

An Evaluation of Galaxy and Ruffus-Scripting

Workflows System for DNA-seq Analysis

Submitted by: AJAYI OLABODE OLUWASEUN

A thesis submitted in partial fulfilment of the requirements for the degree of Magister

Scientiae at the South African National Bioinformatics Institute in the Faculty of

Natural Sciences, University of the Western Cape.

Supervisor: Prof Alan Christoffels

Date: 15th August 2018

https://etd.uwc.ac.za

i

Declaration

I declare that An Evaluation of Galaxy and Ruffus-Scripting Workflows System for DNA-

seq Analysis is my own work, and that it has not been submitted before for any degree

or examination in any other university, and that all the sources I have used or quoted

have been indicated and acknowledged as complete references.

Ajayi Olabode Oluwaseun August 2018

Signed: …

https://etd.uwc.ac.za

ii

Abstract

An Evaluation of Galaxy and Ruffus-Scripting Workflows Systems for DNA-seq

Analysis

O.O AJAYI
MSc in Bioinformatics (Full Thesis), South Africa National Bioinformatics Institute,
University of the Western Cape, Bellville, South Africa

Functional genomics determines the biological functions of genes on a global scale by

using large volumes of data obtained through techniques including next-generation

sequencing (NGS). The application of NGS in biomedical research is gaining in

momentum, and with its adoption becoming more widespread, there is an increasing

need for access to customizable computational workflows that can simplify, and offer

access to, computer intensive analyses of genomic data. In this study, the Galaxy and

Ruffus frameworks were designed and implemented with a view to address the

challenges faced in biomedical research. Galaxy, a graphical web-based framework,

allows researchers to build a graphical NGS data analysis pipeline for accessible,

reproducible, and collaborative data-sharing. Ruffus, a UNIX command-line framework

used by bioinformaticians as Python library to write scripts in object-oriented style,

allows for building a workflow in terms of task dependencies and execution logic. In

this study, a dual data analysis technique was explored which focuses on a comparative

evaluation of Galaxy and Ruffus frameworks that are used in composing analysis

pipelines. To this end, we developed an analysis pipeline in Galaxy, and Ruffus, for the

analysis of Mycobacterium tuberculosis sequence data. Furthermore, this study aimed

to compare the Galaxy framework to Ruffus with preliminary analysis revealing that the

analysis pipeline in Galaxy displayed a higher percentage of load and store instructions.

In comparison, pipelines in Ruffus tended to be CPU bound and memory intensive. The

CPU usage, memory utilization, and runtime execution are graphically represented in

this study. Our evaluation suggests that workflow frameworks have distinctly different

features from ease of use, flexibility, and portability, to architectural designs.

https://etd.uwc.ac.za

iii

Keywords

Data-intensive

Galaxy Framework

Functional Genomic

High Performance Computing

Mycobacterium tuberculosis

Performance Evaluation

Ruffus Framework

Runtime Execution

SNP (Single Nucleotide Polymorphism)

Workflow Systems

https://etd.uwc.ac.za

 iv

Acknowledgement

I give thanks to God for making this project possible. This I believe is a reason I live

and my purpose in life. With God on my side, this project turned to be an invaluable

asset for rest of my career. Many a time, when I belittle my genius mind he restores hope

back. He is my God of all sufficient who is near and cover-up my inadequacy. I thank

my thesis supervisor Professor Alan Christoffels of South African National

Bioinformatics Institute (SANBI), University of the Western Cape for giving me a

platform to restore my past academic performance. The door to Prof. Alan office was

always open whenever I had a question about my research or writing. He consistently

allowed the thesis to be my own work but steered me in the right the direction whenever

he thought I needed it. This thesis is written within the context of the Computational

Bacterial Analytical Toolkit for tuberculosis project (COMBAT-TB), which is funded

by the National Research Foundation of South Africa. Furthermore, I take this

opportunity to express gratitude to all the department members for their help and support

especially, Dr. Dominique for reviewing the entire project. I am gratefully indebted to

her for the very valuable comments on the thesis. Thanks to Peter for sharing his

thoughts and views during the project. His assistance was innumerable. His vast ideas

sometime made me work hard whenever I thought about his computing knowledge.

Also, thanks to Hocine, Sandiswa, Dr., Bunmi, Dada, and Natasha for believing in me.

Their encouragement to believe in myself regardless of my inadequate reasoning

sometime pushed me beyond the limit. Furthermore, I thank Oni’s family, in fact my

second family for their unceasing encouragement, support and attention. I am grateful

for this unending love and support they rendered through this venture. Finally, I must

express my very profound gratitude to my parents, brothers, and sisters for providing

me with unfailing support and continuous encouragement throughout my years of study.

This accomplishment would not have been possible without them believing in me.

https://etd.uwc.ac.za

 v

 Dedication

“Infuse your life with action. Don't wait for it to happen. Make it

happen. Make your own future. Make your own hope. Make your

own love. And whatever your beliefs honor your creator, not by

passively waiting for grace to come down from upon high, but by

doing what you can to make grace happen... yourself, right now,

right down here on Earth”.

Bradley Whitford

This thesis work is dedicated to my lovely and beloved mother, who has wished to go

to school in her life. I love you Mommy.

https://etd.uwc.ac.za

 vi

Table of Contents

DECLARATION ..I

ABSTRACT ... II

KEYWORDS ... III

ACKNOWLEDGEMENT ... IV

DEDICATION .. V

TABLE OF CONTENTS ... VI

LIST OF FIGURES .. X

LIST OF TABLES ... XII

LIST OF ABBREVIATIONS .. XIII

 THESIS RATIONALE ... 1

 LITERATURE REVIEW ... 8

2.1: HISTORICAL BACKGROUND OF BIOINFORMATICS WORKFLOW SYSTEMS............. 8

2.2: SYSTEMS INFRASTRUCTURE FOR BIOINFORMATICS WORKFLOW SYSTEMS 10

2.2.1: High-Performance Computing Environments ...10

2.2.2: HPC in a Cloud Environment ...12

2.3: BIOINFORMATICS WORKFLOW FRAMEWORKS REALITY 16

2.4: COMMAND LINE INTERFACE BLUEPRINT ... 18

2.5: GRAPHICAL USER INTERFACE BLUEPRINT ... 19

2.6: COMPARISON OF BIOINFORMATICS FRAMEWORKS FEATURES 19

2.7: ANALYSIS PIPELINE OPTIONS ... 22

2.8: CONCLUSION TO THE LITERATURE REVIEW .. 24

 DESIGNS AND METHODOLOGIES ... 26

3.1: DISTRIBUTED SOFTWARE CONTROL VERSION SYSTEMS 27

3.2: HARDWARE RESOURCE ... 27

https://etd.uwc.ac.za

 vii

3.3: VIRTUAL WORKING ENVIRONMENT ... 28

3.3.1: Virtualenv Setup for Sun Grid Engine ...29

3.4: IMPLEMENTATION OF MTB SNP BASED PIPELINE ANALYSIS IN GALAXY AND

RUFFUS ... 30

3.4.1: Sample Data and Reference Genomic Data ..32

3.4.2: Data Quality Assessment ..32

3.4.3: Secondary Analysis (Pre- and Post-Alignment)32

3.5: SETTING UP TOOLS FOR THE GALAXY AND RUFFUS FRAMEWORK 33

3.6: SETTING UP MODULE SYSTEM ENVIRONMENT WITHIN THE HPC 33

3.7: SETTING UP THE DRMAA TO INTERFACE WITH SGE ON HPC 34

3.8: SERVICE IN THE PIPELINE FRAMEWORK ... 35

3.9: BENCHMARKING CRITERIA ... 37

3.9.1: Performance Measurement ...37

3.10: CONTINUOUS INTEGRATION SYSTEM ... 38

3.10.1: Contributing Code on GitHub ..38

3.11: DISTRIBUTING SNP ANALYSIS PACKAGES ON PYTHON PACKAGE WEBSITE ... 39

 PIPELINE INTEGRATION AND BENCHMARKING 41

4.1: GENETIC DATA PROCESSING .. 41

4.2: GALAXY CONFIGURATION .. 42

4.3: RUFFUS CONFIGURATION .. 43

4.4: GALAXY AND RUFFUS DEPLOYMENT ON HPC? ... 44

4.5: IMPLEMENTATION OF THE SNP ANALYSIS PIPELINE IN GALAXY AND RUFFUS .. 44

4.5.1: SNP Analysis Pipeline Implementation in Galaxy46

4.5.2: SNP Analysis Pipeline Implementation in Ruffus47

4.6: COMPARATIVE ANALYSIS ... 49

4.7: GALAXY FRAMEWORK FEATURES VERSUS RUFFUS FEATURES............................ 50

4.8: GALAXY IMPLEMENTATION AND DEPLOYMENT PITFALLS................................... 52

4.9: RUFFUS IMPLEMENTATION AND DEPLOYMENT PITFALLS 53

4.10: BENEFIT OF GALAXY OVER RUFFUS ON HPC CLUSTER 54

https://etd.uwc.ac.za

 viii

4.11: TESTING AND DEPLOYMENT OF WORKFLOW FRAMEWORKS 54

4.12: BENCHMARKS PROCESS .. 56

4.12.1: HPC Point of Reference ...57

4.12.2: Collectl-Utility in Practice (Parallel Benchmark)57

4.12.3: Tools Runtime Measurement in Galaxy and Ruffus59

4.12.4: Execution Time and Memory ..61

4.12.5: Features Evaluation Matrix ..63

4.13: SUMMARY.. 65

 FINAL REMARKS ... 66

5.1: CONCLUSIONS.. 66

5.2: CHALLENGES AND LIMITATIONS .. 68

5.3: RECOMMENDATIONS ... 69

5.4: FUTURE WORKS ... 70

REFERENCES... 72

APPENDIX A ... 83

PIPELINE FRAMEWORK CONFIGURATION FOR VARIANT CALLING PIPELINE 83

INSTALLATION: EXTERNAL DEPENDENCIES ... 83

INPUT DATA SOURCE ... 84

REFERENCE GENOME (MTB):.. 84

APPENDIX B ... 85

RUFFUS FRAMEWORK IMPLEMENTATION STEPS ... 85

Cloned Work ..85

DRMAA library ..85

Generate a flowchart diagram ..86

Run the pipeline ...86

Usage ...86

pipeline arguments: ..87

Configuration file: ..87

https://etd.uwc.ac.za

 ix

Reference: The Human Genome in FASTA format. ...88

The input FASTQ files. ...88

APPENDIX C ... 90

GALAXY FRAMEWORK IMPLEMENTATION STEPS .. 90

Python Support...90

SNPs Analysis in Galaxy Virtual Environment..90

Platform UNIX (Ubuntu) ..91

Data Formats ...91

Customized tools ..91

APPENDIX D ... 93

IMPLEMENTATION OF DRMAA FOR RUFFUS AND GALAXY 93

Export ..93

APPENDIX E ... 94

SIMPLIFY SNPS PIPELINE STEPS .. 94

Aligning FASTQ files to reference genome with bwa and Sorting94

Mark and Remove duplicates & Collect Alignment Metrics96

Generate Realigning Targets ..96

Realigning around InDels: ...97

Base Recalibrate file ..97

Variant Discovery – Calling variants: ..99

APPENDIX F ... 101

BENCHMARKS: COLLECTL-UTILITY .. 101

https://etd.uwc.ac.za

 x

List of Figures

FIGURE 1: PLOT OF THE ACTUAL AND PREDICTED GROWTH OF DNA SEQUENCING

FROM 2001 TO 2015. ... 2

FIGURE 2: EXAMPLE OF A SIMPLE WORKFLOW DIAGRAM. ... 4

FIGURE 3: THE FUNDAMENTALS OF HPC SYSTEM INFRASTRUCTURES. 12

FIGURE 4: A CLOUD-BASED FRAMEWORK FOR CREATING A SCALABLE NGS

WORKFLOW SYSTEM. .. 14

FIGURE 5: THE VIRTUAL CLOUD INFRASTRUCTURE TO PHYSICAL LAYERS. 30

FIGURE 6: OVERVIEW OF THE MTB NGS DATA ANALYSIS PIPELINE........................ 31

FIGURE 7: OVERVIEW OF THE SUN GRID ENGINE- DISTRIBUTION RESOURCE

MANAGER. .. 35

FIGURE 8: OVERALL PIPELINE FRAMEWORK AND SETUP SERVICE. 36

FIGURE 9: GITHUB CONTRIBUTION AND COMMIT ACTIVITY...................................... 39

FIGURE 10: AN ILLUSTRATION OF THE SNP ANALYSIS PIPELINE PUBLISHED ON

PYTHON PACKAGES WITH THE PYTHON PACKAGE INDEX. 40

FIGURE 11: A GENERIC UNIFY FLOW MODEL FOR SNP DISCOVERY ANALYSIS

PIPELINE. ... 45

FIGURE 12: DIAGRAM SHOWING THE GALAXY SNP ANALYSIS PIPELINE STEPS. 47

FIGURE 13: DIAGRAM SHOWING THE RUFFUS SNP ANALYSIS PIPELINE STEPS........ 48

FIGURE 14: DISK UTILIZATION SUMMARY. .. 58

https://etd.uwc.ac.za

 xi

FIGURE 15: MEMORY CONSUMPTIONS. .. 58

FIGURE 16: CPU UTILIZATION. ... 59

FIGURE 17: GRAPH OF GALAXY REAL TIME AGAINST THE RUFFUS. 60

FIGURE 18: GRAPH OF GALAXY REAL TIME AGAINST THE RUFFUS ANALYSIS. 62

FIGURE 19: STATISTICAL ANALYSIS SUMMARY. ... 63

FIGURE 20: THIS ILLUSTRATES THE COMMAND LINE INTERFACE FOR EXECUTING

THE RUFFUS PIPELINE ANALYSIS. ... 89

FIGURE 21: GALAXY SNP ANALYSIS PIPELINE GUI WEBPAGE. 92

FIGURE 22: DATASETS IN THE CURRENT HISTORY. ... 92

FIGURE 23: THIS ILLUSTRATES THE CLOUD ENVIRONMENT AND VM

CONFIGURATION SETTING FOR GENOMIC DATA STORAGE, RETRIEVAL AND

ANALYSIS OF GENOMICS DATA. .. 93

FIGURE 24: A SIMPLIFY AND GENERIC FLOWCHART REPRESENTING THE FLOW OF

ANALYSIS STEPS. ... 94

FIGURE 25: THE DIAGRAM ILLUSTRATES COLPLOT. ... 102

https://etd.uwc.ac.za

 xii

List of Tables

TABLE 1: BIOINFORMATICS WORKFLOW FRAMEWORKS FEATURE COMPARISONS .. 20

TABLE 2: BIOINFORMATICS WORKFLOW FRAMEWORK DESIGN PHILOSOPHY 22

TABLE 3: OVERALL HARDWARE RESOURCE USED FOR THE WORKFLOW

FRAMEWORKS ... 27

TABLE 4: OVERALL VIRTUAL WORKING ENVIRONMENT SUMMARIES 28

TABLE 5: TOOLS USED IN THE ANALYSIS PIPELINE .. 33

TABLE 6: WORKFLOW FRAMEWORK SUMMARY ... 51

TABLE 7: COMPARATIVE FEATURE ANALYSIS SUMMARY ... 52

TABLE 8: SCOPE SUMMARY DIFFERENCE BETWEEN THE GALAXY AND RUFFUS

FRAMEWORK ... 56

TABLE 9: A SUMMARY TABLE SHOWING THE TOOLS RUNNING TIME FOR EACH DATA

SET. ... 60

TABLE 10: EVALUATION MATRIX ... 64

https://etd.uwc.ac.za

 xiii

List of Abbreviations

API ………………. Application Programming Interface

CLI ………………. Command Line Interface

DNA-seq …...……. Deoxyribonucleic Acid Sequencing

DRM ……………. Distributed Resource Management

ENA ……………… European Nucleotide Archive

GUI ………………. Graphical User Interface

HPC ……................ High Performance Computing

MTB ……………... Mycobacterium tuberculosis

NGS ……………… Next Generation Sequencing

RNA ……………… Ribonucleic Acid

SGE ……………… Sun Grid Engine

SNP ……………... Single Nucleotide Polymorphism

VM ………………. Virtual Machine

WMS …….............. Workflow Management Systems

XML ……………...Extensible Mark-Up Language

https://etd.uwc.ac.za

 1

 Thesis Rationale

Functional genomics is a field of molecular biology that determines the biological functions

of genes on a global scale, using large volumes of data obtained through techniques such

as next-generation sequencing (NGS). NGS technology has been a key driver in

accelerating knowledge gains in functional genomics, and molecular biology research.

With data from the genomics field constantly increasing, the scientific community is

finding the processing, analysis, and the discovery of research based on the datasets more

challenging (Goble and Stevens, 2008).

The advent of new sequencing technology systems by companies such as Illumina, Oxford

Nanopore, and PacBio (as illustrated in Figure 1), has resulted in an exponential growth of

NGS data output, with the advantages of a reduction in the time and cost expenditure

associated with sequencing projects (Metzker, 2010; Loman et al., 2012). A recent advance

in NGS technology has allowed scientists to re-sequence Deoxyribonucleic Acid (DNA)

and Ribonucleic Acid (RNA) in a quick and affordable manner (Korpelainen et al., 2014).

Furthermore, the NGS process involves the input of biological samples from different

organisms as well as the same organisms into NGS sequencer machine, which then

produces a computer representation of genomic datasets as the output (Glenn, 2011). Due

to the large volume of genomic datasets produced in NGS projects, an extraordinary

demand has been placed on bioinformatics workflow systems (Stein, 2010). Consequently,

there is an increased requirement for efficient data analysis pipelines for a multitude of

applications in functional genomic research, before they can be routinely used by

researchers.

https://etd.uwc.ac.za

 2

Figure 1: Plot of the actual and predicted growth of DNA sequencing from 2001 to 2015.

The plot illustrates the actual and predicted evolution of DNA sequencing together in the total figure of
human genomes sequenced (left axis) as well as the worldwide annual sequencing capacity (right axis:
terabase pairs (tbp), peta-base pairs (pbp), exa-base pair (ebp) (Stephens et al., 2015).

Considering that the logic to manually extract and transform this data requires considerable

human effort, it has become a necessity to develop and utilize an automated, yet simple,

workflow system that can serve biomedical researchers. Workflow steps that are

particularly prone to errors and repetitions, and that need manual intervention from

biomedical researchers, should be the specific targets for effective software solutions. One

such solution which addresses the above-mentioned workflow problems is an analysis

pipeline in the bioinformatics workflow framework. More research is needed to inform the

development of the pipeline analysis techniques that include data quality checking,

analysis, processing and interpretation of genomic data (Zhang et al., 2010).

https://etd.uwc.ac.za

 3

Curcin and Ghanem (2008), indicated that workflow systems have become a requirement

for functional genomics. However, the complex nature of functional genomics datasets,

and the bioinformatics workflows systems used to analyze and process these large volumes

of genomics datasets from many resources, makes efficient processing difficult with

standard environments (Schulz et al., 2016). In general, -omics’ research, including the

field of proteomics, relies heavily on workflows containing relevant pipelines for data

analysis (Fisch et al., 2015). The notion of a genomic data analysis workflow systems

becomes increasingly relevant when biomedical researchers start to use more than one

bioinformatics tool (Torri et al., 2012). Moreover, biomedical researchers often need to

connect two or more bioinformatics tools to 1) assess the quality or feature of the genomic

data sets, 2) convert the data to other formats, 3) visualize the data, 4) compare results and

5) perform other operations in a logical manner. For these reasons, a data analysis pipeline

consists of different programs which are integrated together to perform tasks of varying

complexity (Sanner, 1999). Bartlett and Toms (2005), developed a protocol that

demonstrated the unique process which may be employed by an expert researcher using

bioinformatics resources to address a specific research problem. For example, logical

thinking and attention to detail may be utilized by a researcher to define acceptable input

file-types, parameter values and resource management, as well as exception behavior, in

an effort to answer specific bioinformatics research questions (Neron et al., 2009).

