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Abstract: 

Most standard statistical techniques illustrated in text books assume that the data are collected 

from a simple random sample (SRS) and hence are independently and identically distributed 

(i.i.d.). In reality, data are often sourced through complex sampling (CS) designs, with a 

combination of stratification and clustering at different levels of the design. Consequently, 

the CS data are not i.i.d. and sampling weights that are developed over different stages, are 

calculated and included in the analysis of this data to account for the sampling design. Logistic 

regression is often employed in the modelling of survey data since the response under 

investigation typically has a dichotomous outcome. Furthermore, since the logistic regression 

model has no homogeneity or normality assumptions, it is appealing when modelling a 

dichotomous response from survey data.  

This research considers the comparison of the estimates of the logistic regression model 

parameters when the CS design is accounted for, i.e. weighting is present, to when the data 

are modelled using an SRS design, i.e. no weighting. In addition, the standard errors of the 

estimators will be obtained using three different variance techniques, viz. Taylor series 

linearization, the jackknife and the bootstrap. The different estimated standard errors will be 

used in the calculation of the standard (asymptotic) interval which will be compared to the 

bootstrap percentile interval in terms of the interval coverage probability. A further level of 

comparison is obtained when using only design weights to those obtained using calibrated 

and integrated sampling weights. This simulation study is based on the Income and 

Expenditure Survey (IES) of 2005/2006. The results showed that generally when weighting 

was used the estimators performed better as opposed to when the design was ignored, i.e. 

under the assumption of SRS, with the results for the Taylor series linearization being more 

stable. 

Keywords: complex sampling, inference, weighting, benchmarking, survey data, bootstrap, 

resampling. 
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Chapter 1: Purpose of study and research objectives 

1.1 Background to the study 

“In spite of its wide range of usefulness, sampling practice has been neglected in the training 

of statisticians, in the textbooks and treatises, and in the planning and analysis of most 

experiments and studies. However, like Cinderella, it has risen from neglect to a position of 

well-deserved importance”, (Stephan, 1948, p. 12). Sampling forms an integral part of 

statistics. In fact, in order to do proper inference, the sampling design is of utmost importance. 

The statistics depicted in textbooks are often based on the assumption that the data are from 

a simple random sample (SRS) when, in reality, most large-scale surveys make use of 

stratified multistage cluster sampling, or complex sampling (CS), which consists of a 

combination of different sampling methods (Lumley & Scott, 2015; Heeringa, et al., 2010). 

According to this sampling method, the observation units are selected by some design that is 

employed to ensure that the sample selected represents the target population as closely as 

possible. CS produces data that are not independent and identically distributed (i.i.d.), as is 

the case with an SRS (Lohr, 2010; Heeringa, et al., 2010; Luus, 2016). Instead, the 

observations have unequal inclusion probabilities associated with them which imply that, 

should CS data be analysed under the assumption of being i.i.d., all standard errors, 

confidence intervals and hypothesis tests will be incorrect (Lohr, 2010; Heeringa, et al., 2010; 

Luus, 2016; Berger & De La Riva Torres, 2016). 

1.2 Statement of the problem 

CS sampling is an efficient and cost-effective method to collect data and gives more 

representative samples. As a result, more researchers and analysts are employing CS designs 

for data collection (Lumley & Scott, 2015). CS data could contain a great number of 

categorical variables. Researchers often want to establish a multivariate relationship between 

a response variable that is categorical and explanatory variables which can be a combination 

of categorical and numerical variables (Kutner, et al., 1996; Heeringa, et al., 2010). 
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Logistic regression is often employed in the modelling of survey data, since a great number 

of variables have dichotomous outcomes (Heeringa, et al., 2010; Cheung, 2005; Archer, et 

al., 2007). Furthermore, since the logistic regression model has no homogeneity or normality 

assumptions, it is appealing when modelling a dichotomous response from survey data 

(Archer, et al., 2007; Heeringa, et al., 2010). Estimates and variances of the model parameters 

may be calculated incorrectly if the design is not accounted for in the inference. Analysis of 

data obtained from CS needs to be made apparent to ensure the validity of the statistics that 

are presented. Most researchers are still inclined to use the same techniques under SRS 

(Lumley & Scott, 2015). This poses the problem of reporting incorrect results and can lead to 

incorrect conclusions. Therefore, results coming from analyses where the survey design has 

been ignored must be viewed with caution (Lumley & Scott, 2015; Lumley, 2011). 

1.3 Purpose and aim of the study 

The objectives of this research are: 

1. to illustrate what the major differences in inference results are when ignoring the sampling 

design as opposed to correctly accounting for it, and the errors that can arise in inference 

as a result thereof; 

2. to show how results obtained using statistical packages SAS and R compare for estimators 

and the variances of estimators for the logistic regression model when ignoring the 

sampling design as opposed to correctly accounting for it; 

3. to illustrate the precision of standard (asymptotic) confidence intervals obtained under CS 

using Taylor series linearization (TSL), the jackknife or bootstrap variance estimation for 

the logistic regression; 

4. to show how the bootstrap percentile confidence interval, a non-parametric confidence 

interval, compares to the standard (asymptotic) confidence interval; and 

5. to inform the researchers of the importance of the sampling design when conducting 

studies, and what statistical methodology to use. 
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1.4 Research questions 

Given the objectives highlighted in the previous section, the following research questions 

have been identified: 

1. How do the estimators of the parameters of the logistic regression model and their 

estimated variances compare when the sampling design is ignored, i.e. assuming simple 

random sampling (SRS), as opposed to accounting for the design through CS inference? 

2. Is there a difference between estimating the variances of the estimators of the parameters 

of a logistic regression model when using TSL or employing resampling methods, i.e. the 

bootstrap and jackknife, for variance estimation? 

3. How do the output from the different statistical software compare in the calculation of the 

variances of the estimators of the parameters of the logistic regression model when using 

TSL, bootstrap and jackknife in a CS? 

4. How do the standard (asymptotic) confidence intervals compare when using TSL or 

employing resampling methods, i.e. the bootstrap and jackknife, for variance estimation 

for the logistic regression? 

5. How does the bootstrap percentile confidence interval compare to the standard 

(asymptotic) interval when the sampling design is ignored, i.e. assuming SRS, as opposed 

to accounting for the design through CS inference? 

1.5 Outline of the thesis 

Figure 1 is a mind map to outline the major concepts that will be discussed in the thesis. The 

mind map illustrates how the important concepts are interconnected and the importance of 

these concepts to provide the basis to answer the research questions. 
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Figure 1:  Mind map of the outline of the thesis. 

In the next chapter the difference between probability sampling and non-probability sampling 

will be explained. The chapter will further explore different sampling designs and the impact 

weighting has to account for the difference in design which is vital for inference. 
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Chapter 2: Sampling and weighting 

2.1 Introduction 

Sampling is an integral part of statistics and how and which methods used to gather data is 

imperative to ascertain which type of analysis should be used. Sampling methods can 

essentially be grouped into two main categories, i.e. probability and non-probability sampling 

methods. In this chapter the differences between probability and non-probability sampling 

methods are explained and a selection of the different sampling techniques within each 

category is discussed. The chapter further explains the combination of these sampling 

methods, i.e. complex sampling (CS), and the weighting mechanism used to account for 

unequal probability of selection, non-response and differential non-response that occur under 

this sampling technique. 

2.2 Probability and non-probability sampling 

Consider a finite population U of size N, and suppose a subset of U, of size n, is selected. In 

probability sampling, the subset is selected such that the elements {1,2,3, .., n} each have a 

known probability of selection (Yamane, 1967; Lumley, 2011). Non-probability sampling is 

a collection of sampling techniques that each result in subsets of units for which these 

probabilities cannot be ascertained, or distributed equitably, and often result in probabilities 

that are zero (Yamane, 1967; Tansey, 2007). Probability sampling methods include simple 

random sampling (SRS), stratified sampling, cluster sampling and systematic sampling, and 

these methods will be discussed here. Complex sampling, which is defined as stratified 

multistage cluster sampling forms part of the probability sampling methods, and will be 

discussed as well. Examples of non-probability sampling methods that will be discussed next 

are convenience sampling, quota sampling and purposive sampling.  
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2.2.1 Non-probability sampling methods 

As mentioned above there are various non-probability sampling methods of which a selection 

is discussed here. It should be noted that due to the nature of non-probability sampling it is 

very difficult to generalise from the sample to the greater population and therefore, when data 

from a non-probability sample are used in research, the results should be viewed in hindsight 

as having limited scope to establish external validity (Tansey, 2007; Cheung, 2005). 

2.2.1.1 Convenience sampling 

In this non-probability sampling method the sample is selected that is most easily accessible 

or available until the desired sample size is acquired (Tansey, 2007; Marshall, 1996). There 

are no strict rules in terms of selection, and it is drawn in whichever manner suits the 

researcher (Tansey, 2007). The main reason for using this sampling method is that it may be 

cost and time efficient. However, some of the drawbacks are that the quality of the data will 

be low and will lack reliability (Marshall, 1996). 

2.2.1.2 Quota sampling 

In quota sampling the population is divided into subpopulations from which non-probability 

samples are selected (Lohr, 2010). The primary reason for making use of quota sampling as 

opposed to convenience sampling is to ensure that the population is allocated in proportion 

so that each characteristic is depicted in each subdivision (Tansey, 2007). An example of this 

would be when a researcher wishes to select a sample of 100 students from different faculties 

in a university. Suppose 10% of the university belongs to the Science faculty, 50% to Arts 

and 40% to the Law faculty. These faculties make up the university’s total population. Then 

the sample will comprise of 10 students belonging to the Science faculty, 50 students to the 

Arts faculty and 40 students to the Law faculty. Note that quota sampling bears an odd 

resemblance to stratified sampling, discussed in Section 2.2.2.3, but with the exception that, 

in the subpopulations, probability sampling is not used (Yamane, 1967; Lohr, 2010). 
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2.2.1.3 Purposive sampling 

Purposive sampling is a sampling method in which both the reason for the study as well as 

the knowledge of the researcher direct the sampling process (Tansey, 2007). In a study the 

aim is to answer the research question which determines the objectives on which the 

methodology will be based (Tongco, 2007). A strategy used is to select characteristics that 

are common to the population you are concerned about under the assumption that errors in 

judgement in selection will counterbalance each other (Kidder, et al., 1986). However, one 

drawback is that, when a sample is selected according to an expert’s judgement, there is no 

way to analyse information objectively (Yamane, 1967).  

Since non-probability sampling restricts statistical inference, probability sampling needs to 

be introduced. 

2.2.2 Probability sampling 

Probability sampling methodology is an essential tool that is vital in order to infer and 

generalise findings. As opposed to non-probability sampling, making use of probability 

sampling methods lead to the sample units having inclusion probabilities (the probability that 

an element is in the sample) that are known (Marshall, 1996; Heeringa, et al., 2010; Lumley, 

2011). This is as a result of using a random selection process to obtain the sample which 

inhibits the possibility of replacing one sampling unit for the next, thus eliminating personal 

judgement (Luus, 2016). Since the inclusion probability is known, a frequency distribution 

of the estimates can be obtained (Cochran, 1977). If a probability sampling design is used, a 

researcher can make inferences about a population with a relatively small sample (Lohr, 

2010). There are different probability sampling methods and estimates of the parameters of 

interest that can be calculated according to the definition of the probability sampling method 

used. 
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2.2.2.1 Simple random sampling 

Simple random sampling (SRS) is the most fundamental form of probability sampling and 

provides the theoretical building blocks for other sampling techniques (Lohr, 2010). An SRS 

is selected in such a way that every possible subset of n units has the same chance of being 

selected (Thompson, 2010; Lohr, 2010).  

There are two ways of selecting an SRS, namely with replacement or without replacement. 

In SRS with replacement (SRSWR) an element is selected from population U of size N and 

then, once drawn, that same element is placed back in the set of U. Selecting an SRSWR 

affords the opportunity for elements in the sample to be repeated. The probability of drawing 

the first element from U is 
1

𝑁
. Since the size of U remains N after the first element is selected, 

the probability of drawing the second element is also 
1

𝑁
. This probability is the same for the 

third element and so forth. The process will be repeated until a sample of size n is drawn. 

Therefore, the inclusion probability is 
1

𝑁
 which is the same for all elements in SRSWR.  

SRS without replacement (SRSWOR) is usually the preferred way of selecting a sample, since 

in a finite population, sampling the same population element more than once provides no 

additional information (Lohr, 2010; Cheung, 2005). In SRSWOR there are n distinct elements 

selected from population U such that every possible combination has an equal chance of being 

the chosen sample (Luus, 2016; Cochran, 1977). Since this is SRSWOR, the probability that 

the first unit is drawn is 
𝑛

𝑁
 , the probability that one of the remaining (n-1) is drawn is 

𝑛−1

𝑁−1
, 

etc. Therefore, the probability that n sampling units are selected in n draws is (Cochran, 1977) 

 𝑛

 𝑁
 . 

𝑛−1

𝑁−1
 . 

𝑛−2

𝑁−2
 … 

1

𝑁−𝑛+1
 = 

𝑛!(𝑁−𝑛)!

𝑁!
 = 

1

(𝑁
𝑛)

 . 

There are (𝑁
𝑛
) possible subsets of size n that can be selected from population U and, as a 

result, the probability of being the selected sample is 
1

(𝑁
𝑛)

 (Lohr, 2010). Suppose unit j of 

population U is in the sample, then the other n-1 sampling units need to be chosen from the 

remaining N-1 units left in the population. There are n-1 combination N-1 possible samples 
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that can be selected, or (𝑁−1
𝑛−1

). Let the inclusion probability of the jth unit be denoted by 𝜋𝑗. It 

follows that (Lohr, 2010) 

𝜋𝑗 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑢𝑛𝑖𝑡 𝑗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  = 

(𝑁−1
𝑛−1)

(𝑁
𝑛)

 = 
𝑛

𝑁
 . 

Note that when the population is large, SRSWR and SRSWOR are indistinguishable since N 

is so large that the probability of selecting unit j from U is very small (Lohr, 2010). SRS is 

relatively simplistic to employ. However, there is no guarantee that the sample selected is a 

representative sample and it requires a complete up-to-date sampling frame which is a list or 

specification of elements in the population from which a sample may be selected (Luus, 2016; 

Lohr, 2010). 

SRS, which is i.i.d., is often the sampling design depicted in statistical theory and most 

statistical methods assume that the data come from an SRS. 

2.2.2.2 Systematic sampling 

Systematic sampling is used as an alternative sampling method to SRS if there exists no list 

of the population or if that list is random (Lohr, 2010). In simple terms, the selection of a 

systematic sample requires the selection of every kth element in the population in which the 

first element selected is random (Madow, 1946).  

Consider a sample of size 𝑛 from population 𝑈 of size N. One method of selecting a systematic 

sample is to partition the population into groups and then randomly select a unit from each 

partition (Yamane, 1967). Let k be defined as the selection interval length where k is equal to 

𝑁

𝑛
, if this results in an integer. Otherwise k is selected as the next integer following  

𝑁

𝑛
. The 

systematic sampling method begins by finding a random integer between 1 and k, say W, 

which is the first unit to be included in the sample. The next integer is found by adding a 

width of k to the first integer, i.e. W+k, which becomes the second unit in the sample. This 

process is repeated until the desired sample size is obtained. It should be noted that systematic 

sampling forms part of probability sampling as long as it uses a random starting point (Lohr, 

2010). 
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The difference between systematic sampling and SRS is that in systematic sampling all the 

subsets of size n do not have the same probability of being selected (Luus, 2016). However, 

if the population is in random order the sampling method is much like SRS (Luus, 2016).  

Also, systematic sampling is a form of cluster sampling, which is discussed in Section 2.2.2.4. 

To illustrate this, suppose a population 𝑈 ={1,2,3,4,5,6,7,8,9} from which a sample of size 3 

must be drawn. For this case 𝑘 =
9

3
= 3. To select a systematic sample, one has to select a 

number at random from 1 to 3 which implies that one must draw that element and every third 

element thereafter. Thus, the population contains three clusters {1,4,7}, {2,5,8} and {3,6,9} 

and by simply selecting an SRS gives a sample of one cluster (Lohr, 2010). 

2.2.2.3 Stratified sampling 

The word “stratum” is the Latin word for “layer”. By this sampling method the population U 

is divided into H distinct subgroups, called strata, such that each population unit belongs to 

only one stratum (Lohr, 2010; Sitter, 1992). Stratification partitions the population in such a 

manner that the strata are homogenous which ensures that the variance within a stratum is as 

small as possible while the between-strata variance is as large as possible (Luus, 2016; 

Thompson, 2010; Lumley, 2004). This results in estimators with smaller standard errors and 

estimators with better precision in comparison to SRS (Luus, 2016; Heeringa, et al., 2010; 

Lohr, 2010).  

Consider a population of H strata and let 𝑁ℎ denote the population size of the hth stratum, 

h=1,2, …,H. Hence, 𝑁1 + 𝑁2 + 𝑁3 + ⋯+ 𝑁𝐻 = 𝑁 where N is the size of the population 

(Lohr, 2010). In stratified sampling, the simplest form of sampling is to take an SRS per 

stratum. Hence, from stratum h select an  SRS of size 𝑛ℎ, h=1,2, …,H , and then the total 

sample size, denoted by n, is the sum of the stratum sample sizes, i.e. 𝑛1 + 𝑛2 + 𝑛3 + ⋯+

 𝑛𝐻 = 𝑛. Consider stratum h and suppose an SRS of size 𝑛ℎ is selected. The inclusion 

probability of the jth unit in the hth stratum is then given by 𝜋ℎ𝑗 = 
𝑛ℎ

𝑁ℎ
. 

One possible reason for making use of a stratified sample as opposed to an SRS is that, with 

an SRS there is a possibility of obtaining estimators that are unfavourable. For example, 
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suppose a sample of different race groups is to be selected using an SRS design. There is a 

possibility of obtaining a sample of only one race group whereas, with a stratified sample, 

this is prevented by dividing the population into strata according to race and then selecting an 

SRS from each stratum. Another reason is to ensure that the sample is representative of the 

population. Suppose there are more crabs than lobsters in a particular pond. One would divide 

the strata so that this disproportionality is reflected in the selected sample. Thirdly, stratified 

sampling can result in lower cost and could be more convenient (Lohr, 2010). Lastly, since 

the subgroups are independent, different probability sampling methods can be used within 

strata. Consequently, samples are selected without increasing the selection bias, and 

inferences can be done on individual strata (Luus, 2016).  

2.2.2.4 Cluster sampling 

Cluster sampling, on surface level, has a resemblance to stratification since individual 

elements in the population are grouped into N subgroups. However, in cluster sampling the N 

subgroups, or clusters, form the population and a sample of n clusters is selected by some 

probability sampling method (Lohr, 2010). These clusters are referred to as primary sampling 

units (PSUs). The PSUs consist of subunits called secondary sampling units (SSUs). Suppose 

each PSU consists of 𝑁𝑗 subunits, j = 1,… , N. It follows that 𝑁0 = ∑ 𝑁𝑗
𝑁
𝑗=1  is the total number 

of units in the population (Madow, 1946; Lohr, 2010). Moreover, in a cluster sample there is 

a strong correlation between observational units in the same cluster. This results in the amount 

of information contained in a cluster sample to be less than that of an independent SRS of the 

same size (Heeringa, et al., 2010). Therefore, a cluster sample has less precision as opposed 

to an SRS of equal size (Heeringa, et al., 2010; Lohr, 2010).  

