side of the abdomen 
into the left side of the chest), but that has at least one IDRF. 

M Distant metastatic disease, i.e., a tumour that has spread (metastasized) to a distant part of the body (except tumours that are stage MS). 

MS Metastatic disease in children younger than 18 months with cancer spread only to skin, liver, and/or bone marrow. No more than 10% of marrow cells are cancerous, and an 
MIBG scan does not show spread to the bones and/or the bone marrow. 

IDRFs: image-defined risk factors 

MIBG: meta-iodobenzylguanidine 
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Table 1.5: Children’s Oncology Group (COG) risk groups 

Risk group Description 

Low risk • All children who are Stage 1 
• Any child who is Stage 2A or 2B and younger than age 1 
• Any child who is Stage 2A or 2B, older than age 1, whose cancer has no extra copies of the MYCN gene 
• Any child who is Stage 4S (younger than age 1), whose cancer has favorable histology, is hyperdiploid (excess DNA) and has no extra copies of the MYCN 

gene 

Intermediate risk • Any child who is Stage 3, younger than age 1, whose cancer has no extra copies of the MYCN gene 
• Any child who is Stage 3, older than age 1, whose cancer has no extra copies of the MYCN gene and has favorable histology (appearance under the microscope) 
• Any child who is Stage 4, younger than age 1, whose cancer has no extra copies of the MYCN gene 
• Any child who is Stage 4S (younger than age 1), whose cancer has no extra copies of the MYCN gene and has normal DNA ploidy (number of chromosomes) 

and/or has unfavorable histology 

High risk • Any child who is Stage 2A or 2B, older than age 1, whose cancer has extra copies of the MYCN gene 
• Any child who is Stage 3, younger than age 1, whose cancer has extra copies of the MYCN gene 
• Any child who is Stage 3, older than age 1, whose cancer has extra copies of the MYCN gene 
• Any child who is Stage 3, older than 18 months of age, whose cancer has unfavorable histology 
• Any child who is Stage 4, whose cancer has extra copies of the MYCN gene regardless of age 
• Any child who is Stage 4 and older than 18 months 
• Any child who is Stage 4 and between 12 and 18 months old whose cancer has extra copies of the MYCN gene, unfavorable histology, and/or normal DNA 

ploidy (a DNA index of 1) 
• Any child who is Stage 4S (younger than age 1), whose cancer has extra copies of the MYCN gene 
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Table 1.6: International Neuroblastoma Risk Group (INRG) classification 

Classification 

• The child’s age 

• Tumour histology 

• The presence or absence of MYCN gene amplification 

• Certain changes in chromosome 11 (known as an 11q aberration) 

• DNA ploidy (the total number of chromosomes in the tumour cells) 

The INRG classification uses these factors to put children into 16 different pre-treatment groups (lettered A 
through R). Each of these pretreatment groups falls into 1 of 4 overall risk groups: 

• Very low risk 

• Low risk 

• Intermediate risk 

• High risk 

This system has not yet been widely adopted, but it is being researched in new treatment protocols. 

 

Table 1.8 indicates the Children’s Oncology Group (COG) survival outlook according to 

disease risk. Risk-based treatment approaches for NB have been used for many years. 

However, the criteria employed to delimit risk in various institutional and cooperative groups 

were incongruent, limiting the evaluation of clinical trial results. To alleviate this drawback 

and boost collaborative research, homogenous pretreatment patient cohorts have been defined 

by the INRG classification system. This treatment rationale has yielded improved outcomes, 

even though survival for high-risk patients remains poor, underscoring the dire need to develop 

more effective treatment strategies. 

Advances in our knowledge of the biology and genetic basis of NB have led to the development 

of targeted and potentially useful therapeutic modalities.10,42,43 The collaborative ventures of 

institutions and international cooperative groups have refined risk classification and stratified 

treatment strategies, resulting in improved survival rates for NB patients.2,44,45 

A8. Other Autonomic Nervous System Tumours in Children 

Not all childhood ANS tumours are malignant. Features of two of the more common ANS 

tumours are summarized in Table 1.9.  
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Table 1.7: Prognostic markers for neuroblastoma 

Marker Clinical Significance 

Age Younger children (under 12-18 months) are more likely to be cured than 
older children. 

Tumour histology Tumour histology is based on how the neuroblastoma cells look under 
the microscope. Tumours that contain more normal-looking cells and 
tissues tend to have a better prognosis and are said to have a favourable 
histology. Tumours whose cells and tissues look more abnormal under a 
microscope tend to have a poorer prognosis and are said to have an 
unfavourable histology. 

DNA ploidy The amount of DNA in each cell, known as ploidy or the DNA index, 
can be measured using special lab tests, such as flow cytometry or 
imaging cytometry. Neuroblastoma cells with about the same amount of 
DNA as normal cells (a DNA index of 1) are classified as diploid. Cells 
with increased amounts of DNA (a DNA index higher than 1) are termed 
hyperdiploid. In infants, hyperdiploid cells tend to be associated with 
earlier stages of disease, respond better to chemotherapy, and usually 
predict a more favourable prognosis (outcome) than diploid cells. Ploidy 
is not as useful a factor in older children. 

MYCN gene 
amplifications 

MYCN is an oncogene, a gene that helps regulate cell growth. Changes 
in oncogenes can make cells grow and divide too quickly, as with cancer 
cells. Neuroblastomas with too many copies (amplification) of the 
MYCN oncogene tend to grow quickly and are less likely to mature. 
Children whose neuroblastomas have this feature tend to have a worse 
prognosis than other children with neuroblastoma. 

Chromosome changes Tumour cells that are missing certain parts of chromosomes 1 or 11 
(known as 1p deletions or 11q deletions) may predict a less favorable 
prognosis. It is thought that these chromosome parts, which are missing 
in many neuroblastomas, may contain important tumour suppressor 
genes (TSGs), but more studies are needed to verify this. Having an extra 
part of chromosome 17 (17q gain) is also linked with a worse prognosis. 
This probably means that there is an oncogene in this part of 
chromosome 17. 

Neurotrophin (nerve 
growth factor) 
receptors 

These are substances on the surface of normal nerve cells and on some 
neuroblastoma cells. They normally allow the cells to recognize 
neurotrophins—hormone-like chemicals that help the nerve cells mature. 
Neuroblastomas that have more of certain neurotrophin receptors, 
especially the nerve growth factor receptor called TrkA, may have a 
better prognosis. 

Serum markers Serum (blood) levels of certain substances can be used to help predict 
prognosis. Neuroblastoma cells release ferritin, an important regulator of 
the body’s normal iron metabolism, into the blood. Patients with high 
ferritin levels tend to have a worse prognosis. Neuron-specific enolase 
(NSE) and lactate dehydrogenase (LDH) are synthesized by normal cells 
as well as by NB cells. Increased levels of NSE and LDH in the blood 
are often linked with a worse outlook in children with NB. A substance 
on the surface of many nerve cells known as ganglioside GD2 is often 
increased in the blood of NB patients. Although the usefulness of GD2 
in predicting prognosis is unknown, it may turn out to be more important 
in treating NB. 
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Table 1.8: Survival of neuroblastoma patients by Children’s Oncology Group (COG) risk group 

Risk Group 5-Year Survival Rate 

Low Higher than 95% 

Intermediate 90% to 95% 

High 40% to 50% 

Source: Neuroblastoma Summary, American Cancer Society 
(http://www.cancer.org/) 

 

Table 1.9: Other autonomic nervous system tumours in children 

Tumour Features 

Ganglioneuroma A benign (non-cancerous) tumour made 
up of mature ganglion and nerve sheath 
cells. 

Ganglioneuroblastoma A tumour that has both malignant and 
benign parts. It contains neuroblasts 
(immature nerve cells) that can grow and 
spread abnormally, similar to 
neuroblastoma, as well as areas of more 
mature tissue that are similar to 
ganglioneuroma. 

Ganglioneuromas are usually removed 
by surgery and looked at carefully under 
a microscope to be sure they don’t have 
areas of malignant cells (which would 
generate a ganglioneuroblastoma). If the 
final diagnosis is ganglioneuroma, no 
other treatment is needed. If it’s found to 
be a ganglioneuroblastoma, it’s treated 
the same as a neuroblastoma. 

Source: Neuroblastoma Summary, American Cancer Society 
(http://www.cancer.org/) 

 

A9. Detection, Diagnosis and Prognosis of Neuroblastoma 

A9.1 Imaging and Laboratory Tests 

Neuroblastomas are customarily suspected when a child presents with signs or symptoms, but 

a definite diagnosis is made after correlating physical examination with laboratory tests.44,46-52 

Table 1.10 outlines contemporary procedures and approaches used in confirming a diagnosis 

of neuroblastoma.44,46-51,53-61  
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Table 1.10: Contemporary procedures and approaches used in confirming a diagnosis of neuroblastoma 

Procedure/Approach Diagnostic Significance/Prognostic Value 

Medical history and physical examination If the child presents with signs or symptoms that might suggest neuroblastoma, a complete medical history, as well as a 
family history of any type of cancer, is indispensable. Possible signs of a neuroblastoma are an abnormal mass or swelling 
in the body, lumps or bumps under the skin or high blood pressure. Neuroblastomas that grow adjacent to the spinal cord 
can affect the movement and strength in the child’s arms and legs, so particular attention has to be paid to these. Some 
signs that could be caused by neuroblastoma, such as fever and enlarged lymph nodes, are much more likely to be caused 
by an infection, so it is prudent to look for other signs of infection at first. If the history and examination imply a child 
might have a neuroblastoma (or another type of tumour), other specialized tests will be mandatory, including blood and 
urine tests, imaging tests, and biopsies. These tests are important because many of the symptoms and signs of 
neuroblastoma can also be caused by other diseases, such as infections, or even other types of cancer. 

Blood and urine catecholamine tests Sympathetic nerve cells normally release hormones called catecholamines, such as epinephrine (adrenaline) and 
norepinephrine (noradrenaline) into the blood. Eventually the body degrades these into metabolites which is secreted in 
urine. Neuroblastoma cells can also synthesize these hormones. In most cases, neuroblastoma cells make enough 
catecholamines to be detected by blood or urine tests. The 2 catecholamine metabolites most often measured are 
homovanillic acid (HVA) and vanillylmandelic acid (VMA). 

Other lab tests If neuroblastoma is suspected or has been found in a child, certain blood tests will be requested to check blood cell counts, 
liver and kidney function, and the balance of salts (electrolytes) in the body. A urinalysis (urine test) may also be done to 
further check kidney function. 

Imaging tests Imaging tests use X-rays, magnetic fields, sound waves, or radioactive substances to create pictures of the inside of the 
body. Imaging tests can be performed for a number of rationales, including to help find out if a suspicious area might be 
cancerous, to learn how far cancer has spread, to help determine if treatment has been effective. Most children who have 
or might have neuroblastoma will have one or more of these tests. Children with neuroblastoma are often very young, so 
it can be hard to perform some of these tests. 

Ultrasound 

Ultrasound is often one of the first tests done in small children if a tumour is suspected, because it is fairly quick and easy, 
it does not use radiation, and it can often give the doctor a good view inside the body, especially in the abdomen (belly). 
This test uses sound waves to create pictures of organs or masses inside the body. For this test, the child lies on a table (or 
sits) while a small wand called a transducer is placed on the skin over the belly (which is first lubricated with gel).  

Continued/… 
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Table 1.10: Contemporary procedures and approaches used in confirming a diagnosis of neuroblastoma (continued) 

Procedure/Approach Diagnostic Significance/Prognostic Value 

Imaging tests (continued) Ultrasound (continued) 

The wand gives off sound waves and picks up the echoes as they bounce off organs. The echoes are converted by a computer 
into a black and white image on a screen. The test is not usually painful, but it might cause some discomfort if the transducer 
is pressed down hard on the belly. Ultrasound is used most often to look for tumors in the abdomen. It’s not used to look 
in the chest because the ribs block the sound waves. Ultrasound can detect if kidneys have become swollen because the 
outflow of urine has been blocked by enlarged lymph nodes or a mass. It can also be used to help guide a biopsy needle 
into a suspected tumour to get a sample for testing. It is particularly useful in checking to see if tumours in the abdomen 
are shrinking. The pictures from ultrasound are not as detailed as those from some other tests, so even if a tumour is found, 
computed tomography (CT) or magnetic resonance imaging (MRI) scans (described below) might still be needed. 

X-rays 

The doctor may also order an X-ray of the chest or another part of the body as an early test if a child is having symptoms 
but it is not clear what might be causing them. But the images might not always be detailed enough to spot tumours. If 
neuroblastoma has already been diagnosed, X-rays can be useful to see if cancer has spread to certain bones. An X-ray of 
the head may be done to see if cancer has spread to the skull bones. A meta-iodobenzylguanidine (MIBG) scan or a bone 
scan (described below) is usually better for looking at the bones in the rest of the body, but X-rays may be used in infants, 
where these scans might not be possible. A standard chest X-ray may be done if doctors suspect that the tumour has invaded 
the lungs, but a CT or MRI scan of the chest can show the area in more detail. 

Computed tomography (CT or CAT) scan 

CT scans are often used to look for neuroblastoma in the abdomen, pelvis and chest. The CT scan is an X-ray test that 
produces detailed cross-sectional images of parts of the body. Instead of taking one picture, like a regular X-ray, a CT 
scanner takes many pictures as it rotates around the child while s/he lies on a table. A computer then combines these 
pictures into images showing slices of the part of the body being studied. Unlike a regular X-ray, a CT scan creates detailed 
images of the soft tissues in the body. Before the test, the child may be asked to drink a contrast solution and/or get an 
intravenous (IV) injection of a contrast dye. This helps better outline structures in the body. The contrast may cause some 
flushing (a feeling of warmth, especially in the face). Some people are allergic and get hives. Rarely, more serious reactions 
like laboured breathing or low blood pressure can occur. The doctor needs to ascertain if the child has any allergies or has 
ever had a reaction to any contrast material used for X-rays. CT scans take longer than regular X-rays. Younger children 
may be sedated before the test to reduce movement and help make sure the pictures come out well. 

Continued/… 
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Table 1.10: Contemporary procedures and approaches used in confirming a diagnosis of neuroblastoma (continued) 

Procedure/Approach Diagnostic Significance/Prognostic Value 

Imaging tests (continued) CT-guided needle biopsy 

CT scans can also be used to help guide a biopsy needle into a tumour. For this procedure, the child lies on the CT scanning 
table while a radiologist advances a biopsy needle through the skin and toward the mass. CT scans are repeated until the 
needle is within the mass. A biopsy sample is then removed and looked at under a microscope. In children, this procedure 
is always done under general anaesthesia. 

Magnetic resonance imaging (MRI) scan 

MRI scans provide detailed images of soft tissues in the body. These scans are very helpful in looking at the brain and 
spinal cord. They may be slightly better than CT scans for seeing the extent of a neuroblastoma tumour, especially around 
the spine, but this test can be harder to do in small children. MRI scans use radio waves and strong magnets to create the 
images instead of x-rays, so there is no radiation. A contrast material called gadolinium may be injected into a vein before 
the scan to better see details, but this is needed less often than with a CT scan. It usually does not cause allergic reactions, 
but it can cause other problems in children with kidney disease, so doctors are careful when they use it. MRI scans take 
longer than CT scans, often up to an hour. For most MRI machines, the child has to lie inside a narrow tube, which is 
confining and can be distressing. Newer, more open MRI machines may be an option in some cases, but they still require 
the child to stay still for long periods of time. The MRI machine also makes loud buzzing and clicking noises that may be 
disturbing. Younger children are often given medicine to help keep them calm or even asleep during the test. 

Meta-iodobenzylguanidine (MIBG) scan 

This scan uses a form of the chemical meta-iodobenzylguanidine (MIBG) that contains a small amount of radioactive 
iodine. MIBG is similar to norepinephrine, a hormone produced by sympathetic nerve cells. It is injected into a vein and 
travels through the blood, and in most patients it will attach to neuroblastoma cells anywhere in the body. Several hours or 
days later, the body is scanned with a special camera to look for areas that incorporated the radioactivity. This helps doctors 
tell where the neuroblastoma is and whether it has spread to the bones and/or other parts of the body. This test is preferred 
by many doctors as a standard test in children with neuroblastoma. It can be repeated after treatment to see if it has been 
effective. It is also good to know if the tumour takes up the MIBG because in some cases, this radioactive molecule can be 
used at higher doses to treat the neuroblastoma. 

Continued/… 
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Table 1.10: Contemporary procedures and approaches used in confirming a diagnosis of neuroblastoma (continued) 

Procedure/Approach Diagnostic Significance/Prognostic Value 

Imaging tests (continued) Positron emission tomography (PET) scan 

For a PET scan, a radioactive substance, usually a glucose analogue, known as fluorine-18-fluorodeoxy-glucose (18F-
FDG) is injected into the blood. The amount of radioactivity used is very low and will pass out of the body within a day or 
so. Because cancer cells in the body are growing quickly, they absorb large amounts of the radioactive sugar. After about 
an hour, your child will be moved onto a table in the PET scanner. He or she will lie on the table for about 30 minutes 
while a special camera creates a picture of areas of radioactivity in the body. Younger children may be given medicine to 
help keep them calm or even asleep during the test. The picture from a PET scan is not as detailed as a CT or MRI scan, 
but it can provide helpful information about the whole body. Some newer machines can do a PET and CT scan at the same 
time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET scan with the more detailed 
appearance of that area on the CT scan. 

Bone scan 

A bone scan can help show if a cancer has spread to the bones, and can provide a picture of the entire skeleton at once. 
Neuroblastoma often causes bone damage, which a bone scan can find. This test used to be done routinely, but in some 
centres it has been replaced by use of MIBG or PET scans. For this test, a small amount of low-level radioactive material 
(technetium-99) is injected into a vein. (The amount of radioactivity used is very low and will pass out of the body within 
a day or so.) The substance settles in areas of damaged bone throughout the skeleton over the course of a couple of hours. 
Your child then lies on a table for about 30 minutes while a special camera detects the radioactivity and creates a picture 
of the skeleton. Younger children may be given medicine to help keep them calm or even asleep during the test. Areas of 
active bone changes attract the radioactivity and appear as “hot spots” on the skeleton. These areas may suggest cancer, 
but other bone diseases can also cause the same pattern. To help tell these apart, other imaging tests such as plain x-rays 
or MRI scans, or even a bone biopsy might be needed. 

Biopsies Examinations and tests might strongly suggest a child has neuroblastoma, but a biopsy (removing some of the tumour for 
viewing under a microscope and other lab testing) is often done to be sure. During a biopsy, the doctor removes a sample 
of the tumour mass. In adults, biopsies are sometimes done using local anaesthetic (numbing medicine), but in children 
they are more often done while the child is under general anaesthesia. There are 2 main types of biopsies: 

Incisional (open or surgical) biopsy 

This type of biopsy is done by removing a piece of the tumour through an incision (cut) in the skin. For tumours deep in 
the body this may be done laparoscopically using long, thin surgical tools inserted through small cuts in the skin. 

Continued/… 
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Table 1.10: Contemporary procedures and approaches used in confirming a diagnosis of neuroblastoma (continued) 

Procedure/Approach Diagnostic Significance/Prognostic Value 

Biopsies (continued) Needle (closed) biopsy 

For this type of biopsy, a thin, hollow needle is placed through the skin and into the tumour to remove a small sample. If 
the tumour is deep within the body, CT scans or ultrasound can be used to help guide the needle into the tumour. The 
biopsy samples are sent to a lab, where they are viewed under a microscope by a pathologist (a doctor with special training 
in identifying cancer cells). Some neuroblastomas are easily recognized when looked at by experienced doctors. But some 
may be hard to tell apart from other types of child cancers. In these cases, special lab tests must be done to show the tumour 
is a neuroblastoma. Other lab tests may also be done on neuroblastoma samples to help determine how quickly the tumour 
is likely to grow. 

Bone marrow aspiration and biopsy  

Neuroblastoma often spreads to the bone marrow (the soft inner parts of certain bones). If blood or urine levels of 
catecholamines are increased, then finding cancer cells in a bone marrow sample is enough to diagnose neuroblastoma 
(without getting a biopsy of the main tumour). If neuroblastoma has already been diagnosed by a biopsy done elsewhere 
in the body, bone marrow tests are done to help determine the extent of the disease. A bone marrow aspiration and biopsy 
are usually done at the same time. In most cases the samples are taken from the back of both of the pelvic (hip) bones. 
Even when the area is numbed with local anaesthetics, these tests can be painful, so in most cases the child is also given 
other medicines to reduce pain or even be asleep during the procedure. For a bone marrow aspiration, a thin, hollow needle 
is inserted into the bone and a syringe is used to suck out a small amount of liquid bone marrow. A bone marrow biopsy is 
usually done just after the aspiration. A small piece of bone and marrow is removed with a slightly larger needle that is 
pushed down into the bone. Once the biopsy is done, pressure is applied to the site to help stop any bleeding. Samples from 
the bone marrow are sent to a lab, where they are looked at and tested for the presence of cancer cells. 

Source: Neuroblastoma Summary, American Cancer Society (http://www.cancer.org/). For detailed references, see text. Examples of more general references have been published previously.47,52,62 See also PDQ 
Screening and Prevention Editorial Board. Neuroblastoma Screening (PDQ®): Health Professional Version. 2014 Feb 6. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute 
(US); 2002-. Available from: http://europepmc.org/books/NBK66025 and PDQ Pediatric Treatment Editorial Board. Neuroblastoma Treatment (PDQ®): Health Professional Version. 2016 Jan 14. In: PDQ Cancer 
Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002-. Available from: http://europepmc.org/books/NBK65747. 
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Depending on the clinical presentation, the index of suspicion must be high. Initial diagnostic 

testing should include complete blood count (CBC), serum electrolytes, liver function tests and 

a chest radiograph, which may reveal calcifications or a posterior mediastinal mass. 

Complementary diagnostic findings will encompass increased levels of urine or serum 

catecholamines or catecholamine metabolites such as dopamine, vanillylmandelic acid (VMA) 

and homovanillic acid (HVMA).63,64 Elevated levels of non-specific biomarkers such as lactate 

dehydrogenase (>1500 U/ml),65 ferritin (>142 ng/ml),66 and neuron-specific enolase (>100 

ng/ml) may be correlated with advanced stage neuroblastoma and/or relapse.54,65,67-71  

A computed tomography (CT) and functional single-photon emission computed tomography 

(SPECT) or positron emission tomography (PET) scan of the neck, chest and abdomen is the 

gold standard for diagnostic imaging as it can concurrently focus the tumour and determine the 

degree of disease progression.48,50,59 Ultrasound may be used primarily to differentiate the 

tumour.48,72 Magnetic resonance imaging (MRI) may be beneficial if there is concern for spinal 

extension, and imaging of the brain is only necessary in the setting of neurological 

symptoms.54,55,73-76  

While not routinely used, a 123/131I-radiolabelled meta-iodobenzylguanidine (MIBG) scan is 

valuable in both the detection of primary tumours and metastases since MIBG is a 

norepinephrine analogue that is selectively concentrated in sympathetic nervous tissue. MIBG 

has also proven exceptionally practical in surveillance of patient treatment responses and 

disease recurrence.54,55,57,76-80 While MIBG is generally more sensitive for the detection of 

lesions, fluorodeoxyglucose positron emission tomography (FDG-PET) may be better at 

localizing soft tissue metastases.50,56,57 

Despite advances in diagnostic medicine, the diagnosis of neuroblastoma can only be 

confirmed pathologically with tissue obtained from tumour or bone marrow. Specimens can 

be obtained either during resection of the primary tumour or as an open biopsy for unresectable 
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disease. Bilateral posterior iliac crest marrow aspirates are required to exclude metastatic 

disease. Molecular studies, such as fluorescence in situ hybridization (FISH), can be performed 

on tissue samples to note ploidy and other chromosomal aberrations.81,82 Recently, expression 

of the insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) gene has been found 

to be associated with more advanced tumours and decreased patient survival in neuroblastoma, 

suggesting its prognostic value.83,84   

A9.2 Histopathology of Neuroblastoma 

Neuroblastoma, ganglioneuroblastoma and ganglioneuroma are classified as peripheral 

neuroblastic tumours (pNTs) which constitute a clinically and genomically complex disease. 

The pNTs represent significant disease models for analyzing the biologic and prognostic 

relationships between molecular/genomic alterations and accompanying morphological 

appearances. The International Neuroblastoma Pathology Classification (INPC) is particularly 

useful for patient stratification and protocol assignment in clinical trials of the Children’s 

Oncology Group.85-91 Table 1.11 summarizes the INPC classification of neuroblastic tumours 

and Table 1.12 shows a comparison between the categories and subtypes used in the INPC and 

the original Shimada classification.92,93  

Joshi and co-authors94 advocated minor modifications to the terminology of the Shimada 

classification to include “borderline” ganglioneuroblastoma for the “stroma-rich, well-

differentiated” subtype which is now called “ganglioneuroma (Schwannian stroma-dominant), 

maturing” subtype in the INPC. Morphologic confirmation of the Schwannian stroma-poor, 

stroma-rich, and stroma-dominant categories, as well as among subtypes in each category, may 

be challenging since the subtypes may express stages of a biologic and morphologic 

continuum. Likewise, macroscopic categorizing a nodular lesion of the composite tumour may 

be arduous.90,91,93 The INPC further differentiates between ‘favourable’ and ‘unfavourable’ 

histology groups95 based on the age-linked morphological changes96 (cut-offs of 18 and 60 

months at diagnosis) by three major biologic/molecular mechanisms:  
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1. Cross-talk between neuroblastic cells and Schwann cells essential for tumour 

maturation; three categories, i.e., neuroblastoma (Schwannian stroma-poor), 

ganglioneuroblastoma-intermixed (Schwannian stroma-rich), and ganglioneuroma 

(Schwannian stroma-dominant), are defined; 

2. High-affinity nerve growth factor (NGF; TrkAI/II) expression critical for 

neuroblastic differentiation; 3 subtypes, i.e., undifferentiated, poorly differentiated, 

and differentiating, are defined in the neuroblastoma category; and  

3. MYCN amplification as the powerful driving force for preventing neuroblastic 

differentiation and promoting mitotic and karyorrhectic activities; 3 classes of MKI  

(mitosis-karyorrhexis index), i.e., low<100/5000 cells, intermediate 100–200/5000 

cells, and high >200/5000 cells, are defined in the neuroblastoma category. The INPC 

also includes the fourth category – ganglioneuroblastoma, nodular (composite, 

Schwannian stroma-dominant/stroma-rich and stroma-poor).85,97  

A new subtype of large nucleolar neuroblastoma (LNN) in the NB category have a 

characteristic nucleus containing large and prominent nucleoli, but do not show cytoplasmic 

enlargement/maturation. LCN can well be included in this group of LNN, as a large cell variant 

of undifferentiated/poorly differentiated NB.98 Representative images of the histology of 

peripheral neuroblastic tumours are shown in Figures 1.4 and 1.5. Neuroblastoma 

predominantly comprises neuroblasts at different stages of differentiation and a varying 

amount of Schwannian-like stroma. The proportion of both cell types fluctuates according to 

the degree of tumour maturation and a correlation exists between the degree of differentiation 

of the neuroblastic subtype, the proportion of the Schwannian-like stroma and disease 

prognosis. Undifferentiated stroma-poor NB is the most malignant and the stroma rich 

ganglioneuroma (GN) is a benign form. The relationship between Schwannian-like stromal 

cells and neuroblastic cells needs further clarification. 
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Table 1.11: INPC classification of neuroblastic tumours 

 
Source:86 
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Table 1.12: Comparison of the INPC and the Shimada classification of neuroblastic tumours 

 
Source:90 
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Source:91 a Neuroblastoma (Schwannian stroma-poor), undifferentiated subtype. b Neuroblastoma (Schwannian 
stroma-poor), poorly differentiated subtype. c Neuroblastoma (Schwannian stroma-poor), differentiating subtype. d 
Neuroblastoma (Schwannian stroma-poor) with a high mitosis–karyorrhexis index. e Ganglioneuroblastoma, 
intermixed (Schwannian stroma-rich). f Ganglioneuroma (Schwannian stroma-dominant), maturing subtype. g 
Ganglioneuroma (Schwannian stroma-dominant), mature subtype. h Ganglioneuroblastoma, nodular (composite, 
Schwannian stroma-rich/stroma-dominant and stroma-poor). 

Figure 1.4: Histology of peripheral neuroblastic tumours 
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Neuroblastoma with rosette formation (x40) Stroma-rich ganglioneuroblastoma (x40) 

Sources: https://visualsonline.cancer.gov/details.cfm?imageid=2593); On microscopy, the tumour cells are 
typically described as small, round and blue, and rosette patterns (Homer-Wright rosettes) may be seen. Homer-
Wright rosettes are tumour cells around the neuropil, not to be confused with pseudorosettes, which are tumour cells 
around a blood vessel. Two typical true rosettes in retinoblastoma occur in the form of Flexner-Wintersteiner and 
Homer-Wright rosettes (http://www.pathologystudent.com/?p=5400; https://en.wikipedia.org/wiki/ Neuroblastoma 
#Histology).99,100 

Figure 1.5: Microscopic views of typical neuroblastoma histopathology 

The amount of Schwannian-like stroma in the tumour is associated with better prognosis since 

it is thought that Schwannian-like cells may downregulate tumour growth signal transduction 

pathways by secreting antiproliferative and/or antiangiogenic factors. In this regard, 

experimental evidence shows that when co-cultured in vitro, neuroblasts derived from 

neuroblastoma tumours can enhance the proliferation of Schwann cells. Schwannian-like 

stromal cells in neuroblastic tumours are likely to be reactive in nature and may have been 

recruited from normal tissue.95,101 
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A10. Clinical Presentation, Signs and Symptoms of Neuroblastoma 

The signs and symptoms of neuroblastoma vary widely, depending on the size of the tumour, 

where it is localized, how far it has spread, and if the tumour cells secrete hormones.62 Many 

of the signs and symptoms below are more likely to be caused by factors other than 

neuroblastoma. For example, a neuroblastoma may arise from sympathetic nervous tissue 

anywhere in the body, but most often develops in the abdomen. The presentation depends on 

the local effects of the solid tumour and any metastases. An abdominal mass in a child may 

also be due to Wilms’ tumour (also known as nephroblastoma).73 This neoplasm may present 

with renal signs and symptoms, such as hypertension,102 haematuria and abdominal pain.11,103-

107 Multiple factors play a role in a patient’s clinical presentation since it depends largely on 

tumour location, size, degree of invasion, effects from catecholamine secretion,108 and 

symptoms due to paraneoplastic syndromes.109,110  

Nearly 65% of tumours arise in the abdomen with half of those localized to the medulla of the 

adrenal gland.59,111-113 However, they can occur in the neck (5%), chest (20%), or pelvis (5%), 

and 1% of patients have no detectable primary tumours.114 Many patients are asymptomatic, 

yet some may present with constitutional symptoms (malaise, fevers, and weight loss), an 

enlarging mass, pain, abdominal distension, lymphadenopathy, or respiratory distress 

secondary to compression or hepatomegaly. Pelvic masses may cause constipation or difficulty 

urinating, while thoracic involvement can cause dysphagia, dyspnoea, or rarely, thoracic outlet 

syndrome. For cervical tumours, a patient develop Horner’s syndrome,52 and in up to 15% of 

patients, epidural extension may result in neurological deficits such as progressive 

paralysis.1,11,37,46,115-117  

At the time of diagnosis, 50% of patients present with localized disease while 35% already 

have regional lymph node spread. Metastasis can occur by haematogenous and/or lymphatic 

route, seeding bone marrow,118 liver, and bone. Neuroblastoma originating from cells of the 

primitive neural crest eventually populates the sympathetic ganglia and the inner adrenal gland. 
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In approximately one-half of cases, the primary tumour arises at the level of the paravertebral 

ganglia and may infiltrate the adjacent intervertebral foramina and compress the intraspinal 

structures. Although modern imaging studies document the infiltration of the intervertebral 

foramina by the tumour in at least one-third of neuroblastomas, only 5–7% of the cases develop 

symptoms related to epidural compression (EC).119  

In these instances, various neurological deficits can ensue which may progressively worsen, 

and could end in paraplegia.74 The signs of EC are difficult to detect in an early phase, 

especially among the youngest children, and this may account for the frequent delay in 

diagnosis and thus lead to development of permanent neurological impairment. Several studies 

have analyzed the outcome of various types of treatment for EC. Neurosurgical decompression, 

chemotherapy and radiation therapy have all proven to be effective in relieving the symptoms. 

