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UNIVERSITY OF THE WESTERN CAPE

Abstract

Faculty of Science

Department of Physics and Astronomy

Doctor of Philosophy

by Sheean Jolicoeur

Next-generation galaxy surveys will usher in a new era of high precision cosmology.

They will increasingly rely on the galaxy bispectrum to provide improved constraints

on the key parameters of a cosmological model to percent level or even beyond. Hereby,

it is imperative to understand the theory of the galaxy bispectrum to at least the same

level of precision. By this, we mean to include all the general relativistic projection

effects arising from observing on the past lightcone, which still remains a theoretical

challenge. This is because unlike the galaxy power spectrum, the galaxy bispectrum

requires these lightcone corrections at second-order. For the first time, this PhD project

looks at all the local relativistic lightcone effects in the galaxy bispectrum for a flat

Friedmann-Lemâıtre-Robertson-Walker Universe, giving full details on the second-order

scalars, vectors and tensors. These lightcone effects are mostly Doppler and gravitational

potential contributions. The vector and tensor modes are induced at second order by

scalars. We focus on the squeezed shapes for the monopole of the galaxy bispectrum

because non-Gaussianity of the local form shows high signatures for these triangular

configurations. In the exact squeezed limit, the contributions from the vectors and

tensors vanish. These relativistic projection effects, if not included in the analysis of

observations, can be mistaken for primordial non-Gaussianity. For future surveys which

will probe equality scales and beyond, all the relativistic corrections will need to be

considered for an accurate measurement of primordial non-Gaussianity.
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Chapter 1

Introduction

1.1 The Big Bang model

The standard model of the expanding Universe predicts a beginning (the ‘Big bang’),

13.8 Gyr ago, of infinite temperature and density. The Big Bang model provides success-

ful explanation for different observed phenomena in the Universe e.g., the Hubble’s law,

large scale structure, Cosmic Microwave Background (CMB) radiation and abundance

of light elements. Despite of these, the Big Bang model has faced many problems for the

major reason that only a decelerating expansion of the Universe is possible for normal

matter. The two main problems are:

• Horizon problem: Opposite patches of the CMB sky have never been in casual

contact, according to the Big Bang model. Yet, the CMB we observe today is

statistically isotropic and by the Copernican principle, it is also homogeneous [1].

This shows that the different patches of the sky (1090 different regions [2]) ap-

peared to have had enough time to communicate with each other when the CMB

photons were emitted at the surface of last scattering.

A possible solution to the horizon problem will be to find a way to shrink the

comoving Hubble length, rH such that the particles could exchange information

with each other.

• Flatness problem: The spatial Universe today is within a very good approximation,

Euclidean i.e., it is flat [3]. However, according to the Big Bang model, this is

unlikely to be true for our old Universe since it can be shown that the total energy

density of matter, radiation and dark energy is related to the comoving Hubble

1
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Chapter 1. Introduction 2

radius as [1],

1− Ω(t) ∝ r2
H(t) , (1.1)

where we have set the speed of light, c to 1. The comoving Hubble radius defines

that sphere whose expansion follows the Hubble flow. For all world models with

a big bang origin, r2
H ∝ t near the big bang event [1] and this shows that |Ω − 1|

must diverge with increasing time. Hence, the critical point at which Ω = 1 that

sets the condition for flatness is an unstable point [4]. Also, at the time of the Big

Bang Nucleosynthesis (BBN) the Universe was flat, with |Ω− 1| ∼ 10−18 [5]. This

is based on extrapolating the CMB constraints to very early times, and is not an

independent measurement.

A possible way to address the flatness problem is to decrease rH at early time

so that the curvature decreases.

We have seen that the solution to the above two problems is to effectively find a way

to shrink the comoving Hubble radius at early time and then, to return the evolution

back to the standard Big Bang model. One such realization is done through the theory

of cosmic Inflation [6].

1.2 Inflation

Inflation is a brief period of accelerated expansion in early times of the Universe. It

aims at improving the explanation of the Big Bang theory on the primordial Universe.

There are several ways of defining inflation but, a more geometrical approach of writing

it is as follows [7],
drH

dt
< 0 . (1.2)

It shows that the rate of change of the comoving Hubble radius is negative, which means

a decrease during inflation. This happens over a very short period of time where the

Universe undergoes an ultra rapid accelerated expansion. Then, any length scale mea-

surement in the Universe becomes very small relative to this expansion.

The most adopted model of inflation is the slow-roll inflation [8]. It predicts that infla-

tion cannot be an everlasting process. The accelerated expansion ceases when the kinetic

energy of the scalar (inflaton) field dominates its potential energy [9]. In addition to

addressing the horizon and flatness problems, inflation provides a natural mechanism for

generating the primordial perturbations that seed the CMB anisotropies and large-scale

structure formation.

http://etd.uwc.ac.za/



Chapter 1. Introduction 3

1.3 Structure formation in the Universe

The small and large scale structures e.g., stars, galaxies, galaxy clusters and cosmic

web, that we observe today have been formed through the gravitational amplification of

tiny matter density fluctuations generated at very early times in the Universe [10]. Fig-

ure 1.1 shows the distribution of galaxies in the Universe. With our large ground-based

Figure 1.1: The distribution of galaxies from spectroscopic redshift surveys (blue and
purple) and mock data constructed from cosmological simulations (red) (from [11]).

telescopes, we have been able to observe very distant galaxies and quasars aging ∼ 12.8

billion years [12]. We also observe the CMB radiation which is a remnant of the early

stage of the Universe [13–16]. The epoch between CMB and the formation of the first

stars is called the cosmic Dark Ages [17].

http://etd.uwc.ac.za/



Chapter 1. Introduction 4

At the recombination epoch which happened ∼ 300, 000 years after the Big Bang event,

the first hydrogen atoms were formed and the CMB photons free-streamed through the

Universe. It then took a very long time before the first stars were born to terminate the

Dark Ages. They were the first sources of light and heavy elements that enabled the

formation of more complex bodies e.g., planets and galaxies. This is summarized below

in Figure 1.2.

Figure 1.2: The cosmic timeline (from [18]).

The characteristics of the primordial density perturbations are predicted from inflation

[19]. Most single-field inflationary models describe them as Gaussian random fields with

a nearly scale-invariant dimensionless power spectrum [20, 21],

Pξ(k) = As

(
k

k∗

)ns−1

, (1.3)

where ξ is the primordial curvature perturbation, k is the wavenumber and ns ∼ 1 is the

spectral index. The perturbations lead to the formation of dark matter halos. The first

‘dark’ objects are very small dark matter halos that are formed at any mass scales by

http://etd.uwc.ac.za/



Chapter 1. Introduction 5

gravitational instability from density fluctuations [10]. Then the baryons are pulled in

by the strong gravitational force of the halos to form small clumps of baryonic matter.

Many of these clumps merge to form galaxies, which are drawn together by gravitation

to form galaxy clusters.

1.4 Signatures of non-Gaussianity in structure formation

Cosmic inflation which addresses the basic problems of the Big Bang theory has several

generic predictions on the nature of the density perturbations that seed the large scale

structures (LSS) [22]:

• They are frozen on superhorizon scales.

• They are nearly scale-invariant because the Fourier modes, k, experience nearly

the same expansion rate as they are stretched across the horizon.

• They are approximately Gaussian in the single-field slow-roll inflationary models

[23, 24].

CMB temperature anisotropy experiments and galaxy surveys are the best data sets to

test the above predictions. The primordial perturbations are treated as Gaussian if their

statistical properties are fully explained by the power spectrum.

To learn more about the interaction details of the primordial perturbations and break

degeneracies among several models, we need to go beyond the power spectrum [22]. De-

viations from Gaussianity are therefore, encoded in the 3PCF and 4PCF namely, the

bispectrum and trispectrum respectively [25, 26]. A way of parameterizing the level of

non-Gaussianty is to expand the real space non-Gaussian primordial gravitational po-

tential, ΦP, as a power series of the linear Gaussian gravitational potential, ϕ, as follows

[27–29],

− ΦP(x) = ϕ(x) + fNL

(
ϕ2(x)− 〈ϕ2(x)〉

)
+ ... , (1.4)

where the dimensionless parameter fNL sets the magnitude for the amount of non-

Gaussianity. Recent studies on primordial non-Gaussianity (PNG) contributions to cor-

relation functions have shown that they mimic the relativistic effects on large scales

[30–34]. This is illustrated for the case of the monopole of the galaxy power spectrum

in Figure 1.3 below.

http://etd.uwc.ac.za/



Chapter 1. Introduction 6

Figure 1.3: The Kaiser term constitutes the galaxy bias and RSD. fNL+Kaiser
(dashed) mimics the Gaussian GR+Kaiser corrections (solid) on large scales for fNL → 1

(from [32]).

1.5 The standard model of cosmology

1.5.1 Overview

In the standard model of cosmology, the fundamental assumption is that the Universe

is homogeneous and isotropic on sufficiently large scales (& 100 Mpc). This is known

as the Cosmological Principle and it is supported by ‘Occam’s razor’ hypothesis. This

hypothesis is used as a heuristic technique to set up theoretical models and imposes

that a good model is the one with the fewest assumptions. Therefore, it puts strong

constraints on the geometry of spacetime and the type of underlying matter field that

can describe the Universe on large scales. Among the constraints are two important

ones and they are [35]:

1. The Universe when averaged over sufficiently large scales is isotropic i.e., every

observable must be invariant under rotation on large scales.

2. All comoving observers experience the same history of the Universe i.e., they ob-

serve the same properties of averaged observables if they set their clocks suitably.

http://etd.uwc.ac.za/



Chapter 1. Introduction 7

This is known as a homogeneous Universe which implies that every observable

must be invariant under translation.

The first point above is observationally supported by the CMB where the averaged

temperature of the photons arriving from different parts of the sky is nearly the same

(TCMB = 2.73 K) [36]. The second point is supported by the fact that we understand

the small angular scale Physics of the CMB using linear perturbations of a homogeneous

background.

1.5.2 The background Friedmann Universe

The only metric which satisfies the constraints of isotropy and homogeneity is the

Friedmann-Lemâıtre-Robertson-Walker (FLRW) and it is given by [37],

d̄s
2

= −dt2 + a2(t)

(
dχ̄2

1−Kχ̄2
+ χ̄2dθ2 + χ̄2 sin2 θdφ2

)
, (1.5)

where t is the cosmic time, a is the scale factor which accounts for the background

expansion of the Universe, (χ̄, θ , φ) are the comoving radial and angular spherical co-

ordinates and K is the curvature parameter. The latter can take a positive, zero or a

negative value corresponding to a closed (spherical), flat or open (hyperbolic) Universe

respectively. The evolution of the scale factor is determined by solving the Einstein field

equations,

Ḡµν + Λḡµν = 8πGT̄µν , (1.6)

where Λ is the cosmological constant. The Einstein tensor is defined as,

Ḡµν = R̄µν −
1

2
ḡµνR , (1.7)

where R̄µν and R are the Ricci tensor and Ricci scalar respectively. The Ricci tensor is

obtained from the Christoffel symbol Γ̄λµν as follows [38],

R̄µν = ∂λΓ̄λµν − ∂νΓ̄λλµ + Γ̄λλσΓ̄σµν − Γ̄λσνΓ̄σλµ . (1.8)

The Christoffel symbol is related to metric tensor ḡµν as [36, 38],

Γ̄λµν =
1

2
ḡλσ (∂µḡνσ + ∂ν ḡµσ − ∂σ ḡµν) , (1.9)

http://etd.uwc.ac.za/



Chapter 1. Introduction 8

and for the metric given in (1.5) the non-zero Christoffel symbols are found to be,

Γ̄0
11 =

aȧ

1−Kχ̄2
, Γ̄0

22 = aȧχ̄2 ,

Γ̄0
33 = aȧχ̄2 sin2 θ , Γ̄1

01 = Γ̄2
02 = Γ̄3

03 =
ȧ

a
,

Γ̄1
11 =

Kχ̄

1−Kχ̄2
, Γ̄1

22 = −χ̄
(
1−Kχ̄2

)
,

Γ̄1
33 = −χ̄

(
1−Kχ̄2

)
sin2 θ , Γ̄2

33 = − sin θ cos θ ,

Γ̄2
12 = Γ̄3

13 =
1

χ̄
Γ̄3

23 = cot θ . (1.10)

Then, the non-zero elements of the Ricci tensor can be calculated from (1.8) and they

are,

R̄00 = −3
(
Ḣ +H2

)
, R̄11 =

a2

1−Kχ̄2

(
Ḣ + 3H2 +

2K

a2

)
,

R̄22 = a2χ̄2

(
Ḣ + 3H2 +

2K

a2

)
, R̄33 = a2χ̄2 sin2 θ

(
Ḣ + 3H2 +

2K

a2

)
, (1.11)

where H = ȧ/a is the Hubble parameter and ȧ = da/dt. The Ricci scalar is then

obtained as,

R̄ = 6

(
Ḣ + 2H2 +

K2

a2

)
. (1.12)

The metric given in (1.5) admits a perfect fluid whose energy momentum tensor is given

by [38],

T̄µν = (ρ̄+ p̄) ŪµŪν + p̄gµν , (1.13)

where we have absorbed the Λ term of (1.7) in T̄µν . Here, Ūµ is the 4-velocity vector

of the fluid and, ρ̄ and p̄ are the energy density and pressure. For a comoving observer,

Ūµ = (−1,0) and we find that,

T̄00 = ρ̄ , T̄11 =
p̄a2

1−Kχ̄2
,

T̄22 = p̄a2χ̄2 , T̄33 = p̄a2χ̄2 sin2 θ . (1.14)

It is then easy to solve the Einstein field equations by using (1.10), (1.11) and (1.14)

and we obtain a system of equations for the evolution of the scale factor as,

H2 =
8πGρ̄

3
− K

a2
, (1.15)

H2 + Ḣ = −4πG

3
(ρ̄+ 3p̄) . (1.16)
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Equation (1.15) is known as the Friedmann equation and (1.16) is the Raychaudhuri

equation. By assuming that matter in the Universe can be treated as a barotropic fluid,

then its equation of state (EoS) is given by [36, 38],

p̄ = wρ̄ , (1.17)

where w is the EoS parameter. For a Universe dominated by:

• a non-relativistic matter, we have w = 0,

• a gas of relativistic particles, we have w = 1/3, and

• a cosmological constant, we have w = −1.

Therefore we can express (1.16) in terms of w as,

H2 + Ḣ = −4πG

3
(1 + 3w) ρ̄ . (1.18)

1.5.3 Conservation equations

The Bianchi identity requires that the covariant divergence of the Einstein tensor van-

ishes i.e.,

∇̄νḠµν = 0 , (1.19)

and from the Einstein field equations in (1.6) it implies that,

∇̄ν T̄µν = 0 , (1.20)

which is the conservation of the energy-momentum tensor. The continuity equation is

then obtained by contracting (1.20) with Ūµ. This yields the following equation,

˙̄ρ+ Θ̄ (1 + w) ρ̄ = 0 , (1.21)

where ˙̄ρ = Ūν∇ν ρ̄ and Θ̄ is the volume expansion rate given by,

Θ̄ = ∂νŪ
ν + Γ̄νναŪ

α . (1.22)

For a comoving observer Θ̄ = 3H and by using the Christoffel symbol given in (1.10) we

find that,

˙̄ρ+ 3H (1 + w) ρ̄ = 0 . (1.23)
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The other conservative equation is the Euler equation. We can re-express the energy-

momentum tensor in terms of the spatial tensor h̄ α
µ as follows,

T̄ α
µ = ρ̄ŪµŪ

α + h̄ α
µ p̄ , (1.24)

where h̄ α
µ = ŪµŪ

α + δ α
µ . Then the Euler equation is obtained by contracting (1.20)

with h̄ α
µ . This gives the following equation,

(1 + w) ρ̄ ˙̄Uα + h̄αν∇̄ν p̄ = 0 , (1.25)

where ˙̄Uα is the 4-acceleration vector given by ˙̄Uα = Ūν∇νŪα. Because of isotropy

there can be no non-zero physical spatial vectors and this means that ˙̄Uα and the spatial

gradient of the pressure, ∇̄ν p̄ must both be zero. Therefore, (1.25) is identically satisfied

in a FLRW background. We summarize the solutions for the evolution of the scale factor

and energy density in different Universe scenarios with K = 0 in Table 1.1 below. They

are obtained by solving (1.15) and (1.23).

Table 1.1: Possible FLRW solutions for each fluid dominating the energy budget of a
flat Universe.

w ρ̄(a) a(t)

Radiation 1/3 a−4 t1/2

Matter 0 a−3 t3/2

Λ -1 a0 eHt

1.5.4 Dark energy and the cosmic acceleration

If there is only ordinary matter present in the Universe, then the expansion rate of

the cosmos is expected to slow down with time since gravitational interaction is attrac-

tive. However, this is not the case because the expansion rate is growing faster. This

is observationally supported from the measurement of luminosity distances of type Ia

supernovae (SNIa) which shows that the Universe is not only expanding but the expan-

sion is accelerating [39]. Many efforts are still being made to explain the nature of this

acceleration both observationally and theoretically using data from CMB measurements

down to galaxy surveys e.g., Baryon Acoustic Oscillation Spectroscopic Survey (BOSS)

[40] and Dark Energy Survey (DES) [41].

From the Raychaudhuri equation given in (1.18), the condition required for an acceler-

ated expansion is found to be when w < −1/3. Thus, a negative pressure,

p̄ < −1

3
ρ̄ , (1.26)
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Chapter 1. Introduction 11

is needed to create the acceleration. This violates the strong energy condition (SEC)

[42],

ρ̄+ 3p̄ ≥ 0 , (1.27)

but does not inhibit the causality for particle interactions. The cosmological constant,

Λ has effective w = −1 and is interpreted as a vacuum energy model for dark energy.

However, quantum field theory predicts a much larger amplitude for the vacuum energy

than is observed. If dark energy (DE) is no the cosmological constant, then w 6= −1 and

ρ̄DE is no longer constant. But there is also no satisfactory model for this dynamical

DE.