There are two types of cluster sampling, i.e. one-stage cluster sampling and two-stage cluster 

sampling. In a one-stage cluster sample, either all or none of the elements that comprise a 

particular PSU is in the sample (Lohr, 2010). To illustrate this, suppose a one-stage cluster 

sample is designed in which there are N PSUs in the population from which n PSUs are 

selected by SRS (other sampling designs can be used to select the PSUs). Since this is a one-

stage cluster sample, it follows that if PSU j is selected then all the elements in PSU j, which 
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is equal to 𝑁𝑗, are in the sample. In a two-stage cluster sample, once a PSU is selected a 

subsample of SSUs is selected from the PSU for the sample. Suppose that a sample of n PSUs 

is selected and that the jth PSU, for j=1,2,3,…,n, is in that sample. Now suppose the jth PSU 

has 𝑁𝑗 SSUs from which a subsample of 𝑛𝑗 is selected (Lohr, 2010). The selection probability 

resulting from this cluster sample selection can be equal or unequal across the elements. The 

next section will explore this in more detail. 

2.2.2.4.1 Cluster sampling with equal probability 

Cluster sampling with equal probability implies that each sampling unit has the same 

probability of being selected (Cochran, 1977; Lohr, 2010; Heeringa, et al., 2010). Consider 

the population of N PSUs. The sample of n PSUs must be chosen in such a way that every 

PSU has the same probability of being in the sample. The two sampling methods discussed 

in Section 2.2.2.1 and Section 2.2.2.2, i.e. SRS and systematic sampling, both result in an 

equal probability of selection method (EPSEM) (Lohr, 2010). As mentioned in Section 

2.2.2.1, in an SRS all the elements have the same inclusion probability. Therefore, each 

cluster or PSU has the same probability of being selected. In a one-stage cluster sample 

EPSEM occurs when the PSUs are selected by SRS. Since this is a one-stage cluster sample, 

all the subunits or SSUs are automatically in the sample. To select a two-stage cluster sample 

with EPSEM the SSUs must be selected by an SRS given that the PSUs were selected by the 

same sampling design. However, cluster sampling with equal probability is often not feasible 

in reality and therefore unequal probability sampling needs to be introduced (Lohr, 2010).  

2.2.2.4.2 Cluster sampling with unequal probability 

In the previous section cluster sampling using an equal probability of selection method 

(EPSEM) was discussed. This design is simple to implement and easy to explain. However, 

cluster sampling with EPSEM can result in large variances, can be inefficient and can lead to 

a greater survey cost (Lohr, 2010). Instead, PSUs are sampled with unequal probability which 

results in better efficiency and lower variances.  
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Suppose schools in a district are sampled to determine if students are in need of pens. A 

cluster sample would be essential to manage cost. Suppose an EPSEM two-stage cluster 

sample of schools (PSUs) and learners (SSUs) in the district were selected. Using EPSEM, 

larger schools with a greater number of learners are equally likely to be selected as smaller 

schools with fewer leaners. Moreover, it is expected that the number of pens are proportionate 

to the number of learners attending that school. This results in a large variance and the survey 

would be inefficient (Lohr, 2010; Cheung, 2005).  

An alternative to the EPSEM cluster sampling method is to select the schools in the district 

with unequal selection probabilities. Many variables of interest in a PSU are related to the 

number of elements in a PSU. Suppose there are N schools (PSUs) and school j has 𝑁𝑗 students 

(SSUs), j = 1,… , N, with a total number of 𝑁0 = ∑ 𝑁𝑗
𝑁
𝑗=1  students. Let 𝜋𝑖/𝑗 denote the 

selection probability of student i from classroom j. The probability of selecting student i from 

classroom j on the first draw is (Lohr, 2010) 

𝜋𝑖/𝑗= 
𝑁𝑗

𝑁0
. 

Students belonging to classes with a greater selection probability are more likely to be 

selected in the sample (Lohr, 2010; Heeringa, et al., 2010). This is an example of probability 

proportionate to size (pps) sampling. The inclusion probability for a two-stage cluster sample 

with unequal probability of selection for SSU i of PSU j is given by 

𝜋𝑖𝑗 = 𝜋𝑗  × 𝜋𝑖/𝑗, 

where 𝜋𝑗 is the probability that PSU j is in the sample, and 𝜋𝑖/𝑗 is the probability that SSU i 

is in the sample given that PSU j is in the sample. 

Cluster sampling with unequal probability is not a form of selection bias which is present in 

non-probability sampling discussed in Section 2.2.1, since non-probability samples do not 

have a known probability with which they are sampled and cannot necessarily be estimated. 

Therefore, survey makers cannot account for unequal probability in the form of weighting 

(Lohr, 2010).  
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2.3 Complex sampling 

Most large-scale surveys are constructed using complex sampling (CS) designs, i.e. stratified 

multistage cluster sampling designs (Thomas & Heck, 2001; Walker & Young, 2003). Survey 

designers implement stratification to improve the efficiency of the sample. Also, certain 

sample elements occur in natural clusters. It would be more efficient to use cluster sampling 

which reduces travel cost and improves interview efficiency (Heeringa, et al., 2010). 

Moreover, pps sampling of the population elements may be implemented to improve the 

sample sizes for subpopulations of special interest (Lohr, 2010; Heeringa, et al., 2010).  

The process by which a CS is selected starts by dividing the population into mutually 

exclusive strata. As noted in Section 2.2.2.3 a stratified sample makes the sample more 

representative of the population. The next step is to divide the stratum into PSUs, which are 

predetermined (Luus, 2016). When dividing the stratum into PSUs it is important to ensure 

that at least two PSUs can be selected per stratum. This is such that variances of estimators 

of parameters of interest can be calculated (Luus, 2016; Lohr, 2010). The PSUs can be further 

divided into SSUs. This process can continue until the population units of interest, i.e. 

ultimate sampling units (USUs), are reached (Luus, 2016). Survey designers often use 

complex sampling design features to optimise the variance/cost ratio or to meet precision 

targets for the subpopulations of the survey population (Heeringa, et al., 2010). The precision 

of the CS estimators as opposed to that of an SRS is termed the design effect and will be 

discussed next. 

2.3.1 Design effect 

As mentioned in Section 2.2.2.3 and Section 2.2.2.4 stratification generally yields more 

precise estimators, while clustering yields less precise estimators of parameters of interest in 

comparison to an SRS (Heeringa, et al., 2010; Luus, 2016; Lohr, 2010). Therefore, since CS 

is a combination of stratification and clustering, a CS design does not necessarily yield better 

precision estimators in comparison to SRS.  
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The effects of stratification and clustering on the standard errors of the estimators in relation 

to an SRS is termed the design effect (Heeringa, et al., 2010). Consider 𝜃̂ as an estimator of 

some parameter of interest, 𝜃. The design effect is calculated as follows: 

 𝐷2(𝜃) =
𝑉𝐶𝑆(𝜃̂)

𝑉𝑆𝑅𝑆(𝜃̂)
, (1) 

where 𝐷2(𝜃) denotes the design effect for 𝜃̂, 𝑉𝐶𝑆(𝜃) is the variance of the estimator under 

complex sampling, and 𝑉𝑆𝑅𝑆(𝜃̂) is the variance of the estimator under SRS. In order for the 

estimators under CS to have the same precision as those under SRS, 𝑉𝐶𝑆(𝜃) = 𝑉𝑆𝑅𝑆(𝜃) 

resulting in 𝐷2(𝜃) = 1. This can be done by increasing the sample size of the CS design 

(Lohr, 2010).  

The design effect can be used to optimise the cost and properties of specific design 

alternatives or to alter SRS computations under a specific sampling plan (Heeringa, et al., 

2010). To have knowledge of the estimated design effects enables one to see to what extent 

the sampling design used produces efficiency or losses relative to an SRS and to identify 

extreme clustering or weighting that can affect inferences (Heeringa, et al., 2010).  

2.3.2 Weighting 

Weighting is used to make the sample an unbiased representation of the survey population. 

Essentially one can think of a weight as the number of population elements represented by 

the associated sample observation (Heeringa, et al., 2010; Lohr, 2010; Lumley & Alastair, 

2017). Weighting can be used to correct some of the flaws associated with unequal 

probabilities, non-response and differential non-response (Luus, 2016; Walker & Young, 

2003; Neethling & Galpin, 2006). The weighting process starts by determining a design 

weight, then adjustments are made for non-response and further weighting adjustments are 

needed for differential non-response discussed in Sections 2.3.2.1 to 2.3.2.4. The 

development stages of the sampling weight are discussed next. 
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2.3.2.1 Design weight 

In a probability sample, each unit in the population has a known probability of being selected, 

which is determined by a randomisation method that chooses the particular unit to be included 

in the sample (Lohr, 2010; Lumley, 2011). Let the inclusion probability of the jth observation 

be 𝜋𝑗 and let 𝑤𝑗 denote design weight of the observation. The design weight is defined as the 

inverse of the inclusion probability, i.e. 

𝑤𝑗 =
1

𝜋𝑗
, j=1, 2,.., n. 

It has the property that ∑ 𝑤𝑗𝑗∈𝑆  =𝑁, i.e. the sum of the weights across the sampling units equals 

the population size (Heeringa, et al., 2010; Lohr, 2010; Luus, 2016).  

The design weight depends on the inclusion probabilities which may differ depending on the 

sampling design. Consider the inclusion probability defined in Section 2.2.2.1 for a 

SRSWOR. It follows that the design weight associated with a sampling unit selected by 

SRSWOR is given by 
𝑁

𝑛
. Therefore, using the definition of a weight defined in Section 2.3.2, 

every unit in a SRSWOR represents itself and 
𝑁

𝑛
 -1 units that are not sampled but are in the 

target population. As opposed to SRSWOR, SRSWR elements can be drawn more than once. 

Thus, the inclusion probability of an element under SRSWR is 
1

𝑁
. It follows that the design 

weight under SRSWR is N.  

In a stratified sample, sampling units are in distinct subgroups and the inclusion probabilities 

are calculated per stratum. The inclusion probability of the jth unit in the hth stratum is 𝜋ℎ𝑗 =

𝑛ℎ

𝑁ℎ
 and from the definition of the design weight it follows that 𝑤ℎ𝑗 = 

𝑁ℎ

𝑛ℎ
.  

Cluster sampling is a common feature of most CS surveys, and the cluster can be selected by 

EPSEM or unequal probability. A one-stage cluster sample is a cluster sample that, if a PSU 

is selected then all the SSUs comprising that PSU are in the sample. If a one-stage cluster 

sample is selected by EPSEM, this is equivalent to selecting an SRSWR since the PSUs will 
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form the N elements and n PSUs are to be selected, resulting in each PSU having an inclusion 

probability of 
𝑛

𝑁
 . The design weight will be given by 

𝑁

𝑛
, the same as that of a SRSWR.  

In a two-stage cluster sample with EPSEM, firstly, the 𝑛 PSUs are selected from the 

population of 𝑁 PSUs, then an SRS of SSUs is selected from each of the 𝑛 selected PSUs. 

Suppose each PSU consists of 𝑁𝑗 SSUs, j = 1,… , N, and from 𝑁𝑗, 𝑛𝑗  SSUs are selected. Then 

the inclusion probability of SSU 𝑖 from PSU 𝑗 is 
𝑛𝑛𝑗

𝑁 𝑁𝑗
. Subsequently, the design weight can 

be obtained as 
𝑁 𝑁𝑗

𝑛 𝑛𝑗
.  

In a one-stage cluster sample with pps the SSUs form the basis for the selection probabilities 

with larger PSUs, i.e. PSUs that have a larger number of SSUs, have a greater chance of being 

selected. The selection probabilities are given by 𝜋𝑖/𝑗= 
𝑁𝑗

𝑁0
. The inclusion probability of PSU 

𝑗 is simply the sum of the selection probabilities. If this is extended to a two-stage cluster 

sample with pps, then the SSUs selected from the PSU (note the PSUs are selected at the first 

stage by pps sampling) are selected using an independent sampling method such as SRS. The 

inclusion probability is calculated as 𝜋𝑖𝑗 = 𝜋𝑗  ×  𝜋𝑖/𝑗. As a result the design weight for SSU 

i of PSU j is 

𝑤𝑖𝑗 = 
1

 𝜋𝑗 × 𝜋𝑖/𝑗
. 

Consider now a stratified two-stage cluster sample where a population has been stratified into 

𝐻 strata, each stratum contains 𝑁ℎ PSUs and each PSU contains 𝑁ℎ𝑗 SSUs, 𝑗 = 1,… ,𝑁ℎ, ℎ =

1, … , 𝐻. Consider stratum ℎ. In two-stage cluster sampling, 𝑛ℎ PSUs are selected from 

stratum ℎ, and 𝑛ℎ𝑗 SSUs are selected from the 𝑗𝑡ℎ selected PSU . Since each of the strata is 

sampled independently, the design weight is calculated within the strata. Let 𝑤ℎ𝑗 denote the 

design weight of the 𝑗𝑡ℎ PSU selected from stratum ℎ and 𝑤𝑖/ℎ𝑗 the design weight of the 𝑖𝑡ℎ 

SSU within PSU 𝑗. Then the overall design weight for that sampling unit is 

𝑤ℎ𝑗𝑖 = 𝑤ℎ𝑗 × 𝑤𝑖/ℎ𝑗. 

Note that the sampling weights give no indication of how to calculate the standard errors and 

therefore inferential statistics using only sampling weights is absolute (Lohr, 2010). 
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The next step in the weighting process is to adjust the design weight to compensate for non-

response, since estimators can be biased and have inaccurate variances when based only on 

responses (Luus, 2016). 

2.3.2.2 Adjusting for non-response 

When certain observations in the sampling frame do not respond to the survey it may have an 

effect on the inference since non-respondents generally differ from those that do respond 

(Luus, 2016; Lohr, 2010; Cochran, 1977). There are two types of non-response: item non-

response, which occurs when answers to certain questions in the survey questionnaire are 

omitted; and unit non-response, which is observed when the entire sampling unit’s 

information is missing (Luus, 2016; Lohr, 2010; Nations, 2005). Non-response can result in 

estimation bias specifically when respondents differ significantly from non-respondents 

(Cheung, 2005). Furthermore, increasing the sample size while not taking into account non-

response does not reduce non-response bias. It merely provides more observations that would 

respond to the survey. In fact, it may worsen non-response since those resources could have 

been directed to remedy non-response (Lohr, 2010). Lohr (2010) mentions a few remedies 

for non-response: 

1. design the survey so as to minimise non-response to the extent that there is very little to 

no non-response. This is the best method; 

2. take a representative subsample of non-respondents and use that subsample to make 

inferences on the other non-respondents; 

3. use a model to predict values for non-respondents. Weighting class adjustment discussed 

in Section 2.3.2.2.1 uses a model to adjust for unit non-response. Imputation can be used 

to adjust for item non-response; or 

4. ignore it (not recommended) (Lohr, 2010; Luus, 2016). 

To consider the effects of non-response on the sample estimate, suppose there are two strata, 

i.e. stratum 1 and stratum 2, where stratum 1 is the respondents and stratum 2 the non-

respondents. Let 𝑁1 denote the population size of stratum 1 and 𝑁2 the size of stratum 2, 

where 𝑁1 + 𝑁2 =𝑁. Note that there is only information for stratum 1 and suppose the elements 
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in stratum 1 were selected by SRS. Consider the proportion of respondents and non-

respondents given by 𝑃1 =
𝑁1

𝑁
 and 𝑃2 =

𝑁2

𝑁
, respectively. The bias of the sample mean can be 

obtained by 

𝐸(𝑦̅1) − 𝑌̅ = 𝑌̅1 − 𝑌̅ 

 =𝑌̅1 − (𝑃1𝑌̅1 − 𝑃2𝑌̅2) 

 =𝑃2(𝑌̅1 − 𝑌̅2), 

where 𝑌̅ is the population mean, 𝑌̅1 the population mean for respondents and 𝑌̅2  the population 

mean for non-respondents. The bias will be small if the proportion of non-respondents is small 

or the mean for the population of non-respondents is close to that of the respondents. Since 

the sample provides no information about 𝑌̅2 the bias is unknown unless bounds are placed 

from some source other than the sample information (Cochran, 1977; Lohr, 2010). Therefore, 

minimising the non-response rate is the only sure way to aid in controlling non-response bias 

(Lohr, 2010). 

2.3.2.2.1 Weighting class adjustments 

One way of adjusting the design weights of the respondents is with weighting classes where 

the weighting classes are formed from variables for which information is known for all the 

sampling units. The purpose of the adjustment is to make the weights of both the non-

respondents and respondents in the same class, similar (Lohr, 2010). Weights of the 

respondents are increased so that a respondent in the same weighting class as a non-

respondent represents the non-respondent’s portion as well as their own in the population 

(Lohr, 2010). Let 𝜙̂𝑐 denote the response probability for class c, given by 

𝜙̂𝑐 = 
𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑐

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑐
. 

The sampling weight for each respondent is then multiplied by 1/𝜙̂𝑐 which is termed the 

weight factor (Lohr, 2010). The weighting adjustment classes should be formulated as if they 

are strata (Lohr, 2010). The following conditions would be ideal to eliminate the response 

bias for estimating means and totals: 

1. in class c there is a constant response variable; 

http://etd.uwc.ac.za/



20 

 

2. for every unit in class c the response propensity (the probability that a unit will 

respond, i.e. 𝜙̂𝑖) is constant; and  

3. the response and the response propensity are uncorrelated.  

2.3.2.2.2 Inverse of the response rate 

Non-response distorts the results of many surveys, and results from surveys with very low 

response rates cannot readily be generalized to the greater population. The response rate is 

simply the number of persons who responded to the survey divided by the number of 

questionnaires mailed or supplied (Heeringa, et al., 2010; Cochran, 1977). 

Let 𝜙𝑖 indicate the probability that an element when selected, will respond to the survey. This 

probability is unknown but assumed to be positive (Lohr, 2010). This probability can be 

estimated by means of weighting class adjustments discussed in Section 2.3.2.2.1. Then the 

probability that an element is selected for the sample and responds is 

𝜋𝑖 × 𝜙𝑖, 

and this product is the response rate (Lohr, 2010). The final weight for a respondent is then 

1

𝜋𝑖×𝜙̂𝑖
, the inverse of the response rate, where 𝜙̂𝑖 is estimated using the formula in Section 

2.3.2.2.1. The main reason for applying non-response factors in survey weights is to reduce 

bias as a result of non-response across sample elements (Lohr, 2010; Heeringa, et al., 2010; 

Cochran, 1977).  

 2.3.2.3 Calibration and integrated weighting 

In the weighting process the first step is to compute a design weight, then compensation is 

made for non-response which can be done by the methods discussed in Section 2.3.2.2. 

However, it is often the case that the attained sample does to represent the population as 

intended which results in differential non-response (Neethling & Galpin, 2006; Luus, 2016). 

Differential non-response occurs when one sampled subgroup has a lower response frequency 

as opposed to other subgroups. Calibration is used to obtain improved estimates by using 

auxiliary information in the form of totals. These totals are known marginal counts such as 
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gender or other categorical variables that are used to form new weights, called calibration 

weights (Luus, 2016; Neethling & Galpin, 2006). The auxiliary information can be obtained 

from a census or other administrative files (Deville, et al., 1993).  

