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Abstract

The nuclear dipole polarizability is mainly governed by the dynamics of the
isovector giant dipole resonance. An additional contribution may, arise from
the effect of the recently observed enhancement of the photon strength func-
tion at low energies for nuclides in the A ≈ 50, 90 mass regions. Empirical
drops observed from photoabsorption cross section measurements in ground-
state nuclear polarizabilities indicate deviations from the effect of giant dipole
resonances and reveal the presence of shell effects in semi-magic nuclei with
neutron magic numbers N = 50, 82 and 126. Similar drops of polarizability in
the quasi-continuum of nuclei with, or close to, magic numbers N = 28, 50 and
82, reflect the continuing influence of shell closures up to the nucleon separation
energy. These findings are presented for the first time in this work and strongly
support recent large-scale shell-model calculations in the quasi-continuum re-
gion describing the origin of the low-energy enhancement of the radiative or
photon strength function as induced paramagnetism, and assert the Brink-Axel
hypothesis as more universal than originally expected.
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Chapter 1

Introduction

Physics is the study of natural phenomena. Nuclear physicists have since the
discovery of the nucleus been working on understanding its dynamics. The nu-
clear chart, analogous to the periodic table of elements, is illustrated in Fig. 1.1
and color coded according to decay modes. Several theoretical models, based
on various hypothesis, have been developed during the years in order to under-
stand nuclear phenomena such as nucleon-nucleon (n-n) interactions, binding
energies, radii, excited states, etc. Unfortunately, no-unique model is actually
able to grasp all nuclear phenomena at the desired level of accuracy.

Among the different models, we notice that two distinct hypotheses can be used
to describe nuclear properties. Firstly, the independent particle shell model
(IPSM) + the n-n residual interaction, which assumes that a nucleon moves
independently in a potential generated by other nucleons. Secondly, the macro-
scopic models, where a nucleus is considered as a whole, i.e. neutrons and pro-
tons behave cooperatively and are mutually coupled to each other; highlighting
the short-ranged character of the nuclear force. The liquid-drop model is an ex-
ample of such macroscopic models. Refinement of these models is dependent on
experimental observations that are better detailed for nuclei along the line of β-
stability, making up a small fraction of the known isotopes, as shown in Fig. 1.1.

In practice, various techniques for studying exotic nuclei up to neutron and
proton drip-lines have been devised, including the use of radioactive ion beams.
However, the main challenges are the synthesization and short lived periods
of these exotic nuclei resulting in insufficient data collection from which the
characteristics and structural information are extracted. In general, nuclei have
unique structures represented by a particular configuration as given by the shell
model (SM). These structures impact a number of physical quantities, e.g. tran-
sition probabilities, cross sections and photon-strength functions. Experimental
methods such as Coulomb excitation or electromagnetic radiation are used to
probe these structures without invoking the nuclear force.

1
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1.1. SCIENTIFIC MOTIVATION 2

Figure 1.1: The nuclear chart. Black squares represent the line of β-stability.
The majority of nuclei are unstable and decay by β− (pink), β+/electron-
capture (blue) and alpha (yellow) decay [1].

1.1 Scientific Motivation

When matter is subjected to an electromagnetic field, polarization occurs as
a perturbation of the charge distribution. Common to all nuclear systems is
the existence of giant resonance (GR) motions – giant because it involves many
if not all nucleons. The nuclear polarizability is dominated by the isovector
giant dipole resonance (GDR) [2, 3, 4] – observed as a wide peak in photo-
nuclear cross-section measurements, whose width is on average around 7 MeV.
The GDR was the first quantum collective excitation discovered in mesoscopic
systems [5]. Figure 1.2 illustrates the GDR peaks for the nuclei 12C and 236U,
including structural effects such as alpha-clustering observed as bumps at Eγ
≈ 26, 30 MeV for 12C. The GDR can be initiated by any type of mechanism
that transmits enough energy for a nucleus to resonate, such as ion collision and
irradiation with γ rays.

The ability for a nucleus to be polarized is driven by the dynamics of the GDR,
i.e. the inter-penetrating motion of proton and neutron fluids out of phase [2].
This motion results from the nuclear symmetry energy acting as a restoring
force,

asym(A)(ρn − ρp)2/ρ, (1.1)

in the Bethe-Weizsäcker semi-empirical mass formula, acting as a restoring
force [2, 6]; where ρn, ρp, ρ and A are the neutron, proton and total densities and
the atomic mass, respectively. The final form of the symmetry energy parameter
asym(A) is key to understanding the elusive equation of state of neutron-rich
matter, which impacts three-nucleon forces [7], neutron skins [8, 9], neutron
stars and supernova cores [10, 11, 12, 13, 14].

https://etd.uwc.ac.za
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Figure 1.2: Experimental photo-nuclear cross sections for 12C and 236U.
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1.1. SCIENTIFIC MOTIVATION 4

Migdal [6] calculated the ground-state nuclear polarizability, α = D
E , where

D is the electric dipole moment and E the electric field strength, induced by
a constant electric field using a semi-classical treatment of inter-penetrating
proton and neutron fluids. Migdal assumed that nuclei have a well-defined
surface of radius R = r0A

1/3 fm where r0 = 1.2 fm with a potential energy
governed by the collective variable ρp. It was deduced that α is proportional to
the size of the nucleus by the following power law,

α =
e2R2A

40asym
= 2.25× 10−3A5/3 fm3, (1.2)

with asym = 23 MeV being the symmetry energy parameter [15, 16] and e2 =
1.44 MeV·fm. The nuclear polarizability can also be determined using second-
order perturbation theory1

α = 2e2
∑
n

〈i ‖ Ê1 ‖ n〉〈n ‖ Ê1 ‖ i〉
Eγ

=
~c

2π2
σ−2

, (1.3)

where Ê1 is the electric dipole operator, |n〉 and |i〉 the final (GDR) and initial
(ground) states Eγ the transition energy and σ−2

the inverse square energy
weighted sum rule of the total photo-absorption cross-section [17, 18].

σ−2 =

∫
Eγmax

Ethreshold

σ
total

(Eγ)

E2

γ

dEγ . (1.4)

The total photo-absorption cross section, σ
total

(Eγ), generally includes σ(γ, n)+
σ(γ, p) + σ(γ, np) + σ(γ, 2n) + σ(γ, 3n) cross sections. Alternatively, α can be
well described by microscopic mean-field approaches using the random-phase
approximation (RPA) with various effective interactions [19, 20, 21, 22, 23, 24].

The σ−2 values have been determined above neutron threshold to an upper limit
of Eγmax ≈ 20 − 50 MeV from the 1988 photo-neutron cross-section evalua-
tion [25], which excludes relevant σ(γ, p) contributions for A . 50 nuclei. These
data include the GDR region and are representative of nuclei above A & 50,
where, because of the high Coulomb barrier, neutron emission is generally the
predominant decay mode. From Eqs. 1.2 and 1.3, σ−2

can be defined as,

σ−2 = 2.25A5/3µb/MeV. (1.5)

This relation was qualitatively confirmed by Levinger [26] from a fit to the
available photoabsorption cross-section data in 1957, and further refined by
Orce [27] from the 1988 photo-neutron cross-section evaluation [25],

σ−2
= 2.38κ A5/3µb/MeV, (1.6)

1A complete quantum mechanical treatment of polarizability is presented in chapter 2,
related to the static nuclear polarizability α via σ−2

https://etd.uwc.ac.za



1.1. SCIENTIFIC MOTIVATION 5

where κ is the polarizability parameter and represents deviations between the
actual GDR effects and the hydrodynamic model. The value of κ can be deter-
mined experimentally from the comparison of the measured σ−2

values with the

empirical formula in Eq. 1.6,
σ−2

2.38A5/3 .
A value of κ = 1 generally holds for the ground state of nuclei with A '

50, and probably for even lighter nuclei with A ' 20 once σ(γ, p) contribu-
tions are taken into account [26, 27]. In contrast, values of κ > 1 are gener-
ally found for light nuclei with A < 20 where surface effects are not negligi-
ble [26, 27, 28, 29, 30, 52, 32]. Therefore Eq. 1.6 is applicable to heavy nuclear
systems. An implicit study of self-conjugate nuclei will be conducted in order to
show the significance of (γ, p) cross-section measurements and its contribution
to σ−2 , in particular for light nuclei.
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Figure 1.3: The polarizability parameter κ determined from the Dietrich &
Berman compilation. Equation 1.6 for κ = 1 is represented by the horizontal
line (black).

There are other resonances below the neutron threshold that may substantially
contribute, because of the 1/E2

γ dependence in Eq. 1.4, to the nuclear polar-
izability and σ−2

. For instance, von Neuman-Cosel suggested that the pigmy
dipole resonance (PDR) may contribute ≈ 5 − 10% to the final σ−2 value [33].
The PDR is an electric dipole, E1, resonance is believed by some authors to
arise from the oscillation of a symmetric proton-neutron core (N ≈ Z) against
the neutron skin. It follows that the PDR is only observed in nuclei with neu-
tron excess, where the neutron skin thickness is not negligible [34], the case of
48Ca suggests that the neutron skin exists for medium-mass nuclei [35]. Other
ground-state soft resonances such as the M1 scissors mode and spin-flip will also
contribute to a lesser extend. Contrarily, because of the 1/E2

γ energy weighting
in Eq. 1.4, σ−2

values are less sensitive to the contribution of nucleon resonances
arising at E

γ
& 140 MeV. Such pion exchange currents accounts for less than

https://etd.uwc.ac.za



1.1. SCIENTIFIC MOTIVATION 6

5% of the total σ−2
contribution [26, 36, 37, 38]. In fact, an upper limit of

integration below 50 MeV approximates the σ−2
asymptotic value for light and

medium-mass nuclei [38]. Therefore, σ−2
values are extremely sensitive mea-

sures of low-energy long-range correlations in the nuclear wave functions, which
are common feature for all nucleon-nucleon potentials, and fundamental for SM
calculations of heavy nuclei [39] using low-momentum interactions [40].

Furthermore the photon or radiative strength function, f(Eγ), characterizes av-
erage electromagnetic decay and absorption properties of excited (and ground
state) nuclei, indicating the ability (or average reduced probability) of atomic
nuclei to emit and absorb photons with energy Eγ . According to the Brink-Axel
hypothesis, f(Eγ) is independent of the particular structure and only depends
on Eγ [41, 42]. Therefore f(Eγ) can be measured at various excitation energies
including the ground state. This was verified by Guttormsen and co-workers
in 238Np using different excitation-energies in the quasi-continuum region [43].
Recent findings of a low-energy enhancement (LEE)2 of f(Eγ) at low Eγ ≈ 1−4
MeV for medium and heavy-mass nuclei along the line of β-stability [45, 46, 47]
may affect our understanding of the nuclear polarizability.

The physical origin of the LEE remains ambiguous and its observation seems to
be generally associated to nuclei in the A ≈ 50 and 90 mass regions which are
not well deformed. All LEE have in common that they occur at high excitation
energies in the quasi-continuum region. This enhancement is shown for 45Sc in
Fig. 1.4, where the enhancement starts at Eγ ≈ 3.5 MeV.
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Figure 1.4: Illustrating the enhancement of the photon strength function at low
energies.

2A detailed theoretical description of the LEE and its suggested origin are presented in
Chapter 2.5
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1.1. SCIENTIFIC MOTIVATION 7

If this enhancement persists for exotic neutron-rich nuclei, its influence on neu-
tron capture reaction rates and cross sections could change the predicted abun-
dance of some of the elements by up to two orders of magnitude [48]. The effect
of the enhanced f(Eγ) is smaller in stable nuclei compared to nuclei approach-
ing the drip line with low neutron separation energies, particularly for Fe, Mo
and Cd isotopic chains as shown in Fig. 1.5.

Figure 1.5: Maxwellian-averaged capture reaction (n,γ) rates for the Cd, Mo
and Fe isotopic chains from parametrized generalized Lorentzian functions with
Tf = 0.3 MeV (left) and including the LEE (right) [48].

The LEE described above results from measurements at high excitation en-
ergies and for the purposes of this work the LEE data will be combined with
existing total f(Eγ) and photo-absorption cross sections measured in the ground
state. This comparison, typically used in the literature, is somewhat, mislead-
ing, as the former corresponds to γ-ray transitions between excited states in the
quasi-continuum, whereas the latter involves transitions to the ground state.

Nonetheless, the study of (p,γ) and (n,γ) reactions for light nuclei and fusion-
evaporation reactions for heavy nuclei have shown that GDRs can also be built
on excited states (GDRexc) [49, 50, 51]. The GDRsexc present – at least for mod-
erate average temperature T and spin J – similar centroid energies, Eexc

GDR
, and

resonance strengths, Sexc
GDR

, relative to the Thomas-Reiche-Kuhn (TRK) E1 sum
rule [44], as those found for the ground-state counterparts (GDRg.s.) [49, 50].
The TRK E1 sum rule will be described in the following chapter.

These similar features suggest a common physical origin for all GDRs in con-
cordance with the Brink-Axel hypothesis, which also indicates that a GDR can
be built on every state in a nucleus [41, 42]. Moreover, the sum rule in Eq. 1.3
can also be applied to final excited states |f〉 [28, 32, 52]. Henceforth, one could
assume similar resonance strengths for GDRs built on the ground and excited
states. This may explain the nice fit between the high γ-ray energy part of the
measured f(Eγ) and the left tail of the GDRg.s. (see e.g. [53]). The observed
stability of the GDR allows study of excited nuclei properties i.e. nuclear po-
larizability in this work.
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The purpose of this work is to show how the combined dynamics of the LEE and
GDRs affect σ−2

and κ values and provide evidence for the continuing influence
of shell effects at high-excitation energies. The study will be conducted in the
following manner. In chapter two a review on GRs, f(Eγ) , α and LEE will
be done. Various models- classical, semi-classical and quantum mechanical- de-
scriptions of α will be discussed. Noting the fundamental assumptions affecting
the description of α is crucial. Chapter three entails data analysis systemat-
ics and results presented in tabular and graphic format. Finally, chapter four
discusses and summarizes the results, including remarks and future work. The
appendices A & B contain related work.
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Chapter 2

Theory and Literature
Review

2.1 Giant Resonances

Precisely eighty years ago Bothe and Gentner noted the evidence of the GR type
phenomenon. They measured the radioactivity induced by bombardment of var-
ious samples of material with γ radiation obtained using the Li(p,γ) reaction.
To their surprise the measured cross sections were much larger than expected;
this was because of the lack of analytic and systematic studies of resonances at
that time which were later systematically studied by Baldwin and Klaiber [5, 54].