1.5.5 Distances in a flat FLRW Universe

In our Universe several fluids obeying different equation of states coexist and for the

current standard model of cosmology which is the Lambda Cold Dark Matter (ΛCDM)

model, dark energy is parametrized by Λ and we can write the Friedmann equation

(1.15) as,

H2 =
8πG

3

(
ρ̄m + ρ̄r + ρ̄Λ

)
, (1.28)

where ρ̄m, ρ̄r (photons and neutrinos), ρ̄Λ are the energy densities of matter (cold dark

matter + baryons), radiation and dark energy respectively. It is more convenient to

express (1.28) in terms of the dimensionless density parameters,

Ω(i)(a) =
8πGρ̄(i)(a)

3H2
, (1.29)

where ρ̄(i) denotes the energy densities. Hence, we have the Friedmann equation ex-

pressed as,

1 = Ωm + Ωr + ΩΛ , (1.30)

or as,

H(a) = H0

√
Ωm0a

−3 + Ωr0a
−4 + ΩΛ0 , (1.31)

where the dimensionless density parameters at present time are given by the Planck

data 2018: Ωm0 = 0.308, Ωr0 = 9.24 × 10−5, ΩΛ0 = 0.692 and the Hubble constant,

H0 = 67.8 km s−1 Mpc−1 = 100h km s−1 Mpc−1 [43].

The comoving distance, χ̄ between two comoving points is the distance measured along

the path joining the two points at a defined cosmological time t divided by a(t). It re-

mains unchanged as the Universe expands because the comoving coordinates are frozen

on the background. The only distance which changes is the physical distance and it is
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Chapter 1. Introduction 12

written as,

D(t) = a(t)χ̄ . (1.32)

In Figure 1.4, we show a spacetime diagram where the vertical axis represents time and

the horizontal axis is 3-dimensional space. We consider a distant galaxy receding from

Figure 1.4: A worldline diagram showing light emitted by a distance galaxy from the
past lightcone reaching an observer on earth.

an observer on earth. It emits a ray of light at time te which reaches the observer at time

to. We choose the unit of time such that the speed of light, c is given by the gradient of

the inclined line (solid blue) at a fixed angle of 45◦ with respect to the horizontal axis.

In that case, if we consider a small element of the blue line we can write the following,

adχ̄ = −dt , (1.33)

and therefore we obtain,

χ̄ =

∫ to

te

dt

a(t)
, (1.34)

where we have set c = 1. The motion of the galaxy induces a change in the wavelength

of the light ray reaching the observer at to. We characterize this change by the redshift

z̄ and it is related to the scale factor as [38],

1 + z̄ =
a0

a(t)
, (1.35)
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where a0 is the scale factor defined at present time and is usually taken to be 1. Hence,

we can express (1.34) in terms of redshift and we obtain,

χ̄(z̄) =

∫ z̄

0

dz′

H(z′)
≡
∫ z̄

0

dz′

H0

√
Ωm0(1 + z′)3 + Ωr0(1 + z′)4 + ΩΛ0

. (1.36)

The angular diameter distance, D̄A follows directly from (1.36) as [44, 45],

D̄A =
χ̄

1 + z̄
. (1.37)

We show the numerical results below in Figure 1.5. The comoving distance, χ̄ increases
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Figure 1.5: Left panel: The comoving distance, χ̄ plotted as a function of the back-
ground redshift z̄. Right panel: The angular diameter distance, DA and its maximum

value occurs at z̄ ∼ 1.6.

sharply at low redshifts and gently asymptotes to a maximum at high redshifts. The

angular diameter distance, D̄A has a maximum in an FLRW background which shows

that it is possible to have objects with same D̄A at two different redshifts.

1.5.6 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) are frozen relics of the early Universe at time of

decoupling. During that time, photons, protons and electrons were coupled by Thomson

scattering and the Coulomb interaction, behaving as a single fluid namely the primordial

plasma. When the Universe was sufficiently cooled down, the protons and electrons could

interact electromagnetically to form the first atoms i.e., neutral Hydrogen. The photons

could no longer interact with the electrons and therefore, could decouple from them

leaving a slight excess of baryonic matter at a fixed distance from the centre of each

dark matter clump as shown in Figure 1.6.
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Figure 1.6: A ring of excess baryons around the lump of dark matter. It is also known
as the BAO ring. (from [46])

This distance is used as a standard ruler and corresponds to a specific scale rBAO given

by,

rBAO ≈
105h−1

(1 + z̄)
Mpc . (1.38)

This scale can also be expressed in terms of an angular scale,

θBAO =
rBAO

DA
. (1.39)

For this particular scale of rBAO, we observe the BAO features as:

1. a bump in the galaxy 2-Point Correlation function (2PCF) or,

2. wiggles in the galaxy power spectrum which is the Fourier transform of the 2PCF.

We show the results in Figure 1.7. For the case of the CMB angular power spectrum,
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Figure 1.7: Left panel: The galaxy 2PCF with the BAO bump at rBAO =
105h−1 Mpc. Right panel: The galaxy power spectrum with the first BAO peak
occurring at kBAO ∼ 0.03 Mpc−1. Both plots are at z = 0 and the linear galaxy bias

b1 has been taken to be 1.0.
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the first BAO peak is observed at θBAO ∼ 0.6◦ as shown in Figure 1.8.

Figure 1.8: The angular power spectrum of the CMB (from [47]).

1.6 Perturbation theory

1.6.1 Overview

Cosmological perturbation theory is starting to take a new kind of interest. Linear or

first-order theory is still actively used in the field of research, though now the focus is

aiming towards higher order or even fully non-linear theory. This is because we have

been able to greatly improve our data sets with the latest engineering at our disposal.

At the beginning, linear theory or the power spectrum was sufficient to describe the ob-

servables in the Universe but, at present the data are such that higher order observables

e.g., the bispectrum is possible to be compared to theoretical predictions [48].

Perturbation theory can be illustrated by using an example for which we define the

full metric tensor, gµν in the standard model of cosmology. We assume that we can

approximate gµν by a Taylor expansion,

gµν = ḡµν + δg(1)
µν +

1

2
δg(2)
µν + ... , (1.40)

where ḡµν is the background FLRW metric given in (1.5) and the remaining terms are

treated as perturbations. To zeroth-order we have,

gµν = ḡµν , (1.41)
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and to first-order,

gµν = ḡµν + δg(1)
µν . (1.42)

Therefore, with the approximation of (1.40) we are going to solve the Einstein field

equations given by (1.6), to obtain solutions at the required order of perturbations we

wish to work with.

This is not quite a straightforward calculation because perturbations of the metric

implies perturbations of the energy-momentum tensor, Christoffel symbols and Ricci

tensor. These will involve terms at different orders and also, they will require raising or

lowering indices at several stages of the calculation. We do not have any problem for

the zeroth- and first-order calculations but, at higher orders the steps are complicated

and therefore, the choice of a gauge for the metric becomes important. For this reason,

we restrict our choice to the Poisson gauge. The most general metric for a perturbed

FLRW Universe, allowing the evolution of gravitational waves and induced vector modes

is written as [49, 50],

ds2 = a2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)γijdx

idxj︸ ︷︷ ︸
scalar part

+ 2widx
idη︸ ︷︷ ︸

vector part

+
1

2
hijdx

idxj

︸ ︷︷ ︸
tensor part

]
, (1.43)

where η is the conformal time and is related to the cosmic time as, adη = dt [38]. The

vector and tensor parts are later considered in Chapter 2.

1.6.2 Linear scalar perturbation theory

1.6.2.1 Derivation of Einstein field equations

We start with the metric,

ds2 = a2
[
− (1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]
, (1.44)

where we now admit that the Bardeen potentials Φ and Ψ are at first-order. Hence, we

omit the superscript (1) and will continue to do so except when there is ambiguity. By

using (1.9) we find that the non-zero Christoffel symbols are,

Γ0
00 = H+ Φ′ , Γ0

0i = ∂iΦ ,

Γi 00 = δij∂jΦ , Γ0
ij =

[
H−Ψ′ − 2H(Ψ + Φ)

]
δij ,

Γi j0 = (H−Ψ′)δi j , Γi jk = −2δi j∂kΨ + δjkδ
il∂lΨ , (1.45)
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where ′ denotes the derivative with respect to η andH is the conformal Hubble parameter

given by H = a′/a = aH. Then, the Friedmann equation as given by (1.28) becomes,

H2 =
8πGa2

3
(ρ̄m + ρ̄r) +

a2Λ

3
, (1.46)

where Λ = 8πGρ̄Λ. The Raychaudhuri equation (1.18) becomes,

H′ = −4πGa2

3

(
ρ̄m +

2

3
ρ̄r

)
+
a2Λ

3
. (1.47)

Using (1.45) in (1.8) leads to the following non-zero elements of the Ricci tensor,

R00 = −3H′ +∇2Φ + 3H(Φ′ + Ψ′) + 3Ψ′′ , (1.48)

R0i = 2∂iΨ + 2H∂iΦ , (1.49)

Rij =
[
H′ + 2H2 −Ψ′′ +∇2Ψ− 2(H′ + 2H2)(Φ + Ψ)−HΦ′ − 5HΨ′

]
δij

+∂i∂j(Ψ− Φ) . (1.50)

The Ricci scalar is then obtained as,

R =
1

a2

[
6(H′ +H2)− 2∇2Φ + 4∇2Ψ− 12(H′ +H2)Φ− 6Ψ′′ − 6H(Φ′ + 3Ψ′)

]
.

(1.51)

For the perturbed 4-velocity vector we write,

Uµ =
1

a
(1 + ϑ, vi) , (1.52)

where the peculiar velocity vi is curl-free such that,

vi = ∂iv . (1.53)

We use the normalizing condition for time-like particles, gµνU
µUν = −1 [38] to obtain

this useful relation,

ϑ = −Φ . (1.54)

By defining the following perturbations for the energy density and pressure,

ρ = ρ̄+ δρ , p = p̄+ δp , (1.55)
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and using the result for Uµ, we find that the perturbed energy-momentum tensor Tµν

of (1.13) gives the following non-zero components,

T00 = a2(ρ̄+ 2Φρ̄+ δρ) , (1.56)

T0i = −a2(ρ̄+ p̄)vi , (1.57)

Tij = a2(p̄+ δp− 2Ψp̄)δij . (1.58)

Implementing (1.48)-(1.51) and (1.56)-(1.58) in the Einstein field equations gives the

following set of linear scalar perturbation equations,

∇2Ψ− 3H(Ψ′ +HΦ) = 4πGa2δρ , (1.59)

Ψ′ +HΦ = −4πGa2(ρ̄+ p̄)v , (1.60)

Ψ′′ + 2HΨ′ +HΦ + (2H′ +H2)Φ = 4πGa2δp , (1.61)

∂i∂j(Ψ− Φ) = 0 , (1.62)

where in the last equation we find that,

Ψ = Φ , (1.63)

because we have assumed zero anisotropic stress in the energy-momentum tensor.

1.6.2.2 Perturbed conservation equations

Following the argument presented on the background conservation equations in Sec-

tion 1.5, we perform a similar derivation for the perturbed energy-momentum tensor

Tµν . The energy conservation equation is written as,

∇µTµν = ∂µT
µ
ν + ΓµµαT

α
ν − ΓβµνT

µ
β = 0 . (1.64)

Since (1.56)-(1.58) give the non-zero components of the energy-momentum tensor in the

form of Tαβ, we can use the metric given by (1.44) to raise the index and finally obtain,

T 0
0 = −(ρ̄+ δρ) , T 0

i = (ρ̄+ p̄)∂iv , T ij = (p̄+ δp)δi j . (1.65)

We then use (1.65) in (1.64) to derive the following set of equations,

δρ′ + 3H(δρ+ δp) = (ρ̄+ p̄)
[
3Ψ′ −∇2v

]
, (1.66)

[
(ρ̄+ p̄)v

]′
+ 4H(ρ̄+ p̄)v(1) = −[δp+ (ρ̄+ p̄)Φ] . (1.67)

To obtain the first equation we have:
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• expressed the continuity equation (1.23) in conformal form i.e.,

ρ̄′ + 3H(ρ̄+ p̄) = 0 , (1.68)

and used it to eliminate the background contribution.

• used ∇2 = ∂i∂
i.

The left hand side of (1.66) is similar to that of (1.68). It is the perturbed version of the

continuity equation with a source term that depends on the potential Ψ′ and peculiar

velocity ∇2v(1). The perturbed Euler equation is given by (1.67) and it shows that the

driving mechanism for the peculiar velocity depends on the pressure perturbation δp

and a gravitational potential term Φ.

1.6.2.3 Growth in ΛCDM model

We are going to focus at late times in the Universe where the radiation density is

negligible as compared to the dark matter and dark energy densities. This is illustrated

in Figure 1.9. It shows the different era of the Universe starting from radiation to matter

Figure 1.9: The dimensionless energy densities as a function of redshift (from [51]).

dominance and then lately, dark energy takes over. We hereafter neglect the radiation

contribution i.e., ρ̄r = δρr = 0 and also, δρΛ = 0 because its energy density is constant

through time (no perturbations). Hence, we have only perturbations in dark matter and

we define the Poisson dark matter density contrast as,

δ =
δρm
ρ̄m

. (1.69)
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We also introduce the adiabatic acoustic speed ca as [52, 53],

c2
a =

p̄′m
ρ̄′m

=
δpm
δρm

, (1.70)

where in the last equality we assume adiabatic perturbations. We can use (1.69), (1.70)

and the definition of the EoS parameter w given in (1.17) to write the set of linear

perturbation equations as,

∇2Ψ− 3H(Ψ′ +HΦ) = 4πGa2ρ̄mδ , (1.71)

Ψ′ +HΦ = −4πGa2ρ̄m(1 + w)v , (1.72)

Ψ′′ + 2HΨ′ +HΦ′ + (2H′ +H2)Φ = 4πGa2c2
aρ̄mδ , (1.73)

Ψ = Φ , (1.74)

and the perturbed conservation equations as,

δ′ + 3H(c2
a − w)δ = (1 + w)

[
3Ψ′ −∇2v

]
, (1.75)

[
ρ̄m(1 + w)v

]′
+ c2

aρ̄mδ = −ρ̄m(1 + w)
[
Φ + 4Hv

]
. (1.76)

In ΛCDM model, dark matter particles are treated as cold particles i.e., they are

practically at rest (non-interacting) and therefore, exert no pressure. This leads to

ca = w = p̄m = δpm = 0 and thus (1.71)-(1.76) become,

∇2Ψ− 3H(Ψ′ +HΦ) = 4πGa2ρ̄mδ , (1.77)

Ψ′ +HΦ = −4πGa2ρ̄mv , (1.78)

Ψ′′ + 2HΨ′ +HΦ′ + (2H′ +H2)Φ = 0 , (1.79)

Ψ = Φ , (1.80)

δ(1)′ = 3Ψ′ −∇2v , (1.81)

v(1)′ = −Φ−Hv . (1.82)

Using (1.77), (1.78), (1.80) and the definition of Ωm as given by (1.29) we can show the

following,

∇2Φ =
3

2
ΩmH2

[
δ − 3Hv

]
, (1.83)

where the term in the square bracket is the comoving dark matter overdensity, δC which

is described in detail in Chapter 2. Hence we obtain the Poisson equation,

∇2Φ =
3

2
ΩmH2δC =

3

2a
Ωm0H

2
0δC . (1.84)
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The perturbation Φ evolves through both time and space i.e., Φ = Φ(a,x). To describe

its time evolution, we define the linear growth suppression function [54, 55],

DΦ

a
=

Φ

Φd
, (1.85)

which is normalized at time of decoupling i.e., a = ad ∼ 10−3. In Fourier space, (1.84)

reads as,

− k2Φ =
3

2a
Ωm0H

2
0δC . (1.86)

This is discussed in more detail in Chapter 3. At decoupling,

− k2Φd =
3

2ad
Ωm0H

2
0δCd

. (1.87)

Dividing (1.86) by (1.87) yields,

a
Φ

Φd
= ad

δC

δCd

= DΦ . (1.88)

We can then define a linear growth function for the comoving dark matter overdensity

as,

D = ad
δC

δCd

, (1.89)

such that in ΛCDM,

DΦ = D . (1.90)

The matter growth function or growth factor, D, describes the linear growth of matter

perturbations after matter-radiation equality [55]. We use the word “suppression” for

DΦ/a because of the Λ term which causes Φ to decay. For δ, Λ slows down the growth

since it inhibits clustering.

We begin with time evolution equation of the Bardeen potentials Ψ and Φ given by

(1.79). The condition for zero anisotropic stress is set by (1.80) and hence, we write

(1.79) as,

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 0 . (1.91)

Using the Friedmann and Raychaudhuri equations as given in (1.46) and (1.47) respec-

tively, with ρ̄r = 0 since we are neglecting radiation, we can show that,

2H′ +H2 = a2Λ , (1.92)
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and therefore (1.91) becomes,

Φ′′ + 3HΦ′ + a2ΛΦ︸ ︷︷ ︸
damping term

= 0 . (1.93)

We can derive these useful relations,

d

dη
= aH d

da
,

d2

dη2
= a2H2 d2

da2
+ aH2

(
1 +
H′
H2

)
d

da
, (1.94)

and use them in (1.93) to show,

d2Φ

da2
+

1

a

(
4 +
H′
H2

)
dΦ

da
+

Λ

H2
Φ = 0 . (1.95)

We now use the definition for the gravitational growth function given in (1.85) to finally

obtain,
d2DΦ

da2
+

3

a

(
1− Ωm

2

)
dDΦ

da
− 3

2a2
ΩmDΦ = 0 . (1.96)

In deriving (1.96) we have done the following:

• Starting with (1.46) and (1.47), we have re-written H′ in terms of H2 by using the

definition of Ωm given in (1.29). This gives,

H′ =
(

1− 3

2
Ωm

)
H2 . (1.97)

• We have used the definition of ΩΛ given by (1.29) and the dimensionless Friedmann

equation at late times,

1 = Ωm + ΩΛ . (1.98)

Since DΦ = D, we therefore have,

d2D

da2
+

3

a

(
1− Ωm

2

)
dD

da
− 3

2a2
ΩmD = 0 . (1.99)

We initialize (1.99) at time of decoupling i.e., ad = 10−3. For an Einstein-de Sitter

(EdS) Universe, Ωm = 1 and Ωr = ΩΛ = 0. Therefore, the gravitational potential Φ is

a constant through time i.e., Φ = Φd such that by (1.85),

D
(EdS)
Φ = a and

dD
(EdS)
Φ

da
= 1 . (1.100)

The relation DΦ = D is still valid for the EdS Universe and this implies that,

D(EdS) = a and
dD(EdS)

da
= 1 . (1.101)
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The initial conditions for finding the solution to (1.99) are then,

D
(EdS)
d = ad and

dD(EdS)

da

∣∣∣∣
d

= 1 . (1.102)

We show the result of the numerical integration below in Figure 1.10. Matter clumps

together because of gravity and since dark energy competes against clustering at late

times, D is suppressed. This effect is captured by the deviation of the ΛCDM curve

from the EdS curve.