To assist in obtaining the calibration weights, consider the finite population 𝑈 of size 𝑁 

consisting of 𝑀 households, where a sample 𝑆 of size 𝑛 is selected consisting of m households, 

drawn with a known probability. Suppose the kth element is selected from 𝑈 with inclusion 

probability 𝜋𝑘, where 𝜋𝑘 > 0 (Deville, et al., 1993; Neethling & Galpin, 2006). The inclusion 

probabilities can be formulated into a 𝑁 × 𝑁 matrix, 𝜫 = 𝑑𝑖𝑎𝑔(𝜋𝑘). Furthermore, let 𝑤𝑘 

denote the design weight of unit k, which has already been adjusted to compensate for unit 

non-response. The objective of many surveys is to estimate the finite population total,  

 𝑡𝑦 =∑ 𝑦𝑘𝑘∈𝑈  = ∑ 𝑦𝑘𝑈 , (2) 

where 𝑦𝑘 is the value of the variable of interest, y, of the kth element, and 𝑡𝑦 is the finite 

population total of the variable of interest. An estimator used to estimate 𝑡𝑦 in Equation 2 is 

the Horvitz-Thompson estimator, 

 𝑡̂𝑦=∑ 𝑤𝑘𝑦𝑘𝑘∈𝑆 . (3) 

To formulate the set of new weights, viz. calibration weights, auxiliary information must be 

used. The auxiliary information is in the form of categorical variables for which responses 

are known for each unit in the population. Assume that there exists 𝐽 person level auxiliary 

variables 𝑥1, 𝑥2, . . . , 𝑥𝐽 and consider the kth element. Then a 𝐽-vector can be defined as 𝒙𝑘 = 

(𝑥𝑘1,   𝑥𝑘2  , …,    𝑥𝑘𝑗 , … , 𝑥𝑘𝐽)
′
 where 𝑘 ∈ 𝑈. Some examples of person auxiliary variables 

that can be used are gender, age (categorised), race, etc. The corresponding totals for vector 

𝒙𝑘 can be obtained, i.e. 𝒕𝑥 =∑ 𝒙𝑘𝑈 , and placed into a vector. Suppose 𝒙𝑘 = (1, 𝑥𝑘1, 𝑥𝑘2)
′, then 

the population total vector will consist of 𝒕𝑥 = (∑ 1𝑈 , ∑ 𝑥𝑘1𝑈 , ∑ 𝑥𝑘2𝑈 ) which results in 𝒕𝑥 = 

(𝑁, 𝑁𝑥̅𝑈1, 𝑁𝑥̅𝑈2). Furthermore, define a new weight 𝑐𝑘, so that 

 ∑ 𝑐𝑘𝑆 𝒙𝑘 = ∑ 𝒙𝑘𝑈 , (4) 

where 𝑐𝑘 contains the calibration weights and is obtained so that the distance between 𝑐𝑘 and 

𝑤𝑘 is as small as possible subject to the constraint ∑ 𝒙𝑘𝑈  (Deville, et al., 1993). Deville and 

Sarndal (1993) considered the distance function ∑ 𝑤𝑘𝑣𝑘G(𝑐𝑘, 𝑤𝑘)𝑠  where 𝑣𝑘 is a known 
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positive weight unrelated to 𝑤𝑘. Moreover, if 𝑐𝑘 = 𝑤𝑘, then 𝐺(1) = 0. The following equation 

should be minimised, 

 ∑ 𝑤𝑘𝑣𝑘 G(𝑐𝑘, 𝑤𝑘)𝑠  - 𝝀′(∑ 𝑐𝑘𝑠  𝒙𝑘 - ∑ 𝒙𝑘𝑈 ) = 0, (5) 

where λ = ( 𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑗 , … , 𝜆𝐽)
′ is the Lagrange multiplier vector (Deville, et al., 1993). 

Differentiating Equation 5 with respect to 𝑐𝑘 yields the following solution, 

 𝑐𝑘 = 𝑤𝑘 𝐹(𝒙𝑘
′  𝝀′/𝑣𝑘), (6) 

where F is the inverse function of g(.) = 
𝑑𝐺(𝑢)

𝑑𝑢
, for u=

𝑐𝑘
𝑤𝑘

⁄ . The λ can be calculated by 

substituting Equation 6 back into Equation 3. It follows that 

∑ 𝑤𝑘 𝐹(𝒙𝑘
′  𝝀′/𝑣𝑘)𝑆 𝒙𝑘 = ∑ 𝒙𝑘𝑈 . 

The two distance functions that will be used in this thesis are the linear and exponential 

distance functions. When the function is linear, G(𝑐𝑘, 𝑤𝑘) =
𝑤𝑘𝑣𝑘

2
 (

𝑐𝑘

𝑤𝑘
− 1)2 is used which 

results in 𝐹(𝒙𝑘
′  𝝀′) = (1 + 𝒙𝑘

′  𝝀′/𝑣𝑘). Using Equation 6 the calibrated weights are 

𝑐𝑘 = 𝑤𝑘 (1 + 𝒙𝑘
′  𝝀′/𝑣𝑘). 

In the exponential method (also known as multiplicative or raking ratio method) the auxiliary 

variables are expressed in the form of an exponential function (Deville, et al., 1993). The 

function G(𝑤𝑘, 𝑐𝑘) = 𝑤𝑘𝑣𝑘[ 
𝑐𝑘

𝑤𝑘
⁄  log(

𝑐𝑘
𝑤𝑘

⁄ ) - 
𝑐𝑘

𝑤𝑘
⁄  + 1], 

𝑐𝑘
𝑤𝑘

⁄  > 0 is used and yields 

𝐹(𝒙𝑘
′  𝝀′)= 𝑤𝑘𝑒𝑥𝑝(𝒙𝑘

′  𝝀′/𝑣𝑘) >0. Similarly, the calibration weights are obtained from 

Equation 6 (Deville, et al., 1993; Neethling & Galpin, 2006). The calibration weights can be 

used to produce calibration estimates that are more efficient in sample surveys (Neethling & 

Galpin, 2006). 

2.3.2.4 Integrated weighting techniques 

The problem associated with calibration techniques at person level is that the person level 

weights assigned will generally differ from person to person in the same household (Neethling 

& Galpin, 2006). This results in uncertainty when household characteristics are estimated, 

since there is no weight that is a representation of the household. Also, the household size is 

not taken into account nor the fact that persons belonging to the same household should be 

treated as a cluster (Neethling & Galpin, 2006). Given these shortcomings, integrated 
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weighting has been developed to achieve one set of weights that overcome these problems. 

Two integrated weighting methods will be discussed, viz. integrated weighting based on 

person level auxiliary variables only and integrated weighting based on both person and 

household auxiliary variables. 

2.3.2.4.1 Integrated weights based on person auxiliary variables 

Calibration weights assign different weights to different persons in the same household. 

Integrated weighting per person or both per person and household assigns a single set of 

weights to the entire household. Consider the finite population 𝑈 defined in Section 2.3.2.3 

consisting of 𝑁 persons and 𝑀 households. In Section 2.3.2.3 vector 𝒙𝑘
′  was defined. Consider 

a new matrix 𝑿, with dimensions 𝑁 × 𝐽, the rows of which consist of 𝒙𝑘
′ . In other words, row 

1 will consist of 𝒙1
′ = (𝑥11,   𝑥12  , …,    𝑥1𝑗 , … , 𝑥1𝐽)

′
, row 2 of 𝒙2

′ = (𝑥21,   𝑥22  , …,    𝑥2𝑗 ,

… , 𝑥2𝐽)
′
, etc. Suppose sample 𝑆 is selected containing 𝑛 persons and 𝑚 households. Matrix 

𝑿𝑆, where the subscript 𝑆 denotes the sample, is a 𝑛 × 𝐽 matrix. Consider a sample consisting 

of two households that each contain two and three persons, respectively. Denote household 

one by (ℎ1𝑝1, ℎ1𝑝2) and household two by (ℎ2𝑝1, ℎ2𝑝2, ℎ2𝑝3 ), therefore, 𝑆 consist of two 

households and five persons. Consider the auxiliary variable gender comprising of (𝑀, 𝐹). 

Then vector 𝒙𝑘
′  = (𝑥𝑘𝑀, 𝑥𝑘𝐹   )′ for 𝑘 ∈ 𝑆. The matrix 𝑿𝑠 will be a 5 × 2 matrix in form, 

𝑿𝑠 = 

[
 
 
 
 
𝑥11 𝑥12

𝑥21 𝑥22
𝑥31
𝑥41

𝑥51

𝑥32
𝑥42

𝑥52]
 
 
 
 

. 

The matrix 𝑿𝑠 can be further adjusted to form a new matrix called 𝒁𝑝𝑝 in which the averages 

for the auxiliary characteristics are taken. Hence, for members belonging to household ℎ with 

household size 𝑚ℎ, entries will be defined by 𝑧ℎ𝑗 = 
𝑎ℎ𝑗

𝑚ℎ
, where 𝑎ℎ𝑗 = ∑ 𝑥ℎ𝑗𝑗∈ℎ . Consider, the 

example of two households (ℎ1𝑝1, ℎ1𝑝2) and (ℎ2𝑝1, ℎ2𝑝2, ℎ2𝑝3 ) with gender as the auxiliary 

variable.  Suppose in household one both members are females, i.e. ℎ1𝑝1 = 𝐹 and ℎ1𝑝2 = 𝐹 

and in household two ℎ2𝑝1 = ℎ2𝑝2= 𝑀 and ℎ2𝑝3 = 𝐹. Then the new entry for ℎ1𝑝1 =
2

2
= 1, 
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i.e. 𝑎ℎ𝑗 = two females and 𝑚ℎ = two members in the household. The entry for ℎ1𝑝2 will be 

the same. The second household contains two males and one female. The entry for ℎ2𝑝1 =

ℎ2𝑝2 =
2

3
 and ℎ2𝑝3 = 

1

3
. Therefore matrix 𝒁𝑝𝑝 will be given by 

𝒁𝑝𝑝 = 

[
 
 
 
 
 
 
 
 
0 1

0 1

2

3
0

2

3
0

0
1

3]
 
 
 
 
 
 
 
 

. 

Interpretation of the weight 
2

3
 is, person ℎ2𝑝1 belongs to a household where 

2

3
 are male. The 

integrated weighting method can be extended to include both person and household auxiliary 

variables. 

2.3.2.4.2 Integrated weights based on person and household auxiliary variables 

The method described in Section 2.3.2.4.1 is based on person-level auxiliary variables. This 

can be extended to include both person-level and household-level auxiliary variables. 

Household auxiliary variables can include province, geographical location, etc. Consider the 

matrix 𝒁𝑝𝑝 defined in Section 2.3.2.4.1. Now suppose geographical location is added which 

consists of rural and urban. Then a new matrix can be defined, 𝒁𝑝ℎ, which has additional 

columns urban and rural. Consider the two-household example of Section 2.3.2.4.1, and 

suppose household one lives in a rural area and household two is, urban. Then 

𝒁𝑝ℎ =

[
 
 
 
 
 
 
 0 1 0

1

2

0 1 0
1

2

2

3
2

3

0

0

0
1

3

1

3
0

1

3
0

1

3
0]
 
 
 
 
 
 
 

. 
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The adjustment of the design weight already compensated for non-response through 

calibration and integrated weighting and is often referred to as benchmarking. At this stage, 

the final sampling weight is obtained (Luus, 2016). This completes the development of the 

final weight. 

2.4 Conclusion 

In this chapter the differences between probability and non-probability sampling were 

discussed and the importance of using probability sampling for inferences was highlighted. 

Furthermore, the different sampling techniques within both probability and non-probability 

sampling were reviewed. This followed to CS which is a combination of probability sampling 

techniques. Weighting was introduced and it was shown how it can be used to aid with non-

response and differential non-response. The next chapter will discuss the logistic regression 

for both SRS and CS. In CS the weights play an important role in obtaining estimators of the 

parameters of the logistic regression model. In addition, standard errors for the estimators can 

be obtained and subsequently, confidence intervals. The next chapter will explore this for 

both SRS and CS.  
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Chapter 3: Logistic regression modelling 

3.1 Introduction 

Logistic regression is a statistical technique widely used in the modelling of data where the 

response has two or more outcomes. Due to the nature of CS, when applying logistic 

regression modelling to CS data, the model needs to be adjusted to incorporate the CS design 

through the inclusion of the sampling weights. This chapter explains how the logistic 

regression model is adapted for use on CS data. It further goes on to discuss different methods 

of estimating the variances of the estimators of the model parameters under CS, viz. Taylor 

series linearization, the jackknife, and the bootstrap. These variances, in addition to the 

standard variance obtained from SRS, will be used to construct standard asymptotic 

confidence intervals. Furthermore, a non-parametric confidence interval, i.e. the bootstrap 

percentile interval will be discussed and will be compared to the standard (asymptotic) 

interval in the analysis.  

3.2 Model specification and parameter estimation under SRS 

The logistic regression model forms part of the generalised linear models in which the 

dependent variable follows one of the distributions of the exponential family (Agresti, 2013; 

O'Connell, 2006). Logistic regression models the odds of an event occurring and estimates 

the effects of the explanatory variables on those odds (O'Connell, 2006). Furthermore, if the 

dependent variable has two outcomes, it makes ordinary least squares regression modelling 

inappropriate (Heeringa, et al., 2010; Kutner, et al., 1996). 

To validate this, suppose ordinary least squares regression was used to model a response that 

is binary. Consider the model 

 𝑌𝑖 = 𝑿𝑖
′𝜷 + 𝜀𝑖, 𝑖 = 1,… , 𝑛, (7) 

where 𝑌𝑖 is the response that only takes on the values 0 or 1, 𝜷 is the vector (𝛽0, 𝛽1, .., 𝛽𝑝) 

consisting of 𝑝 + 1 model parameters, 𝑿𝑖
′ is the vector (1, 𝑥1, 𝑥2, … , 𝑥𝑝) ′ consisting of 𝑝 

explanatory variables measured for the 𝑖th observation, and 𝜀𝑖 is the 𝑖th error term. Let 𝜀𝑖 =
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 𝑌𝑖 − 𝑿𝑖
′𝜷. An expression for the error term can be obtained by substituting in the values for 

𝑌𝑖, namely 

 𝜀𝑖 =  0 − 𝑿𝑖
′𝜷, (8) 

if 𝑌𝑖 = 0, and 

 𝜀𝑖  =  1 − 𝑿𝑖
′𝜷, (9) 

if 𝑌𝑖 = 1. From the results in Equations 8 and 9 the error term can only take on two values. 

Therefore, the error term is not normally distributed (Kutner, et al., 1996). Furthermore, an 

additional problem associated with a response variable with a binary outcome is that the error 

variances are not constant. To validate this, consider the variance of the model defined in 

Equation 7 which, by the definition of a variance, yields 

𝑉(𝑌𝑖) = 𝐸(𝑌𝑖)(1 − 𝐸(𝑌𝑖)), 

where 𝐸(𝑌𝑖) is the expected value of 𝑌𝑖 which is equal to 𝑿𝑖
′𝜷. The variance of 𝜀𝑖 is the same 

as that of 𝑌𝑖 (Kutner, et al., 1996). Therefore, 

𝑉(𝜀𝑖) = 𝐸(𝑌𝑖)(1 − 𝐸(𝑌𝑖)), 

and thus 

 𝑉(𝜀𝑖) = 𝑿𝑖
′𝜷(1 − 𝑿𝑖

′𝜷). (10) 

From Equation 10 it is apparent that the variance is dependent on the explanatory variables 

implying that the error variances will differ at different levels of 𝑿, resulting in the error 

variance not being constant. Thus, ordinary least squares regression will not be applicable to 

such data (Agresti, 2013; Kutner, et al., 1996).  

In Figure 2, results were obtained from a simulated data set to display a naïve linear regression 

model for a binary response in the left panel compared to when an S-shaped curve is fitted in 

the right panel. It shows that a naïve linear regression model does not accurately capture the 

relationship between the response and explanatory variables and could possibly produce 

values that are outside the range of 0 and 1. On the other hand the S-shaped curve of the right 

panel accurately captures the probabilities of 0 and 1 (Kutner, et al., 1996; Heeringa, et al., 

2010). 
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Figure 2: The effect of fitting an ordinary least squares regression to 

a binary response variable. 

The linear regression model in Equation 7 must be altered to compensate for binary outcomes. 

To address this, a non-linear function must be identified that yields a fitted regression model 

that is linear in the coefficients for the model covariates and, ideally, when the function is 

transformed back, the resulting estimated values will fall in the range 0 to 1 (Heeringa, et al., 

2010). The above described functions are referred to as link functions and the two commonly 

used to model binary responses are the logit and probit (Heeringa, et al., 2010; Lohr, 2010; 

Kutner, et al., 1996). 

The link function used to model the logistic regression is the logit link function which 

transforms the outcome variable to the natural log of the odds (Menard, 2010). Consider 𝑌𝑖 

which follows a Bernoulli distribution in which the expected value and variance are given 

below: 

 𝐸(𝑌𝑖) = 𝜋𝑖, (11) 

and 

 𝑉(𝑌𝑖) =  𝜋𝑖(1 − 𝜋𝑖), (12) 

where 𝜋𝑖 is the probability that 𝑌𝑖 equals 1. Using the definition of the link function, the model 

in Equation 7 can be expressed as (O'Connell, 2006), 
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 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖)= ln (
𝜋𝑖

1− 𝜋𝑖
) =𝑿′𝜷. (13) 

Equation 13 can be simplified to 

𝑒𝑥𝑝(ln (
𝜋𝑖

1 − 𝜋𝑖
)) = 𝑒𝑥𝑝(𝑿′𝜷 ) 

 

𝜋𝑖

1 − 𝜋𝑖
 =  𝑒𝑥𝑝(𝑿′𝜷 )  

𝜋𝑖 = (1 − 𝜋𝑖) 𝑒𝑥𝑝(𝑿′𝜷 )  

𝜋𝑖 = 
𝑒𝑥𝑝(𝑿′𝜷 )

1+𝑒𝑥𝑝(𝑿′𝜷 )
. (14) 

To obtain the estimators of the model parameters the maximum likelihood function must be 

derived in order to find the maximum likelihood estimators (MLE) of the parameters (Kutner, 

et al., 1996; O'Connell, 2006). Since the observations in an SRS are independent and 

identically distributed (i.i.d.), the maximum likelihood function can be obtained as the product 

of 𝑛 Bernoulli probability functions (Kutner, et al., 1996), 

𝑔(𝑦1, 𝑦2, ..., 𝑦𝑛) = P(𝑌1 = 𝑦1) × P(𝑌2 = 𝑦2) × …× 𝑃 (𝑌𝑛=𝑦𝑛)   

 =∏ 𝑃(𝑌𝑖 = 𝑦𝑖)
𝑛
𝑖=1   

 = ∏ πi
Yi(1 − πi)

1−Yin
i=1 .  

