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Enabling the processing of bioinformatics workflows where data is located
through the use of cloud and container technologies

by Eugene DE BESTE

The growing size of raw data and the lack of internet communication technology to
keep up with that growth is introducing unique challenges to academic researchers.
This is especially true for those residing in rural areas or countries with sub-par
telecommunication infrastructure. In this project I investigate the usefulness of cloud
computing technology, data analysis workflow languages and portable computation
for institutions that generate data. I introduce the concept of a software solution
that could be used to simplify the way that researchers execute their analysis on
data sets at remote sources, rather than having to move the data. The scope of this
project involved conceptualising and designing a software system to simplify the
use of a cloud environment as well as implementing a working prototype of said
software for the OpenStack cloud computing platform. I conclude that it is pos-
sible to improve the performance of research pipelines by removing the need for
researchers to have operating system or cloud computing knowledge and that util-
ising technologies such as this can ease the burden of moving data. The source code
developed for this thesis project can be found at my personal Github account at
https://github.com/Banshee1221/Nikeza.
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Chapter 1

Introduction

1.1 Background

1.1.1 Computing In Research

Computing as a means to understand data has been around for a long time. As
with all other technology, advancements in computing have resulted in more afford-
able systems which directly benefit computational research fields. Some of these
advancements will be discussed in the subsequent sections.

1.1.2 Problem Statement

Modern technology is enabling the generation of more data in areas where it was not
possible before. Pricing for specialised tools such as automated genome sequencers
is lowering every year and enabling the data generation in smaller research groups
to grow significantly [1]. Many laboratories across different regions are also gener-
ating data that may be of value to other researchers, which may need to be shared
[2]. With the increase in scale and size of data sets, structured or unstructured, it
is becoming increasingly difficult for researchers to move the data to facilities that
allow for processing due to factors such as time and cost of data transfer [2].

Cloud computing has aided in preventing institutions from having to pour exorbi-
tant amounts of money into the purchase and maintenance of computing infrastruc-
ture. This has allowed many small to large industrial and research firms to process
more data at less expense. The issue of moving data remains. Once data to be pro-
cessed reaches the order of terabytes (approx. 1012 bytes) or petabytes (approx. 1015

bytes) and in-turn yield data which is large, it becomes unrealistic to upload to and
download from external sites.

With cloud computing becoming more prevalent, the concept of data regulation and
privacy plays a bigger role. Biological data, especially that of humans, has strict

https://etd.uwc.ac.za



2 Chapter 1. Introduction

regulations regarding who are allowed to access the data and where the data is ge-
ographically allowed to be used. This potentially introduces hurdles when trying
to use cloud computing services as there is no guarantee that a provider has data
centres that are located in the correct geographic areas.

If cloud computing environments can be used, system administrators need to man-
age the various virtual machine deployments and software packages for each of the
researchers they cater to, unless the researchers are tasked to use the cloud environ-
ment directly themselves. The use of a cloud environment in this manner can be an
increasingly complex and time-consuming task.

1.1.3 Data

Data storage devices have become considerably cheaper [3]. This has allowed many
institutions to keep up with the growing amount of research data that gets generated
by modern sensor devices.

However, the trend for larger-scale data generation is causing an increasing issue of
sharing across institutions. The sharing of data is a staple of the scientific commu-
nity. It allows researchers to make new observations on a data set used for another
purpose, or allows the verification of results [4]. Modern national and international
networks are falling behind in terms of speed, resulting in substantial waiting pe-
riods for researchers to share data. With an increasing number of modern research
projects being collaborative, researchers are proposing new ways of sharing and co-
locating data [5–8].

1.1.4 Virtualisation

In today’s world, virtualisation is an integral technique that is implemented by
many organisations of various sizes in order to help maintain different services
and applications. Two major types of virtualisation are traditional virtual machines
(hypervisor-based) and containerisation (operating system-based). The following
section discusses the two techniques and their differences.

Virtual Machines

A variety of different computer systems were created in the 1960s that were used
for different purposes with massive differences in hardware/architecture existing
among them. A big limitation of the technology during this period is that systems
could only do one task at a time, as they were purpose-built. One such system which
aimed to address this issue was the IBM 370 family of products.

https://etd.uwc.ac.za
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IBM was at the forefront of virtualisation technology when they introduced the
IBM System/370 which used the Virtual Machine Facility/370, or VM/370, plat-
form. This allowed a single physical system (host) to run multiple operating sys-
tems (guests) at the same time for different tasks by making use of a hypervisor
[9]. Hypervisors are a virtualised abstraction layer for instances of computer sys-
tems running their own operating systems. They generally create a virtual set of
hardware that can be shared among different operating systems inside of a single
physical computer and handle scheduling and distribution. It is also possible for
the host hardware devices to be directly passed through to virtual machines without
virtualising it with more modern computer systems, for special needs cases.

There are two types of hypervisor systems today, named Type 1 and Type 2, as
demonstrated by Figure 1.1:

FIGURE 1.1: The Type 1 hypervisor, shown on the left, operates di-
rectly on computer hardware. The Type 2 hypervisor, shown on the

right, is hosted on an existing operating system [10].

Type 1, also known as bare-metal or native, hypervisors are run with specialised op-
erating systems designed to give direct hardware access. This approach is generally
the more efficient of the two and in some cases, it can be more secure.

Type 2, or hosted, hypervisors are packaged with software that runs on a general
purpose host operating system such as Microsoft Windows or general Linux distri-
butions. Virtual machines that are run with Type-2 hypervisors are seen as processes
to the host operating system. Since it shares resources with other processes that ex-
ecute on the host, this is generally seen as a less efficient, but an easier approach to
virtualisation.
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4 Chapter 1. Introduction

Containers

Containers are not a novel idea. Over the years there have been various isolation or
containerisation techniques developed which all try to achieve secure, isolated pro-
cessing environments in their own ways. These include things such as FreeBSD Jails,
Linux-Vserver and Linux Containers (LXC). They are lightweight isolated spaces of
resources that can be used for various things and in some cases can replace virtual
machines for specific tasks. They are mainly software engines that utilise Linux ker-
nel features in order to achieve isolation of resources and access to other processes
to avoid virtualisation.

Today they are generally used to enable applications or services to be built on a
variety of different system configurations without the need to worry about software
dependencies. They also enable the ease of moving the application and running it
on a wide variety of different systems.

Differences Between Containers and Virtual Machines

The major problem that virtual machines, henceforth referred to as VMs, have is an
inherent performance hit over a single operating system, or "bare-metal" machine.
Due to the implementation architecture, the hypervisor runs on or alongside the host
operating system of the machine and one or more virtual machines can be created
from this. Each virtual machine has its own operating system and kernel, which
means that there are redundant services being executed over the machine as a whole.

Containers alleviate the resource-hungry problem that virtual machines pose by
eliminating the need to run a separate instance of a guest kernel and operating sys-
tem altogether. Only a subset of components that make up an operating system is
needed by a container, such as the libraries of the operating system image used and
its own network stack, process tree, and others depending on the implementation.

The core differences between the two approaches are broken down in Figure 1.2.

As VMs are added to a host machine, a larger chunk of resources are reserved just
for the guest operating systems themselves, leading to less resource availability for
the applications or services. Not only this but, due to the additional complexity of
the VMs, they can become computationally expensive to operate in large numbers
[12].

On the other hand, containers can achieve much higher density per host, that is to
say that more containers can run on a single physical machine than virtual machines.
Testing is done for Linux Containers and the Future Cloud by Rosen1 [13] showed

1Linux Containers and the Future Cloud is a presentation that was delivered for the Haifux Club at
the Israel Institute of Technology on 17 March 2014. http://cs.technion.ac.il/events/2014/2012/
index.html
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FIGURE 1.2: The image on the left describes the typical hypervisor-
based virtual machine execution layers. The image on the right shows
how container engines bypass areas of the hypervisor approach, sit-

ting closer to the bare hardware. [11].

that OpenVZ and PCS achieved densities roughly 54% and 227% more than the best
VM platform tested (RHEL KVM), respectively.

Another advantage of containers is that the startup and shutdown time can be much
faster than VMs, which can lead to higher overall time-to-business, and native nest-
ing support (containers within containers). This is due to virtual machines needing
to do the entire guest operating system boot process. However, when the work-
ing environment is of a heterogeneous nature, such as networks of systems that run
operating systems other than Linux, containers can be restrictive and introduce ad-
ditional complexity. Other operating system vendors have started making efforts to
produce their own container systems or support existing ones, so this issue may be
resolved in the future [14].

Types of Containers

There are various container systems that are used today (vide supra) and studies have
been done to compare some of the major containers systems used in the modern
world in terms of performance, features and/or security [12, 15, 16].

The following section mentions some of the container systems spoken about in the
papers referenced above. Note that the following is not an exhaustive list of con-
tainer systems nor their features.

https://etd.uwc.ac.za



6 Chapter 1. Introduction

Docker Docker is one of the most recent (2013) and popular container systems be-
ing used today. This specific one has recently enjoyed massive adoption by various
types of companies and research groups, helping replace virtual machine infrastruc-
ture and creating ease of application development and deployment. It is based on
LXC, another container system, but has moved from using this as its core to utilising
Linux control groups (cgroups) and namespaces2 more directly [17]. Docker makes
use of hostname, inter-process communication (IPC), mount, network, user and pro-
cess identifiers (PID) namespaces [15] for security and privacy as well as cgroups for
resource limiting.

While it has other uses, the primary selling point of Docker is to contain a single
application or portion of an application with speedy deployment. It can provide
secure and robust communication between a container and its host. Each container
has its own virtual network stack unless manually specified otherwise, which takes
care to abstract network traffic from the host. The organisation behind Docker pro-
vides a registry service called the Docker Hub which hosts many official and third-
party Docker images, which boosts the sharing capability and increases develop-
ment startup time. Private registries are also available for more specialised or sensi-
tive use [18].

The Docker engine uses an API which allows for automation scripting and devel-
opment, better management tools and reporting on containers and images. It also
makes use of an abstraction layer that allows it to work on different Linux operat-
ing systems in identical fashion. To get compatibility within Microsoft Windows,
Docker makes use of a hypervisor in which it gets deployed.

The main caveat with Docker is that it requires privileged user permissions on the
host operating system in order for the user account to interact with the Docker sys-
tem service, which takes care of launching and managing containers. This is an issue
in multi-user environments.

Linux-Vserver This is one of the oldest containerisation systems around, with the
first public release in 2003 [19]. In order to use this container system, the system
administrator is required to patch the host Linux kernel for their operating system
in order to provide isolation between the host system and containers. This patching
also enables inter-container isolation in addition to resource control [20].

It makes use of chroot calls to create a new root file system for each container3. Due
to the use of global PID spaces for process isolation, good performance and scalabil-
ity are easy to achieve, but features such as live migration and other virtualisation

2Control groups and namespaces are Linux kernel features that allow for isolation of resources and
processes for processes.