0.0 0.2 0.4 0.6 0.8 1.0
a

0.0

0.2

0.4

0.6

0.8

1.0

D

EdS

ΛCDM

Figure 1.10: The time evolution of the matter growth factor for EdS (dashed) and
ΛCDM (solid). The effect of Λ supresses D at late times (a→ 1).

It is helpful to convert the second-order differential equation for D into a first-order

equation for the linear growth rate, f , which is defined as [56],

f =
d ln δC

d ln a
. (1.103)

Since δC is proportional to D (see (1.89)), we can show that (1.103) becomes,

f =
d lnD

d ln a
=

a

D

dD

da
. (1.104)

The above definition leads to the following,

df

da
=
f

a
− f2

a
+
a

D

d2D

da2
. (1.105)
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Using (1.104) and (1.105) in (1.99), we obtain the first-order equation for f as,

a
df

da
+ f2 +

1

2
(4− 3Ωm) f − 3

2
Ωm = 0 . (1.106)

The above result is consistent with [56, 57]. The initial condition is given by considering

the EdS Universe and by (1.101), we find that (1.104) leads to,

f (EdS) = 1 . (1.107)

An analytical solution to (1.106) does exist and can be found in [56, 58, 59]. We introduce

a new parameter, γ, which is the growth index and relates to f as,

f(a) =
[
Ωm(a)

]γ
. (1.108)

This parameterization provides a very good fit to the numerical solution of (1.106) for

the ΛCDM model when γ ∼ 0.55 [58, 60]. This is shown in Figure 1.11.

0.0 0.2 0.4 0.6 0.8 1.0
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f = Ω0.55
m

Figure 1.11: The linear growth rate f for EdS (dashed) and ΛCDM (solid blue). The
analytical approximation with γ = 0.55 is shown as the black curve. The effect of Λ

suppresses f at late times.

1.6.3 Second-order scalar perturbations in ΛCDM

The derivation of the Einstein field equations at second-order is not as easy as that of

the first-order. The scalar second-order terms split into two parts:

• The intrinsic second-order terms e.g., Φ(2), Ψ(2), v(2) and others.
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• The quadratic first-order terms e.g., Φ2, Ψ2, v2, Φδ, Ψδ and many other possible

combinations.

Then we can write the second-order Einstein field equations as,

G(2)
µν +GII

µν = 8πGT (2)
µν , (1.109)

where G
(2)
µν is the Einstein tensor for the intrinsic second-order terms and GII

µν is for the

quadratic first-order terms. We still work in the Poisson gauge with the FLRW metric,

ds2 = a2
[
− (1 + 2Φ + Φ(2))dη2 + (1− 2Φ + Ψ(2))δijdx

idxj
]
, (1.110)

where we maintain the condition of zero anisotropic stress in the first-order scalar per-

turbations i.e., Φ = Ψ. The non-zero components of G
(2)
µν and GII

µν are then [61],

G
(2)
00 = − 1

a2

[
− 6HΨ(2)′ + 2∇2Ψ(2) − 6H2Φ(2)

]
, (1.111)

G
(2)
i0 =

1

a2

[
2∂iΨ

(2)′ + 2H∂iΦ(2)
]
, (1.112)

G
(2)
0i =

1

a2

[
2∂jΨ(2)′ + 2H∂jΦ(2)

]
δij , (1.113)

G
(2)
ij =

1

a2

{
∂i∂

k
(
Ψ(2) − Φ(2)

)
δjk +

[
2Ψ(2)′′ −∇2Ψ(2) + 4HΨ(2)′

+2HΦ(2)′ + 2(2H′ +H2)Φ(2) +∇2Φ(2)
]
δij

}
, (1.114)

GII
00 =

2

a2

[
3∂kΦ∂

kΦ + 3
(
Φ′
)2

+ 8Φ∇2Φ + 12H2Φ2
]
, (1.115)

GII
i0 =

4

a2

[
4HΦ∂iΦ− Φ′∂iΦ

]
, (1.116)

GII
0i =

4

a2

[
Φ′∂jΦ + 4Φ∂jΦ′

]
δij , (1.117)

GII
ij =

4

a2

{[
∂iΦ∂

kΦ + 2Φ∂i∂
kΦ
]
δjk −

[
3∂kΦ∂

kΦ + 4Φ∇2Φ +
(
Φ′
)2

+8HΦΦ′ + 4(2H′ +H2)Φ2
]
δij

}
. (1.118)

Since we are considering ΛCDM, the second-order pressure perturbation, δp(2) = 0.

For the peculiar velocity we have,

vi = ∂i
(
v +

1

2
v(2)

)
. (1.119)
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The energy-momentum tensor then gives,

T
(2)
00 = −2ρ̄m∂

iv∂iv − δρ(2)
m , (1.120)

T
(2)
i0 = ρ̄m

[
∂iv

(2) − 2Φ∂iv
]

+ 2δρm∂iv , (1.121)

T
(2)
0i = −

[
ρ̄m
(
∂jv(2) − 6Φ∂jv

)
+ 2δρm∂

jv
]
δij , (1.122)

T
(2)
ij = 2ρ̄m∂iv∂

kvδjk . (1.123)

Implementing (1.111)-(1.118) and (1.120)-(1.123) in (1.109) leads to the following set of

second-order scalar perturbation equations,

3HΨ(2)′ −∇2Ψ(2) + 3H2Φ(2) − 3∂kΦ∂
kΦ− 3

(
Φ′
)2

+ 8Φ∇2Φ− 12H2Φ2 = S0 , (1.124)

2∂iΨ
(2)′ + 2H∂iΦ(2) − 12HΦ∂iΦ + 4Φ∂iΦ

′ − 4Φ′∂iΦ = Si , (1.125)
[
∂i∂

k
(
Ψ(2) − Φ(2)

)
+ 4
(
∂iΦ∂

kΦ + 2Φ∂i∂
kΦ′
)]
γjk = Sij , (1.126)

∂i∂
k
(
Ψ(2) − Φ(2)

)
γik + 2Ψ(2)′′ −∇2Ψ(2) + 4HΨ(2)′ + 2HΦ(2)′

+2(2H′ +H2)Φ(2) +∇2Φ(2) + 4
[
∂iΦ∂

kΦ + 2Φ∂i∂
kΦ′
]
δik

−2
[
3∂kΦ∂

kΦ + 4Φ∇2Φ +
(
Φ′
)2

+ 8HΦΦ′ + 4(2H′ +H2)Φ2
]

= S1 , (1.127)

where,

S0 = 8πGa2ρ̄m
[
∂iv∂iv − δ(2)

]
, Sij = 16πGa2ρ̄m∂iv∂

kvγjk ,

Si = −8πGa2ρ̄m
[
δ∂iv + ∂iv

(2)
]
, S1 = 16πGa2ρ̄m∂iv∂

kvγik . (1.128)

In S0 we have introduced the second-order Poisson dark matter overdensity, δ(2) =

δρ
(2)
m /ρ̄m. The results of (1.124)-(1.127) are consistent with [61, 62]. From (1.126) we

can see that,

Φ(2) 6= Ψ(2) . (1.129)

1.6.4 Solutions to the Einstein field equations

The solutions to the Einstein field equations both at linear and non-linear orders are

usually given in Fourier space. This is because Fourier analysis provides an easy platform

to solve the perturbation equations. If we refer to the first- and second-order perturba-

tion equations given by (1.77)-(1.82) and (1.124)-(1.127) respectively, we find that the

evolution equations for the Bardeen potentials are written in terms of the dark matter

overdensity, δ(n), and velocity potential, v(n), where n is the order of the perturbations.
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In Fourier space, these quantities have perturbative solutions [28, 63, 64],

δ(n)(η,k) =
∑

n

∫
dk1

(2π)3
...

dkn−1

(2π)3

∫
dkn δ

D(k1 + ...+ kn − k)Fn(k1, ...,kn)

×δ(1)
C (η,k1)δ

(1)
C (η,k2)...δ

(1)
C (η,kn), (1.130)

θ(n)(η,k) = −Hf
∑

n

∫
dk1

(2π)3
...

dkn−1

(2π)3

∫
dkn δ

D(k1 + ...+ kn − k)Gn(k1, ...,kn)

×δ(1)
C (η,k1)δ

(1)
C (η,k2)...δ

(1)
C (η,kn),

(1.131)

where θ(n) = ∇ · v(n)(x) is the velocity divergence and δD is the Dirac-delta function.

Fn and Gn are known as the Fourier kernels. More details on Fourier calculations are

presented in Chapter 3.

Once we have (1.130) and (1.131), we can obtain the Fourier solutions for Φ(n) and

Ψ(n) which are used to compute their N -point correlation functions.

1.7 Cosmology with the Square Kilometre Array

The Square Kilometre Array (SKA) will be the world’s largest radio telescope project to

be built in South Africa and Western Australia. It will have a collecting area of nearly a

million square metres. The pre-construction phase has already started in 2012 and the

main bulk of the SKA will be done in two phases. For the SKA phase 1, Australia will

operate on approximately 130,000 low frequency antennas and South Africa will host

200 dishes among which will be the 64 dishes of the Karoo Array Telescope (MeerKAT)

precursor telescope. This will constitute ∼ 10% of the total collecting area at low and

mid frequencies and will be operational by 2023. For the SKA phase 2, all the low and

mid frequency arrays will be completed across both South Africa and Australia and will

be fully operational by 2030.

1.7.1 BAO constraints

The SKA HI (neutral atomic Hydrogen) redshift galaxy survey will measure the BAO in

both the radial and transverse directions over a very large volume of the sky. The radial

measurements will probe the expansion rate of the Universe as a function of redshift

and therefore we will be capable of constraining the Hubble parameter, H(z). This will

allow us to obtain key information on the energy content of the Universe and hence,
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the nature of dark energy. The transverse measurements will enable us to measure the

angular diameter distance, DA accurately which we can use to produce good estimates

of distances in the Universe [65]. The predictions on the expansion rate and angular

diameter distance are shown in Figure 1.12.

Figure 1.12: Forecasts on the expansion rate and angular diameter distance. SKA
phase 2 will provide the best constraints for both quantities up to z ∼ 1.4 with a

fractional error of . 1%. (from [65])

1.7.2 Redshift space distortion

We are confronted to several competing theories of dark energy which are degenerate in

their explanation of the late time cosmic acceleration. It is possible to break these de-

generacies by looking at the growth of structures predicted by these models. The study

of the peculiar motion of the galaxies is the ideal candidate to understand gravitational

collapse and hence the formation of structure. The name given to the effect due to the

peculiar motion of the galaxies is redshift space distortion (RSD) where the positions of

the galaxies are “shifted” or more precisely, the distribution of galaxies along the line of

sight appears to be squashed. This effect will modify the shape of the galaxy correla-

tion function (or power spectrum). If we are able to measure the effect of the peculiar

velocities of the galaxies, we can put constraint on the various dark energy models by

looking at the changes in the shape of the correlation function [65].

This method to probe the nature of dark energy from RSD constraints is to extract
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the growth rate parameter, f which is the logarithmic derivative of the matter overden-

sity with respect to the scale factor (see (1.103)). This can be done by expanding the

redshift space galaxy 2PCF into multipole moments using the Legendre polynomials [66].

The growth rate parameter can then be obtained from the monopole and quadrupole.

Using the 2PCF or power spectrum requires us to assume a background cosmological

model, leading to errors. We cannot measure galaxy clustering but we can measure

galaxy redshifts and angles to infer their distances. Therefore, a wrong cosmological

model will lead to incorrect estimates of the distances. The information that we will

then retrieve from the galaxy clusters will be inaccurate. This is the Alcock-Paczynski

(AP) effect [65, 67]. The AP effect can weaken the constraints that one can obtain from

RSD measurements but, by measuring its amplitude we may calculate the AP factor,

F which is related to the ratio of the transverse to radial distances. The forecasts for f

and F are shown in Figure 1.13.

Figure 1.13: Forecasts on the AP factor, F and the observable growth rate parameter,
fσ8 which is the linear growth rate f(z) multiplied by the normalisation of the power
spectrum, σ8. Again, SKA phase 2 will provide the best constraints for both quantities

up to z ∼ 1.4 with a fractional error of . 1%. (from [65])

1.7.3 Testing General Relativity and Modified Gravity

With the SKA HI surveys we will be able to put constraint on the EoS parameter, w

for dark energy. ΛCDM predicts that w = −1 for dark energy and any departure from

this value will indicate [65]:
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• dynamical dark energy or,

• failure of GR

For a dynamical model of dark energy the parameter, w is usually parameterized as [68],

w(a) = w0 + wa(1− a) , (1.132)

where in ΛCDM, w0 = −1 and wa = 0. Also, a scale-independent linear growth rate f

can be parameterized as [56, 58, 59],

f(a) =
[
Ωm(a)

]γ
, (1.133)

where for ΛCDM, γ = 0.554 and for standard dynamical DE models, γ is close to this

value. Theories of Modified Gravity (MG) predict different values for γ and therefore,

by putting constraint on it we can test GR. The predictions for wa, w0 and γ are shown

below in Figure 1.14.

Figure 1.14: Left panel: Constraints on dark energy EoS parameters wa and w0.
Right panel: Constraints on w0 and γ. SKA phase 2 will be far more powerful than the

Euclid galaxy survey. (from [68])

1.7.4 HI intensity mapping

HI intensity mapping (IM) after reionization is a new technique of mapping large-scale

structure (LSS) of the Universe using the integrated 21 cm emission from HI gas in

galaxies, without trying to detect individual galaxies. In this method, we do not require

high resolution because we create a map of the Universe by measuring the intensity

of the redshifted 21 cm line over a range of redshifts without the need to resolve the

individual galaxies [69]. SKA phase 1 will be able to generate HI maps out to redshift

z ∼ 3 for a great fraction of the sky. The scales at which we will focus will be the
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BAO scale and large scales past the equality peak (keq. ∼ 0.01 Mpc−1). The large scale

IM measurements will be important for detecting primordial non-Gaussianity (PNG).

Putting strong constraints on PNG will help to rule out a large number of the existing

models of inflation.

1.8 Thesis outline

The structure of the thesis is as follows:

• Chapter 1 is a condensed introductory chapter on the background of cosmology.

It gives a full derivation on the FLRW background Universe. It also shows the

details on the first- and second-order perturbation theory in the ΛCDM model. In

the end, it summarizes the relevant scientific goals of the SKA.

• Chapter 2 is on the theory of the galaxy number counts. It shows a full explanation

on the first- and second-order perturbation theory in the galaxy number count

fluctuations, taking into account all the local scalars, vectors and tensors. The

initial condition for the primordial gravitational potential is Gaussian.

• Chapter 3 is on Fourier space. It has a full explanation on the geometry of the

galaxy bispectrum and derives the first- and second-order Fourier kernels for the

relativistic lightcone projection effects given in Chapter 2.

• Chapter 4 shows the numerical analysis of the galaxy bispectrum, starting with

the scalars, and building towards a more general case i.e. including the vectors

and tensors.

• Chapter 5 is on primordial non-Gaussianity. It looks at the effect of fNL in the

Newtonian as well as the full local relativistic galaxy bispectrum.

• Chapter 6 is on the conclusion. It summarizes all the key findings of the project

and the assumptions we have used in our methods. It also shows the future work

that can be done with the galaxy bispectrum.
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Perturbation theory in the galaxy

number counts

2.1 The galaxy number count fluctuation

We consider an observer looking down on the past lightcone. S/he counts dN number

of galaxies above a threshold luminosity L, within a redshift bin of width dz about the

observed redshift z, subtending a solid angle dΩo about the direction of observation n.

Then, we can write an equation for dN as [32, 49, 70–72],

dN (z,n, > lnL) = ρg(z,n, > lnL)D2
A(z,n)KµU

µdλ

dz
dzdΩo , (2.1)

where DA is the angular diameter distance given in the background by (1.37), Uµ is the

4-velocity of the galaxy, Kµ = dxµ/dλ is the geodesic photon 4-momentum, λ is the

affine parameter and ρg is the flux-limited number density of galaxies given by,

ρg(z,n, > lnL) =

∫ ∞

lnL
d ln L̃ ng(z,n, ln L̃) . (2.2)

In the above integral, ng is the proper galaxy number density i.e., it is defined in the rest

frame of the galaxies. Only galaxies above luminosity L are detected by the observer.

Then using (2.1), we define the observed galaxy number count fluctuation ∆g as,

dN (z,n, > lnL)

dzdΩo
=

dV (z,n)

dzdΩo
ρ̄g(z,> lnL)

[
1 + ∆g(z,n, > lnL)

]
, (2.3)

32
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where ρ̄g is the background flux-limited galaxy number density. The small element of

volume dV (z,n) is given by (2.1) as,

dV (z,n) = D2
A(z,n)KµU

µdλ

dz
dzdΩo . (2.4)

In the background,

dV̄ (z) =
D̄2

A(z)

(1 + z)2H(z)
dzdΩo

=
χ̄2(z)

(1 + z)4H(z)
dzdΩo . (2.5)

Henceforth, we suppress the lnL dependence to reduce clutter and write (2.3) in the

following way,

N(z,n) = N̄(z)
[
1 + ∆g(z,n)

]
, (2.6)

such that [20, 73],

∆g(z,n) =
N(z,n)− N̄(z)

N̄(z)
, (2.7)

where N(z,n) = dN/
[
dzdΩo

]
is the number of galaxies per unit redshift interval dz

and per unit solid angle dΩo about the direction n. N̄(z) = ρ̄g(z)dV̄ (z)/
[
dzdΩo

]
is

the average number galaxies in the same redshift interval dz. We can expand (2.7)

perturbatively up to second-order as,

∆g(z,n) = ∆(1)
g (z,n) +

1

2

[
∆(2)
g (z,n)− 〈∆(2)

g (z,n)〉
]
, (2.8)

where we subtract off the average of ∆
(2)
g in order to satisfy the condition 〈∆g〉 = 0. In

the next section, we work out the expression for ∆
(1)
g .