Automation of frequently executed tasks can be incorporated into complex workflows,

thereby decreasing time and effort spent by biomedical researchers in command-line

sessions, non-reusable script writing, and general time-consuming software (Guimera,

2012). Workflow management systems manage workflow processes through software

execution, the order of which, is driven by the software application which is installed on a

local computer system, or clusters (Brown et al., 2015). Efficient and comprehensive data

analysis pipelines require these workflow management capabilities (Liu et al., 2014). A

workflow procedure consists of multiple steps (any repeatable series of steps that include

creating, managing and providing output information experimental investigation) that are

used to execute and automate a workflow process, thereby instituting a set of procedural

https://etd.uwc.ac.za

 4

rules to allow for the flow of tasks and information from one action to the next (Romano,

2008). In one step, the workflow outputs serve as input to the next step, according to a

predefined network or graph topology that synchronizes the movement of data (i.e.,

extracting, transforming and loading as shown in Figure 2).

Figure 2: Example of a simple workflow diagram.

The diagram represents a flowchart that shows workflow starting point (i.e., staging), connecting step 1 to
step 2. The output from one step is for further dissemination to the other steps. The database (such as MySQL
data keep), is a relational database management system (RDBMS) for retrieving and storing biological data.
The database can form part of the major requirement that support a workflow system development
(Bhagwanani, 2005).

Workflow processes coordinate multiple workflow tasks. Workflow processes are further

defined as sequences of activities that are necessary to complete tasks. A task can be

defined as a process that cannot be split up any further (Van Der Aalst and Van Hee, 2004).

https://etd.uwc.ac.za

 5

Alternatively, a task, also known as an activity, is an automated activity performed at the

user-level of any workflow system.

A study by Spjuth et al. (2015) explains the idea of using workflow systems to assist

researchers in their studies. They describe a workflow system as a multi-step procedure or

task that runs on a distributed computing platform. In this way, a task represents the

execution of a workflow process, such as integrating bioinformatics tools, submitting a

query to a database server, submitting a job to on-premises high performance computing

(HPC) systems, as well as cloud-based computing or invoking a service over the web-

browser to use a remote resource (Goble and De Roure, 2009). HPC (or cluster) systems,

is a cluster of parallel computers that are connected together to support data-intensive

scientific applications on a large global scale (Spjuth et al., 2015). Workflow frameworks

are important enablers for such capabilities (Kang et al., 1999).

Bioinformatics workflow systems, and its logic, are driven by software applications

developed and written in different computer programming languages. Workflow activities

are automated by compositions using the available open source packages or proprietary

software (Deelman et al., 2009). Bioinformatics workflow protocols are therefore ideal

vehicles for biological data extraction and are becoming a standard for use in supporting

functional genomics research worldwide, by managing genomics data pre-processing, and

post-processing. Other benefits of bioinformatics workflow systems include;

a) Data automation, data format conversion, and pipeline analysis integration.

b) Provisioning of a graphical user interface (GUI) that manages experimental steps

that enable biomedical researchers to build custom pipeline analysis for

genomics data analysis or the use of predefined use cases.

c) Provisioning of a command-line interface to support scripting programs

(Hinchcliffe et al., 2014).

d) Provisioning of data management that include analysis tracking and pipeline

staging (Deelman, 2010).

e) Offering access to tools that manage and execute pipelines.

https://etd.uwc.ac.za

 6

f) Offering an efficient means of conducting sequencing analysis across diverse

‘omics datasets and applications (Goble and De Roure, 2009).

g) Allowing for both experienced and novice researchers to build analysis

pipelines, without knowledge of complex programming language.

h) Serving as a platform for managing the growing pool of genomics data and

i) Allowing for independent computational analysis.

The overall purpose of this study was to evaluate the Galaxy and Ruffus workflow

frameworks to assist biomedical researchers in processing and analyzing the

Mycobacterium tuberculosis (MTB) genomic datasets to obtain high quality variant calls.

The approach used in this study was to adapt an already existing open source genomics

workflow framework with the view that utilizing different middleware software

components on the cluster, and extending the analysis pipeline for re-use in a clear manner

that simplify the automation of bioinformatics analysis, would: 1) solve challenges of

large-scale data analysis 2) develop best practice workflows, and 3) fill the current gap

amid computing infrastructure and bioinformatics applications (as discussed in Chapter 3).

In addition, the assembled analysis pipeline would be a completely open source project and

the workflow framework was benchmarked against each other based on system complexity

and support for data storage management, provenance, and data retention policy. Here, the

benchmarking activities for the bioinformatics workflows included the exploration of

different design choices and metric gathering for systems performance and scalability, data

storage, analysis pipeline process time and transfer speed. The abovementioned metrics are

an essential consideration for both current and future workflow frameworks requirements.

Moreover, predicting future bioinformatics workflows updates and how the metrics could

affect the underlying infrastructure technology is of great importance to anticipate proper

workflow system design and its limitations (Van Der Aalst and Van Hee, 2004; Furtaw,

2016). A further aspect of this study was to establish the genomic data source collaboration

plan and source code control versioning system where data analysis pipeline development

can continue-on a quick-changing running system. While system requirements can change

at any time they require simplification, and a team of biomedical researchers require quick

https://etd.uwc.ac.za

 7

analysis results, thereby imposing added pressure on analysis pipeline design decisions.

Therefore, additional care must be taken when developing/or building, testing and

deploying the data analysis pipeline within the bioinformatics workflow frameworks. As

such, this approach, accompanied with best practices was explored in-depth in this thesis.

Finally, in this study, proof of concept was demonstrated using experimental data sets.

Different in-house research tools (i.e., open source bioinformatics tools in the computing

environment) that solve particular needs were integrated into the bioinformatics workflow

frameworks presented herein, using the methods developed in this study.

https://etd.uwc.ac.za

 8

 Literature Review

This chapter presents the historical background of bioinformatics workflow systems

which are currently available for biomedical researchers, as well as the challenges faced

by researchers when deciding on which workflow frameworks to utilize. This chapter

describes, with examples, several workflow systems, particularly graphical user

interface or command-line interfaces as well as the underlying infrastructure

technology, that currently exist for analyzing genomics data. The chapter also tabulates

workflow features and compares each feature to one another and concludes by

motivating the rationale for choosing and evaluating the Galaxy and Ruffus workflow

systems for processing of genomics data.

2.1: Historical Background of Bioinformatics Workflow Systems

The historical development and knowledge behind the study of scientific workflow

management systems has expanded to the fields of bioinformatics and biomedical

science. Clinicians and research scientists have seen the development of bioinformatics

workflows as an essential part of research to compliment the traditional patterns of

theory and wet-bench experiments. Next generation sequencing (NGS), also known as

high throughput sequencing technologies, have led to sequencing at unprecedented

speed, and in combination with low sequencing costs per base pair, has produced a huge

amount of genomic data, that overwhelms the current workflow systems and resources

(Altintas et al., 2012; Kodama et al., 2012).

This growing volume of genomics data being generated from NGS technology needs to

be analyzed using bioinformatics workflows (Goesmann et al., 2003; Wilke et al.,

2003). Genomics data analysis involves the processing of data files through a series of

computational steps and transformations, referred to as an analysis pipeline. These steps

can usually be achieved by installing third party GUI- or CLI- based software that can

execute the data analysis pipelines (Hinchcliffe et al., 2014). As suggested by Li and

https://etd.uwc.ac.za

 9

Chen, the bioinformatics research field requires robust, accurate and precise workflow

systems (Li and Chen, 2014). In addition, the authors took into consideration factors

relating to big data and suggested that data volume, data processing velocity, data source

variability, as well as data quality veracity or authenticity requires special technology

and workflow management systems (Li and Chen, 2014).

The ability to actively incorporate genomic datasets into modern studies strongly

depends on effective bioinformatics workflows with capabilities to handle downstream

analyses and give interpretable results. Therefore, the concept of workflow systems or

frameworks, requires significant informatics knowledge and expertise to design a

pipeline for detailed analysis and interpretation of sequencing data that can be applied

in clinical settings (Kanwal et al., 2017). Moreover, a workflow framework is regarded

as a platform for managing workflow activities, as well as coordinating computing

resources and behaviors (Zhao et al., 2005). A workflow framework provides an

enabling meta-environment that has gained increased interest in the fields of genomic

science and technology. It has further been indicated that workflow frameworks have

assisted in rapid development of distributed and parallel data analysis pipelines (Zhao

et al., 2005; Deelman et al., 2009; Spjuth et al., 2015).

A typical biological sequencing data analysis pipeline in bioinformatics workflow

systems has several phases that include experimental design and sample collection,

sequencing and data processing for subsequent downstream analysis (Kanwal et al.,

2017). For instance, an analysis pipeline in bioinformatics workflows consists of a series

of connected steps that transform raw input (e.g. a FASTQ file from an NGS sequencer)

into meaningful or interpretable outputs (e.g. variant call-sets).

To understand a complex system (such as Kepler), it is necessary to have a birds-eye

view in order to determine how the different pieces fit together (Altintas et al., 2004).

Bioinformatics workflow systems require software applications to prosper, and to build

bioinformatics pipelines, encapsulation is needed, which can be used as basic building

https://etd.uwc.ac.za

 10

blocks for another bioinformatics project. This generates knowledge in the effective use

of workflows.

2.2: Systems Infrastructure for Bioinformatics Workflow Systems

Due to the high demand of bioinformatics workflows for analyzing the vast amounts of

data generated by NGS, the systems infrastructure for workflow integration has become

a vital requirement in biomedical research. This demand is further confounded by the

significant cost reduction in sequencing which has allowed instrument manufacturers to

decrease the cost per genome produced by NGS machines, thereby increasing the

feasibility of including this technology in biomedical research (Anderson and Schrijver,

2010). While the complexity of workflows varies significantly in different applications,

a data analysis pipeline in bioinformatics workflow frameworks may typically require

days of computing time and a great amount of computing power (Brown et al., 2015).

Brown et al. (2015), explains that setting up a bioinformatics workflow system is not a

straightforward process, and often require extensive technical skills and coding

experience to setup. Furthermore, finding an accessible method to keep and process

genomics data in the most efficient, metadata-rich, secure and transparent way is not a

simple task (Kanwal et al., 2017). Likewise, the challenges of integrating bioinformatics

workflow management systems with personal computer functionality, such as system

resource and data storage, are increasing (Figure 3). Therefore, high performance

computing (HPC) and cloud computing facilities have been introduced as solutions to

challenges faced by biomedical researchers and are shaping new developments in the

bioinformatics field (Jamalian and Rajaei, 2015; Nishanth and Kihoon, 2015).

2.2.1: High-Performance Computing Environments

HPC is increasingly becoming an important tool in biomedical research, and currently

enables researchers and computer scientists to solve complex problems requiring several

computing capabilities, to increase the pace of research discovery (Alyssa, 2016;

Leading, 2016; Liu, 2016). HPC subsequently reduces the time and cost that scientists

https://etd.uwc.ac.za

 11

spend on analyzing genomics data. HPC coupled with bioinformatics workflow systems

are essential for analyzing genomics data to obtain meaningful results, while

additionally, maintaining the processing time and speed at which genomic data outputs

are being generated (Nishanth and Kihoon, 2015). In a scientific research environment

for example, HPC resources generally consist of compute nodes with a greater level of

computing performance when compared to general purpose computers. HPC with

hundreds of thousands of ‘off-the-shelf’ processors run a Linux-based operating system

with a batch queueing system (i.e., batch-queuing system is a scheduling system that

helps to plan the execution of batch jobs) for scheduling jobs (Jamalian and Rajaei,

2015). Studies by Di Tommaso et al. (2017) have shown that the most efficient and

effective bioinformatics frameworks are workflow systems, supported by these batch-

queuing systems (e.g., PBS/Torque, SLURM, Sun Grid Engine). The components used

to support a HPC environment, such as computer memory, cores, compute node and

storage, as well as fabric and software (Figure 3), have been changing at unprecedented

rates over the past two decades (Huang et al., 2006). This has resulted in systems

bottlenecks that are becoming increasingly imbalanced (Alyssa, 2016; Leading, 2016).

Some bioinformatics analysis jobs, with highly specific resource needs, have forced the

biomedical research community to implement discrete clusters which are dedicated to

these jobs (Nyrönen et al., 2012; Bianchi et al., 2016). This has however contributed

significantly to the overall development of workflow systems.

https://etd.uwc.ac.za

 12

Figure 3: The fundamentals of HPC system infrastructures.

The diagram describes the several components of HPC functionality on a typical computing lab
environment. The HPC system is made up of many processors and cores, high-speed networking, and
large compute nodes for data stores (Alyssa, 2016). At the central of HPC is the manageable resource
manager (e.g., hardware and systems software), which allow system administrator to dedicate energy to
managing the HPC environment. The HPC allows software stack that supports the bioinformatics
workflow systems.

2.2.2: HPC in a Cloud Environment

Cloud computing has recently emerged as a supplemental technology, which offers

virtualize environments (such as virtual machine and Dockers), and the capability to run

custom virtual machine images (VMI) or containers (Afgan et al., 2012; Spjuth et al.,

2015). Despite the advent of cloud computing, setting up virtual cloud server clusters

for biomedical research requires knowledge about the pros and cons associated with

different bioinformatics tools (O’driscoll et al., 2013). Cloud compute storage solutions

for biological data have been developed to tackle the challenges when implementing

https://etd.uwc.ac.za

 13

platforms for data-intensive NGS analyses (Doctorow, 2008; Li and Chen, 2014; Luna

et al., 2014; Stephens et al., 2015), (Figure 3).

Since the volume of genomic data being generated is increasing exponentially, many

biomedical research labs or institutes are considering cloud computing as a cost-

effective alternative for the storage and processing of large volumes of biological

datasets (Liu et al., 2014). Fusaro et al. (2011) summarized that a cloud computing

platform could be implemented and utilized as a platform for storing biological data,

thereby facilitating analysis of petabyte sized datasets, in a more effective way (Figure

5). Cloud computing also enables the application of new data processing models, such

as the MapReduce framework (Dean and Ghemawat, 2008; Afgan et al., 2010) and its

variants, which have been successfully implemented on processing large-scale clinical

genomic data using virtual cloud clusters (Zaharia et al., 2010; Zou et al., 2013).

A study by Armbrust et al. (2010) found that cloud computing systems provide users

with full control over virtual compute resources, by using virtualization technologies.

Cloud computing includes hardware, software and systems infrastructure, and these are

provided as services over the internet. In addition, Chine (2010) identified three major

classes of cloud computing providers, which include Infrastructure-as-a-service (IaaS),

Platform-as-a-service (PaaS) and Software-as-a service (SaaS) (Bhardwaj et al., 2010).

IaaS offers only virtual machines and compute storage systems for any purpose, whereas

PaaS offers platforms for developing software applications. SaaS on the other hand,

offers available software that can be used as is, or customized for an application (Stein,

2010).

As shown in Figure 4, analyzing and processing biological data using the bioinformatics

resource in the cloud HPC cluster environment can be very challenging. Without correct

automation, the setup and fine-tuning of virtual cloud clusters may become a difficult

task, as there is a requirement for systems administrators to have considerable

knowledge with regards to installation and configuration of different software tools.

Organizing the different bioinformatics workflow frameworks that are developed and

https://etd.uwc.ac.za

 14

integrated in a cloud based system, is at the discretion of the system administrator or

user if there are no best practice or operating procedures to guide it (Schindelin et al.,

2012). Deployment and provisioning scripts are therefore essential for the cloud

computing model to be successful.

Figure 4: A cloud-based framework for creating a scalable NGS workflow system.

The diagram illustrated the step-wise cloud workflow framework for establishing a scalable NGS
workflow system. A user, using a local computer can ssh into an instance of a virtual machine running
in AWS cloud. Installing software programs, developing a scalable bioinformatics application tools
together with utilities cloud cluster management software and testing the instance pipeline all depends
on cost and consumption usage. The costs are representative of actual development time, data transfer
into and out of the cloud, and the compute time (Fusaro et al., 2011).

Currently, there are existing ‘off-the-shelf’ bioinformatics workflow management

system installations in the form of cloud virtual machine images that can be used to

mitigate the otherwise steep learning curve experienced by biomedical researchers

(Afgan et al., 2012). This cloud virtual machine image is, in essence, a virtual

representation of a physical hard disk drive, containing preinstalled data and

bioinformatics software tools (Schindelin et al., 2012). An added advantage of the

https://etd.uwc.ac.za

 15

virtual image is that depending on the experimental load requirement, multiple instances

of this cloud machine can be made.

Unfortunately, several known concerns impacting the standard utilization of cloud HPC

clusters exist and are still driving biomedical research labs or institutions away from

utilizing the cloud model. For instance, HPC compute nodes are virtualized, and this has

raised concerns with regards to virtualization overhead as well as virtual machine co-

location. Moreover, a pay service to implement a cloud model for creating a scalable

workflow application to fit small and large project is essential for the sustainability of

HPC clouds (Curcin and Ghanem, 2008; Netto et al., 2018). There are some institutions

that cannot afford the cost of the cloud services, and therefore the burden of cost

associated with investing in the required expertise can be inhibitory (Fusaro et al., 2011).

One of the most persistent problems facing biomedical researchers is not having access

to working system infrastructure that facilitates progressive, sustainable and qualitative

research outputs (Deelman, 2010; Truong and Dustdar, 2011; Emeakaroha et al., 2013).

Another recurrent issue which has been raised by many experts relates to the latency

and bandwidth of the network used by cloud infrastructure. For example, Amazon Web

Service’s Elastic Compute Cloud (EC2) functions differently compare to a typical,

dedicated HPC cluster in national laboratories (Garfinkel, 2007; Jackson et al., 2010;

Marathe et al., 2013). These differences can lead to new performance issues that

necessitate different bioinformatics tools to gain prominence into the workflow systems

and its underlying cloud-based infrastructure. In this way, bandwidth impacts the time

it takes for transmission of big data to and from the cloud and has been a major setback

for many research labs (Liu et al., 2014; Luna et al., 2014; Netto et al., 2018). At the

time of writing this thesis, existing resources were traditionally HPC clusters, and as

such, the focus and limitations of this study fall within this area.

https://etd.uwc.ac.za

 16

2.3: Bioinformatics Workflow Frameworks Reality

There are various bioinformatics workflow frameworks that aim to address issues that

exist in the building of data analysis pipelines for the extraction of valuable genetic

insights from large amounts of genomics data. A bioinformatics workflow framework

enables integration of several bioinformatics tools, and the development of data analysis

pipelines for annotating and exploring NGS datasets. This process can range from

creation and composing data analysis pipelines, to evaluating usability in biomedical

research.

Numerous bioinformatics workflow frameworks for composing pipelines have already

been developed (e.g., Taverna is used for building bioinformatics data analysis

pipelines) (Oinn et al., 2004). However, due to the lack of continuous software

development and community support, not all bioinformatics frameworks have all the

features required to develop high-throughput data analysis pipelines (Taura et al., 2013).

Therefore, lessening barriers to entry on development and deployment for developers

and user communities will significantly aid in building overall reusable and

interoperable pipeline analyses (Stein, 1996).

The bioinformatics workflow frameworks employed by biomedical research labs for

composing an analysis pipeline are essential when selecting which frameworks to use.

According to Plale et al. (2011), a bioinformatics workflow framework is an integral

platform that encourages pipeline configurations. There are frameworks that encourage

biomedical research labs or institutes to share analysis pipelines and collaborate with

other researchers around the world. For instance, the Taverna (Oinn et al., 2004) and

Kepler (Altintas et al., 2004) interfaces have common characteristics that allow easy

sharing of analysis pipelines, protocols and standard operating procedures (SOPs).

Unfortunately, analysis pipelines reproducibility in the biomedical field is a goal hard

to accomplish due to the complexity of workflow systems, usually involving series of

analysis steps and protocols (Di Tommaso et al., 2017). For instance, Taverna and

SnakeMake frameworks follows different language patterns and as such biomedical

https://etd.uwc.ac.za

 17

researchers, depending on experience, may wish to replicate or reproduce the CLI

workflow framework over the GUI workflow framework (Oinn et al., 2004; Koster and

Rahmann, 2012; Spjuth et al., 2015).