Although the occurrence of short-term sequelae were reported in some publications, only one 

study addressed the issue of the authors found that the majority of children actually did recover 

normal neurological function, but they developed an excess of spinal deformities, in particular 

when treatment included laminectomy.119-121 

Commonly, the orbits are involved, which manifests as periorbital swelling and proptosis 

(“raccoon eyes”).64 When dissemination occurs to the skin, patients develop blue subcutaneous 

nodules known as blueberry muffin syndrome. Surprisingly, this is associated with a 

favourable prognosis with likely spontaneous tumour regression. Because of its 

neuroendocrine properties, neuroblastoma has the potential to secrete catecholamines, which 

results in early-onset hypertension and tachycardia.108,122 Patients may also experience 

paraneoplastic syndromes.110,122 Examples include intractable diarrhoea with electrolyte 

disturbances due to release of vasoactive intestinal peptide (VIP),123 encephalomyelitis, or 

sensory neuropathy. There have been reports of the development of opsoclonus-myoclonus 

syndrome (OMS),115,124 which occurs when antibodies cross-react with cerebellar tissue.1,125-

127 The characteristic symptoms and signs of OMS include rapid, conjugate eye nystagmus 
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with involuntary spasms of the limbs. Interestingly, the patients with intractable diarrhoea due 

to VIP secretion or OMS generally tend to present with less aggressive neuroblastomas. Thus 

far, symptomatic paraneoplastic syndromes are rarely diagnosed (prevalence<0.01% of all 

cancer), but they may indicate early signs of disease relapse.1,128 

A10.1 Signs or Symptoms Caused by the Main Tumour 

A10.1.1 Tumours in the Abdomen or Pelvis 

One of the most common signs of a neuroblastoma is a large lump or swelling in the child’s 

abdomen.129 The child might not want to eat (which can lead to weight loss). If the child is old 

enough, s/he may complain of feeling full or having abdominal pain. But the lump itself is 

usually not painful to the touch. Sometimes, a tumour in the abdomen or pelvis can affect other 

parts of the body. For example, tumours that press against or grow into the blood and lymph 

vessels in the abdomen or pelvis can stop fluids from getting back to the heart. This can 

sometimes lead to swelling in the legs and, in boys, the scrotum. In some cases, the pressure 

from a growing tumour can affect the child’s bladder or bowel, which can cause problems 

urinating or having bowel movements. 

A10.1.2 Tumours in the Chest or Neck 

Tumours in the neck can often be seen or felt as a hard, painless lump. If the tumour is in the 

chest, it might press on the superior vena cava. This can cause swelling in the face, neck, arms, 

and upper chest (sometimes with a bluish-red skin colour). It can also cause headaches, 

dizziness, and a change in consciousness if it affects the brain. The tumour might also press on 

the throat or windpipe, which can cause coughing and troubled breathing (dyspnoea) or 

swallowing. Neuroblastomas that press on certain nerves in the chest or neck can sometimes 

cause other symptoms, such as a drooping eyelid and a small pupil (the black area in the centre 

of the eye). Pressure on other nerves near the spine might affect the child’s ability to feel or 

move their arms or legs. 
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A10.2 Signs or Symptoms Caused by Metastatic Spread of the Cancer 

About 2 out of 3 neuroblastomas have already spread to the lymph nodes or other parts of the 

body by the time they are found. Lymph nodes are bean-sized collections of immune cells 

found throughout the body. Cancer that has spread to the lymph nodes can cause them to swell. 

These nodes can sometimes be felt as lumps under the skin, especially in the neck, above the 

collarbone, under the arm, or in the groin. Enlarged lymph nodes in children are much more 

likely to be a sign of infection rather than cancer, but they should be checked by a doctor. 

Neuroblastoma often spreads to bones. A child who can talk may complain of bone pain. The 

pain may be so bad that the child limps or refuses to walk. If it spreads to the bones in the 

spine, tumours can press on the spinal cord and cause weakness, numbness, or paralysis in the 

arms or legs.  

Spread to the bones around the eyes is common and can lead to bruising around the eyes or 

cause an eyeball to stick out slightly. The cancer can also spread to other bones in the skull, 

causing bumps under the scalp. If the cancer spreads to the bone marrow, the child may not 

have enough red blood cells, white blood cells, or platelets. These shortages of blood cells can 

result in tiredness, irritability, weakness, frequent infections, and excessive bruising or 

bleeding from small cuts or scrapes. Rarely, large tumours can start to break down, leading to 

a loss of clotting factors in the blood. This can result in a high risk of serious bleeding, which 

is known as a consumption coagulopathy and can be life threatening. 

A special widespread form of neuroblastoma (known as stage 4S)97 occurs only during the first 

few months of life. In this special form, the neuroblastoma has spread to the liver, to the skin, 

and/or to the bone marrow (in small amounts). Blue or purple bumps that look like small 

blueberries may be a sign of spread to the skin. The liver can become very large and can be 

felt as a mass on the right side of the belly. Sometimes it can grow large enough to push up on 

the lungs, which can make it hard for the child to breathe. Despite the fact that the cancer is 

already widespread when it is found, stage 4S neuroblastoma is very treatable, and often 
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shrinks or regresses spontaneously. Almost all children with this form of neuroblastoma can 

be cured.12,97,130 

A10.3 Signs or Symptoms Caused by Hormones Secreted by the Tumour 

Neuroblastomas sometimes release hormones that can cause problems with tissues and organs 

in other parts of the body, even though the cancer has not spread to those tissues or organs. 

These problems are called paraneoplastic syndromes as described above. Symptoms of 

paraneoplastic syndromes can include: 

 Constant diarrhoea 

 Fever 

 High blood pressure (causing irritability) 

 Rapid heartbeat 

 Reddening (flushing) of the skin 

 Sweating 

An uncommon set of symptoms is called the opsoclonus-myoclonus-ataxia syndrome (OMS) 

or “dancing eyes, dancing feet.”52,64 The child has irregular, rapid eye movements 

(opsoclonus), twitch-like muscle spasms (myoclonus), and appears uncoordinated when 

standing or walking (ataxia). S/he may also have trouble speaking. For reasons that are not 

clear, neuroblastomas that cause this syndrome tend to be less life-threatening than other forms 

of the disease. 

A11. Molecular Pathogenesis, Genetics and Genomics of Neuroblastoma  

Two major causes have been identified in the origin of NB, namely, (i) familial origin which 

is identified in the loss-of-function mutation in the PHOX2B gene and (ii) sporadic origin 

which results in chromosomal losses.131 These will be explained in the subsections. 
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A11.1 Neural Development and Neuroblastoma 

In considering neural development, the contribution of the neural crest to sympathetic ganglia 

and the adrenal gland is important. The majority of NB tumours appear to arise from neural 

crest-derived cells in the abdomen adjacent to the aorta in the region of the kidney or in the 

medullary region of the adrenal gland.6,132,133 Thus, NB is a sympaticoadrenal lineage neural 

crest-derived tumour.134 The neural crest arises from the dorsal region of the closing neural 

tube beneath the ectoderm.135 This transient population of cells produces multipotential 

progenitor cells that give rise to the peripheral nervous system, the enteric nervous system, 

pigment cells, Schwann cells, adrenal medullary cells, and cells of the craniofacial skeleton.135  

This process is regulated by both extrinsic and intrinsic factors. The Hedgehog and Wnt 

signalling pathways are especially crucial for proper neural crest development.5,135,136 Lineage 

studies in the developing embryo have shown that neural crest cells within the trunk region 

generate multiple neural crest derivatives such as melanocytes, Schwann cells, glia, and 

neurons of the dorsal root ganglia. A subset of these trunk crest cells, commonly referred to as 

the sympathoadrenal lineage, contributes to the sympathetic ganglia and medullary region of 

the adrenal gland. This lineage of cells is thought to be the origin of NB.132,133 However, given 

the fact that NB can develop anywhere along the sympathetic axis, it is likely that NB can also 

arise from earlier crest derivatives, before development of the sympathethoadreanal lineage 

but after the initial fate specification. This could contribute to the heterogeneous histology and 

pathology of NB.137 

A11.2 EMT and MET Transitions in the Neural Crest 

During maturation, the neural crest undergoes programmed epithelial-to-mesenchymal 

transition (EMT).138,139 Figure 1.6 is a schematic representation of this process. The 

progression of NC EMT is synchronized by (i) the coordinated activity of transcription factors 

and molecular signaling pathways, (ii) changes in cell junctions and polarity, (iii) changes in 

adhesion properties, and (iv) changes in the extracellular matrix (ECM).  
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Source:139 (A) Genes expressed on neural crest cells—prior (green) and after (red)—epithelial-to-mesenchymal 
transition. (B) Neural crest epithelial-to-mesenchymal transition regulation. NC specifiers, FoxD3 and Snail 
down-regulate expression of molecules that are associated with epithelial static cell populations, such as N-Cad 
and E-Cad (or Cad6B in chick and mouse), respectively, to relinquish space to the upregulation of mesenchymal 
migratory proteins, such as Cad7. Similarly, Snail down-regulates tight junction claudins/occludins to permit the 
upregulation of gap junction protein connexin-43α1 (Cx43α1), which may also depend on Snail expression. Gene 
regulation in which the repressors Snail or FoxD3 up-regulate the expression of matrix metalloproteases (MMPs), 
integrins, Cad7 or RhoB may denote indirect regulatory interactions, possibly mediated by other repressors 
(denoted by dotted lines). Reproduced from Strobl-Mazzulla PH, Bronner ME. Epithelial to mesenchymal 
transition: New and old insights from the classical neural crest model. Seminars in Cancer Biology 2012;22(5-
6):411-416, with permission from Elsevier®. See Appendix 3 for copyright clearance. 

Figure 1.6: Neural crest programmed epithelial-to-mesenchymal transition 

Signalling pathways activated during the course of EMT in the NC are triggered by the 

integration of ECM signalling molecules and any number of secreted ligands such as members 

of transforming growth factor beta (TGFß), wingless/integrated proto-oncogene (Wnt) and 

fibroblast growth factor (FGF) families. These early cellular changes during EMT are essential 

for the switch from neuroepithelial precursors into migratory NC cells through activation and 

coordination of several transcriptional regulators, including the zinc finger transcription 

factors, Snail1 and Snail2 (formerly known as Slug) and the winged-helix transcription factor 

FoxD3.139,140 During embryonic development, mesenchymal transformation involves, among 

other processes, loss of E-cadherins, loss of cell contacts, activation of matrix 
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metalloproteinases (MMPs). Bone morphogenetic proteins (BMP, multi-functional growth 

factors that belong to the TGFß superfamily), Wnt and FGF signalling within the 

microenvironment further drive differentiation of these mesenchymal migratory NC cells. The 

early neural crest is similar to other pluripotent cell populations with regard to their committed 

self-renewal capacity and selective propensity to generate many different tissue types. 

Expression of pro-survival and pluripotency factors such as SOX10, FOXD3, C-Myc and 

MYCN confer on these cells an increased proliferative advantage coupled to an aggressive 

apoptosis evasive potential.138,141 

Neuroblastoma tumour-initiating cells (TICs) or cancer stem cells (CSCs) derived from diverse 

environments may direct the clonal evolution of distinct tumour phenotypes according to the 

developmental stage of their crest precursors.6,19,142-144 It is likely that the clinicopathologic 

correlations of neuroblastoma such as genomic instability, tumour heterogeneity and disparate 

treatment outcomes may be direct consequences of complex molecular signalling pathways 

that coordinate neural crest differentiation, EMT and maturation/specialization (Figure 1.7).  

A11.3 Hallmarks of the Neuroblastoma Tumour Microenvironment 

Drawing on the hallmarks of cancer expounded by Douglas Hanahan and Robert A. 

Weinberg,145,146 a recent article reviewed how an integrated biological systems repertoire, 

encompassed by the tumour microenvironment (TME), regulates tumour progression and 

metastasis in NB. The authors views converge on the respective contributions of innate [TAMs, 

neutrophils, natural killer cells (NK), dendritic cells (DC)] and adaptive (T- and B-

lymphocytes, and natural killer T cells (NKT)] immune cells, tumour-associated fibroblasts 

(TAFs), bone marrow-derived mesenchymal stromal cells (MSCs), endothelial cells, Schwann 

cells, and the extracellular matrix (ECM). Neuroblastoma cells exploit the cell-cell and cell-

ECM communication apparatus to “instruct” the TME and TME cells to activate 

neuroblastoma signalling pathways to express and maintain their neoplastic behaviour (Figures 

1.8 and 1.9).147  

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 1 | A11.3 Hallmarks of the Neuroblastoma Tumour Microenvironment  

38 

 

Neuroblastoma is a spectrum of diseases with a wide range of clinical behaviours. Disruption of the normal 
maturation progression with different genetic drivers at different times leads to heterogeneity of tumour-initiating 
cells. Interaction between different epigenetic and genetic factors complicates the task of defining a primary 
oncogenic driver or pathway for this disease. This results in a wide range of pathologies with highly variable 
responses to treatment. 

Source:6 Reproduced and adapted from Louis CU, Shohet JM. Neuroblastoma: Molecular pathogenesis and 
therapy. Annual Review of Medicine 2015;66:49-63, permission not required as stipulated by the Annual Review 
of Medicine. See Appendix 4 for copyright clearance.  

Figure 1.7: Clinicopathologic correlations of neuroblastoma 

The ten hallmarks of cancer145-147 are the ability of cancer cells to: 

 Sustain proliferative signals 

 Evade growth-suppressors 

 Invade and metastasize 

 Enable replicative immortality 

 Induce angiogenesis 

 Resist cell death or apoptosis 

 Escape immune destruction 
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 Deregulate cellular metabolism 

 Confer and express genomic instability 

  Induce tumour-promoting inflammation 

Since these hallmarks of NB have been discussed thoroughly in the cited references in the 

context of their contribution to the neuroblastoma malignant phenotype and current clinical 

trials that target the TME in neuroblastoma patients,147,148 no further consideration will be 

accorded to them in this section. An essential description of neuroblastoma oncogenic drivers 

and transcriptional networks is provided in the next section. 

 

Diagram summarizing the contribution of the cells and ECM in the TME to the ten hallmarks of cancer shown 
at the centre of the wheel. The central graph was reproduced from Hanahan and Weinberg.146 

Source:147 Reproduced from Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the 
tumour microenvironment in neuroblastoma. Cancer Letters 2015;doi: 10.1016/j.canlet.2015.11.017, with 
permission from Cancer Letters, Elsevier Ireland Ltd. See Appendix 5 for copyright clearance.  

Figure 1.8: Contribution of the cells and ECM in the TME to the ten hallmarks of neuroblastoma  

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 1 | A11.4 Genetic Lesions, Transcriptional Networks and Oncogenic Drivers in Neuroblastoma  

40 

 

Source:147 Reproduced from Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the 
tumour microenvironment in neuroblastoma. Cancer Letters 2015;doi: 10.1016/j.canlet.2015.11.017, with 
permission from Cancer Letters, Elsevier Ireland Ltd. See Appendix 5 for copyright clearance.  

Figure 1.9: Pathways activated via communication between neuroblastoma and TME cells in the ECM 

A11.4 Genetic Lesions, Transcriptional Networks and Oncogenic Drivers 
in Neuroblastoma 

Somatic alterations, including mutations, gain of alleles, loss of alleles, or conversions in 

tumour-cell ploidy, have long been regarded as critical factors in the development and 

progression of NB. Many of these chromosomal aberrations are strong prognostic markers that 

can be used separate from clinical traits in risk stratification and treatment of NB 

patients.93,137,149,150 Chromosome regions and genes known to be involved in NB oncogenesis 

is outlined schematically in Figure 1.10. Some of these gene expression profiles of NB are 

described in the subsections that follow. 

A11.4.1 Familial Genetic Lesions  

Neuroblastoma originates from neuroepithelial cells that migrate from the neural crest to form 
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the sympathetic nervous system.151 Even though intratumour heterogeneity represents the 

predictable stage of oncogenesis,143 it is well-established that neuroblastoma is not exclusively 

initiated by gene signatures.147 As such, hereditary NB is both rare and heterogeneous, 

accounting for less than 5% of all NBs. Hereditary NB predisposition loci have been mapped 

to chromosomes 16p12–13 and 4p16, indicating that other familial predisposition mutations 

may exist, but hitherto no specific genes have been unequivocally shown to be inactivated or 

mutated in these chromosomal regions.133,137 Neuroblastoma presents as a locoregional tumour 

with no detectable amplification of the MYCN oncogene in 50% of children, but it correlates 

with extraordinary prognosis—overall survival (OS)>90%.147 By contrast, in children older 

than 18 months of age diagnosed with NB, with or without MYCN amplification and metastatic 

disease, the chance of event-free long term survival despite an intensive combination therapy 

(myeloablative chemotherapy, radiation therapy, progenitor cell transplantation, surgery, 

isotretinoin and antibody-based immunotherapy) is less than 50%, and is thus indicative of 

high-risk disease.152,153  

The landmark discovery in the early 1980s that a correlation exists between MYCN oncogene 

amplification and advanced stage NB raised hopes that other similar genetic associations may 

be identified.154 A family history of NB occurs in 1–2% of patients and 2 mutated genes have 

been distinguished as promising cancer biomarkers in this regard—anaplastic lymphoma 

kinase (ALK, exemplifying a gain of function) and the paired-like homeobox 2B (PHOX2B, 

denoting a loss of function)—in 80% of the familial cases.155,156 The advent of genome-wide 

association studies yielded additional gene polymorphisms with a low, but significant risk of 

NB, including BARD1, LMO1 and LIN28B.157 Genomic analysis of over 200 NBs showed, 

unpredictably, low levels of recurrent-driver mutations, most notably activation mutation and 

amplification of ALK (8% of the cases), activation mutations in PTPN11 (a tyrosine 

phosphatase), inactivating mutations in chromatin remodelling genes (ATRX and ARID1A) 

and activating mutations in NRAS, in addition to amplification and activation mutations of 

MYCN.147,158-160  
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A schematic overview of chromosome regions and genes known to be involved in neuroblastoma oncogenesis. 
This overview is not comprehensive, and only those regions and genes mentioned in the article are indicated. 
Gene abbreviations: ALK, anaplastic lymphoma receptor tyrosine kinase; BARD1, BRCA1 associated RING 
domain 1; CADM1, cell adhesion molecule 1; CDKN2A, cyclin dependent kinase inhibitor 2A; CHD5, 
chromodomain helicase DNA binding protein 5; KIF1B, kinesin family member 1B; MYCN, v-myc 
myelocytomatosis viral related oncogene, neuroblastoma derived; NME1/E2, non-metastatic cells 1, protein 
(NM23A) expressed in/non-metastatic cells 2, protein (NM23A) expressed in; PHOX2B, paired-like homeobox 
2b; PPM1D, protein phosphatase 1D magnesium-dependent, delta isoform; RASSF1A, Ras association 
(RalGDS/AF-6) domain family member 1. 

 

Source:150 Van Roy N, De Preter K, Hoebeeck J, Van Maerken T, Pattyn F, Mestdagh P, Vermeulen J, 
Vandesompele J, Speleman F. The emerging molecular pathogenesis of neuroblastoma: Implications for 
improved risk assessment and targeted therapy. Genome Medicine 2009;1(7):74, with permission from BioMed 
Central (BMC) Reprints and Permissions (http://www.biomedcentral.com/about/policies/reprints-and-permissions 
[14/06/2016 16:35:15]). See Appendix 6 for copyright clearance.  

Figure 1.10: Chromosome regions and genes known to be involved in neuroblastoma oncogenesis  
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Evaluation of a subset of patients with MYCN non-amplified NB showed that infiltration of 

tumour-associated macrophages (TAMs) was significantly higher in metastatic NBs than their 

locoregional equivalents. In addition, metastatic tumours diagnosed in patients at age ≥18 

months had higher expression of inflammation-related genes than those in patients diagnosed 

at age <18 months. Expression of genes representing TAMs (CD33/CD16/IL-10/FCGR3) in 

addition to IL-6 receptor (IL-6R) influenced 25% of the accuracy of a novel 14-gene tumour 

classification score.161 Moreover, infiltration with Th2-driven macrophages expressing CD163 

and CD206 was also recently observed in a subset of high-risk neuroblastoma tumours with 

deletion of chromosome 11q and high levels of prostaglandin-synthase and elevated levels of 

PGE2.162. 

A11.4.2 PHOX2B Germline Mutations 

Germline mutations in the paired-like homeobox 2B ( PHOX2B) gene on chromosome 4p13 

are the first predisposition mutations identified in NB.156,163,164 PHOX2B, a master regulator 

of sympathetic neuronal development and mainly expressed in sympathetic neural 

progenitors,165 as well as mammalian achaete scute homolog-1 (MASH1), are expressed early 

in the developing sympathoadrenal progenitors. Shortly after expression of MASH1 and 

PHOX2B in the sympathoadrenal lineage, heart- and neural crest derivatives-expressed protein 

2 (HAND2), PHOX2A, and GATA2/3 appear. PHOX2B has also been shown to be essential 

for the expression of the glial family ligand tyrosine kinase coreceptor RET (rearranged during 

transfection) and for the specification of noradrenergic fates, particularly the biosynthetic 

enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase promoter (DBH).137  

NB patients with PHOX2B mutations also have familial disorders of the neural crest such as 

Hirschsprung’s disease (HSCR) and congenital hypoventilation syndrome.156,163 It is not clear 

whether the mutations in PHOX2B found in familial NB result in gain or loss of function, 

although many PHOX2B mutations stabilize the PHOX2B protein and decrease or eliminate 

the ability of PHOX2B to transactivate the DBH promoter.166,167 The findings that PHOX2B is 
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necessary for the differentiation of autonomic neurons and overexpression of PHOX2B 

inhibits proliferation in neuron progenitors and cell lines suggests PHOX2B is a tumour 

suppressor.166,167 However, the absence of tumours with loss of heterozygosity (LOH) or 

mutation in second allele suggests gain-of-function, dominant negative effect, or 

haploinsufficiency.164 

A11.4.3 Anaplastic Lymphoma Kinase 

Anaplastic lymphoma kinase (ALK) is a member of receptor tyrosine kinases (RTKs) and was 

first identified as a part of the fusion gene nucleophosmin (NMP)–ALK in anaplastic large cell 

lymphoma via chromosome translocation of t(2;5)(p23;q25).168 ALK is thought to play a role 

in the normal development of the central and peripheral nervous system since ALK mRNA is 

expressed throughout the nervous system in mouse and rat, but is not present in normal 

haematopoietic cells.169,170 Similar patterns of expression are observed in humans although 

additional ALK transcripts of differing size, most likely due to alternative splicing, have been 

observed in colon, prostate, testis, small intestine, and brain of adults.137,171 Full-length ALK 

protein is comprised of an extracellular region and an intracellular region containing a RTK 

domain, linked by a transmembrane (TM)-spanning segment, whereas the NMP–ALK fusion 

protein generated as a result of the t(2;5)(p23;125) translocation contains the N-terminal of 

NMP and C-terminal kinase domain of ALK. Translocation of the gene is also evident in other 

tumours, such as inflammatory myofibroblastic tumour (IMT), and non-small-cell lung 

carcinoma (NSCLC), but not in NB.171  

Overexpression of wild-type ALK has also been observed in thyroid carcinoma, breast cancer, 

NB, melanoma, small cell lung carcinoma, glioblastoma, astrocytoma, retinoblastoma, Ewing 

sarcoma, and rhabdomyosarcomas NB.171-173 During 2008, several reports focused attention on 

ALK point mutations in 8–12% of all NB patients (both hereditary and sporadic) and some NB 

cell lines.174-177 Almost all the point mutations identified occurred in the kinase domain and 

resulted in the constitutive activation of ALK. Two of these activating ALK mutants were able 
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to transform NIH3T3 fibroblasts and induce tumour formation in nude mice.178 In addition, 

knockdown of ALK or small molecular ALK inhibitors could reduce cell proliferation and 

induce apoptosis.175,176 Amplification of the ALK gene and/or overexpression of the ALK 

protein is seen in as many as 77% of all NB tumours, suggesting that overexpression of the 

ALK protein may also contribute to NB.179 The downstream effects of ALK in NB need to be 

elucidated. Current data suggest that ALK may function through the Shc and MAP kinase 

pathways.180,181 More recent studies also suggest that activation of ALK enhances RAP1 

activity via interaction with C3G, a Crk-binding protein and Crk-like protein (CRKL), and that 

this complex contributes to NB tumour cell growth and neurite outgrowth.182 

A11.4.4 Chromosome Gain and Oncogene Activation 

Many genetic abnormalities have been identified in non-familial NB tumours, including 

amplification of the MYCN proto-oncogene (25–33% of patients) and consistent areas of 

chromosomal deletion and rearrangement that result in loss of 1p36 (25–35%), 11q23 (35–

45%), and 14q23 (16–27%), as well as unbalanced gain of 17q22 (~50%).132,133 In contrast, 

known tumour suppressor genes (TSGs) such as p16INK4a, pRb, p53 and p14ARF are not 

frequently deleted or mutated in NB, although the nuclear localization of the p16INK4a and p53 

proteins has been reported to be altered in some tumour cell lines.132,133,183 Many of these 

abnormalities are convincing prognostic markers and are highly related to clinical outcome. 

For example, amplification of MYCN in NB patients is correlated with chromosome 1p36 

LOH. NB tumours which harbour 1p36 LOH and MYCN amplification are usually advanced-

stage (stages 3 and 4) aggressive tumours that are frequently metastatic and generally respond 

poorly to chemotherapy/irradiation.132,133 In recent years, clinical trials are increasingly based 

on such tumour genetic markers. 

A11.4.5 Amplification of MYCN and the 2p24 Locus 

MYCN gene amplification is a hallmark of aggressive NB.184 In 1983, Schwab found that a 

novel myc homologue gene was amplified in several NB cell lines and one NB tumour.185 
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Later, several papers termed this gene as MYCN based on homology to c-myc and expression 

pattern in the developing nervous system, and identified its location at chromosome 2p24.185,186 

Additional studies have shown that N-myc protein is a nuclear phosphoprotein that is a member 

of the myc family of helix loop-helix transcription factors.187 Amplification of the MYCN gene 

in patient tumours ranges from 10-fold to more than 500-fold, although the majority of tumours 

exhibit 50- to 100-fold MYCN gene amplification levels. The amplified DNA typically contains 

a large region of chromosome 2 ranging from 100 kb to 1 Mb which includes the entire MYCN 

gene and varying amounts of adjacent DNA.188  

Although other genes may be co-amplified with MYCN, it is the only consistent amplified gene 

from this region.189 MYCN amplification is rarely observed on chromosome 2p24 in primary 

tumours, but is found to be at homogeneously staining regions (HSRs) on different 

chromosomes or, more frequently, as double minutes (DMs; which are small fragments of 

extrachromosomal DNA).185,190 In cell culture, the amplification unit frequently integrates into 

chromosomes to become HSRs. The reason for the differences in the location of the amplicon 

in primary tumours and cultured cells remains unclear. Amplification of MYCN is highly 

associated with aggressive NB tumours and poor outcome. The precise role of MYCN in NB 

is still sketchy, however, amplification of the gene is frequently associated with the 

overexpression of the N-myc protein. Studies on MYCN regulation suggest that the 

transcription factor and signalling pathways controlling the upregulation of MYCN are 

dependent on cell type.191 These factors include IL-7 and Pax-5, NF-κB in pre-B cells, and 

insulin-like growth factors I and II (IGFI and IGFII) in NB cells.192  

In contrast, MYCN transcription is repressed by retinoic acid (RA) in association with E2F 

binding, nerve growth factor (NGF) binding to TrkA receptor, the iron chelator deferoxamine 

mesylate and transforming growth factor-beta 1 (TGF-β1).192 Myc proteins form heterodimers 

with the Max protein. These heterodimers bind to E-box elements (CACGTG) to activate 

transcription. However, Myc–Max dimers can also associate with other transcription factors 
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such as Miz-1 and Smad and bind to Inr (initiator) elements to repress transcription. Max can 

also form homodimers or heterodimers with Mad to compete or suppress Myc-Max 

binding.137,187,193,194  

The targets of Myc–Max are involved in various cellular processes, including cell growth, 

proliferation, loss of differentiation, and apoptosis, and include proteins such as MASH1 and 

important molecules in the normal development of sympathocoadrenal lineage cells, such as 

the multidrug resistance protein 1 (MRP1) and MDM2.187,193,195 MDM2, which negatively 

regulates p53, is a direct transcriptional target of MYCN in NB and modulates cell cycle and 

transcriptional events as demonstrated by targeted inhibition of MYCN in a MYCN-amplified 

neuroblastoma cell line which concomitantly decreased MDM2 expression, stabilized p53 and 

induced apoptosis.196,197 Hence, manipulating the paradoxical apoptosis-promoting function of 

MYCN amplification in NB could be a valuable line of attack in the high-risk, MYCN-amplified 

subset of neuroblastoma.198 

The transgenic mouse model sustains that MYCN overexpression is a primordial stage in NB 

tumourigenesis. In this model, overexpression of the human MYCN, followed by NB tumour 

formation, is driven by the rat TH promoter, which is expressed in migrating cells of the neural 

crest early in development.199 However, other factors are also likely to be involved in the early 

stages of tumour formation since amplification of the MYCN oncogene occurs in only about 

one-third of NBs. Moreover, the tumours in these transgenic mice rarely exhibit significant 

metastasis despite the presence of high levels of N-myc protein suggesting that the other 

genetic alterations and/or epigenetic changes are critical for tumour formation and metastasis. 