3Chroot is an an isolation technique on Linux that changes the apparently root directory for a pro-
cess.
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features are mostly not achievable with Linux-Vserver. All containers share the same
network subsystem, with identifiers added to packets to prevent snooping. This ap-
proach disallows containers from modifying their own routing tables, which may
potentially limit its usefulness for tools that require unique network configurations.
For CPU isolation, the Linux Scheduler is used with a Token Bucket Filter4 on top
of it [21]. Each process is linked to the creation of a token. Memory restrictions are
done through rlimit, the Linux kernel system feature that controls memory usage
per process or user. Recent versions include cgroup support.

Linux-Vserver has proven to not be as flexible as other container systems.

OpenVZ OpenVZ is a relatively old container system, released first in 2005. It is
similar to Linux-Vserver, but it uses Linux namespaces directly [22]. OpenVZ treats
a container as a small instance of a virtual private server (VPS) rather than as an
application, as Docker does.

It uses its own custom patched Linux kernel dubbed the OpenVZ kernel which pro-
vides features such as virtualisation, isolation, resource management, and check-
pointing which are common to other virtualisation platforms [23, 24]. Modern ver-
sions can use the mainline Linux kernel 3.x with a reduced feature set. OpenVZ can
also be limiting to certain applications due to the restrictions placed on the kernel
requirements. All containers on a single host use the same kernel and architecture.
Each container has its own process tree, serial ports, file system and network stack,
although the host’s network stack can be passed through to containers.

LXC LXC, or Linux Containers, is a newer container technology which was first
released in 2008. It makes use of namespaces, in a similar fashion to Docker, since
Docker was based on LXC. Cgroups are utilised to provide resource management
and I/O (input/output) operations are done through the Completely Fair Queuing
(CFQ) scheduler [25].

With some configuration LXC allows containers to be executed by unprivileged
users [26]. This is especially useful in multi-user environments such as high per-
formance computing (HPC) centers, where many users are on the same machine
and have potentially sensitive information to process.

It works at a significantly lower level than container systems such as Docker, having
less abstraction and in turn a steeper learning curve. This also makes it possible to
achieve better performance.

4The token bucket filter, in this case, is the application of the token bucket algorithm applied to the
CPU scheduler.
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Solaris containers/zones Solaris zones are around the same age as OpenVZ, being
made available in 2005. It was specifically designed by Oracle to be used with Solaris
OS and was offered to clients who were using the Solaris environment.

Originally designed to improve on the administrative ease and feature set of Linux-
Vserver and FreeBSD jails available at the time, it attaches zone identifiers to pro-
cesses in order to limit visibility of other processes, effectively hiding a process run-
ning in one zone from another. It takes advantage of many native features of Solaris
such as entitlement, limits and partitions in order to do resource management [27].

Its main drawback is that it can not be used with other operating system environ-
ments outside of the scope of Solaris OS. This severely limits its adoption and elimi-
nates its use in the majority of high performance computing environments.

Singularity This is the newest major container platform, publicly appearing around
October 2015. Its primary use case is aimed at computational portability. The focus
for this container technology has been towards researchers and scientific application
from the beginning, adopting technologies and improvements that directly improve
the use of these applications within the containers. Examples of this are GPU sup-
port from within containers as well as being able to utilise technologies such as MPI
natively [28, 29].

Singularity does not require special privileges to execute. This is very beneficial to
multi-user environments. It also has the ability to convert Docker container images
to be used in Singularity, which ensures a large range of base applications and good
compatibility. Process namespace isolation is used to its fullest extent by default
with Singularity and it has transparent networking. Each container shares its en-
vironment with the user that started it, which makes it simpler to use from a user
perspective [16]. It is also integrated into various workflow software and schedulers.

1.1.5 High Performance Computing

High performance computing (HPC) is the paradigm where multiple powerful com-
puting systems are networked together in order to run problems that are computa-
tionally expensive or that have extremely large sets of data, in a more reasonable
amount of time. Software for HPC environments needs to be specifically designed
with parallelism in mind, as compute is executed over various different computing
hosts in the network at the same time.

These environments are provided either by a university, computing research institu-
tion, private business or the research group itself.
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Virtualisation in HPC

Due to the performance overheads of virtualisation, it is not commonly implemented
in serious HPC environments. Few groups have attempted to make virtualisation a
viable option for HPC. A notable example of this is the group ScaleMP. Founded
in 2003, their mission was to create a hypervisor that spans multiple physical ma-
chines. This allows the user to get a singular view of multi-machine clusters, by
pooling resources from all of them, which could simplify writing high performance
applications to only have to deal with the view of one operating system instance.

In 2014, Dell published a blog post showing their experiments with traditional vir-
tualisation in an HPC environment by using various different scientific benchmarks.
They concluded the generally accepted outcome that, given an even playing field in
terms of hardware resources, virtual machines tend to perform slower than running
the task on the bare machine [30].

Containers in HPC

There are two main container projects that are currently considered for high per-
formance work, namely Docker and Singularity. Docker is the largest of the two
(see Docker in section 1.1.4), given that it is mature and has been operational for
many years. The other project, Singularity, is a fairly young, but promising new
container engine. Singularity is more specifically targeted at scientific workflows
and has native support for HPC-specific hardware whereas Docker does not, as it
is targeted more at microservices5. However, due to Docker being more mature it
has also amassed a large number of pre-built scientific containers that can easily be
downloaded from the Docker Hub registry. Singularity is especially attractive for
the HPC space due to it not requiring elevated privileges to run software, reducing
security concerns, and its ability to support Docker images.

Docker has made a significant impact on the Linux developer community with the
ease of building, shipping and managing software dependencies in applications.
However, as had also been expressed that this "revolution" [31] has yet to make a
meaningful impact on the high performance computing community [16, 32].

Aside from the benefit of having software dependencies that are easier to manage by
packaging the specialised software into container images, there are more low-level
advantages to using a container approach to building software for HPC clusters.
Software containers can allow performance levels much closer to a bare-metal sys-
tem than a virtual machine with a hypervisor can, which makes it very attractive

5Microservices is a software development paradigm in which a normally tightly coupled software
architecture is split into multiple loosely coupled components.
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from a compute standpoint. In the white paper6 Containerization of High Perfor-
mance Compute Workloads using Docker by Christian Kniep [33], it was found that
it is even possible to achieve better performance in a Docker container than the bare-
metal operating system it resides on in some cases, due to different libraries being
used by the container operating system.

A prototype Docker-powered HPC Cluster has also been designed and implemented,
spread over different physical machines, making some modification to the network
bridge to get them to work together. It was deemed feasible to implement such a sys-
tem and should be considered for future work management/orchestration engines
and friendly graphical interfaces [32].

Due to the ability to wrap workflows and work environments into a highly portable
package, these container technologies also become attractive as they reduce the work
necessary by system administrators and managers in order to ensure that user soft-
ware dependencies are met.

Research

HPC environments are generally suited to a limited set of work. Massively parallel-
capable tasks benefit greatly from the services that these centres provide to their
users. The current model of HPC for researchers dictates that there must be at least
one system administrator available on the project who installs and manages software
that is approved for use with the institution. Users are able to request software that
they wish to use for installation, but there is no guarantee that it will be supported
by the HPC centre. Other than using official support channels in order to support
researcher workflow or pipeline, there is no way to engage with the system and
make changes required by the researcher. HPC centres are generally considered to
be restrictive.

1.1.6 Cloud Computing

Before the common availability of the internet, as we know today, companies used
to buy and maintain mainframe computers that were tasked with all the business-
supporting activities that could be programmatically represented. This moved into
distributed computing where multiple machines would be bought and networked
in order to perform tasks together. Organisations began to offer computing time on
their own servers to other parties for a price, this developed into what is known
today as cloud computing.

6A white paper in the technology industry is a technical document that describes how a technology
or product solves a particular problem. http://www.investopedia.com/terms/w/whitepaper.asp
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In layman’s terms, computing infrastructure is hosted by a company or organisation
and provided to end-users through an abstracted interface, known as Infrastructure
as a Service (IaaS). Most cloud providers will offer one or more types of services,
such as Infrastructure, Platform or Software as a Service. Each of the services of-
fer varying levels of access to the operating system environment directly, with IaaS
offering the closest to actual server access. The purpose of this is to allow people
to make use of hardware infrastructure without the need to provision, manage or
maintain them physically.

Micro-cloud

A relatively new paradigm, "micro-cloud" or "micro-clouds" is bringing the idea of
shipping code, or applications, instead of data to be processed at different locations.
The paper Mobile Micro-Cloud: Application Classification, Mapping, and Deploy-
ment [34] defines a micro-cloud as a "logical network" which consists of two main
parts. The first is a "core" or central platform where the data set to be processed
resides in its entirety. The second part consists of one or more "edge" platforms or
small segments of computing power scattered across different locations, internally
or externally, which deal with a need-to-know base of information from the core
which is required for computing the task given to it.

The term "micro-cloud" was spawned from the paradigm of cloud computing and
describes the shift from using infrastructure hosted at and owned by a particular
institution to using the infrastructure of another company over the internet. In this
model an organisation does not pay for the installation cost and maintenance of
hosting physical servers, instead, they pay a monthly or sometimes yearly rate to a
cloud computing provider such as Google or Amazon.

Security concerns arise with data being processed in areas that are possibly not
owned by the data-holder. A good security model for the data needs to be avail-
able in the system to prevent leaking of sensitive information. An authorisation and
authentication system is also important for scenarios where specific people are al-
lowed specific access to data.

High Performance Cloud Computing

High Performance Cloud Computing, or HPC2, is an emerging trend. Cloud com-
puting is becoming increasingly viable for some types of research, as the pay-as-you-
use model offers some real value over the need to have a physical set of hardware at
the institution. Any research that requires the processing of large or many data sets
have the potential to benefit from this approach as cloud providers provide power-
ful virtual environments that are more catered to compute-heavy workloads. It also
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allows the flexibility and freedom of full control over the software stacks used. Some
modern cloud computing providers are offering "Cluster Computing Instances" or
high powered virtual machine instances that are connected to high speed intercon-
nects. This model has proven viable for many types of research computing [35].

Research has shown that HPC2 offerings are not yet on par with non-virtualised
physical high performance environments [36], so there is still work to be done in
order to bridge the gap between purely virtualised cloud computing providers and
high performance bare-metal machines. Projects have emerged in an attempt to ad-
dress some of the issues with access to high performance devices for virtualised en-
vironments, one such being a novel approach to using high speed compute cluster
network interconnects in a cloud environment [37].

Issues With Cloud Computing in Research

There are various reasons why an organisation would not be able to use a conven-
tional cloud computing platform to provide its products and/or services. Running
costs, internet access, scale or privacy issues of using the cloud are among some of
the reasons an organisation’s internal ability to manage those aspects may outweigh
the attraction of use.

Smaller organisations benefit greatly from utilising the offerings of cloud environ-
ments due to the high cost of infrastructure acquisition, but subscription costs for
storage and compute will continue to grow as time progresses. The potential to be-
come more costly to maintain a cloud environment than a physical one increases
when organisations want to scale their services or utilisation. Some flexibility is also
sacrificed as users have no physical access to any of the hardware that they are rent-
ing, which results in users having to work around restrictions or limitations that are
in place with cloud environments. This issue is constantly being worked on by cloud
environment providers by offering increasing amounts of customised solutions for
various use cases as evident by regular releases of new platforms and tools by said
providers7.