Another important factor to take into consideration when choosing a framework is the

underlying technologies and process specification model languages, such as Yet

Another Workflow Language (YAWL), which handles complex data transformations,

and complete integration with HPC resources and external web services (Van Der Aalst

and Ter Hofstede, 2005). Data model handling, such as the extensible mark-up language

(XML) schema, allows for native data handling that adheres to specific standards and

conventions (Aldred, 2011). A typical example is the Arvados framework (Arvados,

2016) that starts with raw genomics data processing files such as FASTQ files, and after

a number of steps, actions and commands, ultimately results in variants being called

(Depristo et al., 2011; Van Der Auwera et al., 2013; Pabinger et al., 2014).

A study by Mckenna et al. (2010), demonstrated an efficient, features-rich, and robust

analysis pipelines for processing massive data sets generated by NGS machines.

Pipelines for genome datasets follow a specific order of biological procedures from

beginning to end. Most of the activities in the pipeline are performed by humans

interacting with computer systems (Gorelick and Ozsvald, 2014). Many research labs,

or institutes, are restricted by the difficulty of accessing and manipulating the data

produced by NGS machines, and may not be aware of the possibilities and simplicity

with which they can answer technical questions (Ison et al., 2015). Therefore, workflow

frameworks that make routine tasks and procedures, support pipeline reproducibility

and offer measures for fault-tolerance are possible solutions which can be utilized in

research settings (Spjuth et al., 2015). Pipelines in the bioinformatics workflow

frameworks combine knowledge from different areas of genomic fields and it is

important for researchers in the biomedical field to understand the concepts related to

composing pipelines. There are bioinformatics workflow frameworks that require in-

depth knowledge of detailed documentation related to workflow design and modelling

(Tolvanen and Kelly, 2008; Liu et al., 2014). Moreover, a bioinformatics workflow

https://etd.uwc.ac.za

 18

framework is consider to be good framework if certain design criteria such as

extensibility, restorability, ease of use and deployment and pipeline reproducibility are

met (Lamprecht, 2013). Novice biomedical researchers lack the capabilities to identify

efficient, yet simple workflows, and may not have the expertise to recognize the

workflow systems design criteria (Williams et al., 2014).

2.4: Command Line Interface Blueprint

Command line interface bioinformatics frameworks consist of collections of scripts

written specifically to run on a modern GNU/Linux distribution terminal and that allows

researchers to run commands in a shell terminal, or console window, that ultimately

work together within an operating system. Researchers reply to a shell command prompt

by typing a command on an identified line and accept a reply from the system, or series

of shell commands for individual tasks that they want to implement. In this way,

command line enables automation and execution of scripts through the terminal

(Stevens and Rago, 2013; Oracle, 2017). Computer scripting languages such as Python

(Foundation, 2016) and Perl (Perl, 2016) enable developers to write custom scripts and

develop software applications for a special run-time. Scripts are sequences of commands

written to accomplish a task and assist in executing already developed software tools.

In the functional genomics field, computer scripting languages enables packaging of

bioinformatics tools that automate tasks, or execute tasks one-by-one during workflow

processes and allows integration of bioinformatics tools within the pipeline frameworks

(Stein, 1996; Sanner, 1999). For instance, workflow frameworks, such as Bpipe

(Sadedin et al., 2012), SnakeMake (Koster and Rahmann, 2012), GXP Make (Taura et

al., 2013) (Taura et al., 2013b), Omics Pipe (Fisch et al., 2015)) and Nextflow (Di

Tommaso et al., 2017) are CLI programs written specifically for the UNIX run-time

environment.

https://etd.uwc.ac.za

 19

2.5: Graphical User Interface Blueprint

Graphical user interface is a type of user interface that enables users to interact with a

computer by utilizing graphics, in combination with hardware (a keyboard and a

mouse), to provide an easy-to-use interface to a program (Michael and William, 2014).

A GUI provides wizards, windows, buttons, iconic images, pull-down menus,

scrollbars, other icons, and in general, allows users to interact with the computer

operating system or application (Lefkowitz, 2000; Oracle, 2017). GUI-based

bioinformatics workflow, using a drag-and-drop graphical interface allows biomedical

researchers to design data analysis pipeline by selecting and connecting integrated

bioinformatics tools. A number of GUI-bioinformatics workflow frameworks exist,

such as Arvados (Arvados, 2016) and Mobyle (Neron et al., 2009), which have been

developed mainly for application in the life sciences field. Arvados is a GUI-

bioinformatics workflow that makes it easier for biomedical researchers to build

analysis pipelines, allows bioinformatics software developers to create genomic web

applications and system administrators to manage large-scale compute and storage

resources (Arvados, 2016; Calabrese, 2018). Taverna (Abouelhoda et al., 2012), a

workflow management system, offers services that allow access to bioinformatics tools

and/or permits the building complex analysis pipelines which are distributed across

web-services, or local computing infrastructure. Other examples of GUI workflows

include Kepler (Altintas et al., 2004) and Chipster, which are used for composing and

analyzing NGS generated datasets. Chipster, for example, is utilized in studies where

RNA-seq data is analyzed in order to determine differential expression of genes (Wang

et al., 2011). A GUI workflow platform enables researchers to share, publish, find and

download workflows, with the goal of making the re-use of existing workflows as easy

as possible (Lamprecht, 2013).

2.6: Comparison of Bioinformatics Frameworks Features

In the bioinformatics domain, workflow frameworks already exist and can be used to

explore and analyze genomic datasets. Workflow frameworks such as Nextflow

https://etd.uwc.ac.za

 20

workbench enable biomedical researchers to build pipeline analysis to control the data

analysis activities for large genomic projects (Kurs et al., 2016). Even with the rapid

change in workflow frameworks, which has been maddened by new technological

developments, existing frameworks have been used successfully in a number of studies

(Leipzig, 2016). On the other hand, some workflow frameworks have failed due to

missing features and consequently, the biomedical research community has had trouble

in deciding which framework to employ. In Table 1 below, a summary of the ten-

different bioinformatics workflow framework features is demonstrated.

Table 1: Bioinformatics workflow frameworks feature comparisons

Arvados, Chipster, Galaxy, PegaSys and Taverna, workflow frameworks enable

researchers with a limited background in computing, as well as limited technical

resources and support, to still perform tasks effectively. These workflow frameworks

Tool names
Workflow

syntax

Online

analysis

integration

Interface

interaction

Web

services

support

Built in

cloud

support

Built in

distributed

cluster

support

Arvados Explicit Yes GUI Yes Yes Yes

Chipster Explicit Yes GUI Yes Yes No

Galaxy Explicit Yes GUI Yes Yes Yes

PegaSys Explicit Yes GUI Yes Yes Yes

Taverna Explicit Yes GUI Yes Yes Yes

Bpipe Explicit No CLI No No No

GXP Make Implicit No CLI No Yes No

Omics Pipe Implicit No CLI No No No

Ruffus Explicit No CLI No No No

SnakeMake Implicit No CLI No Yes No

https://etd.uwc.ac.za

 21

together with resources that are public, and are used to construct highly complex

biological sequence analysis pipelines for investigating the genomics data, all from a

normal UNIX PC, or with support from built-in distribute cluster (or HPC) (Oinn et al.,

2004; Nishanth and Kihoon, 2015).

Furthermore, Bpipe, GXP Make, Omics Pipe, Ruffus and SnakeMake provide platform

for running bioinformatics jobs. What differentiates each framework is the fact they are

written in different programming language and have different design philosophy and

limitations (Kircher and Kelso, 2010). All of the abovementioned workflow frameworks

support job parallelism, but lack the built-in support for cloud and distributed compute

clusters (Di Tommaso et al., 2017). GXP Make and SnakeMake extend their platforms

from single node systems to cluster and cloud. An observed disadvantage of

SnakeMake, however, is that processing of a job associated metadata becomes slow

when more than a 1000 job have been submitted to the cluster. Bpipe, SnakeMake, GXP

Make, and OmicPipe are not ideal for performance evaluation. Ruffus, however, is able

to execute task on multiple nodes, with a common task scheduler keeping track of

dependencies and support for automatic reporting of parameters used, execution

runtimes and tool and data versions (Biostars, 2010; Koster and Rahmann, 2012; Taura

et al., 2013; Ruffus, 2016). None of the CLI tools mentioned in the table supports online

analysis integration (Table 1), whereas GUI workflow frameworks, Arvados, Taverna,

PegaSys and Chipster have established integration of web services in bioinformatics

(Spjuth et al., 2015). However, the Galaxy project maintains a larger research

community and offers the most popular web browser-based platform.

Many research labs or institutions have scripting language experience and use custom

scripts to assist in job parallelization (i.e., linking compute nodes) as well as integration

with HPC resource managers such as PBS, SLURM etc. possibly via DRMAAv1 or 2

(Neron et al., 2009; Biostars, 2015; Jamalian and Rajaei, 2015; Netto et al., 2018). The

study by Spjuth et al. (2015) suggested that working with custom scripts should be fast

and easy to learn as shell scripts are considered to be very simple and flexible (Vince,

2015). Experienced biomedical researchers working with workflows in bioinformatics

https://etd.uwc.ac.za

 22

may prefer writing their own custom scripts when constructing data analysis pipelines

and in this way may find working with custom script much easier, and quicker to deploy

on a local or HPC cluster environment, despite a possible non-optimal process of

workflow automation (Nishanth and Kihoon, 2015). Desirable advanced features, such

as workflow replicability and reproducibility of analyses couple with HPC cluster

resource environment and integration may require development from scratch using

established framework (Biostars, 2015; Santana-Perez and Pérez-Hernández, 2015)

(Table 2).

Table 2: Bioinformatics workflow framework design philosophy

2.7: Analysis Pipeline Options

The wide variety of workflow frameworks which are currently available may inundate

non-experienced biomedical researchers, ultimately leading to difficulties in selecting

Tool

Names

Ease

of

Use

Workflows

Track and

Commands

Reliability

Ease

of

Development

Workflow

Complexity

and

Robustness

Workflow

Reproducible

Arvados No Yes Yes No Yes Yes

Chipster Yes Yes Yes No No Yes

Galaxy Yes Yes Yes No Yes Yes

PegaSys Yes Yes Yes No Yes Yes

Taverna Yes Yes Yes No Yes Yes

Bpipe Yes Yes Yes Yes Yes No

GXP Make Yes No No Yes No No

Omics Pipe No Yes Yes Yes Yes No

Ruffus Yes Yes Yes Yes Yes No

SnakeMake Yes Yes Yes Yes Yes No

https://etd.uwc.ac.za

 23

suitable workflow frameworks to analyze genomic datasets (Bianchi et al., 2016). A

variety of analysis pipelines, such as RNA-seq (for evaluation of gene expression

studies), Chip-seq, (for evaluation of the binding of regulatory elements to genomic

locations), and DNA-seq or Exome or Whole-Exome (to evaluate encoding of structural

or genetic variants such as short Indels, large-scale genomic rearrangements, single

nucleotide polymorphisms (SNPs)), requires an efficient workflow framework

combined with the HPC systems capability (Pepke et al., 2009; Mckenna et al., 2010;

Nagalakshmi et al., 2010). Pabinger et al. (2014), suggested that the best way to better

manage the large volume of genomics data is to choose the most appropriate frameworks

among the existing available computational and analysis tools. Bioinformatics

workflow frameworks are non-static, and biomedical researchers around the world are

faced with an evolving need to produce analysis pipelines for investigating genomic

datasets.

Comparative evaluation of the different workflow frameworks has therefore become a

crucial requirement to choose, and implement, the most appropriate framework for a

particular-problem. Bioinformatics frameworks often include support for extending

functionality and features by using dedicated scripting programming languages, such as

Python (Foundation, 2016), and this allows for easy integration of systems and other

additional workflow features, to promote workflow flexibility, efficiency and

scalability. Workflow framework strength is in simplifying the management of

workflow control and dataflow structure, while the weakness lies in its lower level

features which are not easily programmable since it requires experienced programmers.

In a study by Curcin and Ghanem (2008) a high-level framework for comparing

workflow systems, based on control and data flow properties is provided. A

disadvantage of workflow system was illustrated by Hillman-Jackson and co-workers

(2012). Here, the authors suggest that novice users may experience difficulty with

creating and modifying workflows. Furthermore, libraries which need to be

implemented in workflows to develop tool wrappers does require bioinformatics

experience and as such, it is recommended that users make use of informative tools

https://etd.uwc.ac.za

 24

(such as instructional videos) to gain an understanding of workflow features (Hillman-

Jackson et al., 2012).

2.8: Conclusion to the literature review

This research review’s purpose is to help an inexperienced biomedical researcher with

less computer programing knowledge understand different kinds of bioinformatics

workflow frameworks that exist out there. This is important because working with a

bioinformatics workflow system can be overwhelming and choosing among GUI or

CLI workflow frameworks is totally a question of personal choice. Moreover, the

choice of workflow framework should be well-informed both by the demands of

bioinformatics pipeline analysis and the needs of those using it. The use of a

bioinformatics workflow system is ultimately tied to reproducible research (Kurs et al.,

2016). Reusable analysis that can be easily implemented and run in the HPC are often

desirable in terms of full resource control and management, reproducible research and

the type of collaborative work in modern NGS studies.

Within the local setting that this project will be carried out, the demand for

bioinformatics workflow systems that support the exploration of MTB genomic

datasets should be made available. This literature review confirmed that bioinformatics

workflow frameworks have different features and compositions. Pipeline analysis

construction is often developed within the frameworks. Having determined an exact

focus for the project on an evaluation of workflow frameworks, further investigation

of the workflow frameworks revealed that there is a need for efficient and customizable

bioinformatics workflow systems, or compute facilities that support biological

sequence analysis and data-provenance for data-intensive computational analysis, to

build NGS data analysis pipeline. Examination of the existing state of workflow

frameworks has confirmed that there exists a gap in workflow constructions that could

feasibly be addressed by implementing a SNP-based analysis pipeline that can process

and analyze MTB genomic datasets. Therefore, this study aims to:

https://etd.uwc.ac.za

 25

1) Address these challenges by presenting a concise evaluation of NGS data

analysis pipelines embedded in the Galaxy and Ruffus frameworks. The feature

set and performance of the investigated workflow frameworks are demonstrated

in this study with the aim to assist biomedical researchers in making informed

decisions related to the frameworks.

2) Evaluate Galaxy and Ruffus performance using state-of-the-art variant calling

pipeline tools for MTB datasets.

3) Report the performance of an NGS analysis pipeline in the bioinformatics

workflow systems for processing, analyzing and annotating of regularly

generated MTB genomic datasets and that efficiently manage the analysis of

large genomic datasets.

In this thesis, Chapter 3: describes research design and methods, Chapter 4: describe the

pipeline integration and benchmark of Galaxy and Ruffus workflow frameworks, and

Chapter 5: Concluding with remarks. Source code is described in appendices A-F.

https://etd.uwc.ac.za

 26

 Designs and Methodologies

 This chapter details the different software tools and methods which were used for

implementing the workflow frameworks (Galaxy and Ruffus). Each workflow

framework was setup and organized on the South National Bioinformatics Institute

(SANBI) HPC system environment. Furthermore, the chapter describes the case study;

how a SNP-based analysis pipeline was integrated in the Galaxy and Ruffus

environment, and the criteria necessary for the benchmarking. The pipeline-based

frameworks and the bioinformatics tools employed in this study are reported and an

assessment of cluster resource management was also conducted to determine how the

Galaxy and Ruffus frameworks function. The assessment included the investigation of

the way the HPC resource manager controls the basic computational units and system

resources on (page 12) (Figure 3). It also enabled the setup of the Sun Grid Engine

(SGE) job manager for the virtual working environment (Nocq et al., 2013) which uses

the computing nodes on the cluster facilities (Van Deventer, 2014).

Additionally, the Distributed Resource Management Application API (DRMAA), a

global cluster resource manager that enables higher levels of system integration, was

also deployed (Brown et al., 2015). Git, which tracks changes made in open source

projects, was initialized and set up into our cluster virtual working environment. We

used GitHub as the source code-based repository to store, track changes, and apply

logs of version control to the software and libraries we implemented in this project. To

this end, the work on integration of Galaxy and Ruffus frameworks with the SANBI

HPC cluster facilities has enabled novel, stimulating, productive and simplified ways

to launch bioinformatics computing workflows. An HPC infrastructure enables

scientists and researchers to perform workflow tasks that require large amount of

computing capabilities to process and solve complex genomic problems. HPC typically

utilizes a message passing interface (MPI) to communicate between different nodes

(Alyssa, 2016). That is, MPI allow data to be transfer from location (one process) to

https://etd.uwc.ac.za

 27

that of another process through two-way operations on each process. Therefore, we

assembled a coherent and reusable SNP analysis pipeline for processing, analyzing and

annotating genomic data sets. The following subsections illustrate the steps taken to

organize the workflow working environment.

3.1: Distributed Software Control Version Systems

Distributed software control version systems allow easy access to source code

repositories (Blischak et al., 2016). GitHub as a control version platform assists in the

management of the project software source code. Tracking code level changes is both

a shared and required activity of today’s open source community. For instance, in a

software development environment, tracking of software source code is as essential as

meticulous record keeping of lab procedures and protocols in the biomedical

environment (Heller et al., 2011). However, not all biomedical researchers are aware

of the existence, or of the advantages using the distributed software control version

systems as opposed to the traditional methods of source code repository (O'sullivan,

2009; Rother et al., 2011; Altintas et al., 2012). In this study, the Galaxy and Ruffus

framework source code were derived from an existing open source repository

(Appendix A, B and C).

3.2: Hardware Resource

In table 3, the technical hardware resources used in this study are summarized. The

basics setup including the number of cores (processors), disk, and memory is illustrated.

Table 3: Overall hardware resource used for the workflow frameworks

https://etd.uwc.ac.za

 28

3.3: Virtual Working Environment

When working in a virtual distributed and shared HPC environment, there are several

limitations when it comes to software integration, configuration, versioning, and

management. A virtual environment (i.e. also known as virtualenv) is a toolbox, or

container, that keeps the dependencies required by a project in separate places. Due to

technical limitations in the study, Python virtualenv (Hale and Stanney, 2014) was the

only viable system at our disposal, however, other options could be used outside of

traditional HPC environments. With virtualenv we created isolated Python

environments and avoided installing Python packages globally. That is, we installed the

virtualenv using Python installer tools. The virtualenv allows us to create a folder called

venv that contains all the necessary executables, Python libraries and packages needed

in this study (Appendix A, B, C). The venv libraries provided support for creating a

lightweight program, and also enabled us to integrate file systems with globally installed

modules on the base system (Afgan et al., 2012). The Python libraries and executable

files used for building the workflows were kept within the virtual environment (Gorelick

and Ozsvald, 2014). The workflow frameworks virtualenv was set up on HPC cluster

(i.e., Linux base system integration) for software capabilities and compatibilities

(Mcgough et al., 2005; Kurs et al., 2016). The workflow framework virtualenv provides

support for batch queuing system such as Sun Grid Engine resource manager (Jamalian

and Rajaei, 2015; Nishanth and Kihoon, 2015). The working environment resource is

summarized in Table 4 (Appendix D).

Table 4: Overall virtual working environment summaries

https://etd.uwc.ac.za

 29

3.3.1: Virtualenv Setup for Sun Grid Engine

This study required mandatory decoupling of the reliance on a pre-defined computing

environment to allow for switching between different HPC resources, without

infrastructure constraints. To this end, a virtual Sun grid engine (SGE) was set up for

the development and running of the SNP analysis pipeline on an HPC environment

(Gorelick and Ozsvald, 2014). The SGE was configured to support execution on an HPC

system. Furthermore, the SGE allowed for jobs to be scheduled and automatically

distributed across the cluster resources. While ongoing jobs are running in the

background on the HPC environments, jobs submitted to HPC resource may require

continuous system integration, updates, and maintenance. SGE scheduler monitors all

submitted jobs on cluster nodes and its deployment ensures that the cluster node does

not get overloaded. SGE provides support for the Galaxy and Ruffus workflow

frameworks. The distributed resource management application programming interface

(DRMAA/PI) with SGE enabled jobs submission to the cluster. The DRMAA is a high

level open grid that controls job submissions by using a distributed resource

management (DRM) system, such as a Cluster or Grid computing infrastructure (Sun,

2007; Deelman, 2010). The DRMAA covers all the high-level functionality required for

the Galaxy and Ruffus framework applications to control, query, submit and monitor

jobs on execution resources in the DRM system (Guimera, 2012; Alyssa, 2016).The

virtual machine setup is graphically represented in figure 5 (Appendix D).

https://etd.uwc.ac.za

 30

Figure 5: The virtual cloud infrastructure to physical layers.

