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Abstract
Investigating the Gamma-ray Strength Function in 74Ge
using the Ratio Method

K. Sowazi

MSc Thesis, Department of Physics, University of the Western Cape

An increasing number of measurements reveal the presence of a low-energy en-

hancement in the gamma-ray strength function (GSF). The GSF, which is the

ability of nuclei to absorb or emit γ rays, provides insight into the statistical prop-

erties of atomic nuclei. For this project the GSF was studied for 74Ge which was

populated in the reaction 74Ge(p,p’)74Ge* at a beam energy of 18 MeV. The data

were collected with the STARS-LIBERACE array at Lawrence Berkeley National

Laboratory. Silicon detector telescopes were used for particle identification and γ

rays in coincidence were detected with 5 clover-type high-purity germanium de-

tectors. Through the analysis particle-γ-γ coincidence events were constructed.

These events, together with well-known energy levels, were used to identify pri-

mary γ rays from the quasicontinuum. Primary γ rays from a broad excitation

energy region, which decay to six 2+ states could be identified. These states and

the associated primary γ rays are used to measure the GSF for 74Ge with the

Ratio Method [1], which entails taking ratios of efficiency-corrected primary γ-ray

intensities from the quasicontinuum. Results from the analysis of the data and

focus on the existence of the low-energy enhancement in 74Ge will be discussed.

The results are further discussed in the context of other work done on 74Ge using

the (γ,γ’) [2], (3He,3He’) [3] and (α,α’) [4] reactions.

July 26, 2018
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Chapter 1

Introduction

1.1 Background

In the report, Connecting Quarks with the Cosmos: Eleven Science Questions for

the New Century, published in 2003 [5], 11 questions from both astronomy and

physics were discussed. These questions are at the interface of both these fields.

Figure 1.1: An edited image showing the report Connecting Quarks with the
Cosmos published in 2003 and the 11 important questions in astronomy and
physics [6] originating from [5].

This report identifies these 11 key questions that have a good chance of being

1
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Chapter 1. Introduction 2

answered if the different fields of science collaborate together, which are listed

in figure 1.1. Out of the 11 questions, this project concerns itself with question

10, How were the elements from Iron to Uranium made? To try and answer this

question, one first needs to understand how elements lighter than iron are created

and why those that are heavier than iron are not synthesized in the same way as

those that are lighter than iron. Nuclei from 1H up to 56Fe undergo nuclear fusion

in stars, while those from 63Cu up to 238U clearly cannot as they would consume

more energy than they give off, as follows from Einstein’s equation E = ∆mc2.

Figure 1.2: A schematic representation of the binding energy per nucleon of
different elements [7].

Figure 1.2 shows the binding energies of different nuclei, and the most interesting

part of the distribution is at the maximum. Here are the elements with the highest

binding energy per nucleon. This means that for nuclear fusion from hydrogen up

to the maximum point, there is more energy released than is consumed in the reac-

tion and after this maximum, more energy is consumed than is released. In short

this means that nuclear fusion is unlikely in astrophysical settings that produce

elements heavier than iron, hence the elements from copper up to uranium must

be created from different processes.

Some of the proposed processes include the absorption of neutrons in the as-

trophysical environments through two reaction synthesis, namely the r-process

http://etd.uwc.ac.za/



Chapter 1. Introduction 3

and s-process. The r-process is the rapid absorption of high flux neutrons by the

nucleus while the s-process is the slow absorption of low flux neutrons by the nu-

cleus. To understand these processes, one could measure the (n,γ)1 cross sections

directly, but these cross sections alone do not inform us much about the nuclear

synthesis processes. They do not explain why certain nuclei are produced and why

others are not and why they are produced at the proportion and rate that they

are produced at.

Figure 1.3: A schematic representation of the p, r and s-process [8].

Figure 1.3 shows the pathways for p, r and s-processes on the table of isotopes.

The black and white boxes represent stable nuclei, the blue arrows region shows

neutron-rich nuclei and the brown arrows region shows the proton-rich nuclei.

Looking at the s-process, a stable nucleus will absorb a neutron and become un-

stable. The unstable nucleus will β− decay to go back to stability, increasing the

proton number and thus forming a heavier element. The r-process will see the nu-

cleus absorbing tens of neutrons before β− decaying to a more stable and heavier

element.

There is an interplay between neutron capture and β decay rates which deter-

mine the drip line. The s-process takes place in asymptotic giant branch (AGB)

1(n,γ) absorption cross section is the neutron absorption cross section of a nucleus, in which
case after absorbing the neutron it γ decays. The inverse is also possible where the nucleus emits
a neutron after absorbing a γ-ray, and is denoted by (γ,n).

http://etd.uwc.ac.za/



Chapter 1. Introduction 4

stars [9]. This happens to small and medium sized stars at a late stage of their

lives. At the moment there is no clear astrophysical site for the r-process.

To understand more about nucleosynthesis through the r- and s-processes, nuclear

level densities (NLD) and the GSF of nuclei can be used. The NLD represents

nuclear energy levels per energy range and the GSF describes the ability of nuclei

to absorb or emit γ rays at different γ ray energies.

Only (n,γ) cross sections are discussed in this work, but really the GSF describes

all nuclear reaction cross sections including (p,γ), (α,γ) and other possible reac-

tions that involve the release of a γ ray. The NLD and GSF are two of the input

parameters used to calculate (n,γ) cross sections in codes such as TALYS [10].

http://etd.uwc.ac.za/



Chapter 1. Introduction 5

1.2 Motivation

The information provided by (n,γ) cross sections is not only useful in explaining

nuclear synthesis in stars [11], but is also helpful in explaining reactions in nuclear

reactors [12] and waste transmutation2 [12].

The GSF is the subject of this thesis work. An increasing number of experi-

ments over the years have revealed the presence of a Low-Energy Enhancement

(LEE) [1] in the GSF of elements heavier than iron. This LEE can have a massive

implication in the (n,γ) cross sections of heavy nuclei. The impact of the LEE is

found to be relatively small on the (n,γ) cross section of stable nuclei [13], which

play a minor role in the reaction mechanisms responsible for nuclear synthesis.

Figure 1.4: Ratios of Maxwellian-averaged (n, γ) reaction rates at
T = 109 K for the Fe, Mo, and Cd isotopic chains up to the neutron drip
line, using the generalized Lorentzian (GLO) model [13].

However, the LEE has a significant effect for exotic neutron-rich nuclei and could

potentially increase the nucleosynthesis reaction rates “by one or even two orders

of magnitude” [13]. This is due to the fact that the neutron-rich nuclei have low

2Conversion of harmful waste from nuclear reactors to less harmful one.

http://etd.uwc.ac.za/



Chapter 1. Introduction 6

neutron separation energy, which is much closer to the LEE region. The enhance-

ment has a non-negligible impact on the neutron capture rates essential for the

r-process nucleosynthesis.

Figure 1.5: The γ-ray strength function of 74Ge from the reaction
74Ge(3He,3He’)74Ge*, showing the low energy enhancement [3].

Figure 1.5 is a data plot of the GSF of 74Ge from the reaction 74Ge(3He,3He’)74Ge*

[3]. The experiment was conducted at the Oslo Cyclotron Laboratory (OCL), us-

ing singly-ionized 3He beams. The beam energy was 38 MeV and the 74Ge target

had a thickness of 0.5 mg.cm−2. To analyze the data, the Oslo Method was used,

which is a one-step primary γ-ray cascade method. The Oslo Method is fully de-

scribed in ref. [14] and the LEE was found just below 2 MeV down to 1.5 MeV

from the experiment discussed.

The main objective of this project is to measure the GSF of 74Ge using a different

method compared to the one used by Renstrøm [14] and a different reaction. The

Ratio Method will be used which involves taking ratios of γ-ray intensities and

γ-ray energies from the γ-rays emitted by excited nuclei. The method is model

http://etd.uwc.ac.za/



Chapter 1. Introduction 7

independent, hence all the parameters used are measured directly in the experi-

ment. The reason for this is to see how the GSF compares when different methods

are used to measure the GSF of the same nucleus.

1.3 Research Questions

The study of the GSF has come with many open fundamental questions, such as

the following:

• Is the shape of GSF at AGB temperature dependent?

• Do different experimental methods yield the same result?

• What is the origin of the LEE?

• Is the Brink-Axel hypothesis [15] valid?

To try and tackle some of these questions, a series of experiments were performed

aimed at studying the nucleus 74Ge. These experiments were performed under dif-

ferent conditions with different projectiles and energies to try and see the relation

between the different statistical spectra. Here is the list of the experiments that

were conducted:

• 74Ge(γ,γ’)74Ge was performed at Dresden, Rossendorf, Germany [2].

