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Abstract:

Most standard statistical techniques illustrated in text books assume that the data are collected
from a simple random sample (SRS) and hence are independently and identically distributed
(i.i.d.). In reality, data are often sourced through complex sampling (CS) designs, with a
combination of stratification and clustering at different levels of the design. Consequently,
the CS data are not i.i.d. and sampling weights that are developed over different stages, are
calculated and included in the analysis of this data to account for the sampling design. Logistic
regression is often employed in the modelling of survey data since the response under
investigation typically has a dichotomous outcome. Furthermore, since the logistic regression
model has no homogeneity or normality assumptions, it is appealing when modelling a

dichotomous response from survey data.

This research considers the comparison of-the-estimates of the logistic regression model
parameters when the CS design is-accounted for,-i.e. weighting-is present, to when the data
are modelled using an SRS design,-t.e. no weighting: in-addition, the standard errors of the
estimators will be obtained using three different variance techniques, viz. Taylor series
linearization, the jackknife and the bootstrap. The different estimated standard errors will be
used in the calculation of the standard (asymptotic) interval which will be compared to the
bootstrap percentile interval in terms of the'interval coverage probability. A further level of
comparison is obtained when using only design weights to those obtained using calibrated
and integrated sampling weights. This simulation study is based on the Income and
Expenditure Survey (IES) of 2005/2006. The results showed that generally when weighting
was used the estimators performed better as opposed to when the design was ignored, i.e.
under the assumption of SRS, with the results for the Taylor series linearization being more
stable.

Keywords: complex sampling, inference, weighting, benchmarking, survey data, bootstrap,

resampling.
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Chapter 1: Purpose of study and research objectives

1.1 Background to the study

“In spite of its wide range of usefulness, sampling practice has been neglected in the training
of statisticians, in the textbooks and treatises, and in the planning and analysis of most
experiments and studies. However, like Cinderella, it has risen from neglect to a position of
well-deserved importance”, (Stephan, 1948, p. 12). Sampling forms an integral part of
statistics. In fact, in order to do proper inference, the sampling design is of utmost importance.
The statistics depicted in textbooks are often based on the assumption that the data are from
a simple random sample (SRS) when, in reality, most large-scale surveys make use of
stratified multistage cluster sampling, or.cemplex-sampling (CS), which consists of a
combination of different sampling methods (Lumiley & Scott, 2015; Heeringa, et al., 2010).
According to this sampling method;-the ebservation-units-are selected by some design that is
employed to ensure that the sample selected represents the target population as closely as
possible. CS produces data that are not independent and identically distributed (i.i.d.), as is
the case with an SRS (Lohr, 2010; Heeringa, et al., 2010; Luus, 2016). Instead, the
observations have unequal inclusionprobabilities associated ‘with them which imply that,
should CS data be analysed under the lassumption ©of being i.i.d., all standard errors,
confidence intervals and hypothesis tests will be incorrect (Lohr, 2010; Heeringa, et al., 2010;
Luus, 2016; Berger & De La Riva Torres, 2016).

1.2 Statement of the problem

CS sampling is an efficient and cost-effective method to collect data and gives more
representative samples. As a result, more researchers and analysts are employing CS designs
for data collection (Lumley & Scott, 2015). CS data could contain a great number of
categorical variables. Researchers often want to establish a multivariate relationship between
a response variable that is categorical and explanatory variables which can be a combination

of categorical and numerical variables (Kutner, et al., 1996; Heeringa, et al., 2010).

1
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Logistic regression is often employed in the modelling of survey data, since a great number
of variables have dichotomous outcomes (Heeringa, et al., 2010; Cheung, 2005; Archer, et
al., 2007). Furthermore, since the logistic regression model has no homogeneity or normality
assumptions, it is appealing when modelling a dichotomous response from survey data
(Archer, et al., 2007; Heeringa, et al., 2010). Estimates and variances of the model parameters
may be calculated incorrectly if the design is not accounted for in the inference. Analysis of
data obtained from CS needs to be made apparent to ensure the validity of the statistics that
are presented. Most researchers are still inclined to use the same techniques under SRS
(Lumley & Scott, 2015). This poses the problem of reporting incorrect results and can lead to
incorrect conclusions. Therefore, results coming from analyses where the survey design has

been ignored must be viewed with caution (Lumley & Scott, 2015; Lumley, 2011).
1.3 Purpose and aim of the study

The objectives of this research are:

1. toillustrate what the major differences in inference results are when ignoring the sampling
design as opposed to correctly accounting for it, and the errors that can arise in inference
as a result thereof;

2. toshow how results obtained using statistical packages SAS and R compare for estimators
and the variances of estimators for the logistic regression model when ignoring the
sampling design as opposed to correctly accounting for it;

3. toillustrate the precision of standard (asymptotic) confidence intervals obtained under CS
using Taylor series linearization (TSL), the jackknife or bootstrap variance estimation for
the logistic regression;

4. to show how the bootstrap percentile confidence interval, a non-parametric confidence
interval, compares to the standard (asymptotic) confidence interval; and

5. to inform the researchers of the importance of the sampling design when conducting

studies, and what statistical methodology to use.
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1.4 Research questions

Given the objectives highlighted in the previous section, the following research questions

have been identified:

1.

How do the estimators of the parameters of the logistic regression model and their
estimated variances compare when the sampling design is ignored, i.e. assuming simple
random sampling (SRS), as opposed to accounting for the design through CS inference?
Is there a difference between estimating the variances of the estimators of the parameters
of a logistic regression model when using TSL or employing resampling methods, i.e. the
bootstrap and jackknife, for variance estimation?

How do the output from the different statistical software compare in the calculation of the
variances of the estimators of the parameters of the logistic regression model when using
TSL, bootstrap and jackknife in a CS?

How do the standard (asymptotic)-confidence intervals-compare when using TSL or
employing resampling methods, i.€. the bootstrap and jackknife, for variance estimation
for the logistic regression?

How does the bootstrap percentile, confidence interval compare to the standard
(asymptotic) interval when the sampling design is ignored, i.e.-assuming SRS, as opposed

to accounting for the design through CSlinference?

1.5 Outline of the thesis

Figure 1 is a mind map to outline the major concepts that will be discussed in the thesis. The

mind map illustrates how the important concepts are interconnected and the importance of

these concepts to provide the basis to answer the research questions.
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Figure 1: Mind map of the outline of the thesis.

In the next chapter the difference between probability sampling and non-probability sampling
will be explained. The chapter will further explore different sampling designs and the impact

weighting has to account for the difference in design which is vital for inference.
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Chapter 2: Sampling and weighting

2.1 Introduction

Sampling is an integral part of statistics and how and which methods used to gather data is
imperative to ascertain which type of analysis should be used. Sampling methods can
essentially be grouped into two main categories, i.e. probability and non-probability sampling
methods. In this chapter the differences between probability and non-probability sampling
methods are explained and a selection of the different sampling techniques within each
category is discussed. The chapter further explains the combination of these sampling
methods, i.e. complex sampling (CS), and the weighting mechanism used to account for
unequal probability of selection, non-response-and differential non-response that occur under

this sampling technique.
2.2 Probability and non-probability sampling

Consider a finite population U of size N, and suppose a subset of U, of size n, is selected. In
probability sampling, the subset is selected such that the elements {1,2,3, .., n} each have a
known probability of selection (Yamane, 1967; L.umley, 2011). Non-probability sampling is
a collection of sampling techniques that each'result in subsets of units for which these
probabilities cannot be ascertained, or distributed equitably, and often result in probabilities
that are zero (Yamane, 1967; Tansey, 2007). Probability sampling methods include simple
random sampling (SRS), stratified sampling, cluster sampling and systematic sampling, and
these methods will be discussed here. Complex sampling, which is defined as stratified
multistage cluster sampling forms part of the probability sampling methods, and will be
discussed as well. Examples of non-probability sampling methods that will be discussed next

are convenience sampling, quota sampling and purposive sampling.
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2.2.1 Non-probability sampling methods

As mentioned above there are various non-probability sampling methods of which a selection
is discussed here. It should be noted that due to the nature of non-probability sampling it is
very difficult to generalise from the sample to the greater population and therefore, when data
from a non-probability sample are used in research, the results should be viewed in hindsight

as having limited scope to establish external validity (Tansey, 2007; Cheung, 2005).
2.2.1.1 Convenience sampling

In this non-probability sampling method the sample is selected that is most easily accessible
or available until the desired sample size is acquired (Tansey, 2007; Marshall, 1996). There
are no strict rules in terms of selection, and it is drawn in whichever manner suits the
researcher (Tansey, 2007). The main reason for-using.this sampling method is that it may be
cost and time efficient. However) some of the-drawbacks are that the quality of the data will
be low and will lack reliability (Marshall,-1996).

2.2.1.2 Quota sampling

In quota sampling the population is divided into subpopulations from which non-probability
samples are selected (Lohr, 2010). The'primary-reason for making use of quota sampling as
opposed to convenience samplingis to ensure that the population is allocated in proportion
so that each characteristic is depicted in each subdivision (Tansey, 2007). An example of this
would be when a researcher wishes to select a sample of 100 students from different faculties
in a university. Suppose 10% of the university belongs to the Science faculty, 50% to Arts
and 40% to the Law faculty. These faculties make up the university’s total population. Then
the sample will comprise of 10 students belonging to the Science faculty, 50 students to the
Arts faculty and 40 students to the Law faculty. Note that quota sampling bears an odd
resemblance to stratified sampling, discussed in Section 2.2.2.3, but with the exception that,

in the subpopulations, probability sampling is not used (Yamane, 1967; Lohr, 2010).
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2.2.1.3 Purposive sampling

Purposive sampling is a sampling method in which both the reason for the study as well as
the knowledge of the researcher direct the sampling process (Tansey, 2007). In a study the
aim is to answer the research question which determines the objectives on which the
methodology will be based (Tongco, 2007). A strategy used is to select characteristics that
are common to the population you are concerned about under the assumption that errors in
judgement in selection will counterbalance each other (Kidder, et al., 1986). However, one
drawback is that, when a sample is selected according to an expert’s judgement, there is no

way to analyse information objectively (Yamane, 1967).

Since non-probability sampling restricts statistical inference, probability sampling needs to

be introduced.
2.2.2 Probability sampling

Probability sampling methodology-is an essential- tool that is vital in order to infer and
generalise findings. As opposed to non-probability sampling, making use of probability
sampling methods lead to the sample units having inclusion probabilities (the probability that
an element is in the sample) that are known (Marshall, 1996; Heeringa, et al., 2010; Lumley,
2011). This is as a result of using a random selection process to obtain the sample which
inhibits the possibility of replacing one sampling-unit for the next, thus eliminating personal
judgement (Luus, 2016). Since the inclusion probability is known, a frequency distribution
of the estimates can be obtained (Cochran, 1977). If a probability sampling design is used, a
researcher can make inferences about a population with a relatively small sample (Lohr,
2010). There are different probability sampling methods and estimates of the parameters of
interest that can be calculated according to the definition of the probability sampling method

used.
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2.2.2.1 Simple random sampling

Simple random sampling (SRS) is the most fundamental form of probability sampling and
provides the theoretical building blocks for other sampling techniques (Lohr, 2010). An SRS
is selected in such a way that every possible subset of n units has the same chance of being
selected (Thompson, 2010; Lohr, 2010).

There are two ways of selecting an SRS, namely with replacement or without replacement.
In SRS with replacement (SRSWR) an element is selected from population U of size N and
then, once drawn, that same element is placed back in the set of U. Selecting an SRSWR

affords the opportunity for elements in the sample to be repeated. The probability of drawing

the first element from U is % Since the size of U remains N after the first element is selected,

the probability of drawing the second element is also % This probability is the same for the
third element and so forth. The process will be repeated-until a-sample of size n is drawn.

Therefore, the inclusion probability is % which is the same for all elements in SRSWR.

SRS without replacement (SRSWOR) is usually the preferred way of selecting a sample, since
in a finite population, sampling the same population-element more than once provides no
additional information (Lohr, 2010; Cheung, 2005). In SRSWOR there are n distinct elements
selected from population U such that every possible combination has an equal chance of being
the chosen sample (Luus, 2016; Cochran, 1977). Since this is SRSWOR, the probability that

the first unit is drawn is % , the probability that one of the remaining (n-1) is drawn is ;;_1

etc. Therefore, the probability that n sampling units are selected in n draws is (Cochran, 1977)

-1

S
S

-2 1 _nWN-n)!_ 1
"N-2 " N-n+1 N! ™

z|=
=
=

There are (’T‘{) possible subsets of size n that can be selected from population U and, as a

result, the probability of being the selected sample is % (Lohr, 2010). Suppose unit j of

population U is in the sample, then the other n-1 sampling units need to be chosen from the

remaining N-1 units left in the population. There are n-1 combination N-1 possible samples
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that can be selected, or ({'_1). Let the inclusion probability of the j™ unit be denoted by ;. It

follows that (Lohr, 2010)

_ number of samples including unit j _ (11\1’:% _n

=

J number of possible samples (17\1’) B

Note that when the population is large, SRSWR and SRSWOR are indistinguishable since N
is so large that the probability of selecting unit j from U is very small (Lohr, 2010). SRS is
relatively simplistic to employ. However, there is no guarantee that the sample selected is a
representative sample and it requires a complete up-to-date sampling frame which is a list or
specification of elements in the population from which a sample may be selected (Luus, 2016;
Lohr, 2010).

SRS, which is i.i.d., is often the sampling design depicted in statistical theory and most

statistical methods assume that the data come from an SRS.
2.2.2.2 Systematic sampling

Systematic sampling is used as an alternative sampling method to SRS if there exists no list
of the population or if that list is random (Lohr, 2010). In simple terms, the selection of a
systematic sample requires the selection of every k™ element in the population in which the

first element selected is random (Madow, 1946).

Consider a sample of size n from population U of size N./One method of selecting a systematic
sample is to partition the population into groups and then randomly select a unit from each
partition (Yamane, 1967). Let k be defined as the selection interval length where k is equal to

%, if this results in an integer. Otherwise k is selected as the next integer following % The

systematic sampling method begins by finding a random integer between 1 and k, say W,
which is the first unit to be included in the sample. The next integer is found by adding a
width of k to the first integer, i.e. W+k, which becomes the second unit in the sample. This
process is repeated until the desired sample size is obtained. It should be noted that systematic
sampling forms part of probability sampling as long as it uses a random starting point (Lohr,
2010).
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The difference between systematic sampling and SRS is that in systematic sampling all the
subsets of size n do not have the same probability of being selected (Luus, 2016). However,
if the population is in random order the sampling method is much like SRS (Luus, 2016).
Also, systematic sampling is a form of cluster sampling, which is discussed in Section 2.2.2.4.
To illustrate this, suppose a population U ={1,2,3,4,5,6,7,8,9} from which a sample of size 3

must be drawn. For this case k = z = 3. To select a systematic sample, one has to select a

number at random from 1 to 3 which implies that one must draw that element and every third
element thereafter. Thus, the population contains three clusters {1,4,7}, {2,5,8} and {3,6,9}
and by simply selecting an SRS gives a sample of one cluster (Lohr, 2010).

2.2.2.3 Stratified sampling

The word “stratum” is the Latin word for “layer”..By this sampling method the population U
is divided into H distinct subgroups, called strata, such-that-each population unit belongs to
only one stratum (Lohr, 2010; Sitter, 1992).-Stratification partitions the population in such a
manner that the strata are homogenous which ensures that the variance within a stratum is as
small as possible while the between-strata variance is as large as possible (Luus, 2016;
Thompson, 2010; Lumley, 2004): This results in estimators with'smaller standard errors and
estimators with better precision inicemparison to. SRS (LLuus, 2016; Heeringa, et al., 2010;
Lohr, 2010).