The pioneering of a unique Cre-conditional human MYCN-driven mouse model for NB that 

robustly recapitulates features of the human disease, including tumour localization, histology, 

marker expression and genomic profile sets a significant benchmark for advance translational 

approaches to preclinical and molecularly targeted therapies for NBs.200  
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Likewise, it has recently been proposed that human neural crest stem cells (hNCSCs) isolated 

from in vitro-differentiating human embryonic stem cells (hESCs) may be an invaluable model 

system to study human neural crest development and diseases, since suppression of MYCN in 

hNCSCs not only arrests cell growth and cell cycle progression, but its knockdown induces 

the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases 

p21CIP1, p16INK4a and p15INK4b, highlighting its critical function in stem cell growth and cell 

cycle progression. Remarkably also, MYCN is involved in the regulation of human sympathetic 

neurogenesis, as knockdown of MYCN augments the expression of key transcription factors 

involved in sympathetic neuron differentiation, including PHOX2A, PHOX2B, MASH1, 

HAND2 and GATA3, which may have implications for targeted therapy of NB.165  

Several other genetically engineered mouse models (GEMMs) of NB have been reviewed 

recently: tyrosine hydroxylase (TH)-MYCN, TH-MYCN/Trp53(+/-), TH-MYCN/TH-

Cre/Casp8(flox/flox), TH-MYCN/TH-ALK(F1174L) and DBH-iCre/CAG-LSL-Lin28b.111,201 

Correspondingly, studies focusing on MYCN-amplified neuroblastoma patient-derived 

(human) xenograft models demonstrated sensitivity to the BCL-2 inhibitor ABT-199 which 

was partly the result of low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA 

expression, paradoxical MYCN-driven upregulation of NOXA and widespread induced 

apoptosis mediated by Aurora kinase A inhibitor MLN8237 combined with ABT-199, which 

further led to tumour shrinkage and in several instances complete tumour regression.198  

A11.4.6 Gain of Chromosome Arm 17q 

Gain of genetic material from chromosome arm 17q (gain of segment 17q21–qter) is the most 

frequent cytogenetic abnormality of neuroblastoma cells. This gain has been linked with 

progressive disease, infants ≥1 year old, deletion of chromosome arm 1p, and amplification of 

the N-myc oncogene, all of which predict an adverse outcome.23 Gain of chromosome arm 17q 

was originally detected by G-banded cytogenetic analysis in early 1980s. However, this 

observation was regarded as trivial in comparison to MYCN amplification and 1p loss of 
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heterozygosity (LOH). In the middle 1990s, the significance of 17q abnormalities in NB 

became increasingly discernible because fluorescence in situ hybridization (FISH) technology 

revealed that translocation of this chromosome arm was prevalent in 50% of primary NB 

tumours, resulting in an unbalanced gain of one to three copies of 17q which may confer a 

selective survival advantage for NB tumour cells.132,133  

It is approximated that multiples of the17q chromosome fragment (ca. 20 Mb) accounting for 

more than 200 genes can be translocated in NB tumours, thus making it difficult to spot the 

genes responsible for the selective persistence advantage. Several genes in this region have 

been deemed as good candidate oncogenes or tumour suppressors based on correlations 

between expression levels and unbalanced gain of 17q. These include survivin, PPM1D and 

NM23A.137  

Overexpression of survivin, an anti-apoptosis gene, mapped to 17q25, is significantly 

associated with poor prognosis and promotes cell survival in human neuroblastoma.202,203 Wip1 

(wild-typep53-inducible phosphatase 1) or PPM1D (protein phosphatase magnesium-

dependent 1delta) is a p53-inducible Ser/Thr protein phosphatase which negatively regulates 

the DNA damage response through the dephosphorylation and inactivation of p53, ATM, p38 

and Chk1/2, and hence drives oncogenesis.204-207  

Low expression of NM23A (Nm23/NDP kinase), a metastasis suppressor, has been correlated 

with poor patient prognosis and survival, lymph node infiltration, and histopathological 

indicators of high metastatic potential in a number of cancer types, including NB.149,208-210 

Unbalanced gain of 17q correlates with other chromosomal deletions. The most frequent 

deletion site is the short arm of chromosome 1, followed by 11q. At least 30 translocation sites 

on 20 different chromosomes have been detected in patient samples and cell lines211-213 

Nevertheless, NB tumours harbouring unbalanced gain of 17q exhibit a more aggressive 

phenotype and a poorer prognosis than those without this abnormality.137 
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A11.4.7 Amplification and Chromosome Gain of Other Loci 

Besides the amplification of the MYCN gene, numerous other regions of gene amplifications 

have been distinguished in small groups of NB cases. These include amplification of the 

MDM2 gene at 12q13, the DDX gene at 2p24, the MYCL gene at 1p32, and unexplained DNA 

from chromosome 2p22 and 2p13.214,215 The mouse double minute 2 homologue (MDM2) gene 

(MDM2) is amplified in various NB cell lines and primary tumours. Like the MYCN gene 

amplification, MDM2 amplification unit first developed within DMs and then integrates into a 

different chromosome to form HSRs.215  

The DDX1 gene, which encodes a RNA helicase, was found to be co-amplified with MYCN 

in 4/6 NB cell lines and 6/16 tumours with MYCN amplification, however, DDX1 amplification 

was not detected in the absence of MYCN amplification.216 Moreover, the MYCL gene is co-

amplified with MYCN in NB cell lines. MYCL, another member of myc gene family, is 

commonly overexpressed in small cell lung carcinoma.217 In addition to gain of 17q, other 

chromosome gains have been seen on 1q, 4q, 5q, 6p, 7q, 18q using comparative genomic 

hybridization (CGH) methodology, although their biological and clinical significance have yet 

to be elucidated.137 

A12.4 Chromosome Loss and Tumour Supressor Genes 

In addition to mutation, gene amplification and increased chromosome copy number, NB 

tumours also experience loss of genetic material and deletion of putative tumour suppressor 

genes (TSGs).137 

A12.4.1 Loss of Heterozygosity of Chromosome 1p and CHD5, miR-34, 
KIF1Bβ 

Loss of the short arm of chromosome 1 occurs in about 25–35% NB tumours. 1p LOH is 

correlated with amplification of MYCN in NB patients. Loss of 1p correlates with and may 

stem from unbalanced gain of 17q, but the precise process that underscore these dualistic 
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outcomes is not well-defined. The significance of 1p LOH is borne out by research in which 

transferring chromosome 1p material into human NB cells caused differentiation and 

suppression of tumourigenicity.218 Whereas patients with 1p36 abnormalities without MYCN 

amplification have been identified, the reverse situation virtually never occurs suggesting 

either that 1p36 LOH provides a permissive environment for MYCN amplification or that 

tumours with these two associated genetic defects have a high degree of genomic instability.132  

Remarkably, NB tumours with 1p36 LOH and MYCN amplification are frequently aggressive 

with high metastatic potential and generally resistant to chemotherapy/irradiation. Even though 

the chromosomal regions defined above are crucial in NB, the TSGs that reside within these 

regions have not been sufficiently characterized. Nevertheless, contemporary studies have 

classified three new putative tumour suppressors on chromosome 1p36: the chromodomain 

helicase DNA-binding domain 5 (CHD5), microRNA-34a (mir-34a), and the kinesin 

superfamily protein 1B beta (KIF1Bβ).219-221 These tumour suppressors proteins mediate their 

effects through cell growth dynamics, e.g., the effects of CHD5 on cell growth were shown to 

be dependent on p53 and CDH5 positively regulates p53 via p19ARF expression.219  

Thus, overexpression of CHD5 results in enhanced apoptosis and cellular senescence, 

increased p53 and p19ARF levels, and sequestration of MDM2, the negative regulator of p53, 

by p19ARF. On the other hand, cells lacking CHD5 exhibit decreased p16 and p19ARF 

expression, the latter paralleled a decrease in p53 levels and enhanced cellular proliferation. 

Therefore, CHD5 acts as a tumour suppressor that controls proliferation, apoptosis, and 

senescence via effects on the p19ARF/p53 pathway. These effects are largely attributable to 

changes in the accessibility of the p16/p19ARF gene locus resulting from the chromatin 

remodelling function of CHD5.219 By analogy, mir-34a was found to be expressed at very low 

levels in unfavourable primary tumours and NB cell lines.222 Introduction of this microRNA 

(miRNA) into cell lines diminished cell proliferation and enhanced caspase-dependent 

apoptosis, by targeting E2F3 mRNA and supressing its expression.221 E2F3 a transcription 
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factor that upregulates the expression of countless genes associated with cellular proliferation. 

Overexpression of KIF1Bβ induced cell death while decreased KIF1Bβ levels correlated with 

cell proliferation and enhanced tumour development in nude mice, implying that KIF1Bβ is 

also a prospective TSG candidate.220 Moreover, KIF1Bβ is a downstream target of prolyl 

hydroxylase EglN3 and an inducer of apoptosis in neuronal progenitor cells or NB cells when 

NGF is deficient. Missense mutations of KIF1Bβ in inherited NBs and pheochromocytomas 

strongly support the hypothesis that KIF1Bβ is a conceivable TSG candidate.223 

A12.4.2 Loss of Heterozygosity of 11q and TSLC1 

Loss of the long arm of chromosome 11 occurs in 35–45% NB primary tumours with a single 

copy MYCN gene. Two large patient studies that analyzed 295 NB primary tumours observed 

loss of 11q in 44% cases, and common regions of LOH located at 11q23, signifying that 

putative TSGs reside in this region.224,225 Loss of 11q correlated with adverse clinical features 

such as late stage disease, older age of disease onset and unfavourable histology, although it is 

strongly inversely correlated with MYNC amplification and 1p loss. Hence, 11q loss is a 

valuable and principal marker for verifying the clinical prognosis for those advanced stage 

tumours without MYCN amplification. Transfer of chromosome 11 induced differentiation in 

NB cell lines supporting the importance of loss of 11q in tumourigenesis.218  

Another putative tumour suppressor, the IGSF4 (immunoglobulin superfamily 4) gene, was 

originally localized to the common 11q23 LOH region in 1999.226 IGSF4, also known as 

TSLC1/CADM1 (tumour suppressor in lung cancer 1/cell adhesion molecule 1), is a plausible 

TSG for lung cancers. A recent CGH study which examined 236 primary tumour samples 

found he TSLC1 LOH locus in 35% tumours. Notably, the level of TSLC1 expression 

correlated with tumour stage, histological classification, MYCN and TrkA expression levels. 

Reduced expression of TSLC1 was found in unfavourable tumours. Furthermore, introduction 

of TSLC1 decreased cell proliferation in NB cell lines and thus a representative NB tumour 

suppressor candidate.227 Interestingly, a recent study indicates that expression of both KIF1Bβ 
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and TSLC1 is controlled by the polycomb protein Bmi1, whose expression is regulated by N-

myc.137,228 

A12.4.3 Loss of Heterozygosity of 14q 

Loss of the long arm of chromosome 14 is also commonly found in NB primary tumours (~16–

27% of the patients).137 LOH on chromosome 14q was first identified in 1989 using a 

polymorphic DNA marker which detected allelic deletion at specific 14q23 loci.229 LOH 

analysis of 14q in a large number of primary tumours using 11 polymorphic DNA markers 

found 14q LOH in 83 of 372 tumours (22%).230,231 14q LOH was highly correlated with 11q 

loss and had an inverse relationship with 1p loss and MYCN amplification.230 However, LOH 

for 14q was present in tumours from all clinical stages, suggesting this abnormality may be a 

universal early event during tumour development.137 

A13. Treatment and Management of Neuroblastoma 

A13.1 Overall Therapeutic Landscape of Neuroblastoma 

Neuroblastoma is the most frequent extracranial solid cancer in paediatric patients and has long 

puzzled scientists and oncologists alike since its biological and clinical behaviour vary between 

resistance to multimodal cancer therapies and complete spontaneous regression.64 Most 

children diagnosed with NB are classified as high-risk cases with disseminated metastases and 

a mortality rate of more than 50%.33 The cornerstone of treatment of NB consists of 

chemotherapy, surgical resection and/or radiotherapy. Novel personalized and  molecular-

guided therapy for the treatment of patients with relapsed or refractory NB are therefore a dire 

need to stem the tide of NB-related deaths in infants.19,232,233 Currently, various efforts are being 

pursued through innovations in basic medical sciences and translation of promising novel and 

molecular NB drug targets into successful clinical therapeutic practice.8,9,37,151,234 Treating NB 

is complex and frequently entails a multidisciplinary team of health professionals, including a 

paediatric cancer surgeon, a paediatric oncologist, a paediatric radiation oncologist. However, 
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many other specialists may be involved in the care of children with NB such as physician 

assistants, nurse practitioners, nurses, psychologists, social workers and rehabilitation 

specialists. Treatment of NB depends on the stage of the cancer and the child’s age. Current 

treatment modalities can include any one or several combinations of surgery, chemotherapy, 

radiation therapy, high-dose chemotherapy/radiation therapy and stem cell transplantation, 

retinoid therapy and immunotherapy. Complementary and alternative methods to treat cancer 

or relieve symptoms are optional. These methods can include vitamins, herbs, and special diets, 

or other methods such as acupuncture or massage. Even though some of these methods might 

be helpful in relieving symptoms of NB, many have no proven efficacy and might even cause 

unwanted side effects (Neuroblastoma, American Cancer Society, http://www.cancer.org/). 

A13.1.1 Spontaneous Regression and Stage 4S Disease 

Spontaneous regression of cancer is not a new concept and has been defined in the 1950s as 

“the partial or complete disappearance of a malignant tumour in the absence of all treatment, 

or in the presence of therapy which is considered inadequate to exert a significant influence on 

neoplastic disease.”235,236 However, one of the first allusions to regression of malignant NB 

was published in 1927.237 A significant feature of NB is that occasionally it undergoes 

spontaneous regression.238-240 This propensity is consistent with the notion that NB is largely 

caused by aberrations in the embryonic progressions of the neural crest and thus the 

sympathetic nervous system.111  

Overexpression of the MYCN/c-MYC target gene is a hallmark of malignant NB progression—

a process primarily driven by c-MYC in stage 4-non-amplified tumours.241 It has been proposed 

that moderate gain of MYCN function in stage 4S-non-amplified tumours induces a number 

of target genes that retain their ability to trigger spontaneous regression.241,242 More 

importantly, the fifth stage of NB tumours (stage 4S) is said to undergo spontaneous regression 

with minimum treatment or even without medical intervention.238,243    
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Recent genomic studies of NB corroborated the striking heterogeneity in the clinical behaviour 

of this disease, which encompasses spontaneous regression or differentiation in some patients, 

to relentless disease progression in others, in the face of intensive multimodality therapy.12 

Thus, some NBs regress spontaneously without therapy while others progress with a fatal 

outcome despite therapy. In one such study of infants younger than 12 months, spontaneous 

regression was noted in almost 50% of the study population within three years of follow-up.244 

Several conceivable mechanisms may account for the spontaneous regression observed in NBs, 

including HOX gene expression (HOXC9 expression is downregulated in advanced-stage NB 

and is involved in cell cycle control and the processes of NB cell differentiation),245,246 

neurotrophin signalling (especially those through nerve growth factor and its receptor, 

TrkA),247-250 activation of developmentally programmed apoptosis, humoral or cellular 

immunity, loss of human telomerase (h-Tert) activity, epigenetic changes in gene expression 

controlled by DNA methylation, histone modification, or alterations in chromatin 

remodelling.12 A better understanding of the mechanisms of spontaneous regression might help 

to identify optimal therapeutic approaches for patients with these tumours.111 

A13.1.2 Surgery 

The goal of surgical resection of NB is to attain macroscopic tumour resection with minimal 

residual disease (MRD). Surgery in ‘low’ and ‘intermediate risk’ groups is aimed at complete 

resection—wherever possible—with minimal injury to adjacent structures which are 

frequently adherent to, if not encased by the tumour mass.251,252 NB is a highly infiltrative 

neoplasm and poses several challenges for the paediatric cancer surgeon, e.g., difficulty in 

obtaining microscopically negative resection margins wherein gross total resection (GTR) or 

subtotal tumour resection (STR) is desirable.253 Much controversy and debate subsists on the 

defining role of surgery in advanced stage 4 disease. Moreover, significant overall survival 

advantage for radical surgical clearance in stage 4 disease has never been clearly 

demonstrated.252-258  
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The first recorded successful excision of a NB occurred in 1916, but for many years there was 

no other form of treatment, and the outlook remained dismal. The use of radiotherapy (1928) 

and subsequently combination chemotherapy (1965) had a modest impact. Recent advances in 

accurate disease imaging and staging has allowed a more coherent approach to diagnosis and 

treatment of NB.47,251,257 Generally, surgery in NB can be performed safely, but moderate to 

serious intra- and postoperative surgical complications have been experienced, including 

massive haemorrhage, major vascular injury, respiratory failure requiring mechanical 

ventilation after major surgery, cardiac arrest, tumoural rupture, nephrectomies, Bernard-

Horner syndrome and pleural effusions.251 It has been suggested that presurgical chemotherapy 

may lead to a more extensive and safer removal of locally advanced tumours.256  

A recent analysis of the SEER database (The Surveillance, Epidemiology, and End Results 

Programme (SEER, http://seer.cancer.gov), after accounting for selection bias, indicated 

improved survival following surgery and radiation therapy for olfactory neuroblastoma. 

However, the efficacy, timing, and optimum approach for combining chemotherapy with 

surgery and radiotherapy could not be established.259 Also, in intensively treated patients with 

stage 4 neuroblastoma age 18 months or older at diagnosis, surgery of the primary tumour site 

had no impact on local control rate and outcome.255 Similarly, no substantial survival benefit 

had been noted in stage IV neuroblastoma patients undergoing complete tumour resection, 

organ preservation and minimalization of morbidity.254 Despite these challenges, surgical 

resection remains a cornerstone of therapy in paediatric patients suffering from this clinically 

and biologically heterogeneous and complex disease.253 

A13.1.3 Chemotherapy 

About 80% of patients with high-risk NB often survive their primary tumour, i.e., attain 

remission through high-dose chemotherapy, surgery, radiation and stem cell transplantation. 

However, those with relapsed metastatic disease after treatment have a discouraging long-term 

survival outcome.260 As a paediatric extracranial solid tumour paradigm, NB correlates with a 
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disproportionately high mortality rate, i.e., 15% of all cancer-related deaths in children.16 In 

spite of 5-year event-free survival (EFS) and overall survival (OS) rates >90% for low- and 

intermediate-risk NB groups, the survival rate in children with high-risk NB remains 40%–

50%.3,251,259,261 Also, the manifestation of minimal residual disease (MRD) persists to be a 

substantial obstacle to bettering the prognosis of patients with high-risk NB.262-264 

Chemotherapy for high-risk NB entails three empirical stages, viz., (i) induction of remission, 

(ii) consolidation of remission and ultimately (iii) maintenance phase focused on the 

eradication of MRD.64,265 Generally, induction regimens utilize various combinations of 

anthracyclines, platinum-based compounds, etoposide, microtubule disruptors and alkylating 

agents. NB combination chemotherapy encompasses dose-intensive cycles of cisplatin and 

etoposide alternating with vincristine, doxorubicin, and cyclophosphamide.266 Very low and 

low-risk patients may require only observation or surgical resection, except in cases of life- or 

organ-threatening symptoms at diagnosis. Intermediate risk group patients whose tumours are 

not compatible for primary resection are put on chemotherapy designed to selectively destroy 

rapidly dividing tumour cells, eliminate life-threatening symptoms or make tumour 

resectability easier.  

High-risk patients undergo chemotherapy protocols combining carboplatin, etoposide, 

cyclophosphamide, doxorubicin, and vincristine. Furthermore, patients in the high-risk group 

also receive myeloablative chemotherapy to impede tumour infiltration (even though normal 

bone marrow is also suppressed), followed by bone marrow transplantation and granulocyte 

macrophage colony-stimulating factor (GM-CSF) induction. This sequential therapy regimen 

has proved beneficial in enhancing EFS.265 Mild chemotherapy regimens, especially those 

presently indicated for intermediate-risk NB are deemed ineffective for preventing evolution 

into advanced-stage (high-risk) disease. There is a disinclination to expose a clinically disease-

free infant or child to aggressive, highly toxic multimodal therapy that is only partially 

effective against advanced-stage disease. Hence, close clinical monitoring of such patients is 
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warranted.251 However, chemotherapy is invaluable in the early treatment of patients with 

stage-2 tumours who present with spinal cord susceptibility from a paraspinal mass or airway 

weakness from a tumour in the superior mediastinum. Biologic findings strengthen contentions 

surrounding the use of cytotoxic therapy in localized disease. The salient disparities in 

chromosomal features of lethal vs low-risk forms of NB lend biologic support for the radical 

dichotomy in prognosis. In this regard, progression of non-stage-4 NB with low-risk biologic 

features (triploidy, unamplified MYCN) to lethal stage-4 disease is a rare event. Several lines 

of evidence reinforced the hypothesis that non-stage-4 NB without MYCN amplification 

rarely, if ever, evolves into lethal disease.251 

Biologically favourable (low-risk) stage-4S disease resolves spontaneously in the majority of 

cases and surgical resection of primary tumours at diagnosis is no longer recommended since 

these tumours are likely to regress.267 Some stage-4S tumours with low-risk prognostic 

markers, e.g., non-amplified MYCN, hyperdiploidy and favourable histopathology, can cause 

dire life-threatening cardiopulmonary complications and coagulopathies in the neonatal period. 

Such medical emergencies may abate after treatment with one to two cycles of low-dose 

chemotherapy and/or modest doses of radiotherapy in order to spare the kidneys and spine. In 

the face of persistence of liver lesions, once clinical adjustment has been achieved, 

supplementary cytotoxic therapy may not be needed as it might pose some risk and the residual 

disease, even if extensive, is likely to regress.251 

Infants with stage-3 NB lacking MYCN amplification have survival rates close to 100%. In 

multi-institution studies in North America and Europe, these patients have received various 

modest dose-combinations of platinum compounds, etoposide, cyclophosphamide, 

doxorubicin and/or vincristine.268-270 The French Society of Paediatric Oncology achieved 

similar success using alternating cycles of carboplatin/etoposide and 

cyclophosphamide/doxorubicin/vincristine, in moderate doses.251,271 In a large Children’s 

Cancer Group (CCG) study, a regimen involved 9 months of combination chemotherapy 

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 1 | A13.1.4 Radiotherapy  

59 

incorporating cisplatin, etoposide, cyclophosphamide, and doxorubicin.270 In another large 

Paediatric Oncology Group (POG) study, cycles of high-dose cisplatin/etoposide alternated 

with low-dose cyclophosphamide/doxorubicin, and in a follow-up POG study, patients 

received cycles of cyclophosphamide, etoposide, vincristine, plus either cisplatin or 

carboplatin.272 Similar results described in clinical trials referred to above have been reported 

for treatment of Infant Stage-4 NB, at lower but improving cure rates from 10 to 50 to >70%.268   

Neonatal NB constitutes less than 5% of all cases of the neoplasm and frequently correlates 

with a good prognosis provided that patients are stratified into low- or intermediate-risk groups 

for disease recurrence. In neonates less than or older than 30 days, NB has the unusual potential 

to undergo spontaneous regression and this characteristic is used as a paradigm by several 

paediatric oncology groups (CCG, COG, POG and INRG) to moderate therapy given to 

neonates with low-risk NB.8,44 These groups also strive for the agency of reduced cytotoxic 

chemotherapy therapy and surgical tumour ablation for certain low- and intermediate-risk 

patients, but advocate observation approaches for such favourable subsets. By analogy, high-

risk patients should receive aggressive chemotherapy, radiation, surgery and myeloablative 

and immunotherapies.18,45,273 

A13.1.4 Radiotherapy 

While NB responds favourably to radiotherapy, the efficacy of total body irradiation in 

paediatric patients remains debateable in the face of long-lasting adverse events. Currently, 

COG promotes the concept that high-risk patients receive radiation to the primary tumour site 

irrespective of the coverage of surgical resection and to metastatic sites that display persistent 

MIBG avidity on pre-transplantation scans.54,55,260 Radiotherapy is not indicated for low-risk 

NB, even with local residual disease as risks outweighing potential benefits. In low- and 

intermediate-risk groups, radiation therapy is reserved for patients with progressive clinical 

relapse despite chemotherapy and surgery. Infants with stage 4S disease are usually excluded 

from radiotherapy, except those with severe respiratory distress or abdominal compartment 
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syndrome with precipitous hepatomegaly. Synergistic, additive and antagonistic acute and 

long-term tumour responses as well as side effects may be produced by parallel use of 

radiosensitizing agents.260,274 Radiosensitizers include cisplatin, topotecan and irinotecan260 

which are usually safe to give with radiation therapy. Currently, spinal cord compression is 

managed by chemotherapy, radiotherapy or surgical resection with or without laminectomy, 

but is contingent on a case by case basis. Radiation therapy is contraindicated in intraspinal 

tumours because it can trigger gross vertebral impairment and growth arrest resulting in severe 

scoliosis, but it may be used selectively as an emergency therapy for patients with symptomatic 

spinal cord compression.64 

A13.1.5 Haematopoietic / Peripheral Blood Stem Cell Transplantation 

Almost 56% of NB patients present with disseminated disease at the time of diagnosis. The 

bone, bone marrow, liver, non-contiguous lymph nodes and central nervous system (including 

the choroid plexus) are the most frequent metastatic foci.118,133,275-279 The low 5-year survival 

rate (40–45%) of NB patients with secondary tumours (metastases) underscores the therapeutic 

hurdles faced by paediatric oncologists in the face of advanced treatment options.280 Children 

with bone metastasis have a dismal outcome with survival rates below 7%.281 Moreover, 40-

50% of patients relapse (presenting with occult NB cells in peripheral blood), often after total 

remission following multi-modal treatment (surgery, chemotherapy and radiation).282  

The bone marrow is a chief metastatic site in stage IV NB and therefore assessment of MRD 

in the bone marrow is implicit in disease prognosis. Since high-risk NB correlates with a worse 

prognosis, autologous bone marrow transplantation (ABMT)283 and autologous peripheral 

blood stem cell transplantation (PBSCT) have become a therapeutic mainstay to enhance the 

prognosis of such patients, in particular to support haematopoietic rescue following high-dose 

chemotherapy.264,279,284-287 However, re-infusion of PBSC contaminated with tumour at the time 

of autologous transplantation may play a significant role in the high proportion of relapse in 

children with NB who eventually succumb to the disease.264,285,286,288,289 Recently, pulmonary 
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arterial hypertension (PAH) has been acknowledged as a rare condition with high mortality 

rate after paediatric haematopoietic stem cell transplantation (HSCT). Generally, there is a 

propensity to overlook PAH in the differential diagnosis of cardiorespiratory failure after 

HSCT as the clinical presentation is non-specific and may mimic other aetiologies.290 

Accordingly, paediatricians overseeing HSCT recipients should be cognizant of this serious 

post-transplant complication as appropriate diagnosis and treatment may improve clinical 

outcomes.291 

A13.1.6 Management of Minimal Residual Disease and Relapse 

Minimal residual disease (MRD) is a major barrier to the obliteration of malignant neoplasms. 

Even with the high sensitivity of various cancers to therapy, fractions of residual tumour cells 

persist and give to tumour recurrence and treatment failure.292,293 The detection of minimal 

amounts of tumour cells in bone marrow, peripheral blood, putative metastatic sites, lymph 

nodes or in other tissues, compartments or body fluids has become a major goal in cancer 

diagnostics. For NB patients, the clinical significance of minimal residual disease (MRD) in 

bone marrow after induction of chemotherapy or within stem cell harvests prior to autologous 

transplantation has become a critical clinical context.262,263 In paediatric patients, relapse is a 

frequent occurrence after autologous BMT, indicating the presence of malignant stem cells 

that are resistant to dose-intensive myeloblative chemotherapy.7,118,131,294  

MRD status in PBSCs might be crucial in high-risk NB because PBSCs contaminated with 

tumour cells are thought to contribute to relapse and increased mortality rate. Detection of 

tyrosine hydroxylase (TH) transcripts by RT-PCR is one way to assess whether PBSCs are 

contaminated with tumour cells.264 Re-infusion of PBSC contaminated with tumour at the time 

of autologous BMT may play a significant role in this relapse.288 Early observations that 

retinoids and other agents are useful to induce differentiation of NB, and, hence improve 

survival outcomes, have raised interest in these compounds as biological response modifiers 

against MRD in the bone and bone marrow.152,262,295 Immunocytology and quantitative RT-
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PCR for tumour specific markers such as diganglioside (GD2)296 and TH are currently used to 

detect and quantify MRD. Therapeutic regimens presently integrate novel biological therapies, 

including retinoic acid post-consolidation therapy for high-risk NB, aimed at eradicating 

MRD.295 Recently, a MRD model has been conceptualized as a novel approach to testing 

preclinical therapies and interpreting mechanisms of MRD and metastatic disease in 

experimental NB.297  

Currently, patients receive six courses of 13-cis-retinoic acid (CRA) to eradicate residual 

disease that may still be present despite meeting imaging criteria for complete remission. This 

treatment is guided by the observation that high-dose CRA administered after chemoradiation 

significantly improved EFS in high-risk NB.152 Side effects such as skin dryness and cheilitis 

are the dose-limiting factors, and consequently, CRA therapy involves of 2-week courses 

alternating with 2 weeks for mucocutaneous recovery.1,298 CRA appears to be most suited in 

the setting of MRD.62 High dose CRA and pulse schedules of other retinoids show therapeutic 

and chemopreventive efficacy in NB, but low-dose, chronic retinoid administration may not 

be as effective to treat MRD.299 

Clinical trials involving myeloablative chemotherapy and 131I-MIBG have been undertaken in 

an effort to minimize adverse side effects and rationalize more targeted therapies.300-302 131I-

MIBG exhibits activity against refractory NB with response rates ranging from 10-50%. In a 

phase I trial of 131I-MIBG therapy for relapsed NB, myelosuppression was the most significant 

toxicity at doses >15 mCi/kg, as nearly half of the patients enrolled required haematopoietic 

cell transfusion. Despite this, the response rate (36%), EFS (18% at 1 year), and OS (49% at 1 

year; 29% at 2 years) were found to be significantly higher in patients older than 12 years and 

who had fewer than three prior treatment regimens.303 Subsequently, a phase I dose escalation 

study of 131I-MIBG with myeloablative chemotherapy and stem cell rescue showed a 

significant response rate of 25% in patients with primary refractory disease. These 

observations, together with recent research, indicate that 131I-MIBG may prove useful in 
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conjunction with other treatment modalities,1,49,80,300,302,304,305 as corroborated also by a recent 

study that autologous stem-cell transplantation (ASCT) may not be indispensable for better 

outcomes when anti-GD2 immunotherapy is used for consolidation after dose-intensive 

conventional chemotherapy.306 However, in certain cases, even after 12 months of high-dose 

chemotherapy, treatment failures due to MRD are still widespread because of the acquisition 

of drug resistance and most patients who relapse eventually die from disease progression. Also, 

those patients who achieve a cure with initial therapy persist to be at risk for developing long-

term complications related to treatment, including blindness, hearing loss, infertility, and 

secondary malignancies.307,308 

A13.1.7 Multidrug Resistance and Monitoring Response to Treatment  

The term multidrug resistance (MDR), as applied to cancer, is a phenomenon in which tumour 

cells have developed decreased sensitivity to a wide variety of unrelated drugs (cross-

resistance) with different modes of pharmacological activity.309-314 Many of the mechanisms 

that decrease cell sensitivity to chemotherapeutic agents are caused by well-defined genotypic 

and phenotypic alterations, including overexpression of the ATP-binding cassette (ABC) 

transporter family, apoptosis induction, autophagy induction, cancer stem cell (CSC) 

regulation, miRNA regulation, hypoxia induction, DNA damage and repair, and epigenetic 

regulation (Figure 1.11).312,315,316  

The molecular basis of MDR generally involves specific members of the ABC drug 

transporters or efflux pumps such as ABCB1 (P-glycoprotein/P-gp/MDR1), ABCG2 (breast 

cancer resistance protein/BCRP) and ABCC1 (multidrug resistance protein 1/MRP1) and 

ABCC4/MRP4.311,313,317,318 In paediatric malignancies, different CSC phenotypes have been 

detected—including those that overexpress ABC transporters293,319-323 — not only accounting 

for the tumour heterogeneity associated with NB, but also raising hopes that further insight 

into the mechanisms that control the traits of CSCs may aid in the design of novel strategies to 

overcome chemoresistance.7,144,294,324 
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A: Source:315 Wu Q, Yang Z, Nie Y, Shi Y, Fan D. 
Multi-drug resistance in cancer chemotherapeutics: 
Mechanisms and lab approaches. Cancer Letters 
2014;347(2):159-166, with permission from Cancer 
Letters, Elsevier Ireland Ltd.) See Appendix 7 for 
copyright clearance. 

 
B: Source:325 Szakacs G, Hall MD, Gottesman MM, 
Boumendjel A, Kachadourian R, Day BJ, Baubichon-
Cortay H, Di Pietro A. Targeting the Achilles heel of 
multidrug-resistant cancer by exploiting the fitness 
cost of resistance. Chemical Reviews 
2014;114(11):5753-5774.with permission from the 
American Chemical Society (ACS; 
http://pubs.acs.org/copyright/permissions.html). 