• 74Ge(α,α’)74Ge was performed at iThemba LABS, South Africa [4].

• 74Ge(3He,3He’)74Ge was performed at the University of Oslo, Norway [3].

• 74Ge(p,p’)74Ge was performed at Lawrence Berkeley National Laboratory,

United States of America[this work].

http://etd.uwc.ac.za/



Chapter 1. Introduction 8

1.4 Thesis Outline

In this thesis, discussion of the GSF of 74Ge will be given. The ratio method will

be used to carry out the analysis with the goal of investigating the LEE which was

previously observed in the reaction 74Ge(3He,3He’)74Ge* [3]. The ratio method is

explained in detail in section 2.6. In chapter 2 a review of the theories of some

important concepts is made. Chapter 3 will discuss the experimental setup and

techniques used to carry out the experiment and then go in depth about the anal-

ysis that is carried out in chapter 4. The last section will be chapter 5 where a

discussion and conclusion on the final results will be presented.
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Chapter 2

Theory and literature review

2.1 γ-ray Strength Function

The GSF is a measure of the probability of a γ-ray with energy Eγ to be emitted

or absorbed by a nucleus. It is a distribution of average reduced partial width

for transitions of multipole XL, with energy Eγ. X is either E (electric) or M

(magnetic) and L is the multipolarity of the γ-ray transition. It is given by the

formula [16],

f(Eγ) =
Γjπ(Ei, Eγ)ρjπ(Ei)

E2λ+1
γ

, (2.1)

where Γjπ(Ei, Eγ) is the average width at the quasi-continuum region with jπ rep-

resenting the spin and parity from the state in the quasi-continuum region from

where the primary γ ray comes from. Ei is the energy state at the quasi-continuum

region and Eγ the primary γ-ray energy. ρjπ(Ei) is the average level density at

the quasi-continuum region and E2λ+1
γ is the energy dependence for multipolarity.

λ is the multipolarity term with λ = 0 being the monopole transition, λ = 1

being the dipole mode and so on.

Since it has statistically dependent parameters, the γ-ray strength function is

thus an average quantity like the level density. It is a measure of the strength of

statistical γ-rays coming from a nucleus excited up to the quasi-continuum region,

the region of high level density just below the neutron separation energy.

9
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Figure 2.1 is a schematic representation of a nucleus excited to such a region

of excited states. A projectile will excite the nucleus to the quasi-continuum re-

gion and the nucleus then de-excites down to the lower discrete states. Since the

quasi-continuum region has a very high level density, that is, it has millions of

energy level states within 1 MeV energy width, it decays with a lot of γ rays.

Hence to measure these γ rays we use statistical measures, which is the GSF.

Figure 2.1: A schematic of statistical γ-rays originating from the
quasi-continuum region.

The GSFs are used as input parameters into model calculations for capture cross

sections, especially neutron capture cross sections. They also aid in calculating

cross sections for isomeric state populations and used to assess the competition

between γ-ray and particle emission. The strength function carries within itself

all multipolarity resonances and the giant resonance for all the different multipo-

larities. The multipolarity measured for a reaction depends on the multipolarity

energy term (E2λ+1
γ ). For the thesis, dipole resonances (E3

γ) where λ = 1 were

used. This is because the GSF is dominated by dipole transition and there are

very few monopole and quadrupole transitions at the energies of study.
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2.2 Level Density

The nuclear level density (NLD) is an important quantity in nuclear physics, which

tells us about nuclear structure at high excitation energies. It is needed for the

calculation of cross sections in nuclear reactions. Many nuclear synthesis model

calculations require the knowledge of NLD.

In increasing excitation energy, the greater the level density (ρ(Ex)) becomes.

To obtain the NLD one needs to solve the Schrödinger’s equation for the precise

potential for all the different states, which can be very tedious to do if even pos-

sible at all. To overcome that barrier, statistical models are used to interpret the

nuclear states in the region of high level density.

The two statistical models that are going to discussed on this thesis are the Back-

shifted Fermi Gas (BSFG) and the Constant Temperature (CT) models.

2.2.1 Back-shifted Fermi Gas model

The nuclear level density has been interpreted using the Fermi gas model for

many years over the 20th century. Level density formulas introduced by Bethe

[17] gained the majority use for statistical model calculations. The problem with

Bethe’s formulas is that they assume single particle levels to be equally spaced and

non-degenerate. The model provides us with only a zeroth-order approximation of

a Fermi gas. The original model is charecterized by the following level density [18],

ρ(E) =

√
π

12

e(2
√
aE)

a1/4E5/4
, (2.2)

where E is the excited energy of the nucleus and a is the level density parameter

given by [18],

a =
π

6
(gp + gn) , (2.3)

where gp and gn are the single-particle level density parameters for protons and
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neutrons, respectively.

A new method was proposed that corrected for the uneven spacing of energy levels

and also corrected for odd-even nuclei structure. Again the Fermi gas model was

adopted but now with shifted ground state energy and the level density parameter

a, both treated as floating points to be adjusted to the experiment. Reference

[19] shows how the floating parameters are adjusted for different nuclei. Here is

the nuclear level density formula as presented by Gilbert and Cameron in 1965 [20],

ρ(U) =

√
π

12

e(2
√
aU)

a1/4U5/4

1√
2πσ

, (2.4)

where U = E − ∆p − ∆n is the back-shifted energy, with E being the excited

state, ∆p and ∆n are the proton and neutron pairing energies, respectively. The

equation of the total level density (2.4) is derived from the total density of states

assuming random coupling of angular momenta. Because of this a new term is

introduced, the spin cut-off parameter σ, which describes the spin distribution.

The spin cut-off parameter σ is given by [19],

σ2 = g < m2
j > T . (2.5)

< m2
j >≈ 0.146A

2
3 is the average mean squared projection of the spins and T is

the average nuclear temperature. g is the density of the single particle states near

the Fermi level and is given as [18],

g = gp + gn , (2.6)

and T is given by [18],

T =

√
U

a
. (2.7)

2.2.2 Constant Temperature model

The Back-shifted Fermi gas model works well for high excitation states, but is in-

consistent at low energies. For these low excitation energies between 0 < Ex < 10
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MeV, the total level densities are better represented by the constant temperature

model. The level density formula using the constant temperature model is given

as follows [21],

ρ(E) =
1

T
e
E−Eo
T , (2.8)

where E is the excitation energy of the nucleus. Eo is the free parameter for energy

shift and T is the free parameter for constant nuclear temperature. The shift in

excitation energy Eo is determined by [21],

Eo = Sn − T ln[ρ(Sn)T ] . (2.9)

Sn is the neutron separation energy of the nucleus and ρ(Sn) is the level density

at the neutron separation energy.

2.3 γ-ray Cascade from Quasi-continuum

The purpose of the project is to excite the 74Ge nucleus into the region between

the discrete states and the neutron separation energy, called the quasi-continuum

region. The quasi-continuum region is vital in understanding the NLD and GSF

as it has nuclear statistical properties. To make measurements of GSFs for the
74Ge nucleus, particle-γ-γ coincidences must be extracted.

Figure 2.2 is a schematic diagram showing how these coincidences are made. A

full cascade of γ rays is made up of two γ rays, one from the quasi-continuum and

the other from the discrete states. A gate is applied on an energy region at the

quasi-continuum level such that only two γ rays come out. The two γ rays added

together must add up to the gated excited state, meaning that the primary γ ray

plus the secondary γ ray from the well known excited states form the cascade.

If they do not add up to the gated excited state, then the event is rejected, as

shown on the right on figure 2.2. More details about how this gate is carried out

is given in chapter 4, in section 4.4. Each event is made up of a cascade and all of

them together form a nuclear response pattern. The pattern is known as nuclear

resonances.
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Figure 2.2: A schematic representation of the γ-ray cascade method used to
construct the strength functions.

2.4 The Giant Dipole Resonance (GDR)

Baldwin and Kleiber made the first observation of the Giant Dipole Resonance

(GDR) in 1947 through photo-absorption and photo-fission experiments. They

observed an increase in the absorption cross section above 10 MeV in a number of

nuclei with resonance energies from Ex 16 MeV to 30 MeV. Goldhaber and Teller

interpreted the observed broad structure in the γ-absorption spectrum as the ex-

citation of a collective nuclear vibration in which all the protons in the nucleus

move collectively against all the neutrons in separate, rigid spheres, creating an

electric dipole moment.