Privacy is another fairly serious concern with cloud environments. When data is
stored on cloud environments, the user is subject to the privacy policy and terms of
use of the cloud provider. The user is also subject to housing the data they wish to
store on one or more of the physical locations that a cloud provider may offer. Data
centres are not available in every country or continent. This has potential ramifica-
tions for data that is governed with strict policies, where there is no strict control
of how data is stored and/or replicated by the cloud provider [38]. Lawmakers are

7The work being done by the three most successful cloud computing provides can be found at
the respective blogs: Google (https://cloudplatform.googleblog.com), Amazon (https://aws.
amazon.com/blogs/aws/) and Microsoft (https://azure.microsoft.com/en-us/blog/).
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catching up to the notion of privacy-centric data and location agnostic cloud envi-
ronments [39]. Researchers themselves can take preventative steps to protect their
data as well with approaches such as data segmentation, encryption and anonymity
masking [40]. Unfortunately, there is no concrete solution to data placement laws,
short of having cloud providers open data centres in every country in the world.

1.1.7 Workflow Languages

Bioinformatics data often needs to go through various steps of transformation to
be usable in different purposes. While some pipelines or workflows are presented
and shared as a structured set of tools that need to be executed in a specific order,
many researchers chain tools together in novel ways to achieve their own goals. A
large percentage of students and researchers in this space are not programmers [41].
Many researchers and students in the field of bioinformatics perform data analysis
by using programming languages including, but not limited to Python, R, or Bash
to write scripts that are highly specific to the tools, data and environment that they
are working on. There is a growing problem with these pipelines not being easily
reproducible or extensible by others. Implications of this are that it becomes difficult
to verify whether the results of other researchers are correct and to expand on the
groundwork that others may have laid with their original work.

Workflow languages offer a way to address this issue. They provide a structured
way for researchers to provide the inputs, tools and outputs that are required for
each possible step of an analysis. The execution tools for the specific languages allow
these workflow definitions to be executed on different machines without needing to
modify them for your specific environment and consequently make it significantly
easier to acquire the specific tools and versions of those tools for the said workflow.
Many of these workflow languages also integrate with container technologies such
as Docker and Singularity to retrieve the desired tools at the time of execution.

The following is a non-exhaustive list of actively developed workflow languages
and standards that are used in the bioinformatics space.

Common Workflow Language The Common Workflow Language (CWL) describes
itself as a standard or specification for defining computational workflows. CWL
does not provide an all-in-one solution to executing workflows, but rather attempts
to provide the common base that future workflow execution systems could use to
define the tasks to be done[42], providing support for popular tools and services
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such as Docker containers. The CWL standard is implemented in various workflow
execution tools such as cwltool8, Arvados9, Toil10, Galaxy11 and other.

Cwltool is the reference implementation of an interpreter for the CWL standard that
provides the common base set of features that is expected from a tool that imple-
ments said standard. It is up to the tool which implements the standard to add
additional functionality such as parallelism and utilising cloud environments.

Nextflow Nextflow is a workflow or pipelining language with Linux as its primary
focus and Docker containers as a first class citizen, later also adding support for
Singularity containers. Users of Nextflow are able to describe their data processing
pipeline in the Groovy programming language. This tool allows users to describe
their workflow and execute it on a variety of platforms such as traditional HPC
scheduling systems or public clouds such as Amazon Web Services or Google Cloud
[43].

While using this tool means that users will have to conform to its requirements, such
as knowing Groovy, it provides many other benefits such as portability, fault toler-
ance, reporting and support for container scheduling systems all in one packaged
solutions. A prototype for converting CWL specification to Nextflow instruction
was in development at some point, but was cancelled12.

Snakemake The Snakemake workflow management system uses Python as a lan-
guage to describe workflows. This makes it attractive from an ease-of-use perspec-
tive as Python is considered a relatively simple and efficient language to use for
non-performance oriented scientific purposes[44, 45].

It provides features such as visualisation of the workflow, exporting to CWL and ex-
ecuting workflows on the Google Cloud specifically. Snakemake also provides sup-
port for container technologies such as Docker and Singularity, but has an added ad-
vantage of being able to utilise the Conda13 distribution service for Python natively.
This adds additional flexibility to the user. It provides support for HPC schedulers
through a relatively simplistic method of passing the job as a Linux shell command,
which makes it relatively compatible with most common schedulers.

8https://github.com/common-workflow-language/cwltool
9https://arvados.org/

10https://github.com/DataBiosphere/toil
11https://galaxyproject.org/
12https://github.com/nextflow-io/cwl2nxf
13https://conda.io/en/latest/
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1.2 Project Aims

There are three main research questions that this project aimed to address. The over-
all aim was to address these issues by providing an automated tool and simple inter-
face for researchers to utilise the cloud for their specific needs, without the need for
complicated dependency management, manual administration or technical knowl-
edge.

1.2.1 Is it feasible to move workflows/pipelines to the cloud?

This question tries to understand if the paradigm of moving researcher workflows
to remote locations is feasible or not. This is the main focus of this project and the
subsequent questions rely on this main question.

1.2.2 Can the cloud environment be simplified for researchers?

It is unreasonable to expect that most researchers understand how to use specific
technologies such as cloud computing environments and specific operating systems,
along with their intricacies, in order to reproduce their working environment re-
motely. Therefore, the remote execution environment should be simplified for use
by non-technical researchers by attempting to create a structured and reproducible
way for them to define their specific environment which can automatically be made
for them.

1.2.3 How can workflow languages be supported in the cloud?

Standards need to be put in place in order to create redistributable workflow specifi-
cations. It is difficult to maintain a system that supports endless different workflow
specifications. A balance needs to be struck with how many to support. This ques-
tion asks how workflow specifications can be integrated into a cloud environment
to allow for reproducible science and researcher flexibility.

The source code for the prototype software developed for this project can be found
at https://github.com/Banshee1221/Nikeza.
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Chapter 2

Methodology and Requirements

2.1 Background

As Figure 2.1 demonstrates, the traditional way for researchers to process data which
they do not produce themselves or already possess is to first transfer the data from
a remote holding source to themselves. This process is almost always the bottleneck
in data processing as large data sets can take a large amount of time to retrieve. This
is a growing issue and will continue to become more serious as time progresses and
data sizes increase. As such, data processing capabilities should ideally be made
more readily available at institutions that generate and/or carry large data sets to
offset the amount of time wasted in transferring such data.

Various methods for processing large data currently exist. Many of these solutions
have been attempted at academic institutions such as the South African National
Bioinformatics Institute at the University of the Western Cape. The next section de-
scribes some of these methods along with some advantages and disadvantages of
each method.

2.1.1 Traditional High Performance Computing Centres

Processing of data at high performance computing institutions via data transfer
through the use of the university network is common among research institutions
where spending large amounts of money on computing resources is not a prior-
ity. Most research institutions rely on nationally available computing organisations,
such as the Center for High Performance Computing (CHPC) in South Africa, to
process data sets generated by their research. These organisations can be private
sector businesses, government-funded initiatives or a combination of the two.

HPC centres can be a viable option if the organisation offering the computing re-
sources is not oversubscribed, has good availability and if the data set is not too
large. Time may become an issue when data sets reach larger sizes, resulting in
transfers that may take an unrealistic amount of time.
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FIGURE 2.1: This figure demonstrates how a researcher typically in-
teracts with a remote data set. The data is transferred to the researcher
via the internet in most typical environments unless the data can be

acquired through offline modes such as couriering.

The CHPC is a part of the Council for Scientific and Industrial Research (CSIR)1 and
provides access to two fairly powerful clusters. The main offering is the Lengau
Cluster, which is a petascale system that is offered with time-sharing and/or re-
source sharing options. They also provide access to a GPU cluster which some sci-
entific workflow may call for.

While this has done much to aid the research tasks of various academics in the coun-
try, the CHPC is plagued with various non-user friendly issues and downtime which
interfere with the researcher’s deliverables.

2.1.2 Inter-university Data Processing

Universities often have very high-speed networks that interconnect them nationally.
In South Africa, the Tertiary Education and Research Network (TENET) of South

1https://www.chpc.ac.za
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Africa operates an internet exchange named the South African National Research
and Education Network (SANReN). This network offers high-speed 10 Gbps fibre
channels to various universities that are involved with the project.

Researchers may be working on projects that span multiple universities. In these
cases, and sometimes others, universities will provide computing resources to re-
searchers that they are in collaboration with. The research data will either already
be housed at the institution that a researcher is collaborating with or the data will
need to be transferred to this university. This again could prove to be a problem if
the data volumes are too large to transfer in a reasonable amount of time.

2.1.3 Physically Moving Data Drives

As previously mentioned, it is possible for data that needs to be processed to be too
large to move due to reasons such as slow network speeds or data sizes that are too
large. If a research institution does not have the necessary computing resources they
may resort to physically moving the data that they wish to process to locations that
have the ability to do so [2].

Utilising this method of data movement has major risks. The physical security of
hard disk drives in transit can often not be guaranteed. This issue becomes com-
pounded when the data in question is sensitive and has policies surrounding who is
allowed to use it and where it is allowed to be sent.

2.1.4 Utilising the Public Clouds

Modern cloud computing offers a wide range of tools for end users to create envi-
ronments to suit their needs. By offering various solutions such as Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) research
institutions can choose a model for data processing that fits well into their budgets.
Often, a plan is chosen that allows an institution to have a chunk of storage, such
as Amazon’s S3, provided by the cloud provider. Data must be transferred to the
cloud storage solution, after which it will be accessible from virtual machines that
are created on the cloud.

This solution makes the management of hardware resources significantly easier for
institutions, due to no physical hardware being owned. It also often provides more
flexible computing resources such as CPU, memory and disk can easily be scaled up
at an additional cost with most providers.

Utilising this approach can lead to increased issues with network related activities
if data volumes are large. This is mostly due to the outbound internet connec-
tion that is available in the country. The SANReN network provides a significantly
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faster connection locally between universities than internationally. Since most well-
established cloud providers keep their data centres outside of Africa2, the time taken
to send raw data will increase substantially.

Ignoring the issues mentioned above, one major impairment to the use of cloud
computing is the lack of scientific software and tools that work natively with these
environments. Many scientific applications do novel operations which need to be
individually catered for [48].

2.1.5 Local Computational Ability

Research centres, such as SANBI, may offer local storage and compute cluster(s)
that can be used to process research data. This would be the ideal solution for most
research institutions in terms of data transfer as it reduces potential problems with
politics and policies surrounding certain types of data and allows quick feedback
and local support. However, this requires that institutions have a large initial capital
in order to purchase all the equipment needed. Once the initial setup is complete,
additional expense goes towards the maintenance of the cluster as well as paying the
salary of a technical officer to oversee the operation and maintenance of said cluster.

2.1.6 Semi-Private Research Clouds

Formerly known as the African Research Cloud (ARC), the South African Data In-
tensive Research Cloud is an inter-university research cloud project. The goal of this
project is to bring storage and compute needs to Southern Africa (as well as Africa)
as a whole, with each university providing parts of these services. The end user,
or researcher, will be provided with a singular cloud interface with which they can
create virtual compute instances and utilise data or provide their own, where the
system would be intelligent enough to ensure the user is provided the resources
from the centre closest to the data. The primary focus of this initiative is to support
astronomy and bioinformatics workflows.