Figure 1.11: Mechanisms of MDR and the concept of MDR targeting based on collateral sensitivity 

Overexpression of ABCG2/BCRP and ABCC4/MRP4 in subpopulations of stem cells was 

demonstrated in NBs.311,326,327 ABC transporters such as ABCC1, ABCC3 and ABCC4 are 

subject to direct transcriptional control of MYCN,328 and their expression compellingly 

correlates with poor prognosis.327,329,330 Many aggressive NBs exhibit MDR,311 attributable to 

p53 mutations and/or a loss of p53 function acquired during chemotherapy,331,332 which 

escalates the likelihood of relapse and thus presents a major obstacle to effective tumour 

eradication.333,334  

Most metastatic drug-resistant NBs derive from the selection of clones (side population cells) 

that express the MDR1 (ABCB1), MRP1/ABCC1 and MRP4/ABCC4) gene family, which may 

or may not correlate with MYCN amplification and poor outcome.7,294,323,327,328,330,335 Moreover, 

MRD, the major cause of tumour recurrence (relapse) and metastasis, is enriched in CSCs with 

an increased drug efflux capacity mediated through overexpression of ABC transporters.336,337 
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Hence, in the case of refractory NBs, the treatment algorithm is determined by the patient’s 

disease stage and risk stratification.1 The objective of induction chemotherapy is to promote 

remission by alleviating the tumour burden, which then simplifies complete resection when 

indicated—such as stage 1-2B tumours, but in the case of more advanced-stage NB (stages 3 

and 4), surgical intervention is limited to an open biopsy, and for infants who are stage 4S, 

surgical resection is not recommended since these tumours tend to spontaneously differentiate 

and regress.338,339 Induction chemotherapy consists of various combinations of 

cyclophosphamide, doxorubicin, cisplatin, melphalan, carboplatin, etoposide, topotecan, 

ifosfamide and vincristine, an example of the chemotherapeutic platform of collateral 

sensitivity (the hypersensitivity of resistant cancer cells to other drugs) that aims to kill MDR 

cells selectively over the parental cells from which they were derived.325,340-343 After induction, 

treatment is consolidated with one or more courses of high-dose chemotherapy to induce bone 

marrow ablation, which necessitates autologous haematopoietic stem cell support. Rescue is 

not without complication as it can lead to growth failure, endocrinopathy, and the occurrence 

of secondary metastases.6,8,18,44,47,64,80,251,265,273,295,344-346 

A13.1.8 Alleviating the Burden of Late Effects 

A standard component of NB management is follow-up of survivors to monitor and treat 

adverse events that may debilitate their quality of life and increase the rate of early 

mortality.8,62,73,347 NB patients invariably are subjected to intensive therapy which are 

increasingly associated with a number of complications, including: hearing loss linked to 

platinum compounds and ototoxic antibiotics indicated for neutropaenic infections (may result 

in learning and speech impediments); compression of renal vessels resulting in hypertension 

(renal toxicity caused by platinum agents, myeloablative therapy (MAT) with ASCT or HSCT, 

radiotherapy, nephrectomy, nephrotoxic antibiotics); secondary metastases initiated by 

alkylating agents or radiotherapy; leukaemias and myelodysplastic syndromes reportedly 

related to high doses of etoposide and cyclophosphamide (a reduction of these was achieved 

by limiting the number of cycles; thyroid cancers and other solid tumours; hypothyroidism; 
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growth impairment; musculoskeletal abnormalities (scoliosis, osteoporosis and bony and soft 

tissue hypoplasia may result from surgery and/or radiotherapy); cardiopulmonary sequalae 

induced by anthracyclines or thoracic radiotherapy (endocrine complications and reduced 

fertility.62,347-353 It is therefore imperative to develop new therapeutic regimens that will 

improve the survival and quality of life of NB patients.64 

A13.2 Current Research Milestones and Proposed Novel Therapies 

A13.2.1 Differentiation and Retinoids 

Retinoids, including 13-cis-retinoic acid (CRA, isotretinoin), all-trans retinoic acid (ATRA) 

and N-(4-hydroxyphenyl) retinamide (HPR, fenretinide) are endogenous, lipohilic vitamin A 

derivatives that arrest cell growth and induce differentiation of cell lines derived from tumours 

that are resistant to anticancer drugs.152,298,354-361 In the late 1980s, ATRA has been hailed as a 

therapeutic advancement for acute promyelocytic leukaemia and high-risk neuroblastoma 

(HR-NB).354 Retinoic Acid (RA) is included in multimodal therapies because it stimulates 

differentiation of NB cells in vitro and decreases the risk of tumour recurrence.362,363 CRA is 

given at completion of cytotoxic therapy to control MRD in NB.262,264,295,364-368  

ATRA or CRA have been shown to inhibit cell proliferation and induce morphological 

differentiation of human NB cell lines,355,356 whereas HPR (an apoptosis inducer) is highly 

active against retinoic-acid-resistant NB cell lines by deregulating MYC expression and 

removing its transcriptional repression of NB cell differentiation.369,370 HPR inhibits NB-

induced angiogenesis and may be applied usefully in aggressive HR-NB.62,371 HPR is also well-

tolerated in clinical trials, but has a poor solubility and may decrease night vision.372 

Interestingly, downregulation of the acylated and glycosylated 67-kDa laminin receptor 

(67LR) by RA has been shown to correlate with reduced metastatic aggressiveness of human 

NB cells, rendering 67LR as a molecular target in NB.373 The retinoids bind to members of the 

nuclear receptor family of proteins (transcription factors), i.e., the retinoic acid receptors 

(RARs—multiple isoforms of RARα, β, and γ) and the retinoid X (rexinoid) receptors RXRs—
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multiple isoforms of RXRα, β, and γ)—which alter interactions of transcription complexes 

with numerous cancer stem cell (CSC) genes, thus triggering an exit from the self-renewing, 

pluripotent CSC reserve into a differentiated mature cell niche.354,374 The retinoids are activated 

by RARs and the rexinoids by RXRs—RAR/RXR heterodimers constitutively associate with 

RA response elements (RAREs) in promoters of target genes (Figure 1.11).298,354,357,374,375  

 

The mechanism of action of retinoids is mediated via zinc-finger transcriptional regulators which function as 
heterodimers to regulate promoter activity of certain target genes. The RAR and RXR proteins bind to specific 
direct repeat DNA sequences (AGGTCA are separated by either 2 or 5 nucleotides) in gene promoters, known 
as RA response elements. (A) In the absence of ligand, the RAR/RXR heterodimers interact with nuclear co-
repressors including N-CoR and SMRT, which in turn bind to a common adapter protein mSin3 that complexes 
to proteins with histone deacetylase activity to repress transcription. (B) RA binds to the RAR portion of the 
complex causing a conformational change in the RAR and RXR proteins which releases the co-repressor complex 
and facilitates binding of 9-cis-RA to the RXR protein (the latter enhances the activation response). The 
transcriptional co-regulator CBP/p300 then binds to the receptor complex and recruits the coactivator protein 
ACTR, which contains histone acetyltransferase activity, that promotes transcription; RARE= retinoic acid 
response elements. 

Source:298 Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. 
Cancer Letters 2003;197(1-2):185-192, with permission from Cancer Letters, Elsevier Ireland Ltd.) See 
Appendix 8 for copyright clearance.  

Figure 1.12: The mechanism of action of retinoids and rexinoids 

The zinc-finger cluster of ZNF423 (also known as Ebfaz, OAZ, or Zfp423) has been shown to 

be indispensable for retinoid-induced differentiation. ZNF423 combines with the RARα/RXRα 

nuclear receptor complex and is critical for transactivation in response to retinoids. Blockade 

of ZNF423 expression by RNA interference in NB cells confers a growth advantage and 

acquired resistance to RA-induced differentiation whereas its overexpression triggers growth 
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arrest and amplified differentiation. Correspondingly, deregulation of ZNF423 expression 

correlates with poor disease outcome in HR-NB patients.359 Several clinical trials have been 

conducted to establish the maximal-tolerated doses (MTDs), pharmacokinetics, efficacies and 

dose-limiting toxicities (DLT) of the retinoids/rexinoids.357 Current selected clinical trials on 

various interventions in NB have recently been published.376 In a phase I trial in children 2 to 

12 years of age with NB, treatment with CRA (isotretinoin) doses escalated from 100 to 200 

mg/m2/day following BMT, DLTs in 6 of 9 patients were observed, including hypercalcaemia 

(n=3), rash (n=2), and anaemia/thrombocytopaenia/emesis/rash (n=1). All toxicities resolved 

after CRA withdrawal. Three complete responses were observed in bone marrow metastases.377  

Another study was performed on eligible patients which included children and adolescents (1 

to 18 years of age) with newly diagnosed HR-NB to assess whether MAT in conjunction with 

ABMT improved EFS as compared with chemotherapy alone, and whether subsequent 

treatment with CRA further improves EFS. In this study, 434 patients had Evans stage IV NB; 

72 had stage III disease with one or more of the following: amplification of the MYCN 

oncogene, a serum ferritin level of at least 143 ng/ml and unfavourable histopathological 

findings; 1 had stage II disease with amplification of MYCN (age>1 year); 13 had stage I or II 

disease with bone metastases before therapy other than surgery; and 19 had had stage IV 

disease with MYCN amplification for less than one year. The conclusion was that treatment 

with MAT and ABMT improved EFS among children with HR-NB and, significantly, that 

CRA administered successively to chemotherapy or transplantation had a favourable outcome 

for patients without progressive disease.152  

However, a recent phase 2 trial of ATRA, administered orally at a dose of 90 mg/m2/day in 

three divided doses for 3 consecutive days per week—and IFN-α2a administered 

subcutaneously daily at a dose of 3 × 106 U/m2/day for 5 consecutive days per week, in 4 week 

cycles—was inactive in children with relapsed or refractory NB and Wilms tumour.378 By 

comparison, assessment of the long-term outcome of HR-NB patients enrolled on the CCG-
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3891 study in which patients were randomly assigned to undergo ABMT or to receive 

chemotherapy and subsequent treatment with CRA indicated that MAT and ABMT, 

significantly improved 5-year EFS than non-MAT chemotherapy and neither MAT with 

ABMT nor CRA given after consolidation therapy significantly improved OS.379 The 

aforementioned differences may be ascribed to pharmacogenetic variation on CRA disposition 

in patients with HR-NB and emphasize the need for personalized therapies.357,380  

In a retrospective cohort design to verify if intensive chemoradiotherapy with purged ABMT 

and/or CRA improved outcome for HR-NB patients with no metastatic distant sites, it was 

deduced that patients with high-risk INSS Stage 3 NB have an overall poor prognosis despite 

aggressive chemoradiotherapy.358 Clearly, further research into the efficacies and DLTs of the 

retinoids is needed to address current controversies surrounding their beneficial status in 

patients with HR-NB.295 

A13.2.2 mTOR Inhibitors 

The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase and 

downstream effector of the PI3K/AKT pathway and master regulator that orchestrates, via a 

network of regulatory loops, various signals from nutrient and energy sensors with cell growth 

and proliferation, survival and motility to ensure that they are activated exclusively during 

favourable conditions within different organs (Figure 1.12).381  

The mTOR pathway can be activated by various exogenous stimuli such as growth factors, 

nutrients, energy and stress signals, and essential signalling pathways (e.g., PI3K, MAPK and 

AMPK) in order to mediate temporal control of physiological processes.382 Deregulation of the 

mTOR pathway, including PI3K amplification or mutation, PTEN loss of function, AKT gain 

of function, and S6K1, 4EBP1 and eIF4E overexpression, has been correlated with 

oncogenesis, tumour progression and metastases of many cancers, including NB.381,383-387  
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mTOR signaling pathway. One branch of mTORC1 activation is mediated by the class I phosphoinositide-3-
kinase (PI3K), Akt (also known as Pkb) and the tuberous sclerosis complex (TSC). TSC is formed by TSC1 and 
TSC2, and inhibits a direct activator of mTORC1, the GTPase Ras-homolog enriched in brain (Rheb) by 
hydrolyzing its GTP into GDP. TSC2 is activated by phosphorylation by AMP-activated protein kinase (AMPK), 
which is directly activated by a high AMP versus ATP ratio. AMPK also directly phosphorylates and inactivates 
Raptor, so it inhibits mTORC1 by TSCdependent and TSC-independent manners. The activity of AMPK is 
regulated by phosphorylation by the tumour suppressor LKB1. This protein, like TSC1/2, was found mutated in 
the germline of patients with different hamartomatous syndromes. Akt is a serine/threonine kinase and an 
important player in regulating mTORC1 activity. Akt positively regulates mTORC1 by acting at different levels. 
First, Akt inactivates TSC1/2 by phosphorylating TSC2.  

Second, Akt inhibits PRAS40, negative regulator of mTORC1 that counteracts Rheb function. Akt is activated 
by PI3K, which responds to a variety of growth factors. When activated by insulin or insulin-like growth factors 
(IGFs), as well as other growth factors, class I PI3K catalyzes the formation of the lipidic second messenger 
phosphoinositide-3,4,5-tri-phosphate (PIP3) from the bi-phosphate form PIP2. PIP3 triggers the relocation of 
Akt to the inner surface of the plasma membrane, where it is activated by phosphoinositide-dependent kinase 1 
(PDK1) and transduces the signal as described above.  

Opposing Akt function is the tumour suppressor phosphatase and tensin homolog deleted on chromosome ten 
(PTEN), a lipid phosphatase that converts PIP3 to PIP2, thus shutting off signaling from PI3K. PTEN deficiency 
causes a series of hamartomatous syndromes collectively classified as PTEN hamartoma tumour syndrome 
(reviewed in. Amino acids activate mTORC1 by an independent route mediated by the Rag family of proteins. 
The activation of mTORC2 is not well understood, but this complex directly activates Akt (and Akt-related 
kinases) by phosphorylation. Akt, in addition, regulates many proteins involved in cell survival and cell-cycle 
progression. 

Source:381 Efeyan A, Sabatini DM. mTOR and cancer: Many loops in one pathway. Current Opinion in Cell 
Biology 2010;22(2):169-176, with permission from Current Opinion in Cell Biology, Copyright Clearance 
Center’s RightsLink service, Elsevier) See Appendix 9 for copyright clearance.  

Figure 1.13: Overview of the mTOR signalling pathway in cancer  
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In a benchmark study, AKT and mTOR were found to be overexpressed in primary NB tissue 

samples, but in non-malignant adrenal medullas this pattern could not be demonstrated. mTOR 

inhibitors (rapamycin and CCI-779) arrested the growth of NB cells in culture, particularly cell 

lines with a high MYCN gene expression signature. In vivo, mTOR inhibitors increased 

apoptosis, decreased cell proliferation and blocked angiogenesis in established NB tumours. 

Significantly also, mTOR inhibitors induced downregulation of VEGF-A secretion, cyclin D1 

and MYCN protein expression in vitro and in vivo. Even though mTOR inhibitors may inhibit 

proliferation of human NB cells without suppression of the MYCN oncoprotein,388 the above 

findings underscore the therapeutic efficacy of mTOR inhibitors in aggressive MYCN 

amplified NBs and corroborate similar observations in NB tumours with 1p36 aberrations, 

advanced stage disease at diagnosis and unfavourable histology in which AKT and MYCN are 

co-amplified.389,390 The mTOR pathway and VEGF signalling are implicated in the regulation 

of clonal proliferation, angiogenesis and metastasis. Collateral inhibition, either in a concurrent 

or successive design, of mTOR and VEGF signalling exemplifies an interesting therapeutic 

rationale to overcome MDR and optimize efficacious tumour ablation and also to identify 

prognostic biomarkers for neuroendocrine neoplasms (NENs).391 

Novel drugs targeting the PI3K/AKT/mTOR cascade in various malignancies, including NB, 

are currently being refined.384-387,392-399 The mTOR inhibitor rapamycin (also termed sirolimus) 

and its analogues (rapologs), including temsirolimus, everolimus, and ridaforolimus) form a 

complex with the cytosolic protein FK-binding protein 12 (FKBP12) which attaches directly 

to mTOR, impeding its function and activating downstream effectors, such as cyclin D1, 

p21,and HIF1a/b.197,397 Of concern, however, is the ability of rapamycin to induce the anti-

apoptotic protein, survivin which, in NB, may favour clonal proliferation of resistant cells.203 

Rapamycin and some rapalogs have been approved for clinical trials because of their 

propensity to inhibit NB cell proliferation.388,389 Evaluation of the efficacy of temsirolimus in 

a phase II trial of children with relapsed or refractory high-grade NB did not produce 
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encouraging results despite the observation that disease stabilization occurred which makes it 

a candidate for combination therapy.197,400 Similar clinical outcomes have been reported for 

everolimus in refractory solid NB in paediatric patients.400-402 Preclinical evaluation of mTOR 

inhibitors that mimic ATP-competitive inhibitors (e.g.,  INK128/MLN0128, AZD2014, and 

OSI027) have shown limited potential as inhibitors of NB growth,403 but compounds that target 

the feedback loops in mTOR/AKT signalling (e.g., MK-2206, an AKT inhibitor) show promise 

in suppressing tumour growth and increasing survival in mice bearing xenograft NB 

tumours.404 Recent efforts focusing on the development and validation of pharmacodynamic 

biomarkers to evaluate both the mechanism of action of and proof of concept for drugs that 

block MYCN and PI3K/AKT/mTOR pathways in children with NB may prove useful in future 

clinical trials.395,399  

A13.2.3 Aurora A Kinase and MDM2 as MYCN Targets 

Aurora A kinase (AURKA, a serine/threonine kinase), along with p53 and MDM2, are 

downstream effectors of MYCN that regulate cell cycle progression (particularly during the G2 

to M phase transition), the DNA damage response, differentiation and apoptosis in NB405,406 

AURKA has been implicated in centrosome maturation, spindle assembly and orientation, 

meiotic maturation and cytokinesis. Targeted inhibition of AURKA leads to deregulation of 

autophosphorylation and p53 phosphorylation, monopolar spindles and G2-M arrest. 

Overexpression of AURKA is widespread in solid tumours and associated with resistance to 

apoptosis, making it a significant focus for the development of anticancer agents, some of 

which are currently in early-phase NB clinical trials. 197,407,408  

For example, MLN8237 (alisertib), a reversible AURKA inhibitor, is being investigated in 

phase I clinical trials by the COG for patients who have experienced relapse. In vitro and in 

vivo effects of MLN8237 include apoptosis induction, upregulation of p53 and the tumour 

suppressor genes p21 and p27.37,198,409,410 MLN8054 inhibits N-Myc-dependent transcription, 

correlating with tumour regression and prolonged survival in a mouse model of MYCN-driven 
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NB.411 AURKA also increases VEGF secretion and NB angiogenesis.412 Thus, AURKA is a 

negative prognostic factor in human NB.413 Dose-escalation and combination therapy studies 

are currently in progress.1,11 In a phase 1 trial, alisertib, an oral AURKA inhibitor, in 

combination with irinotecan and temozolomide, showed promising response and progression-

free survival (PFS) rates in patients with advanced NB.414 Alisertib and a novel pan-AURKA 

inhibitor, BPR1K653, show potential for the management of patients with MDR1 (ABCB1)-

related drug resistance after prolonged chemotherapeutic treatments.415-417  

A13.2.4 Tyrosine Receptor Kinase Neurotrophin Receptor Inhibitors 

The tyrosine receptor kinase (Trk) neurotrophin receptors (also referred to as neurotrophic 

tyrosine receptor kinases)—TrkA/NTRK1, TrkB/ NTRK2 and TrkC/NTRK3 (3 isoforms) are 

crucial modulators of normal central and peripheral nervous system developmental outcomes 

(e.g., neuronal differentiation and survival) and NB pathogenesis. Their respective ligands are 

nerve growth factor (NGF), brain-derived neurotropic factor (BDNF) and neurotrophin-3 

(NT3) growth factor.12,247,418-421 Overexpression of TrkA correlates with favourable prognosis 

and suppressed MYCN amplification,422,423 whereas upregulation of TrkB and its ligand, 

BDNF, is associated with aggressive NB—invasion, metastasis, angiogenesis and drug 

resistance—and unfavourable clinical outcomes.424  

Tumours isolated from patients with low-stage and 4S disease frequently express elevated 

levels of TrkA.12 It is therefore not surprising that the induction of apoptosis and tumour 

regression in NBs by targeting neurotrophin receptor pathways such as TrkA and p75NTR—a 

member of the tumour necrosis factor (TNF) receptor superfamily—is considered a promising 

therapeutic paradigm. This is supported by observations that TrkA-expressing tumour cells in 

primary culture will survive and even differentiate in the presence of NGF, but undergo 

apoptosis in its absence.425-427 Noteworthy also, lestaurtinib (CEP-701), has shown proof-of-

principle as a small molecule inhibitor of Trk neurotrophin receptors (TrkA, TrkB and TrkC) 

against TrkB-expressing NB xenografts,428-431 and in a phase I trial in children with recurrent 
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and/or refractory neuroblastoma.432 Several second-generation Trk inhibitors are currently in 

phase I clinical trials or in preclinical development.433 Interestingly, oncogenic TRK gene 

fusions are found across multiple tumour types, and those involving NTRK1, NTRK2 and 

NTRK3, and in-frame deletions or splice variants of NTRK1 signify newer rational drug 

targets in cancer and are likely to be actionable oncogenes based on preclinical data.434 

A13.2.5 Targeted Immunotherapy and Disialoganglioside 

Immunotherapy of NB is gaining momentum as a treatment elective to enhance the survival of 

patients suffering from this challenging paediatric cancer.435-438 Targeted immunotherapy of 

MDR microscopic NB offers an approach which exploits tumour selectivity and minimizes 

cross-resistance or overlapping side effects (toxicities) with chemotherapy.62,436 

Disialoganglioside, GD2, is expressed on the surface of tumours of neuroectodermal origin, 

including NB.296,439 Anti-GD2 monoclonal antibodies (mAbs) ablate tumour cells through both 

complement- and cell-mediated lysis (antibody mediated cell cytotoxicity or ADCC), and are 

therefore exceptional candidates for targeted immunotherapy since they have specificity, high 

affinity and are relatively nontoxic.296  

A number of anti-GD2 mAbs ± GM-CSF ± CRA have been tested in clinical trials and 

favourable therapeutic outcomes were reported.11,151,440,441 However, a recent trial inferred a 

lack of survival advantage with ASCT in HR-NB consolidated by anti-G D2 immunotherapy 

and CRA, adding to the complexity of developing targeted immunotherapies for NB.306 

Targeting NB immune escape pathways, intrinsic NB cell defects such as impaired expression 

of the human leukocyte antigen (HLA) class I related antigen processing machinery and 

functional alterations of the tumour microenvironment (TM) induced by NB cell-derived 

immunosuppressive molecules such as human major histocompatibility complex (MHC) class 

I chain-related gene A (MICA) and (HLA-G are critical considerations of such therapeutic 

interventions.442 

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 1 | A13.2.6 Angiogenesis and VEGF Signalling Inhibitors  

75 

A13.2.6 Angiogenesis and VEGF Signalling Inhibitors 

Angiogenesis or neovascularization—one of the hallmarks of cancer—encompasses the 

sprouting of new blood vessels in tumours that enable them to grow, survive and metastasize 

before their metabolic demands are restricted due to diffusion limits of oxygen and nutrients 

in the tumour microenvironment.145-148,443 Vascular endothelial cell growth factor (VEGF) is 

the most potent activator of angiogenesis and comprises six members (VEGF-A, VEGF-B, 

VEGF-C, VEGF-D, VEGF-E and placental growth factor) that bind differentially with three 

cell surface RTKs, the VEGFRs, or a second class of non-signalling co-receptors, the 

neuropilins.443 In NB, elevated expression of pro-angiogenic factors correlates with advanced 

stage disease while low vascular tumour density is associated with non-metastatic localized 

disease and favourable prognosis.62,444,445 Accordingly, inhibition of angiogenesis has long 

been regarded as a promising line of attack in the management HR-NB.446-450 Current anti-

vascular NB therapies combining multimodal antiangiogenic, anti-vasculogenic mimicry and 

anti-lymphangiogenic strategies may yield increased efficacy.278,391,446,448,449,451-462  

A13.2.7 The PI-3 Kinase-Akt-MDM2-Survivin Signalling Axis in High-
Risk Neuroblastoma 

The phosphatidylinositol-3 (PI-3) kinase-Akt pathway is a central convergent molecular 

conduit, and PI-3 kinase is a multiplex signalling hub downstream of various growth factor 

receptors, including TrkB, VEGFR, PDGFR and EGFR.463 Activation of the PI3K/Akt 

pathway in NB correlates with poor patient prognosis, and the forkhead transcription factor, 

FOXO3a, is a key target of the PI3K/AKT pathway in NB. FOXO3a expression was shown to 

be upregulated in low-stage NB and normal embryonal neuroblasts, but ablated in late-stage 

NB. Thus, inactivation of FOXO3a by AKT is essential for neuroblastoma cell survival.464 The 

mammalian target of rapamycin (mTOR) protein (section A13.2.2 on mTOR inhibitors) is 

currently being regarded as a potential therapeutic target in NB patients.203,391,463,465-467 Well-

defined adjustments are associated with mitochondrial proteins, e.g., VDAC1/Porin protein, 

an integral part of the mitochondrial permeability transition pore complex, during loss of 
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mitochondrial membrane potential with subsequent cytochrome c release and caspase-3 

activation. VDAC1 is negatively regulated by the PI3K/Akt pathway via GSK3beta and 

inhibition of GSK3beta is activated when Akt is blocked.468 Similarly, a recent study showed 

that guanosine offers protection against mitochondrial oxidative stress by a signalling pathway 

that implicates PI3K/Akt/GSK-3beta proteins and induction of the antioxidant enzyme, haem 

oxygenase-1.469 Also, the PI3K/Akt pathway is obligatory for RA-induced NB cell 

differentiation, and may be exploited as a novel therapeutic strategy against poorly 

differentiated NB.394,395,467,470 

A13.2.8 Gastrin-Releasing Peptide Receptors 

Gastrin-releasing peptide (GRP) receptors (GRPR), a member of G-protein coupled receptor 

family, are overexpressed in undifferentiated NB.471,472 The decreased expression of the tumour 

suppressor protein PTEN in aggressive undifferentiated NB is associated with an increase in 

GRP binding capacity, as a result of GRP-R overexpression.473-475 It has been suggested that 

inhibition of the PTEN tumour suppressor gene may be an important regulatory mechanism 

involved in GRP-induced cell proliferation in NB which offers promising scenarios for the use 

of radiolabelled and cytotoxic GRP analogues and antagonists for cancer diagnosis and 

therapy.476-479 GRPR transactivates the epidermal growth factor receptor (EGFR) and may thus 

modulate therapeutic responses to EGFR inhibitors, e.g., gefitinib.480 GRP upregulates 

proangiogenic IL-8 expression in an Ets1-dependent manner, implying a key role during GRP-

induced NB angiogenesis and metastasis,481,482 and its promise as a NB biomarker and gene 

silencing therapeutic target.483-486 

A13.2.9 Anaplastic Lymphoma Kinase 

Germline ALK activating mutations have been implicated in the majority of hereditary NB and 

somatic ALK activating mutations have also frequently been observed in sporadic cases of 

advanced NB. Accordingly, gain of function mutations in the gene encoding the anaplastic 

lymphoma kinase (ALK) is currently deemed the most frequent druggable mutations identified 
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in NB. Preclinical studies warrant the notion of an oncogene addiction of NB cells to mutated 

ALK and corroborate that ALK inhibitory therapy effectively blocks tumour models. Recently, 

a paediatric phase I trial for the first approved ALK inhibitor, crizotinib, illustrated significant 

antitumoural efficacy in NB patients. A successive international phase I study with the second 

generation ALK inhibitor, LDK-378, has been launched that makes ALK inhibitory therapy 

accessible to paediatric patients.487  

However, crizotinib is not as effective in blocking the activity of ALK when activating 

mutations are present within its kinase domain, as with the F1174L mutation. A new ALK 

inhibitor, AZD3463, effectively suppresses the proliferation of NB cell lines with wild type 

ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-

mediated PI3K/AKT/mTOR pathway and induces apoptosis and autophagy. Moreover, 

AZD3463 synergistically enhances the cytotoxicity of doxorubicin on NB cells and shows 

significant therapeutic efficacy on the growth of NB tumours with WT and F1174L activating 

mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is 

a promising therapeutic agent in the treatment of NB.488   

Interestingly, the ALK/ROS1 inhibitor, PF-06463922, ablates primary resistance to crizotinib 

in ALK-driven NB. PF-06463922 has high potency across ALK variants and inhibits ALK 

more effectively than crizotinib in vitro. Essentially, PF-06463922 causes complete tumour 

regression in both crizotinib-resistant and crizotinib-sensitive xenograft mouse models of NB, 

as well as in patient-derived xenografts harbouring the crizotinib-resistant F1174L or F1245C 

mutations. Hence, PF-06463922 shows potential to reverse crizotinib resistance and exert 

significant activity as a single targeted agent against F1174L and F1245C ALK-mutated 

xenograft tumours, while also inducing responses in an R1275Q xenograft model. These 

results provide the reasoning to advance PF-06463922 into clinical trials for treatment of 

patients with ALK-mutated NB.489,490  
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A13.2.10 Future Therapeutic Perspective 

In spite of the knowledge provided in the preceding sections, NB remains a therapeutic enigma. 

As we are driven to improve outcomes and survival, the ideal therapy also remains elusive. 

However, there are many fronts on which to attack, and it seems unquestionable that the cure 

will require a multimodal approach. Part of the solution is to effectively eradicate MRD, as 

this appears to put patients at highest risk for relapse and progression. Selected clinical trials 

on current interventions in NB have recently been collated, but most are recruiting and results 

may not be available yet (www.clinicaltrials.gov).  

SECTION B: GLYCOBIOLOGY AND GLYCOMICS OF NEUROBLASTOMA 

B1. Orientation to Glycans 

Glycans are defined by the International Union of Pure and Applied Chemistry (IUPAC, 

https://iupac.org/ and http://www.chem.qmul.ac.uk/iupac/) as compounds that consist of 

monosaccharides or oligosaccharides linked by N- or O glycosidic bonds). Glycans and 

complementary glycan-binding proteins (GBPs) are indispensable metabolic, structural and 

modulatory components of various cell functions, including cell-cell communication, cell-

matrix interactions, immunity, cancer pathogenesis and progression.491 The term glycan may 

also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, 

glycolipid, or a proteoglycan (Figure 1.14).  

The human glycome stems from 9 building blocks that are merged by enzymes (writers: 

glycosyltransferases, glycosidases and glycan modifying enzymes) with precise and regulated 

biosynthetic functions into a wide diversity of glycan patterns (Figure 1.15) that are 

functionally read by various human GBPs (readers).492-495 The importance of glycan 

recognition, for example, in infection and immunity, and advances in our understanding and 

technologies in the field of glycobiology,496,497 have already led to the design and use of glycan 

mimetic anti-infective and anti-inflammatory drugs.492,498-501  
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Major human glycans. (A) The 9 sugars that comprise most of the human glycome, with their broadly accepted 
symbol representations.502 (B) Major classes of human glycans. Linkage details (hydroxyl attachment sites and 
anomeric configurations at each glycosidic bond) that are keys to structural recognition are omitted here for 
simplicity. Representative asparagine (N-linked) and serine or threonine (O-linked) glycoprotein structures, a 
glycosphingolipid (ceramide-linked), a proteoglycan (most frequently O-linked), and hyaluronic acid (HA) 
(unlinked) are shown. (C) A schematic representation of glycans on a cell surface. Notable features important 
for understanding glycan recognition include varied glycan branching patterns, variations in terminal glycan 
structures, and the tendency of glycans to form distinctive, lateral glycan patches. 

Source:492 Schnaar RL. Glycobiology simplified: Diverse roles of glycan recognition in inflammation. Journal 
of Leukocyte Biology 2016;99(6):825-838, with permission from Journal of Leukocyte Biology. See Appendix 10 
for copyright clearance.  

Figure 1.14: Major human glycans  

Glycans are significant regulators of biological homeostasis,503 playing pivotal roles in protein 

folding, trafficking and stability,504,505 and in vertebrate development, morphogenesis and 

organogenesis,506-508 and cellular senescence and human aging.509 Inside cells, protein 

glycosylation, conceivably in unison with protein phosphorylation, regulates key signal 

transduction cascades,503 intercellular communication,510 pathogen recognition and 

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 1 | B1. Orientation to Glycans  

80 

immunological differentiation of self from non-self.492,511,512 Moreover, the glycosylation state 

of both cell-surface proteins and lipids are altered in response to external stimuli and internal 

cellular dysfunction.513 Thus, the dynamics and profiles of glycoproteins and glycolipids 

reflect the cell’s physiological and pathological (disease) status.514-518  

 

Theme and variation in the human glycome. Glycan recognition often involves variations of terminal glycan 
structures that are attached to core structures (linkage details are omitted for simplicity). The upper panel provides 
examples of the invariant, N-linked glycoprotein pentasaccharide core, one of several serine/ threonine-linked 
glycoprotein cores, and a common glycosphingolipid (ceramide-linked) core. The lower panel provides a 
sampling of terminal structures. A representation of how these might be grouped on a cell surface is shown in 
Figure 1.14-C. 

Source:492 Schnaar RL. Glycobiology simplified: Diverse roles of glycan recognition in inflammation. Journal 
of Leukocyte Biology 2016;99(6):825-838, with permission from Journal of Leukocyte Biology. See Appendix 10 
for copyright clearance.  