A GR can be described as a high frequency, damped, nearly harmonic shape of
vibration around the equilibrium shape of a nuclear system. Macroscopically
the GR vibration frequency is in the 1021Hz range, particularly the GDR [54].
Giant resonances correspond to collective motion involving many if not all par-
ticles in the nucleus [2, 54, 55], and are generally described by three parameters,
E
R

, Γ
R

and S
R

, which correspond to the resonance energy, width and strength
of the resonance, respectively. There are many types of resonances, among
others, the isovector (IV) giant electric dipole resonance (GDR), isoscalar (IS)
giant magnetic dipole resonance (GMDR) and giant quadrupole resonance (IV
and IS GQR). Other soft resonances include the PDR, scissors-mode resonance
(SR). Isovector in this case indicates out of phase oscillations, whereas isoscalar
indicates in phase oscillations. Alternatively, GRs are characterized by polarity
(L), spin (S) and isospin (T) as shown in Fig. 2.1. The isospin quantum number
T= 1

2 (N − Z), serves as a measure of the charge independence of the nuclear
force that is violated by the electromagnetic interaction.

The idea of collective dipole oscillations was first proposed by Migdal in 1944 [2]
using the hydrodynamic model. Assuming that the nucleus behaves like an
incompressible fluid whose total density ρo is constant and the intrinsic potential
energy Vi due to protons , is governed by ρp ,

ρo = ρp + ρn =
A

V
, (2.1)

9
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2.1. GIANT RESONANCES 10

Figure 2.1: Types of GRs characterized according to L, S and T.

where ρ
o

= 0 for r > R, with R being the spherical nuclear radius and V the
volume. The potential energy is finite at r = 0 and varies inside the nucleus in
absence of an external electric field as follows,

dVi
dr

= −4πρ
p
, (2.2)

where ρ
p

takes the form,

ρ
p

= ρ
p
(0)

[
1 +

λ2r2

6
+
λ4r4

120
+ ...

]
, (2.3)

with λ2 =
ρoπ

2asym
. Note that according to Eq. 2.3, ρ

p
(r = R) − ρ

p
(r = 0) > 0,

indicating a higher proton density on the periphery of the nucleus, which is a
crude and unrealistic property of a nucleus.

This notion was further analyzed by Goldhaber and Teller, who suggested among
their three models [4], that protons and neutrons might behave like two separate
but inter-penetrating spherical density distributions. The resulting resonance
consists of small harmonic displacements of these distributions with respect to
each other, as illustrated in Fig. 2.2. They showed, according to the vibrational
model that the resonance energy E

GDR
is estimated by [4, 56],

E
GDR

= }ω =

√
3ϕ}2

r
0
mnuε

A−
1
6 , (2.4)

where ϕ is the energy needed to extract one proton from its neutron environment
or a neutron from its proton environment. Note that ϕ 6= Sn or Sp, the neutron
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2.1. GIANT RESONANCES 11

and proton separation energies, respectively, ε is the length (range of the nuclear
force) at which the neutron-nucleus interaction changes from zero outside the
nucleus to a higher value and mnu is the single nucleon mass. This is known as
the Goldhaber-Teller (GT) model.

Figure 2.2: A simplified illustration of the GT-mode of vibration, the smaller
sphere represents the proton distribution whose motion is indicated by the bold
continous arrow. The vibration cycle is shown as time evolves [56].

Amongst the three models by Goldhaber and Teller [4] one was later analyzed
further by Steinwedel and Jensen [3]. The Steinwedel-Jensen (SJ) model sug-
gested that the GDR might consist of density vibrations of the neutron and
proton fluids against each other within a fixed spherical surface. This motion
is shown in Fig. 2.3. and corresponds to the lowest distinguishable mode in a
spherical distribution with E

GDR
given by [3, 56],

E
GDR

= }ω =

√
4NZ

A2
60A−

1
3 MeV. (2.5)

Figure 2.3: The SJ-mode of vibration. Plus signs indicate density excess and
minus signs indicate density reduction [56].

Independent of the model, it results that heavy nuclei resonate at lower energies
compared to light nuclei, as observed in Fig. 1.2 for 12C and 236U. One can note
that the SJ mode at peripherals of nuclei is the GT mode of vibration, regard-
less of the restrictions in Eq. 2.1. However, both models are based on crude
assumptions and E

GDR
data show both A−

1
3 and A−

1
6 dependences, indicating

that resonances are collective phenomena.
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2.1. GIANT RESONANCES 12

An acceptable macroscopic definition of the GDR results from considering it
as a superposition of GT and SJ modes of vibration. Figure 2.4 and Eq. 2.6
illustrate the nature of the mass dependence,

E
GDR

= 30.2A−
1
3 + 20.6A−

1
6 MeV. (2.6)

The GT+SJ model shows some interesting structural features when com-
pared with experimental data. In particular, single and double magic nuclei
are well predicted by GT+SJ model represented as black squares in Fig. 2.4.
This follows from the fact that magic nuclei are mostly spherical in their ground
state. Experimental centroid energies, on the other hand, show a slight increase
in the region A ∼ 150 − 175, known as a region of super-deformation. This
implies that super-deformed nuclei are not ideal vibrational systems and they
are susceptible to other modes of excitation such as rotation. Additionally, one
can infer from Fig. 2.4 that the GT+SJ model does not coincide with both SJ
and GT models predictions.

0 50 100 150 200 250

Mass number (A)

0

10

20

30

40

E
G

D
R
 (

M
e
V

)

SJ
GT
GT+SJ
Experimental

O. Bohigas (1981)

GT+SJ: E
GDR

 = 30.2 A
-1/3

 + 20.6  A
-1/6

Figure 2.4: Variation of the centroid energy E
GDR

with nuclear mass number.
Semi-magic and magic nuclei are represented by black squares. The resonance
energy saturates at E

GDR
≈ 13 MeV.

To this point, the GDR has been described as a collective phenomenon, thus
ignoring structural effects arising from the n-n interaction. The GDR can also
be interpreted microscopically by the SM as a superposition of one-particle-
one-hole (1p-1h) excitations, that are in phase [57]. The 1p-1h excitation in
the simplest harmonic oscillator SM correspond to the jump of a nucleon to
the upper adjacent shell (unperturbed excitations), grouped in energies around
41A−1/3 MeV for dipole excitations, as shown in Fig. 2.5, where N is the prin-
cipal quantum number corresponding to a particular shell. Contrarily, it is
experimentally known that the GDR is concentrated at about twice the energy
predicted by the harmonic oscillator model, in particular for heavy nuclei, as
shown in Fig. 2.6 which approximates 2 times 41A−1/3. A better prediction
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2.1. GIANT RESONANCES 13

of E
GDR

results from the IPSM calculations by Bohigas, as E
GDR

= 79A−1/3

MeV [19], represented by a black solid line in Fig. 2.4. It is worth noting that
both the macroscopic and microscopic (2p-2h) interpretations of the GDR are
complementary, particularly in the A& 100 mass region, as observed in Fig. 2.4
and Fig. 2.6.

N +1

N

N -1

2p2h

1p1h

Figure 2.5: Schematic illustration of the harmonic oscillator SM, states are
labeled by the principal quantum number N.
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Mass number (A)
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40

50

60

E
G

D
R
 (

M
e
V

)

2p - 2h

1p - 1h

GT + SJ
Experimental

Figure 2.6: Comparison of the macroscopic and microscopic description of
GDR energies. The 2p-2h excitations present twice the energy of the 1p-1h
excitations and reproduce the E

GDR
for nuclei above A≈ 150.
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2.1. GIANT RESONANCES 14

2.1.1 Damping of giant resonances

Among the parameters describing GRs is the width ΓR. Understanding ΓR is
quite demanding because of the different excitation mechanisms being involved
and their admixture (e.g. multi-phonon mixing) that contributes non-negligibly
to the resonance width. Herein, ΓR is described according to the SM in terms
of particle-hole (p-h) excitations and referring Γ

GDR
to the GDR width. Exper-

imental observations show that the width has three components [58]:

Γ
total

= Γ
inh

+ Γesc + Γspr . (2.7)

The inherent width Γ
inh

characterizes the width due to spreading in the excita-
tion energy of the 1p-1h strength function. This occurs if many non-collective
1p-1h configurations and the collective state (i.e. the GDR state) have similar
quantum numbers and the 1p-1h configurations excitation energies are close to
E
GDR

. As an example, the non-collective 1}ω 1p-1h states energies are increased
to energy regions between 1~ω and 2~ω due to the repulsive character of the
residual p-h interaction [54], thus comparable to E

GDR
. This results in to frag-

mentation of the resonance state.

It is known that on average E
GDR

’s are located around 16 MeV for heavy nuclei.
At these energies a high density of 2p-2h configurations of the same spin and
parity as collective 1p-1h configurations lie at resonance energies [54], this is
also shown in Fig. 2.6 at A > 150 where E

GDR
is well reproduced by the 2p-2h

excitations. Due to coupling of the 1p-1h and 2p-2h configurations the giant
resonance acquires a width defined as spreading width, which for a state spin-
parity Jπ = 1− is defined by [58],

Γspr = 2π〈2p · 2h|Vint|1p · 1h〉ρ(E
GDR

) , (2.8)

where fundamentally ρ(E
GDR

) is the density of states at the E
GDR

and Vint the
interaction potential of the two configurations.

In general, the collective 1p-1h excitations are well above particle threshold en-
ergies e.g. Sn, thus we define an escape width Γesc acquired by particle emission.
Γesc results from two processes, firstly the direct decay of the collective 1p-1h
state by emission of a nucleon forming a compound nucleus (A-1). Secondly, the
1p-1h states can mix with 2p-2h states that results in complicated 3p-3h states
and further np-nh states, n ≥ 4. However, this width is noted to be negligible
for A ≥ 90 nuclei where Γesc

Γtotal
< 10% [54, 58]. In light p and sd-shell nuclei

Γesc is dominant [54], since these nuclei are loosely bound with low particle
thresholds. Hence, this in one of the reasons the GDR cross section of 3He, for
example, has an irregular distribution and a larger total width.

Therefore the width Γ
total

is affected by the structure of a nuclear system and
corresponds with the full width at half maximum (FWHM) of the GDR when
observed in GDR cross sections. It can also be used to predict the shape or
deformation of nuclear surfaces at resonance energies, as described in section
2.2.4. The width Γ

total
or Γ

GDR
is the key parameter in defining f(Eγ), as

shown in the following section.
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2.1. GIANT RESONANCES 15

2.1.2 Photon Strength Functions

In the process of studying nuclear structures various reactions are applied, the
result by any of the considered reaction is the emission of particles and γ rays.
Common to most reaction channels is the emission of γ rays. When a nucleus
is excited, it de-excites in order to reach its equilibrium; generally in its ground
state. In the process of de-excitation it emits energetic particles and γ rays
with energy Eγ . Amongst the discrete states, there is a probability associated
with each transition: transition probability. Fermi’s golden rule states that the
transition probability λif is proportional to the square of a transition matrix
element and the level density at the final state ρ(Ef ),

λif =
2π

~
ρ(Ef )|〈f |Ĥ|i〉|2 . (2.9)

The γ-ray emission or absorption channel herein is described by photon strength
functions, further modeled by a continuous probability distribution function –
the Lorentzian distribution – described in the following section. These pho-
ton strength functions characterizes average electrodynamic decay or absorption
properties of excited nuclei. Leading to classifying the photon strength functions
according to the method of extraction and reaction channel under consideration;
that is, absorption (γ,A∗) or emission (A,γ) of γ rays. For a reaction where γ
rays are used to excite nuclei, strength functions are called photo-excitation
strength functions. Whereas, when γ rays are being emitted by an excited
nucleus the strength functions are referred to as radiative (γ decay) strength
functions. Gamma-rays are known to have two types of multi-polarity, i.e. elec-
tric and magnetic. It follows that photon strength functions are characterized
by the γ-ray type and multi-polarity e.g. E1, M1, E2, etc.

Furthermore, the excitation and de-excitation involve two states of a certain spin
and parity. Therefore allowing classification or grouping of γ-strength functions
according to spin and parity. The strength functions can be expressed in terms
of parameters or quantities with intrinsic probability dependence, such as photo-
nuclear cross sections, transmission coefficients and radiation widths dependent
on Eγ . The photo-excitation strength function, requiring high-resolution of γ
rays may be written as [59],

fJ0↑
0fXL

= ρ
J
(Ef )

Γ̄
0fXL

E(2L+1)
, (2.10)

for an excitation from the ground state of spin J0 to an excited state of energy
Ef , where Γ̄

0fXL
is the average partial width, averaged over states |f〉 of a

particular spin and parity around Ef . The radiative (γ decay) strength functions
of states with spin and parity Jπ, from Ei to Ef energy states may be written
as follows [59],

fJ↓
ifXL

= ρ
J
(Ef )

Γ̄
ifXL

E(2L+1)
. (2.11)

The averages in the preceding two equations are taken over a large number of
levels with spin and parity Jπ. Alternatively, the photon strength function can
be extracted from photo-absorption cross sections in the following manner [59],
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2.1. GIANT RESONANCES 16

fJ0↑
0fXL

(Eγ) =
2J

0
+ 1

(2Jf + 1)π2(~c)2

σ̄J
γaXL

(Eγ)

E
(2L−1)
γ

MeV−3, (2.12)

where J0 and Jf are the spins for the ground and excited states, respectively.
σ̄J
γaXL

(Eγ) is the photo-absorption cross section of a nucleus of interest. This
relation Eq. 2.12 will be used to convert photon strength function data, LEE
data, to cross sections required to compute the nuclear polarizability.