There are other projects like this which aim to provide researchers in various re-
gions and fields with flexible compute capabilities without requiring the funding to
purchase and maintain physical infrastructure or make use of the more limiting HPC
centres. These include the UK based Cloud Infrastructure for Microbial Bioinformat-
ics (CLIMB) system [49] and the Australian based National eResearch Collaboration
Tools and Resources (NeCTAR) research cloud [50].

2This is true at the time of writing, but it has become evident that more cloud providers are inter-
ested in providing computing and storage resources located in South Africa [46, 47].
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2.1.7 Tool Wrappers and Workflow Generators

Projects such as the Galaxy platform introduce a visual web-based platform and
extensive framework for bioinformaticists to work with tools in the field [51]. It aims
to provide a way to string tools together into workflows by having tool definitions
written for each piece of software and then manipulating their inputs and outputs
in the context of other tools from a web interface.

It is a collaborative effort between the group that makes the core service as well as
the community that build the integration for it with the tools that bioinformatics re-
searchers typically use. This approach not only allows easier consumption of larger
sets of data, but also fundamentally encourages the sharing of analysis. The caveat
with Galaxy is that the end-user, the researcher or academic, is restricted to using
the toolset that is provided with that instance of Galaxy, whether that be the public
Galaxy instances such as https://usegalaxy.org, or a Galaxy instance that is avail-
able at the researcher’s institution. Software can be added, but it is a similar process
to maintaining software in the traditional cluster computing way.

The Galaxy project is actively developing technology that allows this platform to sit
on top of cloud environments in order to take advantage of the flexibility that they
provide. Dubbed CloudMan, the project aims to enable better usage of resources
and allow the project to be run on more platforms [52]. This technology is similar to
other infrastructure-as-code tools such as Terraform3, but it is built with a focus on
compatibility with the Galaxy project.

This project is a good example of what could be used at an institution to provide
analysis tools to process data that exists at the institution, provided that the software
requirements are well defined by the researchers.

2.2 Project Requirements

With respect to the research questions posed above, this thesis presents a proof-of-
concept solution in the form of Nikeza. Nikeza, meaning "give away" in isiXhosa,
will be a software product that compliments an existing cloud or container provi-
sioning and orchestration environment through a plugin system. It will act as a
management add-on that is written mainly in the Python programming language,
specifically Python version 3, which allows it to run on most modern computing en-
vironments and operating systems. Plug-ins will be easy to write and theoretically
allow many different virtual provisioning environments to utilise Nikeza.

A web application will be provided to allow users to upload their workflow doc-
ument and select data from the provider’s databases. The end user will also be

3https://www.terraform.io/
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shown updates to how their tasks are performing and when they are complete. User-
generated output will be moved to specific locations so that they may be retrieved
by the user afterwards.

A backend service will be responsible for translating the user input from the web
interface into commands that are understood by the platform that is being used at a
given institution.

2.2.1 System Context

The assumption is that an institution will already be running a cloud environment
and Nikeza will interface with the existing system in order to give it commands for
correct execution based on the user input.

As Figure 2.2 shows, the premise is that Nikeza would sit as a service which com-
plements existing storage and cloud infrastructure. A web interface is presented to
a user with various options regarding which data he or she needs to access in order
to do processing on, the location of the output data and options to upload their own
workflow blueprint to the server. Once the user has submitted this, the Nikeza sys-
tem translates their workflow blueprint into commands that are understood by the
existing infrastructure. The user will receive periodic updates on the process of their
workflow execution.

While there are other potential tools and services that could achieve similar results,
a cloud environment is used due to the growing popularity of the cloud storage
and computing ecosystems in the biomedical space [49, 53–55]. Along with this,
utilizing a cloud environment affords the potential for many aforementioned tool
and services to be implemented on top of it with a more streamlined and integrated,
single-access perspective.

2.2.2 Use Cases

This section details use cases, or applications, for the proposed software system.

Analysing data that is too large for a researcher to retrieve in a reasonable time

With growing data set sizes, it may not always be feasible for a researcher to wait for
the retrieval of a set of data that they wish to analyse. In this case, a researcher may
be able to define a workflow of the analysis that they wish to perform on data as if
it were with them locally and move that definition to the environment which hosts
the data. The workflow definition is understood by the remote environment and
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FIGURE 2.2: This figure demonstrates the concept that powers the
implementation of the Nikeza project.

used to create a portable workflow execution environment using virtual machines
and Docker containers.

Since the data already exists at the remote location, making a copy of the data set
for the execution environment or potentially, though unlikely, using it directly is
objectively faster than first waiting for the data to be retrieved by the researcher.
Multiple data sets may also be chained in a workflow definition, provided that all
data sets exist at the remote location and are accessible to the user.

Once the execution environment completes its given objectives, the resultant data
is moved off of it and onto the remote environment’s storage, where the researcher
is able to retrieve the completed analysis results. This could result in significantly
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smaller download sizes as the results of analysis tend to be smaller than the data set
itself.

Sharing results of large analyses with others

In some cases, the results of an analysis or analysis chain can be very large. This is
seemingly counter-productive to the intended solution offered through this project.
However, it is possible that collaboration efforts could lead to one researcher not
actually needing to work with the results of said analysis.

In this case, one researcher would execute their analysis against a remote data set(s)
and the results of that would be used by another researcher which is either closer to
the data or able to execute their own analysis or analysis chain on the results of the
previous.

2.2.3 Conceptual Model

The conceptual model details the components of the software architecture. This sec-
tion will present an overview of the system model.

Figure 2.3 showcases the interaction of the user and the system, as well as the various
system components. This is the overview model for how the user interacts with the
system and how the system responds based on user interaction.

FIGURE 2.3: This figure overviews the conceptual interaction model
for the user and the project.
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User

The user is able to navigate to a web interface that is provided by the project system.
When first visiting this, the user is presented with a login screen so that they may
authenticate against the backend system that is being used by the Nikeza system.
The credentials of the said user are stored with a unique cookie in the browser and
on the Nikeza system side, after which they are then presented with a queue of
current jobs belonging to their account. The user can select to create a new job or
stop one that is already in progress. The user is also presented with a view which
allows the selection of data from the backend.

Nikeza System

The project system is hosted on a public facing web server which is located near
the backend cloud environment that is in use. It directly engages with the user and
the cloud environment, acting as a middle man for both. The project takes care of
translating user commands into instructions for the backend environment and does
routine checks on jobs running for each user.

Cloud Environment

The cloud environment handles the majority of the work and takes care of running
the actual analyses. It is responsible for creating virtual machines on demand, in
order to accommodate the user workflow. The Nikeza system injects the workflow
from the user into a newly created virtual machine and data is mapped from the
storage environment into the virtual machine. Once processing is completed, the
results are moved from the virtual machine into the storage environment and the
virtual machine is destroyed.

2.2.4 Architectural Detail

As shown in the conceptual model (Figure 2.3), there are many different parts of the
system that work in sequence to give the user the results. Figure 2.4 expands on this
and describes the complete interaction model of all the components in the system.

A new user must authenticate with the system before they can interact with it. This
is done through the credentials of the cloud backend that the system is using, Open-
Stack in this case. The user would be provided with these credentials from the in-
stitution that they want to use or from some federated authentication platform if
supported. If the user has already authenticated with the system then they are not
required to log in again. The Nikeza system merely tries to pass the credentials that
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FIGURE 2.4: This figure details the interaction model of components
and the user in Nikeza. Most of the interaction behind the user-facing

components are not exposed to the user and are automated.

the user supplies it through to the backend cloud environment to try to authenticate.
If this fails (e.g. incorrect user credentials) then the user is presented with an error
message and given the chance to try again.

The landing page for a logged-in user is the queue of jobs. This page queries the
backend system for a list of jobs that may be running for that user (jobs that they
have created and that are running). On this page, the user can select job entries, if
there are, and choose to stop the execution or they can select to create a new job. If
the user selects to stop a job, an instruction is sent from the Nikeza service to the
cloud platform (backend service) in order to destroy the virtual machine with the
given job ID. If the user selects to create a new job they are redirected to a page that
presents them with options for a new job.

The new job page will present various options for the user. These options are manda-
tory for submitting a new workflow and include:

• Uploading their workflow definition file;

• Providing the arguments that the given workflow file expects when executed;
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• Selecting the data they want to process (which is presented to them given they
have access to the data through security policies/profiles);

• Select where the data-to-be-processed is pulled into and the resultant data is
generated on the virtual machine that will be created for their workflow;

• Select where the resultant data is uploaded to on the backend service.

The user can then select whether to start the job or to cancel and return to the queue
without adding the new job. If the user selects to start the job, the workflow defi-
nition is uploaded from their computer and, along with all the parameters that the
user filled in, an instruction log is generated by Nikeza. A virtual machine creation is
requested by Nikeza and the instruction log is specified to bootstrap the creation of
the virtual environment. In the meantime, the user is redirected to the queue page,
where they can see the status of the virtual environment that is running their work-
flow. Once the job is completed in the virtual machine the data is moved to where
the user specified and the virtual machine is destroyed, removing it from the queue
page, and the user can retrieve the data by logging into the backend dashboard.

2.2.5 Technical Functionality Requirements

The overall goal of Nikeza is to provide an easy-to-use interface for end-users to sub-
mit their workflow to a cloud environment in which some research data is located
in order for their workflow to be executed with minimal interaction. The function-
ality below provides the ability to answer the research questions being asked in this
thesis.

Allow users to execute scientific workflows without needing technical expertise

The user’s workflow submission must be understood by the system and automati-
cally executed without leaving things behind on completion. It should be fully au-
tomated.

Allowing users to execute scientific workflows on data that does not exist locally

The user must be presented with a list of data, which they would have access to
through pre-specified policies. They must be able to select the data that they want
to do processing on.
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Allowing the system to run without modifying existing backend environments

Nikeza must be designed in such a way as to allow the existing backend setup to
stay intact, with minimal to no changes required by administrators.

Easy-to-use, human-friendly user interface for the web application

The user must be presented with an easy to understand, human-friendly web inter-
face which has all the technical details and commands abstracted.

Simple plugin system in order for providers to be able to easily adapt Nikeza to
their environment

The application should support different environments through a translation plugin
system in which the administrator of a system can write the needed operations in
order to support their system.
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Chapter 3

Implementation

This project followed a non-standard approach to software development which in-
corporated aspects of various software engineering standards. The general approach
to implementation followed the design philosophy of dependency injection.

The scope of this project involved conceptualising and designing a software system
as well as implementing a working prototype of said software for a specific virtual-
isation platform. Three high powered computer servers were used to build up the
hardware environment. In this instance, OpenStack was chosen as the appropriate
provider environment. OpenStack is industry-ready software that is currently being
utilised for cloud projects in academia around South Africa, such as with the Inter-
University Institute for Data Intensive Astronomy (IDIA) and South African Data In-
tensive Research Cloud (SADIRC), previously known as the African Research Cloud
(ARC).

3.1 Backend

3.1.1 Hardware

Decommissioned hardware from the Physical Science department was donated in
order to be used for e-research efforts at the University of the Western Cape. Some
of the hardware donated was utilised for this project. Table 3.1 details the hardware
specification.