Since then, a lot of studies have been made on the GDR and a wide range of

systematics for almost all stable nuclei exists on the GDR built on the ground

state. Most of the information gathered was extracted from photo-absorption ex-

periments because of the high selectivity of this reaction to E1 transitions. The

shape of the resonance in the photo-absorption spectrum can be approximated,

in the case of a spherical nucleus, by a single Lorentzian distribution as follows [22],

σ(Eγ) =
σoE

2
γΓ

2
GDR

(E2
γ − E2

GDR)2 + E2
γΓ

2
GDR

, (2.10)

where Eγ is the γ-ray energy absorbed by the nucleus, σo the strength of each γ-ray
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transition, EGDR the centroid energy and ΓGDR the width of the resonance. Even

though this gives a good explanation of the GDR, it is still a model. When the

nucleus is statically deformed, the GDR splits into two parts corresponding to os-

cillations along and perpendicular to the symmetry axis and the photo-absorption

cross section can be well reproduced by the superposition of two Lorentzian dis-

tributions. This feature allows us to extract the nuclear deformation from the

centroid energies of the two components and to distinguish, from the relative in-

tensities, prolate from oblate deformations.

The shell structure affects the width of the resonance with values ranging from 4-5

MeV for closed shell nuclei. This is equivalent to the neutron separation energy of
84As which is 4.256 MeV, to put the value into perspective. The collectiveness of

excited states, relating to the number of participating nucleons, can be estimated

in terms of the Energy Weighted Sum Rule (EWSR) for dipole radiation. This

rule gives the total integrated cross section for electric dipole photon absorption

and is given by [22], ∫ max

min

ρ(Eγ)dEγ =
2π2e2~
Mc

NZ

A
, (2.11)

where N is the neutron number and Z the proton number, A the mass number, M

the nucleon mass and c the speed of light. Figure 2.3 is a schematic representation

of the GDR of a spherical nucleus.

One can visualise the GDR as a high-frequency, damped, almost harmonic vibra-

tion around the equilibrium density of the nucleus. The amplitude of the vibration

is small compared to the nuclear radius. The restoring forces for these resonances

are directly related to macroscopic properties of the nucleus and they provide us

with the most reliable information on the bulk properties of the nucleus such as

multipolarity.

The GDR is a macroscopic property as it shows the statistical properties of the

nucleus, as opposed to microscopic properties which focus on individual excita-

tions of protons and neutrons into different nuclear states. There are two types of

collective vibrational modes of nucleons, namely the isoscalar and isovector modes.

These modes are classified according to their multipolarity L, spin S and isospin T
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Figure 2.3: The Giant Dipole Resonance.

Figure 2.4: A qualitative scheme of giant resonance modes of the nucleus,
courtesy of [12].
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quantum numbers. The ∆S = 0, ∆T = 0 modes are electric, isoscalar vibrations

in which the protons and neutrons oscillate in phase according to a multipole pat-

tern defined by ∆L = 0, 2, .... For the electric resonance, the ∆L = 1 vibration

is missing. To first order, it correcponds to a translational motion of the nucleus

as a whole and is thus not an intrinsic nuclear excitation.

The ∆S = 0, ∆T = 1 modes are electric, isovector vibrations in which the

protons and neutrons oscillate out of phase against each other according to a mul-

tipole pattern defined by ∆L. For the same multipole mode the isovector ones

will be at a higher excitation energy than the isoscalar ones since extra energy is

required to separate the neutron and proton distributions.

The ∆S = 1, ∆T = 0 modes are magnetic, isoscalar vibrations in which nucleons

with spin up vibrate against nucleons with spin down, again in a multipole pattern

given by ∆L. The ∆S = 1, ∆T = 1 modes are magnetic, isovector modes in

which the protons with spin down (up) oscillate against neutrons with spin up

(down).

2.4.1 The Pygmy and Scissors Resonances

The GDR is not the only possible resonance model to describe γ-ray absorption

cross sections. There are also lower energy resonance models such as the Pygmy

and Scissors resonances. Figure 2.5 is a schematic diagram showing these two

additional resonance models.

In the Pygmy resonance model there is a stable proton-neutron core and an exces-

sive neutron skin, and these two move against each other. In the Scissors resonance

the protons and the neutrons move against each other like a pair of scissors. These

resonances are found in deformed, neutron rich nuclei, near the particle emission

threshold.
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Figure 2.5: The schematic of the Giant Dipole Resonance with the Pygmy
and Scissors resonances.

2.5 γ-ray Strength Function and Cross sections

Interactions between neutrons and matter can be one of two, scattering or absorp-

tion. Scattering results in change in energy and direction of motion and absorption

results in complete absorption of the nucleus by a medium. Both interactions will

leave the nucleus in an excited state. The nucleus will decay by any of the following

processes: fission reaction where the nucleus splits apart into two large fragments,

alpha particle emission or by the emission of a γ ray. The first three modes of

decay may also be accompanied by an emission of a γ ray.

Another important reaction that requires the knowledge of the GSF is the neutron

capture reaction. When a nucleus captures a neutron, it transitions to an excited

isotope. To de-excite from this state, it emits γ rays. These kind of reactions,

(n,γ) reactions, are important in nuclear astrophysics in the formation of heavy

nuclei during a supernova explosion.

The GSF together with the level density are used to calculate the transmission
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coefficient (T ), which is applied into TALYS1 software to calculate (n,γ) cross

sections. The transmission coefficient is of the form [18],

TXL(Eγ) = 2π E2λ+1
γ fXL(Eγ) , (2.12)

where E2λ+1
γ is the γ ray dependence factor, fXL(Eγ) the GSF and the factor 2π

is a scaling factor for the total cross section of transmitting a γ ray. XL is the

multipolarity of the electromagnetic wave that is transmitted.

2.6 The Ratio Method

This method involves the taking of ratios of relative GSF. As shown in figure 1.5,

the GSF for statistical γ-ray transitions is given by [16],

f(Eγ) =
Γjπ(Ei, Eγ)ρjπ(Ei)

E2λ+1
γ

. (2.13)

The intensity of primary transitions NL, where L are the energy levels to which

the primary γ rays decay to, is directly proportional to the average width from

energy Ei, average level density and cross section of γ rays being emitted from Ei

[1],

NL ∝ Γjπ(Ei, Eγ)ρjπ(Ei)σjπ(Ei) . (2.14)

The quantity σjπ(Ei) is the cross section for populating the levels with given spin

and parity at excitation energy Ei. So if we use information from equation 2.12,

the NL is [1],

NL = f(Eγ)E
2λ+1
γ σjπ(Ei) . (2.15)

If the γ-rays all go to the same spin state, then σjπ(Ei) does not change consid-

erably. That is because σjπ(Ei) depends on spin and parity, which stay the same

1A code used to calculate many nuclear cross sections including (n,γ) cross sections.
http://www.talys.eu
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because states with the same spin and parity are grouped together. Therefore if

the primary γ rays go to the same spin states, the cross sections will cancel out

when taking the ratios of the GSF, giving,

f(E1)

f(E2)
=

NL1E
2λ+1
2

NL2E
2λ+1
1

, (2.16)

where NL1 and NL2 are the γ ray intensities for the first and second primary γ

rays, respectively. E2λ+1
1 is the γ ray energy of the first primary γ ray and E2λ+1

2

is the γ ray energy for the second primary γ ray. Thus the ratios only require

primary γ-ray intensities and energies of the primary γ rays.

Figure 2.6 is a schematic representation of how the branching and the ratios are

extracted. The different portions on the banana spectra correspond to different

excited states as shown on the picture in the middle. The γ rays that are con-

sidered on the far right image are those that correlate to the gated states and

form a cascade down to the ground state. Those that do not form a cascade are

dismissed.

Figure 2.6: A schematic representation of how the primary γ rays are
extracted for the ratios. (i) Gates are applied to different excited states on the
proton spectra. (ii) How the gates apply to the energy level scheme of the 74Ge
nucleus. (iii) After the proton gate, a γ ray gate is applied to a well known low
lying state. (iv) A primary γ ray is required such that when one adds it up to
the lower lying γ ray, they add-up to the total excitation energy defined by the
proton gate.

Partial strength function ratios are taken for the γ rays that are labeled blue in
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the figure, i.e., primary2 γ rays that come from the quasi-continuum region. We

assume that dipole transitions dominate, since we make measurements in the re-

gion Ex = 3 to 10 MeV, which is largely dominated by the GDR which is of E1

nature. Then equation 2.16 becomes

f(E1)

f(E2)
=

NL1E
3
2

NL2E
3
1

. (2.17)

We already have the intensity of primary transitions NLn and the primary γ-ray

energies En
3, where subscript n is an index referring to the γ ray, from the particle-

γ-γ coincidence events.