The virtual manager consists of a central management virtual node that runs the cloud controller and a
number of cloud nodes that each run a supported hypervisor. The virtual manager interfaces with Virtual
Machine (VM) that housed the virtual Python environment either libvirt, a Linux library that provides an
abstract VM management interface, or the Amazon EC2 interface. At SANBI cloud nodes run CentOS
6.2 with the KVM hypervisor. The Dell PowerEdge M710HD blade server store the VM images on a
Storage Area Network (SAN), accessed via iSCSI over a 10 gigabit Ethernet network (Van Heusden et
al., 2012).

3.4: Implementation of MTB SNP Based Pipeline Analysis in Galaxy

and Ruffus

The process overview of the data analysis workflow steps for the Mycobacteria datasets

is presented below (Raman et al., 2008). The SNP-based pipeline analysis allows for the

raw reads coming off the sequencing machine to undergo numerous steps, ultimately

generating variant call-sets. Each pipeline component phase was composed to execute a

set of bioinformatics tools, using the distributed data-parallel execution patterns

https://etd.uwc.ac.za

 31

(Altintas et al., 2012). Each step in the analysis pipeline which is capable of processing

and analyzing the genomic data (e.g., MTB datasets) is presented in Figure 6.

Figure 6: Overview of the MTB NGS data analysis pipeline.

We use the following standard to build the bioinformatics analysis workflow in the selected workflow
frameworks (i.e., Galaxy and Ruffus). The analysis workflow consists of 10 major steps for exploring and
annotating the MTB genomic data sets. The variant discovery step includes variant calling and annotation
which leads to variant post-processing.

The analysis pipeline includes 11 tools, and performs data quality control and quality

checking, filtering and trimming of sequence reads, alignment to a reference genome,

post alignment analysis, and statistical evaluation and annotation of the detected variants

(D'antonio et al., 2013). To aid data analysis pipeline reproducibility, the analysis

pipeline in the frameworks were saved as separate workflows in the Galaxy and Ruffus

distributions installed on the HPC virtual environment.

https://etd.uwc.ac.za

 32

3.4.1: Sample Data and Reference Genomic Data

Ten illumina NGS datasets from MTB (Tygerberg Medical School) were used in the

SNP variant calling analysis pipeline. The MTB H37Rv strain (URL) was used as the

reference genome for alignment and mapping in this study. The reference genome

dataset was set to the instance of each workflow framework in the data libraries. The

reference genome data was added to the instance using the administrative mode

(Bretaudeau et al., 2015) or admin write permission. The reference data for Galaxy

analysis pipeline can be access from the data libraries menu on the Galaxy portal and

imported to the histories for the downstream analysis. The reference data for Ruffus

analysis pipeline was configured as list which formed part of the Ruffus configuration

files and libraries.

3.4.2: Data Quality Assessment

Data quality control check and processes including data cleaning and formatting was

seamlessly performed. Data quality analysis was performed using FASTQC on the short

sequence reads and the subsequent results were evaluated prior to downstream analysis

in page 92 (i.e., in Appendix E) (Pabinger et al., 2014).

3.4.3: Secondary Analysis (Pre- and Post-Alignment)

Pre- and post-processing analyses were performed on per-sample data in three stages;

1) alignment to the known reference genome, 2) assembly, and 3) variant calling. The

project use H37Rv decoy FASTQ dataset as reference file. The reference file (i.e.,

H37Rv) was indexed in order to ensure accurate alignment and mapping. Different

mapping tools and algorithms (e.g., GATK best practice workflow) were used for

different data types and results were captured and stored to files as variants calls file

format (VCF) (Van Der Auwera et al., 2013) (Appendix E).

https://etd.uwc.ac.za

 33

3.5: Setting up Tools for the Galaxy and Ruffus Framework

The bioinformatics tools and versions integrated into the Galaxy and Ruffus framework

are summarized in Table 5. The tools installation and the environment module files

configurations were carried out within the cluster virtual environment. Python Conda

modules were also setup in the virtual Python environment (Appendix A, B and C)

(Sanner, 1999). The bioinformatics frameworks together with the integration of the data

analysis pipeline consisted of additional external software and associated dependencies

distributed within the cluster. Maintenance and updating of tools were performed and

setup using the Git, a version control system to avoid conflict and out-of-date software

issues when interrogating and manipulating the MTB datasets.

Table 5: Tools used in the analysis pipeline

3.6: Setting up Module System Environment within the HPC

Installing, configuring, and maintaining environment modules package via modulefiles

enables bioinformaticians to choose which bioinformatics software tools to use.

https://etd.uwc.ac.za

 34

Moreover, from a technical point of view, packaging system modules is a time-

consuming task which should not be a concern to biomedical researchers. Similarly,

from a biomedical researcher’s point of view, writing modules does not add any

expertise to the biomedical software toolbox. An existing module environment was used

in this study, and where required, missing modules were re-packaged and installed in

the HPC cluster (i.e., the Python virtual environment on page 28).

3.7: Setting up the DRMAA to Interface with SGE on HPC

Figure 7 illustrates how the Sun Grid Engine (SGE) was setup for the host cluster to

manage and control job submissions in the HPC environment (Appendix D). Using

DRMAA, grid applications builders and portals, developers can use the same high-level

API to link software with different cluster/resource management systems (Booth.,

2013). The SGE-DRMAA software allows multi-user access and policy-based job

control routines by the SGE queuing systems that manage the local computational

resources (Deelman, 2010; Prajapati and Shah, 2014; Brown et al., 2015). In this study,

SGE + DRMAA usage provides an excellent tool for all the capabilities of the grid

engine. The grid engine was administered via commands issued at the shell prompt and

called within shell script. This was found to be a more flexible, rapid, and powerful

strategy to change Grid Engine settings.

https://etd.uwc.ac.za

 35

Figure 7: Overview of the sun grid engine- distribution resource manager.

We integrated some scripts detailing the SGE+DRMAA implementation within the Galaxy and Ruffus
framework. The SGE-DRMAA control the analysis pipeline jobs submission as well as monitoring in the
queue and reporting on both cluster usage and execution. The SGE+DRMAA manage the resource in the
Python virtual environment and ensure resource and cluster management, profiling and tracing.

3.8: Service in the Pipeline Framework

Prior to commencing this study, building of an analysis pipeline involving several

bioinformatics tools and pipeline frameworks was discussed. The analysis pipeline

process (Figure 6 on page 31) involved six phases, including the quality control,

alignment and format conversion, variant pre-processing, variant discovery or call sets

and post-processing. The software programs that formed the bioinformatics toolkit

would allow researchers to analyze and extract and/or transform the genomic data to

glean information for the genetic study. The pipeline tools and their dependencies were

specified using an integrated module system environment. The pipeline specifications

consist of references to a range of software packages to be installed without specifying

the execution environment (Möller et al., 2017). In addition to Galaxy/Ruffus

https://etd.uwc.ac.za

 36

framework setup on the virtual Python environment and execution of SGE in

combination with DRMAA, the pipeline framework stored the genomics data as files or

objects, in data storage (on the SANBI HPC cluster). The overall virtual environment,

the resource requirement for seamless running the pipeline framework, and the

provisioning of user interface access for researchers to the analysis pipeline, is

illustrated in figure 8.

Figure 8: Overall pipeline framework and setup service.

This represents the pipeline framework and setup service components. The framework consists of third-
party bioinformatics tools.

The analysis pipeline was formulated and established for downstream analysis, and jobs

submission to the virtual cluster was monitored, and as such this established a process

for accounting for the jobs profile. An accounting record for each job profile in the

Galaxy and Ruffus workflow frameworks was set up and written to an SGE accounting

https://etd.uwc.ac.za

 37

file. The information in the accounting file included records that track analysis pipeline

resource usage as well as the amount of data transferred in input and output pipeline

operation (Booth., 2013; Prajapati and Shah, 2014). The SGE accounting parameters

used in this study was the qacct command which enabled direct access to the complete

resource usage information stored by the SGE (Oracle, 2017).

3.9: Benchmarking Criteria

As workflow features advanced, the difficulty in performance comparisons between the

various workflow frameworks increased. In this study, we used tools to monitor the

Galaxy and Ruffus workflow activities and the benchmarks used were Collectl-

Util/Colplot pipeline response time and runtime execution. Furthermore, with the view

to benchmark the cluster-based workflows in this study, the performance of the analysis

pipelines in the two frameworks was conducted using standard tests (such as real time

testing, system time, and user time). The benchmark process includes obtaining the

total execution time (i.e., by considering the up-to-date completion time of the previous

pipeline step to the latest completion time of the current pipeline step as described in

Figure 6) for each pipeline step in the dataflow design during the implementation and

execution of the DNA-seq analysis pipeline (Appendix E). Each stage in the

implementation design provided steps enabling tool integration within the Galaxy and

Ruffus frameworks and furthermore, each step allowed for both the processing and

analysis of the MTB genomic dataset. Chapter 4 explains in detail the time measurement

for each analysis pipeline step.

3.9.1: Performance Measurement

This study characterized each step of the analysis pipeline using Collectl-Utility, a tool

used to measure the performance of a system, in order to create a pipeline profile that

determines typical execution of tools within the workflow frameworks (Kelly et al.,

2015). The Collectl-Utility allows for transitory and/or comprehensive measurements

for both Galaxy and Ruffus compute node. The transitory measurements allow for an

https://etd.uwc.ac.za

 38

aggregate view of the CPU usage in the system and the same techniques were employed

to measure the disk performance and network performance. Comprehensive

measurements provided further detail into the individual parts assessed (Layton, 2017).

For example, CPU usage could be measured for each individual CPU using a

comprehensive mode in Collectl. This analysis was also applied to disk and network

performance and Colplot, and the addition with GNU plot, allowed for graphical

representation of the findings (Appendix F).

3.10: Continuous Integration System

Galaxy and Ruffus frameworks components have software checks as quality control

checks. It is therefore important to routinely run software update checks whenever

changes are introduced into any of the framework’s components. The rationale for

introducing the continuous integration system is to certify that Galaxy and Ruffus

workflow framework component modules continue functioning correctly after any

developer has introduced changes (Sanner, 1999; Pabinger et al., 2014). To this end,

this study utilized buildbot (a Python-based approach) and Git for the software

continuous integration and notification (Brian and Dustin, 2009; Gray et al., 2010).

Following the selected configuration in the Galaxy and Ruffus frameworks, the Git

agent was used to monitor the remote repository, and as soon as changes were identified,

Git agent fetched the changes and sent notification. Subsequently, the changes were

evaluated in the software test suite in order to warn against potential software breaks

(Blischak et al., 2016).

3.10.1: Contributing Code on GitHub

Tracking changes made to the bioinformatics software tools utilized in this study was a

vital component of the project success. To this end, software control versioning was

used, which essentially allowed for the concurrent control the software versions, and the

project source code. For sharing and collaboration amongst the open source community

(Heller et al., 2011), the source code for this project is made available on GitHub and

https://etd.uwc.ac.za

 39

can be found using the following link: https://github.com/boratonAJ/SNPs_Analysis

(Figure 9) (Schall, 2015). Our contributing software tools utilized in this study can be

found in Appendix A, B, C, D, and E.

Figure 9: GitHub contribution and commit activity.

The diagram represents the activity of our implementation at SANBI labs. The contribution timeline
shows the way we contributed to the open source project.

3.11: Distributing SNP Analysis Packages on Python Package

Website

SNP Analysis used Setup.py to setup the Python package from Python Package Index

(Pypi). The Setup.py is a Python file that tells operating system the module to install

with the assistance of Python distribution utilities (Distutils). The Distutils is the

standard for distributing Python Module. The SNP Analysis project setup was as

follows;

https://etd.uwc.ac.za

 40

a) Package - A folder/directory that contains __init__.py file.

b) Module - A valid Python file with .py extension.

c) Distribution – Package that is related to the project.

More so, the following steps highlighted how the package was built and distributed;

a) The layout of the project files

b) directory structure

c) creating the project distribution file and

d) the project package name was registered at the Python Package Index (PyPI).

Figure 10: An illustration of the SNP Analysis pipeline published on Python

packages with the Python package index.

An account was created on (https://pypi.org/) and we publish the developed Python package with the

Python Package index at (https://pypi.org/project/SNPs_Analysis/) for sharing the project package

distribution. Figure 10 show the SNP Analysis package page on Pypi. This helps the biomedical

researcher find and install the developed package.

https://etd.uwc.ac.za

 41

 Pipeline Integration and Benchmarking

Knowledge gained from the Chapter 2 and 3 was implemented in a practical case. As

the need for access to an efficient workflow framework in high performance computing

environment has increased, so has the requirement for the development of

bioinformatics workflow systems in South Africa, across the Africa continent and on a

global level. With an aim to contribute to the bioinformatics open-source community,

the addition of new pipeline analyses to the bioinformatics workflow systems would

also allow for biomedical researchers to perform tasks that are impossible. This means

that bioinformaticians can use the workflow systems to build analysis pipelines,

allowing biomedical researcher to run the pipeline, for example, without ever leaving

the workflow framework environment. Galaxy and Ruffus integration with computing

resources at SANBI were benchmarked. This benchmarking process was criterial to

address factors such as pipeline flexibility, ease of use, execution time, processing time,

solvability and reproducible and community support. It further motivated the relevance

of the framework in the biomedical research community. The tabulated features

demonstrated measurable performance and metrics. A short discussion on how the

Distributed Resource Management Application API (DRMAA), a generalized resource

manager, enabled higher levels of integration, and, our modifications to it. An evaluation

of the management of the Galaxy and Ruffus framework on cluster resources (how the

pipeline frameworks handle the basic computational units during execution of the

analysis pipeline) was required to provide knowledge of how our setup works in terms

of data storage, network capabilities and processing time and accuracy.

4.1: Genetic Data Processing

A total number of 10 MTB genomic datasets from Tygerberg Medical School, South

Africa was used for the downstream analysis. The analysis includes data processing,

manipulation, filtering, assembly and annotation using Galaxy and Ruffus workflow

framework. In this study, we implemented analysis pipelines in the Galaxy and Ruffus

https://etd.uwc.ac.za

 42

framework, custom-made specifically for identification of a SNP (Figure 13) based on

genetic variations. The genetic variation was detected by using reference sequences to

identify variant at a given position in an individual genome or transcriptome. The

variant were characterizing to be either synonymous or non-synonymous, together with

insertions and deletions (Cohen et al., 2015). The output result from the downstream

analysis on SANBI HPC facility was stored for interpretations and future retrieval. The

project metadata datasets were managed within the pipeline framework and both the

input and output data was stored as parallel filesystems on the HPC environment for

pre- and post- data analysis. The reference genomes of MTB (H37Rv) used for

alignment and mapping were downloaded from the NCBI database

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) and a PERL script was used to convert from

GenBank format - to FASTA format, and generic feature format (GFF). The reference

genome index was also integrated as part of our analysis pipeline.

4.2: Galaxy Configuration

Galaxy is a web-browser software system application for accessible, reproducible, and

collaborative analysis of high-throughput ‘-omics’ data (Goecks et al., 2010). The

Galaxy project aims to make computational analysis pipelines accessible to research

scientists that do not have computer programming experience (Blankenberg et al., 2010,

Atwood et al., 2015) and is widely supported by a large research community. Galaxy

provides an intuitive user interface with which researchers can build pipelines or use

existing pipelines to perform analysis on data such as genomic DNA sequences. In our

Galaxy configuration, BWA-GATK and Freebaye-GATK for calling variants, the

analysis pipeline was wrapped and configured based on the GATK recommended best

practices, to demonstrate the SNP analysis pipeline on the HPC cluster. The SNP

analysis pipeline selectively calls variants by grouping Synonymous and Non-

Synonymous variant call sets. A concise description on source code structure is

published as part of the official Galaxy documentation and can be found using the

following URL: https://github.com/galaxyproject. The project structure overview is

provided in appendix C.

https://etd.uwc.ac.za

 43

4.3: Ruffus Configuration

The design and architectural goals of the Ruffus module is to be simple, intuitive,

lightweight, powerful and flexible (Ruffus, 2016). Integrating and configuring the

Ruffus framework on HPCs, provides a way to develop scripting data analysis pipelines

that work together with a suite of predefined bioinformatics software tools, and are

customized as modular Python scripts. The framework has enabled the building of an

easily accessible and reproducible in-house SNP data analysis pipeline and dataflow

management system. To this end, the Ruffus framework manages the computational

analysis operations of each stage of the SNP analysis pipeline that are written in separate

Python scripts. The analysis pipeline has input sample files that includes the pair-end

read sample number (e.g. assigning "_R1" and "_R2" as prefix to the sample files) and

the file extension “. fastq", all in lower-case. The input sample files to the workflow are

gzip-compressed with the file extension “. fastq.gz". In addition, three simple phases

were used to build this in-house Ruffus SNP analysis pipeline and include: 1) importing

ruffus, 2) “Decorating” functions that are part of the pipeline, and 3) running the

pipeline. With Ruffus framework, the process of executing the analysis pipeline is

managed and ensure that the dependencies software and file names of the dataset as it

flows across the analysis pipeline stages are specified in advance. The pipeline stage

functions are specified in the correct order, with the precise parameters, running in

parallel with the SGE + DRMAA that assist in splitting the HPC central processing units

(CPUs) into several processes and jobs submission. The Ruffus environment which is

utilized at SANBI uses a Python function in the script which performs the analysis

staging. The source code for this project can be found using this URL

(https://github.com/boratonAJ/SNPs_Analysis,) and the source code structure overview

is provided in appendices A and B.

https://etd.uwc.ac.za

 44

4.4: Galaxy and Ruffus deployment on HPC?

We deployed each workflow framework on an HPC cluster, in a virtual environment by

following the instructions on the official Galaxy and Ruffus webpages to setup the

framework instances. In addition to the setup processes and as outlined in section 3.3

and 3.4 (page 28 and 29), the following steps were also considered;

a) A clean VM environment and a dedicated user account was provided

b) A local SQLite database to a dedicated VM server instance (e.g., PostgreSQL)

was set up to ensure for concurrent connections to stored metadata and to

increase the response time of the Python virtual environment on the HPC.

c) SSH and FTP mechanisms to access and send data off-browser were enabled

d) Different performance tuning aimed at ensuring a better user experience was

ensured with Collectl-Util, a resource monitor that dynamically monitor the

performance of the Galaxy and Ruffus framework.

4.5: Implementation of the SNP Analysis pipeline in Galaxy and

Ruffus

Following extensive considerations of the above-mentioned steps, the SNP analysis

pipeline was tested and deployed. The analysis pipeline follows best practices as

outlined by the Broad Institute (Mckenna et al., 2010) (Appendix E). The downstream

analysis tools used in the pipeline include quality data format tool (FastQC), aligners

and sorting (BWA-MEM and SAM tools), mark and remove duplicate (Picard tools),

variant callers (GATK Haplotype Caller) and SNP effect predictors (SNPEff). Genome

Analysis Toolkit (GATK) is one of the most popular variant calling application tools,

and together with BWA-MEM enabled the project to compose a data analysis pipeline

focusing on SNP and insertions/deletions (INDELs) discovery (Mckenna et al., 2010;

Depristo et al., 2011). In this project, we did not use one approach to configure all tools,

but we utilized dual processes, the optimal configurations for each of the variant analysis

tools and parameter. In appendix E, we demonstrate a simplified step of the variant call

https://etd.uwc.ac.za

 45

pipeline in which pre-processing alignment, post-processing alignment and variant

discovery in the Galaxy and Ruffus frameworks were tested. The integration of the

pipeline steps formed the SNP analysis pipeline implementation. From the overview

above, the pipeline steps helped to format, convert, correct and identify the novel genetic

variants that are associated with Mycobacterium tuberculosis drug resistance. The steps

encompass phases that include quality control checks, alignment and mapping with

reference genome (MTB-H37Rv), local realignment, discovery of single nucleotide

polymorphisms (SNPs) and annotation of the variants using the GATK Haplotype Caller

(Mckenna et al., 2010) or Freebayes (Pabinger et al., 2014). The general flowchart for

the analysis pipeline model in the workflow frameworks is represented in the figure

below (Figure 11).