Figure 1.15: Theme and variation in the human glycome   
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B2. Protein Glycosylation in Neuroblastoma 

B2.1 General Principles of Glycosylation  

Cell-surface and soluble proteins of the secretory pathway are post-translationally glycosylated 

in the ER.519 Generally, glycans on membranes, extra cellular matrix (ECM) and secreted 

proteins are found covalently attached to a protein core at asparagine Asn (N-glycosylation) or 

at serine/threonine residues (O-glycosylation) (Figure 1.14).520,521 Glycosaminoglycans 

(GAGs) are O-linked glycans initiated by a highly conserved tetrasaccharide (GlcA-β1,3-Gal-

β1,3-Gal-β1,4 Xyl-β) and classified by the configuration of their disaccharide repeats that 

consist of either sulfated or non-sulfated monosaccharides.499,500,522 Typical GAGs are 

chondroitin sulfate, keratan sulfate, dermatan sulfate and heparan sulfate.  

A glycoprotein with one or more GAG chains extending from its protein core is called a 

proteoglycan which exists as secreted, transmembrane or glycosylphosphatidiylinositol (GPI)-

anchored units.523,524 Hyaluronic acid, a GAG-like polysaccharide of the ECM, is the only 

glycan that is not linked to protein or lipid.525,526 N-linked glycosylation has been correlated 

with several physiological and pathological processes such as protein folding and 

conformation, oligomerization, cell-cell interactions, targeting proteins to sub-cellular or 

extracellular sites (http://themedicalbiochemistrypage.org/glycoproteins.php#nglycans for a 

quick glance at glycans, glycoproteins and glycosylation). 

B2.2 Gangliosides 

Most tumour cells, including those of neuroectodermal cell origin, have upregulated levels of 

gangliosides.527,528 Gangliosides also accumulate in activated glia in the developing brain,529 

and may have neuroprotective roles via activation of microglia and astrocytes in response to 

acute ethanol concentrations in the neonatal brain. However, chronic ethanol exposure can 

induce an inappropriate proinflammatory glial reaction and neurotoxicity.530 Gangliosides are 

glycosphingolipids which comprise of a carbohydrate chain bearing one or several sialic acid 
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(N-acetyl-neuraminic acid) residues and a lipid portion (ceramide backbone), which attaches 

(anchors) the ganglioside molecule to the cell membrane.531,532 Figure 1.16 illustrates the 

consecutive glycosylation steps in ganglioside biosynthesis which involves two primary 

pathways indicated as “a” (GM2, GM1a, and GD1a) and “b” (GD3, GD2, GD1b, GT1b and 

GQ1b), from a common precursor (GM3). GM1a/GD1b synthase (UDP-Gal:betaGlcNAc-

beta-1,3-galactosyltransferase) is the key enzyme in ganglioside biosynthesis and has been 

implicated in human NB.533  

Even though gangliosides are predominantly expressed on tumour cell surfaces, they may be 

shed into the tumour microenvironment and ultimately appear in the patient’s plasma to induce 

the production of anti-glycan antibodies.527,534-536 In NB, ganglioside signatures or arrays may 

influence tumour behaviour and clinical outcome.527,537 For instance, elevated levels of 

gangliosides of the “b” pathway (GD3, GD2, GD1b, GT1b, GQ1b) are prevalent in infant NB 

in contrast to NB in older children.538 These gangliosides correlate with an aggressive NB 

phenotype and reduced survival in NB patients.539,540  

Understandably, complex gangliosides have stimulated interest as diagnostic biomarkers to 

predict clinical outcome, to stratify NB patients for targeted anticancer therapy and to monitor 

efficacy of treatment.541 Thus far, retinoic acid has proved useful for maintenance therapy of 

disseminated NB as it induces a remarkable shift from synthesis of simple gangliosides toward 

predominant expression of structurally complex “a” and “b” pathway ganglioside 

molecules.527,542  

Targeted immunotherapy of NB with antibodies directed against disialoganglioside (GD2) has 

been discussed in detail in section A13.2.5. Various other glycans such as polysialicacid (PSA), 

galectin-1 (Gal-1), and other related processes such as N- and O-protein glycosylation, 

glycosyltransferases and glycosidases, have been amply documented for their respective 

involvement in NB glycopathobiology and, therefore, share parallel platforms and themes with 
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the gangliosides.491,492,515,516,527,529,543-546 For the sake of objectivity and some degree of 

inclusiveness, some of these highlights are encapsulated in Figures 1.17 and 1.18. 

 

Each ganglioside is structurally more complex than its precursor molecule, and the stepwise addition of 
monosaccharide or sialic acid (N-acetyl-neuraminic acid) residues in the Golgi apparatus is catalyzed by the same 
specific membrane-bound glycosyltransferases in both pathways.547 Gangliosides can also be grouped into 
structurally simple (SG) and complex (CG) molecules. The enzyme GM1a/GD1b synthase (UDP-
Gal:betaGlcNAc-beta-1,3-galactosyltransferase) converts its substrates, the simple gangliosides, GM2 and GD2, 
into the corresponding initial complex ganglioside products, GM1a and GD1b. 

Source:527 Berois N, Osinaga E. Glycobiology of neuroblastoma: Impact on tumour behavior, prognosis, and 
therapeutic strategies. Frontiers in Oncology 2014;4:114, with permission from Frontiers in Oncology. See 
Appendix 11 for copyright clearance.  

Figure 1.16: Schematic representation of the major ganglioside biosynthesis pathways
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(a) β1,4-N-acetylgalactosaminyltransferase 3 (B4GALNT3) and β1,4-galactosyltransferase 3 (B4GALT3) exhibit 
differential effects on malignant phenotypes by modification of β1 integrin in NB cells; (b) N-
acetylgalactosaminyltransferase 2 (GALNT2) modifies O-glycans on IGF-1R, thereby suppressing IGF-1-induced 
IGF-1R dimerization and downstream signaling; (c) N-acetylglucosaminyltransferase V (GnT-V) modulates the 
sensitivity of NB to apoptosis; (d) Gal-1 promotes attachment of NB cells to the extracellular matrix (ECM) and 
endothelial cells through binding to CD44. Besides, Gal-1 may dampen the function of T cells and dendritic cells 
(DC) as well. Glycosaminoglycans present as (e) free polysaccharides (hyaluronic acid), a major counterreceptor 
for (f) CD44, or (g) as part of proteoglycans (heparan sulfate and chondroitin sulfate). GalNAc N-
acetylgalactosamine, GlcNAc N-acetylglucosamine, Gal galactose, NeuAc, N-acetylneuraminic acid, Fuc fucose, 
Glc glucose, Man mannose, Xyl xylose, GlcA glucuronic acid, IdoA iduronic acid. 

Source:494 Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A. Protein glycosylation in cancers and its 
potential therapeutic applications in neuroblastoma. Journal of Hematology & Oncology 2016;9(1):100.4, with 
permission from BioMed Central in terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in 
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link tothe 
Creative Commons license, and indicate if changes were made. 

Figure 1.17: Altered glycans and related pathophysiological events involved in NB progression 

B2.3 Intercellular Adhesion Molecule-2 

Cell adhesion molecules (CAMs, e.g., selectins, integrins, cadherins and immunoglobulin-like 

CAMs) comprise four ubiquitously occurring families of glycosylated, membrane-bound 

proteins involved in multiple cellular processes, including cell-cell communication, cell 

motility, inside-out and outside-in signalling, tumourigenesis, angiogenesis and metastasis.548-

551 In the context of NB, it was found that intercellular adhesion molecule-2 (ICAM-2, a 55-60 
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kDa transmembrane glycoprotein), also known as CD102 (Cluster of Differentiation 102), 

which has six N-linked glycosylation sites at Asn47, Asn82, Asn105, Asn53, Asn178 and 

Asn87, suppressed tumour cell motility and dissemination, but not tumourigenic potential, in 

vivo in a murine model of metastatic NB.527,552,553 N-glycosylation of ICAM-2 is critical for 

these effects,553 and ICAM-2 confers a non-metastatic phenotype in NB cells by interaction 

with α-actinin.554 

 

Treatment with retinoic acid markedly enhances the activity of GD1b/GM1a synthase, resulting in increased 
expression of complex gangliosides, associated with less-aggressive tumours. NB gangliosides promote dendritic 
cells (DC) to develop with decreased costimulatory signals and IL-12 production. These DC promote 
differentiation of human T-helper type 0 (Th0) cells toward regulatory T-cells (Treg). Galectin-1 (Gal-1) secreted 
by NB also contributes to the immunosuppressive tumour microenvironment, limiting T-cell survival and 
impairing DC function. Both, gangliosides and Gal-1 contribute to tumour angiogenesis. The presence of 
polysialic acid (PSA) on neural cell-adhesion molecule (NCAM) reduces NCAM-mediated adhesion processes 
promoting NB cell migration. The fact that sialyltransferase (STX) is the dominant polysialyltransferase for PSA 
biosynthesis in NB suggests that this enzyme could be a good therapeutic target. Disialoganglioside (GD2) is a 
relevant antigen for NB immunotherapy. Anti-tumour activity of anti-GD2 antibodies is mediated by antibody-
dependent cell-mediated cytotoxicity (ADCC) in the presence of human natural killer (NK) cells and 
granulocytes, as well as by complement-mediated cytotoxicity (CMC). Anti-GD2 chimeric antigen receptor T-
cells (CAR-T-cells) activity could induce NB tumour regression. 

Source:527 Berois N, Osinaga E. Glycobiology of neuroblastoma: Impact on tumour behavior, prognosis, and 
therapeutic strategies. Frontiers in Oncology 2014;4:114, with permission from Frontiers in Oncology. See 
Appendix 11 for copyright clearance.  

Figure 1.18: Neuroblastoma glycobiology impact on tumour growth and antitumour therapy 
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B2.4 Anaplastic Lymphoma Kinase 

The role of ALK as a predisposing gene in NB has been discussed in detail in section A11.4.3. 

ALK has 16 highly conserved putative sites of N-linked glycosylation in its extracellular 

domain.527 Previous studies have observed that perturbation of N-linked glycosylation ablates 

ALK phosphorylation and blocks downstream pro-survival signalling and cell viability in NB 

cell lines selected for mutated or amplified ALK,555 raising hopes that inhibition of this post-

translational modification could be applied usefully in NB targeted therapy. 

B2.5 Cell-Surface Mucin-Type O-Glycans 

Cell-surface mucins are glycoproteins with large branches of O-linked oligosaccharides. The 

most abundant mucin-type glycoproteins typically contain an α-N-acetylgalactosamine residue 

(GalNAc) covalently linked to the alpha hydroxyl group of Ser/Thr residues.494,517 Such 

linkages are catalyzed by UDP-GalNAc:polypeptide-N-acetyl-galactosaminyl-transferases 

(GalNAc-T). GalNAc-T is a multigene family of 20 or more isoenzymes 

(http://www.cazy.org).556 Several carcinomas express truncated O-glycosylated tumour-

associated glycan antigens (terminal structures arising from sialylation and fucosylation) such 

as (Tn, sTn, T, and sLea/x and Thomsen–Friedenreich antigen (TF) which correlate with 

adverse outcome and poor prognosis in cancer patients, thus making them candidate 

therapeutic targets.494,514,527,557-559  

In the case of NB, recent evidence suggests that the expression of enzymes encoded by the 

GALNT [UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 

(GALNAC-T)] gene family which catalyze the first step in O-glycosylation, correlates with 

improved overall survival in low- and high-risk groups and improved clinical outcome (overall 

and disease-free survival) in low-risk NB patients. Hence, GALNT9 expression may be a 

valuable prognostic marker for personalized therapy.560 Likewise, elevated expression of β1,3-

N-acetylglucosaminyltransferase-3 (B3GNT3), the enzyme responsible for adding GlcNAc to 

core 1 (T antigen), predicted a favourable prognosis in NB patients distinct from other 
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prognostic markers. B3GNT3 overexpression also interfered with T antigen production and 

malignant signatures such as migration and invasion of SK-N-SH cells, while B3GNT3 

knockdown enhanced these phenotypes of SK-N-SH cells. Additionally, B3GNT3 expression 

abolished phosphorylation of focal adhesion kinase (FAK), Src, paxillin, Akt and ERK1⁄2 

(Figure 1.17). Thus, B3GNT3 as a modulator of mucin-type O-glycosylation and signalling in 

NB cells, may be a precise clinical predictor of NB behaviour and therapeutic outcome.561 

B2.6 Polysialic Acid 

Polysialic acid (PSA) exemplifies a distinctive post-translational modification of the neural 

cell adhesion molecule (NCAM).527,562 PSA assembly involves extended linear 

homopolymerization563 of 150-200 α2,8-linked sialic acids on N-glycans of the fifth 

immunoglobulin-like domain of NCAM. During normal development, PSA mediates cell 

migration and axonal growth, but in undifferentiated NB, it promotes NB cell proliferation and 

metastatic potential.564 PSA expression is upregulated in high-risk NB. In the Golgi apparatus, 

two homologous polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), catalyze the 

synthesis of variable amounts of PSA in tumours.565  

The ST8SiaII gene is expressed predominantly during embryonic development and thought to 

be silent in normal tissue, but is highly expressed in metastatic NB.566,567 ST8SiaIV is the major 

polysialyltransferase in the adult brain.527 STX has attracted considerable interest as a 

molecular marker and therapeutic target for metastatic NB568 as borne out by recent efforts 

aimed at reducing STX-mediated polysialylation of NCAM using cytidine monophosphate 

(CMP)569 and inhibiting migration of IMR-32 NB cells with the sialic acid precursor, 

ManNProp.567 

B2.7 Lectins (Glycan-Binding Proteins) 

Three main categories of lectins, namely, siglecs (sialic acid binding Ig-like lectins), galectins 

and selectins are GBPs that have a high specificity for sugar moieties. Endogenous lectins are 
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involved in processes such as cell-cell recognition, cell adhesion and motility, pathogen-host 

recognition, and tumour progression and metastasis. Many lectins are expressed on the surface 

of immune and endothelial cells or exist as ECM components and cytoplasmic adhesion 

molecules.570 Normal glycans of colonic epithelial cells, for example, suppress 

cyclooxygenase-2 expression by resident macrophages, thus maintaining immunological 

homeostasis in mucosal membranes, whereas loss of immunosuppressive glycans by impaired 

glycosylation during colonic carcinogenesis triggers inflammatory destruction of colonic  

mucosa.  

Siglec-7 and -9, expressed on resident macrophages in the colonic lamina propriae bind to 

ligands di-sLea and 6-sulfo sLex, but loss of this function occurs during malignant 

transformation coupled with a gain of expression of sLea and sLex which have no siglec ligand 

activity.571 Siglec-7 is expressed mainly on natural killer (NK) cells and suppresses NK cell-

mediated cytotoxicity towards target cells overexpressing α2,8-disialic acid-bearing 

ganglioside, GD3 (see Figure 1.16).572,573 Malignant melanoma and NB overexpress GD3, a 

cancer signature that may confer on these tumours the ability to evade immunosurveillance 

and elimination by NK cells. This concept may indeed be exploited in the targeted inhibition 

of siglec-7 and NB metastasis.573 

In recent years, galectin-1 (Gal-1) has gained prominence as a burgeoning target in NB 

translational therapeutics.494,527 Gal-1 is an adaptable regulator of multiplex signalling 

pathways such as tumour–host interaction,574 angiogenesis,575 promotion of 

immunosuppression by T cell apoptosis and impairment of dendritic cell (DC) function in 

numerous cancers, including NB.576-578 Aggressive NB tumours express high levels of 

neurotrophin receptor TrkB (section A13.2.4) and Gal-1 which are not only coupled with 

invasive behaviour and high metastatic potential, but also associated with therapy resistance 

and thus poor prognosis579. These Gal-1 phenotypic features of NB are meticulously being 

probed for their glycan-based therapeutic potential.494,527,546,578,580  
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Figure 1.19 summarizes how glycosylation/glycans, in particular, the selectins cast the 

hallmarks of the cancer phenotype.  

 

Tumour cell malignancy is defined by several key phenotypes: apoptosis (route 1), motility (routes 2 and 5), EGF 
receptor tyrosine kinase (route 3), angiogenesis (routes 4 and 6b), matriptase (matrix-destroying enzyme) activity 
(route 6a), self-adhesion (through cadherin) (route 7a), adhesion to ECM (through integrin), adhesion to ECs and 
platelets (through E- or P-selectin) (route 8), adhesion to blood cells and other parenchymatous cells (through 
siglecs) (route 9). Each phenotype is up- or down-regulated (1, 2) by different status of glycosylation. Phenotypes 
with 1 or 2 and green color inhibit tumour invasiveness. Those with 1 or 2 and pink color promote invasiveness. 
Glycosyl epitopes capable of binding to specific ligands (pink color without arrow) promote invasiveness. 
Ligands with yellow color have variable or unclear effect on invasiveness. Note that a given phenotype is 
produced by different glycosylations, and a given glycosylation produces different phenotypes. Phenotypic 
changes have cooperative effects on malig- nancy. For example, GM3 inhibits motility through <3/CD9 complex 
and also inhibits EGF receptor tyrosine kinase (routes 2 and 3). Reduction of GM3 inhibits apoptosis (route 1), 
but promotes motility and proliferation (negative route 2 and 3 effect). Essentially all glycosylation pathways 
catalyzed by multiple glycosyltransferases and their genes are well established (for review see 2). However, the 
mechanism by which each type of glycosylation affects the various phenotypes remains to be studied. Structures 
of GSLs are abbreviated according to International Union of Pure and Applied Chemistry–International Union 
of Biochemistry nomenclature recommendations. S, sialyl; MS, monosialyl; DS, disialyl. 

Source:581 Hakomori S. Glycosylation defining cancer malignancy: New wine in an old bottle. Proceedings of 
the National Academy of Sciences of the United States of America 2002;99(16):10231-10233, with permission 
from PNAS, http://www.pnas.org/site/aboutpnas/rightperm.xhtml, accessed 4 December 2016.  

Figure 1.19: Glycosylation defining malignancy—invasive and metastatic phenotype of tumours 

B2.8 Glycosyltransferases 

Tumour cells exhibit striking changes in cell-surface glycosylation as a consequence of 

dysregulated glycosyltransferases and glycosidases.582 Aberrant glycosylation is a cancer 

hallmark which correlates with differential expression of cell-surface and cytosolic glycans 
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and tumour-associated antigens.527,560 Glycosyltransferases have clinical relevance as cancer 

biomarkers for different tumours, markers for minimal residual disease (MRD) detection, risk 

group assignment and as prognostic predictors (https://pob.abcc.ncifcrf.gov/cgi-

bin/JK).494,527,566,583  

Elevated β1,6-N-acetylglucosaminyltransferase V (GnT-V) expression, for example, predicts 

a favourable prognosis and treatment outcome in NB.584 The expression, clinical relevance and 

functional significance of several glycosyltransferases, including β1,4-N-

acetylgalactosaminyltransferase (GD2synthase), sialyltransferase (STX or ST8SiaII), β1,3-N-

acetylglucosaminyltransferase 3 (B3GNT3), UDP-polypeptide GalNAc-transferase 13 

(GalNAc-T13, GALNT13), β1,4-galactosyl-transferase 3 (B4GALT3), and N-

acetylgalactosaminyltransferase 2 (GALNT2), in NB and other cancers, have been widely 

documented.494,527,561,585-587 

B2.9 ATP-Binding Cassette Multidrug Transporters 

Direct and coordinate transcriptional targets of MYCN (section A11.4.5) include several of the 

ATP-binding cassette (ABC) transporters—ABCB1 (P-glycoprotein/P-gp/MDR1), ABCG2 

(breast cancer resistance protein/BCRP) and ABCC1 (multidrug resistance protein 1/MRP1), 

ABCC3 (MRP3) and ABCC4/MRP4.311,328,588 The expression of these multidrug resistance 

(MDR) transporters are strongly prognostic of NB outcome (section A13.1.7) since they 

extrude a wide array of structurally- and functionally-related or -unrelated chemotherapeutic 

drugs.311,329,330  

Moreover, endogenous substrates of MDR transporters such as bioactive lipid mediators (e.g., 

prostaglandins and leukotrienes) may modify normal neural development by switching on 

processes (angiogenesis, cell signalling, inflammation, proliferation, and migration and 

invasion) that promote NB initiation and progression. The ABC transporters are thus promising 

candidates for therapeutic suppression in HR-NB, the rationale behind increasing drug 
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bioavailability (therapeutic efficacy) in refractory tumours which overexpress these glycans.326 

The glycosylation of ABCB1 (P-glycoprotein/P-gp) has been studied widely and will thus be 

considered as the representative drug transporter. Previous studies have shown that the most 

strongly upregulated genes associated with acquired drug resistance and an important cause of 

NB treatment failure was GALNT13, followed by ABCB1 (MDR1).527,589,590 GALNT13 encodes 

the UDP-GalNAc:polypeptide GalNAc-transferase-13 (GalNAc-T13), constitutively 

expressed in neural tissue.583,591 It has been demonstrated unequivocally that inhibition of 

protein glycosylation reverses the MDR phenotype of cancer cell lines.592 Likewise, inhibition 

of N-linked glycosylation impairs ALK phosphorylation and perturbs pro-survival signalling 

in NB cell lines.555 Glycosylation of P-gp corresponds to the en bloc transfer of the 

oligosaccharide portion of a lipid-linked oligosaccharide onto the acceptor asparagine of 

nascent proteins, typical for all N-glycans.513  

P-gp is synthesized as a 140–150 kDa precursor protein which is escorted by chaperones 

(calnexin and Hsp70) in the ER lumen to the Golgi. P-gp is modified post-translationally by 

N-glycosylation encompassing various sugar moieties—a process essential for its destination 

docking (dynamic integration into the membrane) and, ultimately, mature functioning (drug 

efflux pump activity), as inferred from experiments with cDNA encoding N-glycosylation-

deficient P-gp showing that the immature or non-glycosylated protein is trapped in subcellular 

compartments.593,594 Tunicamycin (one of the prototype inhibitors of glycosylation) suppresses 

P-gp activity thereby triggering the accumulation of cytostatic drugs in the cells, and thus 

providing evidence that inhibitors of glycosylation ablate the P-gp-mediated MDR 

phenotype.595,596 By contrast, some researchers assert that while N-glycosylation may stabilize 

correct folding of P-gp, guiding its proper subcellular localization and protecting it from 

luminal protease degradation, its precise role in P-gp function remains open-ended as 

tunicamycin treatment neither altered P-gp cellular localization to the plasma membrane nor 

the P-gp drug efflux activity.597-599   
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B2.10 Inhibitors of N-Linked Glycosylation 

The myriad types of N-linked oligosaccharides are formed by two sequential reactions: 1) the 

formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)-2-pyrophosphoryl-

dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the 

removal of glucose and mannose by membrane-bound glycosidases and the addition of 

GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to generate 

diverse complex oligosaccharide structures. Many glycoproteins contain more than one N-

linked oligosaccharide structure—one oligosaccharide may be of the high-mannose type 

whereas another may be a complex chain.  

Various methodologies are used to establish the role of specific structures in glycoprotein 

function, including inhibitors that hinder the different modification steps, resulting in the 

production of aberrant glycoproteins with altered carbohydrate structures. Several alkaloid-

mimetic/specific inhibitors of the glucosidases and mannosidases involved in glycoprotein 

processing have been characterized. These inhibitors trigger the assembly of glycoproteins 

with glucose-containing high mannose structures, or various high-mannose or hybrid chains, 

depending on the site of inhibition. These inhibitors have also been useful for studying the 

glycan processing pathways and for comparing processing enzymes from different 

organisms.544,593,600-603 N-linked glycosylation inhibitors are categorized according to their 

mechanism of action and target.593,604-606 They may prevent N-glycosylation through:  

1. Interference with the turnover of the process precursors; 

2. Inhibition of glycosyltransferases and glycosylases; 

3. Inhibition of transport of modified proteins between cellular compartments engaged in N-

glycosylation, endoplasmic reticulum, Golgi apparatus; and  

4. Functioning as substrate analogues.  

Table 1.13 summarizes some of the known inhibitor classes of N-glycosylation.  
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Table 1.13: Specific classes and examples of N-glycosylation inhibitors 

Inhibitor Class/Example(s) Structure Mode of Action References 

Metabolic Inhibitors 

6-Diazo-5-Oxo-L-Norleucine (DON) 

 

Affects turnover of glycosylation precursors, primarily at the stage of 
their formation. DON blocks glutamine:fructose-6-phosphate 
aminotransferase which catalyzes the synthesis of glucosamine from 
glutamine and fructose. Effects include disruption of mitochondrial 
internal membrane, permeabilization and dilation of the endoplasmic 
reticulum and induction of apoptosis. DON exhibits antitumour 
effects. 

593,606-608 

Brefeldin A (BFA) 

 

A macrocyclic lactone synthesized from palmitate by various fungi. 

Inhibits the early transport of proteins from the endoplasmic 

reticulum to the Golgi apparatus. BFA also disrupts organization of 

the microtubule and actin cytoskeletons. 

609,610 

Sugar Analogues 

2-Deoxyglucose (2dGlc/2DG) 

 

Inhibits glycosyltransferases so that saccharides are not transferred 

to the nascent glycoprotein and extended branching of the sugar core 

is obliterated. 2dGlc impacts gene expression, protein 

phosphorylation and signalling pathways and it blocks the cell cycle 

progression, DNA repair which culminates in apoptosis.  

593,611-613 

Continued/… 
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Table 1.13: Specific classes and examples of N-glycosylation inhibitors (continued) 

Inhibitor Class/Example(s) Structure Mode of Action References 

Glycoside Primers 

β-D-Xyloside (β-D-Xyl) 

 

β-D-Xyl blocks synthesis of glycosaminoglycans on growing 

proteoglycans. Disrupts glycoprotein assembly by elongating the 

oligosaccharide chains with exogenous primers instead of the 

endogenous glycoprotein core with specific sugar moieties which 

causes premature inhibition of glycan synthesis. β-D-Xyl also 

reversibly inhibits cell proliferation by arresting cells in the G1 phase 

of the cell cycle. 

606,614-616 

Plant Alkaloids 

Castanospermine (CST) 

 

CST specifically inhibits α-glycosidases I and II, thus impeding 

elongation of saccharide chains. Inhibition occurs particularly at the 

stage of glycosylation, after formation of a 14 monomer-long chain 

(Glc3Man-9GlcNAc2). Hence, plant alkaloids block formation of 

mature glycoproteins. 

593,601,603,606,617-619 

Deoxynojirimycin (DNJ)/ 
Deoxymannnojirimycin (DMJ) 

 

Castanospermine and deoxynojirimycin both obstruct angiogenesis in 

vitro. 1-Deoxymannojirimycin predominantly inhibits Golgi 

mannosidase I. 1-Deoxynojirimycin (1-DNJ) has been shown to 

possess antimetastatic potential. 

601,606,620-622 
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Table 1.13: Specific classes and examples of N-glycosylation inhibitors (continued) 

Inhibitor Class/Example(s) Structure Mechanism of Action References 

Plant Alkaloids 

Swainsonine (SWSN) 

 

Blocks Golgi α-mannosidase II and lysosomal α-mannosidase. 

It has a neurotoxic effect (“syndrome loco”) and intoxication 

with it occasions in accumulation of glycoproteins in lymph 

nodes. It also abrogates metastasis of melanoma cells by 

triggering natural killer cell proliferation or their anti-tumour 

activity. The drug is the first glycosidase inhibitor to have 

undergone anticancer clinical testing.  

601,603,606,617,623 

Antibiotics 

Tunicamycin (TM) 

 

It is a nucleoside antibiotic which blocks the enzyme responsible 

for the transfer of 1-phospho-N-acetylglucosamine from UDP-

N-acetylglucosamine to dolichol phosphate, i.e., the first 

glycosylation step. Tunicamycin induces induces E-cadherin-

mediated cell–cell interactions and apoptosis in neoplastic cells. 

The antibiotics also exerts synergistic effects in combination 

with doxorubicin, cisplatin and vincristine.  

593,596,614,620,624,625 
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Table 1.13: Specific classes and examples of N-glycosylation inhibitors (continued) 

Inhibitor Class/Example(s) Structure Mechanism of Action References 

Antibiotics 

Bacitracin (BAC) 

 

Prevents dolichol pyrophosphate (Dol-PP) hydrolysis to 

dolichol phosphate which, the after-effect being ablation of 

glycoprotein synthesis at its first stage. Bacitracin interferes 

with P-gp expression and localization. Bacitracin is a 

competitive inhibitor of protein disulfide isomerase and 

reduces phosphorylated focal adhesion kinase (p-FAK) and 

secreted matrix metalloproteinase-2 (MMP-2), which are the 

downstream of integrin and play a major role in cell migration 

and invasion, considered a therapeutic target for glioblastoma. 

Bacitracin has significant effects on both non-catalyzed 

protein folding and on other molecular chaperones. Bacitracin 

further disrupts ER function and causes higher ERS-mediated 

apoptosis in melanoma cells as demonstrated by the 

upregulation of ER chaperones. 

626-630 

2-D structures of the N-glycosylation inhibitors were downloaded from https://pubchem.ncbi.nlm.nih.gov/. 
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SECTION C: PROTEIN GLYCOSYLATION, ENDOPLASMIC RETICULUM 
STRESS AND THE UNFOLDED PROTEIN RESPONSE 

C1. Introduction 

In eukaryotic cells, many proteins are covalently modified during or immediately after 

translation. These modifications (e.g., phosphorylation, acetylation, glycosylation, 

methylation, sumoylation, sulfation, nitrosylation and ubiquitylation) collectively referred to 

as post-translational modifications (PTMs), regulate protein maturation, stability, dynamics, 

assembly, translocation, molecular interactions and cellular functions.631-635 Modifications of a 

protein at asparagine Asn (N-glycosylation) or at serine/threonine residues (O-glycosylation) 

(Figure 1.14) are arguably the most prevalent PTMs which impact protein folding, maturation 

and activity.491,636 Protein glycosylation occurs in the eukaryotic secretory pathway and 

encompasses discrete biosynthetic transitions between the endoplasmic reticulum (ER) and 

Golgi apparatus.491,605 Unlike nucleic acids and proteins, glycan structures are not directly 

determined by genes or synthesized from a template, and may be linear or branched, and even 

undergo additional modification by acetylation, sulfation or phosphorylation.631   

Glycosylation is an important component of the ER protein quality control system (ERQC) 

which precisely sorts and corrects misfolded proteins for reprocessing.637 The ERQC, starting 

in the ER and ending at the trans-Golgi, direct the dispatch, transit, secretion and fate (final 

localization) of properly folded and glycosylated proteins to the cell surface or external 

environment (terminal compartments). This progression is imperative in the development and 

homeostasis, as well as cell-to-cell communication in complex multicellular 

organisms.631,636,638,639 The glycan moieties of glycoproteins play crucial roles in intricate 

processes ranging from protein solubility, stability, conformation and function—and thus their 

half-life in the blood (circulation)—to their altered expression in most chronic or acquired 

infectious diseases, ERS and cancer.491,497,605,640-645  
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C2. Endoplasmic Reticulum Stress and the Unfolded Protein Response 

The ER is a major cellular compartment for protein synthesis, assembly and trafficking. Within 

the lumen and membranous network of the ER, a robust protein quality control system (ERQC) 

verifies whether secretory and membrane proteins are properly folded and modified before 

they are dispatched to their final destinations (cystosol, membrane and extracellular 

milieu).639,646-648 Incorrectly or misfolded proteins cannot assume their final conformation and 

functionally active structures, and are, therefore, retained in the lumen of ER until they are 

reconfigured into their proper conformations.649-651 

If the mature tertiary structure cannot be synthesized, misfolded proteins are then redirected to 

the cytoplasm to undergo ubiquitination and proteasome-mediated degradation (Figure 1.20), 

a process referred to as ER-associated degradation (ERAD).650-653 ERAD is indispensable in 

cells that cannot constitutively induce the unfolded protein response (UPR). Equally, loss of 

ERAD function leads to constitutive UPR induction. Ultimately, concurrent loss of ERAD and 

the UPR significantly decreases cell viability, suggesting that the UPR and ERAD are dynamic 

responses vital for the synchronized clearance of misfolded proteins, even in the absence of 

acute stress.654,655 

Under normal physiological conditions, the ERQC can cope with cellular demands, but 

extreme conditions of intracellular and extracellular stress (e.g., increased protein synthesis, 

genetic mutations that cause defects in folding, alteration in calcium homeostasis, and nutrient 

starvation such as glucose deprivation),649,650 neurodegenerative disorders, heart disease, 

smoking, diabetes and malignancy may overwhelm the ERQC capacity, leading to ERS.637,656-

659 Thus, perturbations of ER homeostasis, in particular, protein homeostasis (proteostasis), 

results in the accumulation of unfolded proteins which then activates the ERAD and the UPR—

integrated transcriptional and translational systems for transmitting information about the 

status of protein folding to the cytosol and nucleus (Figure 1.21).660  
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Normal state. Proteins that enter the ER are folded and transported to the Golgi apparatus or other destinations. 
GRP78 is bound to the luminal domains of PERK, IRE1, and domains of PERK, IRE1 and ATF6.  