2γ-rays that come directly out of the quasi-continuum region.
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Experimental Techniques

3.1 Details of the experiment

The data were collected with the STARS-LiBerACE [23] array at the Lawrence

Berkeley National Laboratory, California. The STARS stands for Silicon Telescope

Array for Reaction Studies and LiBerACE stands for Livermore Berkeley Array

for Collaborative Experiments. The latter is an array of six Compton-suppressed

high-purity germanium clover detectors for good energy resolution detection of

γ rays. It is complemented by the silicon detector telescope to specify entrance

excitation energies of the charged particles.

A proton beam with energy of 18 MeV bombarded a 74Ge target with thickness of

0.5 mg/cm2, populating states through the reaction 74Ge(p,p’)74Ge*. There were

other channel reactions visible though, like the 74Ge(p,d)73Ge* channel, but they

are removed by placing a gate on proton ejectiles. The beam current was about 7

pnA on average. The experiment was carried out for five days.

3.2 High Purity Germanium Detectors

For γ-ray detection, the LiBerACE array of six Compton-suppressed high purity

germanium (HPGe) detectors was used, with the sixth one not functional and

hence was omitted. Each of the four n-type germanium crystals has a diameter of

22
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50 mm and a length of 80 mm, and they are arranged as a four-leaf clover inside

a common cryostat. N-type semiconductors have a larger electron concentration

than hole concentration and the term n-type itself comes from the negative charge

of the electron. In n-type semiconductors, electrons are the majority carriers and

holes, which are positive vacancies as a result of the absence of electrons, are the

minority carriers.

N-type semiconductors are created by doping an intrinsic semiconductor with

donor impurities and a common dopant for n-type silicon is phosphorus. In an

n-type semiconductor, the Fermi level is greater than that of the intrinsic semi-

conductor and lies closer to the conduction band than the valence band.

Each clover is surrounded by 16 optically-isolated SCIONIX Bismuth Germanate

Oxide (BGO) Scintillators [23] that are operated as a Compton-suppression shield.

Figure 3.1: The clover detectors used for γ-ray detection [24].

The purpose of using HPGe detectors is to convert γ rays into electrical signals

which can be used to determine both the energy and the intensity of the γ rays

detected. The semiconductor operating principle is ionization, and the passage of

ionizing radiation creates electron hole pairs which are separated and collected on
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anode/cathode using an electric field. They are crystalline materials whose outer

shell atomic levels show an energy band structure with a valence band, a forbidden

energy gap and a conduction band. Figure 3.3 shows the structure of metallic,

semiconductor and insulating materials.

Figure 3.2: Energy band gap schematic showing the structure of metals,
semiconductors and insulators [25].

The valence and conduction bands are energy levels of the atom which arise as a

result of the periodic arrangement of the atoms in the crystal, while the forbidden

energy gap is a region with no available energy levels at all. The highest-energy

band is the conduction band and electrons in this region are free to roam about

the entire crystal.

The electrons in the valence band levels, on the other hand, are more tightly

bound and remain associated to their respective atom. The width of the gap and

bands is determined by the lattice spacing between the atoms which is dependent

on the temperature and the pressure on the lattice structure. The electric current

in a semiconductor arises as a consequence of movement of free electrons in the

conduction band and the movement of holes in the valence band. The signal is

amplified and shaped, then recorded using a data acquisition system where the

information of the signal received is recorded for further processing.
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3.3 Silicon Detector Telescope (SDT)

For particle detection, two S2 64 channel silicon detectors [26] were used. The S2

silicon detector has 48 rings and 16 sectors. The two S2 detectors had two different

thicknesses, the thinnest detector was used as a ∆E and the thicker detector was

used as E. The ∆E silicon detector was about 140 µm thick while the E silicon

was about 1000 µm thick.

The SDT had an angular range from 49o-75o with respect to the beam axis. Facing

the target was the ring side of the ∆E silicon detector, with its sectors facing that

of the E telescope. The distance between the S2 and the target was 19 mm, and

the distance between the ∆E and E telescope was 2.4 mm. The telescope was

placed in such a way that the sectors were back to back. So the ∆E rings were

facing the beam while the E rings were facing away from the beam direction.

Figure 3.3: The Silicon Detector Telescope (SDT) used for proton detection
[24].

Figure 3.3 shows a picture of the SDT mounted in the scattering chamber. The

cylindrical scattering chamber that holds STARS has a height of 24 cm and a

diameter of 25 cm. The chamber is made out of aluminum with a wall thickness

of 0.4 cm to limit the attenuation of γ rays emerging from the target.
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A 12.5 µm thick aluminum foil was placed in front of the silicon telescopes to

shield them from delta electrons, very fast electrons knocked out of atomic orbit

by energetic charged particles, that are produced by the proton beam hitting the

target frame and other metals. Silicon detectors use the same working principles

as the germanium detectors in that they are both semiconductors. It is different

from the germanium detector in that it has a bigger band gap which makes it

better suited for charged particle detection. Its advantage is that it operates well

at room temperature and thus does not have to be attached to a cooling system.

Figure 3.4: A schematic representation of the silicon setup.

A reverse-bias voltage was applied to the telescope with 45 V on the front ∆E de-

tector at a leakage current of 7.3 µA and 135V on the back E detector at a leakage

current of 9.3 µA. The signals detected by the silicon detector telescope first goes

through the analogue electronics to be amplified and shaped, and then sent to the

data acquisition system where the signal is interpreted in terms of energy and time.
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3.4 Signal Processing

The ∆E silicon had the 24 rings positively biased to 45 Volts while all the 16

sectors were grounded and the E silicon had its 24 rings positively biased to 135

Volts. Bias voltage was applied through a resistor network which passively limits

the current. Connection from the SDT to the bias voltage was established through

custom breakout boards which were located inside the vacuum chamber. The sig-

nals are transferred from the chamber to the air side of the chamber through

custom NEMA-G [23] vacuum feedthroughs.

Figure 3.5: A schematic representation of analogue electronics setup.

The SDT signals are amplified using Charge8V [23] charge-sensitive pre-amplifiers

from Swan Research. The pre-amplifier plugs into a Printed Circuit Board (PCB)

[23] motherboard that provides power and the ability to test the pre-amplifier re-

sponse with a pulser signal. Each motherboard has 16 pre-amplifiers and is located

next to the vacuum feedthrough on each side of the chamber. The motherboards

are shielded from electrical conductivity with each other by an aluminum box and

the amplifiers are cooled down by a fan. The total length from the detectors to

the pre-amplifiers is less than 60 cm.

The pre-amplifier output is further amplified and shaped by CAEN N568B shapers
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[23] which have 1 kΩ input impedance. Each of the eight shapers provide 16 fast

and 16 slow outputs. The fast signals are discriminated using Leading-Edge Dis-

criminators (LED). For the ∆E-E telescope configuration, the discriminated ∆E

(E) output signals are joined together and stretched to a 100 ns (400 ns) logic

signal. The particle trigger is formed from the overlap of these two signals.

Figure 3.6: A schematic representation of time gates on the Silicon Detector
Telescope. So the time logic signals constitute a singles event since the second
signal comes within a space of less than 100 ns after the first one, while the
second is not an event since the second signal comes after the required 100 ns
gap.

Figure 3.6 shows how charged particle events are created using time coincidences.

Once the signal comes out of the LED, it feeds into the Time-to-Digital Converter

(TDC). The ∆E time logic signal is read first, and the E time logic signal has to be

registered within 100 ns of the ∆E signal for the two time signals to be registered

as an event. This constitutes a particle single event. The TDC start signal were

the γ-rays and the stop were charged particles.

For the Compton-suppressed clover detectors, there was a single custom-built

CAMAC-based module used to process the signals. Each of the CAMAC-based

modules combines four high-resolution shaping amplifiers, TFA, and constant

fraction discriminators (CFD), three side-channel amplifiers, an 8-channel BGO

processor with eight fast timing amplifiers, a 14-bit Analog to Digital Converter

(ADC), and Compton-suppression logic.
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For particle-γ coincidences, a logic particle gate was set on the ∆E at 50 ns and

was 100 ns for the germanium detectors. A coincidence event was established in

the same manner as was done for the SDT events, requiring that the germanium

logic signal comes within 50 ns after the ∆E signal is registered. Particle-γ-γ gates

were also set, requiring that the two γ ray signals come within the first 50 ns of the

∆ silicon detector firing. The back E silicon detector also had a time gate of 50 ns.