Consider a population of H strata and let N}, denote the population size of the h™ stratum,

h=1,2, ...,H. Hence, Ny + N, + N3+ -+ Ny = N where N is the size of the population

(Lohr, 2010). In stratified sampling, the simplest form of sampling is to take an SRS per

stratum. Hence, from stratum h select an SRS of size n,, h=1,2, ...,H , and then the total

sample size, denoted by n, is the sum of the stratum sample sizes, i.e. ny + n, + nz+ -+

ny = n. Consider stratum h and suppose an SRS of size n,; is selected. The inclusion
n

probability of the j* unit in the h" stratum is then given by m;; = N_:

One possible reason for making use of a stratified sample as opposed to an SRS is that, with

an SRS there is a possibility of obtaining estimators that are unfavourable. For example,
10
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suppose a sample of different race groups is to be selected using an SRS design. There is a
possibility of obtaining a sample of only one race group whereas, with a stratified sample,
this is prevented by dividing the population into strata according to race and then selecting an
SRS from each stratum. Another reason is to ensure that the sample is representative of the
population. Suppose there are more crabs than lobsters in a particular pond. One would divide
the strata so that this disproportionality is reflected in the selected sample. Thirdly, stratified
sampling can result in lower cost and could be more convenient (Lohr, 2010). Lastly, since
the subgroups are independent, different probability sampling methods can be used within
strata. Consequently, samples are selected without increasing the selection bias, and

inferences can be done on individual strata (Luus, 2016).
2.2.2.4 Cluster sampling

Cluster sampling, on surface level, -has a resemblance to.stratification since individual
elements in the population are grouped into N subgroups. However, in cluster sampling the N
subgroups, or clusters, form the population and a sample of n clusters is selected by some
probability sampling method (Lohr, 2010). These clusters are referred to as primary sampling
units (PSUs). The PSUs consist of subunits called secondary sampling units (SSUs). Suppose

each PSU consists of N; subunits, j = 1,..., N. It follows that Ny = Zj-V:le is the total number

of units in the population (Madow, 1946; Lohr, 2010). Moreover, in a cluster sample there is
a strong correlation between observational units in the same cluster. This results in the amount
of information contained in a cluster sample to be less than that of an independent SRS of the
same size (Heeringa, et al., 2010). Therefore, a cluster sample has less precision as opposed
to an SRS of equal size (Heeringa, et al., 2010; Lohr, 2010).

There are two types of cluster sampling, i.e. one-stage cluster sampling and two-stage cluster
sampling. In a one-stage cluster sample, either all or none of the elements that comprise a
particular PSU is in the sample (Lohr, 2010). To illustrate this, suppose a one-stage cluster
sample is designed in which there are N PSUs in the population from which n PSUs are
selected by SRS (other sampling designs can be used to select the PSUs). Since this is a one-

stage cluster sample, it follows that if PSU j is selected then all the elements in PSU j, which
11
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is equal to N;, are in the sample. In a two-stage cluster sample, once a PSU is selected a
subsample of SSUs is selected from the PSU for the sample. Suppose that a sample of n PSUs
is selected and that the j" PSU, for j=1,2,3,...,n, is in that sample. Now suppose the j" PSU
has N; SSUs from which a subsample of n; is selected (Lohr, 2010). The selection probability
resulting from this cluster sample selection can be equal or unequal across the elements. The

next section will explore this in more detail.

2.2.2.4.1 Cluster sampling with equal probability

Cluster sampling with equal probability implies that each sampling unit has the same
probability of being selected (Cochran, 1977; Lohr, 2010; Heeringa, et al., 2010). Consider
the population of N PSUs. The sample of n PSUs must be chosen in such a way that every
PSU has the same probability of being in the sample. The two sampling methods discussed
in Section 2.2.2.1 and Section 2:2.2.2,-i.e.-SRS.and.systematic sampling, both result in an
equal probability of selection method (EPSEM) (Lohr, 2010). As mentioned in Section
2.2.2.1, in an SRS all the elements have the same inclusion probability. Therefore, each
cluster or PSU has the same prohability of heing selected. In a one-stage cluster sample
EPSEM occurs when the PSUs are selected by SRS.-Since this-is-a one-stage cluster sample,
all the subunits or SSUs are automatically.in the sample. Ta selecta two-stage cluster sample
with EPSEM the SSUs must be selected by an SRS given that the PSUs were selected by the
same sampling design. However, cluster sampling with equal probability is often not feasible

in reality and therefore unequal probability sampling needs to be introduced (Lohr, 2010).
2.2.2.4.2 Cluster sampling with unequal probability

In the previous section cluster sampling using an equal probability of selection method
(EPSEM) was discussed. This design is simple to implement and easy to explain. However,
cluster sampling with EPSEM can result in large variances, can be inefficient and can lead to
a greater survey cost (Lohr, 2010). Instead, PSUs are sampled with unequal probability which

results in better efficiency and lower variances.
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Suppose schools in a district are sampled to determine if students are in need of pens. A
cluster sample would be essential to manage cost. Suppose an EPSEM two-stage cluster
sample of schools (PSUs) and learners (SSUs) in the district were selected. Using EPSEM,
larger schools with a greater number of learners are equally likely to be selected as smaller
schools with fewer leaners. Moreover, it is expected that the number of pens are proportionate
to the number of learners attending that school. This results in a large variance and the survey
would be inefficient (Lohr, 2010; Cheung, 2005).

An alternative to the EPSEM cluster sampling method is to select the schools in the district
with unequal selection probabilities. Many variables of interest in a PSU are related to the

number of elements in a PSU. Suppose there are N schools (PSUs) and school j has N; students
(SSUs), j = 1,..., N, with a total number of Ng = Zj-V:lN,- students. Let m;/,; denote the

selection probability of student i from classroom.j..The probability of selecting student i from

classroom j on the first draw is (L.ehr;-2010)
N.
T[i/j: N_(])

Students belonging to classes with a greater selection probability are more likely to be
selected in the sample (Lohr, 2010; Heeringa, et al., 2010). This is an example of probability
proportionate to size (pps) sampling. The inclusion probability for a two-stage cluster sample
with unequal probability of selection for SSU i of PSU | is given by

A B ARy,
where m; is the probability that PSU j is in the sample, and 7;; is the probability that SSU i

is in the sample given that PSU j is in the sample.

Cluster sampling with unequal probability is not a form of selection bias which is present in
non-probability sampling discussed in Section 2.2.1, since non-probability samples do not
have a known probability with which they are sampled and cannot necessarily be estimated.
Therefore, survey makers cannot account for unequal probability in the form of weighting
(Lohr, 2010).
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2.3 Complex sampling

Most large-scale surveys are constructed using complex sampling (CS) designs, i.e. stratified
multistage cluster sampling designs (Thomas & Heck, 2001; Walker & Young, 2003). Survey
designers implement stratification to improve the efficiency of the sample. Also, certain
sample elements occur in natural clusters. It would be more efficient to use cluster sampling
which reduces travel cost and improves interview efficiency (Heeringa, et al., 2010).
Moreover, pps sampling of the population elements may be implemented to improve the
sample sizes for subpopulations of special interest (Lohr, 2010; Heeringa, et al., 2010).

The process by which a CS is selected starts by dividing the population into mutually
exclusive strata. As noted in Section 2.2.2.3 a stratified sample makes the sample more
representative of the population. The next step is to divide the stratum into PSUs, which are
predetermined (Luus, 2016). When dividing-the-stratum._into PSUs it is important to ensure
that at least two PSUs can be selected per stratum. This is such that variances of estimators
of parameters of interest can be calculated (Luus; 2016; Lohr;2010). The PSUs can be further
divided into SSUs. This process can continue until the population units of interest, i.e.
ultimate sampling units (USUs), are reached (Luus, 2016). Survey designers often use
complex sampling design features to optimise the variance/cost ratio or to meet precision
targets for the subpopulations of the survey population (Heeringa, et al., 2010). The precision
of the CS estimators as opposed to that of an SRS.is termed the design effect and will be
discussed next.

2.3.1 Design effect

As mentioned in Section 2.2.2.3 and Section 2.2.2.4 stratification generally yields more
precise estimators, while clustering yields less precise estimators of parameters of interest in
comparison to an SRS (Heeringa, et al., 2010; Luus, 2016; Lohr, 2010). Therefore, since CS
is a combination of stratification and clustering, a CS design does not necessarily yield better

precision estimators in comparison to SRS.
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The effects of stratification and clustering on the standard errors of the estimators in relation
to an SRS is termed the design effect (Heeringa, et al., 2010). Consider 8 as an estimator of

some parameter of interest, 8. The design effect is calculated as follows:

p2() = Les®). (1)

Vsrs(9)’
where D?(8) denotes the design effect for 8, V.5(9) is the variance of the estimator under
complex sampling, and Vgzs(8) is the variance of the estimator under SRS. In order for the
estimators under CS to have the same precision as those under SRS, V¢s(0) = Vsgs(0)
resulting in D?(8) = 1. This can be done by increasing the sample size of the CS design
(Lohr, 2010).

The design effect can be used to optimise the cost and properties of specific design
alternatives or to alter SRS computations under a specific sampling plan (Heeringa, et al.,
2010). To have knowledge of the estimated design effects enables one to see to what extent
the sampling design used produces-efficiency or-losses relative to an SRS and to identify

extreme clustering or weighting that can affect inferences (Heeringa, et al., 2010).
2.3.2 Weighting

Weighting is used to make the sample an unbiasedirepresentation of the survey population.
Essentially one can think of a weight as the number of population elements represented by
the associated sample observation (Heeringa, et al., 2010; Lohr, 2010; Lumley & Alastair,
2017). Weighting can be used to correct some of the flaws associated with unequal
probabilities, non-response and differential non-response (Luus, 2016; Walker & Young,
2003; Neethling & Galpin, 2006). The weighting process starts by determining a design
weight, then adjustments are made for non-response and further weighting adjustments are
needed for differential non-response discussed in Sections 2.3.2.1 to 2.3.2.4. The

development stages of the sampling weight are discussed next.
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2.3.2.1 Design weight

In a probability sample, each unit in the population has a known probability of being selected,
which is determined by a randomisation method that chooses the particular unit to be included
in the sample (Lohr, 2010; Lumley, 2011). Let the inclusion probability of the j observation
be 7; and let w; denote design weight of the observation. The design weight is defined as the

inverse of the inclusion probability, i.e.

1 .
wj = 71'_]'1 J:]., 2,..,n.

It has the property that },;csw; =N, i.e. the sum of the weights across the sampling units equals
the population size (Heeringa, et al., 2010; Lohr, 2010; Luus, 2016).
The design weight depends on the inclusion probabilities which may differ depending on the

sampling design. Consider the inclusion probability defined in Section 2.2.2.1 for a
SRSWOR. It follows that the design-weight associated-with a-sampling unit selected by

SRSWOR is given by % Therefore, using the definition of a weight defined in Section 2.3.2,

every unit in a SRSWOR represents itself and % -1 units that are not sampled but are in the
target population. As opposed to SRSWOR, SRSWR elements can be drawn more than once.
Thus, the inclusion probability of an element under SRSWR is % It follows that the design
weight under SRSWR is N.

In a stratified sample, sampling units are in distinct subgroups and the inclusion probabilities

are calculated per stratum. The inclusion probability of the j" unit in the h™" stratum is Tpj =

% and from the definition of the design weight it follows that wy,; = %
h h

Cluster sampling is a common feature of most CS surveys, and the cluster can be selected by
EPSEM or unequal probability. A one-stage cluster sample is a cluster sample that, if a PSU
is selected then all the SSUs comprising that PSU are in the sample. If a one-stage cluster

sample is selected by EPSEM, this is equivalent to selecting an SRSWR since the PSUs will
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form the N elements and n PSUs are to be selected, resulting in each PSU having an inclusion

probability of % . The design weight will be given by % the same as that of a SRSWR.

In a two-stage cluster sample with EPSEM, firstly, the n PSUs are selected from the
population of N PSUs, then an SRS of SSUs is selected from each of the n selected PSUs.
Suppose each PSU consists of N; SSUs, j=1,..., N, and from N;, n; SSUs are selected. Then

the inclusion probability of SSU i from PSU j is % Subsequently, the design weight can
J
be obtained as —.
nn,-
In a one-stage cluster sample with pps the SSUs form the basis for the selection probabilities
with larger PSUs, i.e. PSUs that have a larger number of SSUs, have a greater chance of being

selected. The selection probabilities are given by m; /= % The inclusion probability of PSU

j is simply the sum of the selection prebabilities. If this-is.extended to a two-stage cluster
sample with pps, then the SSUs selected from the PSU (note the PSUs are selected at the first
stage by pps sampling) are selected using an independent sampling method such as SRS. The
inclusion probability is calculated as 7;; = m; X ;. As a result the design weight for SSU
i of PSU j is

15
71']' X TL'i/j.

Wij =
Consider now a stratified two-stage cluster sample where a population has been stratified into
H strata, each stratum contains N, PSUs and each PSU contains N, ; SSUs, j = 1, ..., Ny, h =
1, ..., H. Consider stratum h. In two-stage cluster sampling, n;, PSUs are selected from
stratum h, and n,; SSUs are selected from the jt" selected PSU . Since each of the strata is
sampled independently, the design weight is calculated within the strata. Let wy,; denote the
design weight of the jt* PSU selected from stratum h and w;/p; the design weight of the ith
SSU within PSU j. Then the overall design weight for that sampling unit is
Whji = Whj X Wi/pj-

Note that the sampling weights give no indication of how to calculate the standard errors and
therefore inferential statistics using only sampling weights is absolute (Lohr, 2010).
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The next step in the weighting process is to adjust the design weight to compensate for non-
response, since estimators can be biased and have inaccurate variances when based only on

responses (Luus, 2016).
2.3.2.2 Adjusting for non-response

When certain observations in the sampling frame do not respond to the survey it may have an
effect on the inference since non-respondents generally differ from those that do respond
(Luus, 2016; Lohr, 2010; Cochran, 1977). There are two types of non-response: item non-
response, which occurs when answers to certain questions in the survey questionnaire are
omitted; and unit non-response, which is observed when the entire sampling unit’s
information is missing (Luus, 2016; Lohr, 2010; Nations, 2005). Non-response can result in
estimation bias specifically when respondents differ significantly from non-respondents
(Cheung, 2005). Furthermore, increasingthe sample size while not taking into account non-
response does not reduce non-respanse bias. It merely provides more observations that would
respond to the survey. In fact, it may worsen non-response since those resources could have
been directed to remedy non-respanse (Lohr, 2010). Lohr (2010) mentions a few remedies
for non-response:

1. design the survey so as to minimise non-response to the extent that there is very little to
no non-response. This is the best method,;

2. take a representative subsample of non-respondents and use that subsample to make
inferences on the other non-respondents;

3. use a model to predict values for non-respondents. Weighting class adjustment discussed
in Section 2.3.2.2.1 uses a model to adjust for unit non-response. Imputation can be used
to adjust for item non-response; or

4. ignore it (not recommended) (Lohr, 2010; Luus, 2016).

To consider the effects of non-response on the sample estimate, suppose there are two strata,

i.e. stratum 1 and stratum 2, where stratum 1 is the respondents and stratum 2 the non-

respondents. Let N; denote the population size of stratum 1 and N, the size of stratum 2,

where N, + N, =N. Note that there is only information for stratum 1 and suppose the elements
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in stratum 1 were selected by SRS. Consider the proportion of respondents and non-
respondents given by P; = % and P, = % respectively. The bias of the sample mean can be

obtained by
EG)-Y =¥, —-7Y

=Y, — (A1, — P,1,)

=P,(Y; — 1),
where Y is the population mean, ¥; the population mean for respondents and Y, the population
mean for non-respondents. The bias will be small if the proportion of non-respondents is small
or the mean for the population of non-respondents is close to that of the respondents. Since
the sample provides no information about Y, the bias is unknown unless bounds are placed
from some source other than the sample information (Cochran, 1977; Lohr, 2010). Therefore,
minimising the non-response rate is the only sure.way to aid in controlling non-response bias
(Lohr, 2010).

2.3.2.2.1 Weighting class adjustments

One way of adjusting the design weights of the respandents is with weighting classes where
the weighting classes are formed from variables for which-information is known for all the
sampling units. The purpose of the:adjustment is t@ make the ‘weights of both the non-
respondents and respondents in .the same ;class;. similar (Lohr, 2010). Weights of the
respondents are increased so that a respondent in the same weighting class as a non-
respondent represents the non-respondent’s portion as well as their own in the population

(Lohr, 2010). Let ¢, denote the response probability for class ¢, given by

~ _ sumof the weights for respondents in class ¢

¢c_

The sampling weight for each respondent is then multiplied by 1/¢. which is termed the

sum of weights for selected sample in class ¢’

weight factor (Lohr, 2010). The weighting adjustment classes should be formulated as if they
are strata (Lohr, 2010). The following conditions would be ideal to eliminate the response
bias for estimating means and totals:

1. in class ¢ there is a constant response variable;
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2. for every unit in class c¢ the response propensity (the probability that a unit will
respond, i.e. ¢;) is constant; and

3. the response and the response propensity are uncorrelated.
2.3.2.2.2 Inverse of the response rate

Non-response distorts the results of many surveys, and results from surveys with very low
response rates cannot readily be generalized to the greater population. The response rate is
simply the number of persons who responded to the survey divided by the number of

questionnaires mailed or supplied (Heeringa, et al., 2010; Cochran, 1977).