Source:661 Park SW, Ozcan U. Potential for therapeutic manipulation of the UPR in disease. Seminars in 
Immunopathology 2013;35(3):351-373, permission granted by Springer, under the terms of the Creative 
Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided 
the original author(s) and the source are credited; http://link.springer.com/article/10.1007%2Fs00281-013-0370-
z#copyrightInformation; accessed 8 January 2017.  

Figure 1.20: Endoplasmic reticulum protein folding function under normal physiological conditions 

In eukaryotic cells, three ER transmembrane components (Figure 1.22)—inositol-requiring 

enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcription 

factor 6 (ATF6), initiate distinct UPR signalling arms.662-664 The UPR triggers upregulation of 

genes encoding ER chaperones [e.g., heat shock protein 90 (HSP90), HSP70, CAAT/enhancer 

binding protein-alpha homologous protein (CHOP)/ growth arrest and DNA damage-inducible 

protein (GADD153), XBP1 (X-box binding protein 1),665 calreticulin (CRT),666 ER HSP40 
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ERdj3/DNAJB11,667,668 and ERdj5,669 and calnexin],670 attenuation of translation, and initiation 

of the ERQC to reinstate ER homeostasis.671,672  

 

ERS activates the stress sensors ATF6, IRE1, and PERK, representing the three branches of the UPR. Activation 
of each sensor produces a transcription factor [ATF6(N), XBP1, and ATF4, respectively] that activates genes to 
increase the protein-folding capacity in the ER. IRE1 (via RIDD) and PERK (via eIF2a phosphorylation) also 
decrease the load of proteins entering the ER. Both outcomes work as feedback loops that mitigate ERS. If cells 
cannot reestablish homeostasis, but continue to experience prolonged and unmitigated ERS (depicted by the 
timer), they apoptose.  

Source:650 Walter P, Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. 
Science 2011;334(6059):1081-1086. Permission granted by Science (American Association for the Advancement 
of Science), http://www.sciencemag.org/help/reprints-and-permissions; accessed 8 January 2017.  

Figure 1.21: Core elements of the UPR signalling network 

The ER luminal binding protein—immunoglobulin heavy chain-binding protein (BiP)—also 

called glucose-regulated protein, 78kDa (GRP78), a member of the heat shock protein 70 

(HSP70) family, is the most abundant ER-chaperone, and a central regulator of the ERQC 

machinery. BiP binds to and suppresses the activity of the mammalian ERS sensors, PERK, 

IRE1, and ATF6.673,674 Pro-survival (yang) GRP78 and pro-apoptotic (yin) CHOP are 

quintessential antagonistic mediators of the ERS response.675 When the UPR is insufficient to 

restore the steady state in the ER, programmed cell death (PCD) or apoptosis ensues, but 

chronic ERS can lead to pathological states.521,646,676-679 ERS is also a strong inducer of 

autophagy, a self-degradative process that has an adaptive function.680-682    
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Three families of signal transducers (ATF6, PERK, and IRE1) sense the protein-folding conditions in the ER 
lumen and transmit that information, resulting in production of bZIP transcription regulators that enter the nucleus 
to drive transcription of UPR target genes. Each pathway uses a different mechanism of signal transduction: 
ATF6 by regulated proteolysis, PERK by translational control, and IRE1 by non-conventional mRNA splicing. 
In addition to the transcriptional responses that largely serve to increase the protein-folding capacity in the ER, 
both PERK and IRE1 reduce the ER folding load by down-tuning translation and degrading ER bound mRNAs, 
respectively. 

Source:650 Walter P, Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. 
Science 2011;334(6059):1081-1086. Permission granted by Science (American Association for the Advancement 
of Science), http://www.sciencemag.org/help/reprints-and-permissions; accessed 8 January 2017.  

Figure 1.22: The three branches of the UPR 

C3. ER Stress and the UPR in Cancer 

Most of functions mediated by the UPR in cellular homeostasis are also displayed in the role 

of ERS response in diseases that include cancer,683 diabetes, and metabolic, genetic, 

inflammatory, and neurodegenerative disorders.671,682,684 Several lines of evidence suggest that 

all branches of the UPR either promote or impede cancer initiation and progression, 

implicating various hallmarks of cancer,145,146,685,686 including sustaining proliferative 

signalling, evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing angiogenesis and activating invasion and metastasis (Figure 1.24). 
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ERS state. GRP78 dissociates from PERK, IRE1, and ATF6. PERK and IRE1 oligomerize, forming a dimeric 
structure with a deep groove where peptide can bind. Upon oligomerization, PERK and IRE1 are auto-
phosphorylated. PERK phosphorylates eIF2α, leading to attenuation in global protein synthesis. Phosphorylated 
eIF2α leads to translation and nuclear translocation ofATF4 and Nrf2.Activated IRE1 mediates unconventional 
mRNA splicing of XBP1 to generate XBP1s. IRE1 also recruits TRAF2 and ASK1 and leads to activation of 
JNK. ATF6 translocates to the Golgi apparatus and the cytoplasmic tail of ATF6 acts as a transcription factor to 
regulate UPR target genes. 

Source:661 Park SW, Ozcan U. Potential for therapeutic manipulation of the UPR in disease. Seminars in 
Immunopathology 2013;35(3):351-373, permission granted by Springer, under the terms of the Creative 
Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided 
the original author(s) and the source are credited; http://link.springer.com/article/10.1007%2Fs00281-013-0370-
z#copyrightInformation; accessed 8 January 2017.   

Figure 1.23: Endoplasmic reticulum protein folding function under ERS conditions 

Both intrinsic and extrinsic factors can activate the UPR in cancer cells, including 

hyperactivation of oncogenes and loss-of-function mutations in tumour suppressor genes, 

which may inappropriately amplify protein synthesis and translocation into the ER in response 

to excessive metabolic demands. Furthermore, mutations in oncogenes and tumour suppressor 

genes are known to inhibit ERS-induced apoptosis.675,683,687 Cancer cells exploit the ERS 

responses to promote survival and growth.  
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The activation status of the three UPR arms is shown at the bottom of the scheme. Green indicates a predominant role of the arm concerned in the tumourigenic process indicated at the top of 
the scheme (the gradient in green indicates the relative contribution of each arm).  

Source:684 Manie SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: 
An update. American Journal of Physiology Cell Physiology 2014;307(10):C901-907, permission granted by American Journal of Physiology Cell Physiology, The American Physiological 
Society, https://s100.copyright.com/AppDispatchServlet#formTop; accessed 8 January 2017.   

Figure 1.24: Involvement of UPR signaling during cell transformation and tumour growth 
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For example, the ER protein chaperone BiP is commonly overexpressed in breast cancer, lung 

cancer, prostate cancer, melanoma, and other malignancies to mediate the prosurvival response 

of cancer cells to major environmental stress.665,688,689 Surprisingly, unrelenting ERS and UPR 

activation may interchange the cytoprotective functions of UPR into cell death programmes, a 

principle that can be exploited as a line of attack against cancer cells.661,675,690,691  

C4. Targeting ER Stress and the UPR 

Cancer cells are resistant to extreme environmental stress conditions that induce ERS and UPR 

responses leading to cancer initiation and metastases (Figure 1.25).683  

 
Source:683 Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E. Cancer microenvironment 
and endoplasmic reticulum stress response. Mediators of Inflammation 2015;2015:417281, permission granted 
(Open Access) by Hindawi Publishing Corporation; https://www.hindawi.com/oa/; accessed 9 January 2017.   

Figure 1.25: Tumour microenvironment and activation of ERS and UPR responses in cancer   
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Therefore, the various molecular interconnections defining ERS and UPR in cancer, 

neurodegenerative and metabolic diseases offer a promising targeted therapeutic raison d'être. 

Several excellent reviews have recently described the merits of such pharmacological targeting 

of the UPR and the literature on this topic is expanding at an alarming rate. 660,661,663,675,692-697 

Selected examples of ERS aggravators (ERSAs) and UPR responses are indicated in Figures 

1.26 and 1.27, and Table 1.14.675,686 

 

Pharmacological agents (shown in rounded rectangles) cause physiological imbalances (shown in undulated 
ovals) or directly block SERCA, autophagy, or the proteasome, thus causing the accumulation of misfolded 
proteins and resulting in aggravated ERS. ERS can be further exacerbated via inhibition of GRP78 with specific 
inhibitors (left, bottom; see text for details). Activation of the ERS response system/UPR involves GRP78 as key 
pro-survival and CHOP as key pro-apoptotic components, and these two proteins are representatives of the 
antagonistic cellular struggle for survival vs. cell death. Shifting this yin–yang balance towards dominance of 
CHOP will ensure cell death and abort the cell. However, if the yin module (in particular, GRP78) prevails, cell 
survival and, in the case of tumour cells, increased chemoresistance, will be favoured. CHOP, C/EBP homology 
protein; 2-DG, 2-deoxy-d-glucose; DMC, 2,5-dimethyl-celecoxib; 2-ME, 2-mercaptoethanol; DTT, 
dithiothreitol; SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; ERAD, endoplasmic reticulum-
associated degradation. 

Source:675 Schönthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. 
Biochemical Pharmacology 2013;85(5):653-666, permission granted by Biochemical Pharmacology, Elsevier 
(Appendix 12).   

Figure 1.26: Cellular impact of ERS aggravators that weigh on the yin vs yang balance 
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Figure 1.27: An overview of therapeutic ERS-based targeting of the main hallmarks of cancer 

See figure legend on next page/…
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Figure 1.27: An overview of therapeutic ERS-based targeting of the main hallmarks of cancer (continued) 

Respective therapy-based ERS inducers have been segregated into 2 categories (wherever possible) based on their ability to target each of the hallmarks of cancer; such that therapies or drugs 
labeled with green inhibit the hallmark (thereby inhibiting or suppressing tumourigenesis) whereas those labeled with red support the hallmark (thereby enabling or supporting tumourigenesis). 
The question mark in parenthesis (?) indicates that data supporting the ability of the given therapy or drug to target or support a hallmark of cancer are not conclusive but are evidenced by 
either contradictory or incomplete observations. Please see the text for further details. 2-DG, 2-deoxyglucose; 7A7, murine anti-EGFR antibody; ANT, anthracycline; BLM, bleomycin; Bort, 
bortezomib; BrefA, brefeldin A; CBN, cannabinoids; CG, cardiac glycoside; CLX, celecoxib; CPA, cyclophosphamide; EDF, edelfosine; GRP78i, BiP/GRP78 inhibitor; HDACi, HDAC 
inhibitor; HHP, high hydrostatic pressure; HSP90i, HSP90 inhibitor; Hyp-PDT, hypericin-based photodynamic therapy; ICD, immunogenic cell death; IOM, ionomycin; MTC, microtubule-
targeting chemotherapy; MTX, mitoxantrone; OV, oncolytic viruses; OXP, oxaliplatin; PROTi, proteasome inhibitor; RL66, an analog of curcumin; RT, radiotherapy; Shik, shikonin; THP, 
thapsigargin; TUN, tunicamycin; UVC, UV irradiation of C-band wavelength. 

Source:686 Garg AD, Maes H, van Vliet AR, Agostinis P. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress. Molecular and Cellular Oncology 
2015;2(1):e975089; permission granted (Open Access, under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/).   
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Table 1.14: Pharmacologic modulators commonly used in targeting ERS and UPR signalling 

Biologic or Pharmacologic Modulator Endoplasmic Reticulum Stress Mechanistic Principles and Therapeutic Targeting Strategy References 

Thapsigargin Thapsigargin, derived from Thapsia garganica, is a potent inducer of GRP78 expression and endoplasmic 

reticulum stress (ERS) and activator of the UPR through non-competitive inhibition of SERCA 

(sarcoplasmic/endoplasmic reticulum calcium ATPase). SERCA inhibition causes extensive efflux of calcium 

from ER stores into the cytosol and is thus a strong inducer of ERS—a potent trigger for autophagy, a self-

degradative process that has an adaptive function. ERS mediated by thapsigargin promotes CHOP and death 

receptor 5 (DR5, also referred to as Apo2) synthesis, thus sensitizing TRAIL treatment, which induces 

oesophageal squamous cell carcinoma cell (ESCC) apoptosis. Thapsigargin synergistically enhances the 

anticancer activity of drugs against human ESCCs, including inhibition of tumour cell proliferation, invasion 

and metastasis, and induction of apoptosis. However, thapsigargin causes systemic toxicity, including potent 

tumour promoter, causes histamine release, and stimulates arachidonic acid metabolism. Combination of 

bortezomib with SERCA inhibitors, such as thapsigargin, celecoxib, or 2,5-dimethyl-celecoxib (DMC), 

aggravates ERS and greatly increases glioblastoma cell death in vitro and in vivo, pointing to the potential of 

thapsigargin as a combination agent in therapeutic regimens. 

675,680,686,698-702 

Tunicamycin Tunicamycin is an asparagine-linked (N-linked) glycosylation inhibitor which causes impairment of protein 

folding and thus ERS. Tunicamycin blocks cell surface receptor tyrosine kinases (RTKs), thereby interrupting 

mitogenic and pro-survival signalling pathways and sensitizing tumour cells to cytotoxic therapies.  

596,703-709 

Continued/… 
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Table 1.14: Pharmacologic modulators commonly used in targeting ERS and UPR signalling (continued) 

Biologic or Pharmacologic Modulator Endoplasmic Reticulum Stress Mechanistic Principles and Therapeutic Targeting Strategy References 

Tunicamycin Tunicamycin inhibits angiogenesis in vitro and in vivo by arresting cells in the G1 phase of the cell cycle. It 

prevents the progression of a double- and a triple-negative breast tumour in athymic nude mice by inducing ERS, 

followed by apoptosis. Tunicamycin is efficacious alone or in combination with radiation/radiotherapy. 

686 

Brefeldin A Brefeldin A (BFA) is an inhibitor of protein transport from ER to Golgi, and thus the secretory pathway. It is 

also an ADP-ribosylation factor (ARF) inhibitor. BFA is also a known perturbant of P-glycoprotein (P-gp), an 

ATP-dependent efflux pump encoded by the MDR1 gene which mediates multidrug resistance of tumour cells 

to cancer therapy. BFA induces caspase activation and apoptosis and triggers GRP78 upregulation and ER 

dilation, markers of ERS.  

609,675,685,686,710,711 

GRP78/BiP Inhibitors The ER chaperone, GRP78, is one of the most dynamic components of cancer cells. Overexpression of GRP78 

correlates with apoptosis, angiogenesis, proliferation, tumourigenesis, invasion/metastasis, inflammation, 

immunity and drug resistance. GRP78 inhibitors are not generally available for clinical testing, but are developed 

under screening platform licences (https://nuevolution.com/wp-content/uploads/2016/08/EFMC-ISMC-

2016_Poster_Final-PDF.pdf; https://nuevolution.com/pipeline/1097/;). GRP78 levels can be reduced using a 

GRP78-specific small interfering RNA (siRNA). In NB cells, Akt increases the accumulation of GRP78 in 

response to 2-DG. Inhibition of GRP78 is of therapeutic utility for cancer and for bacterial and viral infections. 

685,686,712-717 

Continued/… 
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Table 1.14: Pharmacologic modulators commonly used in targeting ERS and UPR signalling (continued) 

Biologic or Pharmacologic Modulator Endoplasmic Reticulum Stress Mechanistic Principles and Therapeutic Targeting Strategy References 

Celecoxib (CEL) 

2,5-Dimethyl-Celecoxib (DMC) 

Cyclooxygenase 2 inhibitor. Postulated to impede SERCA and perturb intracellular calcium homeostasis. 

Relentless Ca2+ dysregulation can induce ERS-mediated apoptosis. Celecoxib induces apoptosis independently 

from its COX-2 inhibitory action via a mitochondrial apoptosis pathway. It also prevents neuroblastoma tumour 

initiation and progression and potentiates the effect of chemotherapeutic drugs in vitro and in vivo. ERS inducer 

DMC augments TRAIL-induced apoptosis in glioblastoma and inhibits cell cycle progression and induces 

apoptosis in human leukaemia cells. 

675,708,718-722 

NSAIDs (Aspirin, Salicylates and Diclofenac) Some non-steroidal anti-inflammatory drugs (NSAIDs) like aspirin (acetyl salicylic acid) and its metabolite, 

sodium salicylate, have profound effects on cellular functions and survival. Aspirin activates PERK and 

upregulates expression of the pro-apoptotic transcription factor CHOP (GADD153), a downstream event to 

eIF2α phosphorylation which, together with cleavage of caspase-12, are hallmarks of ERS-mediated responses. 

Salicylates inhibit prostaglandin H synthase (cyclooxygenase/COX) activity. By contrast, diclofenac (another 

NSAID) has been reported to exert protective effects against ER-stress-induced apoptosis in human 

neuroblastoma SH-SY5Y cells, by suppressing the activation of caspases in the intrinsic apoptotic pathway. 

NSAIDs perturb ER homeostasis by upregulating the expression of GRP78 and CHOP, and the activation of 

PERK and ATF6, but rarely the other UPR arm, viz. IRE-1. Inhibition of PGE2 production with diclofenac, 

resulted in reduced tumour growth in an in vivo model of 11q-deleted neuroblastoma.  

162,723-727 

Continued/… 
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Table 1.14: Pharmacologic modulators commonly used in targeting ERS and UPR signalling (continued) 

Biologic or Pharmacologic Modulator Endoplasmic Reticulum Stress Mechanistic Principles and Therapeutic Targeting Strategy References 

Geldanamycin HSP90 and GRP94 inhibitor 233,665,727,728 

Irestatin Inhibits IRE-1α activity 665,694,729 

Bortezomib Reversible inhibitor of the 26S proteasome. Bortezomib exerts synergistic cytotoxic effects in cancer cells by 
turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-kappaB. Both 
nelfinavir and bortezomib lead to autophagy-dependent growth arrest and the radiosensitization of cancer cells. 

688,730-732 

Ritonavir and Nelfinavir HIV protease inhibitors that activate certain UPR components such as CHOP and GRP78 and hence induce 
accumulation of misfolded proteins. Nelfinavir, in combination with various NSAIDs, causes reduction in cell 
survival and an increase in apoptosis Also, HIV protease inhibitors significantly impede ABC transporters, 
including P-gp. 

310,643,686,725,733-736 

Resveratrol Induces GRP78 and CHOP, p-eIF2α and XBP1 splicing. Downregulate P-gp expression via inhibiting 
PI3K/Akt/mTOR pathway. Augments ER stress and the cytotoxic effects of glycolytic inhibition in 
neuroblastoma by downregulating Akt. Enhances mitochondrial biogenesis and riggers UPR. 

657,713,737,738 

Epidermal Growth Factor (EGF)-SubA Targets GRP78, impeding its function and affecting proteostasis in ER. 686 

Oncolytic Viruses Stress the ER through viral protein overload. 686 

Protein Disulphide Isomerase (PDI) 
Inhibitors 

Protein disulfide isomerase (PDI) is an essential enzyme of disulphide bond formation in the ER. PDI inhibitors 

cause rapid accumulation of misfolded or unfolded proteins in the ER. There is an interrelation of ER stress and 

ROS with redox signalling mediators such as PDI-ER oxidoreductin (ERO)-1, glutathione (GSH)/glutathione 

disulphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR) and calcium. 

686,739-741 

Continued/… 
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Table 1.14: Pharmacologic modulators commonly used in targeting ERS and UPR signalling (continued) 

Biologic or Pharmacologic Modulator Endoplasmic Reticulum Stress Mechanistic Principles and Therapeutic Targeting Strategy References 

Versipelostatin/Epigallocatechin Gallate Derived from green tea extract and causes inhibition of GRP78. 675,685,686,742 

Anthracyclines/Mitoxantrone/Carboplatin Cause ROS production leading to ROS-based ERS. 686,694,743 

Chloroquine Lysosomotropic agent and inhibitor of autophagy. Combination of nelfinavir and chloroquine significantly 
increased ER stress and caused selective cell death in multiple cell line models with hyperactive mTORC1. 

744-746 

BRAF Inhibitor Interferes with cytosolic Ca2+ homeostasis causing ERS. Predominantly causes activation of the PERK–eIF2α–
ATF4/ATF3 pathway, which in turn promotes cytoprotective autophagy. Combined BRAF and autophagy 
inhibition promotes tumour regression in BRAFi-resistant xenografts. 

312,686,745,747-749 

Cannabinoids Cause ERS through ceramide accumulation and eIF2α phosphorylation. Plant-derived cannabinoids are 
moderately effective in reversing MDR in CEM/VLB100 cells by decreasing P-gp expression. 

686,750 

Curcumin (Turmeric) Plant polyphenols that have been identified to possess proteasome-inhibitory activity include (-)-

epigallocatechins-3-gallate (EGCG), genistein, luteolin, apigenin, chrysin, quercetin, curcumin and tannic acid. 

SERCA inhibition causes ER Ca2+ imbalance and ERS. Down regulates calreticulin. Liposome-encapsulated 

curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Curcumin down-

regulates transcription factors important for cell growth and survival, through modulation of the NF-kB and 

PI3K/AKT pathways. 

661,686,742,751 

HDAC inhibitors (HDACi) e.g. Vorinostat Cause GRP78 acetylation, inhibiting GRP78 function and compromises ER protein folding, causing ERS.  

Ceapins Selectively targets the ATF6α branch. 752 

Chemotherapeutic Agents Induce ERS through various mechanisms. 676,686,687,692,699,730-732 
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C5. The ERS and UPR in Perspective 

Pro-survival (yang) GRP78 and pro-apoptotic (yin) CHOP are quintessential opposing 

regulators of the ERS response. Whereas suprabasal levels of GRP78 are commonly found in 

many tumour cell lines and primary tumour tissues (and levitate upon ERS), CHOP is 

predominantly infrabasal, but intensifies in response to short-term, acute ERS. Factoring in the 

differential in baseline ERS levels in tumour vs. normal cells, manipulated pharmacological 

aggravation of pre-existing ERS in tumour cells can be exploited to ‘‘overload’’ this already 

burdened system to eclipse the tumour cells’ capacity for adaptation. During this process, the 

ERS system’s pro-apoptotic module would surpass the pro-survival module, leading to 

increased chemosensitivity of the tumour. By analogy, normal cells should be reasonably 

safeguarded from the toxic outcomes of pharmacologically increased ERS. Their ERS 

response system, which had not been subjected to chronic activation, would be triggered from 

significantly lower baseline levels and therefore would have the competence to stem increased 

ERS levels. Generally, the protective module of normal cells would presumably dominate and 

shield the cell from stress-induced toxicity significantly longer than is the case in tumour cells. 

This is the sine qua non of probing ERS and UPR dynamics and hence targeting the hallmarks 

of cancer with therapy-induced ERS. 

SECTION D: RESEARCH CONTEXT 

D1. Problem Statement and Research Questions 

Despite recent advances in cancer cell glycomics and the arsenal of investigational and 

approved drugs against NB therapeutic targets, successful treatment of high-risk 

neuroblastoma (HR-NB) remains a challenging task since 40 % of patients still relapse during 

or after glycan-based immunotherapy following standard therapy.153,494 Therefore, a dire need 

exists to develop novel treatment modalities that target the NB glycome, proteome and 

transcriptome. Neuroblastoma (NB) is the most common paediatric cancer and accounts for 
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15% of all oncology deaths in infants. NB continues to perplex scientists and oncologists alike 

because its biological and clinical behaviour fluctuate between complete spontaneous 

regression and clinical multidrug resistance, strongly indicating that besides genetic events, the 

tumour microenvironment (TME) significantly influences these characteristics of NB.64,147 

Survival rates of HR-NB remain less than 50%, with amplification of the MYCN oncogene 

being the most significant hallmark associated with aggressive NB and poor survival 

outcome.184,185  

Transcriptionally, the ABC transporters are directly and coordinately regulated by MYCN328 

and, correspondingly, their overexpression correlates with poor prognosis.327,329 Most 

aggressive NBs exhibit MDR,311 attributable to p53 mutations and/or a loss of p53 function 

induced during chemotherapy,753which further exacerbates the probability of relapse.333,334 

While the prognostic merit of the ABC transporters in childhood NB is generally ascribed to 

their role in cytotoxic drug efflux, several reports claim that they might promote the malignant 

phenotype independent of this function, thus unlocking their potential as therapeutic targets,330 

and strengthening the less well understood, but evolving theme of the drug efflux-independent 

contributions of ABC transporters to cancer biology and treatment failure.311 Similarly, some 

metastatic MDR NBs derive from the clonal selection of side population cells that 

constitutively express the MDR1 (P-gp, ABCB1), MRP1/ABCC1 and MRP4/ABCC4) gene 

family, which may or may not correlate with MYCN amplification and poor 

outcome.7,294,323,327,328,330,335 Moreover, minimal residual disease (MRD), the major cause of 

tumour recurrence (relapse) and metastasis, is enriched in cancer stem cells (CSCs) with an 

increased drug efflux capacity mediated through overexpression of ABC transporters.336,337 

Charging into the fray are elevated levels of different types of gangliosides that profoundly 

contribute to aggressive NB behaviour and poor patient survival.527,537,539,540 By contrast, 

overexpression of both complex “a” gangliosides (CaG and CbG), eradicates aggressive 

tumour-cell behaviour in vitro (e.g., cellular proliferation and migration) and promotes 
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differentiation.754 In recent years, interest in gangliosides has been revived, mainly as 

prognostic biomarkers to stratify NB patients for targeted anticancer immunotherapy and to 

monitor efficacy of treatment.541 Diverse molecules involved in NB glycobiology play key 

roles in tumour growth and are therefore potential targets for anti-tumour therapy.527 

As mentioned above, the overexpression of MDR transporters strongly correlates with poor 

NB therapeutic outcome since they efflux a wide array of endogenous compounds and 

anticancer drugs from cancer cells.311,329,330 Theoretical and contextual issues emerging from 

the literature point to a multitude of unclarified roles of endogenous compounds and anticancer 

drugs at the intersection of ABC transporters and NB behaviour and cancer cell responses to 

chemotherapy. Perturbation of ABC transporters may provide insightful options for 

therapeutic repression of HR-NB, and proof of concept for increasing drug bioavailability 

(therapeutic efficacy) in refractory tumours which overexpress these glycans.326  

The MDR transporter, P-glycoprotein (ABCB1, P-gp), has been shown to be one of the most 

strongly upregulated genes associated with acquired drug resistance and NB treatment 

failure.527,589,590 Inhibition of protein glycosylation reverses the MDR phenotype of several 

cancer cell lines.592 Equally, inhibition of N-linked glycosylation hampers ALK 

phosphorylation and pro-survival signalling in NB cell lines.555 Inhibitors of N-glycosylation, 

e.g., tunicamycin, hinder P-gp-mediated MDR phenotype.595,596 The precise role of N-

glycosylation in P-gp function remains to be fully unravelled.597-599 Several classes of N-linked 

glycosylation inhibitors are available that need to be evaluated further for their potential to 

alter NB behaviour.593  

The glycan moieties of glycoproteins are critical for various cellular processes such as protein 

solubility, stability, conformation and function. Thus, altered expression of glycans has been 

implicated in chronic or acquired infectious diseases, endoplasmic reticulum stress (ERS) and 

cancer.491,497,605,640-645 Perturbation of N-linked glycosylation can also result in the 
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accumulation of unfolded/misfolded proteins which, in turn, may trigger ERS, the unfolded 

protein response (UPR) and, ultimately, decreased cell viability and apoptosis.650,661 Severe 

ERS may as well induce autophagy, a self-degradative process that has a life-saving adaptive 

function.680-682 The TME is the arena for ERS and UPR responses that sustain various hallmarks 

of cancer.683,684,686   

It is clear from the above considerations that NB glycopathobiology, particularly the diverse 

cancer landscape exemplified by the N-glycoproteome in eukaryotic cells (N-linked protein 

glycosylation in the ER coupled with MDR, ERS, UPR activation, apoptosis and autophagy), 

offers an emerging theme in the therapeutic targeting of cancers, including 

NB.326,493,494,519,527,544,546,569,588,593,599,645,755-763 To this end, we have set out to explore the effects 

of various glycosylation inhibitors and ERS inducers on SK-N-BE(2) NB cell survival and 

ability to efflux calcein-AM, a P-gp substrate.  

D2. Purpose of the Study 

The purpose of the study was to investigate the effects of various glycosylation inhibitors and 

ERS inducers on the behaviour of NB cells in culture. For this study, we have selected the 

continuous SK-N-BE(2) cell line as representative of human NB cells in vitro that overexpress 

readily detectable levels of P-glycoprotein (P-gp, ABCB1) and other ABC transporters.764,765 

The SK-N-BE(2) cell line was derived from a bone marrow metastases in a patient refractory 

to chemotherapy.766-769 Figure 2.1 in Chapter 2 shows the experimental design of the project 

presented in this thesis. 

D3. Aims of the Study 

The aims of the study were to determine the effects of N-glycosylation inhibition and ERS 

induction on SK-N-BE(2) cell proliferation and viability, apoptosis and P-glycoprotein drug 

efflux function.  
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D4. Objectives of the Study 

In this study, the following N-glycosylation inhibitors and ERS inducers—aspirin, bacitracin, 

castanospermine, brefeldin A and thapsigargin—have been evaluated for their effects on: 

1. SK-N-BE(2) NB cell growth and viability, using the CCK-8 assay. 

2. P-glycoprotein (P-gp, ABCB1)-mediated cellular drug efflux function in SK-N-BE(2) 

NB cells, using Cayman’s Calcein-AM multidrug resistance assay. 

3. SK-N-BE(2) NB cell viability, cytotoxicity and apoptosis induction by caspase-3 

activation, using the Apotox-Glo Triplex assay. 

4. SK-N-BE(2) NB cell apoptosis induction by morphological staining of cells with 

Annexin-FITC. 

D5. Hypothesis 

We hypothesize that N-glycosylation inhibitors and ERS inducers will alter the manifestation 

of SK-N-BE(2) cancer cell hallmarks evaluated, namely, cell survival (proliferation, viability 

and apoptosis) and P-glycoprotein-mediated drug efflux function. 

SECTION E: SUMMARY 

This chapter provided the introduction and literature review on NB encompassing the 

epidemiology of the disease, risk factors and staging, prognostic markers, histopathological 

characteristics, detection, diagnosis and prognosis, clinical presentation, signs and symptoms, 

molecular pathogenesis, genetics and genomics and therapeutic landscape. In addition, the 

chapter underscored the significance of glycans and protein glycosylation in NB and the 

targeting strategies for ER stress and the UPR. Finally, the chapter outlined the research 

context of the study in terms of problem statement, aims and objectives and hypothesis.  
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CHAPTER 2 

RESEARCH METHODOLOGY 

2.1 Experimental Design 

The focus of this chapter is to outline and describe the research methodology and experimental 

design that have been chosen for the study. It summarizes the materials and methods used such 

as chemicals required, drugs tested and the maintenance of the parental SK-N-BE(2) 

(American Type Culture Collection / ATCC® CRL2271™) neuroblastoma cell line. Analyses 

of the SK-N-BE(2) neuroblastoma cells exposed to brefeldin A (BFA), thapsigargin (TG), 

aspirin (AS), castanospermin (CST) and bacitracin a (BAC) included growth curves, cell 

viability and cytotoxicity assays by means of the Cell Counting Kit-8 (CCK-8), measurement 

of P-glycoprotein (P-gp, ABCB1) cellular drug efflux pump function using the Calcein-AM 

(Cayman’s multidrug resistance) assay kit, the Apotox-Glo™ triplex cell viability, cytotoxicity 

and apoptosis assays, caspase-3 activation and morphological staining of apoptotic cells using 

the Annexin V-FITC kit (Figure 2.1). Further details of the experimental design are covered in 

the subsections that follow. The statistical methods used for data analysis are also described. 