Other than the server hardware, two network switches were utilised. One switch
was used for internal university network access as well as management and oper-
ated at 10 Gbps. The other switch provided access externally to the internet directly.
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TABLE 3.1: Hardware specification of the servers used to host Open-
Stack.

Description Physical Device CPU Memory Storage Network

Controller Supermicro
CSE-512F-350B

AMD Opteron
4334 - 6 cores @
3.1GHz

64GB Sam-
sung DDR3
@ 1600MHz
ECC

223.6GB
RAID1 SSDs

x4 Intel I350 Gi-
gabit Network
Connection;
x2 10-Gigabit
X540-AT2

Compute Supermicro AS-
2042G-72RF4

AMD Opteron
6348 - 48 cores @
2.8GHz

256GB Sam-
sung DDR3
@ 1600MHz
ECC

13.7TA
RAID5
HDDs

x4 Intel I350 Gi-
gabit Network
Connection;
x2 10-Gigabit
X540-AT2

Storage Supermicro AS-
2024G-72RF4

AMD Opteron
6348 - 48 cores @
2.8GHz

256GB Sam-
sung DDR3
@ 1600MHz
ECC

13.7TA
RAID5
HDDs

x4 Intel I350 Gi-
gabit Network
Connection;
x2 10-Gigabit
X540-AT2

3.1.2 OpenStack

The following section will detail the various components of OpenStack that were
used in the implementation of the project, as well as the components of Nikeza and
how they interact with them.

OpenStack is a highly modular open source IaaS platform that can be self-hosted at
any institution. There are various components in use for this project to achieve the
set goals.

Figure 3.1 describes the hardware layout that hosts the OpenStack installation. The
various services that make up the cloud environment are distributed among them.
Each of the servers on which the OpenStack installation is placed was loaded with
Ubuntu Server 16.04.2 as their operating systems. OpenStack Newton was chosen
as the release for the project, due to it being the newest at the initiation time.

The controller node acted as the orchestrator. Instructions are delivered to it through
Nikeza and it creates virtual compute instances (virtual machines) on the first worker
node while utilising storage and data that is located on the second worker node.

Each server was interconnected with 10 Gbps networking for OpenStack to commu-
nicate to all its respective services with low latency. All of the nodes were then con-
nected to the internal network of the University of the Western Cape (UWC) through
1 Gbps interconnects to be able to interact with it and create virtual machines that
use IP addresses from the UWC pool, so as to not create unnecessary security vulner-
abilities by exposing the virtual machines directly to the internet. The controller and
the compute worker node were connected directly to the outside internet through
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FIGURE 3.1: The university-supplied internet was connected to the
OpenStack controller and compute node directly. OpenStack services
communicated via a 10 Gbps network and the management network

was run over a more typical 1 Gbps private network.

the DMZ on a 1 Gbps connection, in order to configure OpenStack services with-
out IP security and port filtering rules that are in place with the standard university
network.

Controller Node

The controller node aggregates and instructs services that are on other nodes. Var-
ious OpenStack services are run on this machine in order to achieve this1. The ser-
vices that were on the controller node are described in Table 3.2.

1Installation instructions used for the OpenStack services were provided by the official documen-
tation found at https://docs.openstack.org/newton/install-guide-ubuntu/
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TABLE 3.2: OpenStack services on the Controller node.

Service Type Version Description

Keystone Identity 10.0.1 Keystone provides an identity service to
OpenStack. This provides authentication, au-
thorisation, and cataloging of services. User
accounts and roles can be created to restrict ac-
cess where appropriate. Other OpenStack ser-
vices also utilise it to understand which con-
text they need to operate in.

Glance Image 9.1.2 Virtual instances that are spawned on the
compute node (worker node 1) need to have
operating systems installed to them. Glance
provides an imaging service that can store
bootable images and provide them to running
virtual instances on creation.

Nova Compute 14.0.4 Various modules make up Nova. The con-
troller node has Nova management services
installed in order to orchestrate and manage
and compute nodes that are in the OpenStack
deployment.

Neutron Network 9.2.0 Neutron provides OpenStack with a service
that can manage virtual networks. Virtual net-
work adapters and routes can be created to
manage access to virtual instances. It provides
a plugin system that allows support for vari-
ous different external network configurations.

Horizon Dashboard 10.0.2 The dashboard is an easy to use web interface
to manage OpenStack as an administrator or a
user.

Cinder Block
Storage

9.1.2 Virtual instances require disk storage to place
files for operating system deployment and op-
eration. Cinder provides block storage from
any nodes running the necessary services to
the virtual instances.

Swift Object
Store

10.1 Swift is an object store service that works
within the OpenStack context. It is useful for
storing large unstructured data. A proxy ser-
vice for managing requests for data and user
authentication to the storage nodes.
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Worker Node 1 (Compute)

The first worker node was designated as the server that will handle the execution
of virtual and containerised environments. This server will make use of the services
available through the second worker node as well as the controller node and it is
managed through the controller node. The services that are on the first worker node
are described in Table 3.3.

TABLE 3.3: OpenStack services running on the Compute node.

Service Type Version Description

Nova Compute 14.0.4 The Nova services that runs on the compute
node is comprised of a group of modules that
allow for the execution of virtual machines un-
der a pre-decided hypervisor. Since the hard-
ware this project runs on supports hardware
acceleration, the KVM hypervisor was used.

Neutron Network 9.2.0 The Neutron services that run on the compute
node allow for connectivity and routing from
and to virtual machine instances.

Worker Node 2 (Storage)

The second worker node was dedicated as the storage node. This node provides
block storage to all virtual instances created by the compute node, as well as the ob-
ject store services which allow the storage and retrieval of data. The services running
on the second worker node are described in Table 3.4.

TABLE 3.4: OpenStack services running on the Storage node.

Service Type Version Description

Cinder Block
Storage

9.1.2 The Cinder service on the storage node makes
use of the LVM driver in order to provision
physical storage that exists on it for virtual
machine instances to use via iSCSI transport.

Swift Object
Store

10.1 The Neutron services that run on the compute
node allow for connectivity and routing from
and to virtual machine instances.
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3.1.3 Software

The Python Flask micro-framework was used to rapidly create and deploy the vari-
ous stages of this application.

Project Breakdown

Scheme 3.1 provides a full overview of the layout of the project on the filesystem.
Where applicable, an asterisk was used in order to demonstrate that there are files
in a directory that are unimportant to the operation of the software program, such
as layout files.

/

Nikeza.py ...........................The main Flask application definition.
operations ...............................Directory for operational scripts.

cloud-init.yml................Common cloud-init commands for VMs.
operations.py...........The bulk of the operational functions for working.
parser.py.......................................Parsing configuration file.
plugins.......................................Directory for plugin system.

backend .................................Backend cloud-engine plugins.
openstack_bash.py.......Plugin file to operate OpenStack with Bash.

storage........................................Storage backend plugin.
swift.py....................Plugin file to operate with Swift storage.

static...................Directory for static media used to render frontend.
custom.js.......................Custom JavaScript for Nikeza frontend.
fonts........................................Fonts for Nikeza frontend.

*......................................................Various fonts.
images..................................... Images for Nikeza frontend.

*....................................................Various images.
jstree........................jsTree plugin for tree-view data selection.2

*................................................Various plugin files.
materialize..................A CSS and Javascript framework for web.3

* ...........................................Various framework files.
style.css..........................Custom CSS stylesheet for frontend.

templates................................Directory for frontend templates.
index.html.....................................Main page for frontend.
main.html.................Common code shared between template files.
new.html.....................................Page for creating new job.
queue.html .................................. Page to view existing jobs.

vars.conf....................................Variables for Nikeza runtime.

*= Various unimportant files

SCHEME 3.1: Project filesystem tree hierarchy.

Module Dependencies

Figure 3.2 gives a visual representation of the interaction of modules and dependen-
cies between them in the project.

2jsTree by Ivan Bozhanov, http://vakata.com
3MaterializeCSS framework by Materialize, http://materializecss.com
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FIGURE 3.2: This figure shows the module dependencies diagram in
the context of the Nikeza software.

Plugins are used with the Nikeza system in order to allow functionality with differ-
ent backend cloud systems and storage services. The way this is achieved is to have
a file called "vars.conf" which contains all the configuration variables for runtime.
The configuration parameters are detailed in scheme 3.2.

[GENERAL] . . . . . . . . . . . . . . . . . . . . . . . . . . Contains variables for general configuration.
sysname=SANBI . . . . . . . . . . . . . . . . . The name of the organisation running the software.

[BACKEND] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contains variables for the cloud system.
platform_name=OpenStack . . . . . . . . . . . . . . . . . . . . . . . The name of the backend system.
platform_file=openstack_bash.py . . . . . . . . . The name of the plugin file for the system.
platform_image=openstack-icon.png . . . . . . . . The name of an icon file for the system.

[SYSTEM] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contains variables for the storage system.
storage_backend=swift.py . . . . . . . . . The name of the plugin file for the storage system.
storage_url=http://controller.cluster . . . . . . . . . . . .The URL to access the storage with.
storage_port=8080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The port to accompany the URL.

[OPERATIONS] . . . . . . . . . . . . . . . . . . Contains variables for virtual machine operation.
ops_cloudinit=cloud-init.yml . . . . . . . . . . . . The name of the cloud-init bootstrap script.
ops_postscript=post-instance.sh . . . . . . . The name of the script which executes in VM.

SCHEME 3.2: Global configuration file details.

The plugin files themselves are defined with a common set of classes and methods
so that the operational script can successfully create instances and call methods as
expected. This applies to both the cloud backend plugin and the storage system
plugin.
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Web Rendering

The main application file, "Nikeza.py", is used to start the Flask server, handle con-
nections and sessions, and render the web pages. When a user navigates to one of
the endpoints defined by "Nikeza.py", logic is applied to that connection and the
appropriate web template is built and served to the user. This script makes use of
the "operations.py" script, which handles all the backend service and platform inter-
action.

Main Operations

The script named "operations.py" contains all of the operations that are required for
interacting with the backend environment and storage. The specifics of the interac-
tions are detailed in the following two sections.

This file will parse the "vars.conf" file and collect all the information necessary to the
application’s run. It then pulls in the cloud and storage environment files as depen-
dencies and uses their methods in order to provide the application with responses
from the respective environments.

Cloud Backend

The "operations.py" script has a variable named "plugin". This variable is used to
load the backend plugin file indicated by the "platform_file" configuration line in
the "vars.conf" file. This contains all the interaction commands and definitions for
the cloud or appropriate backend environment that is in place.

The file specified by "platform_file" contains a set of common methods that can be
called by the "operations.py" file. That is to say, the file specified by "platform_file"
behaves as the skeleton, or abstraction, of the backend for Nikeza. The common
methods have to have a constant naming scheme between any files written for "plat-
form_file". These methods will have specific logic for starting virtual environments,
listing running virtual machines, stopping virtual machines and retrieving IP ad-
dresses of virtual machines.