Let ¢; indicate the probability that an element when selected, will respond to the survey. This
probability is unknown but assumed to be positive (Lohr, 2010). This probability can be
estimated by means of weighting class adjustments discussed in Section 2.3.2.2.1. Then the
probability that an element is selected-for the sample and responds is

T X i,

and this product is the response rate (Lohr, 2010). The final weight for a respondent is then

+$-' the inverse of the response rate, where ¢; is estimated using the formula in Section

TiXQP;

2.3.2.2.1. The main reason for applying non-response factors in survey weights is to reduce
bias as a result of non-response across sample elements (Lohr, 2010; Heeringa, et al., 2010;
Cochran, 1977).

2.3.2.3 Calibration and integrated weighting

In the weighting process the first step is to compute a design weight, then compensation is
made for non-response which can be done by the methods discussed in Section 2.3.2.2.
However, it is often the case that the attained sample does to represent the population as
intended which results in differential non-response (Neethling & Galpin, 2006; Luus, 2016).
Differential non-response occurs when one sampled subgroup has a lower response frequency
as opposed to other subgroups. Calibration is used to obtain improved estimates by using

auxiliary information in the form of totals. These totals are known marginal counts such as
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gender or other categorical variables that are used to form new weights, called calibration
weights (Luus, 2016; Neethling & Galpin, 2006). The auxiliary information can be obtained
from a census or other administrative files (Deville, et al., 1993).

To assist in obtaining the calibration weights, consider the finite population U of size N
consisting of M households, where a sample S of size n is selected consisting of m households,
drawn with a known probability. Suppose the ki element is selected from U with inclusion
probability m;,, where r;, > 0 (Deville, et al., 1993; Neethling & Galpin, 2006). The inclusion
probabilities can be formulated into a N x N matrix, IT = diag(m;). Furthermore, let wy,
denote the design weight of unit k, which has already been adjusted to compensate for unit
non-response. The objective of many surveys is to estimate the finite population total,

ty =Xkeu Yk = 2u Yk 2)
where y; is the value of the variable of interest,.y, of the k™ element, and ¢, is the finite
population total of the variable of interest. An estimator-used-to estimate ¢,, in Equation 2 is
the Horvitz-Thompson estimator,

fy:Zkes Wi Vi - 3)

To formulate the set of new weights, viz. calibration weights, auxiliary information must be
used. The auxiliary information ‘is in the form of categorical variables for which responses
are known for each unit in the papulation. Assume that there exists J person level auxiliary

variables x;, x5, ..., x; and considerthe kelement. Then a J-vector can be defined as x;, =

(xkl, Xk2 s wer Xikjs wees xk])' where k € U. Some examples of person auxiliary variables
that can be used are gender, age (categorised), race, etc. The corresponding totals for vector
x;, can be obtained, i.e. t,, =), x), and placed into a vector. Suppose x, = (1, xj1, Xx2)', then
the population total vector will consist of t,, = Xy 1, Xy Xk1, Xv Xk2) Which results in ¢, =
(N, Nxyq, Nxy,). Furthermore, define a new weight ¢y, so that
Xis Ck Xk = Ly Xk, 4

where ¢, contains the calibration weights and is obtained so that the distance between c; and
wy, is as small as possible subject to the constraint Y ;; x;, (Deville, et al., 1993). Deville and

Sarndal (1993) considered the distance function Y. wj v, G(ck, wi) Where v, is a known
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positive weight unrelated to w;,. Moreover, if ¢, =wy, then G (1) = 0. The following equation
should be minimised,

s WiV G(Cp, Wie) - A (Zs e X - Zw X)) =0, ®)
where 2 = (A4,4;,43, ..., 4;, ..., 4;)" is the Lagrange multiplier vector (Deville, et al., 1993).
Differentiating Equation 5 with respect to ¢, yields the following solution,

Cr = wi F(xj A’ [vy), (6)

aG(u)
du

where F is the inverse function of g(.) = , for u:C"/Wk. The 4 can be calculated by

substituting Equation 6 back into Equation 3. It follows that

Lswy F(xy 2'/vy) x)c = Xy Xy
The two distance functions that will be used in this thesis are the linear and exponential

distance functions. When the function is linear, G(c, wy) = W"Tv" (‘;—" —1)? is used which
k

results in F(x;, ') = (1 + x;, 4" /v;). Using-Equation6-the calibrated weights are
cx = wi (1+ a3, 4 /vp).
In the exponential method (also known as multiplicative or raking ratio method) the auxiliary

variables are expressed in the form of an exponential function (Deville, et al., 1993). The
function G(wy, cx) = wivi[ C"/Wk log( C"/Wk) . Ck/wk + 1], C"/Wk > 0 is used and yields
F(x, )= wrexp(x) A'/v,) >0. Similarly, the calibration weights are obtained from
Equation 6 (Deville, et al., 1993; Neethling & Galpin, 2006). The calibration weights can be
used to produce calibration estimates that are more efficient in sample surveys (Neethling &
Galpin, 2006).

2.3.2.4 Integrated weighting techniques

The problem associated with calibration techniques at person level is that the person level
weights assigned will generally differ from person to person in the same household (Neethling
& Galpin, 2006). This results in uncertainty when household characteristics are estimated,
since there is no weight that is a representation of the household. Also, the household size is
not taken into account nor the fact that persons belonging to the same household should be

treated as a cluster (Neethling & Galpin, 2006). Given these shortcomings, integrated
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weighting has been developed to achieve one set of weights that overcome these problems.
Two integrated weighting methods will be discussed, viz. integrated weighting based on
person level auxiliary variables only and integrated weighting based on both person and
household auxiliary variables.

2.3.2.4.1 Integrated weights based on person auxiliary variables

Calibration weights assign different weights to different persons in the same household.
Integrated weighting per person or both per person and household assigns a single set of
weights to the entire household. Consider the finite population U defined in Section 2.3.2.3
consisting of N persons and M households. In Section 2.3.2.3 vector x; was defined. Consider

a new matrix X, with dimensions N x J, the rows of which consist of x},. In other words, row
- - !
Lwill consist of xj = (11, X152, o, Xyj, o, Xgy), TOW20F x5 = (g1, X5, w0 Xgj,

- xzj)', etc. Suppose sample Siis-selected containing n-persons and m households. Matrix
X, where the subscript S denotes the sample, Is a n X J matrix. Consider a sample consisting
of two households that each contain two and three persons, respectively. Denote household
one by (hyp;, h1p,) and household twa by (hyp4, hyop,, hops ), therefore, S consist of two
households and five persons. Consider the auxitiary variable gender comprising of (M, F).
Then vector x;, = (xgp, Xk )’ for ki€ §.The matrix X will bea5 x 2 matrix in form,

X111 %12
[x21 xzz]

X31 X321
lx41 x42J

X51 X552

The matrix X can be further adjusted to form a new matrix called Z,,, in which the averages

X, =

for the auxiliary characteristics are taken. Hence, for members belonging to household h with

household size m,,, entries will be defined by z,; = % where ap,; = ¥, jep xp;. Consider, the
h

example of two households (h,p,, hyp,) and (h,p4, h,p,, hops ) With gender as the auxiliary

variable. Suppose in household one both members are females, i.e. hyp, = F and hyp, = F

and in household two h,p,; = h,p,= M and h,p; = F. Then the new entry for hyp; = % =1,
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I.e. ap; = two females and m,, = two members in the household. The entry for hyp, will be

the same. The second household contains two males and one female. The entry for h,p; =

h,p, = gand h,ps = % Therefore matrix Z,,,, will be given by

_0 1_
0 1
2

Zyp =13 0]
2 9
3
o =
L 3_

Interpretation of the weight % is, person h,p; belongs to a household where g are male. The

integrated weighting method can be extended to include both person and household auxiliary

variables.
2.3.2.4.2 Integrated weights based on persen and household auxiliary variables

The method described in Section 2.3.2.4.1 is based on person-level auxiliary variables. This
can be extended to include both person-level and household-level auxiliary variables.
Household auxiliary variables can inctude province; geographical location, etc. Consider the
matrix Z,, defined in Section 2.3.2.4.1. Now suppose geographical location is added which
consists of rural and urban. Then a new matrix can be defined, Z,,, which has additional
columns urban and rural. Consider the two-household example of Section 2.3.2.4.1, and

suppose household one lives in a rural area and household two is, urban. Then

0 1 0
0 1 0 -
Zyn=|2 0 = of
2 0 -0
o 3 o
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The adjustment of the design weight already compensated for non-response through
calibration and integrated weighting and is often referred to as benchmarking. At this stage,
the final sampling weight is obtained (Luus, 2016). This completes the development of the
final weight.

2.4 Conclusion

In this chapter the differences between probability and non-probability sampling were
discussed and the importance of using probability sampling for inferences was highlighted.
Furthermore, the different sampling techniques within both probability and non-probability
sampling were reviewed. This followed to CS which is a combination of probability sampling
techniques. Weighting was introduced and it was shown how it can be used to aid with non-
response and differential non-response. The next chapter will discuss the logistic regression
for both SRS and CS. In CS the weights-play-an-imporiant role in obtaining estimators of the
parameters of the logistic regression model. In addition, standard errors for the estimators can
be obtained and subsequently, confidence intervals. The next chapter will explore this for
both SRS and CS.

25

http://etd.uwc.ac.za/



Chapter 3: Logistic regression modelling

3.1 Introduction

Logistic regression is a statistical technique widely used in the modelling of data where the
response has two or more outcomes. Due to the nature of CS, when applying logistic
regression modelling to CS data, the model needs to be adjusted to incorporate the CS design
through the inclusion of the sampling weights. This chapter explains how the logistic
regression model is adapted for use on CS data. It further goes on to discuss different methods
of estimating the variances of the estimators of the model parameters under CS, viz. Taylor
series linearization, the jackknife, and the bootstrap. These variances, in addition to the
standard variance obtained from SRS, will be used to construct standard asymptotic
confidence intervals. Furthermore, a non-parametric confidence interval, i.e. the bootstrap
percentile interval will be discussed-and will-be-compared.to the standard (asymptotic)

interval in the analysis.

3.2 Model specification and parameter estimation under SRS

The logistic regression model forms part of the generalised linear models in which the
dependent variable follows one of the distributions of the exponential family (Agresti, 2013;
O'Connell, 2006). Logistic regression models the odds of an event occurring and estimates
the effects of the explanatory variables on those odds (O'Connell, 2006). Furthermore, if the
dependent variable has two outcomes, it makes ordinary least squares regression modelling

inappropriate (Heeringa, et al., 2010; Kutner, et al., 1996).

To validate this, suppose ordinary least squares regression was used to model a response that
is binary. Consider the model

Y= XB+ &,i=1,..,n, (7)
where Y; is the response that only takes on the values 0 or 1, B is the vector (B, B1, .-, Bp)
consisting of p + 1 model parameters, X; is the vector (1,x4,x,,...,x,) " consisting of p

explanatory variables measured for the ith observation, and ¢; is the ith error term. Let ¢; =
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Y; — X;B. An expression for the error term can be obtained by substituting in the values for
Y;, namely

& = 0-— X:B, (8)
ifY; =0, and

& = 1-XiB, 9)

if Y; = 1. From the results in Equations 8 and 9 the error term can only take on two values.
Therefore, the error term is not normally distributed (Kutner, et al., 1996). Furthermore, an
additional problem associated with a response variable with a binary outcome is that the error
variances are not constant. To validate this, consider the variance of the model defined in
Equation 7 which, by the definition of a variance, yields

V() = E()(1-EM)),
where E(Y;) is the expected value of Y; which-is-equal to-X;. The variance of ; is the same
as that of Y; (Kutner, et al., 1996). Fherefore,

Ve = B (T=E))
and thus

V(e = Xip(1 —X;iB). (10)

From Equation 10 it is apparent that the variance is dependent on the explanatory variables
implying that the error variances will differ at different levels of X, resulting in the error
variance not being constant. Thus, ordinary least squares regression will not be applicable to
such data (Agresti, 2013; Kutner, et al., 1996).

In Figure 2, results were obtained from a simulated data set to display a naive linear regression
model for a binary response in the left panel compared to when an S-shaped curve is fitted in
the right panel. It shows that a naive linear regression model does not accurately capture the
relationship between the response and explanatory variables and could possibly produce
values that are outside the range of 0 and 1. On the other hand the S-shaped curve of the right
panel accurately captures the probabilities of 0 and 1 (Kutner, et al., 1996; Heeringa, et al.,
2010).
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Figure 2: The effect of fitting an ordinary least squares regression to

a binary response variable.

The linear regression model in Equation-7 must be-altered to. compensate for binary outcomes.
To address this, a non-linear function must be identified that yields a fitted regression model
that is linear in the coefficients for the model covariates and, ideally, when the function is
transformed back, the resulting estimated values will fall in the range 0 to 1 (Heeringa, et al.,
2010). The above described functions are referred to as fink functions and the two commonly
used to model binary responses are the logit and probit (Heeringa, et al., 2010; Lohr, 2010;
Kutner, et al., 1996).

The link function used to model the logistic regression is the logit link function which
transforms the outcome variable to the natural log of the odds (Menard, 2010). Consider Y;
which follows a Bernoulli distribution in which the expected value and variance are given
below:
E(Y) =m, (11)

and

V() = m(1—m), (12)
where 1; is the probability that Y; equals 1. Using the definition of the link function, the model

in Equation 7 can be expressed as (O'Connell, 2006),
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logit(m)=n (=) =X'B. (13)

i

Equation 13 can be simplified to

exp <1n (1 fim)) zexp(X'B)

i =exp(X'B)
1-— TT;
m =0 - m)exp(X'B)
_ exp(X'B)
T a8 49

To obtain the estimators of the model parameters the maximum likelihood function must be
derived in order to find the maximum likelihood estimators (MLE) of the parameters (Kutner,
et al.,, 1996; O'Connell, 2006). Since the observations in an SRS are independent and
identically distributed (i.i.d.), the maximum likefthooed-function can be obtained as the product
of n Bernoulli probability functions (Kutner;-et-al.;-1996),
91 Yz, o Yn)=mPYam ) X Pz y2) X .. X P (Y =yn)
=TT, P(Y: = |v0)
= I, w1 Bl AT,

To lessen the computational burden, the logarithm of the maximum likelihood function is

found,
gy ya, - ¥l Sinf[Te nri(r = n )=
=YinlYilnm +(1-Y) In(1—m) ]
=YialYilnm + In(1—m) —Y; In(1 —m;)]
=YinlYi (Inm; — In(1—m)) + In(1—m;)]
=T Yin (5) + Ty In(1 — o). (15)
Since,

|n(1f7i_[i) =X

Equation 15 becomes
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In[g(Yy, Y,..., V) ]=20n, Yi(X' B )-Xis, In(1 + exp(X'B ). (16)

To obtain the estimates of the parameters, the partial derivatives of in[g(Y;,Y>,...,Y,)] with
respect to the parameters must be obtained and set to zero. However, this is not
straightforward and requires iterative estimation procedures such as the Newton-Raphson
method or the Fisher Scoring algorithm to obtain the estimators (Kutner, et al., 1996;
Heeringa, et al., 2010).

The maximum likelihood function requires that the data be i.i.d.. However, this is not the case

for CS and this will be discussed in the next section.
3.3 Model specification and parameter estimation under CS

Consider the CS described in Section 2.3.2.1 in which there are H strata where each stratum
contains N, PSUs and each PSU contains Ny SSUs: From each stratum a sample of n, PSUs
is selected followed by n,,; SSUs being sampled from each of the'selected PSUs, j = 1, ...,
and h =1, ..., H. Data collected using such a design restricts the normal straightforward use
of the maximum likelihood function to obtain estimators of the model parameters for several
reasons. The selection probabilities are no longer equal ‘and sampling weights are therefore
needed to estimate the finite population values of the logistic regression model parameter.
Secondly, in a CS, stratification and clustering result in data that are not independent. The
assumption of independence is imperative in orderto estimate model parameters and their
variances (Archer, et al., 2007; Heeringa, et al., 2010; Lohr, 2010; Lumley & Scott, 2015).
Even if the estimators of the parameters were approximately design unbiased, the standard

errors would likely be incorrect if the CS involves clustering (Lohr, 2010).