2.2 Drugs and Chemicals 

Drugs and chemicals used in this study included thapsigargin from plant Thapsia garganica 

(CAS 67526-95-8, Sigma-Aldrich, St Louis, MO, USA), brefeldin A from Penicillium 

brefeldianum (CAS 20350-15-6, Sigma-Aldrich, St Louis, MO, USA), castanospermin from 

Castanospermum austral seeds (CAS 79831-76-8, Sigma-Aldrich, St Louis, MO, USA), 

bacitracin (CAS 14O5-87-4, Sigma-Aldrich, St Louis, MO, USA), aspirin (CAS 50.78.2, 

Sigma-Aldrich, St Louis, MO, USA), heat inactivated foetal bovine serum (Biochrome, The 

Scientific Group), phosphate buffered saline (PBS) (Gibco, Life Technologies), Dulbecco’s 
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Modified Eagles Medium supplemented with F-12 glutamax (DMEM F-12 glutamax) (Gibco 

Life Technologies), penicillin/streptomycin (Invitrogen or Gibco, Life Technologies), trypsin-

EDTA (Gibco, Life Technologies), dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St Louis, 

MO, USA), trypan blue (CAS 72-57-1, Sigma-Aldrich, St Louis, MO, USA), Cell Countin 

Kit-8 (CCK-8)(Item no 06041406, Enzo Life Sciences) Cayman Chemicals Multi Drug 

Resistance kit (Calcein-AM) (Item no. 600370), Annexin V-CY3 (Cat: APOAC; Sigma-

Aldrich, St Louis, MO, USA), ApoTox-Glo® triplex assay kit (Cat: G6320, Promega). 

2.3 Culture and Maintenance of SK-N-BE(2) Neuroblastoma Cells 

The continuous human neuroblastoma (NB) SK-N-BE(2) cell line, originally purchased from 

the American Type Culture Collection (ATCC, Rockville, MA), was kindly provided by Dr 

AM Serafin, Radiobiology Laboratory, Department of Medical Imaging and Clinical 

Oncology, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa. 

The SK-N-BE(2) cell line is known to overexpress readily detectable levels of P-glycoprotein 

(P-gp, ABCB1) and other ABC transporters.764,765 The SK-N-BE(2) cell line was established 

from a bone marrow biopsy of a metastases in November 1972 of a patient refractory to 

chemotherapy.766-769  

All tissue culture operations were carried out in a model NU-5510E NuAire DHD autoflow 

automatic CO2 air-jacketed incubator and an AireGard NU-201-430E horizontal laminar 

airflow cabinet with a HEPA-filtered clean work area (NuAire). SK-N-BE(2) cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) and supplemented with 10% 

heat-inactivated foetal bovine serum (HIFBS), 1% penicillin/streptomycin (100 μg/ml 

penicillin and 10 μg/ml streptomycin) and grown as monolayer cultures at 37ºC in relative 

humidity (RH) of 80%) in an atmosphere of 5% CO2:95% air. Routinely, cryovials containing 

frozen SK-N-BE(2) cells in 40% HIFB, 50% DMEM, 10% DMSO were removed from -80°C 

freezer and thawed in a 37°C water bath. 
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Figure 2.1: Experimental design: Assays and drugs used in this study  

http://etd.uwc.ac.za/



 

 

 

 

CHAPTER 2 | 2.3 Culture and Maintenance of SK-N-BE(2) Neuroblastoma Cells 

121 

The caps were wiped with 70% ethanol and the contents of the vial transferred aseptically to a 

15-ml conical centrifuge tube containing 1 ml of Modified Eagles Medium (MEM)/F-12 

supplemented with 1% penicillin-streptomycin and 10% HIFBS, centrifuged for 5 minutes at 

2500 rpm. After centrifugation, the supernatant was discarded and the cell pellet resuspended 

in 2 ml of complete medium. The cells were mixed thoroughly to ensure a homogeneous cell 

suspension, 1 ml of which was transferred to T-25 culture flask (surface area 2500 mm2) 

containing 5 ml  complete medium to maintain stock cultures. 

The flask was placed on a PrimoVert phase-contrast microscope to visualize the presence of 

suspended cells, and then placed in a 37°C incubator at 5% CO2 and 80% RH, the incubation 

specifications were kept constant throughout for cells to acclimatize and attach to the 

substratum of the flask. The cells were allowed to attach for 24 h, after which the flask was 

removed from the incubator and attachment confirmed by microscopy. The flask was incubated 

under ideal tissue culture conditions and growth medium periodically changed until 

approximately 80-90% of the flask substratum had been occupied by SK-N-BE(2) cells. 

Once confluency had been reached, cells were gently trypsinized. The medium was aspirated 

and the cells rinsed with 2 ml PBS. After 1 minute, the PBS was aspirated and replaced with 2 

ml of 0.25% Trypsin-EDTA and placed in the incubator for 5-15 minutes in order for 

detachment of the cell monolayer to be achieved. The flask was then removed from the 

incubator and placed in a laminar flow cabinet. Thereafter, 4 ml complete medium was added 

to the flask to deactivate the trypsin. The cells were gently mixed using an electronic pipette 

aid and detached cells aspirated and transferred to a 15 -ml conical centrifuge tube, centrifuged 

5 minutes at 2500 rpm to separate the cells from the medium-trypsin solution. After 

centrifugation, the supernatant was discarded and the cell pellet resuspended in 5 ml of 

complete medium. The cells were mixed to ensure a homogeneous cell suspension, 1 ml of 

which was transferred to T-25 culture flask (surface area 2500 mm2) containing 5 ml complete 

medium to maintain stock cultures or for use in experiments. 
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2.4 Growth Curve Analysis of SK-N-BE(2) Neuroblastoma Cells 

SK-N-BE(2) neuroblastoma cells were trypsinized and transferred to a 15-ml centrifuge tube 

and spun at 2500 rpm for 5 min. The supernatant was removed and the pellet resuspended in 5 

ml of complete fresh medium. Cells were seeded into 24-well plates at density of 1 x 105 

cells/ml per well (100 μl of suspension was mixed with 1.9 ml of fresh media to obtain a final 

volume of 2 ml per well. The plates were incubated for 24 hours (24h), 48h, 72h and 96h, 

respectively. After the incubation period, cells were harvested with 1 ml trypsin-EDTA from 

wells every 24h for the duration of the experiment. Viable cells were counted using the Bio-

Rad TC-20 cell counter at a ratio 1:1 cell suspension: 0.4 μM trypan blue. The experiments 

were conducted in quadruplicate and the results pooled. 

2.5 Cell Counting Kit-8 (CCK-8) Cell Viability Assays 

The Cell Counting Kit-8 (CCK-8, CCK-8; Dojindo Laboratories, Japan) permits precise assays 

by utilizing Dojindo’s highly water-soluble tetrazolium salt. WST-8 [2-(2-methoxy-4-

nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl-2H-tetrazolium monosodium salt] 

produces a water-soluble formazan dye upon reduction in the presence of an electron carrier.770-

772 CCK-8, being non-radioactive, allows sensitive colorimetric assays for the determination 

of the number of viable cells in cell proliferation and cytotoxicity assays. WST-8 is reduced 

by dehydrogenases in cells to give a yellow-coloured product (formazan), which is soluble in 

tissue culture medium. The amount of the formazan dye generated by the activity of 

dehydrogenases in cells is directly proportional to the number of living cells. Cell viability was 

measured using the CCK-8 kit, according to manufacturer’s protocol.  

All CCK-8 assays were carried out in 96-well flat bottom tissue culture plates. SK-N-BE(2) 

NB cells were seeded at density of 5 x 104 cells/ml. A 100 μl of cell suspension was added to 

each well and cells were allowed to attach for 24h under normal incubation conditions. After 

24h, the media was aspirated from all wells, first and second columns were replaced with 100 

μl of complete media alone while the other columns were replaced with increasing log10 
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concentrations of test compounds: bacitracin (0.001, 0.01, 0.1, 1, 10, 100 mM), 

castanospermine (0.00001, 0.0001, 0.001, 0.01, 0.1, 1 mM), aspirin (0.0001, 0.001 ,0.01, 0.1, 

1, 10 mM), thapsigargin (0.01, 0.1, 1, 10, 100, 1000 nM) and brefeldin A (0.002, 0.02, 0.2, 2, 

20, 200 µM) in quadruplicate wells. Following incubation with the compounds for various 

time periods, 100 μl of CCK-8 solution was added to each well of the plate, and then plates 

were placed in a 37°C incubator at 5% CO2 and RH 80%. The optical density (OD, absorbance) 

was obtained at 450 nm using a Promega GloMaxTM Multiscan plate reader. The mean blank-

corrected absorbance (MBCA) was derived from the following equation: 

4

0
1

1 ( )
4 i

i
MBCA A A

=

= −∑  

where Ai represents the absorbance reading of well i and A0 is the absorbance reading of the 

blank well (inoculated cells without test compound=untreated controls with variable molar 

concentrations of vehicle approximating final concentrations present in the test wells). 

2.6 Apotox-Glo™ Triplex Cell Cytotoxicity, Viability and Apoptosis Assays 

2.6.1 Principle of the Apotox-Glo™ Triplex Assay 

A number of 96-well assays are available for high throughput screening of cytotoxicity of 

drugs (https://www.promega.com/-/media/files/promega-worldwide/north-america/promega-

us/webinars-and-events/assessmentcellhealthwebinfo0412.pdf).773-777 The Promega ApoTox-

Glo™ Triplex Assay combines three assay chemistries to assess viability, cytotoxicity and 

caspase activation events within a single assay well. The first part of the assay simultaneously 

measures two protease activities; one is a marker of cell viability and the other is a marker of 

cytotoxicity. The live-cell protease activity is restricted to intact viable cells and is measured 

using a fluorogenic, cell-permeant, peptide substrate (glycylphenylalanyl aminofluoro-

coumarin, GF-AFC). The substrate enters intact cells where it is cleaved by the live-cell 

protease activity to generate a fluorescent signal proportional to the number of living cells. 
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This live-cell protease becomes inactive upon loss of cell membrane integrity and leakage into 

the surrounding culture medium. A second, fluorogenic cell-impermeant peptide substrate (bis-

alanylalanyl-phenylalanyl-rhodamine 110; bis-AAF-R110) is used to measure dead-cell 

protease activity, which is released from cells that have lost membrane integrity. Because bis-

AAF-R110 is not cell-permeant, essentially no signal from this substrate is generated by intact, 

viable cells. The live- and dead-cell proteases produce different products, AFC and R110, 

which have different excitation and emission spectra, allowing them to be detected 

simultaneously. 

The second part of the assay uses a luminogenic caspase-3/7 substrate, which contains the 

tetrapeptide sequence DEVD (aspartic acid, glutamic acid, valine, aspartic acid), in a reagent 

optimized for caspase activity, luciferase activity and cell lysis. Adding the Caspase-Glo® 3/7 

reagent in an “add-mix-measure” format results in cell lysis, followed by caspase cleavage of 

the substrate and generation of a “glow-type” luminescent signal produced by luciferase. 

Luminescence is proportional to the amount of caspase activity present. The Caspase-Glo® 3/7 

reagent relies on the properties of a proprietary thermostable luciferase (Ultra-Glo™ 

Recombinant Luciferase), which is formulated to generate a stable “glow-type” luminescent 

signal and improve performance across a wide range of assay conditions. 

2.6.2 Assay Conditions for the ApoTox-Glo™ Triplex Assay 

All Apoptox-GloTM Triplex assays were carried out in white opaque bottom 96-well plates. 

1x105 cells/ml were seeded into each well in a final volume of 100 μl per well and allowed to 

attach for 24h. After the attachment period, culture medium was removed, first and second 

columns were replaced with 100 μl medium containing vehicle and vehicle control (untreated 

cells and vehicle), while the other columns were replaced with increasing concentrations of 

test compounds in four replicate wells as described for the CCK-8 assay. Plates were placed in 

a 37°C incubator at 5% CO2 and RH 80%. After exposure of SK-N-BE(2) cells for 24h, 20 μl 

of viability/cytotoxicty reagent containing both GF-AFC substrate and bis-AFF-R110 
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substrate was added to all wells, plates were covered  in foil and briefly mixed by orbital  

shaking at 300 rpm for 30 seconds(s). After the reagents were added and allowed to mix, plates 

were placed in the CO2 incubator at 37°C for 1 hour. Following the incubation period, plates 

were removed from the incubator, the foil removed and the fluorescence measured at excitation 

(Ex) wavelength of 400 nm (λex 400 nm) and emission wavelength of 505 nm (λem 505 nm) and 

λex 485 nm / λem 520 nm for viability and cytotoxicity, respectively using the Promega 

GloMaxTM Multiscan plate reader. To determine apoptosis, 25 μl of Caspase-Glo® 3/7 reagent 

was added to each well, the plate was covered in foil, and briefly mixed by orbital shaking at 

300 rpm for 30 seconds. Thereafter, the plate was incubated for 1 hour and luminescence was 

measured (caspase-3 activation, a hallmark of apoptosis) using the Promega GloMaxTM 

Multiscan plate reader. 

2.7 Measurement of P-Glycoprotein-Mediated Efflux Function 

A number of in vitro assays have been used to identify compounds as MDR protein modulators, 

either as a substrate or as inhibitors of P-glycoprotein (Pgp; ABCB1), a member of the ATP-

binding cassette (ABC) superfamily which actively exports structurally diverse hydrophobic 

compounds from the cell by ATP hydrolysis. Of these, the calcein–acetoxymethylester 

(Calcein-AM) assay has been shown to identify both substrates and inhibitors of MDR 

proteins, and therefore offer an advantage over other assays.778-784 Calcein-AM is cell–

permeable non-fluorescent dye. Upon transport into live cells, its acetomethoxy group is 

removed by intracellular esterases, thereby trapping the compound inside the cell where it 

exhibits strong green fluorescence. As an MDR protein substrate, calcein-AM is rapidly 

excluded from cells expressing MDR protein, thus reducing fluorescent calcein in the cytosol. 

This property makes calcein-AM an ideal probe for identifying MDR protein overexpressing 

cells. Cayman’s Multi-Drug Resistance Assay Kit provides a convenient tool for studying 

MDR protein modulators. The kit employs calcein-AM, a substrate for MDR proteins, 

including P-gp and MRP, as a probe for the detection of chemical compounds interacting with 

MDR proteins. Cyclosporin A, a competitive inhibitor, and verapamil, a non-competitive 
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inhibitor of P-gp, are included as positive controls. All experiments using the calcein-AM kit 

were carried out in black, clear bottom 96-well tissue culture treated plates. SK-N-BE(2) cells 

were seeded at a density of 5x105 cells/well in 100 μl of complete DMEM cell culture medium 

and incubated allowing for cells to attach and grow overnight (24h). On the day of the 

experiment, the plate was centrifuged for 5 min at 400 x g at room temperature, the medium 

aspirated from all the wells and replaced with 100 μl concentrations of test compounds: 

thapsigargin at (0.5, 1, 2 nM), brefeldin A (0.001, 0.01, 0.1 µM), bacitracin (0.2, 0.8, 1.6 mM), 

aspirin (1, 8, 16 mM) and castanospermine (0.5, 1, 2 mM). Included in the kit was cyclosporin 

A and verapamil which were used as positive diluted 1:1000 and 1:2000, respectively, into 

culture medium. 

The plates were incubated for 24h in CO2 incubator at 37°C. It is recommended for positive 

controls to be incubated for 30 min. At the end of the specified treatment interval, 100 μl of 

the prepared calcein-AM solution (2X) was added to each of the sample wells and incubated 

for additional 30 min in in CO2 incubator at 37°C. Then, the plates were centrifuged for 5 min 

at 400 x g at room temperature. The supernatants were aspirated and another 100 μl of the 

prepared calcein-AM solution (2X) added to each of sample wells and incubated for an 

additional 30 min in a CO2 incubator at 37°C. The plates were again centrifuged for 5 min at 

400 x g at room temperature, supernatants aspirated and finally 200 μl of ice cold medium 

added to each well. The plates were analyzed immediately with a fluorescent plate reader 

(Promega GloMaxTM Multiscan). Cells that have taken up calcein-AM display strong 

fluorescence intensity with excitation and emission wavelengths of 485 nm and 535 nm, 

respectively. 

2.8 Annexin-V Cy3™ Apoptosis Assay 

2.8.1 Principle of Annexin-V Cy3™ Apoptosis Assay 

The annexins are a group of homologous proteins that bind phospholipids in the presence of 

calcium. Apoptosis, or programmed cell death (PCD), is an important mechanism that most 
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cells use to negatively select cells deleterious to the host. Many cells of the immune system 

such as thymocytes, self-reactive B- and T-cells undergo apoptosis as a result of normal cell 

selection processes. The cellular changes involved in the process include loss of cell membrane 

phospholipid asymmetry during early stages of apoptosis. In living cells, phosphatidylserine 

(PS) is transported to the inner plasma membrane leaflet by the enzyme Mg-ATP dependent 

aminophospholipid translocase. However, during the onset of apoptosis, PS is transported to 

the external leaflet of the plasma membrane. PS is then available for binding to annexin-V and 

any of its conjugates in the presence of Ca2+ ions. Apoptotic cells can be differentiated from 

necrotic cells in several ways. The method employed by this kit involves the use of two labels: 

Annexin-Cy3 (AnnCy3) binds to PS present in the outer leaflet of the plasma membrane of 

cells starting the apoptotic process. The binding is observed as red fluorescence. 6-

Carboxyfluorescein diacetate (6-CFDA) is used to measure viability. When this non-

fluorescent compound enters living cells, esterases present hydrolyze it, producing the 

fluorescent compound, 6-carboxyfluorescein (6-CF). This appears as green fluorescence. Cells 

can be incubated either with AnnCy3 or 6-CFDA separately, or with the two compounds 

simultaneously. After labelling at room temperature, the cells are immediately observed by 

fluorescence microscopy. Live cells will be labelled only with 6-CF (green), while necrotic 

cells will label only with AnnCy3 (red). Cells in the early stage of apoptosis, however, will be 

labelled with both AnnCy3 (red) and 6-CF (green). 

2.8.2 Assay Conditions for Annexin-V Cy3™ Apoptosis Assay 

SK-N-BE(2) neuroblastoma cells were seeded into into 24-well plates, at density of 5x105 cells 

per well in 1 ml of culture medium. Cells were then incubated and allowed to attach for 24h. 

After 24h, cells were exposed to 100 μl of relative concentrations of test compounds: aspirin 

(1, 8, 16 mM), bacitracin (0.2, 0.8, 16 mM), castanospermine (0.5, 1, 2 mM), brefeldin A 

(0.001, 0.01, 0.1 µM) and thapsigargin (0.5, 1, 2 nM). Staurosporine (1 μg/ml) was used as 

positive control. After inducing apoptosis using the specified concentrations of ER stress 

inducers, cells were washed in PBS. Thereafter, cells were trypsinized (500 μl/well) and 
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detached cells were transferred to a 15-ml conical centrifuge tube and centrifuged for 5 min. 

The cell pellet was resuspended in PBS (1 ml). A 2-mm tip PAP pen (Sigma-Aldrich), a special 

marking pen that delivers a thin film-like green-tinged hydrophobic barrier when a circle is 

drawn around a specimen on a slide, was used to draw circles of 1 cm diameter on poly-prep-

poly-L-lysine-coated slides to restrict movement of cell suspension to the slide. A droplet (50 

μl) of cell suspension was deposited inside the circle and cells were allowed to attach to the 

slide by incubating at room temperature. 

The cells were washed twice with 50 μl of binding buffer (10 mM Hepes/NaOH, pH 7.5, 

containing 150 mM NaCl, 5 mM KCl and 2.5 mM CaCl2) and 50 μl of a double label staining 

solution (Sigma-Aldrich; Annexin-V Cy3.18 and 6-CFDA) added onto each circle and covered 

with foil. Cells were incubated at room temperature for 10 min. Slides were washed three times 

with 50 μl 1X binding buffer in order to remove excess unbound staining solution. A drop of 

binding buffer (35 μl) was add to the centre of each slide. A cover slip (24 X 50 mm) was 

placed onto the slide and results were viewed and recorded using a using a Nikon Eclipse 50i 

fluorescence microscope (IMP, Cape Town, South Africa, http://www.imp.co.za/). 

2.9 Statistical Analysis 

The Apotox-Glo™ Triplex cell viability, cytotoxicity and apoptosis assays were analyzed by 

One-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparisons test, 

using GraphPad Prism version 7.02 for Windows, GraphPad Software, La Jolla California 

USA, www.graphpad.com. Results are expressed as the mean ± SEM (n=4), from three 

independent experiments. A difference of P < 0.05 was considered to be significant as 

compared to untreated SK-N-BE(2) cells (vehicle-treated controls). Transformed raw data of 

P-gp ATPase activity (Calcein-AM assay) were analyzed by ANOVA followed by Tukey's 

multiple comparisons test with the significance criterion set a priori at 0.05.  Calcein-AM assay 

data are presented as mean ± 95% CI (n=4).  
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Introduction 

In this study, specific classes of N-glycosylation inhibitors (Table 1.13, Chapter 1) and 

pharmacologic modulators commonly used in targeting endoplasmic reticulum stress (ERS) 

and the unfolded protein response (UPR) signalling (Table 1.14, Chapter 1) were used to 

evaluate their effects on SK-N-BE(2) neuroblastoma cell proliferation, viability and induction 

of apoptosis.  

The compounds are: aspirin (acetyl salicylic acid, a non-steroidal anti-inflammatory drug 

known to activate PERK and upregulate pro-apoptotic transcription factor CHOP (GADD153) 

which, together with cleavage of caspase-12, are hallmarks of ERS-mediated responses); 

bacitracin (an antibiotic that ablates glycoprotein synthesis at its first stage and interferes with 

P-glycoprotein (P-gp) expression and localization); castanospermine (a plant alkaloid that 

specifically inhibits α-glycosidases I and II, thus blocking elongation of glycan chains and 

formation of mature glycoproteins); brefeldin A (a metabolic inhibitor of N-glycosylation and 

disruptor of microtubule and actin cytoskeleton organization) and thapsigargin (a potent 

inducer of GRP78 expression and ERS, and activator of the UPR through non-competitive 

inhibition of the sarcoplasmic/endoplasmic reticulum calcium ATPase/SERCA).  

To evaluate the effects of these compounds on SK-N-BE(2) cells, distinctive characteristics 

previously reported on the cells such as morphological characteristics and their expression of 

P-gp were retrieved and integrated with experimental data obtained in this study, using tissue 

methodologies to evaluate cell growth and proliferation, multiplex fluorescence and 

luminescence assays for cell proliferation, viability and apoptosis, microscopic visualization 
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of annexin-based fluorescence apoptosis and the Calcein-AM P-gp drug efflux assay. 

Statistical analyses were performed using GraphPad Prism version 7.02 for Windows 

(GraphPad Software, La Jolla California USA, www.graphpad.com). 

3.2 Morphology of SK-N-BE(2) Neuroblastoma Cells 

The continuous SK-N-BE(2) neuroblastoma (NB) cell line was derived from a bone marrow 

biopsy taken from a 2-year old boy with disseminated (metastatic) NB after repeated courses 

of chemotherapy and radiotherapy.766-769 SK-N-BE(2) cells can achieve a saturation density 

(confluence) in excess of 1 x 106 cells/cm2. The morphology of the cells fluctuates with some 

cells exhibiting long processes and others assuming an epithelioid organization (Figure 3.1). 

In culture, the cells often aggregate and form dense clusters or, at high density, detach from 

the culture substratum to from floating clumps or suspensions. 

 
Source: https://www.lgcstandards-atcc.org/~/media/45C32586E3974C539A8D3F5579EC5920.ashx 

Figure 3.1: Morphology of SK-N-BE(2) neuroblastoma cells 

3.3 Expression of P-Glycoprotein in SK-N-BE(2) Neuroblastoma Cells 

SK-N-BE(2) NB cells are known to overexpress the multidrug transporter, P-glycoprotein (P-

gp) (Figure 3.2A).785 Therefore, of particular relevance to the work presented in this thesis is 

http://etd.uwc.ac.za/

http://www.graphpad.com/


 

 

 

 

CHAPTER 3 | Results and Discussion 

131 

that P-gp is indeed expressed in SK-N-BE(2) NB cells.786 A recent study compared the 

expression of various members of the ATP-Binding Cassette (ABC) family of drug 

transporters, including ABCC1 (MRP1), ABCC2 (MPR2), ABCC6 (mrp6), ABCC8 (mrp8), 

ABCC10 (mrp10), ABCC11 (mrp11), ABCC12 (mrp12) and ABCC13 (mrp13), and found 

that these were expressed either at similar or elevated levels in drug-resistant NB cell lines 

compared to parental controls (Table 3.1).786 Western immunoblotting demonstrated 

significantly greater upregulation of P-gp in the SK-N-BE(2) subset doxorubicin-resistant 

(DoxR) SK-N-BE(2)C cells than the vorinostat-treated doxorubicin-resistant (DoxR-v) cells, 

relative to wild-type (WT) parental cells (Figure 3.2B).764 

Table 3.1: Relative expression of known drug-resistance genes in neuroblastoma cell lines 

 

Relative expression of known drug-resistance genes in doxorubicin resistant (DoxR) and vorinostat-treated 
doxorubicin-resistant (DoxR-v) cells compared to the parental lines. Results are expressed as a fold-change (all 
p<0.1). N.D. indicates no difference in gene expression (fold-change,1.5 and/or p<0.1). The following genes had 
no significant difference in any comparison: ABCC1 (MRP1), ABCC2 (MPR2), ABCC6 (mrp6), ABCC8 
(mrp8), ABCC10 (mrp10), ABCC11 (mrp11), ABCC12 (mrp12), ABCC13 (mrp13), MGMT, SOD, HDAC1-8. 
doi:10.1371/journal.pone.0040816.t001. 

Source:764 Lautz TB, Jie C, Clark S, Naiditch JA, Jafari N, Qiu YY, Zheng X, Chu F, Madonna MB. The effect 
of vorinostat on the development of resistance to doxorubicin in neuroblastoma. PloS One 2012;7(7):e40816, 
with permission (This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400660/). 

 

3.4 Growth Curve Analysis of SK-N-BE(2) Neuroblastoma Cells 

A cell viability growth curve for SK-N-BE(2) cells is shown in Figure 3.3. SK-N-BE(2) NB 

cells were seeded at a density of 100,000 cells per well onto 96-well plates and subsequently 

monitored over a 4-day period. 
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A. Expression of mdrl/Pgp in nine human neuroblastoma cell lines. 

Source:786 Bates SE, Mickley LA, Chen YN, Richert N, Rudick J, Biedler JL, Fojo AT. Expression of a drug 
resistance gene in human neuroblastoma cell lines: Modulation by retinoic acid-induced differentiation. 
Molecular and Cellular Biology 1989;9(10):4337-4344, with permission from the American Society for 
Microbiology (ASM), under the Creative Commons license and ASM Journals Public Access Policy 
(http://journals.asm.org/site/misc/index_compliance.xhtml). 

 

B. Western immunoblotting of P-gp in doxorubicin-resistant (DoxR) and vorinostat-treated doxorubicin-
resistant (DoxR-v) cells compared to wild-type (WT) cells. 

Source:764 Lautz TB, Jie C, Clark S, Naiditch JA, Jafari N, Qiu YY, Zheng X, Chu F, Madonna MB. The effect 
of vorinostat on the development of resistance to doxorubicin in neuroblastoma. PloS One 2012;7(7):e40816, 
with permission (This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400660/). 

Figure 3.2: Upregulation of P-glycoprotein expression in neuroblastoma cell lines 

Cell growth progressed through an initial log phase and then reached a plateau by day 3, after 

which time the viability began to decline. Viable cell counts were compared by one-way 

ANOVA with Tukey’s multiple comparisons post-hoc test using GraphPad Prism 7 

(www.graphpad.com). The one-way ANOVA tests yielded p values as indicated for control vs 

days 1, 2, 3 and 4, respectively. On all days, the viable cell count of SK-N-BE(2) NB cells was 

significantly greater (p<0.05) than that of day 0.  
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Values are means ± SEM (n=4) of a representative experiment. One-way ANOVA (Tukey’s multiple comparisons 
test) yielded p values as indicated for control vs days 1, 2, 3 and 4, respectively.  

Figure 3.3: Growth curve analysis of SK-N-BE(2) neuroblastoma cells in culture 

3.5 Cell Counting Kit-8 (CCK-8) Cell Viability Assays 

SK-N-BE(2) NB cell proliferation was assessed by the CCK-8 cell viability assay as described 

in the research methodology (Chapter 2). Cells (5 x 104 cells/ml) were seeded in 96-well plates 

and incubated for 24h, 48h and 72h with incremental log10 concentrations of aspirin, bacitracin, 

castanospermine, brefeldin A and thapsigargin. Cell viability in the presence of different 

concentrations of these ERS inducers or glycoprotein processing inhibitors was determined by 

comparison with untreated control cells, i.e., the data points represent blank-corrected 

absorbances at 460 nm. Figure 3.4 shows the CCK-8 dose-response curves for test compounds 

assessed at varying concentrations using the GraphPad Prism 7 (www.graphpad.com) four-

parameter non-linear regression model with variable Hill slope. Table 3.2 summarizes the non-

linear regression analysis data and validation parameters of the respective dose-response 

curves for the test compounds.   
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SK-N-BE(2) neuroblastoma cells were exposed to log10 increments of ERS inducer or glycoprotein processing 
inhibitor for the times indicated. Data points (blank-corrected absorbance at 460 nm) are the means of 
quadruplicate measurements (n=4), representing one of 3 independent experiments. The non-linear regression 
model used does not assume a standard slope, but rather fits the Hill slope from the data, and so is called a Variable 
slope model or a four-parameter dose-response curve, or four-parameter logistic curve, abbreviated as 4PL. 
MBCA, mean blank-corrected absorbance. 

Figure 3.4: CCK-8 dose-response curves for test compounds assessed at varying concentrations   
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Table 3.2: Regression analysis data and summary of dose-response parameters 

Drug (µM) Exposure Time 
(Hours) 

IC50 (µM) 95% CI (µM) R2 

Aspirin (mM) 

24 16.16 6.74e-007 to 3.87e008 0.99 

48 9.95 1.58e-008 to 6.27e009 0.99 

72 1.39 0.60 to 3.22 0.99 

Bacitracin (mM) 

24 1.02 0.75 to 1.38 0.99 

48 0.50 2.22e-013 to 1.1e012 0.98 

72 0.26 0.009 to 7.81 0.96 

Castanospermine (mM) 

24 0.58 0.00017 to 1903 0.99 

48 1.04 0 to ∞ 0.99 

72 2.22 0 to 4.13e026 0.97 

Brefeldin A (µM) 

24 0.20 0 to ∞ 0.97 

48 0.25 0.06 to 1.02 0.99 

72 0.06 0.042 to 0.08 0.99 

Thapsigargin (nM) 

24 0.52 0.02 to 15.56 0.99 

48 1.01 0.54 to 1.89 0.99 

72 2.12 0.14 to 32.79 0.98 

IC50, half maximal inhibitory concentration of a drug estimated by the non-linear four-parameter logistic 
regression model; ∞, infinity symbol; 95% CI, 95 percent confidence interval; R2, regression coefficient 
(goodness of fit). All regression plots passed the test for homoscedasticity (equal variances, homogeneity of 
variance, i.e., same scatter across the independent variable around the regression line). 