To lessen the computational burden, the logarithm of the maximum likelihood function is 

found, 

𝑙𝑛[𝑔(𝑦1, 𝑦2, . . . , 𝑦𝑛)] =𝑙𝑛[∏ 𝜋𝑖
𝑌𝑖(1 − 𝜋𝑖)

1−𝑌𝑖𝑛
𝑖=1 ]  

 = ∑ [𝑌𝑖 𝑙𝑛 𝜋𝑖  + ( 1 − 𝑌𝑖) 𝑙𝑛(1 − 𝜋𝑖) ] 
𝑛
𝑖=1   

 = ∑ [𝑌𝑖 𝑙𝑛 𝜋𝑖  +  𝑙𝑛(1 − 𝜋𝑖)  − 𝑌𝑖 𝑙𝑛(1 − 𝜋𝑖)]
𝑛
𝑖=1   

 = ∑ [𝑌𝑖 (𝑙𝑛 𝜋𝑖  −  𝑙𝑛(1 − 𝜋𝑖)) +  𝑙𝑛(1 − 𝜋𝑖)] 
𝑛
𝑖=1   

 = ∑ 𝑌𝑖𝑙𝑛
𝑛
𝑖=1 (

𝜋𝑖

1−𝜋𝑖
) + ∑ 𝑙𝑛(1 − 𝜋𝑖)

𝑛
𝑖=1 . (15) 

Since, 

ln(
𝜋𝑖

1−𝜋𝑖
) = 𝑿′𝜷 , 

 Equation 15 becomes 
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 𝑙𝑛[𝑔(𝑌1, 𝑌2, . . . , 𝑌𝑛)]=∑ 𝑌𝑖(𝑿
′𝜷 )𝑛

𝑖=1 -∑ 𝑙𝑛(1 + exp(𝑿′𝜷  ))𝑛
𝑖=1 . (16) 

To obtain the estimates of the parameters, the partial derivatives of 𝑙𝑛[𝑔(𝑌1, 𝑌2, . . . , 𝑌𝑛)] with 

respect to the parameters must be obtained and set to zero. However, this is not 

straightforward and requires iterative estimation procedures such as the Newton-Raphson 

method or the Fisher Scoring algorithm to obtain the estimators (Kutner, et al., 1996; 

Heeringa, et al., 2010). 

The maximum likelihood function requires that the data be i.i.d.. However, this is not the case 

for CS and this will be discussed in the next section.  

3.3 Model specification and parameter estimation under CS 

Consider the CS described in Section 2.3.2.1 in which there are 𝐻 strata where each stratum 

contains 𝑁ℎ PSUs and each PSU contains 𝑁ℎ𝑗 SSUs. From each stratum a sample of 𝑛ℎ PSUs 

is  selected followed by 𝑛ℎ𝑗 SSUs being sampled from each of the selected PSUs, 𝑗 = 1,… , 𝑛ℎ 

and ℎ = 1,… ,𝐻. Data collected using such a design restricts the normal straightforward use 

of the maximum likelihood function to obtain estimators of the model parameters for several 

reasons. The selection probabilities are no longer equal and sampling weights are therefore 

needed to estimate the finite population values of the logistic regression model parameter. 

Secondly, in a CS, stratification and clustering result in data that are not independent. The 

assumption of independence is imperative in order to estimate model parameters and their 

variances (Archer, et al., 2007; Heeringa, et al., 2010; Lohr, 2010; Lumley & Scott, 2015). 

Even if the estimators of the parameters were approximately design unbiased, the standard 

errors would likely be incorrect if the CS involves clustering (Lohr, 2010). 

Instead of using the traditional MLE, a pseudo maximum likelihood function is used, i.e. the 

likelihood function is adapted as if the entire population is used (Archer, et al., 2007; Lohr, 

2010; Chambless & Boyle, 1985). As mentioned in Section 2.3.2.1, the design weight has the 

property of indicating the number of population elements represented by the sample element. 

By expanding each sample observation by its design weight, a data set of 𝑁 units is produced. 

Therefore, the parameter vector 𝑩 is introduced which is the MLE of the super population 

http://etd.uwc.ac.za/



31 

 

parameter 𝜷 which is referred to as the finite population parameter (Binder, 1983; Lohr, 

2010). The logistic regression model in Equation (14 can be defined in terms of 𝑩, 

𝜋 = 
exp (𝑿′𝑩)

1+ exp (𝑿′𝑩)
 . 

The model parameters for the logistic regression of a CS are estimated using the pseudo 

maximum likelihood function. The Bernoulli probability distribution of the logistic regression 

model can be expanded using weights, 

𝜋
ℎ𝑗𝑖

𝑤ℎ𝑗𝑖   × 𝑦ℎ𝑗𝑖[1 −  𝜋ℎ𝑗𝑖]
𝑤ℎ𝑗𝑖 × (1− 𝑦ℎ𝑗𝑖)

, 

where 𝑦ℎ𝑗𝑖 is the binary response variable, 𝜋ℎ𝑗𝑖 is probability that 𝑦ℎ𝑗𝑖 is equal to 1 and  

𝑤ℎ𝑗𝑖  is the sampling weight, where 𝑖 = 1,… , 𝑛ℎ𝑗, 𝑗 = 1,… , 𝑛ℎ and ℎ = 1, … , 𝐻. The pseudo 

maximum likelihood function is still constructed using the product of the individual 

contributions, however, the 𝑛ℎ PSUs sampled and 𝑛ℎ𝑗 SSUs sampled within the given PSU 

are accounted for thus forming the pseudo maximum likelihood function, 

 
𝑙𝑝(𝑩)=∏ ∏  (𝜋ℎ𝑗𝑖)

𝑤ℎ𝑗𝑖   × 𝑦ℎ𝑗𝑖
[1 − 𝜋ℎ𝑗𝑖  ]

𝑤ℎ𝑗𝑖 × (1− 𝑦ℎ𝑗𝑖)𝑛ℎ𝑗

𝑖=1
𝑛ℎ
𝑗=1 . (17) 

The pseudo MLE is similar to the MLE in terms of its functionality except that the pseudo 

MLE calculates the parameters for the expanded set. Expressed differently, the logistic 

regression for a CS is being fit to the ‘census’ data (Archer, et al., 2007; Heeringa, et al., 

2010). The estimators are obtained using the iterative estimation procedures discussed in 

Section 3.2.  

Once the estimators are determined the variances and standard errors of the estimators can be 

obtained. The thesis will discuss three methods to determine the variances under CS, namely 

Taylor series linearization, the jackknife and bootstrap. 

3.4 Variance estimation 

To obtain confidence intervals or conduct hypothesis tests, variance estimation is of 

paramount importance. For statistics based on data collected under the assumption of an SRS, 

exact expressions for variance estimators in most circumstances can be derived. In a CS 

design, however, these variance estimators are a bit more intricate and exact formulae can be 
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cumbersome to obtain (Heeringa, et al., 2010; Lohr, 2010). Several variance estimators exist 

for a CS design. Of these only the Taylor series linearization, the jackknife and the bootstrap 

will be discussed in this thesis. 

3.4.1 Taylor series linearization  

TSL is a method used to approximate complex smooth non-linear functions by simple linear 

functions of statistics in order to calculate variances, construct confidence intervals and test 

hypotheses of parameters (Heeringa, et al., 2010; Lohr, 2010; Kolenikov, 2010). TSL is 

traditionally used when the statistic of interest is a function of moments (Kolenikov, 2010).  

Let θ =f(𝑇1, 𝑇2, …, 𝑇𝑘) be a smooth function of totals 𝑇1, 𝑇2, …, 𝑇𝑘, which can be totals of 

any particular variable of interest, and let 𝜃 = f (𝑡1 , 𝑡2, …,𝑡𝑘) be an estimator of θ, where 𝑡1 , 

𝑡2, …,𝑡𝑘 are sample estimates of the corresponding totals (Kolenikov, 2010). Consider a 

complex sample where 𝑇𝑙, l=1,2,…,k can be estimated by 

 𝑡𝑙 = ∑ 𝑤𝑖𝑖∈𝑆 𝑦𝑖𝑙, (18) 

where 𝑡𝑙 is an estimator of 𝑇𝑙, 𝑦𝑖𝑙 is the response of unit 𝑖 to item 𝑙, and 𝑤𝑖 is the sampling 

weight for unit 𝑖. For simplicity the notation has been reduced to only the USU subscript 𝑖. 

A new variable can be defined for constants 𝑎1, .. , 𝑎𝑘,  

𝑞𝑖 = ∑ 𝑎𝑙 
𝑘
𝑙=1 𝑦𝑖𝑙, 

such that, 

𝑡𝑞 = ∑ 𝑤𝑖𝑖∈𝑆  𝑞𝑖  

 =∑ 𝑤𝑖𝑖∈𝑆  ∑ 𝑎𝑙 
𝑘
𝑙=1 𝑦𝑖𝑙  

 = ∑ 𝑎𝑙 
𝑘
𝑙=1 ∑ 𝑤𝑖𝑖∈𝑆 𝑦𝑖𝑙  

 =∑ 𝑎𝑙 
𝑘
𝑙=1 𝑡𝑙.  

The variance can then be estimated by 

 V(𝑡𝑞) = V(∑ 𝑎𝑙 
𝑘
𝑙=1 𝑡𝑙) =∑ 𝑎𝑙

2𝑘
𝑙=1  V(𝑡𝑙) + 2 ∑ ∑ 𝑎𝑙

𝑘
𝑐=𝑙+1

𝑘−1
𝑐=1  𝑎𝑐 Cov(𝑡𝑙, 𝑡𝑐), (19) 

where V(𝑡𝑞) is the variance of the estimated total for constants 𝑎1, .. , 𝑎𝑘, V(𝑡𝑙) is the variance 

of the estimated total 𝑡𝑙, and Cov(𝑡𝑙, 𝑡𝑐) is the covariance of 𝑡𝑙 and 𝑡𝑐 (Lohr, 2010).  
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Now consider the estimator of the population mean that can be expressed as a weighted 

combined ratio estimator, 

  ∑ 𝑤𝑖𝑖∈𝑆 𝑦𝑖𝑙

∑ 𝑤𝑖𝑖∈𝑆
 = 

𝑡𝑙

𝑁
 = 𝑦̅. (20) 

The estimated mean, like many estimators under CS, is a non-linear function of two weighted 

sample totals. This is true for other estimated quantities too, such as the simple linear and 

logistic regression coefficients (Heeringa, et al., 2010; Lohr, 2010; Binder, 1983). This is a 

non-linear statistic and cannot be expressed in the form of Equation 19. To solve the problem 

of non-linearity of sample estimators, Taylor series expansion is used to approximate the 

estimates of interest, expressing them as linear combinations of weighted sample totals 

(Heeringa, et al., 2010).  

In order to do so, let  

∑ 𝑤𝑖𝑖∈𝑆 𝑦𝑖𝑙 = u and ∑ 𝑤𝑖𝑖∈𝑆  = v. 

 From Equation 20 it follows that 

𝑦̅ = 
𝑢

𝑣
. 

Using Taylor series expansion Equation 20 can be approximated as 

 𝑦̅𝑇𝑆𝐿 = 
𝑢0

𝑣0
 + (u - 𝑢0) [

𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑢
]
𝑣−𝑣0,𝑢−𝑢0

 + (v - 𝑣0) [
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑣
]
𝑣−𝑣0,𝑢−𝑢0

 + remainder,  

 𝑦̅𝑇𝑆𝐿 ≈ 
𝑢0

𝑣0
 + (u - 𝑢0)[

𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑢
]
𝑣−𝑣0,𝑢−𝑢0

+(v - 𝑣0)[
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑣
]
𝑣−𝑣0,𝑢−𝑢0

, (21) 

where 𝑢0 and 𝑣0 are the weighted sample totals which are obtained from the survey data, 

[
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑢
]
𝑣−𝑣0,𝑢−𝑢0

 is the derivative of 𝑦̅ with respect to 𝑢 evaluated at the expected values of 

the sample estimates 𝑢0 and 𝑣0, and [
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑣
]
𝑣−𝑣0,𝑢−𝑢0

 is the derivative of 𝑦̅ with respect to 𝑣 

evaluated at the expected values of the sample estimates 𝑢0 and 𝑣0. 

Note that the quadratic and higher order terms in the full Taylor series expansion are dropped 

since those terms are assumed inconsequential when the sample sizes are large enough 

(Woodruff, 1971; Heeringa, et al., 2010; Lohr, 2010). Furthermore, consistent and ideally 

unbiased estimators are generally used in the place of the expected values of the sample 
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estimators (Heeringa, et al., 2010).  Making use of Equation 19, the variance of the linearized 

estimator can be calculated. In Equation 21, let 

[
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑢
]
𝑣−𝑣0,𝑢−𝑢0

 = C and [
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑣
]
𝑣−𝑣0,𝑢−𝑢0

 = D. 

Then Equation 21 reverts to 

𝑦̅𝑇𝑆𝐿 = 
𝑢0

𝑣0
 + (u - 𝑢0)C +  (v - 𝑣0)D, 

and the variance of 𝑦̅𝑇𝑆𝐿 can be calculated as 

V(𝑦̅𝑇𝑆𝐿) = V( 
𝑢0

𝑣0
 +  (𝑢 − 𝑢0)𝐶 +  (𝑣 − 𝑣0)𝐷)  

 = 0 + 𝐶2 V(𝑢 − 𝑢0)  + 𝐷2 V(𝑣 − 𝑣0) + 2CDcov(𝑢 − 𝑢0, 𝑣 − 𝑣0)  

 =𝐶2 V(𝑢 )  + 𝐷2 V(𝑣 ) + 2 CD cov(𝑢 , 𝑣 ).  

C and D can be obtained as 

[
𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑢
]
𝑣−𝑣0,𝑢−𝑢0

 = 
1

𝑣0
 and [

𝜕𝑦̅𝑇𝑆𝐿

𝜕𝑣
]
𝑣−𝑣0,𝑢−𝑢0

 = −
𝑢0

𝑣0
2,  

which simplifies to 

V(𝑦̅𝑇𝑆𝐿) = 
𝑉(𝑢)+𝑦̅𝑇𝑆𝐿 𝑉(𝑣)−2𝑦̅𝑇𝑆𝐿 𝑐𝑜𝑣(𝑢,𝑣) 

𝑣0
2  . 

Binder (1983) proposed using a multivariate version of the TSL to calculate the variance of 

the estimator of a logistic regression model parameter (Binder, 1983; Heeringa, et al., 2010).  

As discussed in Section 3.3, the estimators of the parameters of the logistic regression model 

can be obtained from the pseudo MLE defined in Equation 17. Similarly, Equation 17 can be 

used to obtain a variance-covariance matrix of the logistic regression model parameters. A 

simplified version of Equation 17 for an observation in stratum ℎ from the 𝑗𝑡ℎ PSU and the 

𝑖𝑡ℎ SSU is given below, 

 ∑ ∑ ∑ 𝑤ℎ𝑗𝑖𝑫ℎ𝑗𝑖
′ [𝜋ℎ𝑗𝑖(1 − 𝜋ℎ𝑗𝑖)]

−1
(𝑦ℎ𝑗𝑖 − 𝜋ℎ𝑗𝑖)𝑖𝑗ℎ = 0, (22) 

where 𝑫ℎ𝑗𝑖 is a vector of partial derivatives, 
𝝋(𝜋ℎ𝑗𝑖(𝑩))

𝜑𝐵𝑘
, 𝑘 = 0, … , 𝑝, 𝑝 is the number of 

parameters, 𝑤ℎ𝑗𝑖 is the sampling weight and 𝜋ℎ𝑗𝑖(𝑩) is the probability of success of the 𝑖𝑡ℎ 

SSU of PSU j from stratum h. Equation 22 reduces to 𝑝 + 1 estimating equations, 

 ∑ ∑ ∑ 𝑤ℎ𝑗𝑖 (𝑦ℎ𝑗𝑖 − 𝜋ℎ𝑗𝑖(𝑩))𝑖𝑗ℎ 𝒙ℎ𝑗𝑖
′  = 0. (23) 
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The Newton-Raphson method can be used to obtain the weighted parameter estimates by 

finding a solution for Equation 23. Using TSL, a sandwich-type variance estimator can be 

obtained in the form of (Heeringa, et al., 2010) 

𝑣𝑎𝑟(𝑩̂) = (𝑱−1)𝑣𝑎𝑟⌈𝑆(𝑩̂)⌉(𝑱−1), 

where 𝑱 is the matrix of second-order derivatives with respect to 𝐵̂𝑘.  

TSL is used in most survey packages under the assumption that the PSUs are sampled with 

replacement within the strata at the first stage (Kolenikov, 2010). Some advantages of using 

TSL are that, if the partial derivatives are known, linearization will almost always give the 

variance estimate of a statistic and, the theory of TSL is well developed (Lohr, 2010). 

However, it does have some drawbacks. Calculations can be cumbersome when functions are 

complex. Also, not all statistics yield smooth functions in terms of population totals, and the 

accuracy depends on the sample size (Lohr, 2010; Kolenikov, 2010). 

Although TSL is the default variance estimator in most statistical packages other options are 

also provided such as the jackknife and the bootstrap. These techniques form part of the 

resampling methods and will be discussed next. 

3.4.2 Resampling methods 

Resampling or replication methods, as the names suggest, replicate subsamples of the 

sampled observations to develop variance estimators for both linear and non-linear statistics 

(Heeringa, et al., 2010; Wolter, 2007).  

Suppose that a sample S is selected by some design and suppose 𝑅 replicates are obtained 

from sample 𝑆. Consider the rth replicate, 𝑟 = 1, 2, … , 𝑅. Let the parameter of interest be 

denoted by 𝜃 and let the estimator of 𝜃 be denoted by 𝜃. Let the estimate of 𝜃 obtained from 

the 𝑟𝑡ℎ replicate be denoted by 𝜃(𝑟). The variance estimator of 𝜃 can generally be defined as 

(Lohr, 2010) 

 V (𝜃) =
1

𝑅(1−𝑅)
 ∑ {𝜃(𝑟) − 𝜃̃}

2𝑅
𝑖=1 , (24) 
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where R is the number of replicates; V(𝜃) is the variance estimator; and 𝜃̃ is a particular 

measure of central tendency. In the event of the mean of the resampled values, then 

𝜃̃ = 
1

𝑅
 ∑ 𝜃(𝑟)𝑅

𝑟=1 . 

The resampling methods that will be discussed are the jackknife and the bootstrap. 

Theoretically, the resampling is done in a way that the sample is re-created for each replicate 

𝑟. However, in practice this is done by using the sampling weights, i.e. if a particular 

observation unit is removed for a given replicate, it is simply assigned a weight of zero 

(Kolenikov, 2010). The weights of the other units need to be increased to ensure that the totals 

are unbiased for each replicate (Kolenikov, 2010). 

3.4.2.1 Jackknife repeated replication  

Jackknife repeated replication (JRR) was introduced as a method to reduce bias and can be 

used for a wide variety of complex designs (Heeringa, et al., 2010; Lohr, 2010; Kolenikov, 

2010). The JRR focuses on samples that leave out one observation unit at a time (Efron & 

Tibshirani, 1994). This thesis will focus on the delete-one jackknife. Firstly, a brief discussion 

of JRR under SRS will be provided followed by the extension of JRR to the CS case. 

3.4.2.1.1 JRR under SRS 

Properties of the jackknife for SRSWR and SRSWOR have been extensively investigated and 

will be briefly explored in this section. Consider the sample 𝑆 of size 𝑛 with observations {𝑦1, 

𝑦2, 𝑦3, .., 𝑦𝑛} in which some parameter 𝜃 is estimated by the statistic 𝜃. Suppose 𝑆(𝑖) denotes 

the replicate sample in which the 𝑖𝑡ℎ observation has been removed, i.e. 𝑆(𝑖)={𝑦1, ..,𝑦𝑖−1,𝑦𝑖+1, 

.., 𝑦𝑛}. Using the replicate sample 𝑆(𝑖) a replicate of 𝜃 is obtained, namely 𝜃(𝑖) = 𝜃(𝑆(𝑖)). This 

is repeated until each observation has been deleted once resulting in 𝑛 replicates of 𝜃, i.e. 