Instead of using the traditional MLE, a pseudo maximum likelihood function is used, i.e. the

likelihood function is adapted as if the entire population is used (Archer, et al., 2007; Lohr,

2010; Chambless & Boyle, 1985). As mentioned in Section 2.3.2.1, the design weight has the

property of indicating the number of population elements represented by the sample element.

By expanding each sample observation by its design weight, a data set of N units is produced.

Therefore, the parameter vector B is introduced which is the MLE of the super population
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parameter B which is referred to as the finite population parameter (Binder, 1983; Lohr,

2010). The logistic regression model in Equation (14 can be defined in terms of B,

_ _exp(X'B)
" 1+ exp(X'B)

The model parameters for the logistic regression of a CS are estimated using the pseudo
maximum likelihood function. The Bernoulli probability distribution of the logistic regression
model can be expanded using weights,

Whiji X Yhji [1 _

]Whji X (l—yhji)
hji

hji
where yyj; is the binary response variable, mp,j; is probability that y,;; is equal to 1 and
wy;; Is the sampling weight, where i = 1, ...,np5,j = 1,...,npand h = 1, ..., H. The pseudo
maximum likelihood function is still constructed using the product of the individual
contributions, however, the n, PSUs sampled and n,; SSUs sampled within the given PSU

are accounted for thus forming the pseudo-maxtmum-likelihood function,

L(B)=IT2, W .77 e p s 7 ]Whﬁx(l_yhﬁ)- (17)
The pseudo MLE is similar to the MLE in terms of its functionality except that the pseudo
MLE calculates the parameters for the expanded set. Expressed differently, the logistic
regression for a CS is being fit to the ‘census™ data (Archer, et al., 2007; Heeringa, et al.,
2010). The estimators are obtained using the iterative estimation procedures discussed in

Section 3.2.

Once the estimators are determined the variances and standard errors of the estimators can be
obtained. The thesis will discuss three methods to determine the variances under CS, namely

Taylor series linearization, the jackknife and bootstrap.
3.4 Variance estimation

To obtain confidence intervals or conduct hypothesis tests, variance estimation is of
paramount importance. For statistics based on data collected under the assumption of an SRS,
exact expressions for variance estimators in most circumstances can be derived. In a CS

design, however, these variance estimators are a bit more intricate and exact formulae can be
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cumbersome to obtain (Heeringa, et al., 2010; Lohr, 2010). Several variance estimators exist
for a CS design. Of these only the Taylor series linearization, the jackknife and the bootstrap

will be discussed in this thesis.
3.4.1 Taylor series linearization

TSL is a method used to approximate complex smooth non-linear functions by simple linear
functions of statistics in order to calculate variances, construct confidence intervals and test
hypotheses of parameters (Heeringa, et al., 2010; Lohr, 2010; Kolenikov, 2010). TSL is
traditionally used when the statistic of interest is a function of moments (Kolenikov, 2010).

Let & =f(Ty, T,, ..., Ty) be a smooth function of totals T;, T, ..., Ty, Which can be totals of
any particular variable of interest, and let 8 = f (¢, t,, ....t;) be an estimator of 4, where t,,
t,, ... t; are sample estimates of the corresponding totals (Kolenikov, 2010). Consider a
complex sample where T}, [=1,2,...;k-can-be estimated by
0 = 2ies Wi Vi, (18)
where t; is an estimator of T;, y;; is the response of unit i to item [, and w; is the sampling
weight for unit i. For simplicity the notation has been reduced to only the USU subscript i.
A new variable can be defined forconstants ay, .., ay;
ar 3 Niklap yy!
such that,
tg = XiesWi G
=ies Wi Zf=1 ar Vi
= Zf:l a; YiesWi Vi
=Xiaa .
The variance can then be estimated by
V(ty) = VL ap t) =X af V() +2 XECT Yk 41 ap ac Cov(ty, t,), (19)
where V(t,) is the variance of the estimated total for constants a,, .., a,, V(t;) is the variance

of the estimated total t;, and Cov(t;, t.) is the covariance of t; and t,. (Lohr, 2010).
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Now consider the estimator of the population mean that can be expressed as a weighted

combined ratio estimator,

Sty =

The estimated mean, like many estimators under CS, is a non-linear function of two weighted
sample totals. This is true for other estimated quantities too, such as the simple linear and
logistic regression coefficients (Heeringa, et al., 2010; Lohr, 2010; Binder, 1983). This is a
non-linear statistic and cannot be expressed in the form of Equation 19. To solve the problem
of non-linearity of sample estimators, Taylor series expansion is used to approximate the
estimates of interest, expressing them as linear combinations of weighted sample totals
(Heeringa, et al., 2010).

In order to do so, let

DiesWiYa =uand.Yesw; = V.

From Equation 20 it follows that

Using Taylor series expansion Equation 20 can be approXimated as

oyTsL,

) ) i ayrsL
YrsL =4, + (U - up) [ o +i(v - ) [

] + remainder,
OV dy—py,u—1uq

]U—Uo,u—uo

+(V - Uo)[ayTSL

OyrsL ]
v Llylpgutu,

VrsL ~ Z_Z +(u- uo)[ ou , (21)

:I'U“Uo,u—uo
where u, and v, are the weighted sample totals which are obtained from the survey data,

[ayTSL]
ou ly_ygu—u,

is the derivative of y with respect to u evaluated at the expected values of

OyTsL

the sample estimates u, and v,, and [ 5 is the derivative of y with respect to v

v ]v—vmu—uo

evaluated at the expected values of the sample estimates u, and v,.

Note that the quadratic and higher order terms in the full Taylor series expansion are dropped
since those terms are assumed inconsequential when the sample sizes are large enough
(Woodruff, 1971; Heeringa, et al., 2010; Lohr, 2010). Furthermore, consistent and ideally

unbiased estimators are generally used in the place of the expected values of the sample
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estimators (Heeringa, et al., 2010). Making use of Equation 19, the variance of the linearized

estimator can be calculated. In Equation 21, let

[5)7T5L]
ou ly—pyu—u,

= Cand [a%“] =D.

v—vo,u—Ug
Then Equation 21 reverts to
YrsL = :_z +(U-u)C+ (v-10)D,
and the variance of yg; can be calculated as
VrsL) = V( Z—Z + (u —u)C + (v — vo)D)

=0+ C2V(u — uy) +D?V(v — vy) +2CDcov(u — ug, v — 1)
=C%?V(u) +D*V(v)+2CDcov(u, v).
C and D can be obtained as

[a?TSL]
ou ly—you-uy Yo

which simplifies to

V(s )= V@ +rsL ¥ (W)=29rsL covuv)

P
Vo

Binder (1983) proposed using a multivariate version of the TSL to calculate the variance of
the estimator of a logistic regression model parameter (Binder, 1983; Heeringa, et al., 2010).
As discussed in Section 3.3, the estimators of the parameters of the logistic regression model
can be obtained from the pseudo MLE defined in Equation 17. Similarly, Equation 17 can be
used to obtain a variance-covariance matrix of the logistic regression model parameters. A
simplified version of Equation 17 for an observation in stratum h from the j** PSU and the

it" SSU is given below,
' -1
Y 2j %iWnjiDhpji [7ni(1 = 7)) (vnji — nji)= 0, (22)

(”hji(B))

where D ;; is a vector of partial derivatives, id , k=0,..,p, p is the number of

@By

parameters, wy,j; is the sampling weight and m,;; (B) is the probability of success of the ith

SSU of PSU j from stratum h. Equation 22 reduces to p + 1 estimating equations,
Yh2j XiWhiji (}’hji — Tlhji (B)) Xpji = 0. (23)

34

http://etd.uwc.ac.za/



The Newton-Raphson method can be used to obtain the weighted parameter estimates by
finding a solution for Equation 23. Using TSL, a sandwich-type variance estimator can be
obtained in the form of (Heeringa, et al., 2010)

var(B) = " YHvar[S(B)|U™D),

where J is the matrix of second-order derivatives with respect to By.

TSL is used in most survey packages under the assumption that the PSUs are sampled with
replacement within the strata at the first stage (Kolenikov, 2010). Some advantages of using
TSL are that, if the partial derivatives are known, linearization will almost always give the
variance estimate of a statistic and, the theory of TSL is well developed (Lohr, 2010).
However, it does have some drawbacks. Calculations can be cumbersome when functions are
complex. Also, not all statistics yield smooth functions in terms of population totals, and the

accuracy depends on the sample size (Lohr, 2010; Kolenikov, 2010).

Although TSL is the default variance estimator-in-most statistical packages other options are
also provided such as the jackknife.and-the-bootstrap.-Fhese techniques form part of the

resampling methods and will be discussed next.
3.4.2 Resampling methods

Resampling or replication metheds, as ‘the: names ‘suggest, replicate subsamples of the
sampled observations to develop variance estimators for both linear and non-linear statistics
(Heeringa, et al., 2010; Wolter, 2007).

Suppose that a sample S is selected by some design and suppose R replicates are obtained
from sample S. Consider the r'" replicate, » = 1,2, ..., R. Let the parameter of interest be
denoted by 8 and let the estimator of 8 be denoted by 8. Let the estimate of 8 obtained from

the rt" replicate be denoted by 8. The variance estimator of 8 can generally be defined as
(Lohr, 2010)

A 1 PN ~2
VO =ram RO - 8}, (24)
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where R is the number of replicates; V() is the variance estimator; and & is a particular

measure of central tendency. In the event of the mean of the resampled values, then

f=-3F 00
The resampling methods that will be discussed are the jackknife and the bootstrap.
Theoretically, the resampling is done in a way that the sample is re-created for each replicate
r. However, in practice this is done by using the sampling weights, i.e. if a particular
observation unit is removed for a given replicate, it is simply assigned a weight of zero
(Kolenikov, 2010). The weights of the other units need to be increased to ensure that the totals

are unbiased for each replicate (Kolenikov, 2010).
3.4.2.1 Jackknife repeated replication

Jackknife repeated replication (JRR) was introduced as a method to reduce bias and can be
used for a wide variety of complex designs (Heeringa, et al.,;-2010; Lohr, 2010; Kolenikov,
2010). The JRR focuses on samples that leave out one observation unit at a time (Efron &
Tibshirani, 1994). This thesis will focus on the delete-one jackknife. Firstly, a brief discussion
of JRR under SRS will be provided followed by the extension of JRR to the CS case.

3.4.2.1.1 JRR under SRS

Properties of the jackknife for SRSWR andiSRSWOR have been extensively investigated and

will be briefly explored in this section. Consider the sample S of size n with observations {y;,
V2. VY3, - Yo} I Which some parameter 6 is estimated by the statistic . Suppose S(iy denotes
the replicate sample in which the i observation has been removed, i.e. Siy={1, - Yi—1:Yi+1s
.+ ¥n}. Using the replicate sample S ;) a replicate of 8 is obtained, namely 8;, = 8(S;). This
is repeated until each observation has been deleted once resulting in n replicates of 9, i.e.
{01y} i = 1,...,n. Using Equation 24 the JRR estimate of the variance of the estimator of the

parameter of interest is calculated as

~ A~ -1 ~ ~
Virg (6) = nT Y(Ow — Oirr) 2, (25)
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where ;g is given by

~ 1 ~

O1rr = ” Yi=1 Oiy-
The variance produced using JRR includes a factor of ”T_l which is different from ﬁ or 1/n
which is traditionally used when calculating variances (Efron & Tibshirani, 1994; Lohr,

2010). The factor is derived by considering a special case where & =y and the variance

simplifies to
1
n(n-1)

Ve 0) = —— 30y = N =20 — N2
The jackknife estimate of the bias is given by
b/l—CE]RR =(n—1)( é]RR - 9).
The bias consists of a factor (n — 1) which is the same as the factor of the variance given in
Equation 25. However, using the special case of letting & =y is not plausible since the sample

mean is an unbiased estimator of-the population mean. The sample variance can be used

instead. Consider

ézZ(yi _y)Z/n,
which has a bias of -1/n times the population variance, and the factor (n — 1) in front of
(0)rr — 0) makes buas;gy equalto-1in times 3¢ y; = ¥ )2/(n = 1), the unbiased estimator

of the population variance (Efron & Tibshirani; 1994).

When using JRR to estimate the variances of the estimators.under CS the sample design needs
to be accounted for. This section presented a short description of the JRR under SRS. Since
this thesis considers the logistic regression modelling of CS data the next section considers
the application of the JRR under CS.

3.4.2.1.2 JRR under CS

In JRR under CS each replicate measures the variance contributed by a single stratum in
which case the PSU is removed along with all the observations within that PSU (Kolenikov,
2010; Lohr, 2010; Kish & Frankel, 1974). Deleting one observation at a time will destroy the
cluster structure, therefore the entire PSU should be removed (Lohr, 2010). The software that
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does the JRR calculations does not actually remove the PSU, but merely assigns a weight of
zero to all the cases in that PSU (Heeringa, et al., 2010; Lohr, 2010).

Suppose there are H independent strata and n,, PSUs are chosen from stratum h. Let é(h j) be
the estimator obtained when PSU j of stratum h is deleted. In order to calculate é(hj) the

weights need to be assigned as follows (Lohr, 2010),

0, if observation i is in PSU j in stratum h
T
Winj)= np-1 Vhit

Whiji » if observation i is not in stratum h

if observation i is not in PSU j but in stratum h

where w; ) is the adjusted sampling weight, ny, is the number of PSUs in stratum h, and
wy;; Is the original sampling weight of the ith USU. The jackknife replicate of 6 when the
(hj)th PSU has been deleted, i.e. é(hj), is then calculated using the jackknife sampling
weights. This procedure is repeated for all.PSUs-in-a-stratum and, independently, across all
strata (Lohr, 2010; Heeringa, et al., 2010; Kolenikov, 2010). It follows that the jackknife

estimator of the variance of 8 under-CS is.given by

-~ ny—1 ~ ~
Virr(0) =Z’J=1Z—hZ?21(9<hj) -4K.
This is done to ensure that the observational tnits withina PSU remain together such that the
cluster structure remains intact. JRR.is applied separately-in each stratum at the first stage of

sampling (Lohr, 2010).

The jackknife is an “all purpose” method and provides a consistent estimator when the
parameter of interest is a smooth function of totals (Kish & Frankel, 1974; Lohr, 2010).
However, JRR may require a large number of computations for some sampling designs which

can be computationally expensive (Kolenikov, 2010).
3.4.2.2 Bootstrap

Statistics is based on sampling distributions of parameter estimators and test statistics. These
distributions can be derived through transformations of random variables or other asymptotic

arguments (Kolenikov, 2010). This is not always easy to determine. Bootstrap provides an
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alternative to that in which the bootstrap statistics are taken from a distribution that is close
to a distribution of an unknown population (Kolenikov, 2010). Using bootstrap statistics,
standard errors can be obtained and subsequent confidence intervals can be constructed. This
section commences with a summary of the bootstrap under SRS followed by its application
to CS data.

3.4.2.2.1 Bootstrap under SRS

Consider an SRS S=(y4, ¥5, ...,y») from an unknown probability distribution F and suppose
a parameter of interest @ is to be estimated by 8. The accuracy of 8 depends on its standard

error. If F is unknown, the standard error of 8 cannot be readily obtained (Efron & Tibshirani,
1994). The empirical distribution F, which assigns a probability of % to each element in S,

can be used to estimate F. It can be shown-thatF-is-a-sufficient statistic of F, the proof of
which is omitted from the scope of: this thesis: As a result, the F' can be used as a basis for

obtaining the standard error of 8.