3.5 Calibration of data

Before any work can be done on any collected data, an energy calibration has to

be performed. Table 3.1 shows the energy transitions obtained from the decay of
152Eu, which was used for the γ ray calibration. The last transition belongs to
208Pb after 208Tl beta decays.

Exp Energy (keV)
121.8
244.7
344.3
444.0
778.9
867.4
964.1
1085.8
1112.1
1408.0
2614.5

Table 3.1: The table shows the experimental data of γ-ray energies retrieved
from National Nuclear Data Center (NNDC) website [27], which were used to
calibrate the data.

To calibrate the HPGe detector, 152Eu was used as a γ-ray source. It disintegrates

72.1 % by electron-capture, about 0.027 % by β− to 152Sm and 27.9 % by β+ emis-

sion to 152Gd. The results on table 3.1 were used to make the energy calibrations.

The channel values and the experimental values from NNDC were inputted into

the software ecal, and the software made the energy corrections using a linear fit.

The table just shows two γ ray data sets out of 20 that were used.
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Entry Channel Exp Energy Entry Channel Exp Energy
1 982.0 4784.34 1 976.0 4784.34
2 1128.6 5489.48 2 1121.6 5489.48
3 1235.4 6002.35 3 1226.9 6002.35
4 1585.5 7686.80 4 1572.6 7686.80

Table 3.2: The table of proton energy calibration. 226Ra alpha source was
used for the calibration, where the second column shows the channel values
and the third column shows the corresponding energy values taken from
NNDC [27].

226Ra was used as an α radiation source to calibrate the Silicon Detector Tele-

scope. The nucleus 226Ra has a half life of 1600 years before alpha decaying to
222Rn which has a half life of 3.8 days. The nucleus 222Rn alpha decays to 218Po

which α decays to 214Pb or β decays to 218At. The nucleus 214Pb β-minus decays to
214Bi which has 99.979% chance of β decaying to 214Po and 0.021% of α decaying

to 210Tl. The nucleus 210Tl will β decay to 210Pb.

The nucleus 218At has 99.9% chance of α decaying to 214Bi and 0.1% chance of β

decaying to 218Rn. The nucleus 218Rn will α decay to 214Po which also α decays

to 210Pb. The decay chain for 226Ra is shown in figure 3.9. A total of 64 channels

were calibrated for the silicon detector telescope, and each channel was functional.

Figure 3.7: The six spectra from 74Ge after calibration was performed. All
the energy peaks are correctly overlaid on top of each other.
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Figure 3.7 shows the γ-ray spectra of 74Ge after energy calibration is performed.

All of the peaks can be used for analysis.

Figure 3.8: An example of the spectra of 226Ra that was used for calibration.

Figure 3.8 is the spectrum for charged particle calibration using the data from

table 3.2. The four peaks on table 3.2 are visible at the far right of the spectrum.

These are the signature peaks of the α emission line originating from 226Ra decay

chain.

Next time spectra alignments and add-back corrections were done. The specifics

of how add-back is performed is discussed in the following chapter when add-back

is carried out for the silicon detector. Figure 3.10 is an example of the spectra of

the time spectra that was used, and shows the time spectra before the alignment

and after alignment was accomplished. Figure 3.11 shows the time spectra after

the alignment was carried out. The aligned time spectra was used to construct

particle-γ and particle-γ-γ coincidence events.
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Figure 3.9: A schematic representation of the decay chain of 226Ra [28]. The
four dashed ellipsoids represent the nuclei from which the alpha peaks
originate in figure 3.8.
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Figure 3.10: A representation of the time spectra before spectral alignment
and add-back as read by the data acquisition system from the TDC.

Figure 3.11: A representation of the time spectrum after all single time
spectra are aligned and add-back is completed.
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Chapter 4

Analysis

4.1 Software For Sorting and Displaying Histograms

The first part of this project was dedicated to developing and modifying a sort

code written in C, which is dedicated to reading and interpreting the data dis-

cussed in this thesis. The software packages PRETSCAN [29] and TSCAN [29],

from GPACK [29], and DAMM [30] were used which all worked together with the

script that was written to extract information from the data.

The script was ran through PRETSCAN, which is a pre-processor for TSCAN.

The C script, which is known as a usersub by the software TSCAN, contains a

special block at the top, which is called preprocessing header. This block defines

the types and sizes of my histograms and matrices, and also contains statements

to process event words. Histograms and matrices are one dimension and many

dimension plots, respectively. PRETSCAN uses the preprocessing header block to

create proper data files and functions, by creating two preprocessing files, namely

“matvar.h” and “initmatr.c”. The “matvar.h” file contains all the histogram and

matrix variables and data incrementations, and “initmatr.c” contains all the in-

formation about the spectra to be plotted.

TSCAN is a software used to read raw data from tape or disk. It allows to do

in-core 1-D histogram, 2-D and even 3-D matrices. It is used to unpack raw data

and save it as either a histogram or matrix file, depending on how much variables

are used, which is plottable as spectra. The script was written in C, and inputted

34
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into TSCAN to get a matrix file of all the events in the data repacked in order.

The files matvar.h and initmatr.c, created by PRETSCAN, and the C script are

used by TSCAN to do the data extraction and plotting of spectra. TSCAN out-

puts histogram files, and the histogram files are read and plotted using the software

DAMM. DAMM is a Display, Analysis and Manipulation Module used to manip-

ulate spectra.

Figure 4.1: A step by step schematic representation of how the software work
together to create histograms and matrix plots that are used for the analysis.

Figure 4.1 is a schematic representation of the steps taken from unpacking the C

code script to plots of histograms and matrices for data analysis.

The second part of the analysis was to use the charged particles to specify my

entrance excitation energies. This required doing some cleanup of the particle

data, especially of random events and multiple hits on the rings and sectors by

one particle. The following sections focus on particle and γ ray analysis.
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4.2 Particle Analysis

Figure 4.2: A schematic example of an S2 Silicon Detector.

Figure 4.2 is an example of the S2 silicon detector used for particle identification.

The rings form circular orbits around the center of the detector and the sectors

form perpendicular lines going over the rings. Each ring or sector is denoted as

an ID on the sort code. For the rings, ID 0 is the inner ring, the second one being

ID 1, the third being ID 2 up to the outer most which is ID 23. The sector ID

counting starts with the one on the right hand side near the opening, with it being

ID 0. The one next to it, going anti-clockwise, is ID 1 up to the one on the left

hand side being ID 7.

Figure 4.3 is a schematic diagram showing how particle ray tracing is done. The

angle subtended by the inner ring from the target, using the beam line as a point

of reference, is θlab = 49o and the last one stretches up to θlab = 75o. Ray tracing

is done for rings and sectors separately. For the rings a requirement is performed

on the code that if the charged particle hits on ring ID n on the front telescope,

then take a hit on ring ID greater than n + 1 and less than n + 5 on the back

telescope. These requirements mean that one cannot use the last 7 rings on the

front detector, since there are no corresponding back rings to do the ray tracing
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Figure 4.3: Schematic of particle ray tracing performed on the Silicon
Detector Telescope.

with. The first 3 front rings were also omitted, because they had low statistics

due to the bad design of the silicon setup frame. The tunnel cutting at the middle

of the SDT had a spacing of 8.7 mm between the aluminum foil and the front

silicon detector, which meant the first 3 inner rings were shadowed off from the

experiment. Since It is required that the back rings start at ID greater than n+ 1,

so the back rings only start at ID 5.

Since the sectors are back to back, the lower IDs of the front sectors are in con-

junction with the higher IDs of the back sectors. Hence the requirement was ID

m = ID(6-m),ID(7-m),ID(8-m). This means a hit on the front sector of ID 0, will

hit the back sectors with ID 6, ID 7, ID 8, and a hit on the front sector of ID 1

will hit the back sectors with ID 5, ID 6, ID 7, and so on.

Figure 4.4 is a 2-Dimensional (2-D) plot of sector IDs. The vertical coordinates

represent the back sector IDs and the horizontal coordinates represent the front

sector IDs. Each coordinate on the spectra represents two sectors, one from the
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(a) all sector counts (b) good events

Figure 4.4: The sector count spectra created from each interaction with the
SDT. The figure on the left (A) shows the events before charged particle ray
tracing while the one on the right (B) shows the events after charged particle
ray tracing.

front and one from the back detector, of many particle single full events with a

time gate of 100 ns.

(a) All ring counts (b) good events

Figure 4.5: The ring count spectra created from each interaction with the
SDT. The map shown in (A) is before charged particle ray tracing and the one
shown in (B) is after charged particle tracing.