Figure 11: A generic unify flow model for SNP discovery analysis pipeline.

The following diagram illustrated the strategy we used to set up the pipeline analysis in the pipeline

frameworks. The flow model represents the general the analysis pipeline process we established for this

project.Several bioinformatics tools were incorporated.

https://doi.org/10.1371/journal.pone.0075619.g001.

https://etd.uwc.ac.za

 46

4.5.1: SNP Analysis Pipeline Implementation in Galaxy

Galaxy SNP analysis pipeline and bioinformatics tools combines the power of genomics

annotation catalogs with a web portal (Blankenberg et al., 2010). A variety of

bioinformatics tools and algorithms were implemented with the aim to enable

researchers to search local and remote resources. Following this, the SNP analysis

pipeline in the Galaxy framework was created and deployed (Figure 12). The advantage

of the SNP analysis pipeline in Galaxy is that it enables researchers to perform an

analysis on the genomic data using the large suite of available bioinformatics tools, from

beginning to end, and, allows for interaction with selected genomic results through

browsing Galaxy history. The history generated in Galaxy serves as an analysis record

which can be used to demonstrate result reproducibility. Galaxy output files obtained

were detailed PDF reports with results in the form of tables, text and graphic files. The

Galaxy framework tracks an individual’s job runs, along with features that enable the

researchers to perform independent data queries, prepare, manipulate and visualize,

share, publicly post, delete, or archive results. Galaxy uses a shared file system between

its application server and the cluster nodes. This ensures that researchers can create and

share pipelines/workflows of their analysis with each other. The Galaxy tool utilized

additional scripts that allowed for the upload of the genomics data sets from the in-house

storage server. In this study, not all parameters were set and as such the flexibility of

Galaxy made it unique to deliver a highly automated solution. The workflows can be

created in one of two ways; 1) Using the installed tools to create the required analysis

pipeline prior to generating the grid flowchart workflows, or 2) Using the grid

workspace to directly create and connect the GUI flowchart workflows steps (Appendix

C). Although Galaxy is in late-stage beta testing, over 600 users have created almost

2500 workflows since August 2008 (Project, 2016). However, further testing of Galaxy

is underway in order to address serious application issues, such as the simplest way to

build and automate the Galaxy application tools (Piras et al., 2017)

https://etd.uwc.ac.za

 47

Figure 12: Diagram showing the Galaxy SNP analysis pipeline steps.

A grid workflow diagram which represents an overview of the Galaxy SNP analysis pipeline employed
in this study is provided below. The Print reads command option write out sequence read data from the
BAM file after the BQSR and was used as part of BQSR for filtering, merging, and subsetting etc.

4.5.2: SNP Analysis Pipeline Implementation in Ruffus

SNP analysis pipelines using the Ruffus framework library allows a biomedical

researcher to carry-out variant calling data analysis with specific sets of bioinformatics

tools (Appendix A, B, and E) (Leipzig, 2016). Ruffus framework ensures that the correct

data flows down the analysis pipeline in the correct way at the right time. With Ruffus

library, the SNP analysis pipeline permits the automation of tasks in parallel, alongside

management of task execution and visualization. The Python scripts at each stage of the

SNP analysis pipeline implementation take single inputs at a time (except for pre-

processing data analysis stage which takes paired-end input data) when configuring the

pipeline. All jobs parallelism is handled by the integration of SGE + DRMAA with

Ruffus framework. The Ruffus SNP analysis scripts enables discrepancy checking

https://etd.uwc.ac.za

 48

between tools and job checkpoints to ensure that tasks have been completed. In addition,

the Ruffus SNP analysis pipeline provides several enhancements, including a

convenient command-line syntax with configuration files that helps the biomedical

researcher to describe the pipeline parameters, as well as the ability to run jobs either

locally or on HPC cluster systems (Bao et al., 2014; Kurs et al., 2016). In this study, the

SNP analysis pipeline was based entirely on standard Ruffus metadata libraries for

variant call sets, SNP-transcripts, and genomic reference-based data. Ruffus libraries in

combination with Graphviz software (i.e., “a utility programs useful in graph

visualization; and libraries for attributed graphs”) were among the various software

tools integrated in this project (Ellson et al., 2001). The Graphviz software was utilized

to generate an automatic analysis pipeline flowchart graph which provides an overview

of the SNP analysis pipeline in the Ruffus framework (Figure 13).

Figure 13: Diagram showing the Ruffus SNP analysis pipeline steps.

The graph illustrates the overview of the steps executed in the SNP analysis pipeline. The flow chart was
generated using the pipeline_printout_graph function from Ruffus. Other tools, such as SNPEff
automatically generated a statistical summary report in html format following annotation of the VCF file.
The base quality recalibration (BQSR) was avoided in this project due to direct detection of haplotypes.

https://etd.uwc.ac.za

 49

Therefore, the integration and implementation of Galaxy and Ruffus SNP analysis

pipeline together with bioinformatics software tools allows this project to integrate and

test the framework with the mycobacteria genomic datasets in an automatic, reliable,

and disk space-saving way.

4.6: Comparative Analysis

In Chapter 3, the case study which involved a customized data analysis pipeline for

calling variants (i.e. SNP) (with jobs running from start to end) in both Galaxy and

Ruffus, was presented. The pipeline is customized around several bioinformatics tools

(e.g., BWA, Freebaye and GATK) and is routinely utilized for analyzing and annotating

the bacterial genome datasets (e.g., MTB). Logical techniques were applied when

constructing the pipeline for discovery of variant call sets and the bioinformatics tools

utilized on the cluster working environment were parallelized to speed up analyses in

each framework virtual manager environment on page 30. In the Galaxy virtual

environment, scripts such as XML, were incorporated and wrapped around the various

bioinformatics tools in the virtual cluster manager. On the other hand, in the Ruffus

virtual environment, the analysis pipeline was developed by integrating the Ruffus

library together with configuration module files which called all the bioinformatics tools

in the HPC cluster virtual environment. An advantage of using the Galaxy framework

is that experimental biologists (i.e., naïve scientists) that have no knowledge of

computer science and programming but want to develop a variant calling analysis

pipeline to find genomic region targets for experimental validation can interact with

Galaxy workflow with a focus on workflow reproducibility and collaboration between

biomedical research labs or institutes that may experience difficulty in developing

and/or building analysis pipelines. On the other hand, the advantages of using Ruffus

analysis pipeline is that the framework can accommodate both basic Python scripts and

production level data analysis pipelines, which includes features such as, serial and

parallel steps, dependency checking, data transformation and good naming convention

for input and output files, as well as user-defined parameters that are fixed and

https://etd.uwc.ac.za

 50

deliverable, and automatic failure recovery (Ruffus, 2016). The following sections give

more insight on the comparative evaluation;

4.7: Galaxy Framework features versus Ruffus features

A unique feature of Galaxy is the large number of tools for operations on a number of

DNA-seq files (*.fasta) (e.g., multiple sequence alignment) based on the bx-Python

project, a Python library for manipulating biological data with associated set of scripts

developed by the Galaxy Team for fast implementation of rapid genome scale analyses

(Sinclair, 2010; Blankenberg et al., 2011). These scripts include intersect, subtract,

complement, merge, concatenate, cluster, coverage, base coverage, and join. Galaxy

users may benefit from the Galaxy project in the cloud, particularly when ‘on-demand’,

fast, and inexpensive resources are required. As with many other workflow servers (e.g.,

Taverna), there is no restriction on data file size, nor on the amount of storage space

available for each user on Galaxy. There are however practical limitations for large file

movement from one genome server to the next. Galaxy “history” tracks all analyses

performed by a user and it is continually recorded, and never deleted (unless the user

deletes the history). In a case where history has been deleted, records are retained for 60

days prior to permanent deletion from the main server. A disadvantage of Galaxy was

illustrated by Hillman-Jackson and co-workers (2012). Here, the authors suggest that

novice users may experience difficulty with creating and modifying workflows.

Furthermore, libraries which need to be implemented in Galaxy to develop tool

wrappers does require bioinformatics experience and as such, it is recommended that

informative tools (such as instructional videos) are utilized by users to gain an

understanding of Galaxy’s features. Galaxy, as a web-based framework makes the

analysis pipeline, tools and genomic data available to any biomedical researcher that has

access to the internet. In contrast, Ruffus framework provides built-in features that

supports and manage file naming as well as efficiently assist bioinformaticians to

combine multiple bioinformatics tools together in an analysis chain. Ruffus framework

uses standard Python syntax and decorators. As such, the SNP analysis pipeline as a

series of Python scripts uses the Ruffus framework library for data extraction,

https://etd.uwc.ac.za

 51

manipulation, moving and transformation. The advantage of using Ruffus framework is

having a consistent naming convention (i.e., input and output files) for the analysis

pipeline. By using the Ruffus “@transform”, the decorator enables us to specify the files

moving through the SNP analysis pipeline. With Ruffus managing the SNP pipeline

parameters, the following features were checked: 1) out-of-date parts of the pipeline

were re-run 2) Multiple jobs were run in parallel (on different processors on the HPC

cluster) 3) Pipeline stages were bound together automatically (i.e., apply the pipeline to

more than 10 files at a time). A workflow framework specification requirement and

comparative analysis summary based on customized analysis pipeline application tests

and validations in this study, is represented in Table 6 and 7 below (Pabinger et al.,

2014; Leipzig, 2016; Ruffus, 2016).

Table 6: Workflow Framework Summary

The table shows Galaxy/Ruffus application differences.

Criteria Galaxy Ruffus

Programming

Language

Written in Python. Written in Python.

Task

Management

Pipeline task can be paused and restarted

with the history refresh button.

Task cannot be stopped. Run from

start to end.

 DRM Galaxy framework accommodates more

than one engine e.g., Torque, Slurm, and

DRMAA etc.

Only tested on SGE plus Ruffus

drmaa wrapper for job

submission.

Target

Audience

Computational and Experimental

Scientists.

Computational and

Experimental Scientists.

Hardware Windows, Mac, & Linux. Linux Only.

https://etd.uwc.ac.za

 52

Table 7: Comparative Feature Analysis Summary

The table shows the analysis difference in the Galaxy and Ruffus features.

4.8: Galaxy Implementation and deployment Pitfalls

In this project, the Galaxy framework does not support automation of the analysis

pipeline and as such the workflow requires constant intervention where users have to

restart the analysis pipeline. The Galaxy application programming interface (API)

Criteria Galaxy Ruffus

Analysis

Pipeline

Good for beginners and advanced

users. Possibility of integrating

custom workflow solutions.

Complex to create (good for advance

developers). Custom scripting workflow

solution recommended with the use of

Ruffus library (Python integration).

User

Interface

Easy to use; Galaxy menus are

clearer, designed to meets basic to

advanced user expectations.

Complex to use (require large learning

curve and extensive programming

knowledge). Meets advanced user

expectations.

Data Size No restriction of data size of files.

No limit to storage space.

No restriction of data size of files. No

limit to storage space.

Accessibility Doesn’t support windows client

download, offer as web-browser as

service for all operating systems.

Available on GitHub.

Ruffus framework application is strictly

UNIX/Linux package, and is available as

a pip or an easy-install.

Audit

History

Tracks all analysis performed by

user and is never deleted.

Tracks all analysis performed by user and

is never deleted.

Information

Managing

Custom generated workflows are

shareable and can be published.

Not available. Only use shared memory

for data/output share.

https://etd.uwc.ac.za

 53

access requires expert knowledge of bioinformatics for installation, implementation, and

deployment on HPC cluster for data-intensive analysis and may present a steep learning

curve for novice users. More so, at the time writing this thesis, Galaxy does not

specifically support SGE, but rather was design to support SLURM grid engine (i.e., a

batch management system for jobs submission to the HPC cluster for data-intensive

analysis)(Guimera, 2012; Reuther et al., 2016). Other pitfalls we encountered include;

a) The host on which the Galaxy application server processes run can only be

configured in the DRM as a submit host.

b) The use of Galaxy from basic to advanced developers must have a root or super

permission for Galaxy API to write in the hosting virtual manager environment

(i.e., /etc/passwd, LDAP).

c) The Galaxy virtual environment requires configuration of disabled shells like

/bin/false in Debian/Ubuntu.

d) The Galaxy application server and worker nodes require the same version of

Python

e) The Galaxy shared filesystem and absolute pathname also are limitations in this

project since the project does not have full write permission, which however,

delay the project software development process.

f) Host manager debugging and network latency limitation.

4.9: Ruffus Implementation and deployment Pitfalls

The pitfalls of implementing and deploying Ruffus on HPC cluster can be seen as the

aspects related to the community support and understanding the workflow syntax and

modules. Most Ruffus libraries are object-oriented decorator syntax which requires in-

depth knowledge of Python programming language. The Ruffus framework does not

provide customization of database but rather, provides support for only a single database

called SQLite. There is no way to read and write directly from the database except

through file configuration. Other pitfalls include extensive use of regular expression and

wildcards for file matching (i.e., file naming convention), lack of file cleanup and

https://etd.uwc.ac.za

 54

preservation of history. In this project, we explicitly handle the restarting of failed jobs,

hence, rebooting and/or restarting the entire pipeline again when tasks failed. Therefore,

Ruffus library is case sensitive and are quick to both sematic and syntax errors when

tasks encountered errors at any instance of ambiguity in analysis steps.

4.10: Benefit of Galaxy over Ruffus on HPC Cluster

In this project, the Galaxy framework rendered easy user interaction through the use of

web browsers. Galaxy has a respectable community of users, developers and currently,

several biomedical research labs have adopted this platform (Blankenberg et al., 2010;

Goecks et al., 2010). On the other hand, Ruffus framework lacks the community

supports and its uses in research or institute labs. Ruffus frameworks lacks a pipeline

analysis progress bar and a way to query jobs that are being run on the HPC cluster.

Another discrepancy in Ruffus is the lack of dynamic control (e.g., switching on/off the

tasks, priorities changes, etc.) during the execution of the analysis pipeline. The use of

Ruffus is regarded as running any other tool on the HPC cluster. Therefore, if the

researchers have agreed with the term of service and have accepted responsibility and

liability, the same rules apply to any other users in a cluster, willing to run any type of

software. When running the analysis pipeline in Ruffus, there is a possibility to enable

audit trails for logging the analysis pipeline history. This assist with controlling the

pipeline bugs and the underlying method used by the HPC cluster facility.

Consequently, Ruffus libraries have advantages, but do not offer an overall solution that

allows a bioinformatics tool to be easily integrated in an analysis chain and run by

biomedical researchers without programming experience.

4.11: Testing and Deployment of Workflow Frameworks

In this study, the framework efficiency and by extension, the possible relevance to the

biomedical research field was tested. Test driven processes which included the analysis

pipeline integration and implementation, and the logger, pipeline state, and tools

integrated to run on the cluster, were reported. The benchmarking criteria which serve

https://etd.uwc.ac.za

 55

as building block for testing and deployment of the SNP analysis pipelines are explained

and illustrated (Table 8). Scopes used to plan and assess the Galaxy and Ruffus

framework include;

a) Solvability: analysis pipeline should have the ability to read data in a variety of

different formats, and the support for data provenance, storage and file

management systems that allowed the movement of both data input and output

(Shannon et al., 2006).

b) Performance: analysis pipeline should meet performance criterion. For

instance, collectl-utilities evaluation on response time, runtime, and hardware

usage (Furtaw, 2016).

c) Scalability: Analysis pipeline should be scalable. That is, evaluation based on

jobs running on HPC cluster are scaled (Nishanth and Kihoon, 2015).

d) Evolution: Continuous software integration, usability of the analysis pipeline as

well as community users and developers support.

e) Reproducible: Workflow framework should be able to reproduce previous

analysis results when pipeline is re-running (Leipzig, 2016).

f) Efficient: Each step in the analysis pipeline should be as fast as possible, from

data formatting, converting, and processing to discovery without interruption of

any form. In other words, analysis pipeline should utilize the full HPC resources

(Leipzig, 2016).

g) Easy to use: Researchers should be able to interact with the workflow

framework easier in a spontaneous way (Blankenberg et al., 2010).

https://etd.uwc.ac.za

 56

Table 8: Scope summary difference between the Galaxy and Ruffus framework

Table 8 summarizes the scope difference between the Galaxy framework and Ruffus

libraries that aim to explain the problem of mining valuable scientific insights from large

amounts of genomic data on next-generation sequencing experiments (i.e., DNA-seq

experimentation).

4.12: Benchmarks Process

The following sections describe the benchmarking processes. In this project, we

documented the CPU utilization profile as well as the performance of the base operating

system (i.e., HPC Linux System) using the Collectl-Utility (White, 2016). During the

execution of the analysis, the CPU, memory, disk, and network usage were measured at

intervals of 30-seconds. The output result was then parsed and plotted using the Colplot,

Benchmarks

criteria

Galaxy Ruffus

Solvability Yes Yes

Performance Yes Yes

Scalability Yes No

Evolution Yes No

Reproducible Analysis pipeline can easily be

reproducible. Suitable for beginners

to advance user knowledge of

programming.

Require good programing

knowledge to reproduce pipeline.

Not suitable for beginners.

Efficient Very efficient for processing large

dataset. Take long to process larger

dataset.

Take long to process large dataset.

Not as fast as expected.

Easy to use Yes Not for beginners.

https://etd.uwc.ac.za

 57

a simple web-based application tools for graph visualization (Awasthi et al., 2015;

Chhanga and Shukla, 2016) (Appendix F).

4.12.1: HPC Point of Reference

The basic points of reference evaluated included the number of cores (processors), disk,

and memory. When researchers give reference to the size of a high-performance

computing (HPC) cluster they are referring to how many processors or cores, it has.

Each core needs memory attached with it, to provide a place for the processor to

perform. The amount of memory on the cluster which was required for this study was

driven by the requirements of the workflow frameworks and as such, had to be

comprehensively benchmarked. Galaxy and Ruffus framework requirements varied

with the variant calling pipeline. Each step in the SNP analysis pipeline step utilized

memory that ranged from 1 gigabyte of RAM per core to 10 gigabytes (not processor)

on the SANBI HPC cluster. The memory (RAM) on the cluster provided a temporary

workspace for job execution on cluster core. Once the analysis jobs in both Galaxy and

Ruffus (i.e., parallel jobs submission) on the HPC cluster were completed, the memory

was permanently written on the HPC hard disks. The result of the analysis was then

transferred to another shared storage on the HPC file system. Setting up the analysis

pipeline architecture on HPC was a complex process, and as such, required the advice

from the cluster administrators. Factors that influenced the SNP analysis pipelines

included; 1) the number of memory (RAM) present on the cluster processors (CPU) to

support each analysis step (one process or two processes at a time), 2) disk management

requirement and 3) the framework application and research problem (Nishanth and

Kihoon, 2015; Netto et al., 2018).

4.12.2: Collectl-Utility in Practice (Parallel Benchmark)

The rationale for the use of collectl-utilities over other tools is due to its superior

capabilities and usefulness for diagnosing or debugging (White, 2016). Collectl-

Util/Colplot demonstrated how the Galaxy and Ruffus compute node operate by

https://etd.uwc.ac.za

 58

enabling the monitoring of components such as memory and CPU utilization (Kelly et

al., 2015). The Collectl-Util gathered the performance of the base operating system

(UNIX/Linux OS), processors and the CPU utilization. The logged data from activities

of the pipeline were then parsed and plotted. Figures 14, 15 and 16 are graphs plotted

using the Colplot tool. From these graphs, we illustrate the manner in which Galaxy and

Ruffus write to disk input/output (diskio), memory consumption and CPU utilization for

total of 2 to 4 cores per analysis step, with CPU speed of 4527.066 MHz minimum for

successive virtual cores (Kelly et al., 2015). When we execute and test the SNP analysis

pipeline, we captured the diskio metric and plotted the rate at which the compute node

disk writes input and output. From the plot one can see that diskio is very high over the

time.