It is known from the single particle model that at high excitation energies there
is a large number of configurations implying large level densities or small av-
erage spacing between energy levels. Thus yielding high statistics and allows
us to have a broad distribution of reduced widths or more accurate averages,
implying low Poter-Thomas fluctuations [60].

For simplicity f(Eγ) will be used instead of fJ
ifXL

, referring to electric dipole E1
polarity strength function unless stated otherwise. There are different types of
models that are used to describe f(Eγ), and will be discussed in the next section.

Photon strength functions are important in nuclear and astrophysics calcu-
lations. Particularly for model dependent calculations such as the Hauser-
Feshbach statistical cross section for radiative neutron capture that is described
in terms of total gamma transmission coefficients [61], reaction rates and when
assessing the competition between particle and γ-ray emission [62].

The LEE of the f(Eγ) will be related to cross sections in the following chapter,
in order to calculate polarizability values from photo-nuclear cross sections data.

2.1.3 GDR Models

The original Brink hypothesis at intermediate energies proposed that the GDR
shape can be described using the standard Lorentzian function (SLO), whose
width Γo (FWHM) is independent of energy and temperature [63],

f(Eγ)SLO = 8.68 · 10−8 σoΓo
2Eγ

(Eγ
2 − Eo2)2 + Eγ

2Γo
2 MeV−3 , (2.13)

where σo and Eo are the peak cross section and centroid energy, respectively.
One of the problems of this model is the overestimation of f(Eγ) at and below
the neutron threshold Sn. Therefore, an improvement to this model was pro-
posed, where the width Γ(Eγ) is energy dependent and f(Eγ)SLO is expressed
as follows [63],

f(Eγ)SLO = 8.68 · 10−8 σoΓoΓ(Eγ)Eγ

(Eγ
2 − Eo2)2 + Eγ

2Γo
2 MeV−3. (2.14)

The idea of energy dependent width originates from spreading of 1p-1h states
into 2p-2h states, thus increasing the magnitude of the total width. Further
improvements were done by modifying the width to have both energy and tem-
perature dependence as follows [63],
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Γ(Eγ , T ) = Γo
Eγ

2 + 4π2T 2

Eo
2 MeV , (2.15)

where T =
√

Sn−Eγ
a
F

is the temperature of the state at which the GDR is built,

and a
F

the Fermi gas level density parameter. There are still discrepancies
between predicted and experimental strength functions when approaching zero
energy, i.e. Eγ → 0. To accommodate the discrepancy when approaching low
energy limits, a generalized Lorentzian function (GLO) was proposed, indeed
the GLO reproduces the experimental f(Eγ) at low energies fairly well for nuclei
in the mass region A ∼ 55 - 197 [63]. This is shown for the molybdenum isotopes
93−98Mo in Fig. 2.7, where the GLO – discussed below – fairly reproduces the
strength functions down to Eγ ∼ 1 MeV. Comparatively, the SLO prediction
underestimates f(Eγ). The GLO is expressed as follows,

f(Eγ)GLO = 8.68 · 10−8σoΓo

[
Γ(Eγ , T )Eγ

(Eγ
2 − Eo2)2 + Eγ

2Γ(Eγ , T )
2 +

0.7
Γ(Eγ = 0, T )

Eo
3

]
.

(2.16)

However, the GLO underestimates f(Eγ) for strongly deformed nuclei by up to
a factor of 4 [65]. Taking into consideration the deformation of nuclei another
Lorentzian function was derived and referred to as the enhanced generalized
Lorentzian function (eGLO) in order to describe the GDR shape. In the eGLO
the width is modified to have dependence on parameters ko and Eγo that can be
adjusted to reproduce the deformed GDR shape [65],

Γ(Eγ , T ) =

[
ko +

Eγ − Eγo
Eo − Eγo

(1− ko)
]
Γo
Eγ

2 + 4π2T 2

Eo
2 . (2.17)

The enhancement of the width is purely empirical, note that when ko = 1
the eGLO returns to the GLO. Flexibility of the eGLO function lies in the
parameter ko which varies smoothly with mass number. From a large number
of calculations the behavior of ko was studied applying the Kataris-Ramamurty-
Kapoor (KRK) model [66, 67],

ko =

{
1.0 A < 148
1.0 + 0.09(A− 148)2exp[0.180(A− 148)] A ≥ 148

So far the discussion only describes the electric part of f(Eγ). The f(Eγ) for
magnetic dipoles, M1, may also be described by a Lorentzian shape as follows,

fM1(Eγ) =
σM1Γ2

M1

3(π}c)2

E2
γ

(E2
γ
− E2

M1
)2 + E2

γ
Γ2
M1

, (2.18)

where σ
M1

, Γ
M1

and E
M1

are the peak cross section, width and resonance energy
of the giant magnetic dipole resonance, respectively. The M1 resonances in gen-
eral occur at lower energies compared to the E1 (GDR) resonance energy E

GDR
.
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2.2. NUCLEAR POLARIZABILITY 18

Figure 2.7: Gamma-ray strength functions for the molybdenum isotopes
93−98Mo. The blue solid line represent the SLO Eq. 2.14 and the dashed blue
line corresponds to Eq. 2.16 the GLO. The (black) dash-dot line was reproduced
using the GLO-up2 model [64], discussed in §2.3.

The models discussed above, which are based on Lorentzian distributions do
not reproduce the LEE of f(Eγ) at low energies – except perhaps for the GLO
– whose effects are being investigated. Therefore an alternative interpolation
method of computing the total cross sections including the enhancement region
will be implemented in this work and elaborated in the following chapter.

2.2 Nuclear Polarizability

What happens to matter in an electric field? To answer this question consider a
case whereby a neutral atom is subjected to an electric field. An atom consists
of a nucleus (positively charged core) surrounded by the electron cloud. In
the electric field the nucleus is displaced in the direction of the field and the
electrons in the opposite direction [68]. This implies that charge is displaced
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2.2. NUCLEAR POLARIZABILITY 19

by an electric field, with reference to the equilibrium of a neutral atom. At the
macroscopic level, the atom is polarized. A dipole moment D, in the direction
of the electric field E is attained by the atom. The scalar dipole moment is
defined as follows [68],

D = αE. (2.19)

The parameter α is the atomic polarizability. A similar argument applies for
nuclei, where protons are displaced with respect to the center of the nucleus.

An electromagnetic field induces polarizability both electrically and magneti-
cally. Electric polarizability is the relative tendency of a charge distribution to
have its charges displaced by an electric field. Magnetic polarizability (or sus-
ceptibility) or simply magnetization mainly concerns spin interactions of atomic
electrons and nucleons.

The electric polarizability will be evaluated for various cases. In §2.2.1 the case
of a system modeled by a simple harmonic oscillator (S.H.O.) [69], with and
without damping is discussed mainly for analogy purposes. This model can also
be used to describe the GDR from a classical perspective. In §2.2.2 a quantum
mechanical description of α is revised. The hydrodynamic model description of
α, first introduced by Migdal [2] is also revised in §2.2.3.

2.2.1 The S.H.O. model of polarizability

Suppose that an electron is bound to a fixed point by a restoring Hooke force,
−kx, and subjected to an external constant electric field with strength E. Ap-
plying Newtons second law of motion at equilibrium and considering the motion
in one dimension,

− kx+ eE = 0. (2.20)

Thus,

x =
eE

k
, (2.21)

where x describes small oscillations or the position of the oscillating body, e
the electric charge and k the spring oscillation constant. Defining the angular
frequency of oscillation as νo and me as the mass of the electron, k can be
defined as [69],

k = 4π2meνo
2. (2.22)

The oscillating electron creates a dipole moment in the direction of the electric
field, defined by,

D = ex. (2.23)

Using Eq. 2.23 one can easily define the charge density of a certain charge
distribution. Combining Eqs. 2.21, 2.22 and 2.23 the dipole moment is found
as [68],
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D =
e2E

4π2meνo2
. (2.24)

Therefore the dipole moment depends on the characteristic frequency of oscilla-
tion, and can also be expressed in terms of α by combining Eqs. 2.19, 2.23 and
2.24,

α =
e2

4π2meνo2
. (2.25)

It is relevant to note that systems with a large oscillation constant, i.e., with
a large restoring force, are difficult to polarize. In the case of nuclei, this is
analogous to a large symmetry energy acting as the restoring force.

To make the SHO model more realistic, a time dependent electric field with
amplitude Eo can be introduced, then by Newton’s second law we have the
following equation of motion,

me
d2x

dt
+ kx = eEo cos(ωt). (2.26)

Upon solving Eq. 2.26, two solutions are obtained, a particular solution,

xp(t) =
eEo

me(ω0
2 − ω2)

cos(ωt), (2.27)

and a complementary one, xc(t) = xp(t), with ω2
o = k/me being the thresh-

old frequency. This is analogous to the complete overlap of eigenstates before
and after perturbation in quantum mechanics, for example the ground state
(s-orbital) in the nuclear SM . Once again, the combination of Eqs. 2.19, 2.23
and 2.24 yields,

xp(t) =
e2

4π2me(ω0
2 − ω2)

. (2.28)

Another realization of the SHO model is including damping, critical damping
in particular. A damping system is described by,

d2x

dt2
+ 2β

dx

dt
+ ω0

2x =
eEo
me

cos(ωt). (2.29)

A complementary solution of Eq. 2.29 represents transient effects for t � 1/β,
where β is the damping coefficient determining the damping force magnitude.
Equation 2.29 has a particular solution of the type,

xp(t) =
eEocos(ωt− δ)

me

√
(ω0

2 − ω2)2 + 4βω2
, (2.30)

where a driving force induced by an external electric field is included, δ is
the phase difference between the resultant motion and the electric field [69].
Polarization occurs due to oscillations which we assume to have sufficiently
small displacements so that the elastic limits are not exceeded. Once more the
polarizability is given by [69],
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α =
e2

2π
√
me(ω0

2 − ω2) + βω2

π2

, (2.31)

where an assumption that δ = 0 was made. Under this assumption the time
dependence of α vanishes.

Moreover, a resonance is now allowed contrary to the cases with no damping.
The GDR is one of the damping mechanisms of the restoring force generated
by the isovector density (ρn − ρp)/ρ. The latter is analogous to the classical
case discussed above. So far only the classical description of polarizability is
considered. Microscopic systems such as atoms and nuclei manifest quantum
effects. Therefore it is equally important to also consider a quantum mechanical
description of α.

2.2.2 Quantum mechanical polarizability

Suppose that a hydrogen atom is subjected to a uniform external electric field
with coordinates (x, y, z). The external field interacts with the atom, with a
perturbation Hamiltonian H′ i.e., the potential energy of the atom in the electric
field, H ′ = −eEz, is added to the initial Hamiltonian Ho. A Hamiltonian
describing the system is [70],

H = Ho − eEz. (2.32)

Then the Schrödinger equation of the perturbed system is,

Hψ = − ~2

2m
∇2ψ − e2

r
ψ + eErcosθψ. (2.33)

The calculations are done in the Coulomb field described in the spherical coordi-
nate system, where z = rcosθ and a complete solution of the preceding equation
has been carried out in [70]. The wave function is,

ψ = e−
r
a

[
1− a2E

e
cosθ(

r

a
+

r2

2a2
)

]
. (2.34)

An alternative treatment of polarizability can be done by invoking non-degenerate
second order perturbation theory, where the wave function is given by [70],

Ψ = ψo + eE
∑
n

Zonψn
En − Eo

, (2.35)

where ψo is the ground state wave function and ψn the wave function of the nth

excited state, both dependent on (r, θ, φ), and,

Zon =

∫
ψ∗nÊ1ψodτ ≡ 〈ψn|Ê1|ψo〉. (2.36)

The perturbation by the electric field causes a change in the charge distribution,
which can be described by the charge density distribution,

ρ(r, θ, φ) = e|ψo|2 + eE
∑
n

(
Zonψnψ

∗
o

En − Eo
+

(
Zonψnψ

∗
o

En − Eo

)∗)
. (2.37)
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As the sum consists of non-symmetric terms ψnψ
∗
o , a dipole moment is generated

due to the non-symmetric charge distribution. The dipole moment is given by,

D =

∫
zρ(r, θ, φ)dτ . (2.38)

Upon substitution for charge density and integrating Eq. 2.38, the scalar electric
dipole polarizability is given by,

α = 2e2
∑
n

|Zon|2

En − Eo
. (2.39)

Note that Eq. 2.39 indicates structural reliance; hence allowing the calculation
of α, at a specific nth excited state, and yielding a discrete definition of α depen-
dent on energy and the strength of the dipole operator Ê1. Furthermore, strong
dipole transitions (generating the GDR) dominate the sum rule (Eq. 2.39) at
energies Eγ ≥ Sn due to the high transition probability |Zon|2. At lower energies
there is a strong competition between electric and magnetic dipole transitions
particularly for medium-mass and light nuclei.

In order to relate the classical and quantum mechanical pictures of α a dimen-
sionless quantity, the oscillator strength function f0n [70], is introduced,

fon =
2m

~2
(En − Eo)|Zon|2. (2.40)

This is an oscillator strength for a transition |n〉 → |0〉. One can write En−Eo =
hν = Eγ , then polarizability can be defined as,

α =
e2

4π2m

∑
n

f0n

νn
. (2.41)

Alternatively,

α =
e2

4π2m

∑
n

f0n

E2
γ

. (2.42)

This result can be directly applied to a nuclear system, where Eγ is the transi-
tion energy from the nth state to the ground state, resulting in another discrete
definition of α.