{𝜃(𝑖)}, 𝑖 = 1,… , 𝑛. Using Equation 24 the JRR estimate of the variance of the estimator of the 

parameter of interest is calculated as 

 𝑉̂𝐽𝑅𝑅 (𝜃) = 
𝑛−1

𝑛
 ∑(𝜃(𝑖) − 𝜃̃𝐽𝑅𝑅  ) 2, (25) 
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where 𝜃̃𝐽𝑅𝑅 is given by 

𝜃̃𝐽𝑅𝑅 = 
1

𝑛
 ∑ 𝜃(𝑖)

𝑛
𝑖=1 . 

The variance produced using JRR includes a factor of 
𝑛−1

𝑛
 which is different from 

1

𝑛−1
  or 1 𝑛⁄  

which is traditionally used when calculating variances (Efron & Tibshirani, 1994; Lohr, 

2010). The factor is derived by considering a special case where 𝜃 =𝑦̅ and the variance 

simplifies to 

𝑉̂𝐽𝑅𝑅 (𝜃) = 
1

𝑛(𝑛−1)
 ∑(𝑦𝑖  − 𝑦̅) 2= 

1

𝑛
 ∑(𝑦𝑖  −  𝑦̅) 2. 

The jackknife estimate of the bias is given by  

𝑏𝑖𝑎𝑠̂𝐽𝑅𝑅 = (𝑛 − 1)( 𝜃̃𝐽𝑅𝑅 − 𝜃 ̂). 

The bias consists of a factor (𝑛 − 1) which is the same as the factor of the variance given in 

Equation 25. However, using the special case of letting 𝜃 =𝑦̅ is not plausible since the sample 

mean is an unbiased estimator of the population mean. The sample variance can be used 

instead. Consider 

𝜃 = ∑( 𝑦𝑖 − 𝑦̅ )2/𝑛 , 

which has a bias of -1/𝑛 times the population variance, and the factor (𝑛 − 1) in front of 

( 𝜃̃𝐽𝑅𝑅 − 𝜃 ̂) makes 𝑏𝑖𝑎𝑠̂𝐽𝑅𝑅 equal to -1/𝑛 times ∑( 𝑦𝑖 − 𝑦̅ )2/(𝑛 − 1), the unbiased estimator 

of the population variance (Efron & Tibshirani, 1994).  

When using JRR to estimate the variances of the estimators under CS the sample design needs 

to be accounted for. This section presented a short description of the JRR under SRS. Since 

this thesis considers the logistic regression modelling of CS data the next section considers 

the application of the JRR under CS. 

3.4.2.1.2 JRR under CS 

In JRR under CS each replicate measures the variance contributed by a single stratum in 

which case the PSU is removed along with all the observations within that PSU (Kolenikov, 

2010; Lohr, 2010; Kish & Frankel, 1974). Deleting one observation at a time will destroy the 

cluster structure, therefore the entire PSU should be removed (Lohr, 2010). The software that 
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does the JRR calculations does not actually remove the PSU, but merely assigns a weight of 

zero to all the cases in that PSU (Heeringa, et al., 2010; Lohr, 2010).  

Suppose there are H independent strata and 𝑛ℎ PSUs are chosen from stratum h. Let 𝜃(ℎ𝑗) be 

the estimator obtained when PSU j of stratum h is deleted. In order to calculate 𝜃(ℎ𝑗) the 

weights need to be assigned as follows (Lohr, 2010), 

𝑤𝑖(ℎ𝑗)={

0,         if observation 𝑖 is in PSU 𝑗 in stratum ℎ
𝑛ℎ

𝑛ℎ−1
𝑤ℎ𝑗𝑖 ,     if observation 𝑖 is not in PSU 𝑗 but in stratum ℎ

𝑤ℎ𝑗𝑖 ,                 if observation 𝑖 is not in stratum ℎ

, 

where 𝑤𝑖(ℎ𝑗) is the adjusted sampling weight, 𝑛ℎ is the number of PSUs in stratum ℎ, and 

𝑤ℎ𝑗𝑖 is the original sampling weight of the 𝑖th USU. The jackknife replicate of 𝜃 when the 

(ℎ𝑗)th PSU has been deleted, i.e. 𝜃(ℎ𝑗), is then calculated using the jackknife sampling 

weights. This procedure is repeated for all PSUs in a stratum and, independently, across all 

strata (Lohr, 2010; Heeringa, et al., 2010; Kolenikov, 2010). It follows that the jackknife 

estimator of the variance of 𝜃 under CS is given by 

𝑉𝐽𝑅𝑅(𝜃) =∑
𝑛ℎ−1

𝑛ℎ

𝐻
ℎ=1 ∑ (𝜃(ℎ𝑗)

𝑛ℎ
𝑗=1  - 𝜃)2 . 

This is done to ensure that the observational units within a PSU remain together such that the 

cluster structure remains intact. JRR is applied separately in each stratum at the first stage of 

sampling (Lohr, 2010).  

The jackknife is an “all purpose” method and provides a consistent estimator when the 

parameter of interest is a smooth function of totals (Kish & Frankel, 1974; Lohr, 2010). 

However, JRR may require a large number of computations for some sampling designs which 

can be computationally expensive (Kolenikov, 2010).  

3.4.2.2 Bootstrap 

Statistics is based on sampling distributions of parameter estimators and test statistics. These 

distributions can be derived through transformations of random variables or other asymptotic 

arguments (Kolenikov, 2010). This is not always easy to determine. Bootstrap provides an 
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alternative to that in which the bootstrap statistics are taken from a distribution that is close 

to a distribution of an unknown population (Kolenikov, 2010). Using bootstrap statistics, 

standard errors can be obtained and subsequent confidence intervals can be constructed. This 

section commences with a summary of the bootstrap under SRS followed by its application 

to CS data.  

3.4.2.2.1 Bootstrap under SRS 

Consider an SRS 𝑆=(𝑦1, 𝑦2, …,𝑦𝑛) from an unknown probability distribution 𝐹 and suppose 

a parameter of interest 𝜃 is to be estimated by 𝜃. The accuracy of 𝜃 depends on its standard 

error. If 𝐹 is unknown, the standard error of 𝜃 cannot be readily obtained (Efron & Tibshirani, 

1994). The empirical distribution 𝐹̂, which assigns a probability of  
1

𝑛
  to each element in 𝑆, 

can be used to estimate 𝐹. It can be shown that 𝐹̂ is a sufficient statistic of 𝐹, the proof of 

which is omitted from the scope of this thesis. As a result, the 𝐹̂ can be used as a basis for 

obtaining the standard error of 𝜃.  

Suppose an SRSWR of size 𝑛 is drawn from 𝑆, say 𝑆1
∗ =(𝑦1

∗, 𝑦2
∗, …, 𝑦𝑛

∗). Corresponding to 𝑆1
∗ 

is the replicate of the estimator 𝜃, i.e. 𝜃1
∗ = 𝜃(𝑆1

∗). Another SRSWR of size 𝑛, say 𝑆2
∗, can be 

selected from 𝑆 and the second replicate of the estimator 𝜃, 𝜃2
∗, can be obtained similarly to 

𝜃1
∗. Note that since this is SRSWR, 𝑆1

∗ and 𝑆2
∗ can differ. These samples,  𝑆1

∗ and 𝑆2
∗, are 

referred to as bootstrap samples. This process, i.e. sampling with replacement, can be repeated 

until all possible samples of 𝑆 are obtained. All these samples follow the empirical 

distribution 𝐹̂. The estimate of the standard error of 𝜃 can be obtained, say 𝑠𝑒̂𝐹̂(𝜃∗), and is 

referred to as the ideal bootstrap estimator. Note that the ideal bootstrap is a function of the 

empirical distribution and can be computationally expensive to obtain since it requires all 

possible samples from 𝑆 of a certain size (Efron & Tibshirani, 1994).  

The bootstrap algorithm is a numerical method to obtain an approximation of 𝑠𝑒̂𝐹̂(𝜃∗). It 

works by drawing many independent bootstrap samples, calculating replicates of the 

estimator from each bootstrap sample, and then using these replicates to estimate the 
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corresponding standard error of 𝜃. The result is referred to as the bootstrap estimate of the 

standard error of 𝜃.  

Consider 𝐵 independent with replacement bootstrap samples, 𝑆1
∗, 𝑆2

∗, …, 𝑆𝐵
∗ , each of size 𝑛. 

A bootstrap replication of 𝜃 can be obtained from each bootstrap sample, i.e. 𝜃𝑏
∗, for 𝑏 =

1, 2, … , 𝐵.  The resulting bootstrap estimate of the standard error of 𝜃 is given by, 

𝑠𝑒̂(𝐵) = √
∑ [𝜃̂(𝑏)

∗ −𝜃̂∗(.)]𝐵
𝑏=1

𝐵−1
 , 

where 𝜃∗(. ) = 
∑ 𝜃̂𝑏

∗𝐵
𝑏=1

𝐵
. The ideal set up requires 𝐵 = ∞, which results in the “ideal bootstrap 

estimate” (Efron & Tibshirani, 1994, p. 50). The ideal bootstrap estimate has a smaller 

standard error as opposed to 𝑠𝑒̂𝐵 in an asymptotic sense (Efron & Tibshirani, 1994). However, 

the ideal bootstrap can be computationally expensive. The bootstrap estimate generally has 

very little bias. Authors have generally agreed that: 

1. 𝐵 = 50 is often enough to give a good estimate of the standard error; and 

2. very rarely is 𝐵 > 200 replicates needed to estimate the standard error (Efron & 

Tibshirani, 1994).  

In CS the data is no longer i.i.d. and requires amendments to be made to the bootstrap. This 

is discussed in the next section. 

3.4.2.2.2 Bootstrap under CS 

The bootstrap can be extended to complex samples in which a bootstrap sample is taken of 

the PSUs within each stratum (Lohr, 2010; Kolenikov, 2010). Note that, as with the jackknife, 

observations within the PSU are kept together in the bootstrap iterations (Lohr, 2010). 

Consider a complex sample design in which 𝑛ℎ PSUs is selected from stratum ℎ, ℎ = 1,… ,𝐻. 

Suppose the 𝑏𝑡ℎ bootstrap sample, for 𝑏 = 1,… , 𝐵 is taken by selecting an SRSWR of 𝑛ℎ 

PSUs independently from stratum ℎ. The parameter of interest can be estimated from replicate 

𝑏 by 𝜃𝑏
∗; this is repeated 𝐵 times. The variance of the estimator of the parameter of interest 

can be calculated by Equation 24. Sitter (1992) highlighted the problem associated with this 

approach. In the simple case of the sample mean the variance obtained is not an unbiased 
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estimator and is not consistent (Kolenikov, 2010; Sitter, 1992). This is rectified by the 

application of a rescaling bootstrap procedure. To construct the 𝑏𝑡ℎ bootstrap sample a 

SRSWR of 𝑛ℎ − 1 PSUs  instead of 𝑛ℎ is taken from the 𝑛ℎ PSUs in stratum ℎ. (Luus, et al., 

2010; Kolenikov, 2010). In addition, 𝑛ℎ − 1 gives more efficient estimators (Kolenikov, 

2010). 

Let 𝑚ℎ𝑗
∗  be the number of times PSU 𝑗 of stratum ℎ appears in the bootstrap sample. Since 

the PSUs are sampled with replacement, some of the PSUs will appear more than once in the 

sample and others might not appear at all. Thus the sampling weights of the observations in 

the bootstrap sample need to be adjusted to compensate for this to ensure that the sum of the 

sampling weights still equals the population total. The bootstrap sampling weights are then 

given by 

 𝑤ℎ𝑗𝑖
∗  = 𝑤ℎ𝑗𝑖  

𝑛ℎ

𝑛ℎ−1
 𝑚ℎ𝑗

∗ , (26) 

where 𝑤ℎ𝑗𝑖 is the original sampling weight, 𝑚ℎ𝑗
∗  is the number of times the 𝑗𝑡ℎ PSU appears 

in the bootstrap sample, and 𝑛ℎ is the number of PSUs that comprises stratum ℎ, ℎ = 1, … ,𝐻. 

The bootstrap weights can now be used to calculate the bootstrap replicates of 𝜃, i.e. 𝜃∗. These 

are then used to calculate the bootstrap variance of 𝜃, by firstly using Equation 26 to construct 

a vector of replicate weights. Let 𝜃𝑏
∗ be the estimator of 𝜃 calculated in the same way as 𝜃, 

but instead using the weights 𝑤ℎ𝑗𝑖
∗  as opposed to 𝑤ℎ𝑗𝑖 . Then using Equation 24 the bootstrap 

variance for CS can be calculated (Lohr, 2010; Kolenikov, 2010).  

The size of 𝐵 in CS should ideally be selected to be at least as large as the design’s degrees 

of freedom, i.e. 𝑛 − 𝐻. Selecting 𝐵 <  𝑛 − 𝐻 does not provide the highest possible rank of 

the co-variance matrix of the coefficient estimates (Kolenikov, 2010). However, this may not 

be of concern if 𝑛 − 𝐻 is sufficiently large, e.g. exceeds 100 (Kolenikov, 2010).  

The bootstrap works well for smooth and non-smooth functions of statistics in general 

sampling designs (Lohr, 2010). It may, however, be computationally intensive as opposed to 

the other two variance methods, viz. TSL and JRR. Since different bootstrap samples can be 

used to compute the variance, the bootstrap variance estimates may differ.  
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3.5 Confidence intervals for model parameters 

Once a sample is selected according to some design, estimators of parameters can be obtained. 

Moreover, additional information is often desired to make an assessment regarding the 

accuracy of these estimators. This is often done by constructing confidence intervals. A 

confidence interval summarises the uncertainty that the true population value lies in a bound 

placed on the probable error of an estimator from a single sample (Thompson, 2010). Two 

confidence intervals will be constructed, viz. the standard (asymptotic) confidence interval 

and the bootstrap percentile confidence interval. 

3.5.1 Standard (asymptotic) confidence interval 

Consider an estimator 𝜃 and suppose the estimator is consistent and asymptotically normal. 

Let 𝑉(𝜃) denote the variance of that estimator. Then the expression  

 𝜃̂−𝜃

𝑉(𝜃̂)
 , (27) 

is said to be a pivotal quantity if its distribution does not depend on the parameter 𝜃. For large 

samples the expression in Equation 27 possesses an approximately normal distribution and 

can be used to construct an asymptotic confidence interval for the parameter 𝜃 (Wackerly, et 

al., 2008). This assumption is true for TSL, JRR and the bootstrap under certain conditions: 

1. the parameter of interest 𝜃 can be expressed as a smooth function of totals; and 

2. the sample sizes are large: either the number of PSUs is large in each stratum or the survey 

contains a large number of strata (Binder, 1983; Efron & Tibshirani, 1994; Sitter, 1992; 

Lohr, 2010). 

The generic form for a 100(1-𝛼)% confidence interval for a population parameter, where 𝛼 is 

the level of significance, is 

 𝜃  ± 𝑡𝛼

2
,𝑑𝑓 . 𝑠𝑒̂(𝜃), (28) 

where 𝑡𝛼

2
,𝑑𝑓 is the student 𝑡-distribution with 𝑑𝑓 degrees freedom under the sampling design 

and 𝑠𝑒̂(𝜃) is an estimate of the standard error of 𝜃. Simulation studies suggest that the 

confidence intervals behave well in practice. These studies also suggest that the TSL and JRR 
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give similar estimates for variances while the bootstrap gives larger estimates of the variances 

(Lohr, 2010).  

3.5.2 The bootstrap percentile confidence interval 

The bootstrap percentile interval is a non-parametric technique used to find percentiles of the 

bootstrap replicates obtained from the bootstrap samples (Efron & Tibshirani, 1994). In 

Section 3.4.2.2.1 the empirical distribution function 𝐹̂ was used to approximate 𝐹, from 𝐹̂, B 

bootstrap samples, 𝑆∗, were drawn and from each bootstrap sample a bootstrap replicate 𝜃∗ 

was obtained. To generate the percentile interval, the first step is to sort the bootstrap 

replicates 𝜃𝑏
∗, in ascending order, i.e. 𝜃(𝑏)

∗ , b=1,2,…,B. Then the lower bound of the interval 

is obtained as the 𝐵 × 
𝛼

2
𝑡ℎ value of the sorted replicates while the upper bound is obtained 

by taking the 𝐵 × (1 − 
𝛼

2
)𝑡ℎ value of the sorted replicates (Efron & Tibshirani, 1994; Luus, 

2016). The 100 (1 –𝛼)% bootstrap percentile interval is thus given by: 

 [𝜃
(𝐵 × 

𝛼

2
)

∗  , 𝜃
(𝐵 ×(1− 

𝛼

2
))

∗ ], (29) 

where 𝜃
(𝐵 × 

𝛼

2
)

∗  and 𝜃
(𝐵 ×(1− 

𝛼

2
))

∗  are the lower and upper bounds of the bootstrap percentile 

interval, respectively.  

The bootstrap percentile interval for CS is exactly the same as defined in Equation 29 with 

the exception of the weights incorporated in the calculation of the replicates.  

3.6 Conclusion 

The difference between the estimation of parameters of a logistic model for CS and SRS is 

important to note. CS data as opposed to data obtained from SRS data are not i.i.d. and this 

has an effect on the MLE of the logistic regression model. This necessary adaptation was 

noted in Section 3.3 in which a pseudo MLE was obtained. Furthermore, three different 

variance estimation methods, viz. TSL, JRR and the bootstrap, were discussed including how 

the different methods are formulated firstly in an SRS setting followed by the CS setting. The 

variances can be used to construct a standard confidence interval and the bootstrap can be 
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used to construct a non-parametric confidence interval, namely the bootstrap percentile 

confidence interval.  

The next chapter will provide the methodology to aid in providing solutions to the research 

questions highlighted. The data sets and sampling design are described and the statistical 

techniques to compare CS and SRS will be discussed.  
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Chapter 4: Research methodology  

4.1 Introduction  

In Chapter 1 the problem statement, objectives and research questions were outlined. Chapters 

2 and 3 discussed the statistical theory on the major concepts outlined in Chapter 1. In this 

chapter, the statistical methodology will be outlined and various aspects concerning data 

collection and data validity will be discussed. In addition, the different statistical methods that 

will be used to assess the research questions and problem statement, will be highlighted. 

4.2 Data collection  

The Income and Expenditure Survey (IES) 2005/2006 forms the basis of the simulation study 

of this thesis. It was based on a newly designed Master Sample (MS) which is used for all 

surveys conducted by Statistics South Africa (Lehohla, 2008). This newly designed MS was 

developed from the 2001 population census’ enumerated areas (EAs), the smallest 

geographical areas into which the country is divided for survey purposes (Lehohla, 2008). 

The MS is designed to focus on all households living in private dwellings and workers living 

in workers’ quarters within the country.  