Storage Backend

Similarly to how the cloud backend is handled, the "operations.py" script contains a
variable named "storage", which is used to load the storage plugin specified by the
"storage_backend" line of "vars.conf". This contains all the interaction commands
and definitions for the object storage environment being used.
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As with the cloud backend, the file specified by "storage_backend" contains a set of
common methods for interacting with the storage environment. This also abstracts
the storage environment and allows a specific environment to be swapped out, as
long as the new file is also using the same names. The methods in this file include
getting the overview of the object storage contents, traversal of directories on the
object store, getting object IDs and getting URLs that link to the objects in order to
pull them into the virtual machines.

Workflow Language

The Common Workflow Language (CWL) specification was chosen to be used in
the proof-of-concept system. This is a simple-to-learn and write language specifica-
tion for researchers to wrap their pipeline into a single flowing set of reproducible
instructions. The workflow language or tool chosen for the project is not critically
important, as ideally many different types would be supported. For the purposes of
this project, CWL is appropriate to test with due to it having various sample work-
flows to test.

CWL affords various executors, which are tools that parse and execute the specifica-
tion. These executors offer all sorts of different functionality and targets, such as the
Toil executor which can execute CWL workflows against cloud environments such
as Amazon AWS. The CWL group also provides a reference executor which imple-
ments the basic functionality that a CWL executor should possess. This was deemed
to be the simplest tool to use to answer the project aims posed in Chapter 1.

Container System

Docker was chosen as the container engine due to its large selection of container
images available on its public repository, Docker Hub/Store, as well as it having the
largest community involvement and support. The only other container engine that
was considered was Singularity, due to its more research-driven focus. Singularity
also allows containers to execute in a non-root environment, meaning potentially
fewer complications in terms of security.

However, due to the fact that a virtual machine is created for the researcher’s execu-
tion environment and only the data that the researcher will use with the container-
ised tools is pulled into the said virtual machine, it was decided that Docker will be
suitable. Any security risk that is presented by Docker is negated by the extra hy-
pervisor security layer, as well as the fact that the potential attacker would already
have access to the data pulled into the virtual environment even if it was through
Singularity. The project was already well underway before Singularity was noticed.

https://etd.uwc.ac.za



38 Chapter 3. Implementation

There are various container orchestration systems, such as Docker Swarm4, Ku-
bernetes5, Red Hat OpenShift6 and Apache Mesos7. All of these serve to provide
scheduling for multiple container instances to work together, have complex net-
working and communicate with shared storage together, which in turn allows them
to perform more complex workloads. Originally, OpenStack’s "Magnum" API exten-
sion8 was considered to be used as the core for Nikeza on OpenStack. This would
have provided Nikeza native use of either Docker Swarm or Kubernetes on top of
OpenStack, but it proved to be too time-consuming to implement due to the imma-
turity of the "Magnum" project at the time.

3.2 Frontend

The frontend part of the system is the section that the end user, or researcher, deals
with directly when engaging with the project. This is the visual representation that
is exposed to them. This is provided through a website that they interact with.

With reference to the above project breakdown scheme 3.1, the "static" and "tem-
plate" directories belong to the frontend part of the system. The "template" direc-
tory contains the template HTML documents that are rendered through the backend
when the user requests an appropriate page. The "static" directory contains all the
assets used to provide features and visuals to the user.

3.3 Tools

I would like to acknowledge that the following tools were utilised in order to com-
plete the software project:

• JetBrains PyCharm9 - A Python Integrated Development Environment (IDE).

• GitHub Atom10 - An Electron based hackable text editor.

• GitHub11 - A free online Git repository for source control.

• Pydepgraph12 - A tool to generate module dependency graphs for Python
scripts.

4https://docs.docker.com/engine/swarm/
5https://kubernetes.io/
6https://www.openshift.com/
7https://mesos.apache.org/
8https://wiki.openstack.org/wiki/Magnum
9https://www.jetbrains.com/pycharm/

10https://atom.io/
11https://github.com/
12https://github.com/stefano-maggiolo/pydepgraph
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Chapter 4

Evaluation and Comparison

With reference to the three research questions posed in Chapter 1, this project aims
to provide researchers with a simple to use and non-technical platform with which
to move workflows and research environments to where the data they intend to
process is located, through the use of cloud and container technology. Nikeza aims
to act as a middleman to facilitate the specification of research environments for
workflows and allow the cloud environment to execute the researchers’ pipeline
without manual intervention.

Nikeza needs to be compared to an alternative that is currently being used to process
remote data. As mentioned in the Local Approaches subsection of the Related Work
chapter, SANBI utilises remote processing locations to do some analyses already.
One of the popular choices is using a cloud environment, Amazon Elastic Compute
Cloud (EC2) to be specific. Due to this, the cloud environment used to compare the
process of running a workflow with Nikeza will be Amazon’s Web Services. The
following section will detail the comparison of executing an identical workflow re-
motely on Amazon EC2, which is through use of the US-east-2 (Ohio) data center
and OpenStack, which is running in a lab environment set up by the University of
the Western Cape Internet Communication Services department, with Nikeza run-
ning on top of it.

It is important to clarify that the comparison between these two systems should not
be seen as a comparison between OpenStack and Amazon Web Services. Rather, it
is a comparison between using a cloud environment directly to execute a scientific
workflow and utilizing tools or services that can automate large parts of the pro-
cesses of readying the environment for said workflow execution.

The evaluation here forth will assume that the Nikeza system is already installed
and made available to the user, as the installation and maintenance of the actual
software system is not part of the point that this thesis paper sets out to demonstrate,
but rather the use of said system.
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4.1 Outline

4.1.1 Task

The task for each system is to execute a Fastqc1 workflow written in the Common
Workflow Language, which takes advantages of tools packages into Docker contain-
ers. The full execution command is shown in Listing 4.1.

LISTING 4.1: The command specified to execute the Fastqc workflow.

cwl-runner fastqc.cwl --INPUT SRR5439551.fastq --nofilter --nogroup --quiet

The CWL workflow simply specifies that the Fastqc tool, packaged in the quay.io/

ncigdc Docker image, should be run with the following arguments:

• --INPUT SRR5439551.fastq

– The input data to use, SRR5439551.fastq in this case.

• --nofilter

– Retains all reads in the output report.

• --nogroup

– Disable grouping of bases for reads >50bp in order to show data for every
base in the read.

• --quiet

– Reduce output from the Fastqc program during execution.

The actual workflow being used in this test is not of any real importance. The goal
was to generate a result (the output data of a workflow) from an arbitrary workflow
in order to prove whether Nikeza would work or not. The aforementioned workflow
provided this result, by generating a small report of the data set. The task is not to
determine whether workflow languages output reproducible results.

There were a number of assumptions made about the testing environments before
the tests are performed. This is detailed in table 4.1.

4.1.2 Data set

For the testing, the so-called "Genome In A Bottle" data set was used. This data set
includes reads from NA12878 and is a very well-studied and classified [56]. It was

1Fastqc is a tool which provides simple quality control checking for raw sequence data.
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TABLE 4.1: Assumptions of the testing environments for OpenStack
with Nikeza and AWS platforms.

OpenStack Amazon AWS

A user account with limited standard
privileges is created for the test.

A user account with standard privileges is
created for the test.

A Swift container is created for the test
data-set to be stored on.

A Simple Storage Service (S3) "bucket" is
created for the test data-set to be stored
on.

A Swift container is created for the result
data to be stored on after the analysis is
completed.

An S3 "bucket" is created for the result
data to be stored on after the analysis is
completed.

Both containers are made available to the
test user.

Both S3 "buckets" are made available to
the test user.

Test user virtual machines are allowed to
access the internet.

Test user virtual machines are allowed to
access the internet.

chosen due to it being a manageable and relatively small set of data in order for
testing and iteration on the project.

As mentioned with the previous section, the goal is only to perform some arbitrary
task and to then compare the work required to set up the analysis environment man-
ually against the work required to use the proposed solution. As such, only the
above data set was chosen to test the methodology for this project. The result of the
processing on this data set will be different for different workflows, but each work-
flow should output reproducible results given the nature of workflow languages.

4.1.3 Metrics

Number of actions for the user to perform in order to set up the workflow envi-
ronment.

The working environment for the workflow includes preparing the computer sys-
tem that will be running the analysis. The operating system needs to be installed,
software dependencies need to be installed on top of that operating system and data
needs to be made available from the data storage of the remote environment into the
working environment.

Number of actions for the user to perform in order to retrieve the data from the
remote environment into the workflow environment.

Data movement still occurs in some capacity. While the data is present at the remote
site, it is stored in an object store. The data needs to be copied from the object store
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into the computing system that is to be used for the analysis.

Number of actions for the user to perform in order to execute the workflow.

The number of actions that need to be performed in order to start and complete the
analysis of the selected data.

Number of actions for the user to perform in order to retrieve the processed data.

Once the analysis is complete the data needs to be made available to be retrieved by
the person who intends to use it.

4.2 Results

This section will detail the process of testing and the results of these tests. It show-
cases the technical steps involved in both systems, Amazon AWS and OpenStack
with Nikeza, to provide perspective on how complex and time consuming using
cloud environments directly can be. This is especially important in cases where re-
searchers are not technically proficient or in an environment where the technical
expertise is not available.

The "Genome in a Bottle" data set was processed with a simple Fastqc workflow
using both the OpenStack with Nikeza system as well as the Amazon AWS platform.

4.2.1 Amazon AWS

Pre-work

Two S3 buckets were created on the SANBI Amazon AWS account:

• eugene.masters.data; the container that would host the data set as if it were
already present on the remote system. This bucket was created on the U.S.
East (Ohio) data center (Figure 4.1).

• eugene.masters.result; the container that would host the results of the researcher
workflow on the remote system. This bucket was created on the U.S. East
(Ohio) data center (Figure 4.1).

The data set (SRR5439551.fastq) was first uploaded to the eugene.masters.data bucket.
This allowed it to be accessible to virtual machines that intend to use the data.
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FIGURE 4.1: This figure shows the S3 buckets created for the SANBI
workspace on Amazon AWS.

Process

The user logged into the AWS dashboard. From here, they navigate to the EC2 (Elas-
tic Compute Cloud) dashboard. The user selected the Instances tab, followed by the
"Launch Instance" button. Here, the user was presented with a list of virtual machine
images to select, shown in Figure 4.2.

FIGURE 4.2: This figure shows the list of AMI (Amazon Machine Im-
age) the user can choose from on the Amazon AWS web interface.

In this case, the user would normally select whichever operating system is dictated
to them or recommended by their institution. For the proof-of-concept, the Red Hat
Enterprise Linux 7.4 (HVM), SSD Volume Type AMI was selected. It is also possible
for the user to choose a community provided AMI here, which may include support
for certain of the dependencies mentioned below out-of-the-box, however, it was not
chosen in this instance due to it not being a big enough difference to the number of
steps the user must take.

The next step involved selecting the instance type, which determines the hardware
resource availability that is granted to the virtual instance. This is also generally
dictated to the user by their institution. For proof-of-concept purposes, the General
Purpose t2.micro instance was chosen. This instance type has 1 virtual CPU core
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and 1GB of memory available to it. This would change depending on the type of
work that the user is expecting to run. The user selected the "Review and Launch"
button. From the review screen, the "Launch" button was pressed and the user was
presented with a screen that asked which key-pair to use for secure remote access
to the virtual machine operating system environment via SSH. A new key-pair was
generated in this case called eugene.masters and it was downloaded onto the com-
puter the test was done from, shown in Figure 4.3.