According to non-degenerate and time-independent perturbation theory the
change in energy of eigenstates characterized by quantum numbers n, l and m
in the presence of an electric field E is,

∆Enlm = eE〈nlm|Ê1|nlm〉+ e2E
∑

n′l′m′=nlm

|〈nlm|Ê1|n′l′m′〉|2

Enlm − En′l′m′
. (2.43)

The sum in the RHS of Eq. 2.43 can be reduced by the fact that most of the terms
in the sum are zero. Reduction of the sum results from applying the selection
rules derived from the [Lz, Ê1] and [L2, Ê1] commutator rules as follows,
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〈nlm|Ê1|n′l′m′〉 =

{
0 m′ 6= m
0 l′ 6= l + 1

First order perturbation in Eq. 2.43 vanishes. The result is known as the
quadratic Stark Effect.

∆Enlm = e2E2
∑

n′l′=l±1

|〈nlm|Ê1|n′l′m〉|2

Enlm − En′l′m
. (2.44)

It follows that α can then be defined in terms of the energy shifts between
eigenstates,

∆Enlm = −αnlm
2

E2. (2.45)

Therefore,

αnlm = 2e2
∑

n′l′=l±1

|〈nlm|Ê1|n′l′m〉|2

En′l′m − Enlm
. (2.46)

Note the independence of αnlm from the magnetic quantum number m, constant
in the sum rule above, which implies the existence of magnetic polarizability or
susceptibility.

When matter is subject to a magnetic field the response to the field is rep-
resented by the magnetic susceptibility χ

M1
composed of paramagnetic (χp)

and diamagnetic (χ
d
) components and characterizes the strength of magnetic

polarizability β
M1

= χ
M1
·B, where B is the magnetic field strength,

χ
M1

= χp + χd

= 2
∑
n

〈i ‖ M̂1 ‖ n〉〈n ‖ M̂1 ‖ i〉
Eγ

− Ze2

6Mc2
〈r2〉. (2.47)

Thus we have for the total σ−2 values [72],

σ−2 =

∫
σ(Eγ)

E2

γ

dEγ =
2π2

~c
(α

E1
+ β

M1
). (2.48)

We can deduce from Eq. 2.47 that paramagnetic susceptibility is prominent
in nuclei with strong M1 transitions to the ground state |i〉. This is typical
of spin-flip transitions with low Eγ . Alternatively prominent paramagnetic sus-
ceptibility arises from the enhancement of permanent magnetic dipole moments.
This was observed on light nuclei with A < 20, particularly on 6,7Li [72]. Para-
magnetism is supposed to be negligible for heavy nuclei with A>60, where the
diamagnetic susceptibility dominates as predicted by the IPSM [71]. Addition-
ally, it is evident that diamagnetism according to its definition in Eq. 2.47 is
present in all nuclei and negative due to energy conservation or Lenz’s law.
That is, the current induced by the magnetic field B on the nucleus generates
a magnetic field opposing B, otherwise one could generate infinite energy from
electromagnetic interactions.
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2.2.3 Hydrodynamic polarizability

The hydrodynamic model of the nucleus was first proposed by Migdal in 1944 [2].
Migdal’s calculations of α using a semi-classical treatment will be revised in this
section. He proposed that the nucleus is a system of inter-penetrating proton
and neutron fluids with densities ρp and ρn, respectively. The fluid is spherically
shaped with radiusR such that ρ = ρn+ρp is constant. Furthermore, the nuclear
symmetry energy is assumed to be uniformly distributed throughout the nucleus
and defined as [2, 26],

asym(A) = asym
(N − Z)2

A
, (2.49)

which corresponds to a symmetry energy density,

Fρ = asym
(ρn − ρp)2

ρ
. (2.50)

In the presence of an electric field with strength E, a dipole moment is created
due to a linear increase in the proton fluid density in the direction of E assumed
to be the positive z-direction. In absence of an electric field the proton fluid
density is represented by ρop. Therefore [2, 26],

ρp = ρop + ρ′z, (2.51)

It was shown in [2] that the residual interaction (proton-proton) is negligible,
contributing less than 6% to the total nuclear polarizability. The energy density
at any point in the nucleus is given by [2],

Fρ =
4πR3

3

[
asym

(ρ− 2ρop)

ρ
+

4asymr
2

5ρ
− eρ′ER2

5

]
. (2.52)

To determine the parameter ρ′, the nuclear symmetry energy density Fρ is
minimized with respect to ρp. It follows from Eq. 2.52 that,

ρ′ =
eEρ

8asym
. (2.53)

Therefore the incremented dipole moment density is,

e(ρ− ρop)z = eρ′z2. (2.54)

Finally, the polarizability of the nucleus is found by using Eq. 2.54 as [2, 26],

α =
e

E

∫
ρ′z2 =

e2R2A

40asym
. (2.55)

In the previous section α was calculated by second order perturbation theory.
Migdal and co-workers showed that α is proportional to σ−2 (see Chapter 1 [2,
18]),

α =
~c

2π2
σ−2 =

~c
2π2

∫ Eγmax

0

σ
total

(Eγ)

E2

γ

dEγ . (2.56)

Comparing Eqs. 2.55 and 2.56 yields the following definition of σ−2,
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σ−2 = 2.25A5/3 µb/MeV , (2.57)

which can also be described discretely [26],

σ−2 =
2π2

~c

(
e2~2

m

)∑
n

fon
(En − Eo)2

. (2.58)

Therefore total α can be measured experimentally using the σ−2 values ac-
cording to the linear relationship (Eq. 2.56). The hydrodynamic model discussed
above is built under the assumption that nuclei are spherical. However, it is
known that nuclei are generally deformed in both excited and ground states
with some manifesting shape coexistence [73], implying spontaneous symmetry
breaking. Therefore, in order to build a more realistic and complete picture of
α, the deformation of the nucleus has to be taken into consideration.

2.2.4 Polarizability and Deformation

E

S
ym

m
et

ry
 a

xi
s

a

b

D

Figure 2.8: Deformed nucleus in an electric field. The interaction between the
electric field E and the electric dipole moment D, which tends to align with the
symmetry axis, produces a torque which causes rotation.

As shown in Fig. 2.8, suppose that an axially deformed nucleus (i.e., with
only quadrupole deformation) is subjected to an external homogeneous electric
field E with strength E. The field induces a dipole moment D which can only
be in the direction of E if the polarization vector of E is parallel to one of
the three principal axes defined for a deformed nucleus [74]. It is known that
the GDR shape of a deformed nucleus splits into different peaks. According to
the hydrodynamic model, this means that a fraction of nucleons oscillate along
one of the principal axes, hence the split of the GDR shape. The parameter
that approximates this fraction will be defined later. Additionally, the splitting
indicates polarizability in the direction of the ith principal axis, i = x, y, z.
Thus, polarizability is defined by [18],

αxx =
e2εopo
6πasym

∫
τ

x2dτ =
a2

R2

e2R2

40asym
=
a2

R2
αo. (2.59)
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Similarly,

αyy =
b2

R2

e2R2

40asym
=

b2

R2
αo, (2.60)

where αo is the static nuclear polarizability calculated for a spherical nucleus
(Eq. 2.55), a and b are the length of the major and minor semi-axis of an el-
lipsoid describing the nuclear shape. Therefore α can be defined as a rank-2
tensor [18, 74].

Migdal [18] calculated the nuclear photo-effect which was later modified by
Levinger [26]. It was found that E

GDR
can be given by,

E2
GDR

=

∫∞
0
σtotal(Eγ)dEγ∫∞

0
σtotal(Eγ
Eγ2 dEγ

=

∫ ∞
0

σ(Eγ)

2π2αo
dEγ =

σtotal
σ−2

. (2.61)

Using Eq. 2.61 we can find the position of the resonance along each axis,
expressed in terms of the polarizability tensor components [18],

E2
GDR(x)

=

∫ ∞
0

σtotal(Eγ)

2π2αxx
dEγ . (2.62)

Similarly,

E2
GDR(y)

=

∫ ∞
0

σtotal(Eγ)

2π2αyy
dEγ . (2.63)

The resonance energies along the two principal axis can be approximated
using the parameters defining the nuclear shape as,

E
GDR(y)

∼ E
GDR(x)

= E
GDR

(
R

b
− R

a

)
. (2.64)

In nearly-spherical and non super-deformed nuclei Eq. 2.55 is valid since
E
GDR(x)

E
GDR(y)

≈ 1. Note that

(
E
GDR(x)

E
GDR(y)

)2

∼
(
b
a

)2
is also known as the deformation

parameter. This parameter can be accurately defined by [75],

E
GDR(x)

E
GDR(y)

= 0.911
a

b
+ 0.039. (2.65)

A more realistic case would be assuming that the nucleus is randomly ori-
ented, i.e. the polarization vector is not necessarily parallel to any of the prin-
cipal axes. Therefore the mean photo-absorption cross section is calculated as
follows [75],

〈σ(Eγ)〉 =
1

4π

∫ [
σx(Eγ)cos2θ + σy(Eγ)sin2θ

]
dΩ, (2.66)

where it was assumed that x is the rotational symmetry axis, σx and σy are the
photo-absorption cross sections along the principal axes x and y, respectively.
Note the dependence of the cross section on spacial angles due to the random
orientation of the nucleus.
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Another remarkable feature of the GDR is that it allows the determination of
nuclear shapes from its splitting using the resonance width and strength. When
E
GDR(x)

− E
GDR(y)

< 1
2 Γ̄, the GDR shape consists of one broadened peak (see

Fig. 2.9). Here Γ̄ is the average resonance width of the two peaks centered at
E
GDR(x)

and E
GDR(y)

. The single broad peak implies a spherically shaped nu-

cleus (charge distribution). Whereas if E
GDR(x)

−E
GDR(y)

> Γ̄ two peaks appear
in the GDR shape. For tri-axially shaped nuclei three peaks appear as shown
at the bottom of Fig. 2.9. Treating the x-axis (major axis) as a rotational sym-
metry axis, it follows that for prolate nuclei with intrinsic quadrupole moment
Qo > 0, (i.e., a > b) the larger peak is centered at a higher energy. For oblate
nuclei, Qo < 0, b > a, the large peak is centered at a lower energy as for the case
of 126Cs shown in Fig. 2.9. At this point it is equally important to note the fact
that the E1 dipole polarizability is a second order effect in Coulomb excitation
theory and competes with the reorientation effect. One can evaluate the the
nuclear polarizability first excited state in 17O which has J = 1

2 , implying that

the spectroscopic quadrupole moment Q
S
(1/2

+
) = 0 [76].

The polarization potential Vpol resulting from considering deformation of nuclei
is defined by [74],

Vpol = −αoE2

[
1 + 2

∑
µ

α2µY2µ(θ, φ)

]
, (2.67)

where α2µ is the deformation parameter corresponding with µ state, Y2µ(θ, φ)
are the real spherical harmonics dependent on spacial angles θ and φ. Vpol tends
to reduce the total quadrupole interaction,

VQ = Vpol(t) + VE2(t), (2.68)

where VE2(t) is the electric quadrupole potential. Particularly for light nuclei,
where large α or κ values are generally observed for the ground and first ex-
citation levels. This is the case for 10Be with κ(g.s.) = 2.7 [52] and 12C with
κ(g.s.) = 1.5 and κ(2+

1 ) = 2.1 [32]. It is also interesting to note that κ seems to
increase with increasing excitation energy.

2.3 Low-energy enhancement of the photon-
strength functions

As stated in §1.1 the LEE of the photon strength function f(Eγ) is observed
as an up-bend in the low energy tail below Eγ ≈ 4 MeV in light and medium
mass nuclei such as 44,45Sc [79], 93−98Mo [80] and recently in heavy mass nu-
clei 151,153Sm [83]. The Oslo method [81, 82] was applied when the LEE was
observed for the first time, using nuclear reactions such as (3He,3He′), (p,d)
and (d,p). To verify if the up-bend was not due to systematic errors in the
Oslo method an utterly different experimental design and analysis technique
was employed [84], which confirmed the existence of the LEE. This was done
for 95Mo, as shown in Fig. 2.10 below, where f(Eγ) was measured at various
initial excitation energies.
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Figure 2.9: Calculated f(Eγ) for 208Pb, 126Cs and 160Dy showing a GDR shape
with a single peak (spherical), two peaks (oblate) and three unequal peaks (tri-
axially deformed), respectively. The strength functions are computed within
the QRPA model [77, 78].

The physical origin of this up-bend of f(Eγ) at low Eγ remains unknown. Exper-
imentally, it is clear that the LEE presents a dominant dipole radiation [47, 85],
but whether its nature is either electric or magnetic remains unresolved [86]. The
recent polarization asymmetry measurements of γ rays in 56Fe using GRETINA

tracking detectors yield inconclusive results, although rather suggests an ad-
mixture of electric and magnetic dipole radiation, with a small bias towards a
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Figure 2.10: The comparison of 95Mo f(Eγ)s measured using the Oslo method
(filled blue diamonds) and the alternative technique using primary γ-ray decay
from the quasi-continuum to individual low-lying discrete levels [84].

magnetic character at Eγ = 1.5− 2.0 MeV [86], as shown in Fig. 2.11.

Figure 2.11: The polarization asymmetry Ao as a function of primary γ-ray en-
ergies. The red-solid line represents expected Ao assuming a linear polarization
P = 0.30 with corresponding uncertainty range denoted by the red band, the
grey band represents the statistical uncertainty of measuring a uniform distri-
bution [86].