2.2 First-order scalars

Here, we give a full derivation for ∆
(1)
g . The number of galaxies N(z,n) in the given

volume V(z,n) ≡ dV (z,n)/
[
dzdΩo

]
can be written as,

N(z,n) = ρg(z,n)V(z,n) . (2.9)

We can expand ρg and V about their mean values ρ̄g and V̄ respectively by allowing for

a small deviation of the form,

ρg(z,n) = ρ̄g(z) + δρ(1)
g (z,n) and V(z,n) = V̄(z) + δV(1)(z,n) , (2.10)

http://etd.uwc.ac.za/



Chapter 2. Perturbation theory in the galaxy number counts 34

and replacing (2.10) in (2.9) we have at linear order,

N(z,n) = ρ̄g(z)V̄(z) + V̄(z)δρ(1)
g (z,n) + ρ̄g(z)δV(1)(z,n)

= N̄(z) + V̄(z)δρ(1)
g (z,n) + ρ̄g(z)δV(1)(z,n) . (2.11)

By substituting (2.11) in the expression for the fluctuation in the galaxy number count

as given in (2.7) we have,

∆(1)
g (z,n) =

δρ
(1)
g (z,n)

ρ̄g(z)
+
δV(1)(z,n)

V̄(z)
. (2.12)

In a perturbed Universe, the redshift z has also fluctuations with respect to its back-

ground value z̄ and we can write,

z = z̄ + δz(1) . (2.13)

Therefore, we can Taylor expand ρ̄g(z) as,

ρ̄g(z) = ρ̄g(z̄) +
∂ρ̄g(z)

∂z
δz(1) , (2.14)

and we can show that,

δρ(1)
g (z,n) = ρg(z,n)− ρ̄g(z) = ρg(z,n)− ρ̄g(z̄)−

∂ρ̄g(z)

∂z
δz(1) . (2.15)

Since ∆g is an observable, it must be gauge-independent and therefore, we can use any

gauge to compute it. We choose to work in the Poisson gauge because it can be easily

transformed to any gauge we want later on. The linear galaxy density contrast in the

Poisson gauge is given by,

δ(1)
g (z,n) =

ρg(z,n)− ρ̄g(z̄)
ρ̄g(z̄)

. (2.16)

We can combine (2.15) and (2.16) and use the result together with (2.14) to finally write

(2.12) as,

∆(1)
g (z,n) = δ(1)

g (z,n)− 1

ρ̄g(z)

∂ρ̄g(z)

∂z
δz(1) +

δV(1)(z,n)

V̄(z)
. (2.17)

Galaxies are found in dark matter halos which cannot be observed directly. The distri-

bution of the galaxies gives us information about the dark matter profile of the halos. In

other words, galaxies are tracers for the underlying dark matter distribution. These two

are related by the galaxy bias, b which is defined in the comoving-synchronous gauge

[74]. Therefore, we need to relate δ
(1)
g to the comoving-synchronous (C), δ

(1)
gC by using
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the result [75],

δβC = δβ − β̄ ′v , (2.18)

for any δβ. The transformation involves a derivative of the quantity β with respect

to the conformal time η multiplied by the velocity potential v along the direction of

observation n. In the case of the first-order galaxy number density ρ
(1)
g ,

δρ(1)
g (z,n) = δρ

(1)
gC(z,n) + ρ̄ ′g(z̄)v

(1) , (2.19)

and we can divide (2.19) by ρ̄g(z̄) to obtain the transformation relation for the galaxy

overdensity contrast,

δ(1)
g (z,n) = δ

(1)
gC (z,n) +

ρ̄ ′g(z̄)

ρ̄g(z̄)
v(1) . (2.20)

Now, we can introduce the first-order galaxy bias b1 given by [31, 74] ,

δ
(1)
gC (z,n) = b1δ

(1)
C (z,n) , (2.21)

where δ
(1)
C is the first-order dark matter overdensity contrast in comoving-synchronous

gauge. We can replace (2.21) in (2.20) and use the result in (2.17) to show that,

∆(1)
g (z,n) = b1δ

(1)
C (z,n) +

ρ̄ ′g(z̄)

ρ̄g(z̄)
v(1) − 1

ρ̄g(z)

∂ρ̄g(z)

∂z
δz(1) +

δV(1)(z,n)

V̄(z)
. (2.22)

For conserved sources,
ρ̄ ′g(z̄)

ρ̄g(z̄)
= −3H, (2.23)

which is given by the continuity equation [76, 77]. However, in the real picture of the

Universe we observe galaxy formation and mergers and therefore, the galaxy number

density ρ̄g changes with time. We account for this time evolution by defining the evolu-

tion bias [32, 33],

be =
∂ ln (a3ρ̄g)

∂ ln a
. (2.24)

We can use the following transformation rules, ∂/∂η = aH∂/∂a and ∂/∂ ln a = a∂/∂a

to show that for non-conserved sources,

ρ̄ ′g(z̄)

ρ̄g(z̄)
= H (be − 3) and

1

ρ̄g(z)

∂ρ̄g(z)

∂z
= −(be − 3)

1 + z
= −(be − 3)

1 + z̄

[
1− δz(1)

(1 + z̄)
+ ...

]
.

(2.25)

Hence, the expression given in (2.22) becomes,

∆(1)
g (z,n) = b1δ

(1)
C (z,n) +H (be − 3) v(1) +

(be − 3)

1 + z̄
δz(1) +

δV(1)(z,n)

V̄(z)
. (2.26)
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2.2.1 First-order redshift perturbation δz(1)

We consider a perturbed and non-expanding FLRW Universe with a metric,

ds2 = −
(

1 + 2Φ(1)

)
dη2 +

(
1− 2Ψ(1)

)
δijdx

idxj , (2.27)

where galactic objects are free to move relative to a fixed background. Let us take a

fixed observer with 4-velocity vector Uµ(o) = (1,0) looking at a source having a peculiar

velocity v with respect to to the background. The 4-velocity vector of the source is

defined as Uµ(s) = (1 − Φ(1), v(1)) [20]. If the source emits a photon and the positive

direction of n is taken to be towards the fixed observer, then the 4-momentum vector

Kµ of the photon as seen by the fixed observer will be,

Kµ
(o) = (1, ni) , (2.28)

with
∑3

i=1 n
ini = 1. On the other hand, an observer at the source will see the photon

going away from him and in that case, the 4-momentum vector of the photon at the

source will be,

Kµ
(s) = (1 + δγ, −ni + δni), (2.29)

where δγ and δni are the perturbations in the time-time and space-space components of

Kµ due to the motion of the source. Then, the photon as observed by the fixed observer

will be redshifted as [20],

1 + z =
Uµ(s)Kµ(s)

Uµ(o)Kµ(o)

. (2.30)

To restore the effect of the expanding Universe we put back the scale factor a and the

definition for the redshift becomes,

1 + z =
1

a

[
Uµ(s)Kµ(s)

Uµ(o)Kµ(o)

]
. (2.31)

We can apply the result KµKµ = 0 [38] to obtain the expressions for Kµ(o)
and Kµ(s)

respectively. Using (2.31) we can show,

1 + z =
1

a

(
1− Φ(1) + v · n− δγ

)
. (2.32)

We now consider the geodesic equation [38],

dKµ

dλ
+ ΓµαβK

αKβ = 0 , (2.33)
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which gives,
dδKµ

dλ
+ δΓµαβK̄

αK̄β = 0 , (2.34)

at linear order in perturbation. We can obtain δγ by solving the time-time component

of (2.34) i.e., we set µ = 0 and we have,

dδK0

dλ
≡ dδγ

dλ
= −

(
δΓ0

00K̄
0K̄0 + 2δΓ0

0iK̄
0K̄i + δΓ0

ijK̄
iK̄j

)
. (2.35)

For the perturbed FLRW metric given in (2.27),

δΓ0
00 = Φ(1)′, δΓ0

0i = ∂iΦ
(1), δΓ0

ij = −δijΨ(1)′. (2.36)

By replacing (2.36) in (2.35) and knowing that K̄µ = (1, ni) we have,

dδγ

dλ
= −Φ(1)′ − 2n̄i∂iΦ

(1) + Ψ(1)′ . (2.37)

The derivative along light rays is a sum of a time derivative and a radial derivative so

that,
dΦ(1)

dλ
= Φ(1)′ + ni∂iΦ

(1) , (2.38)

By substituting (2.38) in (2.37) we can show that,

δγ = −2Φ(1) +

∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)
. (2.39)

We can then replace (2.39) in (2.32) to obtain the expression for the redshift as,

1 + z =
1

a

[
1 + Φ(1) + v · n−

∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)]

. (2.40)

The first term on the right-hand side of (2.40) is just (1 + z̄) and therefore, we can

further simplify using δz(1) = z − z̄ to obtain [78],

δz(1) = (1 + z̄)

[
Φ(1) + v · n−

∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)]
. (2.41)

We can now substitute (2.41) in (2.26) to show that the first-order fluctuation in the

galaxy number count becomes,

∆(1)
g (z,n) = b1δ

(1)
C (z,n) +H (be − 3) v(1)

+ (be − 3)

[
Φ(1) + ∂‖v

(1) −
∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)]

+
δV(1)(z,n)

V̄(z)
,

(2.42)
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where ∂‖v
(1) is the Doppler term1.

2.2.2 First-order volume perturbation δV(1)

We consider a source moving with the 4-velocity Uµ(s) = (1−Φ(1), v(1)) with respect to a

background observer. The definition for a small element of volume dVs as measured in

the frame of reference of the source is given by [20, 73],

dVs =
√−gεµαβγUµ(s)dx

αdxβdxγ , (2.43)

where g is the determinant of the perturbed FLRW metric,

ds2 = a2(η)

[
−
(

1 + 2Φ(1)

)
dη2 +

(
1− 2Ψ(1)

)
δijdx

idxj
]
, (2.44)

and εµαβγ is called the Levi-Civita symbol [79]. We will need to perform a coordinate

transformation of (2.43) to include the mapping between the coordinates at the source

and the observer. Such a transformation involves a Jacobian determinant J and we

have [20, 73],

dVs =
√−gεµαβγUµ(s)

∂xα

∂z

∂xβ

∂θo

∂xγ

∂φo
J dzdθodφo , (2.45)

where z is the observed redshift and,

J =

∣∣∣∣
∂ (θs, φs)

∂ (θo, φo)

∣∣∣∣ , (2.46)

is the Jacobian transformation between the polar angles (θs, φs) and (θo, φo) which

are the angular coordinates measured at the position of the source and observer re-

spectively. If χ̄s is the radial comoving distance to dV as measured in the source’s

frame, then in spherical coordinates the small element of length is given as dxµ =

(−dη,dχ̄s, χ̄sdθs, χ̄s sin θsdφs). In a perturbed Universe, both the radial and angular co-

ordinates are perturbed with respect to the background observer and therefore we have

at first-order,

θs = θo + δθ(1) , φs = φo + δφ(1) , χ̄s = χ̄+ δχ̄(1) . (2.47)

1v · n = ni∂iv
(1) = ∂‖v

(1) where ni∂i ≡ ∂‖.
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On expanding the right-hand side expression of (2.45), δθ(1), δφ(1) and δχ̄(1) directly

translate into the volume fluctuation as [20, 73],

δV(1)(z,n)

V̄(z)
= −3Ψ(1) +

(
cot θo +

∂

∂θo

)
δθ(1) +

∂δφ(1)

∂φo
− v · n+ 2

δχ̄(1)

χ̄
− ∂δχ̄(1)

∂λ

+
1

H(1 + z̄)

∂δz(1)

∂λ
−
(
− 4 +

2

χ̄H +
H′
H2

)
δz(1)

(1 + z̄)
. (2.48)

We can solve for δθ(1), δφ(1) and δχ̄(1) by finding the deviation vector [20],

δxi =

∫ λ

0
dλ̃
(
δKi − niδK0

)
, (2.49)

which relates the perturbed geodesic to the unperturbed one. The space-space compo-

nent of the geodesic equation (2.34) gives,

dδKi

dλ
= −

(
δΓi00K̄

0K̄0 + 2δΓij0K̄
jK̄0 + δΓijkK̄

jK̄k

)
. (2.50)

For the perturbed FLRW metric given in (2.44),

δΓi00 = ∂iΦ(1) , δΓij0 = −Ψ(1)′δij , δΓijk = −δij∂kΨ(1) + δjkδ
il∂lΨ

(1) , (2.51)

and (2.50) becomes,

dδKi

dλ
= −∂iΦ(1) + 2Ψ(1)′ni + ni∂‖Ψ

(1) . (2.52)

where we have made use of K̄µ = (1, ni). We can further simplify (2.52) by using (2.38)

and ∂i = ni∂‖ +∇ i
⊥ to show that,

δKi = ni
[
Ψ(1) − Φ(1) +

∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)]
−
∫ λ

0
dλ̃ ∇̃ i

⊥

(
Φ(1) + Ψ(1)

)
. (2.53)

The expression for δK0 is δγ which is given in (2.39) and by substituting (2.53) in (2.49)

we obtain,

δxi = ni
∫ λ

0
dλ̃
(

Φ(1) + Ψ(1)
)
−
∫ λ

0
dλ̃
(
λ− λ̃

)
∇̃ i
⊥

(
Φ(1) + Ψ(1)

)
. (2.54)

We can also write (2.54) as,

δxi = δx i
‖ + δx i

⊥ , (2.55)

where

δx i
‖ = ni

∫ λ

0
dλ̃
(

Φ(1) + Ψ(1)
)
, δx i

⊥ = −
∫ λ

0
dλ̃
(
λ− λ̃

)
∇̃ i
⊥

(
Φ(1) + Ψ(1)

)
. (2.56)
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To obtain δθ(1), δφ(1) and δχ̄(1), we need to do the projections of δx i
⊥ and δx i

‖ on

the unit vectors eθi, eφi and eχ̄i accordingly. These unit vectors have the following

characteristics [20],

nieθi = 0 , n̄ieφi = 0 , nieχ̄i = 1 , (2.57)

and,

eθi∇̃ i
⊥ =

1

χ̃
∂̃θo , eφi∇̃ i

⊥ =
1

χ̃ sin θo
∂̃φo . (2.58)

Therefore we have,

δχ̄(1) = δx i
‖ eχ̄i =

∫ λ

0
dλ̃
(

Φ(1) + Ψ(1)
)
,

δθ(1) =
1

χ̄
δx i
⊥eθi = −

∫ λ

0
dλ̃

λ− λ̃
χ̄χ̃

∂̃θo

(
Φ(1) + Ψ(1)

)
,

δφ(1) =
1

χ̄ sin θo
δx i
⊥eφi = − 1

sin2 θo

∫ λ

0
dλ̃

λ− λ̃
χ̄χ̃

∂̃φo

(
Φ(1) + Ψ(1)

)
. (2.59)

The redshift contribution ∂δz(1)/∂λ can be obtained by taking the derivative of (2.41)

with respect to the affine parameter λ. Then, by using the results of (2.41) and (2.59)

in (2.48) we can show that the volume fluctuation becomes,

δV(1)(z,n)

V̄(z)
= − 1

H
∂

∂λ
(v · n) +

(
3− H

′

H2
− 2

χ̄H

)
v · n+ Φ(1) − 2Ψ(1) +

1

HΨ(1)′

+

(
3− H

′

H2
− 2

χ̄H

)
Φ(1) −

(
3− H

′

H2
− 2

χ̄H

)∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)

+
2

χ̄

∫ λ

0
dλ̃
(

Φ(1) + Ψ(1)
)
−
∫ λ

0
dλ̃

λ− λ̃
χ̄χ̃

∇̃2
Ω

(
Φ(1) + Ψ(1)

)
, (2.60)

where ∇̃2
Ω = cot θo∂θo+∂2

θo
+
(
1/ sin2 θo

)
∂φo is the angular part of the Laplacian operator.