FIGURE 4.3: A demonstration of creating a key-pair to use for se-
curely accessing the virtual instance.

Once the launch button was pressed by the user, they navigated back to the Instances
tab in order to retrieve their IP address for accessing the virtual machine. The IP
address is available from the dashboard as illustrated on the right of Figure 4.4.

FIGURE 4.4: This is the Instances tab on the Amazon AWS web inter-
face for the user, where the public IP address is retrieved.

The user was required to change the permission of the key file that was downloaded
from AWS when creating the instance to Unix permission set 400 if on Linux, or use
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an SSH client such as PuTTY on Windows. The user then created an SSH session
into the virtual environment via the command shown in Listing 4.2.

LISTING 4.2: The utilising of the key in order to access a remote ter-
minal session in the new virtual instance.

ssh -i eugenemaster.pem ec2-user@18.220.175.41

Running this command provided the user with a bash terminal inside of the virtual
machine hosted by Amazon.

For the user to be able to retrieve data from an S3 bucket, they needed to ensure
that the tool being used to do so could authenticate the user. The user retrieved the
Access Key ID associated with their account under the Users dashboard in the AWS
console by selecting "Create Access Key" after which they took note of the ID and
the secret key.

In order for the user to retrieve the data from the AWS S3 bucket, they were required
to download it into the running instance. This was done through Amazon supplied
CLI tools that were installed to the container. This step could have also been accom-
plished using standard Linux tools, but introduce additional complexity. First, the
user navigated to the S3 dashboard in order to retrieve the endpoint and location of
the data on the S3 bucket. The AWS CLI tool was installed onto the virtual instance.
In order to do this, the user executed the command shown in Listing 4.3.

LISTING 4.3: Executing the shell command to install the Amazon
command-line tools for interacting with AWS.

sudo easy_install awscli

This installed the AWS CLI tool onto the virtual instance using the Python package
manager. The Python installation method is the simplest and quickest way to get
this tool running in this case. Once complete, the user configured their credentials
by executing the command shown in Listing 4.4.

LISTING 4.4: Setting up the initial AWS tool configuration.

aws configure

Here the user entered the Access Key ID, Secret Access Key, region that the data
exists on (us-east-2 in this case) and output format, after which they executed the
command in Listing 4.5.

LISTING 4.5: Using the AWS tool to copy the data from the S3 bucket
to the virtual instance.

aws s3 cp s3://<bucket name>/<file name> .
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In this case, the bucket name was eugene.masters.data and the file name SRR5439551.fastq,
which is the data that was to be processed. This command will copy the data from
the cloud provider’s storage to the storage that the virtual instance has access to.

Once the data was on the virtual instance, the user installed the tools necessary for
executing the workflow. For the Fastqc workflow sample, this was Docker and cwl-
runner. With Red Hat Enterprise Linux (RHEL), Python version 2 is shipped by
default. cwl-runner requires Python version 3, however, this does not exist in the
default RHEL repositories. A custom repository needed to be added in order to
install cwl-runner, shown in Listing 4.6.

Once completed, the other dependency for the workflow needed to be installed.
Docker is also not contained in the repositories for RHEL and as a result, the steps
on the Docker website were followed in order to install it: https://docs.docker.
com/engine/installation/linux/docker-ee/rhel/. Once Docker was installed,
the daemon process was enabled and started as shown in Listing 4.7.

LISTING 4.6: The steps for adding the repository to RHEL for retriev-
ing Python 3 and cwl-runner.

sudo rpm -ivh \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
sudo yum -y update
sudo yum -y install python36u python36u-setuptools
sudo easy_install-3.6 cwl-runner

LISTING 4.7: Enabling and starting the docker service.

sudo systemctl enable docker && sudo systemctl start docker

It is important to note that if the user decided to download the data from the S3
bucket into the virtual machine after this step instead of doing it earlier, the user
could create their own AMI "snapshot" of the virtual machine in this current state,
which would make it easier to get up-and-running for a future deployment of work-
flows that rely on Docker and CWL. This does not translate to other cloud providers
if they need to run this workflow at other sites.

Now the CWL workflow was uploaded to the instance using scp. Any other tool
which allows the workflow to be moved could also have been used.

For RHEL specifically, in order to execute the workflow the user needed to disable
SELINUX on the operating system. This was done by changing the "enforcing" line
to "disabled" in the file /etc/selinux/config. If this is not done, cwl-runner would
not have been able to write output to the file system of the operating system and
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would have failed as a result. The virtual instance was rebooted for changes to take
effect. Once rebooted, the user executed the workflow as shown in Listing 4.8.

LISTING 4.8: Executing the workflow on RHEL with cwl-runner in-
stalled and data copied.

sudo cwl-runner fastqc.cwl --INPUT SRR5439551.fastq --nofilter --nogroup
--quiet

Once the process was complete, the user received a message "Final process status
is success" from the tool, after which the user was then able to retrieve the output
file from the virtual machine whichever way they wish, for example downloading
it through scp directly from the virtual machine or uploading it to an s3 bucket as
in this case. The data was uploaded to the eugene.masters.result bucket. Once the
upload succeeded, the user could navigate to the S3 dashboard, select the bucket
and download the data from there as shown in Figure 4.5.

FIGURE 4.5: This shows the data generated from the workflow stored
in the eugene.masters.result S3 bucket.

4.2.2 OpenStack with Nikeza

Pre-work

Two Swift containers were created on the OpenStack backend for the test user.

• seqdata; the container that would host the data set as if it were already present
on the remote system (Figure 4.6).

• resultant; the container that would host the results of the researcher workflow
on the remote system (Figure 4.6).
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FIGURE 4.6: This shows the data containers created in Swift in the
OpenStack system for the user.

Process

The data set (SRR5439551.fastq) was first uploaded to the eugene.masters.data bucket.
This allowed it to be accessible to virtual machines that intend to use the data.

With the Nikeza system in place, a user needs to navigate to the website that pro-
vides the Nikeza interface. Here the user was presented with a login screen on which
they must enter their credentials for the cloud environment of that institution (pro-
vided to them through that institution or based on federated authentication). This
screen is shown in Figure 4.7.

Once the user was logged in, they were provided a dashboard which showed their
queued and running jobs shown in Figure 4.8. There were no active jobs for the user.
Two buttons below the queue are shown, one to create a new job and one to stop any
selected jobs.

The user clicked the button to create a new job. As shown in Figure 6.9, the page that
they were provided with asked the user to upload the workflow file that they would
have written or retrieved from another source, fastqc.cwl in this case, followed by
the arguments for the workflow shown in Listing 4.9.

LISTING 4.9: The arguments for the workflow in question.

--INPUT SRR5439551.fastq --nofilter --nogroup --quiet
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FIGURE 4.7: This image shows the Nikeza login screen configured
with OpenStack backend.

FIGURE 4.8: The Nikeza queue page with no active jobs.

The user then selected the data they wish to process from a list provided to them in
the second step box, they selected the directory in the virtual machine that the data
would be placed, or copied, in step 3 and where the resultant data would be created
in the virtual machine in step 4 and finally which container the user wants the data
to be uploaded to the cloud environments storage solution.

The user clicked the button to start the workflow (CONTINUE) and waited on the
processing to finish. Once the workflow was completed the data was uploaded to
the container specified by the user, the resultant container in this case, and the vir-
tual machine was destroyed. The user could now fetch the data from the resultant
container, shown below in Figure 4.10.
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FIGURE 4.9: The Nikeza workflow creation and configuration page,
where the user will select the CWL file they wish to execute and the

details around the workflow.

FIGURE 4.10: This shows the data generated from the workflow
stored in the resultant OpenStack container.
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4.2.3 Summary

It should be clear that from a user perspective, using the cloud directly involves
a substantial amount of additional work than using something such as the project
demonstrated in this thesis. The below sections summarise the differences (also see
Table 4.2).

Amazon AWS

The user must navigate to the website and log in with their credentials for the cloud
provider. They must then navigate to the correct tab where they can create instances
(virtual machines) to run their work. Once there, they can create a virtual machine
by selecting the image type that they want, followed by the instance type. If the
user has already created a key pair then they may select to use that or to create a
new key pair, otherwise, they will be prompted to create a key pair for the instance.
Assuming no key pair was created prior to the creation of the virtual machine in-
stance, the user must then download the newly created key pair and set the correct
permission on the file. They can now log into the instance via an IP address shown
to them in the instance menu on the cloud dashboard. Once inside, they can install
the cloud provider tools to access the data storage, configure the tools with their ac-
count details and download the data onto the running instance. Before running the
workflow, they must ensure that Docker is installed and activated and that a CWL
executor is installed onto the instance. They can then safely start the workflow.

When the workflow completes, the user must upload the data from the instance to
the cloud storage of the provider using the same method of retrieving the raw data.
Once complete they will be able to retrieve the results from the storage page on the
cloud provider dashboard. The last step for the user is to shut off the running virtual
instance.

Each time that a user wants to run a workflow they will need to start a virtual ma-
chine instance. The setup of these instances can be reduced by using an available
pre-built image or AMI, but setting up the AMI from the Amazon Web Service in-
terface, retrieving the data to the virtual instance, copying the workflow scripts and
executing it need to be done every time a workflow needs to be run. Additionally,
modifications may potentially need to be made on images if they are to run different
workflows.

Nikeza

The user must navigate to the Nikeza dashboard and log in with their provided
cloud credentials. Once logged in, they can click the "Add" button on the page they
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are presented with. The next page presents them with a form where they can select
the workflow file from their local computer, specify the arguments for the workflow
and select the data they want to process. After completing the form, the user clicks
the "CONTINUE" button. The workflow environment is now being prepared and
the workload is being executed in the background automatically.

When the workflow completes, the user will be able to retrieve the results from the
storage page on the dashboard of the cloud provider being used behind Nikeza. The
virtual machine instance is shut down for the user.

This is the procedure that occurs each time a workflow needs to be executed. The
interface stays much the same and the user just selects the items that they want to
process and select the data that they want to process on.

Overview

TABLE 4.2: The differences between steps needed to complete the
work task using OpenStack with Nikeza and Amazon AWS.

OpenStack
with Nikeza

Amazon
AWS

Number of actions for the user to perform in order to set
up the workflow environment.

5 15a

Number of actions for the user to perform in order to re-
trieve the data from the remote environment into the work-
flow environment.

0 4

Number of actions for the user to perform in order to exe-
cute the workflow.

1 8

Number of actions for the user to perform in order to re-
trieve the processed data.

3 3

TOTALS 9 30

aThis figure could be lowered around 3 actions if the user utilized an AMI that has some of the
software dependencies pre-installed.

4.3 Discussion

An almost identical process occurs for both systems. A virtual machine is created,
software dependencies are installed, data is retrieved, processed and made available
for the user to either download or use in another workflow or process. For both of
the aforementioned processes, the data that was generated was identical. The differ-
ence is in the ease and speed of actually executing the workflow that the researcher
desires to do on the data set. While it is true that in both cases the data does not need
to be moved from the cloud environments to the researcher first in order to do the
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work on it, assuming that the data was uploaded beforehand, it is clear that one of
the solutions is significantly more time consuming and technically involved.