Suppose an SRSWR of size n is drawn from S, say S =(v1, V3, -, ). Corresponding to Sy
is the replicate of the estimator 8, 1.e. 8; = 8(S;). Another SRSWR of size n, say S;, can be
selected from S and the second replicate of the estimator 4, 85, can be obtained similarly to
6;. Note that since this is SRSWR,:S;-and :S;; can-differ, These samples, S; and S;, are
referred to as bootstrap samples. This process, i.e. sampling with replacement, can be repeated
until all possible samples of S are obtained. All these samples follow the empirical
distribution F. The estimate of the standard error of & can be obtained, say sez(8*), and is
referred to as the ideal bootstrap estimator. Note that the ideal bootstrap is a function of the
empirical distribution and can be computationally expensive to obtain since it requires all

possible samples from S of a certain size (Efron & Tibshirani, 1994).

The bootstrap algorithm is a numerical method to obtain an approximation of Qﬁ(é*). It
works by drawing many independent bootstrap samples, calculating replicates of the

estimator from each bootstrap sample, and then using these replicates to estimate the
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corresponding standard error of 4. The result is referred to as the bootstrap estimate of the

standard error of 8.

Consider B independent with replacement bootstrap samples, S1, S5, ..., Sg, each of size n.
A bootstrap replication of # can be obtained from each bootstrap sample, i.e. 8;, for b =

1,2, ..., B. The resulting bootstrap estimate of the standard error of 8 is given by,

. /z‘,?:l[@;,,)—@*(.)]
Sép) — T

~ B o - - - - .
where 6*(.) = %. The ideal set up requires B = oo, which results in the “ideal bootstrap

estimate” (Efron & Tibshirani, 1994, p. 50). The ideal bootstrap estimate has a smaller

standard error as opposed to seg in an asymptotic sense (Efron & Tibshirani, 1994). However,

the ideal bootstrap can be computationally expensive. The bootstrap estimate generally has

very little bias. Authors have generally agreed that:

1. B =50 is often enough to give a good estimate of the standard error; and

2. very rarely is B > 200 replicates needed to-—estimate the standard error (Efron &
Tibshirani, 1994).

In CS the data is no longer i.i.d. and requires amendments to he made to the bootstrap. This

is discussed in the next section.

3.4.2.2.2 Bootstrap under CS

The bootstrap can be extended to complex samples in which a bootstrap sample is taken of
the PSUs within each stratum (Lohr, 2010; Kolenikov, 2010). Note that, as with the jackknife,
observations within the PSU are kept together in the bootstrap iterations (Lohr, 2010).

Consider a complex sample design in which n,, PSUs is selected from stratum h, h = 1, ..., H.
Suppose the b" bootstrap sample, for b = 1, ..., B is taken by selecting an SRSWR of n,,
PSUs independently from stratum h. The parameter of interest can be estimated from replicate
b by 8;; this is repeated B times. The variance of the estimator of the parameter of interest
can be calculated by Equation 24. Sitter (1992) highlighted the problem associated with this

approach. In the simple case of the sample mean the variance obtained is not an unbiased
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estimator and is not consistent (Kolenikov, 2010; Sitter, 1992). This is rectified by the
application of a rescaling bootstrap procedure. To construct the b* bootstrap sample a
SRSWR of n;, — 1 PSUs instead of n,, is taken from the n;, PSUs in stratum h. (Luus, et al.,
2010; Kolenikov, 2010). In addition, n,, — 1 gives more efficient estimators (Kolenikov,
2010).

Let mj,; be the number of times PSU j of stratum h appears in the bootstrap sample. Since
the PSUs are sampled with replacement, some of the PSUs will appear more than once in the
sample and others might not appear at all. Thus the sampling weights of the observations in
the bootstrap sample need to be adjusted to compensate for this to ensure that the sum of the
sampling weights still equals the population total. The bootstrap sampling weights are then
given by
Whji = Wy n—;”l_—l My, (26)

where wy,; is the original sampling weight;y,;-is the-number of times the jt" PSU appears
in the bootstrap sample, and n;, is the number of PSUs that comprises stratumh, h = 1, ..., H.
The bootstrap weights can now be used to calculate the bootstrap replicates of 8, i.e. 8*. These
are then used to calculate the bootstrap variance of 8, by firstly using Equation 26 to construct
a vector of replicate weights. Let 8;, be the estimator of @ calculated in the same way as 8,
but instead using the weights wy, ;; as opposed to wy,;; . Then using Equation 24 the bootstrap

variance for CS can be calculated (Lohr, 2010; Kolenikov, 2010).

The size of B in CS should ideally be selected to be at least as large as the design’s degrees
of freedom, i.e. n — H. Selecting B < n — H does not provide the highest possible rank of
the co-variance matrix of the coefficient estimates (Kolenikov, 2010). However, this may not

be of concern if n — H is sufficiently large, e.g. exceeds 100 (Kolenikov, 2010).

The bootstrap works well for smooth and non-smooth functions of statistics in general
sampling designs (Lohr, 2010). It may, however, be computationally intensive as opposed to
the other two variance methods, viz. TSL and JRR. Since different bootstrap samples can be

used to compute the variance, the bootstrap variance estimates may differ.
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3.5 Confidence intervals for model parameters

Once asample is selected according to some design, estimators of parameters can be obtained.
Moreover, additional information is often desired to make an assessment regarding the
accuracy of these estimators. This is often done by constructing confidence intervals. A
confidence interval summarises the uncertainty that the true population value lies in a bound
placed on the probable error of an estimator from a single sample (Thompson, 2010). Two
confidence intervals will be constructed, viz. the standard (asymptotic) confidence interval
and the bootstrap percentile confidence interval.

3.5.1 Standard (asymptotic) confidence interval

Consider an estimator 8 and suppose the estimator is consistent and asymptotically normal.

Let V(8) denote the variance of that estimator. Then-the expression

D)

=g
v(8)’

|

(27)

7

is said to be a pivotal quantity if its distribution does not depend on the parameter 8. For large

samples the expression in Equation 27 passesses an approximately normal distribution and

can be used to construct an asymptotic confidence interval for the parameter 8 (Wackerly, et

al., 2008). This assumption is true for TSL; JRR and thesbootstrap, under certain conditions:

1. the parameter of interest 6 can be expressed as a smooth function of totals; and

2. the sample sizes are large: either the number of PSUs is large in each stratum or the survey
contains a large number of strata (Binder, 1983; Efron & Tibshirani, 1994, Sitter, 1992;
Lohr, 2010).

The generic form for a 100(1-a)% confidence interval for a population parameter, where « is

the level of significance, is
0 + ta se(@) (28)

where ta

= o is the student t-distribution with df degrees freedom under the sampling design

and se(0) is an estimate of the standard error of §. Simulation studies suggest that the

confidence intervals behave well in practice. These studies also suggest that the TSL and JRR
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give similar estimates for variances while the bootstrap gives larger estimates of the variances
(Lohr, 2010).

3.5.2 The bootstrap percentile confidence interval

The bootstrap percentile interval is a non-parametric technique used to find percentiles of the
bootstrap replicates obtained from the bootstrap samples (Efron & Tibshirani, 1994). In
Section 3.4.2.2.1 the empirical distribution function F was used to approximate F, from F, B
bootstrap samples, S*, were drawn and from each bootstrap sample a bootstrap replicate 8*
was obtained. To generate the percentile interval, the first step is to sort the bootstrap

replicates 6, in ascending order, i.e. (,y, b=1,2,...,B. Then the lower bound of the interval
is obtained as the B X %th value of the sorted replicates while the upper bound is obtained
by takingthe B X (1 — %)th value of the sorted replicates (Efron & Tibshirani, 1994; Luus,

2016). The 100 (1 —a)% bootstrap-percentile inierval.is-thus-given by:
1665 By (B (1— ))] (29)

where 92‘3 «, and 9(3 x(1- %) are the lower and upper bounds of the bootstrap percentile

interval, respectlvely.

The bootstrap percentile interval for CS is exactly the same as defined in Equation 29 with
the exception of the weights incorporated in the'calculation of the replicates.

3.6 Conclusion

The difference between the estimation of parameters of a logistic model for CS and SRS is
important to note. CS data as opposed to data obtained from SRS data are not i.i.d. and this
has an effect on the MLE of the logistic regression model. This necessary adaptation was
noted in Section 3.3 in which a pseudo MLE was obtained. Furthermore, three different
variance estimation methods, viz. TSL, JRR and the bootstrap, were discussed including how
the different methods are formulated firstly in an SRS setting followed by the CS setting. The
variances can be used to construct a standard confidence interval and the bootstrap can be
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used to construct a non-parametric confidence interval, namely the bootstrap percentile

confidence interval.

The next chapter will provide the methodology to aid in providing solutions to the research
questions highlighted. The data sets and sampling design are described and the statistical

techniques to compare CS and SRS will be discussed.
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Chapter 4: Research methodology

4.1 Introduction

In Chapter 1 the problem statement, objectives and research questions were outlined. Chapters
2 and 3 discussed the statistical theory on the major concepts outlined in Chapter 1. In this
chapter, the statistical methodology will be outlined and various aspects concerning data
collection and data validity will be discussed. In addition, the different statistical methods that
will be used to assess the research questions and problem statement, will be highlighted.

4.2 Data collection

The Income and Expenditure Survey (IES) 2005/2006 forms the basis of the simulation study
of this thesis. It was based on a newly designed Master Sample (MS) which is used for all
surveys conducted by Statistics Seuth-Africa (Lehohla, 2008). This newly designed MS was
developed from the 2001 population census™ enumerated areas (EAs), the smallest
geographical areas into which the country is divided for survey purposes (Lehohla, 2008).
The MS is designed to focus on all households living in private dwellings and workers living

in workers’ quarters within the country.

There were 3000 PSUs (note that the EAs were used as the PSUs) in the MS which were
divided into four quarterly allocations of 750 each."Within each guarter an SRS of 250 PSUs
was selected every month using the updated listings. Then within a selected PSU eight
dwelling units were selected systematically (Lehohla, 2008). In total, 2400 dwelling units
were covered during the twelve-month period. The survey was conducted from September
2005 to August 2006. The households were sampled and participated for a period of one
month after which new sub-samples were taken of households for the new month (Lehohla,
2008). The data for a participant was collected for both the survey month and eleven months
prior to the survey being conducted. This information was combined to give an estimated

annual figure of expenditure per expenditure item (Lehohla, 2008).
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There were three methods used to collect the data. A main questionnaire was used consisting
of five sections of which the first covered the household characteristics, the next three sections
covered different parts of consumption expenditure and the final section covered household
expenditure. For the second method of data collection the participant had a weekly diary in
which the daily acquisitions had to be written down. Finally, a summary questionnaire was
administered in which the fieldworker had to summarise the total value of each item and

transfer it to the appropriate part of the questionnaire (Lehohla, 2008).

4.3 Weighting

The IES data were collected through a complex sampling design, specifically a stratified two-
stage cluster sampling design. According to this design, the country was firstly stratified by
province after which each of the nine strata was divided into enumerated areas, i.e. PSUs,

with each enumerated area consisting-of a number of -househelds, i.e. SSUs.

Consider stratum h, h = 1, ..., H, and suppose in stratum h there is N, PSUs and within each
PSU there is Ny SSUs, j = 1, ..., Ny and h = 1, ..., H. PPS sampling, with number of SSUs
the measure of size (MOS), was used to select 1;,, PSUs from each stratum in the first stage
and then systematic sampling was tised to select nj, ; SSUs from each first-stage sampled PSU,
j=1,..,nyand h =1,..,H (Lehohla, 2008). The weighting procedure was applied at two
stages (Lehohla, 2008). ConsiderPSU j'selected from stratum h./Let my; denote the inclusion

probability of the jth PSU from stratum h. Then

_ Npj
i T Ny

where Nj,; is number of SSUs in the selected PSU, }.; Ny,; the total number of SSUs in the
stratum, and n,, the number of PSUs sampled from the stratum. Now let 7;;,; denote the

inclusion probability of the ith SSU given that the jth PSU was sampled from stratum h.
Then,

o
ilhj — Nhj’
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where ny; is the number of SSUs sampled from the (hj)th PSU and Np; is the number of
SSUs in the (hj)th PSU. The total inclusion probability of the (hji)th SSU is then given by

Npj Ty
ZjNnj Nnj

TMhji = Mhj " Mijpj = Np *

Furthermore, these probabilities were adjusted for non-response and the non-response

adjustment factor used was the inverse of the response rate. The response rate is given by

nR
Thj = o

where ny is the number of responding SSUs and n, the total number of households visited

(Lehohla, 2008). The design weight adjusted for non-response is thus given by
1

Whii = .
hjt ThjiXThj

The SAS macro CALMAR was used to perform the calibration and integrated weighting
whereby wy;; was corrected to align with known population totals of certain auxiliary
variables for which all information-is known. The auxiliary variables are discussed in Section
45.2.

4.4 Response and imputations

As discussed in Section 2.3.2.2 there are two types of non-response, namely unit and item
non-response. Unit non-response 'occurs when an entire :sampling unit’s information is
omitted as opposed to item non-response which occurswhen eertain question responses are
omitted (Luus, 2016; Lohr, 2010). Unit non-response is dealt with during weighting while
item non-response imputations have to be carried out at different stages. The two stages at
which imputations were done on missing data were:

1. imputing for missing diaries; and

2. imputing for item non-response.

Households were required to complete four weekly diaries and a main questionnaire for a
period of a month. However, for various reasons, the diaries were not completed for all four
weeks. Households that did not diarise their expenditure for a minimum of two weeks were

disqualified and treated as non-respondents. This approach was extended to households that

47

http://etd.uwc.ac.za/



had diaries but no main questionnaire (Lehohla, 2008). Missing values for households with
diaries for two or more weeks were imputed. Suppose a household only diarised two weeks
of information, then the expenditure for those weeks would be summed together and the total
would be divided by two. The result would be used to impute the missing information for the
other two weeks. Similarly, if the household had only three weeks of diarised information,
then the expenditure would be summed, the total would be divided by three and the result
would be used for the fourth week (Lehohla, 2008).

In terms of missing data specifically in which item non-response was present, imputations

were done and these items were primarily related to housing. There are three different

methods used to measure housing services from owner-occupied dwelling units, namely:

1. interest on loans and mortgage bonds;

2. imputed rent for owner-occupied dwelling units as estimated by respondents; and

3. percentage of the value of the house as an-estimate of the rental value of the dwelling unit
(Lehohla, 2008).

Essentially, imputations were carried out on missing items according to the following criteria:
households that had similar characteristics to the ones missing were identified. Variables such
as province, settlement type, type of dwelling unit, value of the house and the number of
rooms were used to match households, The average amounit for a particular item, as calculated
from households of similar characteristics, was-used to-impute the missing data (Lehohla,
2008).

4.5 Statistical techniques

In order to address the research questions a comparison must be made between the correct
implementation of the sampling design in the analyses, CS, and where the sampling design
was ignored, SRS. In order to do this the “true” values of the model parameters must be
obtained such that the estimates produced by the estimators of the parameters obtained under
CS and SRS can be compared to the “truth”. However, the “true” parameter values require

knowledge of the population model, which is unknown. Instead, a surrogate population will
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be used as a basis for obtaining the “true” parameters. Samples will be selected from the
surrogate population to obtain the estimates of the parameters of interest. These estimates will
be calculated for both SRS and CS under different weighting methods, i.e. no weighting
(None), design weight (Design), linear person-level auxiliary variable weighting (Lin,,),
linear person and household-level auxiliary variable weighting (Lin,,), exponential person-
level auxiliary variable weighting (RR,,), and exponential person and household-level
auxiliary variable weighting (RR,,). The bias and mean squared error (MSE) will be used to
determine how close the estimates are to the “true” parameters and will be discussed in
Sections 4.6.1. Furthermore, standard confidence intervals will be obtained based on the TSL,
JRR and bootstrap estimated variances calculated for no weighting and weighting. In addition,
a bootstrap percentile confidence interval will be obtained for the parameters based on
estimates obtained from applying no weighting as well as the different weighting methods.
The different confidence intervals will be compared based-on their coverage probabilities and

lengths. These are discussed further in-Section'4.6.2.
4.5.1 Surrogate population

The surrogate population that will be used is the Income and Expenditure Survey (IES)
2005/2006. In order to prevent any irregularities, @ number of adjustments were made to the
IES data set. Firstly, observations having. missing. data values. were removed. Note that
although various imputation mechanisms based on sound theory exist to compute those
values, it would have presented another level of uncertainty and variability which could affect
the inference (Luus, 2016). Furthermore, imputation is not the focus of this thesis. Secondly,
only observations with age ranging from 21 to 65 were retained; this was considered a
working age. The final adjustment was done on the household expenditure variable. This
variable is important as it will be used to construct the response variable. Only household
expenditure with positive values were retained. After all the adjustments were made, the
surrogate population consisted of 25893 persons. The surrogate population was further

adjusted to select only one person per household, namely the oldest person, which was
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considered as representative of the head of the household. This resulted in 17541 households
which were grouped into 283 PSUs (Luus, 2016).