There were 3000 PSUs (note that the EAs were used as the PSUs) in the MS which were 

divided into four quarterly allocations of 750 each. Within each quarter an SRS of 250 PSUs 

was selected every month using the updated listings. Then within a selected PSU eight 

dwelling units were selected systematically (Lehohla, 2008). In total, 2400 dwelling units 

were covered during the twelve-month period. The survey was conducted from September 

2005 to August 2006. The households were sampled and participated for a period of one 

month after which new sub-samples were taken of households for the new month (Lehohla, 

2008). The data for a participant was collected for both the survey month and eleven months 

prior to the survey being conducted. This information was combined to give an estimated 

annual figure of expenditure per expenditure item (Lehohla, 2008).  
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There were three methods used to collect the data. A main questionnaire was used consisting 

of five sections of which the first covered the household characteristics, the next three sections 

covered different parts of consumption expenditure and the final section covered household 

expenditure. For the second method of data collection the participant had a weekly diary in 

which the daily acquisitions had to be written down. Finally, a summary questionnaire was 

administered in which the fieldworker had to summarise the total value of each item and 

transfer it to the appropriate part of the questionnaire (Lehohla, 2008). 

4.3 Weighting 

The IES data were collected through a complex sampling design, specifically a stratified two-

stage cluster sampling design. According to this design, the country was firstly stratified by 

province after which each of the nine strata was divided into enumerated areas, i.e. PSUs, 

with each enumerated area consisting of a number of households, i.e. SSUs. 

Consider stratum ℎ, ℎ = 1,… ,𝐻, and suppose in stratum ℎ there is 𝑁ℎ PSUs and within each 

PSU there is 𝑁ℎ𝑗 SSUs, 𝑗 = 1, … , 𝑁ℎ and ℎ = 1,… ,𝐻. PPS sampling, with number of SSUs 

the measure of size (MOS), was used to select 𝑛ℎ PSUs from each stratum in the first stage 

and then systematic sampling was used to select 𝑛ℎ𝑗 SSUs from each first-stage sampled PSU, 

𝑗 = 1,… , 𝑛ℎ and ℎ = 1,… ,𝐻  (Lehohla, 2008). The weighting procedure was applied at two 

stages (Lehohla, 2008). Consider PSU 𝑗 selected from stratum ℎ. Let 𝜋ℎ𝑗 denote the inclusion 

probability of the 𝑗th PSU from stratum ℎ. Then 

𝜋ℎ𝑗 = 𝑛ℎ ⋅
𝑁ℎ𝑗

∑ 𝑁ℎ𝑗𝑗
, 

where 𝑁ℎ𝑗 is number of SSUs in the selected PSU, ∑ 𝑁ℎ𝑗𝑗  the total number of SSUs in the 

stratum, and 𝑛ℎ the number of PSUs sampled from the stratum. Now let 𝜋𝑖|ℎ𝑗 denote the 

inclusion probability of the 𝑖th SSU given that the 𝑗th PSU was sampled from stratum ℎ.  

Then, 

𝜋𝑖|ℎ𝑗 =
𝑛ℎ𝑗

𝑁ℎ𝑗
, 
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where 𝑛ℎ𝑗 is the number of SSUs sampled from  the (ℎ𝑗)th PSU and 𝑁ℎ𝑗  is the number of 

SSUs in the (ℎ𝑗)th PSU. The total inclusion probability of the (ℎ𝑗𝑖)th SSU is then given by 

𝜋ℎ𝑗𝑖 = 𝜋ℎ𝑗 ⋅ 𝜋𝑖|ℎ𝑗 = 𝑛ℎ ⋅
𝑁ℎ𝑗

∑ 𝑁ℎ𝑗𝑗
⋅

𝑛ℎ𝑗

𝑁ℎ𝑗
.  

Furthermore, these probabilities were adjusted for non-response and the non-response 

adjustment factor used was the inverse of the response rate. The response rate is given by 

𝑟ℎ𝑗 =
𝑛𝑅

𝑛𝑇
, 

where 𝑛𝑅 is the number of responding SSUs and 𝑛𝑇 the total number of households visited 

(Lehohla, 2008). The design weight adjusted for non-response is thus given by 

𝑤ℎ𝑗𝑖 =
1

𝜋ℎ𝑗𝑖×𝑟ℎ𝑗
. 

The SAS macro CALMAR was used to perform the calibration and integrated weighting 

whereby 𝑤ℎ𝑗𝑖 was corrected to align with known population totals of certain auxiliary 

variables for which all information is known. The auxiliary variables are discussed in Section 

4.5.2. 

4.4 Response and imputations 

As discussed in Section 2.3.2.2 there are two types of non-response, namely unit and item 

non-response. Unit non-response occurs when an entire sampling unit’s information is 

omitted as opposed to item non-response which occurs when certain question responses are 

omitted (Luus, 2016; Lohr, 2010). Unit non-response is dealt with during weighting while 

item non-response imputations have to be carried out at different stages. The two stages at 

which imputations were done on missing data were: 

1. imputing for missing diaries; and 

2. imputing for item non-response. 

Households were required to complete four weekly diaries and a main questionnaire for a 

period of a month. However, for various reasons, the diaries were not completed for all four 

weeks. Households that did not diarise their expenditure for a minimum of two weeks were 

disqualified and treated as non-respondents. This approach was extended to households that 
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had diaries but no main questionnaire (Lehohla, 2008). Missing values for households with 

diaries for two or more weeks were imputed. Suppose a household only diarised two weeks 

of information, then the expenditure for those weeks would be summed together and the total 

would be divided by two. The result would be used to impute the missing information for the 

other two weeks. Similarly, if the household had only three weeks of diarised information, 

then the expenditure would be summed, the total would be divided by three and the result 

would be used for the fourth week (Lehohla, 2008).  

In terms of missing data specifically in which item non-response was present, imputations 

were done and these items were primarily related to housing. There are three different 

methods used to measure housing services from owner-occupied dwelling units, namely: 

1. interest on loans and mortgage bonds; 

2. imputed rent for owner-occupied dwelling units as estimated by respondents; and 

3. percentage of the value of the house as an estimate of the rental value of the dwelling unit 

(Lehohla, 2008).  

Essentially, imputations were carried out on missing items according to the following criteria: 

households that had similar characteristics to the ones missing were identified. Variables such 

as province, settlement type, type of dwelling unit, value of the house and the number of 

rooms were used to match households. The average amount for a particular item, as calculated 

from households of similar characteristics, was used to impute the missing data (Lehohla, 

2008). 

4.5 Statistical techniques 

In order to address the research questions a comparison must be made between the correct 

implementation of the sampling design in the analyses, CS, and where the sampling design 

was ignored, SRS. In order to do this the “true” values of the model parameters must be 

obtained such that the estimates produced by the estimators of the parameters obtained under 

CS and SRS can be compared to the “truth”. However, the “true” parameter values require 

knowledge of the population model, which is unknown. Instead, a surrogate population will 
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be used as a basis for obtaining the “true” parameters. Samples will be selected from the 

surrogate population to obtain the estimates of the parameters of interest. These estimates will 

be calculated for both SRS and CS under different weighting methods, i.e. no weighting 

(None), design weight (Design), linear person-level auxiliary variable weighting (𝐿𝑖𝑛𝑝𝑝), 

linear person and household-level auxiliary variable weighting (𝐿𝑖𝑛𝑝ℎ), exponential person-

level auxiliary variable weighting (𝑅𝑅𝑝𝑝), and exponential person and household-level 

auxiliary variable weighting (𝑅𝑅𝑝ℎ). The bias and mean squared error (MSE) will be used to 

determine how close the estimates are to the “true” parameters and will be discussed in 

Sections 4.6.1. Furthermore, standard confidence intervals will be obtained based on the TSL, 

JRR and bootstrap estimated variances calculated for no weighting and weighting. In addition, 

a bootstrap percentile confidence interval will be obtained for the parameters based on 

estimates obtained from applying no weighting as well as the different weighting methods. 

The different confidence intervals will be compared based on their coverage probabilities and 

lengths. These are discussed further in Section 4.6.2. 

4.5.1 Surrogate population 

The surrogate population that will be used is the Income and Expenditure Survey (IES) 

2005/2006. In order to prevent any irregularities, a number of adjustments were made to the 

IES data set. Firstly, observations having missing data values were removed. Note that 

although various imputation mechanisms based on sound theory exist to compute those 

values, it would have presented another level of uncertainty and variability which could affect 

the inference (Luus, 2016). Furthermore, imputation is not the focus of this thesis. Secondly, 

only observations with age ranging from 21 to 65 were retained; this was considered a 

working age. The final adjustment was done on the household expenditure variable. This 

variable is important as it will be used to construct the response variable. Only household 

expenditure with positive values were retained. After all the adjustments were made, the 

surrogate population consisted of 25893 persons. The surrogate population was further 

adjusted to select only one person per household, namely the oldest person, which was 
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considered as representative of the head of the household. This resulted in 17541 households 

which were grouped into 283 PSUs (Luus, 2016). 

4.5.2 The simulated samples 

Monte Carlo simulation was applied to the surrogate population so that the performance of 

the different weight-based estimators of the model parameters could be compared. The 

bootstrap and jackknife methods were then applied to the simulated data with the purpose of 

obtaining bootstrap and jackknife estimated variances to use in the calculation of the 

confidence intervals.   

The simulation consisted of drawing 100 samples from the surrogate population where each 

sample followed the same design as the IES 2005/2006, i.e. a stratified two-stage cluster 

sampling design. The nine provinces of South Africa were used as the strata, with the EAs in 

each stratum acting as the PSUs and the dwelling units within a PSU as the SSUs. The number 

of observations in each sample was 2028.  

Differential non-response (such as older females being over-represented and younger males 

being under-represented), as described in Section 2.3.2.3, is often found in practical situations 

in South Africa. In order to determine this type of non-response error it was simulated in the 

design of the samples to evaluate the different weighting procedures under non-perfect 

circumstances. Two sets of auxiliary variables were used, namely person-level auxiliary 

variables and person and household-level auxiliary variables, to determine which weighting 

procedure performs best under such circumstances. For the person-level auxiliary variables, 

indicated by the subscript “pp”: province (9 categories), gender (2 categories), race (4 

categories), and age were used. For person and household-level auxiliary variables, indicated 

by the subscript “ph”: all person-level auxiliary variables, area type (2 categories), and 

household size (3 categories) (Luus, 2016).  
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4.5.3 Model and variables 

The logistic regression model will be constructed for both the surrogate population and for 

each of the 100 simulated samples. In order to use logistic regression, as mentioned in Chapter 

3, the response variable has to be dichotomous. Since the surrogate population contains 

household information and the subsequent samples were selected per household, a poverty 

cut-off value had to be devised that captures household dynamics.  

The food poverty line (FPL) is a poverty level used that captures consumption expenditure at 

household level. This value is rebased to give a value per person. The standard level for the 

FPL is $2.34 per person per day. In 2006 this amounted to R16.38 per person per day and 

R5978.70 per person per year. To convert the value to a per household value an average was 

determined from the product of the household size and R5978.70. This amounted to 

R11062.20 household expenditure per year (Lehohla, 2017). Therefore, the response variable 

based on the food poverty level, 𝑌, is given by 

𝑌 = {
1, 𝑖𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 ≤ 𝑅11062.20
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The explanatory variables included in the model are age, gender, race, area type, education 

level, province and household size. The age variable, as mentioned in Section 4.5.1, ranges 

from 21 to 65. Gender, race, area type, province and household size were coded in such a way 

that the category with the largest proportion was used as the reference category. In addition, 

education level, which consists of 28 categories, was re-grouped into 6 smaller categories. 

Table 1 shows the re-grouping of the education level variable. 
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Table 1: Re-grouped education variable. 

No 

schooling Primary Intermediate Secondary Matric Tertiary 

00=No 

schooling 

01=Grade 

R 09=Grade8 11=Grade10 13=Matric 14=NTC I 

26=”Don’t 

know” 

02=Grade 

1 10=Grade9 12=Grade11 19=certificate=12 15=NTC II 

NA 03=Grade2   17=Certificate<13 20=diploma=12 16=NTC III 

  04=Grade3   18=Diploma<13   21=Bachelors 

  05=Grade4       22=Bachelors+Diploma 

  06=Grade5       23=Honours  

  07=Grade6       24=Higher degree 

  08=Grade7       25=Other 

 

Household size, which consisted of 10 categories, was also re-grouped into 3 categories. This 

is depicted in Table 2 below. 

Table 2: Re-grouped household size variable. 

Household 1 Household 2 Household 3 and more 

one member two members three members 

    four members 

    five members 

    six members 

    seven members 

    eight members 

    nine members 

    ten members 

 

A preliminary test was done to determine which category is the largest and this was used as 

the baseline category for each of the categorical variables. The explanatory variables are 

defined below: 

 Age variable ranges from 21 to 65; 
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 Gender consists of males (coded 1) and females (coded 2). From the preliminary test it 

was determined that the males are the largest category. The new variable, 𝐺1, is defined 

as: 

𝐺1 = { 
1, 𝑖𝑓 𝐹𝑒𝑚𝑎𝑙𝑒
0, 𝑖𝑓 𝑀𝑎𝑙𝑒

; 

 Area type consists of urban (coded 1) and rural (coded 0). From the preliminary test it 

was determined that the urban category makes up the greater proportion. The new 

variable, 𝐴1, is defined as: 

𝐴1 = {
1, 𝑖𝑓 𝑟𝑢𝑟𝑎𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 

 South Africa is made up of nine provinces. From the preliminary test it was determined 

that KwaZulu-Natal makes up the largest proportion. The new variables, 𝑃1 to 𝑃8, are 

defined as: 

𝑃1 = {
1, 𝑖𝑓 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 𝐶𝑎𝑝𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃2 = {
1, 𝑖𝑓 𝐸𝑎𝑠𝑡𝑒𝑟𝑛 𝐶𝑎𝑝𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃3 = {
1, 𝑖𝑓 𝑁𝑜𝑡ℎ𝑒𝑟𝑛 𝐶𝑎𝑝𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃4 = {
1, 𝑖𝑓 𝐹𝑟𝑒𝑒 𝑆𝑡𝑎𝑡𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑃5 = {
1, 𝑖𝑓 𝑁𝑜𝑟𝑡ℎ 𝑊𝑒𝑠𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃6 = {
1, 𝑖𝑓 𝐺𝑎𝑢𝑡𝑒𝑛𝑔
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑃7 = {
1, 𝑖𝑓 𝑀𝑝𝑢𝑚𝑎𝑙𝑎𝑛𝑔𝑎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃8 = {
1, 𝑖𝑓 𝐿𝑖𝑚𝑝𝑜𝑝𝑜
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

; 

 The race variable consists of four categories, namely Black, Coloured, Asian/Indian and 

White, coded 1 to 4 respectively. From the preliminary results it was determined that 

Black is the largest category. The new variables, 𝑅1 to 𝑅3, are defined as: 
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𝑅1  = {
1, 𝑖𝑓 𝐶𝑜𝑙𝑜𝑢𝑟𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑅2 = {
1, 𝑖𝑓 𝐼𝑛𝑑𝑖𝑎𝑛/𝐴𝑠𝑖𝑎𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅3 = {
1, 𝑖𝑓 𝑊ℎ𝑖𝑡𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

; 

 The household variable consists of three categories. From the preliminary results it was 

determined that a household size of one was the largest category. The new variables, 𝐻1 

and 𝐻2, are defined as: 

𝐻1 = {
1, 𝑖𝑓 𝑡𝑤𝑜 𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐻2 = {
1, 𝑖𝑓 𝑡ℎ𝑟𝑒𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 

 The education level variable consists of six categories. From the preliminary results it was 

determined that the category “primary school” had the largest proportion. The new 

variables, 𝐸1 to 𝐸5, are defined as: 

𝐸1 = {
1, 𝑖𝑓 𝑁𝑜 𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑛𝑔

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸2 = {
1, 𝑖𝑓 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸3 = {
1, 𝑖𝑓 𝐻𝑖𝑔ℎ 𝑆𝑐ℎ𝑜𝑜𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐸4 = {
1, 𝑖𝑓 𝑀𝑎𝑡𝑟𝑖𝑐
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐸5 = {
1, 𝑖𝑓 𝑇𝑒𝑟𝑡𝑖𝑎𝑟𝑦
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Finally, the population logistic regression model is given by 

 Povertylev =𝛽0 + 𝛽1AGE + 𝛽2𝐴1 + 𝛽3𝐺1 + 𝛽4𝑅1 + 𝛽5𝑅2+ 𝛽6𝑅3+ 𝛽7𝐸1 + 

𝛽8𝐸2 + 𝛽9𝐸3+ 𝛽10𝐸4+ 𝛽11𝐸5+ 𝛽12𝐻1+ 𝛽13𝐻2+ 𝛽14𝑃1+ 𝛽15𝑃2+ 𝛽16𝑃3+ 

𝛽17𝑃4+ 𝛽18𝑃5 + 𝛽19𝑃6 + 𝛽20𝑃7+ 𝛽21𝑃8. (30) 
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4.6 Statistical methodology 

After the data cleaning and variable transformation is done logistic regression models will be 

obtained for both the surrogate population and the samples. The surrogate population model 

will represent the “true” parameters to which the sample estimates will be compared. The 

logistic model defined in Equation 30 will be applied to each sample, either ignoring the 

sample design (None) or accounting for the design through the inclusion of the different 

sampling weights. The different weighting procedures that will be used and compared, are: 

design weighting only (Design), calibration and integrated weighting using the linear distance 

method on person auxiliary variables (𝐿𝑖𝑛𝑝𝑝), calibration and integrated weighting using the 

linear distance method on person and household  auxiliary variables (𝐿𝑖𝑛𝑝ℎ), calibration and 

integrated weighting using the raking ratio (exponential) distance method on person auxiliary 

variables (𝑅𝑅𝑝𝑝), and calibration and integrated weighting using the raking ratio distance 

method on person and household auxiliary variables (𝑅𝑅𝑝ℎ). The standard errors of the 

estimators from each of those methods, i.e. None, Design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ, will 

be obtained using TSL, JRR, and the bootstrap. This will be done in SAS and R. 

4.6.1 Assessment of the estimators of the model parameters 

This section presents the measures that will be used to assess how close the estimators of the 

model parameters are to the “truth”. Let 𝛽̂𝑖 denote the estimator of the 𝑖th model parameter, 

𝛽𝑖, 𝑖 = 0,… , 𝑝. The estimator will be assessed based on its expected value, bias and mean 

squared error (MSE). Each of these measures are discussed below.  

Consider the 𝑟th sample, 𝑟 = 1, … , 𝑅, and let 𝛽̂𝑖𝑟 denote the replicate of 𝛽̂𝑖 obtained when 

fitting the logistic regression model to the 𝑟th sample. The expected value of 𝛽̂𝑖 is 

approximated by the average of the R replicates of 𝛽̂𝑖, 

1

𝑅
∑ 𝛽̂𝑖𝑟

𝑅
𝑟=1 . 
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The closer the expected value of an estimator is to the parameter, the better the estimation 

method (Wackerly, et al., 2008). The bias of an estimator is defined as the difference between 

the expected value of the estimator and the parameter, and is approximated by 

𝑏𝑖𝑎𝑠(𝛽̂𝑖)= 
1

𝑅
∑ 𝛽̂𝑖𝑟

𝑅
𝑟=1  - 𝛽𝑖, 

where 𝛽𝑖 is the “true” value of the model parameter obtained from the surrogate population. 