 

The half maximal inhibitory concentrations (IC50) of aspirin for SK-N-BE(2) NB cells after 

24h, 48h and 72h exposure times were 16.16 µM (95% CI: 6.74e-007 to 3.87e008; R2=0.99), 

9.95 µM (95% CI: 1.58e-008 to 6.27e009; R2=0.99) and 1.39 µM (95% CI: 0.60 to 3.22; 

R2=0.99), respectively. Thus, aspirin exhibited the greatest potency after 72h exposure (Figure 

3.4A and Table 3.2). In the case of bacitracin, a similar pattern to that of aspirin was observed, 

with a peak potency after 72h, i.e., the lowest IC50 of 0.26 µM (95% CI: 0.009 to 7.81; 

R2=0.96), representing a 4-fold and 2-fold increased potency over values estimated for 24h 

(IC50 of 1.02 µM; 95% CI: 0.75 to 1.38; R2=0.99) and 48h (IC50 of 0.5 µM; 95% CI: 2.22e-013 

to 1.1e012; R2=0.98), respectively (Figure 3.4B and Table 3.2).  
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Castanospermine showed an inverse potency pattern (decreased IC50 equates to increased 

potency) compared to bacitracin, i.e., its IC50 of 2.22 µM (95% CI: 0 to 4.13e026; R2=0.97) 

increased 4-fold and 2-fold over values obtained for 24h (IC50 of 0.58 µM; 95% CI: 0.00017 

to 1903; R2=0.99) and 48h (IC50 of 0.5 µM; 95% CI: 0 to ∞; R2=0.99), respectively (Figure 

3.4C and Table 3.2). A 95% CI of 0 to ∞, in the case of the 48h exposure of SK-N-BE(2) NB 

cells to castanospermine signifies that the non-linear dose-response curve did not entirely fit 

the four-parameter logistic model, despite a regression coefficient of 0.99 (Figure 3.4C and 

Table 3.2). 

Almost identical potencies were obtained for brefeldin A, following exposure of SK-N-BE(2) 

NB cells to this plant alkaloid inhibitor of glycosidases for 24h (IC50 of 0.20 µM; 95% CI: 0 

to ∞; R2=0.97) and 48h (IC50 of 0.25 µM; 95% CI: 0.06 to 1.02; R2=0.99). However, brefeldin 

A exerted the greatest potency after 72h (IC50 of 0.06 µM; 95% CI: 0.042 to 0.08; R2=0.99), 

representing a 3-fold and 4-fold increase in potency over the 24h and 48h exposure periods, 

respectively (Figure 3.4D and Table 3.2). Thapsigargin’s potency profile (Figure 3.4E and 

Table 3.2) mimics closely that of castanospermine (Figure 3.4C and Table 3.2). 

3.6 Apotox-Glo™ Triplex Cell Cytotoxicity, Viability and Apoptosis Assays 

The effects of aspirin, bacitracin, castanospermine, brefeldin A and thapsigargin on SK-N-

BE(2) neuroblastoma cell cytotoxicity, viability and apoptosis were measured using the 

Promega MultiTox-Fluor™ and Caspase-Glo® 3/7 Triplex assay kit according to the 

manufacturer’s protocol. The results are presented in Figures 3.5 to 3.9 below and interpreted 

as follows: The Triplex cell-based assay simultaneously measures three parameters—cell 

viability, cytotoxicity, and apoptosis. The method combines two fluorescent and one 

luminescent assay chemistries offered by Promega (Caspase-Glo® 3/7 and MultiTox-Fluor™ 

Assays) in the same assay well to extract information about viability, cytotoxicity and caspase 

activation events. These parameters are particularly useful to define mechanisms associated 

with a cytotoxic profile of an investigative compound.  
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Values are means ± SEM (n=4) of a representative experiment. One-way ANOVA followed by Dunnett’s multiple 
comparisons test yielded P values for comparison of treated vs untreated SK-N-BE(2) cells (vehicle-treated 
controls). 

Figure 3.5: Effects of aspirin on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis  
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Values are means ± SEM (n=4) of a representative experiment. One-way ANOVA followed by Dunnett’s multiple 
comparisons test yielded P values for comparison of treated vs untreated SK-N-BE(2) cells (vehicle-treated 
controls). 

Figure 3.6: Effects of bacitracin on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis  
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Values are means ± SEM (n=4) of a representative experiment. One-way ANOVA followed by Dunnett’s multiple 
comparisons test yielded P values for comparison of treated vs untreated SK-N-BE(2) cells (vehicle-treated 
controls). 

Figure 3.7: Effects of castanospermine on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis  
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Values are means ± SEM (n=4) of a representative experiment. One-way ANOVA followed by Dunnett’s multiple 
comparisons test yielded P values for comparison of treated vs untreated SK-N-BE(2) cells (vehicle-treated 
controls). 

Figure 3.8: Effects of brefeldin A on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis  
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Values are means ± SEM (n=4) of a representative experiment. One-way ANOVA followed by Dunnett’s multiple 
comparisons test yielded P values for comparison of treated vs untreated SK-N-BE(2) cells (vehicle-treated 
controls). 

Figure 3.9: Effects of thapsigargin on SK-N-BE(2) NB cell cytotoxicity, viability and apoptosis  
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The Triplex assay is comprised of the Promega MultiTox-Fluor™ and Caspase-Glo® 3/7 

Assays. The MultiTox-Fluor™ Assay is a non-lytic chemistry that allows measurement of live 

and dead cells in a single sample well. Specifically, for live cell assessment, live-cell protease 

activity is measured by the fluorogenic, cell-permeant peptide substrate Gly-Phe-7-amino-4-

trifluoromethyl coumarin (GFAFC). This live-cell protease activity marker labels only live 

cells because it becomes inactive upon loss of membrane integrity and leakage into the 

surrounding culture medium, and thus does not contribute to the dead cell measurement.  

For dead cell assessment, a second protease activity marker, the cell-impermeant peptide 

substrate bis-(Ala-Ala-Phe)-rhodamine 110 (bis-AAFR110), is used to measure the activity of 

a dead-cell protease from cells that have lost membrane integrity and leaked the biomarker into 

the surrounding culture medium.  

The Caspase-Glo® 3/7 Assay is a luminescent assay that measures caspase-3 and -7 activities 

in cultures of cells, which are indicative of apoptosis. The assay provides a proluminescent 

caspase-3/7 substrate which contains the tetrapeptide sequence DEVD (aspartic acid, glutamic 

acid, valine, aspartic acid). This substrate is cleaved to release aminoluciferin, a substrate of 

luciferase used in the production of light. The amount of light produced correlates with 

caspase-3/7 activity.  

Together, these assays provide a researcher with three data parameters per well (cell viability, 

cytotoxicity, and caspase activity) which can be used to more accurately profile compound 

affects on cells. The following convention pertains: cytotoxicity (MultiTox-Fluor, dead cells), 

viability (Multi-Tox-Fluor, live cells) and Caspase-Glo 3/7 (apoptosis-caspase activity).773,776 

Compared to the untreated cell control, the cytotoxicity fluorescence of 0.1 and 10 mM aspirin 

increased significantly, p=0.003 and p<0.0001, respectively. The other concentrations did not 

produce any cytotoxic effects on SK-N-BE(2) neuroblastoma cells (Figure 3.5A). Aspirin in 

the log10 increment concentration range of 0.0001 to 10 mM had no effect on the viability 
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fluorescence of SK-N-BE(2) cells (Figure 3.5B), but at 1 mM (p=0.005) and 10 mM 

(p=0.0001) caused significant reduction in apoptosis luminescence (Figure 3.5C) compared 

with control.  

Bacitracin at concentrations of 10 (p=0.0004) and 100 mM (p=0.0006) produced a reduction 

in cytotoxicity with a commensurate increase in viability (Figures 3.6A and B). However, at 

10 mM (p=0.0001), bacitracin significantly increased caspase-dependent apoptosis whereas at 

100 mM (p=0.0001), apoptosis was significantly reduced in SK-N-BE(2) cells relative to 

untreated controls (Figure 3.6C).  

Castanospermine in the log10 concentration range of 0.01 to 1000 µM had no cytotoxic effect 

on SK-N-BE(2) cells (Figure 3.7A), whereas castanospermine concentrations of 0.01 to 100 

µM did not affect cell viability (Figure 3.7B), but somewhat perplexing at 1000 µM, viability 

(Figure 3.7B) and apoptosis (Figure 3.7C) in these cells were significantly increased 

(p=0.0001) over that of untreated control.  

Brefeldin A concentrations of 2 µM (p=0.0008), 20 µM (p=0.0188) and 200 µM (p=0.0333) 

exerted significant cytotoxic effects on SK-N-BE(2) cells (Figure 3.8A), but in the log10 

concentration range of 0.002 to 200 µM did not affect cell viability (Figure 3.8B). The 

cytotoxicity of brefeldin A (Figure 3.8A) was commensurate with an increase in apoptosis after 

treatment of SK-N-BE(2) cells with 0.2, 2, 20 and 200 µM concentrations (p≤0.0001 in all 

cases, Figure 3.8C).  

Thapsigargin only significantly increased cytotoxicity fluorescence in SK-N-BE(2) cells at a 

concentration of 1000 nM (p=0.0001, Figure 3.9A), commensurate with a decrease in viability 

fluorescence at the same concentration (p=0.0001, Figure 3.9B). Apoptosis luminescence in 

SK-N-BE(2) cells was increased at thapsigargin concentrations of 1 nM (p=0.0001), 10 nM 

(p=0.0003) and 1000 nM (p=0.0001), but decreased at 100 nM (p=0.0001, Figure 3.9C). 
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3.7 Annexin-V Cy3™ Apoptosis Assays 

The Annexin-V Cy3™ Apoptosis Assay kit provides a rapid and convenient assay for 

apoptosis in cells. Annexin-Cy3 binds to phosphatidylserine (PS) in apoptotic cells and is 

visualized as red fluorescence. 6-Carboxyfluorescein diacetate (6-CFDA) is used to measure 

cell viability. Upon entering of 6-CFDA (non-fluorescent compound) into living cells, 

esterases cleave it, producing the fluorescent compound, 6-carboxyfluorescein (6-CF). This 

appears as green fluorescence. Cells are incubated either with Annexin-Cy3 or 6-CFDA 

separately or simultaneously. After labelling at room temperature, the cells are immediately 

observed by fluorescence microscopy. Live cells will be labelled only with 6-CF (green), while 

necrotic cells will label only with Annexin-Cy3 (red). Cells in the early stage of apoptosis, 

however, will be labelled with both Annexin-Cy3 (red) and 6-CF (green).  

To induce apoptosis, SK-N-BE(2) cells were exposed for 24h to selected concentrations of 

aspirin (1, 8, 16 mM), bacitracin (0.2, 0.8, 16 mM), castanospermine (0.5, 1, 2 mM), brefeldin 

A (0.001, 0.01, 0.1 µM) and thapsigargin (0.5, 1, 2 nM), using staurosporine as a positive 

control for apoptosis, as described in the research methodology (Chapter 2). Morphological 

observation of apoptosis induced by these compounds in SK-N-BE(2) cells was done by 

fluorescence microscopy and images were processed using Nikon Eclipse 50i software (IMP, 

Cape Town, South Africa, http://www.imp.co.za/). 

Figure 3.10 shows the fluorescence micrographs of the effects of aspirin on SK-N-BE(2) cell 

apoptosis. Untreated SK-N-BE(2) cells displayed live cells (green fluorescence) as well as 

canonical apoptotic transformation as evidenced by various morphological changes, including 

apoptotic bodies, nuclear condensation and cell shrinkage, which were also observed under 

fluorescence microscopy, but very few necrotic cells (red fluorescence, Figures 3.10A to 

3.14A). The staurosporine apoptosis-positive control micrograph shows mostly live cells and 

very few green-and-red fluorescing cells (cells in the process of undergoing apoptosis) and 

some fully apoptosed cells (Figure 3.10B to 3.14B).  
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A. Untreated Cells (Negative Control) 

 
B. Positive Control (Staurosporine) 

 
C. 1 mM Aspirin  

 
D. 8 mM Aspirin  

 

E. 16 mM Aspirin  

Figure 3.10: Fluorescence micrographs of the effects of aspirin on SK-N-BE(2) cell apoptosis  
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A. Untreated Cells (Negative Control) 

 
B. Positive Control (Staurosporine) 

 
C. 0.2 mM Bacitracin 

 
D. 0.8 mM Bacitracin 

 
E. 1.6 mM Bacitracin 

Figure 3.11: Fluorescence micrographs of the effects of bacitracin on SK-N-BE(2) cell apoptosis  
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A. Untreated Cells (Negative Control) 

 
B. Positive Control (Staurosporine) 

 
C. 0.5 mM Castanospermine 

 
D. 1 mM Castanospermine 

 
E. 2 mM Castanospermine 

Figure 3.12: Fluorescence micrographs of the effects of castanospermine on SK-N-BE(2) cell 

apoptosis  
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A. Untreated Cells (Negative Control) 

 
B. Positive Control (Staurosporine) 

 
C. 0.001 mM Brefeldin A  

 
D. 0.01 mM Brefeldin A 

 
E. 0.1 mM Brefeldin A 

Figure 3.13: Fluorescence micrographs of the effects of brefeldin A on SK-N-BE(2) cell apoptosis  
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A. Untreated Cells (Negative Control) 

 
B. Positive Control (Staurosporine) 

 
C. 0.5 nM Thapsigargin  

 
D. 1 nM Thapsigargin 

 
E. 2 nM Thapsigargin 

Figure 3.14: Fluorescence micrographs of the effects of thapsigargin on SK-N-BE(2) cell apoptosis  
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SK-N-BE(2) cells treated with 1, 8 and 16 mM aspirin showed exclusively live cells (Figure 

3.10C-E). Exposure of cells to 0.2 and 0.8 mM bacitracin yielded equal proportions of live and 

mitotic cells (Figure 3.11C and D), whereas 1.6 mM bacitracin showed only live non-dividing 

cells (Figure 3.11E). Castanospermine at 0.5, 1 and 5 mM also did not produce any observable 

apoptosis luminescence in SK-N-BE(2) cells (Figure 3.12C-E) as did 0.001 mM brefeldin A 

(Figure 3.13C), but a negligible percentage of apoptosis-positive cells was noted in cells treated 

with 0.01 and 0.1 mM brefeldin A (Figure 3.13D and E). Similarly, thapsigargin at 0.5, 1 and 

2 nM did not produce any significant apoptosis in SK-N-BE(2) cells (Figure 3.14 C to E). 

3.8 Measurement of P-Glycoprotein-Mediated Efflux Function 

Calcein–acetoxymethylester (calcein-AM) was used as a neutral substrate to determine ABC 

transporter activity, i.e., P-glycoprotein (P-gp) efflux function on the basis of fluorescence.778-

781,787 The Cayman’s Multi-Drug Resistance Assay Kit (Calcein-AM) was used as described in 

the research methodology (Chapter 2). The rate of calcein accumulation in human MDR1-

expressing cells is significantly lower relative to control cells, while various drug-resistance 

reversing agents (verapamil, vinblastine, oligomycin, cyclosporin A and MDR1-specific 

monoclonal antibodies) greatly increase calcein trapping only in the MDR1-expressing cells.779  

In this study, cyclosporin A, a competitive inhibitor, and verapamil, a non-competitive 

inhibitor of P-gp, were included as positive controls. Representative results of calcein retention 

in SK-N-BE(2) cells treated for 24h with aspirin, bacitracin, castanospermine, brefeldin A and 

thapsigargin, relative to control, are summarized in Figure 3.15A to E. 

In all cases (except for cyclosporin A, Figure 3.15D) cycosporine A and verapamil (inhibitors 

of P-gp-mediated efflux function) significantly (p<0.05) increased calcein retention in SK-N-

BE(2) cells whereas the concentrations of aspirin, bacitracin, castanospermine, brefeldin A and 

thapsigargin tested had a reducing effect (Figure 3.15A-C and E). 
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The extent of calcein-AM retention was determined by fluorescence measurements using a plate reader. Data were 
transformed to percentages, with the control set as 100%. Values are means ± 95% CI (n=4) of a representative 
experiment. One-way ANOVA followed by Tukey’s multiple comparisons test yielded P values for comparison of 
treated vs control SK-N-BE(2) cells (vehicle-treated controls). Cyclosporin A, a competitive inhibitor, and verapamil, 
a non-competitive inhibitor of P-gp, were included as positive controls. 

Figure 3.15: Effects of test compounds on P-glycoprotein function in SK-N-BE(2) neuroblastoma cells   
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3.9 Summary 

This chapter presented the results obtained in this study. The SK-N-BE(2) is a model for a 

continuous neuroblastoma (NB) cell line. In culture, these cells grow as epithelial-like monolayers 

exhibiting cellular elongation processes. The cells form dense aggregates and when overgrown or 

post-confluent, they lift from the culture substratum to form floating clusters. SK-N-BE(2) NB 

cells, like most drug-resistant NB cell lines, overexpress the multidrug transporter, P-glycoprotein 

(P-gp) and various other members of the ATP-Binding Cassette (ABC) family of drug efflux 

pumps. Growth curve analysis of SK-N-BE(2) cells indicated that the cells conformed to canonical 

log-plateau-decline cell proliferation kinetics.  

CCK-8 cell proliferation log10 incremental dose-response assays for the N-glycosylation inhibitors 

and pharmacologic modulators of ERS and UPR signalling, were used to estimate their time-

dependent (24, 48, 72h) half maximal inhibitory concentrations (IC50) or potencies according to 

the non-linear four-parameter logistic regression model for variable Hill slopes. These IC50 values 

were used to intuitively select concentrations of the test compounds for their further analyses of 

Annexin-V Cy3 apoptosis and measurement of P-gp-mediated efflux function in SK-N-BE(2) NB 

cells.  

The Apotox-Glo™ Triplex (cell cytotoxicity, viability and apoptosis) assays showed that aspirin 

produced significant cytotoxicity fluorescence at concentrations of 0.1 an 10 mM, but at all 

concentrations of aspirin tested no effect on viability fluorescence was observed whereas at 1 and 

10 mM it reduced apoptosis luminescence, as compared with control. Bacitracin at concentrations 

of 10 and 100 mM decreased cytotoxicity fluorescence with a commensurate increase in viability 

at these concentrations, however, at 10 mM, bacitracin significantly increased caspase-dependent 

apoptosis whereas, at 100 mM, apoptosis was significantly reduced in SK-N-BE(2) cells relative 

to untreated controls.  
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Generally, castanospermine in the log10 concentration range of 0.01 to 1000 µM did not produce 

any cytotoxic effects, but cell viability and apoptosis was increased at 1000 µM. Brefeldin A at 2, 

20 and 200 µM exerted significant cytotoxic effects with a parallel increase in apoptosis 

luminescence at the entire log10 concentration range of 0.002 to 200 µM, but viability remained 

essentially unchanged. Thapsigargin only significantly increased cytotoxicity and viability 

fluorescence at 1000 nM, but apoptosis luminescence was increased at 1, 10 and 1000 nM, while 

at 100 nM a decreased apoptosis was observed.  

Annexin-V Cy3 apoptosis assays revealed mostly live cells and occasional apoptotic cells for all 

the test compounds. In all cases, except of course for cyclosporin A and verapamil (inhibitors of 

P-gp-mediated efflux function), a significant increased calcein retention in SK-N-BE(2) cells were 

observed, but for all the concentrations of aspirin, bacitracin, castanospermine, brefeldin A and 

thapsigargin tested no effect on P-gp function could be demonstrated. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE PERSPECTIVES 

4.1 Introduction 

Neuroblastoma (NB) accounts for about 10% of all childhood cancers and is responsible for 

close to 15% of cancer-related deaths in the paediatric population.14,16 Newly diagnosed 

children invariably present with metastatic disease or aggressive multidrug resistant (MDR) 

tumours and are therefore at high risk of treatment failure, associated with poor survival 

outcomes and high mortality rates. In paediatric malignancies, including NB, various cancer 

stem cell (CSC) phenotypes overexpress multidrug-resistance (MDR) or ABC 

transporters293,294,319-323 which have attracted interest in their therapeutic targeting to overcome 

chemoresistance.7,144,294,315,324,325 Recent evidence suggests that alterations in glycolipids and 

protein glycosylation pathways are associated with NB biological behaviour.527 Current efforts 

are increasingly being directed at defining the molecular features of the tumour 

microenvironment (TME), particularly with regard to changes in the expression of glycan-

related genes, as well as enzymes such as glycosyltransferases and glycosidases.546 The role of 

protein glycosylation in cancers759 and its potential therapeutic applications in NB have also 

become focal points in recent years.494 

4.2 Research Hypothesis and Objectives of the Study 

In this study, the N-glycosylation inhibitors and ERS inducers—aspirin, bacitracin, 

castanospermine, brefeldin A and thapsigargin—were evaluated for their effects on SK-N-

BE(2) NB cell growth, viability, apoptosis and P-gp function. It was hypothesized that N-

glycosylation inhibitors and ERS inducers will alter the expression of SK-N-BE(2) cancer cell 

hallmarks evaluated, namely, cell survival (proliferation, viability and apoptosis) and P-gp-
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mediated drug efflux function. Based on the results of this study it can be accepted that, indeed, 

these investigative compounds altered the proliferation, viability, apoptosis and P-gp function 

in SK-N-BE(2) NB cells, albeit somewhat unconvincingly because of the conflicting and 

duality of responses observed. 

4.3 Context and Significance of the Study 

4.3.1 P-Glycoprotein, Endoplasmic Reticulum Stress and Glycosylation 

The expression of the transmembrane multidrug resistance (MDR)-associated drug efflux 

pump, P-glycoprotein (P-gp), by cancer cells is one of the principal reasons for failure of cancer 

chemotherapy.314 Elevated expression of the ABC transporter genes confers both clinical and 

in vitro drug resistance and correlates with poor prognosis in NB.327,788 MDR is mediated by 

the enhanced efflux of drugs (and thus reduced intracellular retention and cytotoxicity) by 

transmembrane ABC transporters, of which P-gp is a member.311 The SK-N-BE(2) NB cell 

line used in this study is known to overexpress P-gp.785,786 P-gp is modified post-translationally 

by N-glycosylation which is thought to play a significant role in its maturation, location and 

activity as a drug transporter. Accordingly, inhibitors of glycosylation have been shown to 

perturb P-gp in various ways.593 

The endoplasmic reticulum (ER) regulates the synthesis, folding and aggregation of 

intracellular proteins.637,643,789,790 Relentless aberrant protein glycosylation within the ER may 

induce ER stress (ERS) and dysregulation of signal transduction pathways coupled to the 

unfolded protein response (UPR) which culminate in apoptosis or programmed cell death.683 

The wide use of glycosylation inhibitors and oligosaccharide-processing reinforces the 

significance of glycosylation patterns of cell surface glycoproteins and glycolipids in the 

malignant phenotype.593,637 Thus, efforts devoted to pharmacological targeting of the ERS and 

UPR are intensifying at a startling rate. 660,661,663,675,692-697 In the present study, various 

glycosylation inhibitors and ERS inducers (aspirin, bacitracin, castanospermine, brefreldin A 

and thapsigargin) were tested for their efficacy to induce apoptosis in the SK-N-BE(2) NB cell 
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line and inhibition of P-gp-mediated drug transport function and drug resistance. Overall, the 

significance of the study relates to the tenet that, transcriptionally, MYCN (a hallmark of NB) 

directly regulates the ABC transporters,328 and their overexpression correlates with poor 

prognosis.327,329 Most aggressive NBs exhibit MDR,311 attributable to p53 mutations and/or a 

loss of function induced during chemotherapy,331 which further worsens the probability of 

relapse.333,334  

4.3.2 Aspirin 

In this study, aspirin (acetylsalicylic acid) produced cytotoxicity towards SK-N-BE(2) cells, 

but viability was not affected. Cytotoxicity does not necessarily imply cell killing. Also, aspirin 

had no effect on cell apoptosis at low concentrations, but at higher concentrations it decreased 

apoptosis induction. Aspirin, at the concentrations studied, did not interfere with P-gp function 

as measured by the calcein retention assay. These findings may be significant from the 

perspecive that the Wnt/beta-catenin pathway is a key modulator of aspirin-induced apoptosis 

in mesenchymal stem cells (MSCs) via regulation of mitochrondrial/caspase-3 function.791 

However, it has been shown that aspirin has dual effects (it can either enhance or decrease) on 

cyclo-oxygenase-2 (COX-2) expression mediated via the Wnt/beta-catenin pathway. 

Remarkably, low-dose aspirin has been found to impede inflammatory tumour progression in 

vivo in a transgenic mouse model of neuroblastoma.792  

Aspirin affects the activity and expression of several molecules implicated in ERS, triggering 

a variety of cellular processes, including transcriptional activation of ERS responsive genes.725 

Aspirin was also found to induce in vitro P-gp expression and to suppress proliferation 

(contrasting effects) in LNCaP prostate cancer cells.793 Aspirin also enhances MDR1 

expression in human Molt-4 T lymphoma cells.794 Recently, the post-diagnosis use of aspirin 

in patients with gastrointestinal tract cancer was demonstrated to correlate with increased 

survival, hence lending support to the hypothesis that the anticancer effects of aspirin are not 

tumour-site specific and may be modulated through the TME.795 Interestingly, among women 
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living at least 1 year after a breast cancer diagnosis, aspirin use was associated with a decreased 

risk of distant recurrence and breast cancer death.796 Thus, regular aspirin use after a cancer 

diagnosis may improve survival outcomes in the adjuvant setting where the risk:benefit ratio 

will tip the scales away from the known adverse effects of this non-steroidal anti-inflammatory 

drug.726,797  

4.3.3 Bacitracin 

Bacitracin is a peptide antibiotic widely used as an inhibitor of protein disulfide isomerase 

(PDI) to validate the role of the protein-folding catalyst in a variety of molecular pathways.628 

Bacitracin interferes with ER function and enhances ER stress-mediated apoptosis in 

melanoma cells via up-regulation of ER chaperones.798 In this study, bacitracin, was shown to 

exert concentration-dependent effects on apoptosis in SK-N-BE(2) cells, i.e., at low 

concentrations it increased caspase-dependent apoptosis, but at higher concentrations it 

reduced apoptosis. Such duality of effects is difficult to explain in the absence of mechanistic 

studies, especially since it was observed that bacitracin also decreased cytotoxicity 

commensurate with increased viability, but had no impact on P-gp efflux function. Recently, 

bacitracin was reported to decrease phosphorylated focal adhesion kinase (p-FAK) and 

secreted matrix metalloproteinase-2 (MMP-2), which are downstream of integrin and play a 

major role in cell migration and invasion, and thus offering a rational therapeutic strategy for 

targeting malignant glioblastoma.627 Bacitracin may also have purported application in 

delineating the interrelationships of ulcerative colitis, expression of ABC drug transporters, 

inflammation and the pathogenesis of colorectal cancer.799  

4.3.4 Castanospermine 

Castanospermine is a plant alkaloid and natural inhibitor of glycosidases and thus blocks 

elongation of glycan chains.800 Cells exposed to castanospermine express altered levels of cell 

surface glycoprotein receptors.593,801,802 Results obtained in this study showed that 

castanospermine at concentrations tested produced no cytotoxic effects, but at a high 
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concentration (1000 µM) resulted in contrasting effects, viz, increased viability and apoptosis, 

but no effect on calcein retention. Previous studies have shown that castanospermine 

effectively altered endothelial cell glycosylation, blocked angiogenesis, and reduced tumour 

growth.803 

4.3.5 Brefeldin A 

Brefeldin A is an inhibitor of the secretory protein traffic pathway, i.e., it blocks translocation 

of proteins from the ER to the Golgi complex, that causes accumulation of secretory proteins 

in the ER, and hence ERS.665,675,685,804 Brefeldin A is a regulator of the ER resident chaperone 

GRP78 (a master regulator of ERS and the UPR) gene expression in mammalian cells.609,805 In 

this study, brefeldin A induced cytotoxicity and apoptosis in SK-N-BE(2) cells, but no 

inhibition of P-gp function was evident in the concentration range tested. Brefeldin A is 

regarded as an inhibitor of P-gp.710 Induction of ER stress and inhibition of ARF activity are 

central to the proof of concept of the anticancer potential of brefeldin A.675 In growth inhibition 

assays using human breast carcinoma MDA-MB-435 cells, brefeldin A showed synergism in 

combination with taxol and tiazofurin.806 A water-soluble pro-drug analogue of brefeldin, 

called breflate, has been developed to facilitate parenteral administration of brefeldin as an 

investigational antineoplastic in clinical trials.807 However, clarification of the complex 

signalling pathways and associated ERS that stem from the Golgi complex in response to 

brefeldin A is needed.668,675,686 

4.3.6 Thapsigargin 

Thapsigargin is a high affinity and widely-used inhibitor of ER Ca2+ transport ATPases.808 

Thapsigargin is a potent inducer of GRP78 expression and ERS and activator of the UPR 

through non-competitive inhibition of SERCA (sarcoplasmic/endoplasmic reticulum calcium 

ATPase) pump.665,675 In this study, thapsigargin increased cytotoxicity and apoptosis in SK-N-

BE(2) cells, but had no effect on P-gp function as measured by the calcein retention assay. 

Recent studies have shown that thapsigargin and other well-known ER homeostasis modifiers 
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induce ERS and epithelial-mesenchymal transition (EMT) in lung adenocarcinoma cells.809 

Thapsigargin has been demonstrated to induce apoptosis when autophagy (both processes are 

regulated by the ROS-dependent pathway) is inhibited in hepatoma (HepG2) cells.744 

Thapsigargin also sensitizes human oesophageal cancer to TRAIL-induced apoptosis via 

AMPK activation.698 It has been reported that inhibition of caspase activity significantly 

reduced cell death in both tunicamycin- or thapsigargin-treated cells and that caspases are 

crucial mediators in inducing cell death in response to ERS.810  

This well-documented efficacy of ERS aggravators (ERSAs) such as thapsigargin, 

tunicamycin and nelfinavir offers a cogent targeted cancer chemotherapeutic approach.675 A 

novel thapsigargin-based targeted prodrug, mipsagargin, has shown promise in a phase I 

clinical trial in patients with refractory, advanced or metastatic solid tumours.811 Intracellular 

Ca2+ is a key signalling pathway modulator of NB pathophysiology and thus presents a 

conceivable drug target for the treatment of NB, particulary using thapsigargin to monitor NB 

events such as differentiation, proliferation, drug resistance, apoptosis and 

autophagy.680,686,732,740,812 Related work drawing attention to the cross-talk between autophagy 

and ER homeostasis illustrated that induction of ERS by thapsigargin involves impairment of 

autophagosome-lysosome fusion.732,813,814   

4.4 Limitations of the Study 

This study is limited to SK-N-BE(2) NB cells. Considerable effort was made to study a range 

of concentrations of the investigative compounds in all assays, but funding constraints 

hindered such objectives.  

4.5 Conclusions and Future Outlook 

Neuroblastoma (NB) is the most frequent type of solid extra-cranial tumour in children 

associated with approximately 15% of paediatric cancer-related deaths.261,358,815 NB is 

predominantly heterogeneous with biological and clinical behaviour fluctuating between 
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complete spontaneous regression and aggressive clinical multidrug resistance, suggesting that 

apart from genetic events, the tumour microenvironment (TME) strongly influences these 

characteristics of NB.64,147 MYCN oncogene expression is the most significant cancer signature 

associated with aggressive or HR-NB and poor survival outcome.184,816 Pharmacologic 

targeting of MYCN is not straightforward as this NB oncogenic driver is not very amenable to 

direct preclinical and clinical targeting and efforts should thus be centred on indirectly 

targeting MYCN.198 Therefore, the development of innovative rational targeted therapies based 

on druggable pathways specifically activated in NB with MYCN amplification should be 

encouraged to diversify more efficacious treatment modalities.  

MYCN has pro-growth and pro-survival functions, but can switch to an apoptosis initiating 

mode via p53.817-819 Thus, the paradoxical apoptosis-promoting function of MYCN 

amplification in NB could be a valuable line of attack in the high-risk, MYCN-amplified subset 

of NB.198 Moreover, aggressive NBs express MDR,311 ascribed to p53 mutations and/or a loss 

of p53 function acquired during chemotherapy,331,332 which exacerbates the odds for relapse 

and thus treatment efficacy.331,333,334 The MDR transporter, P-gp, has been shown to be one of 

the most strongly upregulated genes associated with acquired drug resistance and NB treatment 

failure.527,589,590 This, together with the emerging themes of NB glycobiology (glycomics),527 

glycosylation in cancer,544,593,820-822 and challenges of 40% relapse among HR-NB patients 

associated with glycan-based immunotherapy following standard therapy,153,494 underscores 

the need for targeting P-gp.311,313,315,326,823,824Silva, 2015 #2890;Garg, 2015 #6059;Wang, 2014 

#5845} Also, ER stress and the UPR pathways have consistently been regarded as promising 

targets for developing drugs for several cancers, which may be further explored.661,695,825-829 
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