Figure 4.5 is a 2-D plot of ring IDs, with the vertical coordinates showing back

ring IDs and the horizontal coordinates showing front ring IDs.
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Figure 4.6: Schematic of energy sharing correction in adjacent rings.

The next correction that was carried out was the energy sharing correction. This is

characterized by a single charged particle triggering more than one adjacent rings

or sectors at a time. Figure 4.6 is a schematic representation of such events. Image

(a) shows an event where the charged particle only hits one ring, while image (b)

shows an image of a charged particle hitting two adjacent rings.

In cases such as the one on figure 4.6(b), where the charged particle hits more

than one ring, there were more than one event counted, with each hit counting as

an event. To solve this a condition was set such that if two adjacent rings fire at

the same time, then the event is counted as one by adding up the energies of the

two adjacent rings to give one total energy reading. If the energy on the first ring

ID n is greater than that on the second ID n+1, the event is counted as belonging

to the first ring with ID n. Else if the ring with ID n + 1 has a larger energy

deposited on it than ring ID n, then the event is set to belong to the second ring

of ID n+ 1.

Energy sharing correction for more than two hits from one particle were also

done. The same procedure as for two hits was performed for more than two hits,

taking only events where adjacent rings fire, add the energies together and take

the event to belong to the ring with the highest energy registered. The lowest
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energy limit that was taken for multiple hits was 100 keV and if for an event with

multiple hits, none of the energy readings on the rings was greater than 100 keV,

then that event was discarded.

Figure 4.7: 2-D spectra for back sector energies against front sector energies.

corrections were also done for the sectors, but because the gap between the sectors

was considerably larger than the gap between the rings, only the energy sharing

correction for two hits from one particle was performed. The same logic as in the

rings for the two hits was followed.

Figure 4.7 is the spectra of charged particle (proton) identification. Each co-

ordinate in the spectra represents the pixel energies of many single particle full

events going from the front silicon sectors through to the back silicon sectors. The

spectra contains a punch through which is as a result of protons which go through

both the front and back silicon detectors, and hence since they leave with some of

their energy, their energy cannot be resolved to the excited states of the nucleus

that are below the separation energy.

Figure 4.8 is the spectra of protons going through the front and back rings. The

punch through is also visible on the ring spectra. The lower excitation states are at

the bigger energies, because this is the particle entrance excitation energy through
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Figure 4.8: 2-D spectra for back ring energies against front ring energies.

the SDT, and thus has not yet been converted into proper excitation energy.

After all the corrections, one further step is needed before performing particle-γ

coincidences. That step is the free form gate or banana gate, which is shown in

figure 4.9. The spectrum on the left is a spectrum of the 74Ge(p,p’)74Ge reaction

channel with the 74Ge(p,d)73Ga channel and punch through. The spectrum on the

right is after a banana gate was applied, and only the 74Ge(p,p’)74Ge channel is

visible. Estimation of when the punch through takes place for different angles was

carried out and then the banana was set accordingly.

For the rest of this chapter and the following chapters, use of the spectra on

the right hand side for coincidence reactions on figure 4.09 is carried out, with

the reaction channel coming only from 74Ge(p,p’)74Ge. Even though the punch

through is part of the reaction channel 74Ge(p,p’)74Ge, it is still removed because

it does not resolve to any of the excited states of the nucleus.
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(a) Banana spectra for sectors before
banana gates are done

(b) Banana spectra for sectors after
banana gates are done

Figure 4.9: Particle-γ gated banana spectra for sectors. (A) is the spectra
before the banana gates to suppress all the other channels besides
74Ge(p,p’)74Ge and punch through. (B) is the spectra after the suppression is
done and only the 74Ge(p,p’)74Ge channel is visible.

4.3 Energy Corrections

The conversion from particle energy to excitation energy involves using the beam

energy, 18 MeV, and subtracting from it the charged particle energy measured by

the SDT, which is the energy shown on the 2D scatter plot on figure 4.7 and figure

4.8, and some energy correction terms. Energy corrections will be discussed fully

in this section. The following formula is used to specify the entrance excitation

energy

Eex = Ebeam − Esil − Eal − ERecoil −Qvalue . (4.1)

Ebeam is the beam energy with value of 18 MeV. Esil is the energy as measured

by the SDT. Eal is the energy deposited in the aluminum foil put in front of the

SDT and ERecoil is the energy transferred to the recoiling of the nucleus. Qvalue is

the Q-value, but is zero for this reaction.

The first energy correction performed was for the foil put in front of the SDT.

The aluminum foil was put in front of the SDT to protect it from delta electrons,
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and was 12.5 µm thick. The equation used for the energy transferred to the alu-

minum foil was,

Eal =
dE

dx
[Esil]

Dal

cos θ[IDfront ring]
, (4.2)

where dE
dx

[Esil] is the stopping power of aluminum foil calculated at different par-

ticle energies. Esil is the charged particle energy registered by the SDT. Dal is

the thickness of the aluminum foil, which is 12.5 µm, and cos θ[IDfront ring] is the

term relating the distance from the target to S2 and the angle subtended by the

protons from the line of incidence of the beam to the first ring, up to the final ring.

Figure 4.10 is a schematic diagram showing the variable labeling used in the equa-

tions.

Figure 4.10: Schematic of the recoil correction for aluminum foil.

The second energy correction was for recoil energy of the nucleus 74Ge. I used the

following formula for the recoil correction,
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ERecoil =
Mb

Mt

Eb +
Mej

Mt

Es −
2

Mt

√
MejMbEbEsil cos θ , (4.3)

where Mb is the mas of the charged particle, which is the proton mass. Mt is the

mass of the target, which is the 74Ge nucleus. Mej is the mass of the ejectile, which

in this case is the proton mass. Eb is the beam energy, which is 18 MeV, and Esil

is the energy that is measured using the SDT shown in the banana energy spectra.

θ is the angle that the proton ejectile direction makes with the beam direction as

shown in figure 4.11.

Figure 4.11: Two body kinematics of a proton projectile and a 74Ge nucleus.

Figure 4.11 is a schematic representation of how a typical two body kinematics

reaction works. When the incoming beam interacts with the target nucleus, not

only does it excite the nucleus, but it also transfers some of its momentum in the

nucleus. This results in the nucleus being scattered at an angle φ, and thus leaving

with some of the projectiles energy.
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The projectile also loses some of its energy when passing through the target and

the dead layer of the detectors. This energy loss however is not accounted for in

this analysis. That is because the energy loss through these layers has little effect

on the results of the overall analysis.
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4.4 γ-ray Analysis

γ-ray energy sharing corrections were also carried out, where when two adjacent

diodes fire at the same time, the two energies are added up and made to a single

event.

Figure 4.12 is a spectrum of excitation energies. the particle entrance energy

in the silicon telescopes is converted to excitation energy using equation (4.4).

The neutron separation energy (Sn) for the nucleus 74Ge is 10.20 MeV [27].

Figure 4.12: Energy spectrum from 74Ge(p,p’)74Ge reaction
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Figure 4.13 is a γ-ray energy spectra of the γ-rays emitted by the nucleus up to

2 MeV. I use the γ rays from this spectra to make particle-γ and particle-γ-γ

coincidences.

Figure 4.13: Excitation energies after recoil and aluminum foil energy loss
corrections up to 2 MeV. The peak with the highest counts is the 596 keV
γ-ray which belongs to the first excited state of the nucleus.

The first excited state has the highest counts because most of the γ rays from the

quasi-continuum cascade down to this state. I have also shown the 1204 keV γ ray

which belongs to the second excited state decaying straight to the ground state.

Both the first and second excited states have spin and parity of 2+.

Figure 4.14 is an excitation energy versus γ-ray energy 2-D coincidence spectra.

It shows the γ rays feeding into the different energy states of the nucleus. The

strongest transition as observed from the diagram is the 596 keV γ-ray emission

from the first-excited state. The excitation energy lines on the spectra get more

dense as the excitation energy increases.

The main objective from this point on is to extract particle-γ-γ coincidences using

the information in figure 4.14. To achieve this goal, I first put a gate on particle

excitation energies from the particle singles events. I then set the first γ-ray gate

on the γ from a state with a specific spin and parity, decaying to the ground state.

I set a gate on the second γ ray such that the first and second γ rays add up to
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Figure 4.14: Particle versus γ-ray energy spectra.

the particle excitation energies.

Figure 4.15 is a schematic diagram showing one of the particle-γ-γ coincidences

made. Started off by setting a gate on excitation energy. Next I applied a γ-ray

gate on the level state of energy 596 keV with spin 2+ and required that the 596

keV added to the primary γ ray adds up to the excitation energy at the quasi-

continuum region.