4.5.2 The simulated samples

Monte Carlo simulation was applied to the surrogate population so that the performance of
the different weight-based estimators of the model parameters could be compared. The
bootstrap and jackknife methods were then applied to the simulated data with the purpose of
obtaining bootstrap and jackknife estimated variances to use in the calculation of the

confidence intervals.

The simulation consisted of drawing 100 samples from the surrogate population where each
sample followed the same design as the IES 2005/2006, i.e. a stratified two-stage cluster
sampling design. The nine provinces of South Africa were used as the strata, with the EAs in
each stratum acting as the PSUs and the dwelling units withina PSU as the SSUs. The number

of observations in each sample was 2028.

Differential non-response (such as older females being over-represented and younger males
being under-represented), as described in Section 2.3.2.3, is often found in practical situations
in South Africa. In order to determine this type of non-response error it was simulated in the
design of the samples to evaluate the different weighting procedures under non-perfect
circumstances. Two sets of auxiliary variables were used, namely person-level auxiliary
variables and person and household-level auxiliary variables, to determine which weighting
procedure performs best under such circumstances. For the person-level auxiliary variables,
indicated by the subscript “pp”: province (9 categories), gender (2 categories), race (4
categories), and age were used. For person and household-level auxiliary variables, indicated
by the subscript “ph”: all person-level auxiliary variables, area type (2 categories), and
household size (3 categories) (Luus, 2016).
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4.5.3 Model and variables

The logistic regression model will be constructed for both the surrogate population and for
each of the 100 simulated samples. In order to use logistic regression, as mentioned in Chapter
3, the response variable has to be dichotomous. Since the surrogate population contains
household information and the subsequent samples were selected per household, a poverty

cut-off value had to be devised that captures household dynamics.

The food poverty line (FPL) is a poverty level used that captures consumption expenditure at
household level. This value is rebased to give a value per person. The standard level for the
FPL is $2.34 per person per day. In 2006 this amounted to R16.38 per person per day and
R5978.70 per person per year. To convert the value to a per household value an average was
determined from the product of the household size and R5978.70. This amounted to
R11062.20 household expenditure per year.(lehohla,2017). Therefore, the response variable
based on the food poverty level, Y, is given-by

v = {1, if household expenditure < R11062.20
o, otherwise '

The explanatory variables included in the model are age, gender, race, area type, education
level, province and household size.The age variable, as mentioned in Section 4.5.1, ranges
from 21 to 65. Gender, race, area type, province andhousehold size were coded in such a way
that the category with the largest proportion was used as the reference category. In addition,
education level, which consists of 28 categories, was re-grouped into 6 smaller categories.

Table 1 shows the re-grouping of the education level variable.
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Table 1: Re-grouped education variable.

No

schooling | Primary Intermediate | Secondary Matric Tertiary

00=No 01=Grade

schooling | R 09=Grade8 | 11=Gradel0 13=Matric 14=NTC |

26="Don’t | 02=Grade

know” 1 10=Grade9 | 12=Gradell 19=certificate=12 | 15=NTC Il

NA 03=Grade2 17=Certificate<13 | 20=diploma=12 | 16=NTC Il
04=Grade3 18=Diploma<13 21=Bachelors
05=Grade4 22=Bachelors+Diploma
06=Grade5 23=Honours
07=Grade6 24=Higher degree
08=Grade7 25=0ther

Household size, which consisted of 10 categories, was also re-grouped into 3 categories. This

is depicted in Table 2 below.

Table 2: Re-grouped household size variable.

Household 1

Household 2

Household 3 and more

one member

two members

three members
four members
five members
SixX members
seven members
eight members
nine members

ten members

A preliminary test was done to determine which category is the largest and this was used as

the baseline category for each of the categorical variables. The explanatory variables are

defined below:

Age variable ranges from 21 to 65;
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e Gender consists of males (coded 1) and females (coded 2). From the preliminary test it
was determined that the males are the largest category. The new variable, G, is defined
as:

G = { 1,if Female
7L 0,if Male

e Area type consists of urban (coded 1) and rural (coded 0). From the preliminary test it
was determined that the urban category makes up the greater proportion. The new

variable, A, is defined as:

A _{ 1,if rural .
1710, otherwise’

e South Africa is made up of nine provinces. From the preliminary test it was determined

that KwaZulu-Natal makes up the largest proportion. The new variables, P; to Pg, are

defined as:
P {1, if Western-Cape
| 0, otherwise
P, = {1, if Eastern Cape
il 0,lotherwise
Pl = {1, if Nothern Cape
8 0, otherwise

N L {1, if FreeState
41 "0, otherwise

L {1, if North West
> | 0,otherwise

p = {1, if Gauteng
671 0, otherwise

p = {1, if Mpumalanga
7 0, otherwise

p. = {1, if Limpopo.
8 0, otherwise '

e The race variable consists of four categories, namely Black, Coloured, Asian/Indian and
White, coded 1 to 4 respectively. From the preliminary results it was determined that

Black is the largest category. The new variables, R, to R5, are defined as:
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R. = {1, if Coloured
L 7 0, otherwise

R, = {1, if Indian/Asian
2 0, otherwise

Ry :{ 1,if White ;
0, otherwise
The household variable consists of three categories. From the preliminary results it was
determined that a household size of one was the largest category. The new variables, H,
and H,, are defined as:

o = {1, if two memebers
1 0, otherwise

1,if three or more members

Ha = { 0, otherwise '

The education level variable consists of six categories. From the preliminary results it was
determined that the category “‘primary sehool” had the.largest proportion. The new
variables, E; to Es, are defined as:
HIE {1, if No schooling
Hl 0, atherwise
EhL {1, if Intermediate
2 0, otherwise
pls {1, if-High School
2 0, otherwise
F o {1, if Matric
4710, otherwise

. = {1, if Tertiary
5710, otherwise

Finally, the population logistic regression model is given by

Povertylev =f, + B;AGE + B,A; + B3Gy + BaRy + PsRy+ BeR3+ B7E; +
PsEy + BoEs+ B1oEst P11Est BioHi+ BisHyt BraPr+ BisPrt BrePs+
B17Ps+ B18Ps + P19Ps + P20P7+ P21 Ps. (30)
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4.6 Statistical methodology

After the data cleaning and variable transformation is done logistic regression models will be
obtained for both the surrogate population and the samples. The surrogate population model
will represent the “true” parameters to which the sample estimates will be compared. The
logistic model defined in Equation 30 will be applied to each sample, either ignoring the
sample design (None) or accounting for the design through the inclusion of the different
sampling weights. The different weighting procedures that will be used and compared, are:
design weighting only (Design), calibration and integrated weighting using the linear distance
method on person auxiliary variables (Lin,,), calibration and integrated weighting using the
linear distance method on person and household auxiliary variables (Lin,y,), calibration and
integrated weighting using the raking ratio (exponential) distance method on person auxiliary
variables (RR,,), and calibration and integrated weighting using the raking ratio distance
method on person and household auxiliary variables (RR,,,). The standard errors of the
estimators from each of those methods, i.e. None, Design, Lin,,, Lin,,, RR,, and RR,,, will

be obtained using TSL, JRR, and the bootstrap. This will be done in SAS and R.
4.6.1 Assessment of the estimators of the model parameters

This section presents the measures that will be used to assess how close the estimators of the
model parameters are to the “truth”. Let 8; denote the estimator of the ith model parameter,
Bi,i =0, ...,p. The estimator will be assessed based on its expected value, bias and mean

squared error (MSE). Each of these measures are discussed below.

Consider the rth sample, r =1, ..., R, and let Bir denote the replicate of §; obtained when
fitting the logistic regression model to the rth sample. The expected value of f; is

approximated by the average of the R replicates of £3;,

1 oRr 5
EZrzlﬁir-
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The closer the expected value of an estimator is to the parameter, the better the estimation
method (Wackerly, et al., 2008). The bias of an estimator is defined as the difference between

the expected value of the estimator and the parameter, and is approximated by
. 51— 1 B
bias(Bi)= 21 B, - Bis
where f; is the “true” value of the model parameter obtained from the surrogate population.

If the bias is zero, i.e. E(f;) is equal to the “true” value then f3; is said to be an unbiased

estimator. The absolute bias is simply | %Zf=1/?ir - Bil-

The mean squared error is defined as the average of the square of the distance between the
estimator and its target parameter and is approximated by
N 1 —~ 2
MSE(f;) =< 3R. (B, — B
There are two aspects to the MSE of an estimator, i.e. the variance of the estimator and the
bias. The smaller the MSE the better the-estimator. However, #f-the MSE is large this can be

due to a large variance or bias or both.-If-the estimator-is-unbiased then the MSE equals the

variance (Wackerly, et al., 2008).

The expected value, bias and MSE will be used to assess the performance of the unweighted

and different weighted estimators of the logistic regression model parameters.
4.6.2 Assessment of the confidence intervals for the model parameters

Consider B;, the i*® model parameter, estimated by f; and let {Eir} denote the R replicates of

f; obtained from the R samples. The replicates are used to construct the following 95%
confidence intervals for g;:

1. standard (asymptotic) interval using the TSL estimated variance;

2. standard (asymptotic) interval using the JRR estimated variance;

3. standard (asymptotic) interval using the bootstrap estimated variance; and

4

. the bootstrap percentile confidence interval.
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In order to determine which of the intervals performs “best” under the different weighting
procedures the confidence intervals will be assessed based on their coverage probability and

length.

The coverage probability of a confidence interval is defined as the proportion of times that
the confidence interval, based on the R replicate samples, contains the parameter g;. The 95%

standard (asymptotic) confidence interval is obtained as:

[BiLLT; BiULT] =B * t%,df-gé(ﬁir)
where §E(/§ir) is the estimated standard error of ,E’ir obtained using either TSL, JRR or the
bootstrap, BiLLr is the lower limit of the confidence interval of the rt* sample for the it"* model
parameter, and Bimr is the upper limit of the confidence interval of the rt* sample for the i*"
model parameter. This gives [3;,, ; B, 1, [Bi,; Biv, ] s [ﬁiLLR; [?l-ULR]. The coverage

probability (CP) is then calculated-as

cp— # {EiLLrS Bi S?iULr}'

R

The confidence interval for which CP is the closest to 95% is considered the “best”.

Consider the rt" sample. B bootstrap samples canbe selected from sample r, namely St Sty
..., Sy, From each bootstrap sample-a replicate of §; 1is obtained, i.e. E{*rl, 3;’;2, ...,E{‘TB. As
discussed in Section 3.5.2 these replicates for sample r are sortediin ascending order, of which
the lower bound of the confidence interval is the B x %th value of the sorted replicates and
the upper bound of the confidence interval isthe B X (1 — %)th value of the sorted replicates.
Then a 95% bootstrap percentile confidence interval for the r* sample is given by

Bi, B, 1=18 . B ]

(B x Zth) B x(1-5)th)

where ,[?g“LLr and ,[?g"ULr are the lower and upper bounds for the rt* sample for the i** model
parameter using the bootstrap percentile confidence interval. Similarly, bounds can be
obtained for »=1,2,...,R, which gives [3;"LL1; B;‘ULl], [3;"LL2; 3§UL2], [E{‘LLR; 3§ULR]. The CP

for the bootstrap percentile confidence interval is calculated as
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# By, <BisBy, )
- R

The coverage probability will range between zero and one. The closer the coverage

probability is to the confidence level, the better the coverage. However, the improved
coverage can be due to a large confidence interval length caused by large variances.
Therefore, the confidence interval length is considered which is defined as

L, = BiULT - .[?iLLT’
where L; is the length of the interval for g; calculated from the rth sample. This gives L;,,

L;,, ..., Li, from which an average length is calculated,

R
Zi=1 Lir
—R .

The average length is calculated for each interval type and each weighting approach and will

be considered in conjunction with the CP to determine the “best” confidence interval.
4.7 Conclusion

This chapter provided all the tools to assess the research questions outlined in Chapter 1. In
this chapter the surrogate population, i.e. /the IES 2005/2006 was defined and the response
variable coupled with the explanatory variables-which-are reguired to build the logistic
regression model were constructed “and  clearly “defined. From the surrogate population,
samples were selected; each one having a CS design. For each of these samples a logistic
regression will be constructed from which estimators will be obtained under SRS and CS and
compared to the parameters obtained from the surrogate population. Two such methods were
discussed in this chapter, viz. the bias and MSE. Furthermore, variances of these estimators
can be obtained. Section 3.4 discussed three variances under CS, i.e. TSL, JRR and the
bootstrap. These variances will be used to construct a standard (asymptotic) confidence
interval. In addition, a non-parametric confidence interval was discussed, i.e. the bootstrap
percentile interval. Two methods were discussed to assess the precision of these confidence
intervals, i.e. the coverage probability and the confidence interval length. The next chapter
will provide empirical results for the methods mentioned in Chapter 4.
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Chapter 5: Data analysis and results

5.1 Introduction

In the previous chapters the building blocks were laid in order to address the research
questions outlined in Chapters 1 and 2. Chapter 3 explained the statistical theory and reviewed
previous literature while Chapter 4 outlined the statistical methodology and simulated
samples needed to build models to compare to the “truth”. As noted in Chapter 4, for each
simulated sample a logistic model will be obtained in the form of Equation 30 under the
assumption of a SRS and CS in which the Design, Lin,,,, Linyy, RR,, and RR,,; weights will
be used. From the results the absolute bias and MSE will be calculated and the results will be
displayed for a selected number of parameters. In addition, standard (asymptotic) confidence
intervals will be obtained for the parameters based on the TSL, JRR and bootstrap estimated
variances, including the non-parametric bootsirap percenide inierval. The results will be used
to obtain the coverage probability and.confidence interval length outlined in Section 4.6.2.
The analysis will be replicated in SAS and R and then the results will be compared. An outline

of the formulation of the results in the chapter is displayed in Figure 3.
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Figure 3: Qutline of the simulation study.
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5.2 Discussion of results

In this section the results obtained from the simulation study are examined. Only a selection
of the results is shown and discussed here. The complete collection of results is presented in
Appendix A to D and all programmes used in the simulation study are available from the

author at 3315602@myuwc.ac.za.
5.2.1 Estimators of model parameters

As discussed previously, the Income and Expenditure Survey conducted over the period
September 2005 until August 2006 forms the surrogate population of this simulation study.
This section considers the estimators of the model parameters and their measures of accuracy.
Two accuracy measures are discussed and displayed in figures for the estimators, viz. the
absolute bias and MSE. Figure 3 gives an outline as.to how the results are reported for two
statistical packages, namely SAS'and R. R-is-opensource software which was developed as a
dialect of the S language, an object-orientated-statistical programming language (Seefield &
Linder, 2007; Lumley, 2011). It has a package called “survey” which accommodates CS
designs (Lumley, 2011). This was used to obtain the estimates from which the subsequent
biases and MSEs were calculated. SAS is a statistical software programme primarily
developed for business solutions 'pertaining .to: manipulation:'of data, performance of
sophisticated analyses and business intelligence (Simon & Mitterling, 2017). SAS contains
“procs” which are used to perform the analyses (Elliot & Woodward, 2010). The “proc
survey” was used to incorporate the CS design in the analyses. Similar to R, once the estimates

were obtained the absolute biases and MSEs were calculated.
5.2.1.1 The absolute bias

In Section 4.6.1 the absolute bias was discussed as one of the methods to assess how close to
the “truth” an estimator is. The estimates were obtained and a selection of the results for the

absolute bias are displayed in Figure 4 to Figure 10 for the estimators By, B2, B, PBs: P11: P12
and B,,. The remainder are included in Appendix Al to Al4. The Figures contain SRS (no
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weights), Design, Lin,,, Lin,, RR,, and RR,,, the weights used under CS. For each method

the absolute bias is displayed for R and SAS next to each other.