Two competing scenarios are theoretically proposed to explain the low-Eγ
anomaly. Using the thermal continuum quasi-particle random phase approxima-
tion (TCQRPA), Litvinova and Belov propose that low-frequency electric-dipole
E1 excitations from the hot-quasi-continuum to the continuum give rise to the
up-bend in f(Eγ) [87], as denoted by red dashed and solid lines in Fig. 2.12. As-
suming spherically shaped nuclei, where the excitations (decays) are interpreted
conceptually in terms of a microscopic many-body approach built on the ther-
mal mean-field description of the compound nucleus, by requiring well defined
single-particle states at moderate temperatures (i.e. in the quasi-continuum)
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and elimination of the translational degree of freedom. Figure 2.13 illustrates
f(Eγ) calculation from the TCQRPA model for even-even Mo isotpes at various
temperatures.

Figure 2.12: Lowest-energy single-quasi-particle transitions from excited states
in an compound nucleus (T > 0) and those from the frozen states in the ground-
state nucleus (T= 0), where n(E) is the effective occupation probability distri-
bution and ε

F
the Fermi energy [87].

Contrarily, SM calculations predict that such an enhancement has a magnetic-
dipole M1 character. Schwengner and collaborators suggest that the up-bend
arises from active high-j proton and neutron orbits near the Fermi surface with
magnetic moments adding up coherently [88]; a similar mechanism to the mag-
netic rotation [89, 90] or two-phonon mixed-symmetry states [91, 92] found for
nearly spherical nuclei in the mass A = 90 region. Figure 2.14 presents f(Eγ)
obtained from SM calculations and compared with experimental data. Specif-
ically, these calculations included only the pf shell yielding more than 6 · 106

states up to excitation energies of ≈ 8 MeV. In a complementary picture, Brown
and Larsen suggest that the up-bend arises because of the large M1 diagonal
matrix elements of high-` orbitals [93].

Additionally as illustrated in Fig. 2.15, Sieja computed both E1 andM1 strengths
in 44Sc on equal footing from large-scale SM calculations in the sd − pf − gds
model space and also supported the M1 character of the LEE in the A ∼ 50
region against E1 contributions [94, 95].

Recently, large-scale SM calculations of neutron-rich 70Ni using various effective
interactions also support theM1 character for the LEE [96]. In principle, the val-
idation of these SM predictions in the quasi-continuum region may be arguable
as, for instance, they are structure dependent; hence, posing a fundamental
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Figure 2.13: f(Eγ) for 94Mo reproduced by the TCQRPA model at finite and
T = 0 (ground state) temperatures compared with experimental data [87].

Figure 2.14: f(Eγ) for 94Mo obtained from (γ,n) (green squares) and (3He,3He′)
(blue circles) measurements and the M1 strength function extracted from SM
calculations (black solid line) [88].

question about the validity of the Brink-Axel hypothesis [41, 42]. The Brink-
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Figure 2.15: Comparison of experimental f(Eγ) and SM calculations for
44Sc [95].

Axel hypothesis1 has been broadly confirmed experimentally with similar f(Eγ)
determined for different excitation-energy ranges around the quasi-continuum
and above [43].

Amongst the GDR models discussed above, none is able to predict the LEE
as an up-bend of the f(Eγ) low energy tail without empirical modifications to
reproduce the LEE. One could make an immediate deduction from the preceding:
the LEE does not result from the collective behavior of the whole nucleus. Simon
and coworkers [83] modeled the up-bend by applying the M1 and GDR spin-flip
parametrization, resulting in an exponential f(Eγ) as shown in Fig. 2.16,

fupbend(Eγ) = Cexp(−ηEγ). (2.69)

The coefficients in Eq. 2.69, were reported to be C = 20·10−7 MeV−3 and η = 5.0
MeV−1, as determined for the 151,153Sm isotopes.

However, Larsen and Goriely [64] modified the second term of the GLO in
Eq. 2.16 to reproduce the up-bend by adjusting the temperature dependent
width Γ(Eγ , Tf ) in the following way,

Γ(Eγ , Tf ) =
Γ
GDR

E
GDR

2(
E2
γ

+
4π2T 2

fEGDR
Eγ + δ

)
. (2.70)

Here they introduced the E−1
γ dependence in the second term of the GLO, thus

enhancing f(Eγ) as Eγ −→ 0. The constant parameter δ assures finite value of

1The Brink-Axel hypothesis states that a GDR can be built on every state in a nucleus,
and has recently been validated for γ-ray energies as low as 2 MeV [41, 42, 43]
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Figure 2.16: Experimental f(Eγ) (open and shaded squares) compared with
(red solid line) combined contributions of the GDR, M1 spin-flip, SR and the
up-bend. The SR and the up-bend are represented by the red-dashed line [83]

the f(Eγ). They also assume that Tf remains constant, which is not necessarily
true. The final temperature is defined as,

Tf =

√
Ei −4− Eγ

a
, (2.71)

where 4 is the a pairing correction energy, and a the level density parameter
at Sn. In their analysis of isotopes 93−98Mo it was assumed that δ = 0.05 MeV
and Tf = 0.16 MeV. Indeed this model reproduces the up-bend with small dis-
crepancies when compared with the experimental data, represented by the black
dash-dot line in Fig. 2.7.

It is evident that the LEE can be reproduced by the SM [88, 94] and empirically
corrected collective models i.e. Lorentzian functions [64], but none of these
models state explicitly the physical origin of the LEE phenomenon. The LEE
has a significant impact in various processes of nuclear physics and astrophysics,
e.g. neutron capture reaction rates. In this study we investigate the impact of
the LEE together with photo-nuclear cross sections on the nuclear polarizability.
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2.4 Photo-nuclear Cross sections

The photo-nuclear cross sections calculated in this work are mainly dominated
by the photo-neutron (γ,n) channel for medium and heavy nuclei. For light nu-
clei the charged particle emission (γ,p) is dominant due to the weaker Coulomb
force. There are various experimental methods which can be employed in order
to obtain photo-nuclear cross sections data namely,

� Bremsstrahlung radiation.

� Annihilation-photon method.

� Radiative neutron capture.

� Bremsstrahlung tagged photon.

Therefore we will do a brief review on photo-nuclear reactions, focusing on the
first two methods listed above. As shown in Fig. 2.17, the interaction of pho-
tons with nuclear matter can result in ejection of nucleon(s), dependent on the
energy of the incident photon or the photons may be scattered. The latter
is referred to as photon scattering reaction (γ,γ′), favorable in studying nuclei
at energies below neutron and proton threshold energies, Sn and Sp, respectively.

Figure 2.17: Schematic photonuclear reactions, showing photon scattering and
single particle emission.

At moderate energies, electric dipole transitions are predominant in medium
and heavy nuclei [97]. This implies that total photo-absorption cross sections,

σtotal =

∫
σ(Eγ)dEγ , (2.72)

can be calculated using the TRK electric dipole sum rule which shows model
independence. To illustrate the TRK sum rule, we shall use the concept of
electric dipole transitions of protons and neutrons with effective charges N/A
and −Z/A, respectively, due to non negligible nucleon-nucleon interactions. The
total or integrated cross section, from the double commutator 1

2 [D, [H,D]], can
be written as follows [98],
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∫
σ(Eγ)dEγ =

2π2e2~
mc

[ Z∑
i=1

(
N

A

)2

fi +
N∑
j=1

(
−Z
A

)2

fj

]

=
2π2e2~
Mc

NZ

A

w
0.06NZ

A
[MeV-mb],

(2.73)

where fi and fj represent summed oscillator strength functions associated with
proton and neutron transitions, respectively. It is worth noting that the inte-
grated cross section in Eq. 2.73 is derived using only the kinetic energy term
of the Hamiltonian. Inclusion of nuclear potentials in the Hamiltonian tend
to increase the dipole sum rule, the resulting deviations are measured by the
polarizability parameter.

At higher Eγ energies there occur mechanisms such as the quasi deuteron
(QD) effect, where a photon particularly interacts with the dipole moment of
a deuteron – a proton-neutron pair inside the nucleus [99]. Furthermore, at
energies above 140 MeV pion photo-production occurs (charge exchange cur-
rents). However, because of the 1

E2
γ

weight, our polarizability calculations are

insensitive to the preceding two mechanisms, therefore we will not consider or
accommodate them in the calculation of cross sections.

It is known from Maxwell’s equations that accelerating or decelerating charged
particles emit radiation. Therefore when an energetic electron moving towards
a positively charged atomic nucleus it is accelerated due to the attraction be-
tween the two bodies or the electric field of the atomic nucleus, thus producing
radiation (photons), this phenomenon is known as bremsstrahlung. The energy
loss of the electron along its path can be described as follows [100],

− dEo
dx

= No

∫ υo

0

hνΦυdν, (2.74)

No is the number of atoms per unit volume, Φυ the cross section of producing
a photon energy with frequency ν. The integral can be resolved as,

−dEo
dx

=
Eo
xo

=
4e2re
~c

NoZ
2ln

183

Z173

(2.75)

where xo is the radiation length and re the fine structure constant. There also
occurs electron-electron interaction which produces X-ray radiation. The radi-
ation (photons) resulting from energy loss of an electron is then used to initiate
the (γ, X) reaction channels. The bremsstrahlung spectrum is observed to be
continuous – Gaussian distributed – due to random scattering of electrons pro-
ducing the radiation.
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An alternative method of generating the photons is the annihilation-photon
method. This method operates by producing high energy positrons through
pair production, thus producing beams of mono-energetic photons. In fact,
most of the data in [25] were obtained using the annihilation-photon method.
Here, a low mass target is bombarded by the positrons to reduce bremsstrahlung
production; hence radiating a mono-energetic beam of photons in the forward
direction [25, 101]. The annihilation-photon method is preferred when compared
with other methods listed above, due to its ability to produce mono-energetic
photons, yielding less contaminated spectra that are simultaneously obtained
for the partial photo-neutron cross sections. However, the processes of annihi-
lation and pair production will not be revised as these can be found in atomic
physics text books [102].

It is evident that the GDR motion is common to all nuclei and can be comple-
mentary described in terms of both the single-particle SM and collective (hy-
drodynamic) models, for the ground state. Moreover, the GDR decay appears
to be structural dependent and driven by asymmetry. The GDR phenomenon
results in polarizability of dipole nature, the parameter of interest, that will be
computed from photo-nuclear cross sections.

Figure 2.18: Schematic illustration of open proton and neutron channels for the
isobar residual nuclei 44Sc and 44Ca.

Prior to the resonance energy, E
GDR

, the lower energy part (above Sn and Sp)
of the GDR cross section is dominated by neutron and proton emission yielding
σ(γ, n), σ(γ, p) and σ(γ, np). The statistical competition between σ(γ, n) and
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σ(γ, p) presents a strong correlation with the Np/Nn ratio [58],

σ(γ, p)/σ(γ, n) ∝ Np/Nn , (2.76)

where Np and Nn are the number of available levels below E1 = E−Sp−Kp and
E2 = E − Sn −Kn, i.e. the maximum possible excitation energies of the resid-
ual nuclei, respectively, with E ≈ E

GDR
and Kp and Kn the kinetic energies (or

penetrabilities) of the emitted protons and neutrons, respectively. Figure. 2.18
illustrates this for the case of 45Sc. One assumes that the compound nucleus
at E ≈ E

GDR
emits protons and neutrons carrying out Kp and Kn, respectively.

The residual nuclei (A − 1 isobars) are formed with maximum possible excita-
tion energies E1 and E2 and the number of open proton and neutron channels
below E1 and E2 determine the dominant nucleon emission channel. In general,
the level density increases with excitation energy; hence, in the case of 45Sc
where E1 < E2 it is expected that Np/Nn � 1. Moreover, due to the odd-odd
nature of 44Sc there are extra states that can be populated implying higher
level density compared to the isobaric analogue 44Ca with even-even nature. A
similar argument applies for 51V, with residual nuclei 50Ti (even-even) which is
in addition semi-magic with N= 28 and 50V (odd-odd). Trivially, the latter will
have a larger level density and Np/Nn � 1.

Including the σ(γ, p) contribution increases the total photo-nuclear cross section
and satisfies the TRK sum-rule in the A≈90 region. This will also be shown
for self-conjugate and nuclei considered in this study. Contrarily, in the case
of 92Mo it was found Np/Nn = 1.95, possibly suggesting that residual inter-
action terms must be included in the TRK sum-rule. Additionally, the ratio
σ(γ, p)/σ(γ, n) allows testing of isospin (T) impurities in T=0 nuclei [58].