We can substitute (2.60) in (2.42) to show that the fluctuation in the observed galaxy

number count at first-order is given by,

∆(1)
g (z,n) = b1δ

(1)
C︸ ︷︷ ︸

Density term

− 1

H
∂

∂λ
(v · n) +H(be − 3)v(1) +

(
be −

H′
H2
− 2

χ̄H

)
∂‖v

(1)

︸ ︷︷ ︸
Doppler

−
(
be −

H′
H2
− 2

χ̄H

)
Φ(1) + Φ(1) − 2Ψ(1) +

1

HΨ(1)′

︸ ︷︷ ︸
Sachs−Wolfe

−
(
be −

H′
H2
− 2

χ̄H

)∫ λ

0

dλ̃
(

Φ(1)′ + Ψ(1)′
)

︸ ︷︷ ︸
Integrated Sachs−Wolfe

+
2

χ̄

∫ λ

0

dλ̃
(

Φ(1) + Ψ(1)
)

︸ ︷︷ ︸
Time−delay(Shapiro)

−
∫ λ

0

dλ̃
λ− λ̃
χ̄χ̃

∇̃2
Ω

(
Φ(1) + Ψ(1)

)

︸ ︷︷ ︸
Lensing

. (2.61)
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The result of (2.61) shows the fluctuation of the galaxy number count obtained from

the redshift and volume perturbations on the sky. However, in observations the number

of observed sources depend also on their apparent fluxes [32]. This is because any

survey has its own flux sensitivity and therefore, objects above the threshold flux will

be detected by the telescope. This flux dependence leads to either the magnification or

demagnification of the observed sources because their apparent fluxes are either amplified

or de-amplified [80]. We can compute the effect of this distortion in magnification and

we find that it contributes to corrections in the Doppler, Sachs-Wolfe, integrated Sachs-

Wolfe, time-delay (Shapiro effect) and lensing terms as [32, 80, 81],

∆
(1)
M(z,n) = −2Q

(
1− 1

χ̄H

)
∂‖v

(1) +Q
∫ λ

0
dλ̃

λ− λ̃
λλ̃

∇̃2
Ω

(
Φ(1) + Ψ(1)

)

− 2Q
(

Φ(1) − 2Ψ(1)
)
− 2Q

(
1− 1

χ̄H

)
Φ(1)

− 2Q
χ̄

∫ λ

0
dλ̃
(

Φ(1) + Ψ(1)
)

+ 2Q
(

1− 1

χ̄H

)∫ λ

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)
,

(2.62)

where ∆
(1)
M(z,n) is the magnification correction and Q is the magnification bias. It

is given by the logarithmic derivative of the background galaxy number density with

respect to the threshold luminosity as [33],

Q = −∂ ln (a3ρ̄g)

∂ ln L̄
. (2.63)

Therefore, we can add the result of (2.62) to (2.61) and show that,

∆(1)
g (z,n) = b1δ

(1)
C︸ ︷︷ ︸

Density term

− 1

H
∂

∂λ
(v · n)

+H(be − 3)v(1) +

[
be −

H′
H2
− 2Q− 2(1−Q)

χ̄H

]
∂‖v

(1)

︸ ︷︷ ︸
Doppler

−
[
be −

H′
H2

+ 2Q− 2(1−Q)

χ̄H

]
Φ(1) + (1− 2Q)

(
Φ(1) − 2Ψ(1)

)
+

1

HΨ(1)′

︸ ︷︷ ︸
Sachs−Wolfe

−
[
be −

H′
H2
− 2Q− 2(1−Q)

χ̄H

] ∫ λ

0

dλ̃
(

Φ(1)′ + Ψ(1)′
)

︸ ︷︷ ︸
Integrated Sachs−Wolfe

+
2(1−Q)

χ̄

∫ λ

0

dλ̃
(

Φ(1) + Ψ(1)
)

︸ ︷︷ ︸
Time−delay(Shapiro)

− (1−Q)

∫ λ

0

dλ̃
λ− λ̃
χ̄χ̃

∇̃2
Ω

(
Φ(1) + Ψ(1)

)

︸ ︷︷ ︸
Lensing

. (2.64)
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The second term in ∂/∂λ is simplified as follows:

∂

∂λ
(v · n) =

∂

∂η
(v · n) + ∂‖ (v · n) = v′ · n+ ∂‖ (v · n) . (2.65)

The v′ · n is eliminated using the Euler equation (refer to (1.25)). Therefore (2.64)

becomes [49],

∆(1)
g (z,n) = b1δ

(1)
C︸ ︷︷ ︸

Density term

− 1

H∂
2
‖v

(1)

︸ ︷︷ ︸
Redshift space distortion

+H(be − 3)v(1) +

[
be −

H′
H2
− 2Q− 2(1−Q)

χ̄H

]
∂‖v

(1)

︸ ︷︷ ︸
Doppler

−
[
be −

H′
H2

+ 2Q− 2(1−Q)

χ̄H

]
Φ(1) + (1− 2Q)

(
Φ(1) − 2Ψ(1)

)
+

1

HΨ(1)′

︸ ︷︷ ︸
Sachs−Wolfe

−
[
be −

H′
H2
− 2Q− 2(1−Q)

χ̄H

] ∫ χ̄

0
dλ̃
(

Φ(1)′ + Ψ(1)′
)

︸ ︷︷ ︸
Integrated Sachs−Wolfe

+
2(1−Q)

χ̄

∫ χ̄

0
dλ̃
(

Φ(1) + Ψ(1)
)

︸ ︷︷ ︸
Time−delay(Shapiro)

− (1−Q)

∫ χ̄

0
dλ̃

λ̄− λ̃
χ̄χ̃

∇̃2
Ω

(
Φ(1) + Ψ(1)

)

︸ ︷︷ ︸
Lensing

, (2.66)

where ∂2
‖v

(1) is the same as ∂‖ (v · n)2. For brevity we can write (2.66) as follows,

∆(1)
g (z,n) = ∆(1) + ∆

(1)
RSD + ∆

(1)
Dop. + ∆

(1)
pot. + ∆(1)

κ , (2.67)

where ∆(1) is the galaxy density term, ∆
(1)
RSD is the redshift space distortion term, ∆

(1)
Dop.

is the Doppler term, ∆
(1)
pot. are the potential terms (non-integrated and integrated terms)

and ∆
(1)
κ is the lensing term.

2.3 The model of galaxy bias on very large scales

2.3.1 The linear model

The model of galaxy bias which we are going to use is the local-in-mass-density (LIMD)

model [64]. We first consider the linear galaxy density contrast δ
(1)
g which is defined in

2∂‖ (v · n) = ni∂i
[
nj∂jv

(1)
]
= (ni∂i)

2v(1) = ∂2
‖v

(1)
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the Poisson gauge as given in (2.16). This is related to the dark matter density contrast

δ(1) via the galaxy bias. We must make sure that the definition for scale-independent

galaxy bias has to be gauge-independent and is consistent on very large scales. The

definition for scale-independent bias is given in the matter rest-frame [31, 32, 70], which

coincide with the galaxy rest-frame on large scales where, there is no velocity bias. The

matter rest-frame coincides with the comoving-synchronous (C) gauge such that the

correct definition of the linear galaxy bias is,

δ
(1)
gC (z,x, < lnL) = b1(z, lnL)δ

(1)
C (z,x) . (2.68)

The transformation from the Poisson gauge to the C-gauge is obtained from (2.18) and

for δ
(1)
g we have [70],

δ(1)
g = δ

(1)
gC + (3− be)Hv(1)

= b1δ
(1)
C + (3− be)Hv(1) . (2.69)

It is the velocity potential term that ensures the gauge-independence on very large scales.

It is the GR part of δ
(1)
g and its effect is suppressed on small scales but grows on large

scales [72].

In GR, the C-gauge is treated as the Lagrangian frame [82, 83]. However, there is

no unique gauge defined for the Eulerian frame but, the total matter (T) gauge is a

convenient choice. The mapping from T- to C-gauge is via a pure spatial coordinate

transformation so that at first-order [82],

δ
(1)
C = δ

(1)
T , (2.70)

and from (2.69) it implies that,

δ
(1)
gC = δ

(1)
gT = b1δ

(1)
T . (2.71)

2.3.2 The non-linear model and gauge transformation

We assume that the galaxy density contrast is only a local function of the dark matter

density contrast and extend (2.68) to higher powers in δC as,

δgC = b1δC +
1

2
b2

[
δC

]2
+ ... (2.72)

This is why the model is called the local-in-mass-density model [64]. To be valid on

very large scales, we need the bias coefficients to be scale-independent in the galaxy
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rest-frame (C-gauge). At first-order, we recover (2.68) and at second-order we obtain,

δ
(2)
gC = b1δ

(2)
C + b2

[
δ

(1)
C

]2
. (2.73)

The second-order C- and T-gauge matter densities are related by [82, 83],

δ
(2)
T = δ

(2)
C + 2

[
∂iδ

(1)
C

]
∇−2∂iδ

(1)
C , (2.74)

where −2∇−2∂iδ
(1)
C is a gauge generator. Since the coordinate transformation from C-

to T-gauge is purely spatial, (2.74) can directly be translated to the galaxy overdensities

as,

δ
(2)
gT = δ

(2)
gC + 2

[
∂iδ

(1)
gC

]
∇−2∂iδ

(1)
C . (2.75)

Using (2.70), (2.71), (2.73) and (2.74) we can show that (2.75) becomes,

δ
(2)
gT = b1

[
δ

(2)
C + 2

[
∂iδ

(1)
C

]
∇−2∂iδ

(1)
C

]
+ b2

[
δ

(1)
C

]2
, (2.76)

which can be written as,

δ
(2)
gT = b1δ

(2)
T + b2

[
δ

(1)
T

]2
. (2.77)

By comparing (2.73) with (2.77), we find that local-in-mass-density and scale-independent

bias in the C- and T-gauge are equivalent up to second-order, with the same bias coef-

ficients which are Eulerian. The second-order galaxy overdensities in the Poisson and

C-gauge are related by [84],

δ(2)
g = δ

(2)
gC + (3− be)Hv(2) +

[
(be − 3)H′ + b′eH+ (be − 3)2H2

][
v(1)
]2

+ (be − 3)Hv(1)v(1)′

− (be − 3)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

+ 2(3− be)Hv(1)δ
(1)
gC − 2v(1)δ

(1)′
gC −

1

2
∂iξ(1)

[
(3− be)H∂iv(1) + 2∂iδ

(1)
gC

]

− 1

2
(be − 3)H∇−2

[
∂iξ

(1)∂i∇2v(1) + ∂iv
(1)∂i∇2ξ(1) + 2∂i∂jξ

(1)∂i∂jv(1)

]
, (2.78)

where ξ(1) is a gauge generator and ξ(1)′ = 2v(1) is the gauge fixing condition [84]. Using

the identity,

∇2
[
∂iξ

(1) · ∂iv(1)
]

= ∂iv(1) ·∇2
[
∂iξ

(1)
]

+ ∂iξ
(1) ·∇2

[
∂iv(1)

]
+ 2∂j∂iξ

(1) · ∂j∂iv(1) , (2.79)

we find that the last line of (2.78) gives,

− 1

2
(be − 3)H ∂iξ(1)∂iv(1) , (2.80)
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which cancels with the first term of the expansion of the square bracket on the third

line. Therefore (2.78) simplifies to,

δ(2)
g = δ

(2)
gC + (3− be)Hv(2) +

[
(be − 3)H′ + b′eH+ (be − 3)2H2

][
v(1)
]2

+ (be − 3)Hv(1)v(1)′

− (be − 3)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

+ 2(3− be)Hv(1)δ
(1)
gC − 2v(1)δ

(1)′
gC −

[
∂iδ

(1)
gC

]
∂iξ(1) . (2.81)

By using the continuity equation,

δ
(1)′
C = −∇2v(1) , (2.82)

the gauge fixing condition implies that,

∂iξ(1) = −2∇−2∂iδ
(1)
C . (2.83)

By (2.74) we can show that,

δ
(2)
gT = δ

(2)
gC −

[
∂iδ

(1)
gC

]
∂iξ(1) , (2.84)

and therefore, replacing (2.84) in (2.81) we can write the second-order Poisson galaxy

overdensity δ
(2)
g in terms of the second-order T-gauge galaxy overdensity δ

(2)
gT as,

δ(2)
g = δ

(2)
gT + (3− be)Hv(2) +

[
(be − 3)H′ + b′eH+ (be − 3)2H2

][
v(1)
]2

+ (be − 3)Hv(1)v(1)′

− (be − 3)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

+ 2(3− be)Hv(1)δ
(1)
gT − 2v(1)δ

(1)′
gT . (2.85)

We can further simplify by using (2.71) and (2.77) to express the galaxy overdensities

in terms of the dark matter overdensities as,

δ(2)
g = b1δ

(2)
T + b2

[
δ

(1)
T

]2
+ (3− be)Hv(2) +

[
(be − 3)H′ + b′eH+ (be − 3)2H2

][
v(1)
]2

− (be − 3)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

+ (be − 3)Hv(1)v(1)′ + 2b1(3− be)Hv(1)δ
(1)
T − 2v(1)

[
b1δ

(1)′
T + b′1δ

(1)
T

]
. (2.86)

which is the second-order generalization of (2.69). The velocity and metric potentials

ensure the gauge-independence on very large scales. The LIMD model does not include

the tidal field. The local bias model includes the tidal field - the tidal operator which

forms part of the leading local gravitational observables of long-wavelength spacetime
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perturbation [64]. It is defined through the scaled dimensionless quantity [64],

Kij = Dijδ(1)
C = Dijδ(1)

T , Dij =

(
∂i∂j
∇2
− 1

3
δij

)
, (2.87)

and using the Poisson equation (1.84) we have,

Kij =
2

3ΩmH2
∂i∂jΦ

(1) − 1

3
δijδ

(1)
T . (2.88)

Kij enters (2.86) via the square of the tidal operator i.e.,
[
Kij

]2
. This is because

the latter is a local observable which is of the same order in perturbations as
[
δ

(1)
T

]2
.

Therefore, it is expected to hold similar relevance as the term in b2

[
δ

(1)
T

]2
. We can then

generalize the LIMD model (2.86), to the local model of bias as,

δ(2)
g = b1δ

(2)
T + b2

[
δ

(1)
T

]2
+ (3− be)Hv(2) +

[
(be − 3)H′ + b′eH+ (be − 3)2H2

][
v(1)
]2

− (be − 3)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

+ (be − 3)Hv(1)v(1)′ + 2b1(3− be)Hv(1)δ
(1)
T − 2v(1)

[
b1δ

(1)′
T + b′1δ

(1)
T

]

+ bTidal

[
Kij

]2
, (2.89)

where bTidal is the tidal bias coefficient. The tidal field cannot enter the bias expansion

at first-order because it is traceless (tr
[
Kij

]
=0) [64]. The simplest local bias model is

when the Lagrangian tidal bias vanishes:

bTidal =
2

7
(b1 − 1) . (2.90)

2.4 Second-order galaxy number counts (scalar modes)

At second-order we have many more terms. The metric is,

a−2ds2 = −
[
1 + 2Φ(1) + Φ(2)

]
dη2 +

[
1− 2Φ(1) −Ψ(2)

]
dx2 , (2.91)

and the peculiar velocity of the galaxies which we are assuming to be equal to the dark

matter velocity on scales of interest are,

vi = ∂i
[
v(1) +

1

2
v(2)

]
. (2.92)

We have taken zero anisotropic stress at first-order, which implies Ψ(1) = Φ(1) in GR.

The observed comoving coordinates of a galaxy are given by x = χ̄(z)n [84]. The expres-

sion for ∆
(2)
g contains second-order generalizations of the dark matter, RSD, Doppler,
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potentials and lensing terms, together with correlating terms which are quadratic in all

the first-order terms. This can be shown as follows,

∆
(2)
gS (z,x) = ∆(2)

m + ∆
(2)
RSD + ∆

(2)
Dop. + ∆

(2)
pot. + ∆(2)

κ︸ ︷︷ ︸
Second order dynamical terms

+ ∆
(2)
m×m + ∆

(2)
RSD×RSD + ∆

(2)
Dop.×Dop. + ∆

(2)
pot.×pot. + ∆

(2)
κ×κ︸ ︷︷ ︸

Auto correlations between first order terms

+ ∆
(2)
m×RSD + ∆

(2)
m×Dop. + ∆

(2)
m×κ + ∆

(2)
m×pot. + ∆

(2)
RSD×Dop.︸ ︷︷ ︸

Cross correlations between first order terms

+ ∆
(2)
RSD×κ + ∆

(2)
RSD×pot. + ∆

(2)
Dop.×κ + ∆

(2)
Dop.×pot. + ∆

(2)
κ×pot.︸ ︷︷ ︸

Cross correlations between first order terms

.(2.93)

In the next chapter we are going to derive the galaxy bispectrum in Fourier space which

is at fixed redshift, so that all the correlations are computed in the same redshift bin.

For this purpose, we hereby neglect all the GR integrated contributions of ∆
(1)
g and

∆
(2)
g . These include the weak lensing convergence, integrated Sachs-Wolfe and time-

delay terms.

We can find a general equation for the Poisson gauge ∆
(2)
g , including the evolution

bias and magnification bias, as well as all the integrated and observer’s terms in [49].

To this general expression, we apply our gauge-independent model of the galaxy bias

at second-order given in (2.89). We omit all the integrated terms and also, the terms

defined at the observer since they do not contribute to the galaxy bispectrum. The
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result is as follows [49],

∆
(2)
gS (z,x) = b1δ

(2)
T + b2

[
δ

(1)
T

]2
+
[
(be − 3)2H2 + b′eH+ (be − 3)H′

][
v(1)
]2

+(be − 3)Hv(1)v(1)′ + 2b1(3− be)Hv(1)δ
(1)
T − 2v(1)

[
b1δ

(1)′
T + b′1δ

(1)
T

]

+(3− be)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

− 1

H∂
2
‖v

(2) + (3− be)Hv(2) +

[
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

] [
∂‖v

(2) − Φ(2)
]

+bTidal

[
Kij

]2
+ 2(Q− 1)Ψ(2) + Φ(2) +

1

HΨ(2)′

+

[
be − 2Q− H

′

H2
− (1−Q)

2

χ̄H

] [
3
[
Φ(1)

]2 −
[
∂‖v

(1)
]2

+ ∂⊥iv
(1)∂i⊥v

(1)

−2∂‖v
(1)Φ(1) − 2

H
(

Φ(1) − ∂‖v(1)
)(

Φ(1)′ − ∂2
‖v

(1)
)]

+ 2 (2Q− 1) Φ(1)δ(1)
g

− 2

Hδ
(1)
g ∂2

‖v
(1) +

2

Hδ
(1)
g Φ(1)′ +

(
4Q− 5 + 4Q2 − 4

∂Q
∂ ln L̄

)[
Φ(1)

]2

+
2

H

(
2Q+

H′
H2

)
Φ(1)Φ(1)′ − 2

H

(
1 + 2Q+

H′
H2

)
Φ(1)∂2

‖v
(1) +

2

H2

[
Φ(1)′]2

+
2

H2

[
∂2
‖v

(1)
]2

+
2

H2
∂‖v

(1)∂2
‖Φ

(1) +
4

H∂‖v
(1)∂‖Φ

(1) − 2

H2
Φ(1)∂3

‖v
(1)

+
2

H2
Φ(1) dΦ(1)′

dχ̄
− 2

H2
∂‖v

(1) dΦ(1)′

dχ̄
+

2

H

(
1 +
H′
H2

)
∂‖v

(1)∂2
‖v

(1)

+
2

H

(
1− H

′

H2

)
∂‖v

(1)Φ(1)′ − 4

H2
∂2
‖v

(1)Φ(1)′ +
2

H∂⊥iv
(1)∂i⊥Φ(1)

+

(
4

χ̄H − 1

)
∂⊥iv

(1)∂i⊥v
(1) +

2

H2
∂‖v

(1)∂3
‖v

(1) +

{[
4beQ− 2be − 4Q− 8Q2

+8
∂Q
∂ ln L̄

+ 4
∂Q
∂ ln a

+ 2
H′
H2

(1− 2Q) +
4

χ̄H

(
Q− 1 + 2Q2 − 2

∂Q
∂ ln L̄

)]
Φ(1)

+2

[
be − 2Q− H

′

H2
− 2

χ̄H (1−Q)

]
δ(1)
g −

2

H
dδ

(1)
g

dχ̄
− 2

HΦ(1)∂‖Φ
(1)

+
2

H

[
2Q− be +

H′
H2

+
2

χ̄H (1−Q)

]
∂2
‖v

(1) − 2

H2
Φ(1)∂2

‖Φ
(1)

+
2

H

[
be − 2− 2

χ̄H (1−Q)− H
′

H2

]
Φ(1)′ − 4

HQ∂‖Φ
}[

∂‖v
(1) − Φ(1)

]

+

{
b2e − be +

∂be
∂ ln a

+ 6Q− 4Qbe + 4Q2 − 4
∂Q
∂ ln L̄

− 4
∂Q
∂ ln a

+
6

χ̄

H′
H3

(1−Q)

+ (1− 2be + 4Q)
H′
H2
− H

′′

H3
+ 3
H′2
H4

+
2

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)

+
2

χ̄H

[
1− 2be −Q+ 2beQ− 4Q2 + 4

∂Q
∂ ln L̄

+ 2
∂Q
∂ ln a

]}[
∂‖v

(1) − Φ(1)
]2

− 4

H∂⊥iv
(1)∂i⊥∂‖v

(1) + 4

[(
1− 1

χ̄H

)
∂‖v

(1) −
(

2− 1

χ̄H

)
Φ(1)

]
∂δ

(1)
g

∂ ln L̄
. (2.94)
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2.5 Second-order induced vector and tensor modes

The local vector and tensor perturbations at second-order, are generated by the second-

order scalars [85, 86]. We start with (1.43) which is the most general metric for a flat

FLRW Universe,

ds2 = a2
[
− (1 + 2Φ)dη2 + (1− 2Ψ)γijdx

idxj + 2w
(2)
i dxidη +

1

2
h

(2)
ij dxidxj

]
, (2.95)

where w
(2)
i and h

(2)
ij are the second-order vector and tensor perturbations respectively.