0.09

|bias|

Weighting Method

SRS Design Linpp Linph RREpp RRph

w5 SAS

[=]

package

Figure 4: The absolute bias of the estimator of S, under SRS (no
weight) and different weighting methods are shown for

SAS and R.
In Figure 4, it is seen that the absolute bias for the SAS and R output were the same.
Estimators based on the design weight showed little to no bias. Similarly, estimators based
on Liny, and Lin,, showed little bias. In contrast greater bias was shown when SRS, RR,,,,

and RR,,, were used.

62

http://etd.uwc.ac.za/



0.06
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RRph Weighting Method

RRpp

Linpp

SRS Design
SAS |

: package
Figure 5: The absolute bias of the estimator of £, under SRS and
different weighting methods are shown for SAS and R.

Similar to Figure 4, the SAS and R output shown in Figure 5, were exactly the same. Likewise,
similar patterns were observed, namely the estimates obtained using the design weight had

very little bias in contrast to the estimates obtained from SRS.
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Figure 6: The absolute bias of the estimator of 8, under SRS and
different weighting methods are shown for' SAS and R.

In Figure 6, the absolute bias shows a different pattern in comparison to Figure 4 and Figure
5. The estimates obtained from the Design, Lin,, and Lin,, weights show larger absolute

bias as opposed to estimates obtained from the other three methods. The bias based on the

weight RR,,, was the lowest.
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Figure 7: The absolute bias'of the estimator of S under SRS and

different weighting methods.are shownfar SAS and R.

In Figure 7, the output from SAS and R of the absolute bias of the estimator of the parameter
Bs, the coefficient of predictor R,, differed. The explanatory R, represented the Indian or
Asian race group. It should be noted that from the preliminary results the frequency of R, was
small. This resulted in the quasi-separation of data points in some of the samples. When quasi-
separation is detected in SAS, the procedure terminates the MLE iteration process and reports
the last iteration. In the results window SAS reports that the validity of the model is
questionable (SAS Institute, 2017). In R the solution for these estimator’s MLE are infinite,
however R provides a finite value by falsely converging the iterative procedure (Heinze &
Schemper, 2002). The difference between the SAS and R output can be attributed to when
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the software terminates the iteration process (Heinze & Schemper, 2002). The SAS output’s

absolute bias was slightly smaller as opposed to results obtained from R. There was no

significant difference across weighting methods from the R output.

[bias|

RRpp RRph  Weighting Method

SRS Design Linpp Linph
SAS

package

Figure 8: The absolute bias of the estimator of §,; under SRS and
different weighting methods are shown for SAS and R.

Similar to Figure 7, the output from SAS and R in Figure 8, differed as a result of quasi-
separation of data points. The SAS output absolute bias was slightly smaller than output
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obtained from R. The estimators based on Lin,, and Lin,, showed smaller absolute bias for

both SAS and R.

0.020
0.015

0.010

[bias|

0.005

RRph Weighting Method

0.000
SRS Design Linpp Linph

package

Figure 9: The absolute bias of the estimator of $,, under SRS and
different weighting methods are shown for SAS and R.

In Figure 9, the estimates obtained under CS achieved absolute biases across the different

weighting methods that were lower than those obtained under the assumption of SRS. The
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weights Design, Lin,, and Lin,, showed the lowest absolute bias. The output from SAS and

R were the same.

0.030
0.025

0.020

|bias|

0015

0.010

0.005

Weighting Method

RRph

0.000 .
SRS Design Linpp Linph

package

Figure 10: The absolute bias of the estimator of S,, under SRS and
different weighting methods are shown for SAS and R.

Similar to Figure 9, the absolute bias in Figure 10 from CS was the lowest across weighting

methods. The results for SRS had the greatest bias, biases of estimates obtained from

weighting methods RR,,, and R, were the lowest.

5.2.1.2 The mean squared error
The MSE was discussed in Section 4.6.1 and will be another measure used to assess how

close the selected estimators are to the “truth”. It is comprised of the bias and variance of an
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estimator and therefore the results shown in Figure 4 to Figure 10 will comprise some part of

the MSE results. The MSE for estimators By, B2, Ba4: Bs, P11, P12 and B, are displayed in
Figure 11 to Figure 17 and discussed. The remaining parameters can be found in Appendix

Bl to B14.

012

MSE values

Lessll

SRS Design Linpp RRph Waeighting Method

package

Figure 11: The MSE of the estimator of 8, under SRS (no weight)
and different weighting methods are shown for SAS and

R.

In Figure 11, the output for the MSE from SAS and R were the same for the estimator of f3,.
This is consistent with Figure 4. The MSE for estimates obtained from the CS design using
the weight RR,, was the lowest. This is closely followed by SRS. These two methods

displayed larger absolute bias. This implies that the variance produced by these methods were
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the least. Similarly, estimates obtained from the design weight produced the largest MSE with

the smallest absolute bias which implies that its variance was large.

0.025

0.02

0015

MSE values

0.01

0.005

SRS Design Linpp RRph Weighting Method

package

Figure 12: The MSE of the estimator of £, under SRS and different
weighting methods are shown for SAS and R.

Figure 12, shows similar trends to that of Figure 11, namely that the MSE obtained from
RR,, and RR,, were the lowest and the MSE obtained from the Design, Lin,, and Lin,,

were the largest. This implies that methods RR,, and RR,, produced low variance. The

results for SAS and R were the same.
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MSE values

SRS RRph  Weighting Method

Figure 13: The MSE of the estimator of 8, under SRS and different
weighting methods are shown for SAS and R.

In Figure 6, the absolute bias displayed for Design, Lin,, and Lin,, were the largest. In
Figure 13 the MSE based on those methods were also the largest, this implies that these

methods produce large variances and large biases. In contrast SRS, RR,,,, and RR,,;, produced

small absolute bias and lower MSE, with RR,,,, having the smallest MSE.
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s |

package R

Figure 14: The MSE of the estimator of s under SRS and different
weighting methods are shown for SAS and R.

In Figure 14, the output from SAS and R differed which is consistent with Figure 7. The MSE
values produced by SAS and R are very different in comparison to the others already
discussed. The output obtained from SAS produced lower MSE values across the weights in
comparison to R. The estimates obtained from SRS produced lower MSE values from both
SAS and R. Once more, these differences were attributed to the quasi-separation of data

points, due to small frequencies observed in the explanatory variable R,.
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package

Figure 15: The MSE of the estimator of £;; under SRS and different
weighting methods are shown for SAS and R.

The SAS and R output differed in Figure 15, for the 8, estimator. Once more the SAS output

produced lower values across the methods in comparison to those obtained from R. As noted

in Figure 8, quasi-separation was present in the variable.
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Figure 16: The MSE of the estimator of 5;, under SRS and different

weighting methods are shown for SAS and R.

In Figure 16, the MSE was larger under Design, Lin,,, and Lin,, as opposed SRS and RR,,,.
In Figure 9, the absolute bias under SRS soared which implies that the variance produced for

estimates obtained from SRS was very small.
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Figure 17: The MSE of the estimator of ,, under SRS and different
weighting methods are shown for SAS and R.

Figure 17, shows similar trends to those of Figure 16, with RR,,,,, RR,,;, and SRS producing

small MSE values as opposed to the other three methods. Similarly, these methods produced

larger absolute bias values implying that lower variances were observed.
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5.2.2 Confidence intervals for model parameters

This section reviews the results obtained for the 95% confidence intervals calculated for the
model parameters along with their measures of accuracy. The standard error provides a bound
for the model parameter. The coverage probability as defined in Section 4.6.2 provides an
indication of the precision of the standard error, and if the model parameter is contained in it.
Furthermore, the standard error affects the length of the confidence interval: larger standard
errors result in greater lengths and provide less precision. Therefore, the confidence interval
lengths are of importance. Three standard (asymptotic) confidence intervals based on TSL,
JRR and bootstrap estimated variances, and an additional non-parametric interval, the
bootstrap percentile, are obtained. The coverage probability and confidence interval length

were subsequently obtained and the output is displayed and discussed.
5.2.2.1 Coverage probability

The standard (asymptotic) confidence interval- was formulated-in Section 3.5.1 and the results
obtained will be displayed and discussed. Three methods were used to obtain the standard
errors, viz. TSL, JRR and the bootstrap, that will be used in the calculation of the standard
interval. Furthermore, the bootstrap percentile interval is a non-parametric confidence
interval obtained from taking the percentiles of the estimates obtained from the bootstrap
samples. The bootstrap samples were simulated from the samples discussed in Section 4.5.2.
These samples formed the basis from which the estimates were calculated. The coverage
probabilities were obtained for both SAS and R and the output is displayed for SRS and CS
using the weights Design, Lin,,, Liny,,, RR,, and RR,,,. The probability values range from
0 to 1 with the ideal probability being 0.95; the level of significance. A selection of results is
displayed in Figure 18 toFigure 20. The remainder is included in Appendix C1 to C19. The
top left panel displays the coverage probability for the standard interval based on the TSL
estimated variance, the top right panel displays the coverage probability for the standard
interval based on the JRR estimated variance, the bottom left panel shows the coverage
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probability for the standard interval based on the bootstrap estimated variance and the bottom

right panel shows the coverage probability for the bootstrap percentile interval.

Coverage probability using TSL variance
1.00
0.95 gas
%
[}
a
& :
Y 0.90
=3
g
3
Q
0.85
0.80 ’
Linph RRpp RRph Weighting Method
package mxxs R e SAS
Coverage probability using the bootstrap variance
1.00
B
0.95
2
=
©
o
3] N
s 0.90 % N
o N
g
2 Ny
Q : o \\w
. N
0.85 & N
N
AN
SN
N
N
0.80 B O Ry
Design Linpp Linph RRpp RRph' Weighting Method
package rxzxl R ===9 SAS

2
i
[
2
3
o
©
e
2
(8]

1.00

1.00

0.95

Coverage probability using JRR variance

A AL S

Z

A

SRS Design Linpp Linph RRpp RRph Weighting Method
package Exxx R r=ess SAS

Coverage probability of the percentile bootstrap

¥
1
¥
4
+

i

S
TR

-
T

ST
SR

X

7
2

e2¥ialeioielels

TS
ST

e

v
o
SR

&

T
R

N

W
~
N

S5

:
§

Design Linpp Linph

N b
RRpp RRph Weighting Method
=== SAS

package rzxm R

Figure 18: The coverage probabilities for 5, under SRS and other

weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.

In Figure 18, the R and SAS output for the coverage probability values for the 8, parameter

were the same as when TSL variance estimation was used. The coverage probability of the

intervals obtained using the design weight and SRS were the furthest from the level of
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significance of 0.95. The coverage probabilities of the remaining intervals were all equidistant

from the level of significance.

Figure 18, also shows a difference between the SAS and R outputs for the coverage
probabilities of the interval for S, in which the JRR estimated variance was used. The
differences were attributed to quasi-separation of data points in some of the replicates. The
coverage probability for the results from R deviated more from the level of significance as
opposed to the SAS results. The results for the estimates obtained from the weights Lin,,,

RR,, and RR,,, for the SAS output were the closest to the level of significance.

As noted in Section 3.4.2.2.2 the bootstrap variance may differ, therefore the results obtained
from SAS and R are different. As shown in Figure 18, R produced larger coverage
probabilities than SAS. The weights RR,,, and RR,,, had better coverage for both SAS and
R.

The bootstrap percentile interval’s coverage probabilitics on the other hand were the same for
SAS and R. This is due to the same bootstrap samples being used for both software programs.

The coverage probabilities for Lin,, were the clasest to the level of significance. This in

comparison to the Design weight that deviated the furthest from the level of significance.

Overall, when the TSL estimatedvariance was used; the results showed more stable coverage
probabilities and less deviation from. the level of significance across methods was observed.
As opposed to the bootstrap that showed greater fluctuations across methods. In terms of the
variances produced from the different weighting methods, Lin,,, RR,, and RR,, showed

less deviation from the level of significance across methods.
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Figure 19: The coverage probabilities for S, ‘under SRS and other

same and better coverage were produced using the Design weight

probabilities produced for SRS for the parameter £,.

In Figure 19, the results



The results shown for JRR variance estimation for the Design weight, Lin,, and Lin,,
differed for SAS and R. Better coverage probabilities were shown for R across different

methods with the Design and Lin,,,, weights being the closest to the level of significance.

When the bootstrap variance estimation was used the SAS output’s coverage probabilities
were smaller than when output was obtained from R. R also produced better coverage as

opposed to that of SAS, with the Design weight producing the best coverage.

The bootstrap percentile interval’s coverage probabilities showed that the coverage

probabilities for SRS deviated the furthest from the level of significance. Lin,, and RR,,

coverage probabilities were the closest to the level of significance.

In general, the coverage probabilities for 8, showed contrasting results, once more when the

TSL variance estimator was used, better coverage was observed across weighting methods.
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Figure 20: The coverage probabilities for 5, under SRS and other
weighting methods using TSL, JRR, the bootstrap
estimated variances and for the bootstrap percentile

interval are shown for SAS and R.

In Figure 20, the TSL estimated variance coverage probabilities for SAS and R were once

again the same. The weighting methods Design and RR,,;, deviated the least from the level of

significance with Lin,,, deviating the furthest from the level of significance.

The JRR estimated variance coverage probabilities produced slight differences for SAS and

R for Lin,,, and Lin,,,. The coverage probabilities for Design and RR,,, deviated the smallest
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from the level of significance, closely followed by Lin,, obtained from R. The SAS output

displayed for Lin,, and Lin,, deviated the furthest from the level of significance.

Figure 20, also shows contrasting results for SAS and R for the bootstrap estimated variance
coverage probabilities. The output obtained from R performed slightly better than that
obtained from SAS. The weight RR,, obtained from R was the closest to the level of

significance.

The bootstrap percentile interval’s coverage probabilities were the same for SAS and R. The

weight Design deviated the least from the level of significance.

Overall, for parameter f; the weights Design and RR,,, deviated the least from the level of

significance with output obtained from R generally doing better.
5.2.2.2 Confidence interval length

The confidence interval length was discussed-in-Section 4.6.2,-as noted, improved coverage
could be due to large confidence intervals as a result of large variances. Therefore, the
confidence interval length provides a scope to validate the caverage probabilities displayed
in Figure 18 to Figure 20. The confidence-interval-tength-was calculated in both SAS and R.
In addition, results were obtained,under, SRS and CS using the weights Design, Lin,,,, Lin,y,
RR,, and RRy,. A selection of the results is displayed in Figure 21 to Figure 23. The
remainder are in Appendix D1 to D19. Once more the top left panel contains the confidence
interval length for the TSL estimated variance, top right for the JRR estimated variance,
bottom left the bootstrap estimated variance and bottom right the confidence interval length

for the bootstrap percentile interval.
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Figure 21: The confidence interval lengths for 5, under SRS and other

weighting  methods using TSL, JRR, 'the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.

In Figure 21, the lengths based on the TSL estimated variance do not differ greatly amongst

the different methods, with RR,, having smaller lengths. This reinforces the coverage

probabilities displayed for RR,, in Figure 18, which were generally closer to the level of

significance for S,. The values obtained from SAS and R differed slightly which is attributed

to decimal differences.
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The results displayed for the JRR estimated variance in Figure 21, shows that the confidence
inerval lengths differed for different weighting methods. Greater lengths were produced for

confidence intervals obtained in R as opposed to those obtained in SAS.

The confidence interval lengths for the bootstrap showed results for R were greater than that
of SAS. The results obtained from SAS were also lower across weighting methods, indicating

more precise standard errors for the bootstrap confidence intervals using SAS.

Lastly, the confidence interval length for the bootstrap percentile interval shows that the
confidence interval length for SRS and the design weight were the lowest. In comparison to
the other methods which showed lengths very similar to each other. Overall, the confidence
interval lengths across variance estimation methods and the bootstrap percentile interval do
not differ greatly with lower confidence interval lengths produced under SRS, RR,, and

RRy,.
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Figure 22: The confidence interval fengths for g, under SRS and

other weighting ‘methods wusing TSL, JRR; the bootstrap

estimated " variances and. for the ‘bootstrap percentile

interval are shown for SAS and R.

In Figure 22, shorter confidence interval lengths were displayed using the TSL estimated

variance for SRS for g,, the other lengths do not differ greatly with slightly smaller lengths

produced by RR,,, and RR,,.