Figure 14: Disk utilization summary.

The plot shows the rate at which writing to disk increases over time. The more the input data supplied,
the bigger the file generated.

Figure 15: Memory consumptions.

The plot shows how the compute node memory was divided among the cached, buffered, dirty, and slab
memory during SNP analysis pipelines execution on HPC cluster.

https://etd.uwc.ac.za

 59

Figure 16: CPU utilization.

The plot shows the real time series of our compute node CPU utilization. Thus, both Galaxy and Ruffus
framework CPU usage are monitored in both brief and detailed daemon mode.

4.12.3: Tools Runtime Measurement in Galaxy and Ruffus

The analysis pipeline total execution run time is the elapsed wall time from the initial

start of the analysis steps (i.e., from the earliest start of Step 1 to the latest completion

of Step 2 of the analysis on page 31) (Appendix E). To this end, time measurement for

each SNP analysis pipeline (in the Galaxy and Ruffus framework) step is from the

newest completion time of the earlier step to the latest completion time of the current

step as described below (Figure 17) (Torri et al., 2012; Spjuth et al., 2015; Piras et al.,

2017).

https://etd.uwc.ac.za

 60

Figure 17: Graph of Galaxy Real time against the Ruffus.

The plot illustrates the total execution run time for each analysis pipeline step in the Galaxy and Ruffus
framework.

Table 9: A summary table showing the tools running time for each data set.

In this study, the running time for each SNP analysis pipeline is summarized in Table

12. The data input size, size of DNA-sequence read files and the reference genomes are

the most important factors affecting the analysis pipeline execution run time on the

framework. For instance, during the mapping and alignment process/step on Galaxy and

https://etd.uwc.ac.za

 61

Ruffus workflow framework, the reference genome size plays a major role while the

GATK Haplotype caller step in the SNP analysis pipeline is affected by the size of the

variant calls set.

4.12.4: Execution Time and Memory

The Galaxy/Ruffus framework computational time and the HPC resource manager (e.g.,

CPU, memory etc.) required to execute the SNP analysis pipeline are considered to be

critical evaluators of efficiency. For example, if Galaxy/Ruffus framework’s

requirement for memory is high in the system requirement specification and the HPC

resource (e.g., compute node available for implementing, testing and deploying the

Galaxy and Ruffus) is low in memory for data intensive analysis, then the workflow

framework will not be very useful. In addition, a workflow framework is not useful if it

does not support multi-parallel for data processing and jobs handling and submission.

Ideally, a workflow framework should be able to balance both CPU and memory usage

during analysis pipeline execution. To this end, the computational response time of

Galaxy and Ruffus during processing, analyzing and annotating MTB genomics data,

was measured. Five runs were used to assess the impact of the analysis pipeline in

Galaxy and Ruffus, to evaluate the response time, computational speed and memory

usage. The response time is the total amount of time it takes Galaxy and Ruffus analysis

pipelines to process and analyze the genomics data and is the sum of time it takes the

cluster to respond to a request during the execution of the analysis pipeline on the

computer node. The pipeline request includes; memory (RAM) request, number of cores

(CPU), reading and writing to a disk input/output (diskio), data retrieval, and storing

and database queries. Galaxy response time analysis pipeline execution includes loading

a web browser that includes the HTTP GET and POST method (i.e., a process that

enable communications between the client’s computer and HPC servers), pipeline

shared and executed with user-defined data and parameters (Blankenberg et al., 2010;

Hillman-Jackson et al., 2012). On the other hand, Ruffus response time analysis pipeline

execution includes building a flow chart of the pipeline tasks, beginning with the most

recent ancestral pipeline task (i.e., with less dependencies) and calling each Python

https://etd.uwc.ac.za

 62

function in parallel to run multiple jobs (Ruffus, 2016). The response time for Galaxy

analysis pipeline is compared to that of the Ruffus analysis pipeline as shown below in

Figure 18 below.

Figure 18: Graph of Galaxy real time against the Ruffus analysis.

The plot shows the response time of the pipeline analysis in the Galaxy and Ruffus framework (as
discussed in section 4.7.4 above). The figure shows difference in execution run-time for each
bioinformatics pipeline analysis.

From the graph, the Galaxy execution time (also referred to system real time) decreases

over time per runs and superseded that of Ruffus runtime execution per run. Figure 19

shows the maximum (Max) coefficient and average (Mean) run time of Galaxy (as

captured by the Colplot tool).

https://etd.uwc.ac.za

 63

Figure 19: Statistical Analysis Summary.

The figure above shows the statistics summary of the execution time of the Galaxy and Ruffus analysis
pipeline. The stats for Galaxy indicate more efficient values over that of Ruffus values.

Analysis in Galaxy framework utilized less time, on average, compared to the analysis

pipeline in Ruffus framework. However, caution must be exercised, and it cannot be

concluded that Galaxy out-performs Ruffus as both pipeline framework design is

different in term of algorithm, concept, internal architecture and requirement

specification for processing and analyzing genomic dataset, as well as for creating or

composing analysis pipeline. Each framework has one or more limitations. As at the

time writing this thesis, Galaxy was seen to be the preferred option by researchers to

perform computational analysis.

4.12.5: Features Evaluation Matrix

We prioritized 7 criteria and a scale of 1 to 5 was used to summarize the Galaxy and

Ruffus workflow frameworks and features during the framework deployment and

testing (Table 10). An appropriate rule was set so that each rating criteria outline in the

table below was used once. That is, the greater the importance or value of a criterion,

the higher the value assigned. A “Very Good, Good, Poor, Fair, Not Applicable and

Not Available” scale was used with numeric representation for each criterion (e.g.,

0=Not Available, 1= Very Poor, 2 = Poor, 3 = Fair (or Available), 4 = Good, 5 = Very

Good, N/A = Not Applicable). The evaluation matrix shows the ratings between the

frameworks. Based on these features set, one can see that some workflow features and

functionality scales well and fairly. In the table, the active development status for

https://etd.uwc.ac.za

 64

Galaxy framework was higher in scale (Very Good = 5) compare to Ruffus which was

fair. This means that Galaxy framework have larger community support than Ruffus

and are constantly changing in terms of software development. Ruffus, on the other

hand, failed to meet active development status and are less supported. Extensibility

criteria show that both frameworks can easily be extended. Installation and

maintenance for both framework, each had scores of 4. Integration ease and usability

for Galaxy had a significantly higher weighted score of 5 compare to Ruffus. This

greater score indicates that the integration ease and usability for Galaxy fulfils more

criteria that have been determined to be of greater importance. In the below table, the

latter explanation applies. More so, since all features/functionality have been scored

for all criteria, the individual feature score was summed by the appropriate criterion

weighting. The total score was then calculated for Galaxy and Ruffus. The greater the

score, the better the workflow frameworks satisfies the evaluation criteria. Our

evaluation show that the two-workflow framework and features are different in design

and usability. Based on these features, Galaxy is the preferred choice of workflow

system that accommodate biomedical researchers with less programming knowledge.

A summarize of their contribution to the workflow frameworks when building analysis

pipeline and executing jobs can be seen in Table 9.

Table 10: Evaluation Matrix

Evaluation Criteria (Features/Functionality) Galaxy Ruffus

Active Development Status 5 3

User base 4 3

Extensibility 5 5

Installation & Maintenance 4 4

Integration ease & Usability 5 3

Other features 5 3

Total Score 28 21

https://etd.uwc.ac.za

 65

4.13: Summary

 In this chapter, a functional SNP analysis pipeline was built in the Galaxy and Ruffus

frameworks to give an overview of biological data analysis. Each analysis pipeline was

represented by a flowchart model. Each analysis pipeline executes and run jobs

differently. For instance, the Galaxy used dynamic job configuration for configuring the

pipeline execution, monitoring, and jobs scheduling. On the other hand, Ruffus uses a

pipeline configuration file that interfaces with the Ruffus library for jobs runner

configuration. We performed a performance evaluation of individual framework. The

results show that in general, workflows tend to be CPU bound and memory intensive,

and as such this study set up and utilized performance monitoring tools to assists in

capturing the metrics and system logs. The logs were analyzed to determine system

requirements or demonstrate the usefulness of the respective frameworks. The

performance monitoring was an essential part of the process of system optimization, and

if no testing was performed, pipeline framework bottlenecks would not have been

identified. The Galaxy and Ruffus benchmark assessments were based on job

submission and monitoring, parallelization of tasks, error logging and statistical

summaries. Furthermore, SGE qccount and Collectl-Util/Colplot were used to create

pipeline profiles which detailed information for file system temp space, diskio, memory

and CPU utilization. In addition, the analysis pipeline response time and execution

runtime of Galaxy was compared to that of Ruffus and allows us to identify the time

when the analysis pipeline was ready to run and the time when the analysis finished its

job. Logs collected gives more detailed information about the Galaxy and Ruffus

framework.

https://etd.uwc.ac.za

 66

 Final Remarks

5.1: Conclusions

The use of bioinformatics workflows platforms has transformed biomedical research,

by allowing a comprehensive analysis of NGS datasets. Choosing which computational

workflow system to use to analyze the genomics data remains a challenge.

Understanding bioinformatics workflow features can be helpful in addressing these

challenges, providing a certain amount of computerization, and thus, enable advance

more complex studies in the life sciences.

This thesis evaluated the theoretical and practical application of Galaxy and Ruffus

workflow frameworks for annotation and analysis of MTB genomic datasets in an HPC

facility. The Galaxy framework allows users with limited knowledge of bioinformatics

and computational skills to set up and build an analysis pipeline. This thesis noted that

Galaxy workflow execution and core requires Python and web programming language

and tools to work. Galaxy project remains the preferred choice of workflow framework

without biomedical researchers getting to know the major technical details of

execution. In contrast, Ruffus requires intermediate, to advanced knowledge of Python

programming language in order to use the framework library to carry out research in

the genomics field. Ruffus workflow execution works well with environment module

which handles the project details paths and the bioinformatics software package. The

bioinformatics software tools used becomes explicit and were monitored with Linux

Collectl Util and other job schedulers.

Furthermore, the use of the evaluation matrix in this study helps us to consider the most

appropriate and feasible workflow features/functionality for questions identified in our

aims and objectives. That is, the evaluation matrix provides an answer to the question

and shows a reasonable comparison based on research finding, discussion and analysis

in Chapter 3 and 4. The matrix table was systematically used to identify the workflow

https://etd.uwc.ac.za

 67

features by distinguishing the functionality between Galaxy and Ruffus. The workflow

functionality selection of this matrix shows evaluation based on certain feature criteria

for comparisons.

The workflow frameworks for building pipeline analysis requires adequate computing

infrastructures and availabilities of resources to achieve satisfactory high performance

and successful running of pipeline analysis from start to execution completion. Lack

of computational resources and workflow frameworks logic and abstraction disrupt the

building of pipeline analysis, causing a waste of time and money. Traditional local

computing infrastructure and environment with limited resources are not well suited

for building and running data-intensive analysis. Fully functional HPC or cloud

computing is a very useful complement to the traditional local computing infrastructure

and environment.

When building biological data analysis pipeline in Galaxy and Ruffus frameworks, we

suggest that researchers ensure that the input genomic datasets are of high quality to

facilitate the pipeline framework reliable for variant discovery and annotations.

Furthermore, a higher storage capacity for further downstream analysis is

recommended and will assist in faster, and more accurate variant detection and

discovery.

To alleviate the workload of system administrators during the installation of a new

update or developed bioinformatics software packages, tools sharing via GitHub has

been set up at the organizational level. In this way, researchers, software developers

and system managers can actively be contributing to the open source project and make

it available to better a wider audience. Adding to the open source project is a great way

to learn more about collaborative research on GitHub and as such, new genomics

analysis pipelines are made available on the GitHub repository every day. In our

particular case, we published the in-house tools and analysis pipeline which can be

obtained using the URL; https://github.com/SANBI-SA. In doing so, the frameworks

can be expanded and should be a consideration for future research. Our future work

https://etd.uwc.ac.za

 68

will examine the possible way of dockerizing the Galaxy and Ruffus frameworks to fit

our development working environment.

5.2: Challenges and Limitations

During the development and implementation of the SNP analysis pipeline used in this

study, computational challenges (such as high to low latency and workflow requirement

inconsistency) were encountered. Furthermore, the following points describe the

challenges encountered during the Galaxy/Ruffus frameworks implementation,

deployment, as well as testing (i.e., the SNP analysis pipeline) on the HPC cluster:

a) Some sets of bioinformatics tools were problematic during the customization of

the workflow frameworks in that they gave some programming syntax and

semantics errors.

b) The benchmarking processes was not a straightforward one and often involved

several iterative rounds to arrive at predictable and valuable conclusions.

c) Collecting the metric for the run time execution of the analysis pipeline in the

Galaxy and Ruffus frameworks was not a straight forward process.

d) There existed a level of complexity in constant application debugging and

pipeline profiling before capturing the performance of the workflow

frameworks analysis.

e) Another complexity was that, Galaxy and Ruffus application utilized

shared parallel filesystems on the HPC between their HPC compute nodes, and

a head node that enable the submission of jobs to the HPC worker nodes (i.e., a

multi-parallel interface (MPI) enabler). Hence, capturing and interpreting the

workflows performance was a challenging exercise as there were other HPC

applications utilizing the system resources. Other challenges were encountered

during the process of integrating the analysis pipeline due to the limited

administrator rights to the HPC facility.

https://etd.uwc.ac.za

 69

f) Due to the requirements to satisfy best practices, the evaluation of Galaxy and

Ruffus to other workflow systems was a rigorous process, and such, the

evaluation was time consuming.

g) Other challenges encountered in this study included considerations with respect

to the differences in Galaxy and Ruffus workflow features as well as the

requirement for setting up the workflow platform. The Galaxy frameworks

hardware installation requirements were completely different from that of the

Ruffus requirements since each framework has different parameters and operates

differently.

h) Both frameworks consist of multiple sub-layers of tasks that are not visible to

end users and as such, require good programming knowledge to prevent

unstructured objects, syntax and semantics errors when coding. In addition,

when executing the analysis pipeline, some functions affect the system setup

environment and files, and on occasion, may lead to system instability and

breakdown.

i) Managing higher workflow layers such as workflow execution and

management was not a completely solved problem.

5.3: Recommendations

In this thesis, we have evaluated the Galaxy and Ruffus framework by building

biological data analysis pipelines using different bioinformatics tools and strategies to

benchmark the frameworks. We have shown how different workflow features and

functionalities impacted the frameworks, and the resource bottlenecks at runtime. To

properly manage and decide which framework to use when a biomedical researcher try

to build bioinformatics pipelines to carry-out omics analyses, this thesis recommends

that an intuitive, a code-free workflow feature is needed to better understand the

utilization of Galaxy and Ruffus framework. Furthermore, to understand the underlying

infrastructure technologies and workflow abstractions, we suggest the implementation

https://etd.uwc.ac.za

 70

and configuration of Galaxy and Ruffus in Singularity environment. Singularity

packages the workflow systems, the required dependencies and bioinformatics tools in

a single Docker container. In so doing, it will assist biomedical researchers to have full

control in pre-configured and ready to use workflow environment. In addition, it will

reduce the turn-around time for installing and configuring bioinformatics software

packages. Furthermore, emergence of newly developed workflow features may make it

easier for a novice bioinformatics analyst to understand and acquire practical

bioinformatics knowledge, thereby increasing a pool of expertise to further expand the

field.

5.4: Future works

In the future, we intend to enhance our workflow features such as the jobs monitoring

tools following good coding practices in Galaxy and Ruffus framework. The

enhancement will allow a biomedical researcher to visualize workflow processes and

then understand the automation of bioinformatics pipelines. Furthermore, we plan to

enhance the Galaxy and Ruffus application programming interface (API) tools for

seamless conditional execution of tasks. In doing so, it will help the biomedical

researcher to stop the execution of a pipeline analysis and resume it later. We intend to

enhance the integration of Galaxy and Ruffus for balance and performance (e.g., jobs

submission and execution runtime) through tighter system level-integration, while

maintaining workflow portability. Furthermore, we plan on upgrading our high-

performance computing environment such as compute nodes, memory, and the

bioinformatics tools, to allow us to overcome the barriers pertaining to workloads and

deployments on cloud-based systems. We plan to make available the customized SNP

analysis pipeline in the Galaxy and Ruffus to have its own Docker container that can be

deploy on HPC or cloud-based system. Furthermore, the method utilized to customize

the SNP analysis pipeline will be further expand for whole genome data analysis

together with using the latest or newly created bioinformatics software tools. Other plans

including; to explore other workflow management system (such as integration of bcbio-

https://etd.uwc.ac.za

 71

nextgen with Common Workflow Language (CWL) framework) and comparing their

features to Galaxy and Ruffus framework. We also plan on creating a learning platform

for novice biomedical researchers to learn Galaxy and Ruffus workflow engine and

pipeline development.

https://etd.uwc.ac.za

 72

References

Abouelhoda, M., Issa, S. A. & Ghanem, M. 2012. Tavaxy: Integrating Taverna and
Galaxy workflows with cloud computing support. BMC Bioinformatics, 13, 1.

Afgan, E., Baker, D., Coraor, N. et al. 2010. Galaxy CloudMan: delivering cloud
compute clusters. BMC Bioinformatics, 11, S4.

Afgan, E., Baker, D., Nekrutenko, A. & Taylor, J. 2012. A reference model for
deploying applications in virtualized environments. Concurrency and
Computation: Practice and Experience, 24, 1349-1361.

Aldred, L. J. 2011. Fundamentals of process integration.

Altintas, I., Berkley, C., Jaeger, E. et al. Kepler: an extensible system for design and
execution of scientific workflows. Scientific and Statistical Database
Management, 2004. Proceedings. 16th International Conference on, 2004.
IEEE, 423-424.

Altintas, I., Wang, J., Crawl, D. & Li, W. Challenges and approaches for distributed
workflow-driven analysis of large-scale biological data: vision paper.
Proceedings of the 2012 Joint EDBT/ICDT Workshops, 2012. ACM, 73-78.

Alyssa, H. 2016. High Performance Computing Cluster in a Cloud Environment
[Online]. Available: https://support.rackspace.com/whitepapers/ [Accessed].

Anderson, M. W. & Schrijver, I. 2010. Next generation DNA sequencing and the future
of genomic medicine. Genes (Basel), 1, 38-69.

Armbrust, M., Fox, A., Griffith, R. et al. 2010. A view of cloud computing.
Communications of the ACM, 53, 50-58.

Arvados. 2016. Arvados | Open Source Big Data Processing and Bioinformatics
[Online]. Available: https://arvados.org/ [Accessed 14 June, 2016 2016].

Awasthi, M., Suri, T., Guz, Z. et al. System-level characterization of datacenter
applications. Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, 2015. ACM, 27-38.

Bao, R., Huang, L., Andrade, J. et al. 2014. Review of current methods, applications,
and data management for the bioinformatics analysis of whole exome
sequencing. Cancer Inform., 67-83.

https://etd.uwc.ac.za

 73

Bartlett, J. C. & Toms, E. G. 2005. Developing a protocol for bioinformatics analysis:
An integrated information behavior and task analysis approach. Journal of the
Association for Information Science and Technology, 56, 469-482.

Bhagwanani, S. 2005. An evaluation of end-user interfaces of scientific workflow
management systems.

Bhardwaj, S., Jain, L. & Jain, S. 2010. Cloud computing: A study of infrastructure as
a service (IAAS). International Journal of engineering and information
Technology, 2, 60-63.

Bianchi, V., Ceol, A., Ogier, A. G. et al. 2016. Integrated Systems for NGS Data
Management and Analysis: Open Issues and Available Solutions. Front Genet,
7, 75.