If the bias is zero, i.e. 𝐸(𝛽̂𝑖) is equal to the “true” value then 𝛽̂𝑖 is said to be an unbiased 

estimator. The absolute bias is simply | 
1

𝑅
∑ 𝛽̂𝑖𝑟

𝑅
𝑟=1  - 𝛽𝑖 |. 

The mean squared error is defined as the average of the square of the distance between the 

estimator and its target parameter and is approximated by 

𝑀𝑆𝐸(𝛽̂𝑖) = 
1

𝑅
∑ (𝛽̂𝑖𝑟 − 𝛽𝑖)

2𝑅
𝑟=1 . 

There are two aspects to the MSE of an estimator, i.e. the variance of the estimator and the 

bias. The smaller the MSE the better the estimator. However, if the MSE is large this can be 

due to a large variance or bias or both. If the estimator is unbiased then the MSE equals the 

variance (Wackerly, et al., 2008).  

The expected value, bias and MSE will be used to assess the performance of the unweighted 

and different weighted estimators of the logistic regression model parameters. 

4.6.2 Assessment of the confidence intervals for the model parameters 

Consider 𝛽𝑖, the 𝑖𝑡ℎ model parameter, estimated by 𝛽̂𝑖 and let {𝛽̂𝑖𝑟} denote the R replicates of 

𝛽̂𝑖 obtained from the R samples. The replicates are used to construct the following 95% 

confidence intervals for 𝛽𝑖: 

1. standard (asymptotic) interval using the TSL estimated variance; 

2. standard (asymptotic) interval using the JRR estimated variance; 

3. standard (asymptotic) interval using the bootstrap estimated variance; and 

4. the bootstrap percentile confidence interval. 
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In order to determine which of the intervals performs “best” under the different weighting 

procedures the confidence intervals will be assessed based on their coverage probability and 

length.  

The coverage probability of a confidence interval is defined as the proportion of times that 

the confidence interval, based on the 𝑅 replicate samples, contains the parameter 𝛽𝑖. The 95% 

standard (asymptotic) confidence interval is obtained as: 

[𝛽̂𝑖𝐿𝐿𝑟
;  𝛽̂𝑖𝑈𝐿𝑟

] = 𝛽̂𝑖𝑟  ±  𝑡𝛼

2
,𝑑𝑓. 𝑠𝑒̂(𝛽̂𝑖𝑟) 

where 𝑠𝑒̂(𝛽̂𝑖𝑟) is the estimated standard error of 𝛽̂𝑖𝑟 obtained using either TSL, JRR or the 

bootstrap, 𝛽̂𝑖𝐿𝐿𝑟
 is the lower limit of the confidence interval of the 𝑟𝑡ℎ sample for the 𝑖𝑡ℎ model 

parameter, and 𝛽̂𝑖𝑈𝐿𝑟
 is the upper limit of the confidence interval of the 𝑟𝑡ℎ sample for the 𝑖𝑡ℎ 

model parameter. This gives [𝛽̂𝑖𝐿𝐿1
;  𝛽̂𝑖𝑈𝐿1

], [𝛽̂𝑖𝐿𝐿2
;  𝛽̂𝑖𝑈𝐿2

], …, [𝛽̂𝑖𝐿𝐿𝑅
;  𝛽̂𝑖𝑈𝐿𝑅

]. The coverage 

probability (CP) is then calculated as 

CP = 
# {𝛽̂𝑖𝐿𝐿𝑟

≤ 𝛽𝑖 ≤ 𝛽̂𝑖𝑈𝐿𝑟
}

𝑅
. 

The confidence interval for which CP is the closest to 95% is considered the “best”. 

Consider the 𝑟𝑡ℎ sample. 𝐵 bootstrap samples can be selected from sample 𝑟, namely 𝑆𝑟1
∗ , 𝑆𝑟2

∗ , 

…, 𝑆𝑟𝐵
∗ . From each bootstrap sample a replicate of 𝛽̂𝑖𝑟 is obtained, i.e. 𝛽̂𝑖𝑟1

∗ , 𝛽̂𝑖𝑟2

∗ , …,𝛽̂𝑖𝑟𝐵

∗ . As 

discussed in Section 3.5.2 these replicates for sample 𝑟 are sorted in ascending order, of which 

the lower bound of the confidence interval is the 𝐵 × 
𝛼

2
𝑡ℎ value of the sorted replicates and 

the upper bound of the confidence interval is the 𝐵 × (1 − 
𝛼

2
)𝑡ℎ value of the sorted replicates. 

Then a 95% bootstrap percentile confidence interval for the 𝑟𝑡ℎ sample is given by  

[𝛽̂𝑖𝐿𝐿𝑟

∗ ; 𝛽̂𝑖𝑈𝐿𝑟

∗ ] = [𝛽̂𝑖𝑟
(𝐵 × 

𝛼
2
𝑡ℎ)

∗ ; 𝛽̂𝑖𝑟
(𝐵 ×(1− 

𝛼
2
)𝑡ℎ)

∗ ], 

where 𝛽̂𝑖𝐿𝐿𝑟

∗  and 𝛽̂𝑖𝑈𝐿𝑟

∗  are the lower and upper bounds for the 𝑟𝑡ℎ sample for the 𝑖𝑡ℎ model 

parameter using the bootstrap percentile confidence interval. Similarly, bounds can be 

obtained for r=1,2,…,R, which gives [𝛽̂𝑖𝐿𝐿1

∗ ; 𝛽̂𝑖𝑈𝐿1

∗ ], [𝛽̂𝑖𝐿𝐿2

∗ ; 𝛽̂𝑖𝑈𝐿2

∗ ], …, [𝛽̂𝑖𝐿𝐿𝑅

∗ ; 𝛽̂𝑖𝑈𝐿𝑅

∗ ]. The CP 

for the bootstrap percentile confidence interval is calculated as 
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CP= 
# {𝛽̂𝑖𝐿𝐿𝑟

∗ ≤ 𝛽𝑖 ≤ 𝛽̂𝑖𝑈𝐿𝑟

∗ }

𝑅
. 

The coverage probability will range between zero and one. The closer the coverage 

probability is to the confidence level, the better the coverage. However, the improved 

coverage can be due to a large confidence interval length caused by large variances. 

Therefore, the confidence interval length is considered which is defined as 

𝐿𝑖𝑟 = 𝛽̂𝑖𝑈𝐿𝑟
− 𝛽̂𝑖𝐿𝐿𝑟

,  

where 𝐿𝑖𝑟 is the length of the interval for 𝛽𝑖 calculated from the 𝑟𝑡ℎ sample. This gives 𝐿𝑖1, 

𝐿𝑖2, …, 𝐿𝑖𝑅  from which an average length is calculated, 

∑ 𝐿𝑖𝑟
𝑅
𝑖=1

𝑅
. 

The average length is calculated for each interval type and each weighting approach and will 

be considered in conjunction with the CP to determine the “best” confidence interval. 

4.7 Conclusion 

This chapter provided all the tools to assess the research questions outlined in Chapter 1. In 

this chapter the surrogate population, i.e. the IES 2005/2006 was defined and the response 

variable coupled with the explanatory variables which are required to build the logistic 

regression model were constructed and clearly defined. From the surrogate population, 

samples were selected; each one having a CS design. For each of these samples a logistic 

regression will be constructed from which estimators will be obtained under SRS and CS and 

compared to the parameters obtained from the surrogate population. Two such methods were 

discussed in this chapter, viz. the bias and MSE. Furthermore, variances of these estimators 

can be obtained. Section 3.4 discussed three variances under CS, i.e. TSL, JRR and the 

bootstrap. These variances will be used to construct a standard (asymptotic) confidence 

interval. In addition, a non-parametric confidence interval was discussed, i.e. the bootstrap 

percentile interval. Two methods were discussed to assess the precision of these confidence 

intervals, i.e. the coverage probability and the confidence interval length. The next chapter 

will provide empirical results for the methods mentioned in Chapter 4.  
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Chapter 5: Data analysis and results 

5.1 Introduction 

In the previous chapters the building blocks were laid in order to address the research 

questions outlined in Chapters 1 and 2. Chapter 3 explained the statistical theory and reviewed 

previous literature while Chapter 4 outlined the statistical methodology and simulated 

samples needed to build models to compare to the “truth”. As noted in Chapter 4, for each 

simulated sample a logistic model will be obtained in the form of Equation 30 under the 

assumption of a SRS and CS in which the Design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ weights will 

be used. From the results the absolute bias and MSE will be calculated and the results will be 

displayed for a selected number of parameters. In addition, standard (asymptotic) confidence 

intervals will be obtained for the parameters based on the TSL, JRR and bootstrap estimated 

variances, including the non-parametric bootstrap percentile interval. The results will be used 

to obtain the coverage probability and confidence interval length outlined in Section 4.6.2. 

The analysis will be replicated in SAS and R and then the results will be compared. An outline 

of the formulation of the results in the chapter is displayed in Figure 3. 
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Figure 3: Outline of the simulation study. 
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5.2 Discussion of results 

In this section the results obtained from the simulation study are examined.  Only a selection 

of the results is shown and discussed here. The complete collection of results is presented in 

Appendix A to D and all programmes used in the simulation study are available from the 

author at 3315602@myuwc.ac.za.  

5.2.1 Estimators of model parameters 

As discussed previously, the Income and Expenditure Survey conducted over the period 

September 2005 until August 2006 forms the surrogate population of this simulation study. 

This section considers the estimators of the model parameters and their measures of accuracy. 

Two accuracy measures are discussed and displayed in figures for the estimators, viz. the 

absolute bias and MSE. Figure 3 gives an outline as to how the results are reported for two 

statistical packages, namely SAS and R. R is opensource software which was developed as a 

dialect of the S language, an object-orientated statistical programming language (Seefield & 

Linder, 2007; Lumley, 2011). It has a package called “survey” which accommodates CS 

designs (Lumley, 2011). This was used to obtain the estimates from which the subsequent 

biases and MSEs were calculated. SAS is a statistical software programme primarily 

developed for business solutions pertaining to manipulation of data, performance of 

sophisticated analyses and business intelligence (Simon & Mitterling, 2017). SAS contains 

“procs” which are used to perform the analyses (Elliot & Woodward, 2010). The “proc 

survey” was used to incorporate the CS design in the analyses. Similar to R, once the estimates 

were obtained the absolute biases and MSEs were calculated. 

5.2.1.1 The absolute bias 

In Section 4.6.1 the absolute bias was discussed as one of the methods to assess how close to 

the “truth” an estimator is. The estimates were obtained and a selection of the results for the 

absolute bias are displayed in Figure 4 to Figure 10 for the estimators 𝛽̂0, 𝛽̂2, 𝛽̂4, 𝛽̂5, 𝛽̂11, 𝛽̂12 

and 𝛽̂20. The remainder are included in Appendix A1 to A14. The Figures contain SRS (no 
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weights), Design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ, the weights used under CS. For each method 

the absolute bias is displayed for R and SAS next to each other. 

 

Figure 4:  The absolute bias of the estimator of 𝛽0 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 

In Figure 4, it is seen that the absolute bias for the SAS and R output were the same. 

Estimators based on the design weight showed little to no bias. Similarly, estimators based 

on 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ showed little bias. In contrast greater bias was shown when SRS, 𝑅𝑅𝑝𝑝 

and 𝑅𝑅𝑝ℎ were used.  
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Figure 5: The absolute bias of the estimator of 𝛽2 under SRS and 

different weighting methods are shown for SAS and R. 

Similar to Figure 4, the SAS and R output shown in Figure 5, were exactly the same. Likewise, 

similar patterns were observed, namely the estimates obtained using the design weight had 

very little bias in contrast to the estimates obtained from SRS. 
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Figure 6: The absolute bias of the estimator of 𝛽4 under SRS and 

different weighting methods are shown for SAS and R. 

In Figure 6, the absolute bias shows a different pattern in comparison to Figure 4 and Figure 

5. The estimates obtained from the Design, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ weights show larger absolute 

bias as opposed to estimates obtained from the other three methods. The bias based on the 

weight 𝑅𝑅𝑝ℎ was the lowest. 
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Figure 7: The absolute bias of the estimator of 𝛽5 under SRS and 

different weighting methods are shown for SAS and R. 

In Figure 7, the output from SAS and R of the absolute bias of the estimator of the parameter 

𝛽5, the coefficient of predictor 𝑅2, differed. The explanatory 𝑅2 represented the Indian or 

Asian race group. It should be noted that from the preliminary results the frequency of 𝑅2 was 

small. This resulted in the quasi-separation of data points in some of the samples. When quasi-

separation is detected in SAS, the procedure terminates the MLE iteration process and reports 

the last iteration. In the results window SAS reports that the validity of the model is 

questionable (SAS Institute, 2017). In R the solution for these estimator’s MLE are infinite, 

however R provides a finite value by falsely converging the iterative procedure (Heinze & 

Schemper, 2002). The difference between the SAS and R output can be attributed to when 
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the software terminates the iteration process (Heinze & Schemper, 2002). The SAS output’s 

absolute bias was slightly smaller as opposed to results obtained from R. There was no 

significant difference across weighting methods from the R output. 

 

Figure 8: The absolute bias of the estimator of 𝛽11 under SRS and 

different weighting methods are shown for SAS and R. 

Similar to Figure 7, the output from SAS and R in Figure 8, differed as a result of quasi-

separation of data points. The SAS output absolute bias was slightly smaller than output 
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obtained from R. The estimators based on 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ showed smaller absolute bias for 

both SAS and R. 

 

 

Figure 9: The absolute bias of the estimator of 𝛽12 under SRS and 

different weighting methods are shown for SAS and R. 

In Figure 9, the estimates obtained under CS achieved absolute biases across the different 

weighting methods that were lower than those obtained under the assumption of SRS. The 
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weights Design, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ showed the lowest absolute bias. The output from SAS and 

R were the same. 

 

Figure 10: The absolute bias of the estimator of 𝛽20 under SRS and 

different weighting methods are shown for SAS and R. 

Similar to Figure 9, the absolute bias in Figure 10 from CS was the lowest across weighting 

methods. The results for SRS had the greatest bias, biases of estimates obtained from 

weighting methods 𝑅𝑅𝑝𝑝 and 𝑅𝑝ℎ were the lowest. 

5.2.1.2 The mean squared error 

The MSE was discussed in Section 4.6.1 and will be another measure used to assess how 

close the selected estimators are to the “truth”. It is comprised of the bias and variance of an 
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estimator and therefore the results shown in Figure 4 to Figure 10 will comprise some part of 

the MSE results. The MSE for estimators 𝛽̂0, 𝛽̂2, 𝛽̂4, 𝛽̂5, 𝛽̂11, 𝛽̂12 and 𝛽̂20 are displayed in 

Figure 11 to Figure 17 and discussed. The remaining parameters can be found in Appendix 

B1 to B14. 

 

Figure 11: The MSE of the estimator of 𝛽0 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 

In Figure 11, the output for the MSE from SAS and R were the same for the estimator of 𝛽0. 

This is consistent with Figure 4. The MSE for estimates obtained from the CS design using 

the weight 𝑅𝑅𝑝𝑝 was the lowest. This is closely followed by SRS. These two methods 

displayed larger absolute bias. This implies that the variance produced by these methods were 
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the least. Similarly, estimates obtained from the design weight produced the largest MSE with 

the smallest absolute bias which implies that its variance was large. 

 

Figure 12: The MSE of the estimator of 𝛽2 under SRS and different 

weighting methods are shown for SAS and R. 

 

Figure 12, shows similar trends to that of Figure 11, namely that the MSE  obtained from 

𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ were the lowest and the MSE obtained from the Design, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ 

were the largest. This implies that methods 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ produced low variance. The 

results for SAS and R were the same. 
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Figure 13: The MSE of the estimator of 𝛽4 under SRS and different 

weighting methods are shown for SAS and R. 

In Figure 6, the absolute bias displayed for Design, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ were the largest. In 

Figure 13 the MSE based on those methods were also the largest, this implies that these 

methods produce large variances and large biases. In contrast SRS, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ produced 

small absolute bias and lower MSE, with 𝑅𝑅𝑝𝑝 having the smallest MSE. 
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Figure 14: The MSE of the estimator of 𝛽5 under SRS and different 

weighting methods are shown for SAS and R. 

In Figure 14, the output from SAS and R differed which is consistent with Figure 7. The MSE 

values produced by SAS and R are very different in comparison to the others already 

discussed. The output obtained from SAS produced lower MSE values across the weights in 

comparison to R. The estimates obtained from SRS produced lower MSE values from both 

SAS and R. Once more, these differences were attributed to the quasi-separation of data 

points, due to small frequencies observed in the explanatory variable 𝑅2. 
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Figure 15: The MSE of the estimator of 𝛽11 under SRS and different 

weighting methods are shown for SAS and R. 

The SAS and R output differed in Figure 15, for the 𝛽11 estimator. Once more the SAS output 

produced lower values across the methods in comparison to those obtained from R. As noted 

in Figure 8, quasi-separation was present in the variable. 
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Figure 16: The MSE of the estimator of 𝛽12 under SRS and different 

weighting methods are shown for SAS and R. 

In Figure 16, the MSE was larger under Design, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ as opposed SRS and 𝑅𝑅𝑝𝑝. 

In Figure 9, the absolute bias under SRS soared which implies that the variance produced for 

estimates obtained from SRS was very small. 
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Figure 17: The MSE of the estimator of 𝛽20 under SRS and different 

weighting methods are shown for SAS and R. 

Figure 17, shows similar trends to those of Figure 16, with 𝑅𝑅𝑝𝑝, 𝑅𝑅𝑝ℎ and SRS producing 

small MSE values as opposed to the other three methods. Similarly, these methods produced 

larger absolute bias values implying that lower variances were observed. 
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5.2.2 Confidence intervals for model parameters 

This section reviews the results obtained for the 95% confidence intervals calculated for the 

model parameters along with their measures of accuracy. The standard error provides a bound 

for the model parameter. The coverage probability as defined in Section 4.6.2 provides an 

indication of the precision of the standard error, and if the model parameter is contained in it. 

Furthermore, the standard error affects the length of the confidence interval: larger standard 

errors result in greater lengths and provide less precision. Therefore, the confidence interval 

lengths are of importance. Three standard (asymptotic) confidence intervals based on TSL, 

JRR and bootstrap estimated variances, and an additional non-parametric interval, the 

bootstrap percentile, are obtained. The coverage probability and confidence interval length 

were subsequently obtained and the output is displayed and discussed. 

5.2.2.1 Coverage probability 

The standard (asymptotic) confidence interval was formulated in Section 3.5.1 and the results 

obtained will be displayed and discussed. Three methods were used to obtain the standard 

errors, viz. TSL, JRR and the bootstrap, that will be used in the calculation of the standard 

interval. Furthermore, the bootstrap percentile interval is a non-parametric confidence 

interval obtained from taking the percentiles of the estimates obtained from the bootstrap 

samples. The bootstrap samples were simulated from the samples discussed in Section 4.5.2. 

These samples formed the basis from which the estimates were calculated. The coverage 

probabilities were obtained for both SAS and R and the output is displayed for SRS and CS 

using the weights Design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ. The probability values range from 

0 to 1 with the ideal probability being 0.95; the level of significance. A selection of results is 

displayed in Figure 18 toFigure 20. The remainder is included in Appendix C1 to C19. The 

top left panel displays the coverage probability for the standard interval based on the TSL 

estimated variance, the top right panel displays the coverage probability for the standard 

interval based on the JRR estimated variance, the bottom left panel shows the coverage 
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probability for the standard interval based on the bootstrap estimated variance and the bottom 

right panel shows the coverage probability for the bootstrap percentile interval. 