For the JRR estimated variance larger confidence interval lengths were produced for the 3,

parameter using weights Design, Lin,,,, and Lin,,. Similar to Figure 19, SAS results produced

smaller confidence interval lengths than that of R.
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When the bootstrap estimated variance was used better confidence interval lengths were
produced in SAS as opposed to R. Lower confidence interval lengths were observed for
weights RR,,, and RR,,, in SAS.

In Figure 22, the bootstrap percentile interval lengths were the lowest for SRS, similar to that

observed under SRS for ,. The largest confidence interval lengths were produced by Lin,,

and Linyy.
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Figure 23: The confidence interval lengths for g, under SRS and
other weighting methods using TSL, JRR, the bootstrap
estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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In Figure 23, the confidence interval lengths do not differ greatly for the TSL estimated

variance. As in Figure 22, the confidence interval lengths for RR,,, RR,, and SRS were

pp!
slightly smaller in comparison to the other weighting methods.

The JRR estimated variance confidence interval lengths showed similar results to that of the

TSL estimated variance with RR,,,,, RR,,, and SRS having slightly lower lengths.

The bootstrap estimated variance confidence interval lengths showed that the lengths obtained
from R were slightly larger than those obtained from SAS. Lower confidence interval lengths

were observed for RR,,, and RR,,, obtained from SAS.

Lastly the bootstrap percentile confidence once more showed lower lengths for SRS in
comparison to the other weighting methods.

5.3 Conclusion

The logistic regression model was discussed in Chapter 3 and in that chapter the standard
logistic regression was outlined for i.1.d. data and adapted for CS data. It was noted that when
the data comes from a CS design in particular, the sampling weights need to be incorporated
in the model. This is the “golden standard”-The-main-purpose of.this chapter was to provide
empirical results for the study outlined in Chapter 4. The study provides a focal point, using
real data (IES 2005/2006) to provide results to aid in answering the research questions and
problem statement outlined in Chapter 1. In Chapter 4 methods were discussed to ascertain
how close estimators are to the parameters of interest, in particular the MSE and bias.
Estimates were obtained when the design was ignored i.e. SRS, and when correctly accounted
for. In addition, when the design was correctly accounted for, i.e. CS, five sampling weights

were used, viz. Design, Liny,, Lin,,, RR,, and RR,,. In general, the absolute bias was
smaller for CS as opposed to SRS particularly when using the design weight, Lin,, and
Liny,y, which showed the smallest bias. The MSE showed mixed results, however, SRS
generally showed larger MSE results than sampling weights RR,,, and RR,,. The two

statistical packages generally showed the same results. In cases where they do differ it was as

a result of quasi-separation of data points, where existence of the MLE are questionable.
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The variance provides a measure of accuracy for an estimator of a parameter of interest and
is used to construct confidence intervals. Three variances were discussed in this thesis, viz.
TSL, JRR and the bootstrap. These were used to construct standard (asymptotic) confidence
intervals. In addition, a non-parametric confidence interval, i.e. the bootstrap percentile
interval, was obtained. In Section 4.6.2, the coverage probability was defined to indicate the
proportion of times a parameter is contained in a confidence interval. Also, in Section 4.6.2,
the confidence interval length was discussed to ascertain whether good coverage is not due to
a larger confidence interval length. Generally, TSL provided better coverage probabilities as
opposed to the other three variance methods and smaller lengths. The coverage probabilities
for SRS compared to CS showed mixed results, using weighting generally provided better
coverage for the different variance methods. Also, when weighting was used the confidence
interval lengths were smaller. Generally, RR,,, and RR,, provided better coverage and
lengths than the other weighting methods: Simtlarly, the bootstrap percentile provided mixed
results with RR,,,, and RR,,, giving better coverage. However, the confidence interval length
was better under SRS as opposed ta the other methods. Once mare, when variables contained
low frequencies, the results differed for SAS and R.

Results obtained are generally consistent with literature, with the effects of not correctly
accounting for the design apparent. It should-be stressed that when SRS appears to perform
better than CS, it is an indication of how the results.can be presented incorrectly and should
not be a basis for ignoring the design. The calibration and integrated weights using the raking
ratio distance method presented better overall estimators and their variances provided better

coverage and lengths. Furthermore, TSL presented better precision.
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Chapter 6: Conclusion and further research

6.1 Introduction

The main objectives of the thesis were outlined in Chapter 1 in which the research questions
were presented. The objectives were firstly, to compare results obtained when ignoring the
design, i.e. SRS, and correctly accounting for the design. Secondly, to establish which
sampling weights provide better estimators when correctly accounting for the design. The
sampling weights used were design, Lin,,, Liny,, RRy,, and RR,,. These weights were
incorporated in the logistic regression model and estimators were obtained. Also, the thesis
aimed to compare CS variances of which three were discussed, viz. TSL, JRR and the
bootstrap. These were used to obtain standard (asymptotic) confidence intervals, and
comparisons were made between the variances and the standard logistic regression variance
i.e. the variance obtained when the-design-is-tgnored.-in-addition, the bootstrap percentile
confidence interval was obtained, a non-parametric confidence interval, and results were
compared amongst weighting methods. Literature provided a basis for the findings and noted

that when the design is ignored, estimates obtained can be incorrect.
6.2 Findings

The surrogate population discussed. in Section 4.5.1 was used to obtain the “truth”, and
samples were drawn from the surrogate population using a CS design. The estimators
obtained from both SRS and CS were compared to the “truth”. The absolute bias was one
such method used to compare estimators. In terms of absolute bias, generally, the weighting
methods performed better than when no weighting was used. The design weight, Lin,,, and
Lin,, showed smaller absolute bias. SRS (no weighting) generally showed larger absolute
bias. Another measure used to compare estimators was the MSE, which comprises of the bias
and the variance. The MSE showed mixed results with RR,,,, and RR,, having the smallest
MSE in general. Since RR,,, and RR,,, tend to have larger bias in comparison to the design

weight it is reasonable to conclude that the variability amongst estimates obtained using RR,,,,
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and RR,, are smaller in comparison to the other methods. Three asymptotic confidence
intervals were obtained and the bootstrap percentile confidence interval. Generally, the
intervals based on TSL estimated variance produced better coverage and smaller confidence
interval lengths in comparison to the other methods. Once more, RR,,, and RR,, in general
showed better coverage and smaller lengths across variance methods. Similarly, RR,,, and
RR,p, bootstrap percentile confidence intervals showed better coverage probabilities. In terms
of the confidence interval length for the bootstrap percentile confidence interval, SRS showed
a slightly shorter length. The results for R and SAS were generally the same. However, if
quasi-separation of data is present then the results differ. The R results for the bootstrap was
generally better, however, results did not differ substantially. In the case when quasi-
separation of data points were present SAS estimates out performed R. It should be noted that
in the event where SRS appeared to perform better than CS, it should not be considered a
basis to ignore the design but should-be an tndication of how incorrect results can be presented

when the sample design is ignored.
6.5 Further research

The following areas for further research were identified from the results of this thesis:

1. How to remedy the quasi-separation of data points, particularly when the data comes from
a CS design;

2. Certain weighting methods, in particular the design weight, produces very low absolute
bias and large MSE values. Further research can be done concerning why that is the case;

3. Results can be replicated in other software, in particular SPSS, and see how the results
compare to those obtained from SAS and R;

4. Model selection criteria can be incorporated and adjusted for CS designs for the logistic
regression;

5. AIC and BIC can be assessed for logistic regression for CS; and

6. Multicollinearity can be assessed for the logistic regression for CS.
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Researchers across different fields still remain uninformed about CS; even those within the
field of statistics. This makes research and education regarding CS imperative and this will
provide researchers with better tools to obtain better answers and conclusions for their

research questions.
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Appendices

Appendix A: Absolute bias
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Figure A. 1: The absolute bias of the estimator of 5 under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 2: The absolute bias of the estimator of 8, under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 3: The absolute bias of the estimator of 55 under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 4: The absolute bias of the estimator of S5 under SRS (no
weight) and different.weighting methods ‘are shown for

SAS and R:
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Figure A. 5: The absolute-biasof the estimator-of S under SRS (no
weight) and different- weighting.methods are shown for

SAS and R.
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Figure A. 6: The absolute bias of the estimator of §;, under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 7: The absolute bias of the'estimator of 3,5 .under SRS (no
weight) and different weighting methods are shown for
SAS and R.
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Figure A. 8: The absolute bias of the estimator of 8, under SRS (no

weight) and different weighting methods are shown for

SAS and R.
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Figure A. 9: The absolute bias of the estimator of ;< under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 10: The absolute bias of the estimator of 8,4 under SRS (no
weight) and different weighting methods are shown for
SAS and R.
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Figure A. 11: The absolute bias of the-estimator of 5, under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 12: The absolute bias of the estimator of 8;5 under SRS (no
weight) and different weighting methods are shown for
SAS and R.
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Figure A. 13: The absolute bias of the estimator of ;¢ under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure A. 14: The absolute bias of the estimator of 5,, under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Appendix B: Mean squared error (MSE)
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Figure B. 1: The MSE of the estimator-of 5 -under SRS (no weight)
and different weighting methods are shown for SAS and

R.
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Figure B. 2: The MSE-of the estimator of 5, under SRS (no weight)

and different weighting methods are shown for SAS and R.
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Figure B. 3: The MSE of the estimator of 8, under SRS (no weight)
and different weighting methods are shown for SAS and
R.
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Figure B. 4: The MSE of jthe: estimator-of S5 -under SRS (no weight)
and different weighting methods are shown for SAS and R.
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Figure B. 5: The MSE of the estimator of 8 under SRS (no weight)
and different weighting methods are shown for SAS and
R.
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Figure B. 6: The MSE of the estimator of 8;, under SRS (no weight)
and different weighting methods are shown for SAS and
R.
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Figure B. 7: The MSE of the estimator of ;5 under SRS (no weight)
and different weighting methods are shown for SAS and

R.
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Figure B. 8: The MSE of the estimator of ,, under SRS (no weight)
and different weighting methods are shown for SAS and

R.
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Figure B. 9: The MSE of the estimator of 5,5 under SRS (no weight)
and different weighting methods-are shown for SAS and
R.

118

http://etd.uwc.ac.za/



MSE values

AN N

SRS Desian Linpp Linph RRpp RRph  Weighting Method

b Rl

SA3

package

Figure B. 10: The MSE of the estimator of 3, under SRS (no weight)
and different weighting methods are shown for SAS and
R.
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Figure B. 11: The MSE of the estimator of 8, under SRS (no weight)
and different weighting methods are shown for SAS and

R.
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Figure B. 12: The MSE of the estimator of ;5 under SRS (no weight)
and different weighting methods are shown for SAS and

R.
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Figure B. 13: The MSE of the estimator of 8,4 under SRS (no weight)

and different weighting methods are shown for SAS and

R.
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Figure B. 14: The MSE of the estimator of f3,; under SRS (no
weight) and different weighting methods are shown for

SAS and R.
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Figure C. 15: The coverage probabilities for ;- under SRS and other

weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure C. 17: The coverage probabilities for 8,4 under SRS and other

weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure C. 19: The coverage probabilities for 5, under SRS and other

weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Appendix D: Confidence interval length
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Figure D. 1: The confidence interval lengths for 8, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 2: The confidence interval lengths for 8, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 3: The confidence interval lengths for g5 under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 4: The confidence intervallengths for < under SRS and
other weighting methods using TSL, JRR, the bootstrap
estimated variances and for the bootstrap percentile
interval are shown for SAS and R.
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Figure D. 5: The confidence interval lengths for 8, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 6: The confidence interval*lengths for g under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 7: The confidence interval lengths for S, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Confidence interval length using TSL variance
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Figure D. 8: The confidence interval lengths for f,, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 9: The confidence interval lengths for $,; under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 10: The confidence interval lengths for 8,, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 11: The confidence interval lengths for §,5 under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.

153

http://etd.uwc.ac.za/




Confidence interval length using TSL variance

Confidence interval length using JRR variance

SRS Design Linpp Linph RRpp RRph Weighting Method

package == R o=y SAS

3 3
25 2.5
£ =]
=) =)
s 2 5 2
g K A By [
£ SNIESEEN g N N N oy e
£ 15— 7 [N £ 1.5 —
a N N “ N
v v
= c
[ O
=} 3
€ 1 € 1
o o
o Q
05 0.5
SRS Design Linpp Linph RRpp RRph Weighting Method SRS Design Linpp Linph RRpp RRph Weighting Method
package == R m==v SAS package == R === SAS
Confidence interval length using the bootstrap variance Confidence interval length of the percentile bootstrap
3 3
25 B 25 N
£ £ f T
—Y N R
g 2 n 2% T N
© ®
2 &
L I
£ 1.5 1 £ 5 =
g \ S :
5 N N SEY 5
g 2
c 1 c 1
] ©
Q (9]
05 0.5
He

SRS Design Linpp Linph RRpp RRph Weighting Method

package == R ==y SAS

Figure D. 12: The confidence interval lengths for §,, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Confidence interval length using TSL variance
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Figure D. 13: The confidence interval lengths for ;- under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.

155

http://etd.uwc.ac.za/




Confidence interval length using TSL variance

Confidence interval length using JRR variance

SRS Design Linpp Linph RRpp RRph Weighting Method

package == R o=y SAS

i 58 QN R 5 N N —
09 N N RN 0.9 § N N
0.8 T 0.8 7
£ £
=) 07 i) 0.7
= c
L 2
® 06 T 0.6
e <
2 2
£ 05 £ 0.5
o o
v v
S 0.4 & 0.4
o =l
= =
5 5
S8 0.3 S 0.3
0.2 0.2
0.1 0.1
SRS Design Linpp Linph RRpp RRph Weighting Method SRS Design Linpp Linph RRpp RRph Weighting Method
package == R m==v SAS package == R === SAS
Confidence interval length using the bootstrap variance Confidence interval length of the percentile bootstrap
1 1
- = N
09 0.9 N N =
0.8 7Y 0.8
= = N N = N
- = 1
e o7 N IR o g
o2 £z O
® 0.6 ® 0.6 4=
2 &
L I
£ 05 £ 05
v @
£ 2 &
7} 04 o 0.4
° h-]
= ]
5 &
S 03 S 0.3
02 0.2
o s 5
0.1 0.1+ 2

0
SRS Design Linpp Linph RRpp RRph Weighting Method

package ==y SAS

== R

Figure D. 14: The confidence interval lengths for 8, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 15: The confidence interval lengths for §,, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 16: The confidence interval lengths for 8,4 under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.

158

http://etd.uwc.ac.za/




Confidence interval length using TSL variance

Confidence interval length using JRR variance

0 \
SRS Design Linpp Linph RRpp RRph Weighting Method

package o=y SAS

== R

1.4 1.4
1.3 1.3 s [] [
N N N — N N N [ 7
12 N R 12 N N
1171 117
£ £
E} 1 £} 1
= c
o 09 Q2 0.9
B ®
e 0.8 2 0.8
2 2
£ 07 £ 0.7
o o
2 06 g 06
[ O
2 05 p 05
5 5
o 0.4 o 0.4
03 0.3
0.2 0.2
0.1 0.1
0 N
SRS Design Linpp Linph RRpp RRph Weighting Method SRS Design Linpp Linph RRpp RRph Weighting Method
package == R m==v SAS package == R === SAS
Confidence interval length using the bootstrap variance Confidence interval length of the percentile bootstrap
1.4 1.4
13 R 13 N _
8} SN
1.2 1.2
110N 1.1
£ £ . N
£ 1 N N G iy
g N SEY E N
o2 08 L] 0°9
© ®
2 038 2 0.8
L I §
£ 07 £ 07
v @
] 0.6 g 0.6 @
g g :
[ 05 [ 0.5
5 &
o 0.4 (5} 0.4
0.3 0.3
02 B2~ -~ !
0.1 T 7

0
SRS Design Linpp Linph RRpp RRph Weighting Method

package == R ==y SAS

Figure D. 17: The confidence interval lengths for 8,4 under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 18: The confidence interval lengths for $,, under SRS and
other weighting methods using TSL, JRR, the bootstrap
estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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Figure D. 19: The confidence interval lengths for 85, under SRS and

other weighting methods using TSL, JRR, the bootstrap

estimated variances and for the bootstrap percentile

interval are shown for SAS and R.
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