The Amazon AWS, or direct cloud, approach requires a greater deal of not only
technical knowledge (depending on the virtual environment that the researcher is
using), but also takes significantly longer to get into a state where the researcher is
able to process their workflow. This can be mitigated by the cloud environment pro-
viding pre-built virtual images (AMIs in the case of Amazon) that contain the tools
that a researcher would need, but this is not common and is also not manageable
given all the novel requirements that various researchers have for their workflows.
Virtual images have been created on the Amazon AWS by other users and groups
which contain the necessary CWL runtimes, or various other software packages as
mentioned, pre-installed. This allows users to execute containerized workflows in a
similar fashion to Nikeza, removing the graphical environment. The user can even
run through the above-mentioned procedure and create a snapshot of the virtual en-
vironment to reuse when they wish to execute workflows in the future, saving time
after the initial creation of the environment.

The Nikeza system greatly simplifies the creation and dependency management of
the virtual environment for the researcher. By providing the researcher with an intu-
itive and simple to follow interface for uploading their workflow and selecting their
data set, the researcher is able to more rapidly submit workflows to be processed. It
also reduces the need for a researcher to be reliant on additional personnel such as
a technical person in order to assist them with creating the environment in the first
place. Nikeza’s advantage is that it can encourage the deployment and development
of more localised private cloud environments that can be run by institutions, poten-
tially providing avenues for the development of skills and collaboration of different
types of science. It does not only need to be constrained to private clouds and could
even be applied to public cloud environments.

On the other hand, some drawbacks of this kind of approach are that much devel-
opment time is necessary to turn it into a product that can actually be used in pro-
duction workflows in a reliable manner. It is also potentially necessary to have some
person dedicated to the maintenance of the software at the various institutions it is
to be deployed. It also competes with existing workflow deployment tools which in
recent times have made much progress to being simpler to use and more reliable.

OpenStack itself was not tested separately due to the fact that it is very similar to
how the user would engage with AWS. OpenStack exposes a very cloud-computing
like dashboard to the end user if using Horizon (the OpenStack Dashboard system)
directly. Due to this, the test between directly using OpenStack and Amazon AWS
would result in mostly the same steps to be taken with some minor differences in
syntax.
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It is important to note that this is not an extensive test. This project did not set
out to compare cloud environments themselves, but rather show the usefulness of
solutions that can exist to compliment these clouds for scientific use. Many solutions
for executing workflows on the cloud are becoming more popular by the day. One
example is the Toil executor for CWL which has implemented support for deploying
workflows to public clouds from the user’s desktop [57], requiring some pre-setup
on the user side.
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Chapter 5

Summary and Future Work

The results of this project are the groundwork for further investigation of the simpli-
fication of cloud environments for researchers. With cloud computing continuing to
grow, it is possible to have these kinds of services, such as Nikeza, integrated with
it directly in a more researcher focused effort. More cloud environments are being
adopted as the go-to platform for delivering flexible scientific analysis. This is evi-
dent from projects such as the SADIRC being built from the ground up to support
astronomy and bioinformatics workloads and the Cloud Infrastructure for Microbial
Bioinformatics (CLIMB) system which a research cloud environment built to provide
resources for microbial bioinformatics in the United Kingdom [49].

5.1 Summary and Conclusions

In light of the issues raised in Chapter 1, such as data growth becoming an in-
creasingly difficult problem and technical skill being a requirement to use modern
cloud computing environments, this project aimed to provide a solution. A proof-
of-concept automation tool for researcher workflows, named Nikeza, was designed
and prototyped. This tool provided a simpler and non-technical approach to utilis-
ing the cloud environment.

Deployment of Nikeza was done using a local private cloud environment built us-
ing OpenStack as a base, which allowed it to be compared in executing a research
workflow against existing cloud environments of a similar nature, namely Amazon
AWS, given the assumption that the data to be processed was already at the location.

The results showed that using Amazon AWS for research purposes is very possible.
However, this requires a detailed technical knowledge of how to utilise not only the
Amazon provided web dashboard, but also the virtual machines created on it them-
selves. With the Amazon AWS test, the researcher is required to navigate through
a maze of different dashboards which provide information on the different services
that are on offer. They are required to create a virtual machine with a pre-built oper-
ating system image that provides them with the required base to begin, followed by
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the installation of their entire work environment. The researcher must also manually
ensure that the data they wish to operate on is pulled into the virtual environment
in some fashion. Once this is completed, the researcher may move their workflow to
the platform in order to execute it and they are left to retrieve the data from the vir-
tual machine and shut it down manually. The only way that this can be simplified
for researchers is if the organisation they work for provides pre-built virtual ma-
chine images with the necessary work environment or tools installed, but this leads
to issues of maintaining those and creating environments for every novel approach
which is unmaintainable.

In comparison, the work done in the Nikeza project provided a simpler platform for
researchers to perform remote computational work through a workflow language.
More specifically, it looked at addressing the three key aims of 1) the moving of
workflows to the cloud, 2) simplifying cloud environments for researchers, and 3)
integrating workflow languages into the cloud.

Moving Workflows to the Cloud Workflow language specifications or tools allow
researchers to define an instruction specification for the analysis. The fact that most
provide ways of fetching tools from local or non-local sources means that the move-
ment of this specification is very easy and portable. The tests conducted for this
thesis show that these technologies compliment a cloud environment and promote
a focus on research, rather than system preparation and allowed the size of the data
that needed to be sent from the researcher to the remote environment to be relatively
tiny.

Simplification of Cloud Environments The comparison between the Amazon cloud
on its own and OpenStack cloud with Nikeza shows, when running the same work-
flow, that it is substantially easier to use Nikeza from a researcher perspective. All
of the technical work is automated and abstracted for the researcher, allowing them
to focus on what they want to accomplish. The researcher merely has to log in to the
dashboard, upload their workflow script, provide the flags for the workflow, select
the data and the placement of the data, and finally where the data is sent to upon
completion. This is provided in one simple interface for the researcher and they are
never expected to interact with the virtual environment at all. This proof-of-concept
demonstrates the viability of creating easy-to-use interfaces to the cloud.

Integrating Workflow Languages into the Cloud The integration of workflow lan-
guages can be done in two ways. The way that this thesis project demonstrated it
was to create a software platform that interacts with a cloud environment to utilise
its functions on behalf of a user. This is a flexible and customisable approach. The
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other way is for cloud providers to treat workflow languages as a first-class citizen
and offer their own workflow language integration directly into their platforms.

This project has successfully managed to answer all three posed research questions
and has achieved the majority of the technical functionality requirements laid out for
the system as mentioned in Chapter 4, section 4.6. The technical functionality aspect
that was not reached was to create a fully modular system for ease of replacing
plug-ins to support different cloud environments. This was not achieved due to
time constraints and it being a greater task than originally envisioned. Currently,
the application is very strongly tied with the OpenStack platform.

The Nikeza project has successfully demonstrated that researchers are able to anal-
yse their data at the site where the data is being generated. It allows researchers
to provide their own analysis environments and process data exactly the way that
they expect, without having to rely on specific tools to be made available from the
institution. It also shows that reproducible scientific workflows can fairly easily be
used on top of cloud environments, taking advantage of efficient resource usage.

5.2 Future Work

During the completion of this thesis, the landscape for research analysis on the cloud
has changed. It is important to note that there have been progressions by other
projects into utilising the cloud in a way that this thesis project aimed to do. While
not identical to this approach, projects such as Galaxy also serve to prove the use-
fulness of adapting the work onto scalable and distributed cloud environments. The
South African Medical Research Council also announced the launch of the African
Genome Center that will be a local sequencing facility. The architecture outlined in
this thesis would be well suited to a sequencing facility such as the African Genome
Center.

Great strides have also been made in executing workflow languages and specifica-
tions on remote cloud environments. CWL executors such as Toil have gained na-
tive ability to interact with cloud environments such as OpenStack, Amazon AWS or
Google Cloud Engine (among others) with many of their unique features and have
given further confirmation of the aims that are laid out in this thesis paper. This also
further exemplifies the usefulness adopting cloud technologies as a base for IT in-
frastructure as institutions which can complement traditional HPC environments by
allowing them to continue to operate, but also provide more flexible ways of com-
pute for researchers. The Rabix Composer1 tool even offers a graphical interface,
albeit slightly complex, for composing and executing CWL workflows.

1https://rabix.io/
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As for the system implemented for this paper, Nikeza, various improvements can be
made directly including, but not limited to the following.

5.2.1 Ability to utilise storage container mounting

This would prevent data from having to be copied from the storage unit in the cloud
environment before processing and would reduce waiting time until processing can
begin.

5.2.2 Allowing Data Retrieval from the Interface

Currently, the interface does not allow users to download data from the cloud envi-
ronment through the Nikeza system. This would simplify the retrieval task for the
researcher substantially as they would not have to log into the cloud environment
and navigate through that interface in order to retrieve the resulting data.

5.2.3 Contextual System Knowledge

The system could be intelligent and able to interact with the scheduler of the cloud
environment in order to understand when researchers can be provided with virtual
environments and when the system or their user accounts are oversubscribed. This
could lead to better utilisation of resources and overall more efficient analysis exe-
cution.

5.2.4 Improved Reporting

The user could be provided with more (detailed) information about the status of
their jobs. Currently, there is very little information provided about what their jobs
are actually doing. The user only has an indication of whether the virtual machine
that their workflows are running on is on or not.

5.2.5 Improved Failure Handling

Failures in workflow execution are currently not graceful. If a failure occurs, the vir-
tual environment will remain active and the user would not know that the workflow
has ceased. It would be incredibly useful for the user to understand where things
went wrong in their analysis in order to address the problems in a timely fashion. If
the system could provide detailed statistics about where things went wrong and po-
tentially move on to other parts of the analysis that are not dependent on the failed
steps it would improve productivity.
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5.2.6 Providing Instance Types

Allowing users to select which types of instances they want to run their workflow
on can assist the processing of different workflows greatly. Some workflows benefit
greatly from multiple cores or larger internal storage capacity. Currently, only one
simple instance is provided as a means to conduct the proof-of-concept.

5.2.7 Supporting Multiple Container Engines

While Docker is a very popular and mature container engine and is used by the
scientific community today, the rise of alternatives like Singularity indicates that
there may be a need to support more than just Docker. Options in terms of container
platforms enable the researcher to have greater control over their workflow and how
it is executed.

5.2.8 Utilising Container Orchestration Tools

Various cloud environments support different container platforms. For example,
Google has its Container Engine and OpenStack has Magnum. Utilising these envi-
ronments can allow distributed, scalable and parallel workflows to be executed in a
simpler manner.

5.2.9 Integration of Nikeza-like dashboards into Existing Clouds

It is also possible to go the integrated route. Cloud providers could adopt their
own researcher-friendly dashboard alternatives to their standard cloud interface.
For OpenStack, this could be as simple as a single or group of developers writing
a module for it and asking for it to be included as an official OpenStack component,
given its open source nature.

The proof-of-concept software developed for this thesis, dubbed Nikeza, provides
a starting point to improving the ease of use of cloud computing resources for non-
technical researchers. It also encourages the implementation of more local private
cloud computing resources across Africa in an attempt to scale bioinformatics anal-
yses.
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