The recently found LEE phenomenon, whose meaning and effects are being in-
vestigated, permits computations of cross sections at low energies. Therefore
yielding more accurate total photo-nuclear cross sections and polarizability val-
ues in the quasi-continuum, assuming the validity of the Brink-Axel hypothesis
because most of known photonuclear cross sections are measured in the ground
state – particularly in Ref. [25].
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Chapter 3

Data Analysis and Results

Photo-nuclear data of the nuclei 45Sc, 50V, 51V, 56Fe, 76Ge, 92Zr, 95Mo, 138,139La
and 153Sm analyzed in this work consist of partial cross sections from various re-
action channels. In heavy nuclei the (γ, n) reaction channel generally dominates
and measurements of the photo-nuclear cross sections typically start at neutron
threshold energies, Sn [25]. Therefore, the total cross section is calculated as
follows:

σ
total

= σ(γ, n) + σ(γ, p) + σ(γ, np) + σ(γ, 2n) + σ(γ, 3n) + ... (3.1)

measured in milli-barns [mb] and related to the physical quantities of interest
σ−2

values, as follows:

σ−2 :=

∫
Eγmax

Eγmin

σ
total

(Eγ)

E2

γ

dEγ , (3.2)

and the nuclear polarizability,

α =
~c

2π2

∫
Eγmax

Eγmin

σ
total

(Eγ)

E2

γ

dEγ , (3.3)

where Eγmax and Eγmin = 0 are the maximum and minimum energy of in-
tegration. This energy range determines which nuclear reaction dynamics are
considered in the calculation. At intermediate energies between Sn and Eγ ≈ 35
MeV assuming Sp > Sn, the GDR is the dominant mode of excitation yielding,

σ
GDR

(Eγ) = σ(γ, n) + σ(γ, p) + σ(γ, np) + σ(γ, 2n) + σ(γ, 2n) + ... (3.4)

At higher energies, ∼150 MeV, the photo-absorption of a quasi-deuteron (QD)
becomes significant, resulting to the following definition of the total cross section

σ
total

:= σ
GDR

(Eγ) + σ
QD

(Eγ). (3.5)

38
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However, in this study Eγ(max) is in the range 20-50 MeV; hence, assuming that
σ
QD

(Eγ) contributions above pion threshold are negligible [26, 36, 37, 38]. All
the selected nuclei in this study present a LEE of f(Eγ) in the quasi-continuum
region, Eγ < Sn. Several mass regions were chosen in order to obtain a sys-
tematic study of LEE effects. Therefore, the total photo-nuclear cross sections
must also include the LEE cross section data in order to realize the aim of this
study as described in the next section. Accordingly,

σtotal = σ
GDR

(Eγ) + σ
LEE

(Eγ). (3.6)

The multi-polarity of σ
LEE

(Eγ) may include both electric and magnetic com-
ponents of f(Eγ), i.e. for a particular nucleus, σ

LEE
(Eγ) may be comprised

of both electric and magnetic dipole components, yielding total polarizability
βM1 + αE1. This has been shown in the case of 56Fe, from angular distribu-
tion measurements [86] that were found to be consistent with dipole radiation.
Moreover, recent calculations of the LEE in f(Eγ) for 44Sc using large-scale SM
calculations show the dominance of the magnetic dipole (M1) component at low
Eγ [94].

The data are obtained from the International Atomic Energy Agency; Nuclear
Data Services (NDS) and National Nuclear Data Center (NNDC). The partial and
total photo-nuclear cross sections were obtained from databases under NDS i.e.
EXFOR [103] and ENDF [104] in ASCII data file format. Decay and nuclear struc-
ture parameters were obtained from the ENSDF database under NNDC. These
data were acquired in different eras at various laboratories. To be consistent,
the majority of the data analyzed in this work were produced in photo-nuclear
experiments performed at Saclay (France), Lawrence Livermore National labo-
ratory (USA) and Moscow State University (Russia). Preference was given to
data sets produced from the annihilation-photon method over other aforemen-
tioned methods in §2.4 due to its ability to produce mono-energetic photons
yielding simultaneously partial photo-nuclear cross sections. The annihilation-
photon experimental method is described according to the Saclay laboratory
set up in Appendix B. Additionally, the LEE data were obtained from the Oslo
Compilation of Level Densities and f(Eγ) [106].

In this chapter the findings from this study are presented, beginning with the
systematics where all the assumptions, i.e. validity of the Brink-Axel hypothesis
and methods are implemented, followed by discussion where all implications of
the results are emphasized.

3.1 Systematics

3.1.1 Interpolation Method

The GDR data could be modeled with Lorentzian functions as explained in the
previous chapter in order to calculate the parameters of interest i.e. α, σ−2

and σtotal. However, an interpolation method has been employed instead to
compute the required quantities due to the failure of the unmodified Lorentzian
functions to reproduce the LEE, as shown in Fig 3.1.
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Figure 3.1: Interpolation function (solid red-line) of f(Eγ) for 45Sc and the low
energy tail of a Lorentzian function (solid orange-line) in the LEE region.

The interpolation method is independent of the physical phenomena and op-
erates by creating a function, cubic in this case, that interpolates (add data)
between known or fixed data points. It is recommended that the data spacing
(interval) of the independent variables (Eγ) to be small. Preferably ≤ 1 MeV,
in order to reduce fluctuations of the interpolating functions, thus reducing sys-
tematic errors.

A program that takes in experimental data as input and computes σ−2 and σtotal
values has been written in Python (see Appendix B for a detailed description of
how the program operates). The program is divided into four parts as follows,

� Input of energies and cross sections data for a particular nucleus in arrays.

� Interpolation and numerical computation of the integrals, applying the
trapezoidal rule method.

� Error propagation.

� Visualization of the data and fitting functions (interpolant) and results.

The data points with high uncertainties, e.g. exceeding 50%, reported from
experiment were excluded, thus reducing the error of the interpolation. Around
Sn, significant uncertainties are noted as σ(γ, n) → 0 this may result from low
statistics and indicates the less known structure of nuclei around Sn. Nonethe-
less, including these data points yields negligible change to σ−2 and σtotal values.
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Table 3.1 presents the σ−2
and σtotal values of the considered nuclei available in

the 1988 atlas of photo-neutron cross sections obtained with mono-energetic
photons [25] (upper part) and those produced by the interpolation method
(lower part). This comparison shows fair agreement, which proves the good
reliance of the interpolation method.

Nucleus Eγmin Eγmax σtotal σ−2

MeV MeV Mev-mb mb/MeV
45Sc 11.3 28.1 399 1.05
51V 11.1 27.8 531 1.65

76Ge 9.4 26.5 733 3.86
92Zr 8.6 27.8 639 3.92

139La 8.8 24.3 1687 8.54
45Sc 11.3 28.1 396 1.06
51V 11.1 27.8 449 1.38

76Ge 9.4 26.5 728 2.98
92Zr 8.6 27.8 675 3.01

139La 8.8 24.3 1684 7.80

Table 3.1: The σ−2 and σtotal values obtained from Ref. [25] (upper part) and
the interpolation method (lower part). A thick solid line separates the two
methods.

One disadvantage of this method compared to the Lorentzian functions is the
inability to estimate or predict the cross sections and f(Eγ) in regions with no
experimental data, hence independent of physical phenomena. In most cases
there is a non-negligible gap between the GDR and LEE data sets, as observed
for 153Sm in Fig. 2.16, which includes the spin-flip M1 resonance. This gap
results in prominent fluctuations of the interpolating function in a small region
(i.e. enhanced standard deviation). Therefore, data from (γ, γ′), (n, γ) reactions
and Evaluated Nuclear Data Files ENDF [104] are used to fill the gap, where
necessary. Alternatively, data reproduced by Lorentzian functions can also be
used and these data represent the total cross sections or f(Eγ) instead of partial
cross sections e.g. σ(γ, p).

3.2 Results

The LEE data assumed to be of dipole nature obtained from [106] were converted
to cross section as follows,

σ
LEE

(Eγ) = 10π2(~c)2g
J
f(Eγ)Eγ [mb], (3.7)

where g
J

is a statistical factor defined as,

g
J

=
2J + 1

2Jo + 1
. (3.8)

For σ
GDR

(Eγ) measurements in the ground state, Jo is the ground state spin
and J the spin of a compound state. In the case of Jo = 0, typical of even-even
nuclei, g

J
= 3 assuming J = 1 for electric dipole transitions. Non-zero ground
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state spin affects the value of g
J
, the GDR strength, Sg.s.

GDR
, and the magnitude

of σ
total

.

It is worth noting the magnitude of g
J
, as it significantly affects σ

LEE
(Eγ)

values. According to measurements [94, 95], the LEE originates from the hot-
quasi-continuum or highly excited states. The statistical factor in either case
has an average value g

J
= 1 for dipole transitions, particularly for J → J and

4J = 1 transitions. As shown in Fig. 3.2, g
J

asymptotically approaches unity
for dipole transitions between high spin states; that is, J & 7. Therefore, the
statistical factor in Eq. 3.7 was set to g

J
= 1 for all nuclei considered conse-

quently resulting to spin independent σ
LEE

(Eγ).
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Figure 3.2: Showing the spin distribution of g
J

for dipole transitions between
states with J = 1 to J = 12.

The resulting σ
LEE

(Eγ) was then added to σ
GDR

(Eγ) according to Eq. 3.6 in
order to compute the total cross section and its respective moments. As noted,
there are missing data between the two aforementioned cross sections in the

region E
LEE

γ(max) – Sn, Sp, i.e. the maximum energies at which the f(Eγ) are
measured up to and nucleon threshold energies. Figures 3.3 and 3.4 present
the photo-nuclear cross sections for the nuclei studied in this work, showing
no irregular behavior of the interpolating functions. The LEE data converted
using Eq. 3.7 is shown in squares (green) with respective uncertainties and the
experimental GDR cross section in diamonds (blue).
The width of the gap due to missing data varies for each isotope. Figure 3.5
shows for 45Sc a gap width of 2.3 MeV once the σ(γ, p) cross section is included,
which yields a prominent increase on Sg.s.

GDR
and σtotal by approximately two or-

ders of magnitude; hence, emphasizing the significance of σ(γ, p) contributions
to σ

total
in medium mass nuclei.
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Figure 3.3: Experimental photo-nuclear cross section for 50V, 51V, 56Fe and
76Ge interpolated with a cubic-spline function (red solid line). Experimental
data were obtained from references given in Table 3.2.
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data were obtained from references given in Table 3.2.
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Figure 3.5: Photo-nuclear cross section data for 45Sc including (γ, n) and (γ, p)
reaction cross sections. The total cross section (red) line is the sum of these re-
action channels. The sudden drop of the total cross section results from missing
(γ, p) data at Eγ ≥ 25MeV.

The interpolation method described above was applied in order to calculate the
desired quantities α, σ−2 and the polarizability parameter, κ. This method
assumes validity of the Brink-Axel hypothesis1 allowing the combination of
σ
LEE

(Eγ) and σ
GDR

(Eγ), which are measured from states in the quasi-continuum
and the ground state, respectively, to calculate total photo-nuclear cross sec-
tions. This is done by integrating the interpolant (cubic-spline interpolation
function), red solid line in Fig. 3.5, as described in Eqs. 3.2 and 3.3. The in-
terpolant is a piecewise function of cubic polynomials generated between a pair
of consecutive data points.

This study investigates the effects and implications of enhancement of f(Eγ) at
low energies. The overall results are presented in Table 3.2 and Table 3.4. The
largest contribution, 10.9% , of σ−2

(LEE) to σ−2
(total) is observed for 45Sc,

whereas the σ−2(LEE) contribution is found negligible for heavy nuclei with a
minimum of 0.4% for 138La. A stronger contribution to σ−2(total) is expected
if the LEE increases at energies approaching Eγ = 0, as suggested by recent
measurements [86, 94]. In nearly-spherical nuclei in the A ≈ 50 and 90 mass
regions the LEE starts at Eγ ≈ 3 − 4 MeV whereas for heavy nuclei the LEE

1The Brink-Axel hypothesis implies that a GDR can be built on every state in a nucleus
and maintains the same shape or parameters
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starts on average at a lower Eγ ≈ 2 MeV. Implications of these results will be
discussed in the following chapter.

Setting up the low-energy cut off in the up-bend of f(Eγ) is not obvious. Al-
though the recent work supports an increasing trend of the LEE at energies
below 1 MeV [86, 94], there is little evidence on how f(Eγ) behaves approach-
ing Eγ = 0. Hence, in order to calculate σ−2

(LEE), the low-energy cut off has
arbitrarily been set at 800 keV for the nuclide considered in this work up to
139La which, in turn, is the typical energy for strong M1 isovector transitions
in nearly-spherical nuclei [39]. For 153Sm, the low-energy cut off of 645 keV
is determined from experiment [83]. Additionally, because of the instability of
153Sm, 138La and 50V, there is no experimental GDR information and instead,
data from 152Sm,139La and 51V have been used in the analysis, respectively,
under the assumption that nearby isotopes have equal f(Eγ) (see e.g. Refs. [45]
and [107]). However, this assumption may not be adequate given the rapid
shape transition from weakly deformed in 150Sm to a well-deformed rotor in
154Sm and the realization of shell closures in 139La (N=82) and 51V (N=28).

Nucleus Eγ(min) Eγ(max) σ−2(total) σ−2(LEE) References
(MeV) (MeV) (µb/MeV) (µb/MeV) C

45
21Sc∗ 0.800 28.10 1840(130) 178 9.7% [108, 109, 110]
50
23V 0.800 27.77 1458(100) 42 2.9% [111, 53]
51
23V 0.800 27.77 1472(100) 49 3.3% [111, 53]
56
26Fe∗ 0.800 40.00 2231(155) 141 6.3% [112, 47]
76
32Ge 0.800 26.50 3189(225) 86 2.7% [113, 114]
92
40Zr 0.800 27.8 3131(220) 32 1.1% [115, 116, 117]
95
42Mo 0.800 27.84 4743(330) 79 1.7% [118, 119]
138
57La 0.800 24.30 7983(560) 29 0.4% [120, 121]

139
57La 0.800 24.30 8015(560) 56 0.7% [120, 121]

153
62Sm 0.645 19.98 9999(700) 403 2.7% [122, 83]

Table 3.2: Low-energy enhancement contribution to the (−2) moment of the
total photo-absorption cross section, σ−2

, and to the nuclear polarizability pa-
rameter, κ. Data have been extracted from EXFOR [103] and ENDF [104]. An
asterisk indicates that the calculation includes σ(γ, p) and C is the percentage
contribution of σ−2(LEE) to σ−2(total).

Experimentally, the LEE is observed down to energies ≈1.5 MeV for the iso-
topes considered (excluding 153Sm) as observed in Figs. 3.6 and 3.7, where
the LEE data are fitted with cubic polynomials due to the resulting minimal
root-mean-square error (RMSE) and allows acceptable extrapolation to lower
energies. Fourth order polynomials yield similar results, contrarily for higher
order polynomials. The extrapolated data are represented by a dashed blue-line
for 45Sc and 95Mo in Fig. 3.8, obtained from the LEE fitting function.