We neglect the first-order vector and tensor modes because they are purely decaying

modes and contribute negligibly to the second-order density perturbations [87–90]. The

vector contributions to the second-order galaxy number count fluctuation is given by

[49],

∆
(2)
gV(z,x) =

[
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]
v̂

(2)
‖ −

1

H∂‖v̂
(2)
‖ , (2.96)

where v̂
(2)
‖ = niv̂

(2)
i is the longitudinal component of the vector perturbations. In the

ΛCDM model, v̂
(2)
i = −2ω

(2)
i [90] and (2.96) becomes,

∆
(2)
gV(z,x) = 2

[
−be + 2Q+

2(1−Q)

χ̄H +
H′
H2

+
1

H∂‖
]
ω

(2)
‖ (x) . (2.97)

where ω
(2)
‖ = niω

(2)
i . For the tensors we have [49],

∆
(2)
gT (z,x) = −1

2
(1−Q)h

(2)
‖ (x)− 1

2Hh
(2)′

‖ (x) , (2.98)

where h
(2)
‖ = h

(2)
ij n

inj . Therefore, the galaxy number count fluctuation at second-order

can be written as,

∆(2)
g (z,x) = ∆

(2)
gS (z,x) + ∆

(2)
gV (z,x) + ∆

(2)
gT (z,x) . (2.99)

2.6 The Newtonian and GR parts of Δg

We start with (2.66) which shows the general expression for ∆
(1)
g in C-gauge. We trans-

form to T-gauge by using (2.69) and neglect the integrated terms. We then split ∆
(1)
g
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into Newtonian (N) and GR parts as,

∆
(1)
gN = b1δ

(1)
T︸ ︷︷ ︸

DM term

− 1

H∂
2
‖v

(1)

︸ ︷︷ ︸
Redshift space distortion

, (2.100)

∆
(1)
gGR = H(be − 3)v(1) +

[
be −

H′
H2
− 2Q− 2(1−Q)

χ̄H

]
∂‖v

(1)

︸ ︷︷ ︸
Doppler

−
[
be −

H′
H2

+ 2Q− 2(1−Q)

χ̄H

]
Φ(1) + (2Q− 1)Φ(1) +

1

HΦ(1)′

︸ ︷︷ ︸
Sachs−Wolfe

,(2.101)

where we have imposed Φ(1) = Ψ(1). The Newtonian part is the T-gauge density contrast

and the Kaiser RSD term. The remaining terms i.e., Doppler and Sachs-Wolfe, are the

GR parts. For ∆
(2)
gS given in (2.94), the Newtonian part constitutes the density contrast,

tidal term, Kaiser RSD term and their couplings. The dark matter density contrast δ
(2)
T

has a GR part which is of the order [83],

δ
(2)
T GR ∼

[
∇Φ
]2

+ Φ∇2Φ . (2.102)

For a fixed physical scale R corresponding to fixed halo-mass formation, δ
(2)
T is smoothed

and if we assume Gaussianity for the primordial metric perturbation, then the small scale

density contrast is not affected by the long-wavelength mode δ
(2)
T GR. A local observer at

the galaxy sees no effect of the long mode and therefore, δ
(2)
T GR does not enter the bias

relation of (2.89) [91–93],

δ
(2)
gT = b1δ

(2)
T +b2

[
δ

(1)
T

]2
+bTidal

[
Kij

]2
+ many other terms to ensure gauge-independence .

(2.103)

Therefore we may write,

∆
(2)
gN = b1δ

(2)
T + b2

[
δ

(1)
T

]2 − 1

H∂
2
‖v

(2) − 2
b1
H

[
δ

(1)
T ∂2

‖v
(1) + ∂‖v

(1) ∂‖δ
(1)
T

]

+
2

H2

[[
∂2
‖v

(1)
]2

+ ∂‖v
(1) ∂3

‖v
(1)

]
+ bTidal

[
Kij

]2
. (2.104)
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The remaining terms of (2.94), (2.97) and (2.98) constitute the GR part,

∆
(2)
gGR = H(3− be)v(2) +

[
(9− 6be + b2e)H2 + b′eH+ (be − 3)H′

][
v(1)
]2

−(be − 3)H∇−2

[
v(1)∇2v(1)′ − v(1)′∇2v(1) − 6∂iΦ

(1)∂iv(1) − 6Φ(1)∇2v(1)

]

+2(3− be)b1Hv(1)δ
(1)
T − 2v(1)

(
b′1δ

(1)
T + b1δ

(1)
T

′)
+ (be − 3)Hv(1)v(1)′

+

[
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]
∂‖v

(2) +

[
1− be + 2Q+

2(1−Q)

χ̄H +
H′
H2

]
Φ(2)

−2(1−Q)Ψ(2) +
1

HΨ(2)′ +
2

H

[
b1δ

(1)
T

′
∂‖v

(1) + (f − 2 + 2Q)Φ(1)∂‖Φ
(1)

+(2− f − 2Q)∂‖v
(1)∂‖Φ

(1) − b1Φ(1)δ
(1)
T

′
+ b1Φ(1)∂‖δ

(1)
T − 2∂iv

(1)∂‖∂
iv(1)

+∂iv
(1)∂iΦ(1)

]
+

2

H2

[
∂‖v

(1)∂2
‖Φ

(1) − Φ(1)∂2
‖Φ

(1) − Φ(1)∂3
‖v

(1)

]

+2

[
b1

(
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

)
+
b′1
H + 2

(
1− 1

χ̄H

)
∂b1
∂ ln L̄

]
δ

(1)
T ∂‖v

(1)

+
2

H

[
3− 2be + 4Q+

4(1−Q)

Hχ̄ +
3H′
H

]
∂‖v

(1)∂2
‖v

(1) + 2

[
b1

(
f − 2− be + 4Q

+
2(1−Q)

χ̄H +
H′
H2

)
− b′1
H − 2

(
2− 1

χ̄H

)
∂b1
∂ ln L̄

]
Φ(1)δ

(1)
T − 2(3− be)v(1)∂2

‖v
(1)

+

[
be − 1− 2Q− 2(1−Q)

χ̄H − H
′

H2

]
∂iv

(1)∂iv(1) +
2

H

[
1− 2f + 2be − 6Q

−4(1−Q)

χ̄H − 3H′
H2

]
Φ(1)∂2

‖v
(1) +A1

[
Φ(1)

]2
+A2v

(1)∂‖v
(1) +A3Φ(1)v(1)

+A4Φ(1)∂‖v
(1) +A5

[
∂‖v

(1)
]2

+ 2

[
−be + 2Q+

2(1−Q)

χ̄H +
H′
H2

+
1

H∂‖
]
ω

(2)
‖

−1

2
(1−Q)h

(2)
‖ −

1

2Hh
(2)′

‖ , (2.105)

where the background coefficients are,

A1 = −3 + 2f

(
2− 2be + 4Q+

4(1−Q)

χ̄H +
2H′
H2

)
− 2f ′

H + b2e + 6be − 8beQ+ 4Q

+16Q2 − 16
∂Q
∂ ln L̄

− 8
Q′
H +

b′e
H +

2

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)

− 2

χ̄H

[
4 + 2be − 2beQ− 4Q+ 8Q2 − 3H′

H2
(1−Q)− 8

∂Q
∂ ln L̄

− 2
Q′
H

]

+
H′
H2

(
− 8− 2be + 8Q+

3H′
H2

)
− H

′′

H3
, (2.106)

A2 = 2H
[
− 3 + 4be +

2be(1−Q)

χ̄H − b2e + 2beQ− 6Q− b′e
H −

6(1−Q)

χ̄H

+2

(
1− 1

χ̄H

)Q′
H

]
, (2.107)
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A3 = 2H
[
− 3 + f(3− be)− 3be − 2be

(1−Q)

χ̄H +
b′e
H + b2e − 4beQ+ 12Q+

6(1−Q)

χ̄H

−2

(
2− 1

χ̄H

)Q′
H

]
, (2.108)

A4 = 4 + 2f

[
− 3 + f + 2be − 3Q− 4(1−Q)

χ̄H − 2H′
H2

]
+

2f ′

H − 6be − 2b2e + 12beQ− 8Q

−16Q2 + 16
∂Q
∂ ln L̄

+ 12
Q′
H − 2

b′e
H −

4

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)

− 4

χ̄H

(
− 1− 2be + 2beQ+Q− 6Q2 +

3H′
H2

(1−Q) + 6
∂Q
∂ ln L̄

+ 2
Q′
H

)

+
2H′
H2

3 + 2be − 6Q− 3H′
H2

)
+

2H′′
H3

, (2.109)

A5 = −4− be + b2e − 4beQ+ 6Q+ 4Q2 − 4
∂Q
∂ ln L̄

− 4
Q′
H +

b′e
H

+
2

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)

+
2

χ̄H

[
3− 2be + 2beQ− 3Q− 4Q2 +

3H′
H2

(1−Q) + 4
∂Q
∂ ln L̄

+ 2
Q′
H

]

+
H′
H2

(
3− 2be + 4Q+

3H′
H2

)
− H

′′

H3
. (2.110)

In deriving (2.104)-(2.110), we have done the following:

• We have eliminated d/dχ̄ and ∂⊥i by using [49, 72],

d

dχ̄
= − d

dη
= −∂η + ∂‖ and ∂⊥i = ∂i − ni∂‖ , (2.111)

where the first equation is the total derivative along the past lightcone and second

equation is the transverse derivative. ∂‖ is the radial derivative and is defined as

[49, 72],

∂‖ = ni∂i . (2.112)

• From the commutator relation
[
∂⊥i, ∂‖

]
= χ̄−1∂⊥i we have shown that,

∂⊥iv
(1) ∂i⊥∂‖v

(1) = ∂iv
(1) ∂‖∂

iv(1) − ∂‖v(1) ∂2
‖v

(1) +
1

χ̄

[
∂iv

(1) ∂iv(1) −
[
∂‖v

(1)
]2]

.

(2.113)

• We have expressed the Poisson gauge galaxy overdensity, δ
(1)
g in terms of the T-

gauge dark matter overdensity, δ
(1)
T and the velocity potential, v(1) by using (2.69),

(2.70) and (2.71).

• Using (2.68)-(2.71), we have re-written the term ∂δ
(1)
g /∂ ln L̄ as,

∂δ
(1)
g

∂ ln L̄
=

∂b1
∂ ln L̄

δ
(1)
T −

∂be
∂ ln L̄

Hv(1) . (2.114)
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When we use (2.24), (2.63) and ∂/∂ ln a = H−1∂/∂η, we can further simplify

(2.114) to,

∂δ
(1)
g

∂ ln L̄
=

∂b1
∂ ln L̄

δ
(1)
T +Q′v(1) . (2.115)
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Chapter 3

The Fourier galaxy bispectrum

3.1 Fourier space

We only consider correlations at the same observed redshift z. Then the metric potentials

(Φ,Ψ) and velocity potential, v depend on the spatial coordinates,

x = χ̄n+ x0

=
[
η0 − η(z)

]
n+ x0 , (3.1)

and can be computed in Fourier space at fixed η(z). The position of the observer is

defined above as x0. We transform from the configuration space i.e., x-space, to Fourier

space which is the k-space as follows,

f(x) =

∫
d3k

(2π)3
eik·xf(k) , (3.2)

where we suppress the redshift dependence. The inverse Fourier transform is then,

f(k) =

∫
d3x e−ik·xf(x)

=

∫
d3x

∫
d3k′

(2π)3
e−i(k−k′)·xf(k′)

=

∫
d3k′ δD(k − k′)f(k′) , (3.3)

where δD(k − k′) is the Dirac-delta function defined as,

(2π)3δD(k − k′) =

∫
d3x e−i(k−k′)·x . (3.4)

54
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For the case of the radial derivative we have,

∂‖f(x) =

∫
d3k

(2π)3
∂‖e

ik·xf(k) . (3.5)

We can simplify (3.5) as follows,

∫
d3k

(2π)3
∂‖e

ik·xf(k) =

∫
d3k

(2π)3
∂‖e

i
[
(kk̂)·(χ̄n̂)

]
f(k)

=

∫
d3k

(2π)3
∂‖e

ikχ̄µf(k) , (3.6)

where µ = k̂ · n̂. The above leads to,

∫
d3k

(2π)3
(ikµ)eikχ̄µf(k) , i.e., ∂‖ =

∂

∂χ̄
→ ikµ . (3.7)

Hence, we find that ∂2
‖ → −k2µ2 and ∂3

‖ → −ik3µ3. Lastly, the Fourier transform of a

product h(x) = f(x)g(x) is a convolution,

h(k) = f(k) ~ g(k)

=

∫
d3k1

(2π)3

∫
d3k2 f(k1)g(k2)δD (k1 + k2 − k) . (3.8)

3.2 The galaxy number count fluctuation in Fourier space

3.2.1 Fourier transform of the first-order terms

We express all the perturbed variables Φ(1) and v(1) in terms of the T-gauge dark matter

overdensity δ
(1)
T . We start with the first-order Poisson equation [72, 94, 95],

∇2Φ(1)(z,x) =
3

2
ΩmH2δ

(1)
T (z,x) . (3.9)

In Fourier space, ∇2 → −k2 and therefore we have,

Φ(1)(k) = −3

2
Ωm
H2

k2
δ

(1)
T (k) . (3.10)

For the velocity potential we use (2.82) which is the first-order continuity equation,

δ
(1)′
T (z,x) = −∇2v(1)(z,x) , (3.11)

and we can show that,

δ
(1)′
T (z,x) = Hfδ(1)

T (z,x) , (3.12)

http://etd.uwc.ac.za/



Chapter 3. The Fourier galaxy bispectrum 56

where f = d lnD/d ln a is the matter growth rate and is given by the logarithmic time

derivative of the matter growth factor D. In ΛCDM model, D and f obey (see (1.104)

and (1.106) in Chapter 1),

D′ = HfD and
f ′

H =
1

2
(3Ωm − 4)f − f2 +

3

2
Ωm . (3.13)

Therefore, the Fourier version of (3.11) is,

Hv(1)(k) = f
H2

k2
δ

(1)
T (k) . (3.14)

Then, by using (3.10) and (3.14) in,

∆(1)
g (z,x) = ∆

(1)
gN(z,x)

︸ ︷︷ ︸
Newtonian

+ ∆
(1)
gGR(z,x)

︸ ︷︷ ︸
GR effects

, (3.15)

where ∆
(1)
gN and ∆

(1)
gGR are given in (2.100) and (2.101) respectively, we obtain the Fourier

transform as follows,

∆(1)
g (k) = K(1)(k)δ

(1)
T (k) , (3.16)

where K(1) = K(1)
N +K(1)

GR is the first-order kernel. The Newtonian part is [96],

K(1)
N (k) = b1 + fµ2 , (3.17)

and the GR part is [72, 96],

K(1)
GR(k) = i

µ

k
γ1 +

γ2

k2
, (3.18)

where γ1 and γ2 are functions of redshift given by [72, 96, 97],

γ1

H = f

[
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]
, (3.19)

γ2

H2
= f(3− be) +

3

2
Ωm

[
2 + be − f − 4Q− 2

(1−Q)

χ̄H − H
′

H2

]
. (3.20)
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3.2.2 Fourier transform of the second-order terms

3.2.2.1 Scalars

We begin with the intrinsic second-order scalars δ
(2)
T , v(2), Φ(2) and Ψ(2). They can be

split into Newtonian (N) and GR parts. Their Newtonian expressions are [63],

δ
(2)
T N(k3) =

∫
d(k1,k2,k3)F2(k1,k2) , Φ

(2)
N (k3) = −3

2
Ωm
H2

k2
3

δ
(2)
T N(k3) , (3.21)

v
(2)
N (k3) = f

H
k2

3

∫
d(k1,k2,k3)G2(k1,k2) , Ψ

(2)
N (k3) = Φ

(2)
N (k3) , (3.22)

where we define,

∫
d(k1,k2,k3) ≡

∫
d3k1

(2π)3

∫
d3k2 δ

(1)
T (k1)δ

(1)
T (k2) δD(k1 + k2 − k3) . (3.23)

The second-order kernels for the dark matter (F2) and velocity (G2) perturbations in

T-gauge are given by [83],

F2(k1,k2) = 1 +
F

D2
+
k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

(
1− F

D2

)(
k1 · k2

k1k2

)2

, (3.24)

G2(k1,k2) =
F ′

DD′
+
k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

(
2− F ′

DD′

)(
k1 · k2

k1k2

)2

. (3.25)

F is the second-order growth factor and satisfies the growing mode solution of [83],

F ′′ +HF ′ − 1

αa
F =

1

αa
D2 , with α =

2

3H2
0 Ωm0

=
2

3ΩmH2a
. (3.26)

In an Einstein-de Sitter (EDS) background, F = 3D2/7 which is a very good approxi-

mation in ΛCDM [98]. Then (3.24) and (3.25) becomes,

F2(k1,k2) =
10

7
+
k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

4

7

(
k1 · k2

k1k2

)2

, (3.27)

G2(k1,k2) =
6

7
+
k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

8

7

(
k1 · k2

k1k2

)2

. (3.28)
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For the GR parts, the real space equations in the Poisson gauge are [83],

δ
(2)
T GR(x) =

20

3
αDgin

[(
3

4
− aNL

)[
∇ϕ0(x)

]2
+ (2− aNL)ϕ0(x)∇2ϕ0(x)

]
, (3.29)

v
(2)
GR(x) = αD′

[(
−4

3
g +

5

3
gin(2aNL − 1)− αHD′

)
ϕ2

0(x)− 12Θ0(x)

]
, (3.30)

Φ
(2)
GR(x) =

(
3g2 +

5

3
ggin(1− 2aNL) +

αD′2

a

)
ϕ2

0(x) + 12

(
2g2 − 5

3
ggin +

αD′2

a

)
Θ0(x) ,

(3.31)

Ψ
(2)
GR(x) =

(
−g2 +

5

3
ggin(1− 2aNL) +

αD′2

a

)
ϕ2

0(x) + 12

(
g2 − 5

3
ggin

)
Θ0(x) ,

(3.32)

where,

Θ0(x) =
1

2
∇−2

[
1

3
ϕ,l0ϕ0,l −∇−2

(
ϕ,l0ϕ

,m
0

)
,lm

]
, (3.33)

and,

Ψ(1) = Φ(1) = gϕ0 , g =
D

a
, δ

(1)
T = αD∇2ϕ0 , aNL = 1+

3

5
fNL ,

gin

g
=

1

5

(
3 +

2f

Ωm

)
.