Biostars. 2010. How To Organize A Pipeline Of Small Scripts Together? [Online].
Available: https://www.biostars.org/p/79/ [Accessed 14th March 2018].

Biostars. 2015. Workflow management software for pipeline development in NGS
[Online]. Biostars. Available: https://www.biostars.org/p/115745/ [Accessed
14th March 2018].

Blankenberg, D., Taylor, J., Nekrutenko, A. & Team, G. 2011. Making whole genome
multiple alignments usable for biologists. Bioinformatics, 27, 2426-2428.

Blankenberg, D., Von Kuster, G., Coraor, N. et al. 2010. Galaxy: a web-based genome
analysis tool for experimentalists. Curr. Protoc. Mol. Biol., Chapter 19, Unit
19 10 1-21.

Blischak, J. D., Davenport, E. R. & Wilson, G. 2016. A Quick Introduction to Version
Control with Git and GitHub. PLoS Comput. Biol., 12, e1004668.

Booth., G. 2013. Open Grid Scheduler/Grid Engine [Online]. 2012. Available:
http://gridscheduler.sourceforge.net [Accessed June 6th 2017].

Bretaudeau, A., Monjeaud, C., Le Bras, Y., Legeai, F. & Collin, O. 2015.
BioMAJ2Galaxy: automatic update of reference data in Galaxy using BioMAJ.
GigaScience, 4, 22.

Brian, W. & Dustin, M. J. 2009. Buildbot: The Continuous Integration Framework
[Online]. Available: http://buildbot.net/index.html#basics [Accessed 9th
September 2017].

Brown, D. K., Musyoka, T. M., Penkler, D. L. & Bishop, Ö. T. 2015. JMS: A workflow
management system and web-based cluster front-end for the Torque resource
manager. arXiv preprint arXiv:1501.06907.

https://etd.uwc.ac.za

 74

Calabrese, B. 2018. Cloud-Based Bioinformatics Platforms. Reference Module in Life
Sciences. Elsevier.

Chhanga, D. & Shukla, X. 2016. FOSSICK: An Implementation of Federated Search
Engine. International Journal Of Computer Science Engineering And
Information Technology Research (IJCSEITR), 6, 69-78.

Chine, K. 2010. Open science in the cloud: towards a universal platform for scientific
and statistical computing. Handbook of cloud computing. Springer.

Cohen, K. A., Abeel, T., Manson Mcguire, A. et al. 2015. Evolution of Extensively
Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing
and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-
Natal. PLoS Med., 12, e1001880.

Curcin, V. & Ghanem, M. Scientific workflow systems-can one size fit all? 2008 Cairo
International Biomedical Engineering Conference, 2008. IEEE, 1-9.

D'antonio, M., De Meo, P. D. O., Paoletti, D. et al. 2013. WEP: a high-performance
analysis pipeline for whole-exome data. BMC Bioinformatics, 14, S11.

Dean, J. & Ghemawat, S. 2008. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51, 107-113.

Deelman, E. 2010. Grids and clouds: Making workflow applications work in
heterogeneous distributed environments. The International Journal of High
Performance Computing Applications, 24, 284-298.

Deelman, E., Gannon, D., Shields, M. & Taylor, I. 2009. Workflows and e-Science:
An overview of workflow system features and capabilities. Future Generation
Computer Systems, 25, 528-540.

Depristo, M. A., Banks, E., Poplin, R. et al. 2011. A framework for variation discovery
and genotyping using next-generation DNA sequencing data. Nat. Genet., 43,
491-8.

Di Tommaso, P., Chatzou, M., Floden, E. W. et al. 2017. Nextflow enables
reproducible computational workflows. Nat. Biotechnol., 35, 316-319.

Doctorow, C. 2008. Big data: welcome to the petacentre. Nature News, 455, 16-21.

Ellson, J., Gansner, E., Koutsofios, L., North, S. C. & Woodhull, G. Graphviz—open
source graph drawing tools. International Symposium on Graph Drawing,
2001. Springer, 483-484.

https://etd.uwc.ac.za

 75

Emeakaroha, V. C., Maurer, M., Stern, P. et al. 2013. Managing and optimizing
bioinformatics workflows for data analysis in clouds. Journal of grid
computing, 11, 407-428.

Fisch, K. M., Meißner, T., Gioia, L. et al. 2015. Omics Pipe: a community-based
framework for reproducible multi-omics data analysis. Bioinformatics, btv061.

Foundation, P. S. 2016. The Python Programming Languages [Online]. Available:
https://www.python.org/ [Accessed 14 June, 2016].

Furtaw, B. 2016. High performance data analytics in precision medicine using scale-
up and hybrid supercomputing solutions.

Fusaro, V. A., Patil, P., Gafni, E., Wall, D. P. & Tonellato, P. J. 2011. Biomedical
cloud computing with amazon web services. PLoS Comput. Biol., 7, e1002147.

Garfinkel, S. 2007. An evaluation of amazon's grid computing services: EC2, S3, and
SQS.

Glenn, T. C. 2011. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour.,
11, 759-769.

Goble, C. & De Roure, D. 2009. The impact of workflow tools on data-centric research.

Goble, C. & Stevens, R. 2008. State of the nation in data integration for bioinformatics.
J. Biomed. Inf., 41, 687-693.

Goecks, J., Nekrutenko, A. & Taylor, J. 2010. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in
the life sciences. Genome Biol., 11, R86.

Goesmann, A., Linke, B., Rupp, O. et al. 2003. Building a BRIDGE for the integration
of heterogeneous data from functional genomics into a platform for systems
biology. J. Biotechnol., 106, 157-167.

Gorelick, M. & Ozsvald, I. 2014. High Performance Python: Practical Performant
Programming for Humans, " O'Reilly Media, Inc.".

Gray, J., Moore, K. T. & Naylor, B. A. OpenMDAO: An open source framework for
multidisciplinary analysis and optimization. AIAA/ISSMO Multidisciplinary
Analysis Optimization Conference Proceedings, 2010.

Guimera, R. V. 2012. Enabling Automatic Data Analysis in Bioinformatics Core
Facilities.

https://etd.uwc.ac.za

 76

Hale, K. S. & Stanney, K. M. 2014. Handbook of virtual environments: Design,
implementation, and applications, CRC Press.

Heller, B., Marschner, E., Rosenfeld, E. & Heer, J. Visualizing collaboration and
influence in the open-source software community. Proceedings of the 8th
working conference on mining software repositories, 2011. ACM, 223-226.

Hillman-Jackson, J., Clements, D., Blankenberg, D. et al. 2012. Using galaxy to
perform large-scale interactive data analyses. Current protocols in
bioinformatics, 10.5. 1-10.5. 47.

Hinchcliffe, M., Le, H., Fimmel, A. et al. 2014. Diagnostic validation of a familial
hypercholesterolaemia cohort provides a model for using targeted next
generation DNA sequencing in the clinical setting. Pathology, 46, 60-8.

Huang, W., Liu, J., Abali, B. & Panda, D. K. A case for high performance computing
with virtual machines. Proceedings of the 20th annual international conference
on Supercomputing, 2006. ACM, 125-134.

Ison, J., Rapacki, K., Menager, H. et al. 2015. Tools and data services registry: a
community effort to document bioinformatics resources. Nucleic Acids Res.

Jackson, K. R., Ramakrishnan, L., Muriki, K. et al. Performance analysis of high
performance computing applications on the amazon web services cloud. Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on, 2010. IEEE, 159-168.

Jamalian, S. & Rajaei, H. ASETS: A SDN Empowered Task Scheduling System for
HPCaaS on the Cloud. Cloud Engineering (IC2E), 2015 IEEE International
Conference on, 2015. IEEE, 329-334.

Kang, M. H., Froscher, J. N., Sheth, A. P., Kochut, K. J. & Miller, J. A. A multilevel
secure workflow management system. Advanced Information Systems
Engineering, 1999. Springer, 271-285.

Kanwal, S., Khan, F. Z., Lonie, A. & Sinnott, R. O. 2017. Investigating reproducibility
and tracking provenance–A genomic workflow case study. BMC
Bioinformatics, 18, 337.

Kelly, B. J., Fitch, J. R., Hu, Y. et al. 2015. Churchill: an ultra-fast, deterministic,
highly scalable and balanced parallelization strategy for the discovery of human
genetic variation in clinical and population-scale genomics. Genome Biol., 16,
6.

Kircher, M. & Kelso, J. 2010. High-throughput DNA sequencing–concepts and
limitations. Bioessays, 32, 524-536.

https://etd.uwc.ac.za

 77

Kodama, Y., Shumway, M. & Leinonen, R. 2012. The Sequence Read Archive:
explosive growth of sequencing data. Nucleic Acids Res., 40, D54-D56.

Korpelainen, E., Tuimala, J., Somervuo, P., Huss, M. & Wong, G. 2014. RNA-seq Data
Analysis: A Practical Approach, CRC Press.

Koster, J. & Rahmann, S. 2012. Snakemake--a scalable bioinformatics workflow
engine. Bioinformatics, 28, 2520-2.

Kurs, J. P., Simi, M. & Campagne, F. 2016. NextflowWorkbench: Reproducible and
Reusable Workflows for Beginners and Experts. bioRxiv.

Lamprecht, A.-L. 2013. User-Level Workflow Design: A Bioinformatics Perspective,
Springer.

Layton, J. 2017. Monitor Your Nodes with collectl [Online]. Available:
http://www.admin-magazine.com/index.php/HPC/Articles/Monitor-Your-
Nodes-with-collectl [Accessed 23rd October 2017].

Leading, D. C. S. 2016. it@ intel.

Lefkowitz, H. M. 2000. Graphical user interface. Google Patents.

Leipzig, J. 2016. A review of bioinformatic pipeline frameworks. Brief Bioinform.

Li, Y. & Chen, L. 2014. Big biological data: challenges and opportunities. Genomics,
proteomics & bioinformatics, 12, 187-189.

Liu, B., Madduri, R. K., Sotomayor, B. et al. 2014. Cloud-based bioinformatics
workflow platform for large-scale next-generation sequencing analyses. J
Biomed Inform, 49, 119-33.

Liu, J. 20 Years of teaching parallel processing to computer science seniors.
Proceedings of the Workshop on Education for High Performance Computing,
2016. IEEE Press, 7-13.

Loman, N. J., Misra, R. V., Dallman, T. J. et al. 2012. Performance comparison of
benchtop high-throughput sequencing platforms. Nat. Biotechnol., 30, 434-439.

Luna, D., Mayan, J., García, M., Almerares, A. & Househ, M. 2014. Challenges and
potential solutions for big data implementations in developing countries. Yearb.
Med. Inform., 9, 36.

Marathe, A., Harris, R., Lowenthal, D. K. et al. A comparative study of high-
performance computing on the cloud. Proceedings of the 22nd international

https://etd.uwc.ac.za

 78

symposium on High-performance parallel and distributed computing, 2013.
ACM, 239-250.

Mcgough, A. S., Afzal, A., Darlington, J. et al. 2005. Making the grid predictable
through reservations and performance modelling. The Computer Journal, 48,
358-368.

Mckenna, A., Hanna, M., Banks, E. et al. 2010. The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res., 20, 1297-303.

Metzker, M. L. 2010. Sequencing technologies—the next generation. Nature reviews
genetics, 11, 31-46.

Michael, M. & William, J. F. 2014. Patent Application Publication [Online]. San
Francisco, CA (US) United States. Available:
https://patents.google.com/patent/US20140136968 [Accessed 15th March
2018].

Möller, S., Prescott, S. W., Wirzenius, L. et al. 2017. Robust cross-platform
workflows: how technical and scientific communities collaborate to develop,
test and share best practices for data analysis. Data Science and Engineering,
2, 232-244.

Nagalakshmi, U., Waern, K. & Snyder, M. 2010. RNA-Seq: a method for
comprehensive transcriptome analysis. Curr. Protoc. Mol. Biol., Chapter 4,
Unit 4 11 1-13.

Neron, B., Menager, H., Maufrais, C. et al. 2009. Mobyle: a new full web
bioinformatics framework. Bioinformatics, 25, 3005-11.

Netto, M. A., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. & Buyya, R. 2018. HPC
Cloud for Scientific and Business Applications: Taxonomy, Vision, and
Research Challenges. ACM Computing Surveys (CSUR), 51, 8.

Nishanth, D. & Kihoon, Y. 2015. Dell HPC System for Genomics v2.0. Eng. J.

Nocq, J., Celton, M., Gendron, P., Lemieux, S. & Wilhelm, B. T. 2013. Harnessing
virtual machines to simplify next-generation DNA sequencing analysis.
Bioinformatics, 29, 2075-83.

Nyrönen, T. H., Laitinen, J., Tourunen, O. et al. Delivering ICT infrastructure for
biomedical research. Proceedings of the WICSA/ECSA 2012 Companion
Volume, 2012. ACM, 37-44.

https://etd.uwc.ac.za

 79

O'sullivan, B. 2009. Making sense of revision-control systems. Communications of the
ACM, 52, 56-62.

O’driscoll, A., Daugelaite, J. & Sleator, R. D. 2013. ‘Big data’, Hadoop and cloud
computing in genomics. J. Biomed. Inf., 46, 774-781.

Oinn, T., Addis, M., Ferris, J. et al. 2004. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20, 3045-54.

Oracle. 2017. Solaris Advanced User's Guide [Online]. Available:
https://docs.oracle.com/cd/E19683-01/806-7612/startup-78447/index.html
[Accessed 5th May 2017].

Pabinger, S., Dander, A., Fischer, M. et al. 2014. A survey of tools for variant analysis
of next-generation genome sequencing data. Brief Bioinform, 15, 256-78.

Pepke, S., Wold, B. & Mortazavi, A. 2009. Computation for ChIP-seq and RNA-seq
studies. Nat. Methods, 6, S22-32.

Perl. 2016. The Perl Programming Language - www.perl.org [Online]. Perl.org.
Available: https://www.perl.org/ [Accessed 14 June, 2016 2016].

Piras, M. E., Pireddu, L. & Zanetti, G. 2017. wft4galaxy: a workflow testing tool for
galaxy. Bioinformatics, 33, 3805-3807.

Prajapati, H. B. & Shah, V. A. Scheduling in grid computing environment. Advanced
Computing & Communication Technologies (ACCT), 2014 Fourth
International Conference on, 2014. IEEE, 315-324.

Project, G. 2016. The Galaxy Project: Online bioinformatics analysis for everyone
[Online]. Available: https://galaxyproject.org/ [Accessed 14 June, 2016 2016].

Raman, K., Yeturu, K. & Chandra, N. 2008. targetTB: a target identification pipeline
for Mycobacterium tuberculosis through an interactome, reactome and
genome-scale structural analysis. BMC Syst. Biol., 2, 1.

Reuther, A., Byun, C., Arcand, W. et al. Scheduler technologies in support of high
performance data analysis. High Performance Extreme Computing Conference
(HPEC), 2016 IEEE, 2016. IEEE, 1-6.

Romano, P. 2008. Automation of in-silico data analysis processes through workflow
management systems. Briefings in Bioinformatics, 9, 57-68.

Rother, K., Potrzebowski, W., Puton, T. et al. 2011. A toolbox for developing
bioinformatics software. Briefings in bioinformatics, 13, 244-257.

https://etd.uwc.ac.za

 80

Ruffus. 2016. Ruffus — ruffus 2.6.3 documentation [Online]. Ruffus — ruffus 2.6.3
documentation. Available: http://www.ruffus.org.uk/ [Accessed 14 June, 2016
2016].

Sanner, M. F. 1999. Python: a programming language for software integration and
development. J. Mol. Graph. Model., 17, 57-61.

Santana-Perez, I. & Pérez-Hernández, M. S. 2015. Towards reproducibility in scientific
workflows: An infrastructure-based approach. Scientific Programming, 2015.

Schall, D. 2015. Social network-based recommender systems, Springer.

Schindelin, J., Arganda-Carreras, I., Frise, E. et al. 2012. Fiji: an open-source platform
for biological-image analysis. Nat. Methods, 9, 676-682.

Schulz, W. L., Durant, T. J., Siddon, A. J. & Torres, R. 2016. Use of application
containers and workflows for genomic data analysis. J. Pathol. Inform., 7.

Shannon, P. T., Reiss, D. J., Bonneau, R. & Baliga, N. S. 2006. The Gaggle: an open-
source software system for integrating bioinformatics software and data
sources. BMC Bioinformatics, 7, 176.

Sinclair, L. 2010. Development Of An Interactive Genome Browser To Visualize And
Analyse Large Scale Genomic Data.

Spjuth, O., Bongcam-Rudloff, E., Hernandez, G. C. et al. 2015. Experiences with
workflows for automating data-intensive bioinformatics. Biol. Direct, 10, 43.

Stein, L. 1996. How Perl saved the human genome project. Dr Dobb’s Journal (July
2001).

Stein, L. D. 2010. The case for cloud computing in genome informatics. Genome Biol.,
11, 1.

Stephens, Z. D., Lee, S. Y., Faghri, F. et al. 2015. Big Data: Astronomical or
Genomical? PLoS Biol., 13, e1002195.

Stevens, W. R. & Rago, S. A. 2013. Advanced programming in the UNIX environment,
Addison-Wesley.

Sun, M. 2007. Sun N1 Grid Engine 6.1 Administration Guide [Online]. USA: Oracle.
Available: https://docs.oracle.com/cd/E19957-01/820-0698/book-
info/index.html [Accessed June 6th 2017].

https://etd.uwc.ac.za

 81

Taura, K., Matsuzaki, T., Miwa, M. et al. 2013. Design and implementation of GXP
make - A workflow system based on make. Future Gener. Comput. Syst., 29,
662-672.

Tolvanen, J.-P. & Kelly, S. 2008. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society, 444, 231.

Torri, F., Dinov, I. D., Zamanyan, A. et al. 2012. Next generation sequence analysis
and computational genomics using graphical pipeline workflows. Genes
(Basel), 3, 545-75.

Truong, H.-L. & Dustdar, S. 2011. Cloud computing for small research groups in
computational science and engineering: current status and outlook. Computing,
91, 75-91.

Van Der Aalst, W. & Van Hee, K. M. 2004. Workflow management: models, methods,
and systems, MIT press.

Van Der Aalst, W. M. & Ter Hofstede, A. H. 2005. YAWL: yet another workflow
language. Information systems, 30, 245-275.

Van Der Auwera, G. A., Carneiro, M. O., Hartl, C. et al. 2013. From FastQ data to high
confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
Curr Protoc Bioinformatics, 43, 11 10 1-33.

Van Deventer, C. 2014. Expressed sequence tag clustering using commercial gaming
hardware. University of Johannesburg.

Van Heusden, P., Yi, L. & Christoffels, A. An OpenNebula-based cloud computing
environment for bioinformatics. 2012. SATNAC.

Vince, B. 2015. Remedial Unix Shell. In: JOLLYMORE, C. N. A. A. (ed.)
Bioinformatics Data Skills. First Edition ed. 1005 Gravenstein Highway North,
Sebastopol, CA 95472: O’Reilly Media.

Wang, Y., Mehta, G., Mayani, R. et al. 2011. RseqFlow: workflows for RNA-Seq data
analysis. Bioinformatics, 27, 2598-600.

White, P. 2016. Peer Review Publication: GenomeNext's NGS Analysis Engine Per.
Med.

Wilke, A., Rückert, C., Bartels, D. et al. 2003. Bioinformatics support for high-
throughput proteomics. J. Biotechnol., 106, 147-156.

https://etd.uwc.ac.za

 82

Williams, A. G., Thomas, S., Wyman, S. K. & Holloway, A. K. 2014. RNA-seq Data:
Challenges in and Recommendations for Experimental Design and Analysis.
Curr Protoc Hum Genet, 83, 11 13 1-20.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. & Stoica, I. 2010. Spark:
Cluster computing with working sets. HotCloud, 10, 95.

Zhang, Q., Cheng, L. & Boutaba, R. 2010. Algorithms and architectures for parallel
processing. J. Int. Serv. Appl, 1, 7-18.