With this condition I was able to make a spectra of all the primary γ rays that

feed to the 596 keV level state together with the 596 keV γ-ray, i.e, a plot of counts

vs (596 keV + primary γ ray) . Figure 4.16 is such a spectra. Since the two γ

rays add up to the different excitation energies of the nucleus, so this is a spectra

of excitation energies built on top of the 596 keV state.
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Figure 4.15: A schematic representation of how particle-γ-γ coincidences are
done. A gate in excitation energy at the quasi-continuum is applied, followed
by a gate on a secondary γ-ray that decays to the ground state. A primary
γ-ray is required to come from the quasi-continuum and feed into the state of
the secondary γ, which is the 596 keV level state in this case.

Figure 4.16: The primary γ-rays that are coming out of the quasi-continuum
and feeding directly into the 596 keV state.
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4.5 Efficiency Calibration for HPGe Detector

Energy efficiency calibrations were also accomplished for the HPGe detectors using

the 152Eu γ-ray source. The energy peaks shown in table 3.1 on the first column

were used. The software Ecal was used to get the efficiency parameters and then

used them to make γ-ray intensity corrections.

In the first few runs of the experiment, 13C and 14C runs were executed for the

efficiency calibration. Efficiency calibration was performed using particle-γ coin-

cidences. Table 4.1 is a table of the 14C data. Use of 152Eu for low energies is done

and 13C and 14C are used for high energies.

14C efficiency calibration data.

energy (keV) area
613.0 14671.0
1248.0 17634.0
6092.4 8527.0
6726.0 1254.0

Table 4.1: 14C transition anergies that were used for efficiency calibration.
The first column is the energy of the peak (γ-ray) and the second is the area
under the peak.

Figure 4.17 shows a γ-ray spectrum of 14C from 2 to 8 MeV, and only two γ peaks

are shown out of the four peaks that were used. The area under each peak is given

in column 2 of Table 4.1.
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Figure 4.17: Two γ-rays that were used for efficiency calibration coming
from 14C. The spectrum shows the energy range between 2 and 8 MeV.

Figure 4.18: Three γ-rays that were used for efficiency calibration coming
from 13C.

Figure 4.18 is the γ-ray spectra of 13C from 0 to 5 MeV. The three γ peaks, 3.089

MeV, 3.683 MeV and 3.853 MeV, are the peaks that were used for efficiency cal-

ibration from 13C. All the peaks that were used from the carbon isotopes were

split into half. That was due to the Doppler effect which was magnified at high

energies as a consequence of the formula EDS = Eγ(1 + v
c

cos θ), where v is

the velocity of the recoil nucleus, which was the one of the carbon isotopes in this

case, relative to the detector and c is the speed of light. Eγ is the energy of the
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γ ray decaying from the recoil nucleus, θ is the angle projected by the detector

relative to the direction of the beam and EDS is the Doppler shifted energy.

Although it would have been desirable to include a Doppler correction, for the

sake of this work it was determined that the Doppler shifted spectra provides a

sufficiently good value to proceed. This was confirmed by the measured efficiency

values which are consistent with those from previous work [1].

4.6 Results

After the analysis the spectra parameters are inputted for the particle-γ-γ coin-

cidences and the efficiency parameters to calculate the strengths for each γ-ray

transitions to well known low-lying spin states. The strength function ratios are

extracted for states with spins 0+, 2+, 3+, 3-, and 4+.

To extract the shape of the γ-ray strength function of the different states, one

needs a way to go from excitation energy to primary γ-ray energy. To interchange

from the excitation energy to primary γ-rays, we use the formula,

Eprim = | Ex − Eγ | , (4.4)

where Eprim is the primary γ-ray energy we want to get. Ex is the excitation en-

ergy and Eγ is the γ-ray energy from the well known low lying state. Figure 4.15

shows clearly how this is done for the γ-ray energy from the 596 keV state. The

calculations are done for two different primary γ-ray energy bins (σ (Eprimary)),

which are 120 keV and 200 keV respectively.

The energy efficiency for HPGe detector, as extracted using ecal, is given by this

formula

log10[eff(Eprim)] = a − b [log10(Eprim)] + c [log10(Eprim)]2 − d

(Eprim)2
.

(4.5)
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To get the efficiency both sides must be exponentiated by base 10 to get.

eff(Eprim) = 10log10[eff(Eprim)] . (4.6)

Figure 4.19: An efficiency plot for all the HPGe detectors which was
measured from 152Eu, 13C and 14C.

All the uncertainties were propagated to obtain the total uncertainty of the effi-

ciency which amounts to 5% of the efficiency values.

Figure 4.19 is the efficiency plot obtained from using equation 4.6, from 0 keV

up to 7 000 keV. The parameters a, b, c and d are obtained from inputting the

data values for 152Eu, 13C and 14C shown in table 4.1 into the software ecal which

calculates the efficiency of the detector from the parameters in table 4.1. Europium

and carbon combination was used because 152Eu has its highest γ-ray energy at

1408 keV, while the data goes up to 10 MeV in γ energy. To resolve the problem

we use 13C which has its highest energy γ-ray at 3.089 MeV and 14C which has its

highest energy γ-ray at 6.726 MeV for the calibration. All the data was combined

for 152Eu, 13C and 14C into one table, and the data was fed into ecal to get the

parameters a, b, c and d that were used in equation 4.5.
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Efficiency calibrations were also performed for the γ-rays from the well known

states that the primary γ-rays feed to, using equation 4.5.

To get the true primary γ-ray intensities, corrections for the counts were per-

formed on the γ-ray peaks using the efficiency of the HPGe detector. First a

correction was made on the primary γ-ray energy using the formula

Corrprim =
counts

eff(Eprim)
, (4.7)

and then did the same for the γ-ray from the well known state, using the equation,

Corrγ =
counts

eff(Eγ)
. (4.8)

To obtain the total primary γ-ray intensity the two intensities were multiplied and

divided by the counts of the γ-rays, to obtain the equation

NLprim =
Corrprim Corrγ

counts
=

counts

eff(Eprim)

counts

eff(Eγ)

1

counts

=
counts

eff(Eprim) eff(Eγ)
. (4.9)

The end product is an efficiency corrected primary γ-ray intensity. Using informa-

tion from equation 4.4 and the one from equation 4.9, the construction of partial

strength functions or Quasi1 was performed for all the primary γ-ray energies

feeding to each of the low lying well known states. They were constructed as fol-

lows,

df(Eprim) = Quasi =
NLprim

E3
prim

. (4.10)

Since the excitation energies cover an energy range between 1 keV and 10 000 keV,

1 000 keV or 1 MeV bins were created. That is the Quasi were grouped by adding

them together from 500 keV up to 1500 keV, omitting out the first 500 keV, which

1Quasi is the intensity of the primary γ rays feeding into a state divided by the energy of
those primary γ rays, Quasi = NLprim

/E3
prim.
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constitutes the first bin. 1500 keV up to 2 500 keV constitutes the second bin and

so on. The first 500 keV is left out because the first excited state of 74Ge is 596 keV.
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Discussion

5.1 Ratios

Since most states in the nucleus have more than one γ-ray decay branch, branch-

ing ratio corrections for such states were performed. The 1204 keV state is an

example of such case, which can decay to the ground state, but can also form a

cascade to the 596 keV state first before going to the ground state, releasing a 608

keV γ-ray in the process.

Figure 5.1: A schematic diagram of the branching ratio of the 1204 keV level
decaying to the 596 keV and ground state.

56
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Figure 5.1 is a schematic representation of how the 1204 keV state branching ratio

correction is performed, which is the consideration of proportions of γ-rays decay-

ing through different channels. The intensities shown on the diagram, taken from

NNDC [27], were used to make the corrections as follows,

f(E608) = (
I608
I1204

) f(E1204), (5.1)

where f(E608) is the intensity corrected Quasi of the 608 keV γ-ray state. As

stated in the previous chapter, Quasi is the intensity of primary γ rays feeding

into a state given by Quasi = NLprim/E
3
prim. I608 is the γ-ray intensity for the

608 keV γ ray and I1204 is the γ-ray intensity for the 1204 keV γ ray. f(E1204) is

the Quasi of the primary γ rays that are feeding into the 1204 keV state.

To obtain the total Quasi strength of the γ rays coming out of the 1204 keV

state, I add the corrected Quasi of the 608 keV γ-rays to the 1204 keV Quasi to

get

f(Etot 1204) = f(E1204) + f(E608). (5.2)

Figure 5.2: Ratios R = f(E596)/f(E1204) for primary γ-rays that feed into
the 596 keV state over those that feed into the 1204 keV state.