(3.34)

fNL is the non-Gaussian parameter, gin is the initial value of the growth factor in the

matter-dominated era and “0” denotes redshift z = 0 where a0 = D0 = g0 = 1. We now

simplify (3.29)-(3.32) by using (3.34) and obtain,

H2δ
(2)
T GR(x) = − 2g2

3Ωm

{[
1 +

2f

3Ωm
+

12

5
fNL

(
1 +

2f

3Ωm

)][
∇ϕ0(x)

]2

−12

[
1 +

2f

3Ωm
− 3

5
fNL

(
1 +

2f

3Ωm

)]
ϕ0(x)∇2ϕ0(x)

}
, (3.35)

Hv(2)
GR(x) = −2

3

g2f

Ωm

{[
3− 6

5
fNL

(
1 +

2f

3Ωm

)]
ϕ2

0(x) + 12Θ0(x)

}
, (3.36)

Φ
(2)
GR(x) = g2

[
2− 2f

3Ωm
+

2f2

3Ωm
− 6

5
fNL

(
1 +

2f

3Ωm

)]
ϕ2

0(x)

+12g2

[
1− 2f

3Ωm
+

2f2

3Ωm

]
Θ0(x) , (3.37)

Ψ
(2)
GR(x) = −2g2

[
1 +

f

3Ωm
− f2

3Ωm
+

3

5
fNL

(
1 +

2f

3Ωm

)]
ϕ2

0(x)

−8g2 f

Ωm
Θ0(x) . (3.38)
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We consider (3.33) which can be re-written as follows,

Θ0(x) =
1

2
∇−2

[
1

3
∂lϕ0∂lϕ0 −∇−2∂l∂m

(
∂lϕ0∂

mϕ0

)]

=
1

2
∇−2

{
1

3
∂lϕ0∂lϕ0 −∇−2

[
∂l(∂m∂

lϕ0)∂mϕ0 + (∂m∂lϕ0)(∂l∂
mϕ0)

+∂l∂
lϕ0(∂m∂

mϕ0) + ∂lϕ0∂l(∂m∂
mϕ0)

]}
. (3.39)

In Fourier space, ∇−2 → −1/k2 and ∂l → ikl. We use the convolution theorem given in

(3.8) to show that the Fourier transform of the first term is,

1

6k2
3

∫
d3k1

(2π)3

∫
d3k2 (k1 · k2)ϕ0(k1)ϕ0(k2)δD(k1 + k2 − k3) , (3.40)

where we have used kl1k2 l = k1 · k2. The Fourier transform of the second term gives,

− 1

2k2
3

∫
d3k1

(2π)3

∫
d3k2

[
k2

1k
2
2 +(k1 ·k2)(k2

1 +k2
2)+(k1 ·k2)2

]
ϕ0(k1)ϕ0(k2)δD(k1+k2−k3) .

(3.41)

Using the definition of α given in (3.26) we can show from (3.34) that,

ϕ0(k) = − 3

2g
Ωm
H2

k2
δ

(1)
T (k) . (3.42)

Together with the results of (3.40), (3.41), (3.42) and the definition of the integral given

in (3.23) the Fourier transform of (3.39) is,

Θ0(k3) =

(
3ΩmH2

2gk3

)2 ∫
d(k1,k2,k3)

{
k1 · k2

6k2
1k

2
2

− 1

2k2
3

[
1+
k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

(k1 · k2)2

k2
1k

2
2

]}
.

(3.43)

The Fourier transforms of the other terms,
[
∇ϕ0

]2
, ϕ0∇2ϕ0 and ϕ2

0 can be worked as

follows,

[
∇ϕ0

]2
(k3) = −

(
3ΩmH2

2g

)2 ∫
d(k1,k2,k3)

k1 · k2

k2
1k

2
2

, (3.44)

[
ϕ0∇2ϕ0

]
(k3) = −

(
3ΩmH2

2g

)2 ∫
d(k1,k2,k3)

k2
1 + k2

2

2k2
1k

2
2

, (3.45)

ϕ2
0(k3) =

(
3ΩmH2

2g

)2 ∫
d(k1,k2,k3)

1

k2
1k

2
2

. (3.46)
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We now have all the tools to Fourier transform (3.35)-(3.38). For the second-order

T-gauge dark matter overdensity we have,

H2δ
(2)
T GR(k3) = 3ΩmH4

∫
d(k1,k2,k3)

1

k2
1k

2
2

{[
1

2
+

f

3Ωm
+

6

5
fNL

(
1 +

2f

3Ωm

)]
k1 · k2

−
[
1 +

2f

3Ωm
− 3

5
fNL

(
1 +

2f

3Ωm

)](
k2

1 + k2
2

)}
.

(3.47)

For the velocity potential we obtain,

Hv(2)
GR(k3) = 3ΩmH4f

∫
d(k1,k2,k3)

1

k2
1k

2
2

[
− 3

2
+

3

5
fNL

(
1 +

2f

3Ωm

)
+ E2(k1,k2,k3)

]
,

(3.48)

where we have defined a new kernel,

E2(k1,k2,k3) =
k2

1k
2
2

k4
3

[
3 + 2

k1 · k2

k1k2

(
k1

k2
+
k2

k1

)
+

(k1 · k2)2

k2
1k

2
2

]
, (3.49)

which is scale independent as F2 and G2 [see (3.27) and (3.28)]. For the metric potentials

Φ(2) and Ψ(2) we have,

Φ
(2)
GR(k3) = 3ΩmH4

∫
d(k1,k2,k3)

1

k2
1k

2
2

[
1

2
(3Ωm − f+f2)− 3

10
fNL(2f + 3Ωm)

− 1

2
(3Ωm − 2f + f2

)
E2(k1,k2,k3)

]
,

(3.50)

Ψ
(2)
GR(k3) = 3ΩmH4

∫
d(k1,k2,k3)

1

k2
1k

2
2

[
− 1

2
(3Ωm + f−f2)− 3

10
fNL(2f − 3Ωm)

+ fE2(k1,k2,k3)

]
. (3.51)

For the time derivative of (3.51) we find that,

Ψ
(2)′
GR(k3) = 3ΩmH5

∫
d(k1,k2,k3)

1

k2
1k

2
2

{
1

2
(1− f)

[
6Ωm + f(1− 2f)− 2f

H′
H2

]

+
1

2
(2f − 1)

f ′

H
− 3

5
fNL

[
3Ωm(1− f) + f

(
2f − 1 +

2H′
H2

)
+
f ′

H

]

+

[
f

(
2f − 1 +

2H′
H2

)
+
f ′

H

]
E2(k1,k2,k3)

}
.

(3.52)
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We neglect the long modes δ
(2)
T GR and v

(2)
GR because we are assuming Gaussianity i.e.,

fNL = 0. More details on the removal of the long mode are given in [99]. From (3.50)–

(3.52), it follows that the potential terms proportional to Φ(2),Ψ(2) and Ψ(2)′ in (2.105),

lead to relativistic corrections proportional to Φ
(2)
GR,Ψ

(2)
GR and Ψ

(2)′
GR, which sum up to a

term of the form,
[
Γ̃1(z) + E2(k1,k2,k3) Γ̃2(z)

]
/(k1k2)2 . (3.53)

where,

Γ̃1

H4
=

9

4
Ω2
m

[
9− 4f − be− 2Q+

2(1−Q)

χ̄H +
H′
H2

]
+

3

2
Ωmf

[
2− 2f +

2f ′

H + be

− 4Q− 2(1−Q)

χ̄H − 3H′
H2

]
+

3

2
Ωmf

2

[
− 2 + 2f − be + 4Q+

2(1−Q)

χ̄H +
3H′
H2

]

− 3

2
Ωm

f ′

H , (3.54)

Γ̃2

H4
=

9

2
Ω2
m

[
− 1 + be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]
+ 3Ωmf

[
− 2 + 2f − be + 4Q

+
2(1−Q)

χ̄H +
3H′
H2

]
+ 3Ωmf

2

[
− 1 + be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]

+ 3Ωm
f ′

H . (3.55)

Other typical second-order terms are those which are quadratic in first-order terms e.g.,

v(1)(x)δ
(1)
g (x). Its Fourier transform is as follows,

[
v(1)δ(1)

g

]
(k3) =

1

2

∫
d3k1

(2π)3

∫
d3k2

[
v(1)(k1)δ(1)

g (k2) + v(1)(k2)δ(1)
g (k1)

]
δD(k1+k2−k3) ,

(3.56)

where the factor of 1/2 follows from symmetrization. We express the perturbative vari-

ables in terms of δ
(1)
T by using (2.69), (2.70) and (3.14). This leads to,

v(1)(k1)δ(1)
g (k2)+v(1)(k2)δ(1)

g (k1) =

[
b1fH

(
1

k2
1

+
1

k2
2

)
+2f2 (3− be)H3 1

k2
1k

2
2

]
δ

(1)
T (k1)δ

(1)
T (k2) .

(3.57)

Then (3.56) becomes,

[
v(1)δ(1)

g

]
(k3) = Hf

∫
d(k1,k2,k3)

[
b1
(
k2

1 + k2
2

)
+ 2 (3− be) fH2

]

2k2
1k

2
2

. (3.58)

Table 3.1 shows the Fourier kernels of all the scalars in ∆
(2)
g . For convenience, the

superscript (1) is dropped from first-order variables δ
(1)
T , v(1) and Φ(1).
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Table 3.1: Fourier transform kernel and coefficient of the scalars in (2.104) and (2.105),
ordered according to their k-dependence. N denotes a Newtonian term (k0), Γ1 is for

k−4, Γ2 is for k−3, Γ3 to Γ8 are for k−2 and Γ9 to Γ14 are for k−1.

Term Γ Fourier kernel F Coefficient

δ
(2)
T N F2(k1,k2) b1

∂2‖v
(2) N f2Hµ2

3G2(k1,k2) −1/H

δT∂
2
‖v N −fH

(
µ2
1 + µ2

2

)
/2 −2b1/H

∂‖v∂‖δT N −fHµ1µ2
(
k21 + k22

)
/
(
2k1k2

)
−2b1/H

∂‖v∂
3
‖v N f2H2(µ1µ

3
2k

2
2 + µ2µ

3
1k

2
1

)
/
(
k1k2

)
2/H2

[
∂2‖v

]2 N f2H2 µ2
1µ

2
2 2/H2

[
Φ
]2 Γ1 9Ω2

mH
4/

(
4k21k

2
2

)
A1

Φv Γ1 −3ΩmH3f/
(
2k21k

2
2

)
A3

∇−2[v∇2v′ − v′∇2v −
6∂iΦ∂

iv − 6Φ∇2v
] Γ1 9ΩmH3f/

(
2k21k

2
2

)
(3− be)H

vv′ Γ1 fH3(3Ωm − 2f
)
/
(
2k21k

2
2

)
(be − 3)H[

v
]2 Γ1 f2H2/

(
k21k

2
2

)
(be − 3)2H2 + b′eH + (be − 3)H′

v∂‖v Γ2 i f2H2(µ1k1 + µ2k2
)
/
(
2k21k

2
2

)
A2

Φ∂‖v Γ2 −3i fΩmH3 (
µ1k1 + µ2k2

)
/
(
4k21k

2
2

)
A4

Φ∂‖Φ Γ2 9i Ω2
mH

4(µ1k1 + µ2k2
)
/
(
8k21k

2
2

)
2(f − 2 + 2Q)/H

Ψ(2) = Φ(2) Γ3 −3ΩmH2F2(k1,k2)/
(
2k23

)
4Q− 1− be + R

Φ(2)′ Γ3 −3ΩmH3(2f − 1)F2(k1,k2)/
(
2k23

)
1/H

v(2) Γ4 fHG2(k1,k2)/k23 (3− be)H

[
∂‖v

]2 Γ5 −f2H2µ1µ2/
(
k1k2

)
A5

∂‖v∂‖Φ Γ5 3fΩmH3µ1µ2/
(
2k1k2

)
2(2− f − 2Q)/H

∂iv ∂
iv Γ6 −f2H2 k1 · k2/

(
k21k

2
2

)
be − 1− 2Q−R

∂iv∂
iΦ Γ6 3fΩmH3 k1 · k2/

(
2k21k

2
2

)
2/H

ΦδT Γ7 −3ΩmH2(k21 + k22
)
/
(
4k21k

2
2

)
2b1

(
f − 2− be + 4Q +R

)
− S

Φδ′T Γ7 −3fΩmH3(k21 + k22
)
/
(
4k21k

2
2

)
−2b1/H

vδT Γ7 fH
(
k21 + k22

)
/
(
2k21k

2
2

)
b′1 + 2b1(3− be)H

vδ′T Γ7 f2H2(k21 + k22
)
/
(
2k21k

2
2

)
−2b1

Φ∂2‖v Γ8 3fΩmH3(µ2
1k

2
1 + µ2

2k
2
2

)
/
(
4k21k

2
2

)
2
(
1− 2f + 2be − 6Q− 2R−H′/H2)/H

Φ∂2‖Φ Γ8 −9Ω2
mH

4(µ2
1k

2
1 + µ2

2k
2
2

)
/
(
4k21k

2
2

)
−2/H2

v∂2‖v Γ8 −f2H3(µ2
1k

2
1 + µ2

2k
2
2

)
/
(
2k21k

2
2

)
2(be − 3)/H

Φ∂‖δT Γ9 −3i ΩmH2(µ1k
3
1 + µ2k

3
2

)
/
(
4k21k

2
2

)
2b1/H

∂iv∂‖∂
iv Γ10 −i f2H2k1 · k2

(
µ1k1 + µ2k2

)
/
(
2k21k

2
2

)
−4/H

δ′T∂‖v Γ11 i f2H2(µ1k2 + µ2k1
)
/
(
2k1k2

)
2b1/H

δT∂‖v Γ11 i fH
(
µ1k2 + µ2k1

)
/
(
2k1k2

)
2b1

(
be − 2Q−R

)
+ S

Φ∂3‖v Γ12 3i fΩmH3(µ3
1k

3
1 + µ3

2k
3
2

)
/
(
4k21k

2
2

)
−2/H2

∂‖v∂
2
‖v Γ13 −i f2H2(µ1µ

2
2k2 + µ2µ

2
1k1

)
/
(
2k1k2

)
2
(
3− 2be + 4Q + 2R +H′/H2)/H

∂‖v∂
2
‖Φ Γ13 3i fΩmH3(µ1µ

2
2k2 + µ2µ

2
1k1

)
/
(
4k1k2

)
2/H2

∂‖v
(2) Γ14 i fHµ3G2(k1,k2)/k3 be − 2Q−R
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The coefficients A1, A2, A3, A4, A5 are given in (2.106)-(2.110) and,

R ≡ 2(1−Q)

χ̄H +
H′
H2

, S ≡ 4

(
2− 1

χ̄H

)
∂b1
∂ ln L̄

. (3.59)

The Fourier kernels for the quadratic terms in Table 3.1 can be represented by the

following algorithm,

DnX DmY , (3.60)

where D = ∂i or ∂‖, and X, Y = δT, v or Φ. Then the corresponding term in the kernel

is formed as follows,

{ 1

2

(
i k1

)n(
i k2

)m
for D = ∂‖ OR

1

2

(
ik1 · ik2

)n
for D = ∂i, m = n

×
[
k−2

1 if X is v or Φ
]
×
[
k−2

2 if Y is v or Φ
]

×
[
a factor of µ1 for each ∂‖ acting on X

]
×
[
a factor of µ2 for each ∂‖ acting on Y

]

×
[
a factor of fH for each v

]

×
[
a factor of − 3

2
ΩmH2 for each Φ

]}

+
{

1↔ 2
}

(3.61)

Therefore, we use the results of (3.54), (3.55) and Table 3.1 to obtain the Fourier trans-

form of the second-order scalars in the galaxy number count fluctuation as,

∆
(2)
gS (k3) =

∫
d(k1,k2,k3)K(1)(k1)K(1)(k2)K(2)

Sca.(k1,k2,k3)− δD(k3)
〈
∆(2)
g

〉
. (3.62)

where we subtract off the second term which is the ensemble average of ∆
(2)
g to ensure

that
〈
∆

(2)
g

〉
= 0. The first-order kernel K(1) is given by (3.17) and (3.18). K(2)

Sca. is the

second-order kernel for scalar perturbations and is cyclically symmetrical over the ki’s.