For heavy nuclei, the LEE is only found in 105Cd [123], 138,139La [121] and
151,153Sm [32], where the LEE starts on average at Eγ ≈ 2 MeV, as shown in
Table 3.3. The reason for not being widely observed in heavy nuclei, which were
studied using the same experimental method, could relate to the unprecedented
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Figure 3.6: f(Eγ) for 50V, 51V, 56Fe and 76Ge fitted with a cubic polynomial.

sensitivity achieved by Simon and co-workers in 151,153Sm using high-purity
germanium (HPGe) detectors in connection with Compton shields that allow
detection of γ energies down to ≈ 500 keV [83].

The contribution of the LEE to the total cross section measuring the effect of
the observed enhancement is calculated as follows,

C =
σ−2

(LEE)

σ−2(total)
, (3.9)

where σ−2(LEE) is calculated between Eγ(min) and Eγ(e), where Eγ(e) being the
approximate energy at which the enhancement of f(Eγ) begins. Alternatively,
σ−2

(without LEE) is calculated from Eγ(e) to Eγ(max). Table 3.3 shows Eγ(e)

corresponding to the nuclei considered in this work. The quantity C, also mea-
sures the contribution of the LEE on the nuclear polarizability via the linear
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Figure 3.7: f(Eγ) for 92Zr and 135Sm fitted with a cubic polynomial. The
lanthanum isotopes, 138,139La, were fitted with a 4th order polynomials due to
the large RMS when fitted with cubic polynomials.

relation of α and σ−2 in Eq. 3.3.

45Sc 50V 51V 56Fe 76Ge 92Zr 95Mo 138La 139La 153Sm
Eγ(e) [MeV] 3.2 3.1 3.1 3.8 2.3 2.2 2.5 1.9 2.5 1.6

Table 3.3: Approximate threshold energies of the enhancement of experimental
f(Eγ).
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Figure 3.8: f(Eγ) for 45Sc fitted with a cubic polynomial, the dash blue line
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As the σ−2(LEE) and σ−2(GDR) values involve different measurements the
errors reported in Table 3.2 were calculated in quadrature,

M σ−2
(total) =

√
M σ−2

(LEE)
2

+ M σ−2
(GDR)

2
, (3.10)

where M σ−2
(LEE) and M σ−2

(GDR) are calculated as the difference between
the upper and lower bounds of σ−2 values, whose magnitudes are determined
by the uncertainties in the experimental data. These errors are centered around
5% for σ−2

(GDR) values in most of the considered nuclei.

The polarizability parameters κ reported in Table 3.4 are calculated as follows,

κ =
σ−2

2.38A5/3
, (3.11)
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where κ measures the deviation of the GDR effects from hydrodynamic model
predictions. A value of κ = 1 implies consistency of the hydrodynamic model
predictions with experimental measurements, as shown in Fig. 1.3. This is the
case for all considered nuclei, except 45Sc and 56Fe with κ = 1.35 and 1.13,
respectively.

Nucleus κ κ
(with LEE) (without LEE)

45
21Sc∗ 1.35 1.17
50
23V 0.89 0.85
51
23V 0.87 0.85
56
26Fe∗ 1.13 1.07
76
32Ge 0.97 0.96
92
40Zr 0.70 0.69
95
42Mo 1.00 0.99
138
57La 0.90 0.90

139
57La 0.90 0.89

153
62Sm 0.95 0.90

Table 3.4: Low-energy enhancement contribution to the nuclear polarizability
parameter, κ.

Further evaluation of our results can be done by comparison with the parameter-
free σ−2 values from Ref. [27] which are described for A ≥ 3 as follows,

σ−2(A) =
1.83A2

A1/3 − 1.27
µb/MeV, (3.12)

resulting from introducing mass dependency of asym(A) which was obtained
from a global fit of binding energies of isobaric nuclei [127],

asym(A) = 28.32(1− 1.27A−1/3), (3.13)

where Ss
Sv
≈ 1.27 is the surface-to-volume ratio with Sv ≈ 28.32 MeV the bulk

symmetry energy coefficient. Consequently, this model accounts for Coulomb
interaction energy and shell corrections. Figure 3.9 below shows κ values in
Table 3.4 and calcualated δ = σ−2

/σ−2
(A) values. These ratios (κ and δ)

fairly agree for the heavy nuclei 138,139La and 153Sm, whereas there are evident
deviations for the considered lighter nuclei particularly for 45Sc, 50,51V, 56Fe
and 76Ge. Furthermore, smaller ratios are noted for nuclei with or near neutron
magic-numbers N = 28 and N = 50 suggesting the presence of shell effects.
The M1 effects, not considere in the hydrodynamic model, could yield a more
general and inclusive comparison of the results.
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Chapter 4

Discussion and Conclusion

4.1 Discussion

4.1.1 Photo-proton cross section

The impact of the missing σ(γ, p) measurements on σtotal is significant, in partic-
ular for light mass nuclei. This is shown in Table 4.1 for even-even self-conjugate
nuclei with isospin quantum number,

Tz =
1

2
(N − Z) = 0, (4.1)

where Tz = 0 implies complete symmetry of protons and neutrons. Therefore as-
suming isospin symmetry, this allows testing of photo-neutron and photo-proton
cross section contributions to σtotal, simultaneously evaluating isospin symmetry
breaking. The ratio σ(γ, p)/σ(γ, n) was calculated and presented in Table 4.1,
rounded off to the nearest integer. It is observed that σ(γ, p)/σ(γ, n) > 1 in all
the considered self-conjugate nuclei, which indicates dominance of the σ(γ, p)
channel and, hence, violates isospin symmetry. The magnitude of σ(γ, p)/σ(γ, n)
varies with the difference of nucleon between proton and neutron threshold en-
ergies, |Sp – Sn|. In general, the cross sections or f(Eγ) are monotonically
increasing functions of Eγ between Sp and Sn (e.g. see Fig. 3.5). This behavior
emphasizes the significance of σ(γ, p) cross section measurements omitted when
Sp 6 Sn [25]. Physically, in light mass nuclei the low Sp indicates loosely bound
nuclear systems due to weak Coulomb interaction, also violating the isospin
symmetry. Figure 4.1 shows that including σ(γ, p) to the total cross section
yields σ−2 values close to those predicted for A≥3 [27], similarly for α.

Furthermore, an evaluation of Sp−Sn was done for magic and semi-magic nuclei
with N = 20, 28, 50 and 82. The Sp and Sn difference is observed to be increas-
ing with decreasing mass number, A, as shown in Fig. 4.2. This emphasizes
the importance of σ(γ, p) contributions, particularly for light nuclei. However,
the Np/Nn ratio determines σtotal and σ−2 values. Additionally, below particle
threshold energies, soft resonances and the LEE also contribute to the σtotal
and σ−2 values.

52
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Nucleus Sp Sn σ−2
(γ,p) σ−2

(γ,n) σ−2
(total) σ(γ,p)

σ(γ,n)

(MeV) (MeV) (mb/MeV) (mb/MeV) (mb/MeV)
12C 15.95 18.72 0.253 0.073 0.326 4
16O 12.13 15.66 0.254 0.098 0.352 3
20Ne 12.84 16.86 0.252 0.090 0.342 3
24Mg 11.69 16.53 0.397 0.109 0.506 4
28Si 11.58 17.17 0.559 0.200 0.759 3
32S 8.86 15.05 1.219 0.190 1.409 6
40Ca 8.33 15.64 1.239 0.210 1.449 6

Table 4.1: Ratios of proton to neutron emission reaction cross sections, parti-
cle threshold energies, experimental (γ, p) and (γ, n) cross sections. The cross
sections were calculated using the interpolation method in this work.
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Figure 4.1: Second moment of photo-nuclear cross sections of self-conjugate
nuclei, with and without the σ(γ, p) cross sections, emphasizing the significance
of photo-proton cross sections.

4.1.2 LEE and shell effects

More intriguing are the small overall contributions to σ−2 (with and without
LEE) values found in nuclei close to or having a magic number. When com-
pared with Eq. 1.6 and 3.12, these nuclides present evident deviations from
GDR effects (i.e. δ, κ 6= 1) with smaller values of κ ≈ 0.90 in 50,51V (N ≈ 28)
and 138,139La (N ≈ 82), and specially for 92Zr (N ≈ 50 and Z = 40) with
κ = 0.70(3). In contrast, heavy nuclei away from shell closures present polar-
izability parameters consistent with κ = 1; except perhaps for 153Sm, where
one used the 152Sm data for the GDR region and a cut-off of Eγ = 645 keV.
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Figure 4.2: Nucleon threshold energy differences for magic and semi-magic
nuclei (black circles) for N = 20, 28, 50 82 and 126 isotones. A significant
fraction of these nuclei have low Sp energies compared to Sn in concordance
with closed shells properties

This recurrent behavior to the one previously observed in the photo-neutron
cross-section data for the N = 50, 82 and 126 isotones, indicates the contin-
uing influence of shell effects in the quasi-continuum region up to the neutron
threshold. As shown in Table 3.2 and inset (d) in Fig. 4.3, this is consistent with
the smaller LEE contribution to the total σ−2 values of 50,51V (N ≈ 28) with
respect to the neighboring 45Sc and 56Fe nuclide. Although there is no σ(γ, p)
data available for 50,51V, (γ, p) contributions will relatively be much weaker for
51V because of the much lower level density of the open proton channel (even-
even 50Ti with N = 28) as compared with the open neutron channel (odd-odd
50V).

The values listed in Table 3.2 are presented in Fig. 4.3, including overall
σ−2

values of ground states as a function of A extracted from photo-neutron
cross sections using mono-energetic photon beams and determined above neu-
tron threshold to an upper limit of Eγmax ≈ 20−50 MeV [25]. The data include
the GDR region and are representative for nuclei above A ' 50 (except for
58Ni [58], where neutron emission is generally the predominant decay mode.).
This may not be true for semi-magic number nuclei (N =20, 28, 50, 82 and 126)
where proton separation energies predominantly lie at much lower energies than
neutron thresholds, as illustrated in Fig 4.2.

Sudden drops of σ−2 (and κ) values are evident for the N = 50, 82 and 126
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line) is plotted.

isotones in the insets (a), (b) and (c) of Fig. 4.3, respectively. The σ−2
values

are directly affected by Eγ(min) and σ(γ, p), as observed for 45Sc in Fig. 3.5
including σ(γ, p) increases Sg.s

GDR
by approximately 1.5 orders of magnitudes.

Above both proton and neutron separation energies, the photo-absorption cross
section in the lower energy part of the GDR is controlled by the statistical
competition between σ(γ, p) and σ(γ, n) contributions, which presents a strong
correlation with the level density ratio Np/Nn between the open neutron and
proton channels [110],

σ(γ, p)/σ(γ, n) ≈ Np/Nn . (4.2)

This ratio also depends on the neutron and proton penetrabilities, Kn and Kp,
respectively, which are the kinetic energies of the escaping nucleons. The pre-
ceding dependence is shown in §2.4 where E1 and E2 determine the energies at
which level densities Np and Nn are measured, respectively.

The photo-absorption cross-sections σ(γ, n) + σ(γ, p) are reasonably available
in the N = 50 isotones, with the latter being indirectly determined from (e, e′p)
measurements [110]. The σ(γ, p) contribution is particularly important for
92Mo, with Np/Nn ≈ 1.95, and decreases for the lighter N = 50 isotones,
with Np/Nn ≈ 0.66, < 0.28 and 0.09 for 90Zr, 89Y and 88Sr, respectively [118],
as the isospin quantum number Tz increases signifying distinct behavior of pro-
tons and neutrons. The σ(γ, p) contribution extracted from the Np/Nn ratio
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only applies to the lower energy half of the GDR, and σ(γ, n) contributions still
remain greater. Once σ(γ, p) contributions are taken into account, the total
photo-absorption cross section satisfies the TRK sum rule [118],

σ(γ, n) + σ(γ, p)

0.06NZA−1
. (4.3)

For the 92Mo case, there remains ≈ 35% σ(γ, p) contribution to the total photo-
absorption cross section [110], which explains the sharper drop in the σ−2

value
shown in Fig. 4.3(a). More conspicuous are the drops of σ−2

values in 89Y,
141Pr and 208Pb – where σ(γ, n) contributions strongly dominate – which could
provide evidence for shell effects. Clearly, direct measurements of σ(γ, p) con-
tributions are crucially needed for singly- and doubly-magic nuclei.

4.1.3 Paramagnetism in the quasi-continuum

Table 3.2 shows that the LEE has a substantial contribution to σ−2 values in
medium-mass nuclei (45Sc and 56Fe) away from the N = 28 shell closure, being
largest for 45Sc with ≈ 11% increase. Coincidentally, enhanced paramagnetism
is expected and also observed for nuclei in the A≈50 mass region [71, 72] occu-
pying the 1f7/2 and 2p3/2 shells, which is the case for 45Sc and 56Fe. In fact,
according to the IPM, enhanced paramagnetism is expected for nuclei populat-
ing shells with high multiplicities. These support the prominent M1 character of
the LEE already predicted from SM calculations for 45Sc [95] and assigned with
a dipole character from angular distribution measurements for 56Fe [86], which
can be described as induced permanent magnetic dipole moments or paramag-
netism in the quasi-continuum.

As illustrated in Fig. 4.4, comparing 45Sc and 153Sm, this enhancement partly
arises because of the inverse mass dependence of E

GDR
and the fact that the

LEE starts at lower Eγ as A increases (see Table 3.3). In fact, Table 3.2 shows
that the LEE has a negligible contribution of . 3% to the total σ−2

values of
heavy nuclei with A = 76. Following the preceding deductions: the LEE for
light nuclei may be more pronounced and dominated by the magnetic dipole
component, supported by SM calculations [94] and χp measurements [72].