Zhao, Z., Belloum, A., Wibisono, A. et al. Scientific workflow management: between
generality and applicability. Quality Software, 2005.(QSIC 2005). Fifth
International Conference on, 2005. IEEE, 357-364.

Zou, Q., Li, X.-B., Jiang, W.-R. et al. 2013. Survey of MapReduce frame operation in
bioinformatics. Briefings in bioinformatics, 15, 637-647.

https://etd.uwc.ac.za

 83

Appendix A

Pipeline Framework Configuration for Variant Calling Pipeline

The SNP analysis pipeline was designed for 100 base pair or greater Illumina short read

MTB sequence data with Illumina 1.9 quality encoding and uses Illumina naming

convention. The SNP Analysis pipeline is based on the Galaxy and Ruffus framework

for building pipelines (Figure 22). The Python libraries allow the integration of several

bioinformatics tools and its dependencies. The project source code is made available on

public domain (i.e., open source platform) hosted on GitHub.

Pipeline features include:

• Job submission on a cluster using DRMAA (currently only tested with

SLURM).

• Job dependency calculation and check pointing.

• Pipeline can be displayed as a flowchart.

• Re-running a pipeline will start from the most up-to-date stage. It will not redo

previously completed tasks.

License

3 Clause BSD License. See LICENSE.txt in source repository.

Installation: External dependencies

SNP Analysis depends on the following programs and libraries:

• Python (version 2.7.5), Galaxy and Ruffus and pyYaML

https://etd.uwc.ac.za

 84

• DRMAA for submitting jobs to the cluster. The pipeline uses libdrama.so by

running Python-drmaa for either local or cluster job submission system.

• BWA for aligning reads to the reference genome (version 0.7.10)

• NovoCraft

• GATK Genome Analysis Toolkit (version 3.3-0)

• SAMTOOLS (version 0.1.2)

• PICARD (version 1.127)

• FASTQC version 0.10.1

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

• VCFTOOLS (http://vcftools.sourceforge.net/)

• VIRTUAL version 15.0.1 (2016-03-17))

Input Data Source

Genomic Dataset used in this project were from the Tygerberg Hospital Group. 10 paired

end (PE) MTB samples data were used as input datasets for the pipeline. E.g.;

• H37Rv1116_R1.fastq.gz

• H37Rv1116_R2.fastq.gz

Reference Genome (MTB):

• human_g1k_v37_decoy. fasta

https://etd.uwc.ac.za

 85

Appendix B

Ruffus Framework Implementation Steps

This section describes how we installed and configured the Ruffus framework in HPC
Python virtual environment. We used the virtual Python environment to implement the
SNP data analysis pipeline using our GitHub repository; the following steps illustrates
the processes:

 cd /place/to/install

 virtualenv Ruffus_SNP_Analysis

 source Ruffus_SNP_Analysis/bin/activate

 pip install -U git+https://github.com/boratonAJ/ Ruffus_SNP_Analysis

If you don't want to use a virtual environment, then you can just install with pip:

 pip install -U git+https://github.com/boratonAJ/ Ruffus_SNP_Analysis

Cloned Work

The worked example directory in the source distribution contains the Mycobacterial
dataset to illustrate the use of the pipeline.

Get a copy of the source distribution

 cd /path/to/test/directory

 git clone https://github.com/boratonAJ/Ruffus_SNP_Analysis.git

 Install `Ruffus_SNP_Analysis` as described above

Get a reference genome.

 cd Ruffus_SNP_Analysis/example

 mkdir reference

 copy your reference into this directory, or make a symbolic link call it
reference/H37rv.fa

DRMAA library

We tell Python where our DRMAA library is. This is will depend on your local settings):

export DRMAA_LIBRARY_PATH=/usr/local/slurm_drmaa/1.0.7/gcc/lib/libdrmaa.so

Run Ruffus_SNP_Analysis and ask it what it will do next

https://etd.uwc.ac.za

 86

Ruffus_SNP_Analysis -n --verbose 3

Generate a flowchart diagram

Ruffus_SNP_Analysis--flowchart pipeline_flow.png --flowchart_format png

Run the pipeline

Ruffus_SNP_Analysis --use_threads --log_file pipeline.log --jobs 2 --verbose 3

Usage

You can get a summary of the command line arguments like so:

Ruffus_SNP_Analysis -h

usage: Ruffus_SNP_Analysis [-h] [--verbose [VERBOSE]] [-L FILE] [-T JOBNAME]

 [-j N] [--use_threads] [-n] [--touch_files_only]

 [--recreate_database] [--checksum_file_name FILE]

 [--flowchart FILE] [--key_legend_in_graph]

 [--draw_graph_horizontally]

 [--flowchart_format FORMAT] [--forced_tasks JOBNAME]

 [--config CONFIG] [--jobscripts JOBSCRIPTS]

 [--version]

optional arguments:

 -h, --help show this help message and exit

 --config CONFIG Pipeline configuration file in YAML format, defaults

 to pipeline.config

 --jobscripts JOBSCRIPTS

 Directory to store cluster job scripts created by the

 pipeline, defaults to jobscripts

 --version show program's version number and exit

Common options:

 --verbose [VERBOSE], -v [VERBOSE]

 Print more verbose messages for each additional

 verbose level.

https://etd.uwc.ac.za

 87

 -L FILE, --log_file FILE

 Name and path of log file

pipeline arguments:

 -T JOBNAME, --target_tasks JOBNAME Target task(s) of pipeline.

 -j N, --jobs N Allow N jobs (commands) to run simultaneously.

 --use_threads Use multiple threads rather than processes. Needs --jobs N with N > 1

 -n, --just_print Don't actually run any commands; just print the pipeline.

 --touch_files_only Don't actually run any commands; just 'touch' the

 output for each task to make them appear up to date.

 --recreate_database Don't actually run any commands; just recreate the

 checksum database.

 --checksum_file_name FILE Path of the checksum file.

--flowchart FILE Don't run any commands; just print pipeline as a flowchart.

--key_legend_in_graph

 Print out legend and key for dependency graph.

 --draw_graph_horizontally

 Draw horizontal dependency graph.

 --flowchart_format FORMAT

 format of dependency graph file. Can be 'svg', 'svgz',

 'png', 'jpg', 'psd', 'tif', 'eps', 'pdf', or 'dot'.

 Defaults to the file name extension of –flowchart FILE.

 --forced_tasks JOBNAME

 Task(s) which will be included even if they are up to date.

Configuration file:

You must supply a configuration file for the pipeline in YAML format. Here is an
example:

 walltime: '10:00'

 mem: 30

 modules:

https://etd.uwc.ac.za

 88

 - 'snpeff/default'

Reference: The Human Genome in FASTA format.

ref_grch37:/usr/people/ajayi/test/
Ruffus_SNP_Analysis/example/reference/HumanTest500k_g1k_H37Rv_decoy.fasta

index_file: /usr/people/ajayi/test/ Ruffus_SNP_Analysis /example/reference/*.nix

The input FASTQ files.

fastqs:

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1117_R1.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1117_R2.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1118_R1.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1118_R2.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1119_R1.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1119_R2.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1120_R1.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1120_R2.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1121_R1.fastq.gz

 - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1121_R2.fastq.g

pipeline_id: 'H37Rv'

https://etd.uwc.ac.za

 89

Figure 20: This illustrates the command line interface for executing the Ruffus
Pipeline analysis.

The command line interface illustrates the Ruffus framework, a rule-based framework enactment system

that uses declarative specifications of data dependences between workflow steps to routinely order the

execution of other steps.

https://etd.uwc.ac.za

 90

Appendix C

Galaxy Framework Implementation Steps

Galaxy workflow framework application detail is provided below. Screen shots are

noted to provide a visual outlook of the framework. Galaxy is an open source project,

developed by the Center for Comparative Genomics & Bioinformatics at Peninsula State

University (Figure 23). The Galaxy project was funded by NSF, Eberly College of

Science, and the Huck Institutes for the Life Sciences.

Python Support

The Galaxy framework supports Python 2.4 or higher. This is needed for biomedical

researchers who manage/install the application. More so, Python is required in the

virtual environment computer in order to support Galaxy.

SNPs Analysis in Galaxy Virtual Environment

This Galaxy framework used a virtual Python environment to implement the SNPs data
analysis pipeline from the GitHub repository;

cd /place/to/install

virtualenv Galaxy SNP_Analysis

source Galaxy_SNPs_Analysis/bin/activate

pip install -U git+https://github.com/galaxyproject/galaxy.git

If you don't want to use a virtual environment, then you can just install with pip:

pip install -U git+https://github.com/galaxyproject/galaxy.git

https://etd.uwc.ac.za

 91

Platform UNIX (Ubuntu)

As at the time of writing this thesis, Galaxy framework can easily be downloadable for

UNIX and MAC platforms. There is no support for Windows platform with distribution

for building Python eggs. That is, modules specific to a Python version that have been

compiled and packaged into a single file. Users of Microsoft windows can directly

access Galaxy web application from web browsers without downloading the application.

Data Formats

Galaxy framework accepts input data formats that follow to Browser Extensible Data

format (or *.bed), Axt, fastqsolexa, fasta, gff3, gff, html, lav, maf, wiggle, tabular and

interval and Other text (characterized by extension, *.txt) file, etc. Other data formats

are accepted contingent upon changes of Galaxy framework source code for support of

a new data type that is done by the application automatically via the format converters

available in the application.

Customized tools

In this project the customized tool was coded in Python and XML and were integrated

in the Galaxy framework. Figure 24 and 25 steps shows the integrated tools with our

local instance of Galaxy application. The analyses were created prior to generating the

GUI workflows. Figure 24 shows an example of how we started the process that

include “Get A File,” or “upload a new file either from Hard Drive, Server Libraries or

other browser data”.

https://etd.uwc.ac.za

 92

Figure 21: Galaxy SNP analysis pipeline GUI Webpage.

Figure 22: Datasets in the current history.

The two figures above show the pipeline interface and history and the different stage of the file data

formats. The SNPs analysis in Galaxy that run are managed in this interface and on the right show the

status of the workflow tasks being run or in queue.

https://etd.uwc.ac.za

 93

Appendix D

Implementation of DRMAA for Ruffus and Galaxy

Tell the Python Virtual Environment where your DRMAA library is:

For example (this was depending on the HPC cloud settings):

Export

export DRMAA_LIBRARY_PATH=/usr/local/slurm_drmaa/1.0.7gcc/lib/libdrmaa.so

Figure 23: This illustrates the cloud environment and VM configuration setting
for genomic data storage, retrieval and analysis of genomics data.

This project VM environment was managed by OpenNebula, and was partitioned to manage the

operating system, code and database. The created virtual machines, with workloads ranging from web

server to high performance computing nodes was also used to manage the workflow execution and

management.

https://etd.uwc.ac.za

 94

Appendix E

Simplify SNPs Pipeline Steps

A simplify walk-through steps for the SNPs Analysis Pipeline in Galaxy/Ruffus

Framework. The following diagram illustrates the walk-through process for this

project.

Figure 24: A simplify and generic flowchart representing the flow of analysis steps.

The diagram illustrates an optimized workflow step. Each tool and setting in the Galaxy and Ruffus were

used to generate the variant calling pipeline. Galaxy/Ruffus allows an analysis to be started from any

level of the process and with option of plugging virtually any bioinformatics tool or code.

Aligning FASTQ files to reference genome with bwa and Sorting

Aligned_FASTQ.sam: Sort SAM by coordinate and convert to bam using Picard:

https://etd.uwc.ac.za

 95

a. Use the Picard tool: aligned_FASTQ.sam → FastqtoSam → SortSam →

sorted_file.bam

b. If read pairs, merge pairs sorted_file_R1.bam and sorted_file_R2.bam to

file_R1_R2_sort.bam with Picard’s MergeSamFiles class: Picard

MergeBamAlignment → sorted_file_R1_R2_.bam

Step 1a. Alignment – Map to Reference Genome

Tool BWA-MEM

Input Fastq files, H37Rv Reference genome

Output Aligned_Reads.sam

Command bwa mem -M -R '@RG: Sample_1: Sample_1: ILLUMINA:

HISEQ:Sample_1'human_g1k_v37_decoy.fasta Sample1_L1_R1. fq

Sample1_L1_R2. fq | samtools view -bSho BAM_FILE – >

Aligned_Reads.sam

Step 1b. Sort SAM file by coordinate, convert to BAM

Tool Picard Tools

Input Aligned_Reads.sam

Output Sorted_Reads.bam

Command java -jar picard.jar SortSam INPUT=Aligned_Reads.sam

OUTPUT=Sorted_Reads.bam SORT_ORDER=coordinate

https://etd.uwc.ac.za

 96

Mark and Remove duplicates & Collect Alignment Metrics

Picard MarkDeduplicates (sorted_file_R1_R2.bam) → bam without duplicates

Step 2b Collect Alignment Metrics

Tool Picard Tools, Samtools

Input Sorted_Reads.bam, H37Rv Reference genome

Output alignment_metrics.txt, insert_metrics.txt, insert_size_histogram.pdf

Command java -jar picard.jar CollectAlignmentSummaryMetrics R= reference
I=Sorted_Reads.bam O=alignment_metrics.txt

Generate Realigning Targets

This is the first step in a two-step process of realigning around indels.

RealignerTargetCreator: Input (bam without duplicates, reference file) → Output (target
list file).

Step 3 Create Realignment Targets

Tool GATK

Input Dedup_Reads.bam, H37Rv Reference genome

Output Realignment_Targets. list

Command java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R reference -I

Dedup_Reads.bam -o Realignment_Targets. list

Step 2a Mark Duplicates

Tool Picard Tools

Input Sorted_Reads.bam

Output Dedup_Reads.bam, metrics.txt

Command java -jar picard.jar MarkDuplicates INPUT=Sorted_Reads.bam

OUTPUT=Dedup_Reads.bam METRICS_FILE=metrics.txt

https://etd.uwc.ac.za

 97

Realigning around InDels:

IndelRealigner: Input (bam without duplicates, target list file, reference file) → Output

(realigned bam)

Step 4 Realign Indels

Tool GATK

Input Dedup_Reads.bam, Realignment_Targets.list, H37Rv Reference genome

Output Realigned_Reads.bam

Command java -jar GenomeAnalysisTK.jar -T IndelRealigner -R reference -I

Dedup_Reads.bam -targetIntervals Realignment_Targets. list -o

Realigned_Reads.bam

Base Recalibrate file

GATK BaseRecalibrator: Input (realigned bam, reference) → Output (recalibrated data

table). The variants identified in this step will be filtered and provided as input for Base

Quality Score Recalibration (BQSR). The BQSR is performed twice. The second pass

is optional but is required to produce a recalibration report.

Step 5a Base Quality Score Recalibration (BQSR) #1

Tool GATK

Input Realigned_Reads.bam, filtered_snps.vcf, filtered_indels.vcf, H37Rv

Reference genome

Output Recal_Data.table*

Command java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R reference -I

Realigned_Reads.bam -knownSites filtered_snps.vcf -knownSites

filtered_indels.vcf -o Recal_Data.table

https://etd.uwc.ac.za

 98

GATK -T CountCovariates → Input (recalibrated data table, reference file) → Output

(post recalibrated data table → recalibration report → recalibration report. The second

time BQSR is run, it takes the output from the first run (Recal_Data.table) as input

Step 5b Base Quality Score Recalibration (BQSR) #2

Tool GATK

Input Recal_Data.table, Realigned_Reads.bam, filtered_snps.vcf,

filtered_indels.vcf, H37Rv Reference genome

Output Post_Recal_Data.table

Command java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R reference -I

Realigned_Reads.bam -knownSites filtered_snps.vcf -knownSites

filtered_indels.vcf -BQSR Recal_Data.table -o Post_Recal_Data.table

Recalibration quality report (PDF and CSV). This step produces a recalibration report

based on the output from the two BQSR runs

Step 5c Analyze Covariates

Tool GATK

Input Recal_Data.table, Post_Recal_Data.table, H37Rv Reference genome

Output Recalibration_Plots.pdf

Command java -jar GenomeAnalysisTK.jar -T AnalyzeCovariates -R reference before

Recal_Data.table -after Post_Recal_Data.table -plots Recalibration_Plots.pdf

https://etd.uwc.ac.za

 99

Variant Discovery – Calling variants:

Extract SNPs & Indels: This step separates SNPs and Indels so they can be processed

and used independently.

Step 6a Extract SNPs & Indels

Tool GATK

Input Raw_Variants.vcf, H37Rv Reference genome

Output Raw_Indels.vcf, Raw_Snps.vcf

Command java -jar GenomeAnalysisTK.jar -T SelectVariants -R reference -V

raw_variants.vcf -selectType SNP -o Raw_Snps.vcf java -jar

GenomeAnalysisTK.jar -T SelectVariants -R reference -V Raw_Variants.vcf

-selectType INDEL -o Raw_Indels.vcf

GATK -T VariantFiltration → snp-filter.vcf. The SNPs which are ‘filtered out’ at this

step will remain in the filtered_snps.vcf file, however they will be marked as

‘basic_snp_filter’, while SNPs which passed the filter will be marked as ‘PASS’. The

filtering criteria for SNPs are as follows: QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum

< -12.5, ReadPosRankSum < -8.0, SOR > 4.0.

Step 6b Filter SNPs

Tool GATK

Input raw_snps.vcf, reference genome

Output filtered_snps.vcf

Command java -jar GenomeAnalysisTK.jar -T VariantFiltration -R reference -V

raw_snps.vcf --filterExpression 'QD < 2.0

https://etd.uwc.ac.za

 100

HaplotypeCaller and filter variants: GATK -T HaplotypeCaller → Input (recalibrated

data table, reference file, recalibrated bam) → Output (variant call sets (snp.vcf)).

Step 6c Call Variants

Tool GATK

Input Realigned_Reads.bam, H37Rv Reference genome

Output Raw_Variants.vcf

Command java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R reference -I

Realigned_Reads.bam -o Raw_Variants.vcf

Evaluate Haplotype: GATK -T VariantEval → snpfilter.eval

Calculate variation effects: java -jar snpEff.jar → snp-filtereffects.tsv

https://etd.uwc.ac.za

 101

Appendix F

Benchmarks: Collectl-Utility

Collectl-Utility is a Perl programming code that attracts as much detail as possible from

the /proc filesystem. This project used Collectl-Util in daemon mode and modified one

line in /etc/Collectl.conf by adding the following the default statistics monitored.

“The line in /etc/Collectl.conf is:

DaemonCommands = -f /var/log/Collectl -r00:00,7 -m -F60 -s+YZCD –iosize”

The above code options allow us to monitor the HPC virtual environment CPU, disk,

and network in brief mode, and slab, processes, and disk in detailed mode. Furthermore,

we added code to monitor disk input/outsize (iosizes). After the implementation of the

workflow frameworks, the Collectt-Util testing was complete. We then grabbed the raw

Collectl data file and copied it into a directory for post-processing. The file is named

localhost-20120310133840.raw.gz. The data was processed with Collectl-ColPlot to

create plot files for the various subsystems such as CPU, disk, and so on. The exact

command is:

“% Collectl -p localhost-20120310-133840.raw.gz -P -f ./PLOTFILES -ocz”

The -p option tells Collectl to “play back” the data or, literally, to run the data back

through Collectl, and it takes as an argument the name of the raw file. The -P option

tells Collectl to create plot files. The -f option tells Collectl to use a specific directory in

which to place the output (I created a subdirectory called PLOTFILES, where I stored

the plot files). The option -ocz tells Collectl to open the plot files in create mode, which

means it will overwrite existing files with the same name. The -z option tells Collectl

not to compress the plot files.

https://etd.uwc.ac.za

 102

Figure 25: The diagram illustrates colplot.

We use the colplot to generate plots against captured logs files in our Galaxy/Ruffus directory that match

the selected timeframe such as CPU, memory etc.

https://etd.uwc.ac.za

	Title Page
	Abstract
	Keywords
	Acknowledgement
	Table of Contents
	Chapter 1: Thesis Rationale
	Chapter 2: Literature Review
	Chapter 3: Designs and Methodologies
	Chapter 4: Pipeline Integration and Benchmarking
	Chapter 5: Final Remarks
	References
	Appendices