Since the 596 keV γ ray is the only γ ray decaying from that state, there is no
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branching ratio correction needed. Next I take the ratio R for the 596 keV Quasi

over the 1204 keV Quasi to obtain,

R596\1204 =
f(E596)

f(Etot 1204)
. (5.3)

Figure 5.2 is a schematic diagram showing how this ratio is done and figure 5.3 is

a data plot of the Quasi ratios of the 596 keV and 1204 keV excited states. The

first gate is done on the 3 MeV excitation energy, with a deviation of ±0.5 MeV,

because the proton punch through occurs from 0 to 2.5 MeV. The Quasi ratio of

the primary γ-rays coming from the 3 MeV excited state is taken that is feeding

into the 596 keV excited state to the Quasi of the primary γ-rays coming from the

3 MeV excited state feeding into the 1204 keV excited state.

Next, a gate at 4 MeV excitation energy is applied and the ratio is taken again.

The same is done for 5 MeV, 6 MeV, 7 MeV, and 8 MeV excitation energies, and

the same ratios taken for all of them. The plot of the ratios against the excited

states that were gated on is shown in figure 5.3.

As it is visible in figure 5.3, the plot starts from 3 MeV. That is because the punch

through that was visible on the 2D scatter plot was calculated to be between 0

MeV and 2.5 MeV of the nucleus excitation energies. The punch through was

calculated on the silicon telescopes using the software SRIM [31]. SRIM uses the

information of stopping power of materials to calculate the distance a particle of

certain energy and angular range travels in a target material using a quantum me-

chanical treatment of ion-atom collisions. A beam energy of 18 MeV was inputted

together with parameters such as target thickness, aluminum foil in front of the

silicon detectors and angular range of the beam.

SRIM calculated the proton punch through to be at 2.2 MeV of the nucleus excita-

tion energy at θ = 49◦ and decreased with increasing angle up to θ = 60◦, where

it diminished to 0.0 MeV excitation energy. A margin of error on the calculations

of up to 300 keV was allowed, and so started having confidence on the data from

2.5 MeV excitation energy. Each excitation energy point on figure 5.3 is 1 MeV

wide, coming from the binning as explained in the previous chapter.

The plot on figure 5.3 is not the GSF, but is a ratio of Quasi strengths of two

http://etd.uwc.ac.za/



Chapter 5. Discussion 59

Figure 5.3: The ratios of the strength of primary γ-rays that are feeding into
the 596 keV state against the strength of the primary γ-rays that are feeding
into the 1204 keV state.

different states with the same spin, which is 2+ in this case. This tells us about

the shape of the GSF of the 74Ge nucleus.

Figure 5.4: The shape of the GSF as depicted by the ratios.
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For the parts that the ratio R is less than one corresponds to the part of the relative

strength function where it is decreasing.The ratio is given as R = f(E1)/f(E2),

where f(E1) is the relative strength of the primary γ ray decaying to the lowest

energy level and f(E2) is the relative strength of the primary γ ray decaying to

the energy level higher than E1. If R < 1, then it implies that f(E1) < f(E2),

which means at that region the GSF is decreasing.

For example in the ratio plot of f(596)/f(1204) in figure 5.3, R is less than one

for Ex = 3000 keV. At this region the energy of the primary γ-ray feeding into

the 596 keV state is E1 = 3 000 keV − 596 keV = 2 404 keV and the energy of

the primary γ-ray feeding into the 1204 keV state is E2 = 3 000 keV − 1204

keV = 1 796 keV. When a plot of the data values is carried out, the strength

function is decreasing as shown in figure 5.5.

Figure 5.5: The shape of the strength function for R < 1.

The inverse is also true when R > 1, the relative strength function is increasing.

When R = 1, the relative strength function is flat and represents the minimum

of the actual GSF as shown in figure 5.4.
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5.2 Conclusion

Figure 5.6 shows the results from the reaction 74Ge(3He,3He*)74Ge, performed at

the Oslo Cyclotron Laboratory (OCL). The lower and upper limits are a result

of the systematic and statistical errors from the normalization process used. To

extract the GSF of the nucleus 74Ge using the Oslo Method, one needs to extract

the level density ρ(E − Eγ) and the γ-ray transmission coefficient J (Eγ). The

normalization process and subsequent extraction of errors are detailed in Ref [3].

Figure 5.6: A plot of the data from the reaction 74Ge(3He,3He*)74Ge, taken
from Ref [3]. The actual data on the plot are represented by the purple line,
the red line is the upper uncertainty limit and the green one is the lower
uncertainty limit.

The figure shows the LEE at γ-ray energies below 4 MeV. Usually it is expected

from the Lorentzian approximation of the γ-ray response function, that the GSF

continues to decrease towards E = 0, but this is clearly not the case here. Instead

there is a plateau at excitation energies below 4 MeV with what could also be an

enhancement at excitation energies between 1.5-2 MeV. In the region between 7-8

MeV, a resonance-like structure is observed. This data is used with the upper and

lower bounds to make a comparison with the results.

To make a comparison of the two GSF, as shown in figure 5.7, the Oslo GSF
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plot was converted into a plot of f(596)/f(1204) ratios. Since the data has many

resonances appearing, the data was re-binned where 3 consecutive data points

next to each other were averaged to form a bin. Firstly, every primary γ ray was

extracted on the data from 3 up to 8 MeV excitation energies.

Figure 5.7: A plot of the data from figure 5.3 in brown and the data from
figure 5.6 in blue.

From the Oslo data, the γ ray that decays from 3 MeV to the first-excited state,

which is 596 keV, has an energy of 2404 keV. This is the first primary γ ray that is

read from GSF to decay from 3 MeV to 596 keV level state. The same is done for

the primary γ ray decaying to 1204 keV energy-level state. The same procedure

was followed for the upper and lower bound errors of the data to determine the

uncertainty range. Finally the ratio f(596)/f(1204) was taken for the Oslo data.

The two plots in figure 5.7 follow the same shape throughout as expected, but

the Oslo ratio does not go below a ratio value of 1 for Ex < 4 MeV, which would

reflect the LEE as observed on the original plot. This is due to the fact that the

data were very sensitive to resonances or nuclear structure effects in this lower-

energy region which influences the ratios. Figure 5.7 also shows a large difference

at Ex = 8 MeV. The data shows a ratio value below 1 at 8 MeV which is not

what is observed in the Oslo data in figure 5.6. The sudden decrease in the ratios

at 8 MeV is due to the drop in γ-ray intensities, hence running out of statistics

for the primary γ rays decaying to the 596 keV energy level as opposed to those
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that decay to the 1204 keV energy level. The two data sets do seem to agree at

excitation energies between 5 - 7 MeV within the error bars.

In an attempt to correct for the disagreement at low energies between the two

data sets, further rebinning by 500 keV of the Oslo data was done. A polynomial

fit of the form f(Eγ) = AE2
γ +BEγ +C was applied to the data on figure 5.6 and

the relative strengths of the first-excited state and the second-excited state were

extracted again. The ratios of the relative strengths were taken and the result is

shown in figure 5.8. There was little success in rebinning the Oslo data, but at a

cost of losing too much information. The two plots agree on an increasing trend

at all energies within the uncertainty except at 8 MeV as was the case in figure

5.7. The polynomial fit gives more problems than solving as it magnifies the error

bars.

Figure 5.8: A plot of the data from figure 5.3 in brown and the Oslo data in
blue rebinned with the use of a polynomial fit of order 2.
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In conclusion, comparison of the Oslo data with these results was performed. Even

though it was not possible to find a satisfactory way to compare the Oslo results

with these results, the shape illustrated by the ratios from this data is consistent

with the GSF extracted using the Oslo method and the LEE was also visible in

the analysis. The NLD of 74Ge is very low as shown in figure 5.9, and as a result

of that the data has very low statistics. This meant that it was not possible to

take other ratios as the large error bars prohibited any meaningful analysis.

Figure 5.9: The experimental level density of 74Ge from Ref. [3]. The arrows
show where the Oslo data joins the Back-shifted Fermi gas model and at the
discrete energy levels.

If one was to improve and do further studies on the 74Ge nucleus using the same

method, it would be advisable to add more γ ray detectors to increase statistics.

In fact at iThemba LABS using the new AFRODITE array together with ALBA,

which is an array of large volume LaBr3 detectors for efficient γ-ray detection,

we can do that with high resolution and efficiency. Another solution would be to

increase beam time to increase statistics.
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