4.2 Conclusion

Drops of σ−2
values (κ < 1) for several nuclei with, or close to, neutron magic

numbers N = 28, 50, 82 and 126, suggest that the SM remains valid at high
excitation energies, from the quasi-continuum to the GDR region; in agreement
with Balashov’s SM interpretation of the GDR as a system of independent nu-
cleons plus the residual interaction [124]. The deviations from GDR effects, are
plausibly not related to E1 transitions because of the nature of Eq. 1.6. These
together with the continuing influence of shell effects, strongly support the M1
interpretation of the LEE by large-scale SM calculations [88, 93, 94, 95, 96].
Moreover, The empirical evidence for shell effects (with and without LEE) sug-
gests that the generalized Brink-Axel hypothesis allows for structural changes
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Figure 4.4: f(Eγ) vs Eγ on a log scale showing the interpolation to the data
(solid line) for 45Sc and 153Sm.

and is, therefore, more universal than originally expected. Following from con-
servation of the GDR parameters measured in the ground and excited states.
This conclusion is also supported by the work of Larsen and collaborators [85],
where the general f(Eγ) trends are found to be preserved for different bin en-
ergies.

Finally, the induction of permanent magnetic dipole moments or paramagnetism
in the quasi-continuum region is confirmed, due to the predominant M1 char-
acter of the LEE and sensitivity to low-Eγ . This is in agreement with previous
SM calculations and IPM predictions of an enhanced paramagnetism for the
ground states of nuclei with large occupation number of the shells [71]. Deter-
mining the magnetic properties that also govern the M1 operator. The origin of
this paramagnetism can be inferred from SM calculations, which can distinguish
between single-particle spin-flips and collective isovector excitations by decom-
posing the relevant M1 strength into their spin and orbital components [39]. It
is evident from this work that σ−2

values are extremely sensitive measures of
the long-range correlations in the nuclear wave functions. This work, therefore,
opens new research avenues to investigate the existence and evolution of shell
closures at high-excitation energies from σ−2 measurements and emphasizes the
importance of σ(γ, p) measurements, particularly for medium and light mass
nuclei.
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Appendix A

A.1 Nuclear Symmetry Energy

Herein we discuss the properties of symmetry energy in nuclear systems. Sym-
metry energy also appears in astrophysics, playing an essential role in under-
standing astrophysical processes like supernovae [125, 126]. In a nuclear system,
the symmetry, asym(A), energy measures the variation of binding energy as the
neutron to proton difference (N-Z) changes, alternatively the ratio (N:Z) [125].
This means asym(A) results from asymmetry (N − Z)/A of having excess neu-
trons or protons.

The symmetry energy is one of the parameters that are prominent and drive the
GDR, acting as a restoring force [2]. In the hydrodynamic model treatment it is
assumed that the energy density asym(A)(ρn − ρp)2/ρ is distributed uniformly
throughout the nucleus. Therefore, asym(A) certainly does affect the GDR, also
vital in determination of the equation of state [125, 126].

The mass dependence of asym(A) was long established and recent developments
show that [127],

asym(A) = Sv

(
1− Ss

SvA
1
3

)
MeV, (A.1)

where Sv ≈ 28.32 MeV is the bulk symmetry energy coefficient and Ss
Sv
≈ 1.27

the surface to volume ratio. The preceding definition of asym(A) was ob-
tained from a global fit to the binding energies of isobaric nuclei with A ≥
10, [127, 128]. The mass dependency allows us to explore it using various
methods such as GDRs, photo-absorption cross sections and binding energies.
A complete manuscript evaluating asym(A) using the aforementioned methods
is yet to be published.

Herein we focus on interpretations of asym(A) using GDR parameters and photo-
absorption cross sections. These interpretations relate asym(A) with the param-
eter of interest i.e. nuclear polarizability, discussed in §2.2.3. In terms of the
photo-absorption cross-section the symmetry energy is [18],

asym(A) =
e2R2π2

20 ~c
A

σ−2

' 5.2 · 10−3A
5/3

σ−2

MeV. (A.2)
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Eq. A.2 above also known as the Migdal sum rule shows the direct relation
between asym(A) and the nuclear polarizability via σ−2

. Also explaining the
observed large polarizability of light nuclei.

In a hydrodynamic model modified by B. Berman and S. Fultz [129], the dipole
resonance was shown to have symmetry energy dependence as follows,

E
GDR
' ~R

2.08A

[
asym8NZ

m

(
1−

(
ΓR

2E
GDR

)2)]1/2

, (A.3)

and deduced that for a nucleus with a well defined radius R it follows that,

asym(A) = 9.93× 10−4

(
A8/3

NZ

)
E2
GDR

1−
(

ΓR
2E

GDR

)2 . (A.4)

To an acceptable agreement the preceding expressions reproduce the saturation
property of symmetry energy, around 23 MeV implying insensitivity to the N/Z
ratio, as shown in Figs. A.1 and A.2. The observed general decrease of asym(A)
for light nuclei explains the enhanced polarizability of loosely-bound light nuclei.
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Figure A.1: Symmetry energy extracted from GDR parameters (blue circles),
the color line is the fit using Eq. A.4.
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Appendix B

B.1 Interpolation Code

A code written in Python, that calculates the required cross sections and their
respective moments i.e. σtotal, σ−2 & σ−1 is presented below. Values assigned
to parameters in the code below are those of 138La and can be easily changed
according to the desired output.

The energies and cross sections data are loaded in arrays whose lengths are
dependent on the region of interest and experimental limitations. A one dimen-
sional cubic interpolation function was defined, one dimensional implying there
is one independent variable, Eγ in this case. Data reproduced by the interpolat-
ing function is stored in a file named output data 138La.dat. One can execute
this code in terminal or Python GUI by navigating to the directory with the
.py file and use the command: python filename.py. The integration limits can
be controlled in the xint array. The main purpose of this program is to cal-
culate total photonuclear cross sections and their moments, using cubic-spline
interpolation, where the interpolant is a piecewise function of cubic polynomi-
als generated between a pair of consecutive data points. This was done using
a numerical integration method. Minimizing the increments of energy, h in Eq.
B.1, to order 10−3 MeV reduces the error (systematic) of integration to neg-
ligible values, the error is determined from the cross section values yielded by
the interpolation function. The output can be represented in graphs see Fig. B.1.

The error dσ of the CTR can be obtained as a difference between the nu-
merical result of the integral and the CTR integral value.

dσ =

∫ Eγ(max)

Eγ(min)

σ(Eγ)dEγ−h
[
σ(Eγ(min)) + σ(Eγ(max))

2
+
N−1∑
k=1

σ(Eγ(min) +kh)

]
(B.1)

where the cross section σ(Eγ) values are generated by the interpolant, h is
the energy increment and N is the number of trapezoids.
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Figure B.1: Photonuclear cross section of 138La showing the interpolation
function f(Eγ), red solid line.

### Libraries

from numpy import arange

from scipy.interpolate import interp1d

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import trapz

import numpy

import math

### DATA INPUT

x = np.array([]) #Energy [MeV]

y = np.array([]) #Cross-section [mb]

### INTERPOLATION & INTEGRATION

f = interp1d(x,y,kind = ’cubic’) # Cubic spline, Interpolating function

xint = np.arange(0.800,27.84,0.001) # Energy array

yint = f(xint) # Cross sections by the Interpolating func.

yint2 = f(xint)/(xint**2) # E1_(-2)sigma data

f_X1 = (1/((1)*(math.pi**2)*(197.326)**2))*(yint/10*xint) ## photon strength function

with open("output_data_138La.dat", "w") as out_file: # Saving data into a file: Cross section

for i in range(len(xint)):
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output_string = ""

output_string += str(xint[i])

output_string += " " + str(yint[i]) # storing data in column format

output_string += "\n" # new line

out_file.write(output_string)

#print output_string # Printing Interpolation data(optional)

with open("gsf_output_data_138La.dat", "w") as out_file: ## Gamma-Strength functions file

for i in range(len(xint)):

output_string = ""

output_string += str(xint[i])

output_string += " " + str(f_X1[i])

output_string += "\n"

out_file.write(output_string)

#print output_string ## Printing Interpolation data

## NUMERICAL INTEGRATION

h = 0.001

summ = 0

for i in range(0,len(xint)):

summ = summ + yint2[i]

summ2 = (yint2[0] + yint2[len(xint)-1])*0.5

numeric_int = h*(summ2+summ)

## COMPOSITE TRAPEZOIDAL RULE INTEGRATION

sigma_total = numpy.trapz(yint,x,axis = 0) # Total crossection integral

sigma_(-2) = numpy.trapz(yint2,xint,axis = 0) # E1_(-2)sigma integral

## REPORT

print "REPORTING INTEGRALS"

print "Raw_Total_sig(g,*): ", sigma_total ,"mb-MeV" # The Integral

print "(-2)_sig(g,*) : ", sigma_(-2) ,"mb/MeV" # (-2)sigma_value

print "error :",abs(b-numeric_int) # Error

### PLOTS FOR VISUALISATION

plt.plot(x,y,’s’,c=’b’)

plt.plot(xint,yint,’-’,c=’r’)

plt.xlabel(’Energy [MeV]’)

plt.ylabel(’Crossection [mb]’)

plt.title(’Photonuclear Crossection’)

plt.show() # Displaying a graph
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B.2 Saclay annihilation photon method

The simplest experimental set up of the Saclay electron linear accelerator (linac)
is shown in Fig. B.2.

Figure B.2: Schematic of the Saclay linac, accelerating positrons [132] at desired
energies towards a low-Z target.

At the converter, S6, in Fig. B.2 an electron beam with energy around 85 MeV
hits a converter, e.g. a 3mm thick gold (Au) target, and positrons are produced
by pair production. These positrons (e+) are accelerated and simultaneously
trapped in a strong magnetic field to reduce spacial cross section of the positron
beam, then deflected to the experimental areas using bending magnets. The
positrons then bombard a low Z target, e.g. 9Be, thus producing photons that
initiate a nuclear reaction.

An improved method of the in-flight annihilation of positrons was developed.
The peculiarity of this method is annihilation-tagging by a photon. The Saclay
720 MeV linear accelerator facility delivered 130-150 MeV tagged photons, see
Fig. B.3. The electron-positron annihilation process dominantly produces two
photons that scatter at different angles θ1 and θ2, named hard-γ and soft-γ
respectively, Fig. B.4 illustrates this process.

The hard-γ induces the photo-nuclear reaction under study, photon energies
measured in the lab reference frame are related to the emission angles θi (for
i = 1, 2) by [132],

Eγi =
(E+ +me)me

E+ +me − P+cosθi
, (B.2)

where E+, P+ are energy and momentum of the incident positron.

At large angles i.e. θ2 ≈ 90° the variation in the energy of the soft-γ’s is
slower thus favoring accurate measurements of the hard-γ energies. This pro-
cess is in coincidence with the bremsstrahlung radiation, affecting the statistics
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Figure B.3: Schematic view of the Saclay experimental set up, showing positron
and photon beam transport elements [131].

Figure B.4: The annihilation process shown in lab reference frame [131].

of useful events measured and optimal photon rate. To counteract or reduce
the bremsstrahlung radiation a low-Z target is used since the bremsstrahlung
radiation energy is proportional to Z2 as shown in the preceding chapter. A
flux of incident positron that did not annihilate, pass through the low-Z target
and are stopped using a Faraday cup and scintillator detectors were used to
measure γ-energies. Further details of the Saclay Lab experimental set-up and
data acquisition systems can be found in reference [132]. However, major de-
velopments have taken place since the era of the experimental set up described
above [133]. The annihilation photon method is preferred due to its ability
to produce monoenergetic photons allowing simultaneous measurements of the
partial photoneutron cross sections which are in competition in the GDR region
yielding σtotal.
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102, 122502 (2009).

[9] J. Piekarewicz et al., Phys. Rev. C 85, 041302(R) (2012).

[10] A. W. Steiner, M. Prakash, J. M. Lattimer and P. J. Ellis, Phys. Rep.
411, 325 (2005).

[11] C. Bertulani and J. Piekarewicz, (Eds.) Neutron Star Crust, Nova Science
Publishers (2012).

[12] J. M. Latimer, Nucl. Phys. A 928, 276 (2014).

[13] J. M. Latimer, and M. Prakash, Phys. Rep. 333-334, 121 (2000).

[14] J. M. Pearson, N. Chamel, A. F. Fantina and S. Goriely, Eur. Phys. J. A
50, 43 (2014).

[15] C. F. von Weizsäcker, Z. Phys. 96, 431 (1935).

[16] H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

[17] J. S. Levinger, Nuclear Photo-Disintegration (Oxford University Press,
Oxford, 1960).

[18] A. B. Migdal, A. A. Lushnikov and D. F. Zaretsky, Nucl. Phys. A 66, 193
(1965).

[19] O. Bohigas, N. van Giai and D. Vautherin, Phys. Lett. B 102, 105 (1981).

66

https://etd.uwc.ac.za

https://sites.google.com/site/fysikkenhm/det-periodiske-system/radioaktivitet/saadab-navigerer-du-paa-isotopkortet
https://sites.google.com/site/fysikkenhm/det-periodiske-system/radioaktivitet/saadab-navigerer-du-paa-isotopkortet
https://sites.google.com/site/fysikkenhm/det-periodiske-system/radioaktivitet/saadab-navigerer-du-paa-isotopkortet


BIBLIOGRAPHY 67

[20] Z. Zhang, Y. Lim, J. W. Holt, C. M. Ko, Phys. Lett. B 777, 73 (2018).

[21] D. Gambacurta, M. Grasso, O. Vasseur, Phys. Lett. B 777, 163 (2018).

[22] J. Piekarewicz et al., Phys. Rev. C 85, 041302 (2012).

[23] X. Roca-Maza et al., Phys. Rev. C 88, 024316 (2013).

[24] X. Roca-Maza et al., Phys. Rev. C 92, 064304 (2015).

[25] S. S. Dietrich and B. L. Berman, Atom. Data Nucl. Data Tables 38, 199
(1988).

[26] J. S. Levinger, Phys. Rev. 107, 554 (1957).

[27] J. N. Orce, Phys. Rev. C 91, 064602 (2015).
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