 

 

Figure 18: The coverage probabilities for 𝛽0 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

In Figure 18, the R and SAS output for the coverage probability values for the 𝛽0 parameter 

were the same as when TSL variance estimation was used. The coverage probability of the 

intervals obtained using the design weight and SRS were the furthest from the level of 
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significance of 0.95. The coverage probabilities of the remaining intervals were all equidistant 

from the level of significance. 

Figure 18, also shows a difference between the SAS and R outputs for the coverage 

probabilities of the interval for 𝛽0 in which the JRR estimated variance was used. The 

differences were attributed to quasi-separation of data points in some of the replicates. The 

coverage probability for the results from R deviated more from the level of significance as 

opposed to the SAS results. The results for the estimates obtained from the weights 𝐿𝑖𝑛𝑝ℎ, 

𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ for the SAS output were the closest to the level of significance. 

As noted in Section 3.4.2.2.2 the bootstrap variance may differ, therefore the results obtained 

from SAS and R are different. As shown in Figure 18, R produced larger coverage 

probabilities than SAS. The weights 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ had better coverage for both SAS and 

R.  

The bootstrap percentile interval’s coverage probabilities on the other hand were the same for 

SAS and R. This is due to the same bootstrap samples being used for both software programs. 

The coverage probabilities for 𝐿𝑖𝑛𝑝ℎ were the closest to the level of significance. This in 

comparison to the Design weight that deviated the furthest from the level of significance. 

Overall, when the TSL estimated variance was used, the results showed more stable coverage 

probabilities and less deviation from the level of significance across methods was observed. 

As opposed to the bootstrap that showed greater fluctuations across methods. In terms of the 

variances produced from the different weighting methods, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ showed 

less deviation from the level of significance across methods. 
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Figure 19: The coverage probabilities for 𝛽4 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

In Figure 19, the results for SAS and R for the coverage probabilities using TSL were the 

same and better coverage were produced using the Design weight in comparison to coverage 

probabilities produced for SRS for the parameter 𝛽4. 
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The results shown for JRR variance estimation for the Design weight, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ 

differed for SAS and R. Better coverage probabilities were shown for R across different 

methods with the Design and 𝐿𝑖𝑛𝑝𝑝 weights being the closest to the level of significance. 

When the bootstrap variance estimation was used the SAS output’s coverage probabilities 

were smaller than when output was obtained from R. R also produced better coverage as 

opposed to that of SAS, with the Design weight producing the best coverage. 

The bootstrap percentile interval’s coverage probabilities showed that the coverage 

probabilities for SRS deviated the furthest from the level of significance. 𝐿𝑖𝑛𝑝ℎ and 𝑅𝑅𝑝ℎ 

coverage probabilities were the closest to the level of significance.  

In general, the coverage probabilities for 𝛽4 showed contrasting results, once more when the 

TSL variance estimator was used, better coverage was observed across weighting methods. 
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Figure 20: The coverage probabilities for 𝛽7 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

In Figure 20, the TSL estimated variance coverage probabilities for SAS and R were once 

again the same. The weighting methods Design and 𝑅𝑅𝑝ℎ deviated the least from the level of 

significance with 𝐿𝑖𝑛𝑝𝑝 deviating the furthest from the level of significance. 

The JRR estimated variance coverage probabilities produced slight differences for SAS and 

R for 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ. The coverage probabilities for Design and 𝑅𝑅𝑝ℎ deviated the smallest 
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from the level of significance, closely followed by 𝐿𝑖𝑛𝑝ℎ obtained from R. The SAS output 

displayed for 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ deviated the furthest from the level of significance. 

Figure 20, also shows contrasting results for SAS and R for the bootstrap estimated variance 

coverage probabilities. The output obtained from R performed slightly better than that 

obtained from SAS. The weight 𝑅𝑅𝑝ℎ obtained from R was the closest to the level of 

significance. 

The bootstrap percentile interval’s coverage probabilities were the same for SAS and R. The 

weight Design deviated the least from the level of significance. 

Overall, for parameter 𝛽7 the weights Design and 𝑅𝑅𝑝ℎ deviated the least from the level of 

significance with output obtained from R generally doing better. 

5.2.2.2 Confidence interval length 

The confidence interval length was discussed in Section 4.6.2, as noted, improved coverage 

could be due to large confidence intervals as a result of large variances. Therefore, the 

confidence interval length provides a scope to validate the coverage probabilities displayed 

in Figure 18 to Figure 20. The confidence interval length was calculated in both SAS and R. 

In addition, results were obtained under SRS and CS using the weights Design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 

𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ. A selection of the results is displayed in Figure 21 to Figure 23. The 

remainder are in Appendix D1 to D19. Once more the top left panel contains the confidence 

interval length for the TSL estimated variance, top right for the JRR estimated variance, 

bottom left the bootstrap estimated variance and bottom right the confidence interval length 

for the bootstrap percentile interval. 
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Figure 21: The confidence interval lengths for 𝛽0 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

In Figure 21, the lengths based on the TSL estimated variance do not differ greatly amongst 

the different methods, with 𝑅𝑅𝑝ℎ having smaller lengths. This reinforces the coverage 

probabilities displayed for 𝑅𝑅𝑝ℎ in Figure 18, which were generally closer to the level of 

significance for 𝛽0. The values obtained from SAS and R differed slightly which is attributed 

to decimal differences. 
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The results displayed for the JRR estimated variance in Figure 21, shows that the confidence 

inerval lengths differed for different weighting methods. Greater lengths were produced for 

confidence intervals obtained in R as opposed to those obtained in SAS.  

The confidence interval lengths for the bootstrap showed results for R were greater than that 

of SAS. The results obtained from SAS were also lower across weighting methods, indicating 

more precise standard errors for the bootstrap confidence intervals using SAS.  

Lastly, the confidence interval length for the bootstrap percentile interval shows that the 

confidence interval length for SRS and the design weight were the lowest. In comparison to 

the other methods which showed lengths very similar to each other. Overall, the confidence 

interval lengths across variance estimation methods and the bootstrap percentile interval do 

not differ greatly with lower confidence interval lengths produced under SRS, 𝑅𝑅𝑝𝑝 and 

𝑅𝑅𝑝ℎ. 
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Figure 22: The confidence interval lengths for 𝛽4 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

In Figure 22, shorter confidence interval lengths were displayed using the TSL estimated 

variance for SRS for 𝛽4, the other lengths do not differ greatly with slightly smaller lengths 

produced by 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ. 

For the JRR estimated variance larger confidence interval lengths were produced for the 𝛽4 

parameter using weights Design, 𝐿𝑖𝑛𝑝𝑝 and 𝐿𝑖𝑛𝑝ℎ. Similar to Figure 19, SAS results produced 

smaller confidence interval lengths than that of R. 
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When the bootstrap estimated variance was used better confidence interval lengths were 

produced in SAS as opposed to R. Lower confidence interval lengths were observed for 

weights 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ in SAS. 

In Figure 22, the bootstrap percentile interval lengths were the lowest for SRS, similar to that 

observed  under SRS for 𝛽0. The largest confidence interval lengths were produced by 𝐿𝑖𝑛𝑝𝑝 

and 𝐿𝑖𝑛𝑝ℎ. 

 

Figure 23: The confidence interval lengths for 𝛽7 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

http://etd.uwc.ac.za/



87 

 

In Figure 23, the confidence interval lengths do not differ greatly for the TSL estimated 

variance. As in Figure 22, the confidence interval lengths for 𝑅𝑅𝑝𝑝, 𝑅𝑅𝑝ℎ and SRS were 

slightly smaller in comparison to the other weighting methods. 

The JRR estimated variance confidence interval lengths showed similar results to that of the 

TSL estimated variance with 𝑅𝑅𝑝𝑝, 𝑅𝑅𝑝ℎ and SRS having slightly lower lengths. 

The bootstrap estimated variance confidence interval lengths showed that the lengths obtained 

from R were slightly larger than those obtained from SAS. Lower confidence interval lengths 

were observed for 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ obtained from SAS. 

Lastly the bootstrap percentile confidence once more showed lower lengths for SRS in 

comparison to the other weighting methods. 

5.3 Conclusion 

The logistic regression model was discussed in Chapter 3 and in that chapter the standard 

logistic regression was outlined for i.i.d. data and adapted for CS data. It was noted that when 

the data comes from a CS design in particular, the sampling weights need to be incorporated 

in the model. This is the “golden standard”. The main purpose of this chapter was to provide 

empirical results for the study outlined in Chapter 4. The study provides a focal point, using 

real data (IES 2005/2006) to provide results to aid in answering the research questions and 

problem statement outlined in Chapter 1. In Chapter 4 methods were discussed to ascertain 

how close estimators are to the parameters of interest, in particular the MSE and bias. 

Estimates were obtained when the design was ignored i.e. SRS, and when correctly accounted 

for. In addition, when the design was correctly accounted for, i.e. CS, five sampling weights 

were used, viz. Design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ. In general, the absolute bias was 

smaller for CS as opposed to SRS particularly when using the design weight, 𝐿𝑖𝑛𝑝𝑝 and 

𝐿𝑖𝑛𝑝ℎ, which showed the smallest bias. The MSE showed mixed results, however, SRS 

generally showed larger MSE results than sampling weights 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ. The two 

statistical packages generally showed the same results. In cases where they do differ it was as 

a result of quasi-separation of data points, where existence of the MLE are questionable.  
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The variance provides a measure of accuracy for an estimator of a parameter of interest and 

is used to construct confidence intervals. Three variances were discussed in this thesis, viz. 

TSL, JRR and the bootstrap. These were used to construct standard (asymptotic) confidence 

intervals. In addition, a non-parametric confidence interval, i.e. the bootstrap percentile 

interval, was obtained. In Section 4.6.2, the coverage probability was defined to indicate the 

proportion of times a parameter is contained in a confidence interval. Also, in Section 4.6.2, 

the confidence interval length was discussed to ascertain whether good coverage is not due to 

a larger confidence interval length. Generally, TSL provided better coverage probabilities as 

opposed to the other three variance methods and smaller lengths. The coverage probabilities 

for SRS compared to CS showed mixed results, using weighting generally provided better 

coverage for the different variance methods. Also, when weighting was used the confidence 

interval lengths were smaller. Generally, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ provided better coverage and 

lengths than the other weighting methods. Similarly, the bootstrap percentile provided mixed 

results with 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ giving better coverage. However, the confidence interval length 

was better under SRS as opposed to the other methods. Once more, when variables contained 

low frequencies, the results differed for SAS and R. 

Results obtained are generally consistent with literature, with the effects of not correctly 

accounting for the design apparent. It should be stressed that when SRS appears to perform 

better than CS, it is an indication of how the results can be presented incorrectly and should 

not be a basis for ignoring the design. The calibration and integrated weights using the raking 

ratio distance method presented better overall estimators and their variances provided better 

coverage and lengths. Furthermore, TSL presented better precision.  
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Chapter 6: Conclusion and further research 

6.1 Introduction 

The main objectives of the thesis were outlined in Chapter 1 in which the research questions 

were presented. The objectives were firstly, to compare results obtained when ignoring the 

design, i.e. SRS, and correctly accounting for the design. Secondly, to establish which 

sampling weights provide better estimators when correctly accounting for the design. The 

sampling weights used were design, 𝐿𝑖𝑛𝑝𝑝, 𝐿𝑖𝑛𝑝ℎ, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ. These weights were 

incorporated in the logistic regression model and estimators were obtained. Also, the thesis 

aimed to compare CS variances of which three were discussed, viz. TSL, JRR and the 

bootstrap. These were used to obtain standard (asymptotic) confidence intervals, and 

comparisons were made between the variances and the standard logistic regression variance 

i.e. the variance obtained when the design is ignored. In addition, the bootstrap percentile 

confidence interval was obtained, a non-parametric confidence interval, and results were 

compared amongst weighting methods. Literature provided a basis for the findings and noted 

that when the design is ignored, estimates obtained can be incorrect.  

6.2 Findings 

The surrogate population discussed in Section 4.5.1 was used to obtain the “truth”, and 

samples were drawn from the surrogate population using a CS design. The estimators 

obtained from both SRS and CS were compared to the “truth”. The absolute bias was one 

such method used to compare estimators. In terms of absolute bias, generally, the weighting 

methods performed better than when no weighting was used. The design weight, 𝐿𝑖𝑛𝑝𝑝 and 

𝐿𝑖𝑛𝑝ℎ showed smaller absolute bias. SRS (no weighting) generally showed larger absolute 

bias. Another measure used to compare estimators was the MSE, which comprises of the bias 

and the variance. The MSE showed mixed results with 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ having the smallest 

MSE in general. Since 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ tend to have larger bias in comparison to the design 

weight it is reasonable to conclude that the variability amongst estimates obtained using 𝑅𝑅𝑝𝑝 
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and 𝑅𝑅𝑝ℎ are smaller in comparison to the other methods. Three asymptotic confidence 

intervals were obtained and the bootstrap percentile confidence interval. Generally, the 

intervals based on TSL estimated variance produced better coverage and smaller confidence 

interval lengths in comparison to the other methods. Once more, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑝ℎ in general 

showed better coverage and smaller lengths across variance methods. Similarly, 𝑅𝑅𝑝𝑝 and 

𝑅𝑅𝑝ℎ bootstrap percentile confidence intervals showed better coverage probabilities. In terms 

of the confidence interval length for the bootstrap percentile confidence interval, SRS showed 

a slightly shorter length. The results for R and SAS were generally the same. However, if 

quasi-separation of data is present then the results differ. The R results for the bootstrap was 

generally better, however, results did not differ substantially. In the case when quasi-

separation of data points were present SAS estimates out performed R. It should be noted that 

in the event where SRS appeared to perform better than CS, it should not be considered a 

basis to ignore the design but should be an indication of how incorrect results can be presented 

when the sample design is ignored. 

6.5 Further research 

The following areas for further research were identified from the results of this thesis: 

1. How to remedy the quasi-separation of data points, particularly when the data comes from 

a CS design; 

2. Certain weighting methods, in particular the design weight, produces very low absolute 

bias and large MSE values. Further research can be done concerning why that is the case; 

3. Results can be replicated in other software, in particular SPSS, and see how the results 

compare to those obtained from SAS and R; 

4. Model selection criteria can be incorporated and adjusted for CS designs for the logistic 

regression; 

5. AIC and BIC can be assessed for logistic regression for CS; and 

6. Multicollinearity can be assessed for the logistic regression for CS. 
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Researchers across different fields still remain uninformed about CS; even those within the 

field of statistics. This makes research and education regarding CS imperative and this will 

provide researchers with better tools to obtain better answers and conclusions for their 

research questions. 
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Appendices 

Appendix A: Absolute bias 

 

Figure A. 1: The absolute bias of the estimator of 𝛽3 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 2: The absolute bias of the estimator of 𝛽6 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 3: The absolute bias of the estimator of 𝛽7 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 4: The absolute bias of the estimator of 𝛽8 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 5: The absolute bias of the estimator of 𝛽9 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 6: The absolute bias of the estimator of 𝛽10 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 7: The absolute bias of the estimator of 𝛽13 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 8: The absolute bias of the estimator of 𝛽14 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 9: The absolute bias of the estimator of 𝛽15 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 10: The absolute bias of the estimator of 𝛽16 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 11: The absolute bias of the estimator of 𝛽17 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 12: The absolute bias of the estimator of 𝛽18 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 13: The absolute bias of the estimator of 𝛽19 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Figure A. 14: The absolute bias of the estimator of 𝛽21 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Appendix B: Mean squared error (MSE) 

 

Figure B. 1: The MSE of the estimator of 𝛽3 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 2: The MSE of the estimator of 𝛽6 under SRS (no weight) 

and different weighting methods are shown for SAS and R. 
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Figure B. 3: The MSE of the estimator of 𝛽7 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 4: The MSE of the estimator of 𝛽8 under SRS (no weight) 

and different weighting methods are shown for SAS and R. 
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Figure B. 5: The MSE of the estimator of 𝛽9 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 6: The MSE of the estimator of 𝛽10 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 7: The MSE of the estimator of 𝛽13 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 

http://etd.uwc.ac.za/



117 

 

 

Figure B. 8: The MSE of the estimator of 𝛽14 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 9: The MSE of the estimator of 𝛽15 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 10: The MSE of the estimator of 𝛽16 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 11: The MSE of the estimator of 𝛽17 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 12: The MSE of the estimator of 𝛽18 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 

http://etd.uwc.ac.za/



122 

 

 

Figure B. 13: The MSE of the estimator of 𝛽19 under SRS (no weight) 

and different weighting methods are shown for SAS and 

R. 
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Figure B. 14: The MSE of the estimator of 𝛽21 under SRS (no 

weight) and different weighting methods are shown for 

SAS and R. 
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Appendix C: Coverage probability 

 

 

Figure C. 1: The coverage probabilities for 𝛽1 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 2: The coverage probabilities for 𝛽2 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variancces and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 3: The coverage probabilities for 𝛽3 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 4: The coverage probabilities for 𝛽5 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 5: The coverage probabilities for 𝛽6 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 6: The coverage probabilities for 𝛽8 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 7: The coverage probabilities for 𝛽9 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

http://etd.uwc.ac.za/



131 

 

 

Figure C. 8: The coverage probabilities for 𝛽10 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 9: The coverage probabilities for 𝛽11 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 10:  The coverage probabilities for 𝛽12 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 11: The coverage probabilities for 𝛽13 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 12: The coverage probabilities for 𝛽14 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 13: The coverage probabilities for 𝛽16 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

http://etd.uwc.ac.za/



137 

 

 

Figure C. 14: The coverage probabilities for 𝛽16 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 15: The coverage probabilities for 𝛽17 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 16: The coverage probabilities for 𝛽18 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 17: The coverage probabilities for 𝛽19 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 18: The coverage probabilities for 𝛽20 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure C. 19: The coverage probabilities for 𝛽21 under SRS and other 

weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Appendix D: Confidence interval length 

 

 

Figure D. 1: The confidence interval lengths for 𝛽1 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 2: The confidence interval lengths for 𝛽2 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 3: The confidence interval lengths for 𝛽3 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 4: The confidence interval lengths for 𝛽5 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 5: The confidence interval lengths for 𝛽6 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 6: The confidence interval lengths for 𝛽8 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 7: The confidence interval lengths for 𝛽9 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 8: The confidence interval lengths for 𝛽10 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 9: The confidence interval lengths for 𝛽11 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 10: The confidence interval lengths for 𝛽12 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 11: The confidence interval lengths for 𝛽13 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 12: The confidence interval lengths for 𝛽14 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 13: The confidence interval lengths for 𝛽15 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 14: The confidence interval lengths for 𝛽16 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 15: The confidence interval lengths for 𝛽17 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

http://etd.uwc.ac.za/



158 

 

 

Figure D. 16: The confidence interval lengths for 𝛽18 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 17: The confidence interval lengths for 𝛽19 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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Figure D. 18: The confidence interval lengths for 𝛽20 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 

http://etd.uwc.ac.za/



161 

 

 

Figure D. 19: The confidence interval lengths for 𝛽21 under SRS and 

other weighting methods using TSL, JRR, the bootstrap 

estimated variances and for the bootstrap percentile 

interval are shown for SAS and R. 
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