The Newtonian part is,

K(2)
N (k1,k2,k3) = b1F2(k1,k2) + b2 + fG2(k1,k2)µ2

3 + bTidalS2(k1,k2)

+f2µ1µ2

k1k2

(
µ1k1 + µ2k2

)2
+ b1

f

k1k2

[(
µ2

1 + µ2
2

)
k1k2 + µ1µ2

(
k2

1 + k2
2

)]
,

(3.63)

where the first line is the second-order generalizations of the dark matter overdensity

and Kaiser RSD terms respectively. S2 is the Fourier kernel for the tidal term and is of

the form [27, 100],

S2(k1,k2) =
(k1 · k2)2

k2
1k

2
2

− 1

3
. (3.64)

http://etd.uwc.ac.za/



Chapter 3. The Fourier galaxy bispectrum 64

The terms in the second line are the non-linear RSD contributions. The GR part of

K(2)
Sca. is,

K(2)
S (k1,k2,k3) =

1

k2
1k

2
2

{
Γ1 + Γ̃1 + E2(k1,k2,k3) Γ̃2

+ i (µ1k1 + µ2k2) Γ2 +
k2

1k
2
2

k2
3

[
F2(k1,k2) Γ3 +G2(k1,k2) Γ4

]

+ (µ1k1µ2k2) Γ5 + (k1 · k2) Γ6 +
(
k2

1 + k2
2

)
Γ7 +

(
µ2

1k
2
1 + µ2

2k
2
2

)
Γ8

+ i

[ (
µ1k

3
1 + µ2k

3
2

)
Γ9 + (µ1k1 + µ2k2) (k1 · k2) Γ10

+ k1k2 (µ1k2 + µ2k1) Γ11 +
(
µ3

1k
3
1 + µ3

2k
3
2

)
Γ12

+ µ1µ2k1k2 (µ1k1 + µ2k2) Γ13 + µ3
k2

1k
2
2

k3
G2(k1,k2) Γ14

]}
,

(3.65)

where the Γ-coefficients are as follows,

Γ1

H4
=

9

4
Ω2
m

[
−3 + 2f

(
2− 2be + 4Q+

4(1−Q)

χ̄H +
2H′
H2

)
− 2f ′

H + b2e + 6be − 8beQ

+ 4Q+ 16Q2 − 16
∂Q
∂ ln L̄

− 8
Q′
H +

b′e
H +

2

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)

− 2

χ̄H

(
4 + 2be − 2beQ− 4Q+ 8Q2 − 3H′

H2
(1−Q)− 8

∂Q
∂ ln L̄

− 2
Q′
H

)

+
H′
H2

(
− 8− 2be + 8Q+

3H′
H2

)
− H

′′

H3

]

+ 3Ωmf

[
6− f(3− be) + be

(
3 +

2(1−Q)

χ̄H

)
− b′e
H − b

2
e + 4beQ− 12Q

− 6(1−Q)

χ̄H + 2

(
2− 1

χ̄H

)Q′
H

]
+ f2

[
12− 7be + b2e +

b′e
H + (be − 3)

H′
H2

]
,

(3.66)
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Γ2

H3
=

9

4
Ω2
m(f − 2 + 2Q) +

3

2
Ωmf

[
− 2− f

(
− 3 + f + 2be − 3Q− 4(1−Q)

χ̄H − 2H′
H2

)

− f ′

H + 3be + b2e − 6beQ+ 4Q+ 8Q2 − 8
∂Q
∂ ln L̄

− 6
Q′
H +

b′e
H

+
2

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)
+

2

χ̄H

(
− 1− 2be + 2beQ+Q− 6Q2

+
3H′
H2

(1−Q) + 6
∂Q
∂ ln L̄

+ 2
Q′
H

)
− H

′

H2

(
3 + 2be − 6Q− 3H′

H2

)
− H

′′

H3

]

+ f2

[
− 3 + 2be

(
2 +

(1−Q)

χ̄H

)
− b2e + 2beQ− 6Q− b′e

H −
6(1−Q)

χ̄H

+ 2

(
1− 1

χ̄H

)Q′
H

]
, (3.67)

Γ3

H2
=

3

2
Ωm

[
2− 2f + be − 4Q− 2(1−Q)

χ̄H − H
′

H2

]
, (3.68)

Γ4

H2
= f(3− be) , (3.69)

Γ5

H2
= 3Ωmf(2− f − 2Q) + f2

[
4 + be − b2e + 4beQ− 6Q− 4Q2 + 4

∂Q
∂ ln L̄

+ 4
Q′
H

− b′e
H −

2

χ̄2H2

(
1−Q+ 2Q2 − 2

∂Q
∂ ln L̄

)
− 2

χ̄H

(
3− 2be + 2beQ−Q− 4Q2

+
3H′
H2

(1−Q) + 4
∂Q
∂ ln L̄

+ 2
Q′
H

)
− H

′

H2

(
3− 2be + 4Q+

3H′
H2

)
+
H′′
H3

]
, (3.70)

Γ6

H2
= 3Ωmf − f2

[
− 1 + be − 2Q− 2(1 +Q)

χ̄H − H
′

H2

]
, (3.71)

Γ7

H2
=

3

2
Ωm

[
b1

(
2 + be − 4Q− 2(1−Q)

χ̄H − H
′

H2

)
+
b′1
H + 2

(
2− 1

χ̄H

)
∂b1
∂ ln L̄

]

− f
[
b1(f − 3 + be) +

b′1
H

]
, (3.72)

Γ8

H2
=

9

4
Ω2
m +

3

2
Ωmf

[
− 2f + 2be − 6Q− 4(1−Q)

χ̄H − 3H′
H2

]
+ f2(5− be) , (3.73)

Γ9

H = −3

2
Ωmb1 , (3.74)

Γ10

H = 2f2 , (3.75)

Γ11

H = f

[
b1

(
f + be − 2Q− 2(1−Q)

χ̄H − H
′

H2

)
+
b′1
H + 2

(
1− 1

χ̄H

)
∂b1
∂ ln L̄

]
, (3.76)

Γ12

H = −3

2
Ωmf , (3.77)

Γ13

H =
3

2
Ωmf − f2

[
3− 2be + 4Q+

4(1−Q)

χ̄H +
3H′
H2

]
, (3.78)

Γ14

H = f

[
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]
. (3.79)
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3.2.2.2 Vectors

The Fourier transform of a pure vector can be written in terms of two independent

polarization vectors as [85],

ω
(2)
i (x) =

∫
d3k

(2π)3

[
ω(k)ei(k) + ω̄(k)ēi(k)

]
eik·x , (3.80)

with,

ω(k) =

∫
d3xωi(x)ei(k)e−ik·x, ω̄(k) =

∫
d3xωi(x)ēi(k)e−ik·x . (3.81)

The polarization vectors satisfy the following conditions,

e(k) · k = ē(k) · k = 0 and e(k) · ē(k) = 0 . (3.82)

Taking (3.80) we can write,

ω
(2)
‖ (x) = niω

(2)
i (x) =

∫
d3k

(2π)3

[
ω(k)niei(k) + ω̄(k)niēi(k)

]
eik·x , (3.83)

where the solution for ω
(2)
i (x) is given by [85],

∇2ωi(x) =
16f

3ΩmH
[
∇2Φ(1)(x)∂iΦ

(1)(x)
]V

. (3.84)

The superscript ‘V’ denotes the vector part. The Fourier transform of (3.84) gives,

ωi(k3) = −i
6ΩmH3f

k2
3

∫
d(k1,k2,k3)

[
k1i

k2
1

+
k2i

k2
2

]
. (3.85)

Then,

ω(k3) = ei(k3)ωi(k3) = −i
6ΩmH3f

k2
3

∫
d(k1,k2,k3)

[
k1 · e(k3)

k2
1

+
k2 · e(k3)

k2
2

]
. (3.86)

The other parity ω̄(k3) has a similar Fourier solution with e being replace by ē. The

second-order vectors in the expression for the galaxy number count fluctuation is given

by (2.97),

∆
(2)
gV(z,x) = 2

[
−be + 2Q+

2(1−Q)

χ̄H +
H′
H2

+
1

H∂‖
]
ω

(2)
‖ (x) . (3.87)

Together with (3.83) and (3.86) we find that (3.87) Fourier transforms as follows,

∆
(2)
gV (x) =

∫
d3k3

(2π)3
∆

(2)
gV (k3) eik3·x , (3.88)
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where,

∆
(2)
gV (k3) =

∫
d(k1,k2,k3)K(2)

V (k1,k2,k3) . (3.89)

We have suppressed the redshift dependence to reduce clutter. K(2)
V is the second-order

kernel for the vector perturbations and takes the form,

K(2)
V (k1,k2,k3) = 12ΩmH2f

µ3

k3
V123 − i 12ΩmH3f

[
− be + 2Q+

2(1−Q)

χ̄H +
H′
H2

]V123

k2
3

,

(3.90)

where,

V123 =

[
n·e(k3)

(
k1 · e(k3)

k2
1

+
k2 · e(k3)

k2
2

)
+n·ē(k3)

(
k1 · ē(k3)

k2
1

+
k2 · ē(k3)

k2
2

)]
. (3.91)

At this stage, we introduce coordinates in Fourier space and this breaks the algebraic

cyclic symmetry of the kernel when we permute the ki’s. We consider k1 along the

z-axis as shown in Figure 3.1. For the direction of observation n, we use two angles: an

angle θ1 and an azimuthal angle φn with respect to the z- and x-axes respectively. This

places n in a different plane which we consider to be the fixed frame of reference.

  

x

y

z

2k

k1

n

ρ
n

ρ
θ12

θ1

θ2

ϕn

ϕ

3k

Figure 3.1: The geometry of the galaxy bispectrum without the polarization vectors.

We use a right-handed coordinate system and a tail-tail configuration for the angles

(θi, θij) throughout. We start with k1 on the z-axis,

k1 = k1

[
0x̂+ 0ŷ + ẑ

]
, (3.92)
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and choose k2 to be in the plane controlled by the azimuthal angle φ (with respect to

the x-axis) such that,

k2 = k2

[
sin θ12 cosφx̂+ sin θ12 sinφŷ + cos θ12ẑ

]
, (3.93)

where θ12 is the angle between the k1 and k2. For k3 we obtain,

k3 = k3

[
− sin θ31 cosφx̂− sin θ31 sinφŷ + cos θ31ẑ

]
, (3.94)

where θ31 is the angle between the k1 and k3. The conservation of the mode vectors,

k1 + k2 + k3 = 0 , (3.95)

ensures a closed triangle. Using (3.92) and (3.93) in (3.95) we obtain,

k3 = −k2

[
sin θ12 cosφx̂+ sin θ12 sinφŷ +

(
k1

k2
+ cos θ12

)
ẑ

]
. (3.96)

Then (3.94) and (3.96) imply that,

k3 sin θ31 = k2 sin θ12 , (3.97)

k3 cos θ31 = −k2

(
k1

k2
+ cos θ12

)
. (3.98)

For n we have,

n = sin θ1 cosφnx̂+ sin θ1 sinφnŷ + cos θ1ẑ , (3.99)

where θi is the angle between n and ki and, φn is the azimuthal angle with respect to

the x-axis. Taking the dot product with n on both sides of (3.95) leads to,

µ1k1 + µ2k2 + µ3k3 = 0 , (3.100)

where µi = k̂i ·n. This shows that two of the µi are independent, where k3 = |k1 + k2|.
One of the µi can be expressed in terms of the other one and the choice of independent

µij where µij = k̂i · k̂j . Here, we choose µ1 and µ12. We consider the plane containing

[k1,k2]. We decompose k̂2 in the direction of k̂1 and perpendicular to k̂1 in the [k1,k2]

plane as,

k̂2 = µ12k̂1 +
√

1− µ2
12ρ̂ , (3.101)

where ρ̂ is the projection of k2 in the x-y plane. We do the same thing for the plane

[k1,n],

n = µ1k̂1 +
√

1− µ2
1ρ̂n , (3.102)
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where ρ̂n is the projection of n in the x-y plane. Taking the dot product between (3.101)

and (3.102) gives,

µ2 = µ1µ12 +
√

1− µ2
1

√
1− µ2

12ρ̂ · ρ̂n . (3.103)

From Figure 3.1, the angle between ρ̂ and ρ̂n is ω = φn − φ. Hence (3.103) becomes,

µ2 = µ1µ12 +
√

1− µ2
1

√
1− µ2

12 cosω . (3.104)

Using (3.100) we find that,

µ3 = − 1

k3

[
µ1k1 + µ2k2

]
. (3.105)

For the mode vectors, let us consider Figure 3.2.

  

θ12

θ23

θ31

k

n

1

2

3

k

k

Figure 3.2: A closed triangle with k1, k2 and k3 flowing in one direction. The
direction of observation is n and all the angles are defined in a tail-tail configuration.

From (3.95) it follows that,

k3 · k3 = k2
3 = k2

1 + k2
2 + 2k1k2µ12 , (3.106)

and if we define k2 = rk1, we can show that (3.106) becomes,

k3 = k1

√
1 + r2 + 2rµ12 . (3.107)
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Then for k1 · k1 and k2 · k2 we show that,

µ23 =
−(r + µ12)√

1 + r2 + 2rµ12

and µ31 =
−(1 + rµ12)√
1 + r2 + 2rµ12

. (3.108)

Hence, changing the values of r and µ12 control the magnitudes of the k-vectors and the

angles among them. This leads to different triangular shapes as shown in Figure 3.3.

  

θ12

k1

2

3

k

k

θ12→π

θ12

k1

2

3

k

k

θ12=2π/3

θ12

k1

2

3

k

k

θ12→0

Figure 3.3: These are examples of different triangular configurations. Left figure:
The squeezed triangle with k1 ≈ k2 � k3. Middle figure: The equilateral triangle with

k1 = k2 = k3. Right figure: The folded triangle with k1 ≈ k2 ≈ k3/2.

We now modify Figure 3.1 to include the polarization vectors as shown in Figure 3.4.

We start by defining the triplet [k1, e(k1), ē(k1)] as follows,

k1 = k1

[
0x̂+ 0ŷ + ẑ

]
, e(k1) = x̂+ 0ŷ + 0ẑ , ē(k1) = 0x̂+ ŷ + 0ẑ . (3.109)

For (e, ē)(k2) we choose the triplet [k2, e(k2), ē(k2)] to coincide with [k1, e(k1), ē(k1)]

when θ12 = φ = 0 and this implies,

e(k2) = µ12 cosφx̂+µ12 sinφŷ−
√

1− µ2
12ẑ , ē(k2) = − sinφx̂+cosφŷ+0ẑ , (3.110)

where (e, ē)(k2) has the same handedness as (e, ē)(k1) with respect to their k-vectors.

We specify (e, ē)(k3) in the same way and obtain,

e(k3) = −k2

k3

[(
k1

k2
+ µ12

)
cosφx̂+

(
k1

k2
+ µ12

)
sinφŷ −

√
1− µ2

12ẑ

]
,(3.111)

ē(k3) = − sinφx̂+ cosφŷ + 0ẑ . (3.112)
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x

y

z

2k

k1
n

ρ
n

ρ
θ12

θ1

θ2

ϕn

ϕ

3k

e(k  )1

e(k  )-
1

e(k  ) 2

-e(k  ) 2

ϕ

θ12

 e(k  ) 3

-e(k  ) 3=
π−θ31

-

Figure 3.4: The geometry of the galaxy bispectrum with the polarization vectors
satisfying the conditions in (3.82).

Then the projection along n gives,

n · e(k1) =
√

1− µ2
1 cosφn , (3.113)

n · ē(k1) =
√

1− µ2
1 sinφn , (3.114)

n · e(k2) = µ12

√
1− µ2

1 cos (φn − φ)− µ1

√
1− µ2

12 , (3.115)

n · ē(k2) =
√

1− µ2
1 sinω , (3.116)

n · e(k3) =
k2

k3

[
−
√

1− µ2
1

(
k1

k2
+ µ12

)
cosω + µ1

√
1− µ2

12

]
, (3.117)

n · ē(k3) =
√

1− µ2
1 sinω , (3.118)

http://etd.uwc.ac.za/



Chapter 3. The Fourier galaxy bispectrum 72

and the dot products with k-vectors yield,

k1 · e(k2) = −k1

√
1− µ2

12 , (3.119)

k1 · ē(k2) = 0 , (3.120)

k2 · e(k1) = k2

√
1− µ2

12 cosφ , (3.121)

k2 · ē(k1) = k2

√
1− µ2

12 sinφ , (3.122)

k2 · e(k3) = −k1k2

k3

√
1− µ2

12 , (3.123)

k2 · ē(k3) = 0 . (3.124)

For the other possible permutations, we apply (3.82) to (3.95) and derive the following,

k1 · e(k3) = −k2 · e(k3) , k2 · e(k1) = −k3 · e(k1) , k3 · e(k2) = −k1 · e(k2) ,

k1 · ē(k3) = −k2 · ē(k3) , k2 · ē(k1) = −k3 · ē(k1), k3 · ē(k2) = −k1 · ē(k2) .

(3.125)

We can now obtain the exact forms of (3.91) for the second-order vector kernel as,

V123 =

(
k2

1 − k2
2

k2
3k1

)[(
k1

k2
+ µ12

)√
1− µ2

1 cosω − µ1

√
1− µ2

12

]√
1− µ2

12 , (3.126)

V231 =

(
k2

3 − k2
2

k2
3k2

)√
1− µ2

1

√
1− µ2

12 cosω , (3.127)

V312 =

(
k2

1 − k2
3

k2
3k1

)[
µ12

√
1− µ2

1 cosω − µ1

√
1− µ2

12

]√
1− µ2

12 . (3.128)

Equations (3.126)-(3.128) are 0 in the:

• Extreme squeezed limit, µ12 = −1.

• Equilateral configuration, k1 = k2 = k3 = k.

Therefore, there are no vector contributions to the galaxy number count bispectrum for

the above configurations.

3.2.2.3 Tensors

The tensors can be expanded in Fourier space using the polarization tensors [86, 101],

eij(k) =
1√
2

[
ei(k)ej(k)− ēi(k)ēj(k)

]
, ēij(k) =

1√
2

[
ei(k)ēj(k) + ēi(k)ej(k)

]
.

(3.129)
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The second-order tensors in the expression for the galaxy number count fluctuation is

given by (2.98),

∆
(2)
gT (z,x) = −1

2

[
(1−Q) +

1

H
∂

∂η

]
h

(2)
‖ (x) . (3.130)

Then,

h
(2)
ij (x) =

∫
d3k

(2π)3

[
h(k)eij(k) + h̄(k)ēij(k)

]
eik·x , (3.131)

with,

h(k) =

∫
d3xhij(x)eij(k)e−ik·x, h̄(k) =

∫
d3xhij(x)ēij(k)e−ik·x . (3.132)

Taking (3.131) we can write,

h
(2)
‖ (x) = ninjh

(2)
ij (x) =

∫
d3k

(2π)3

[
h(k)ninjeij(k) + h̄(k)ninj ēij(k)

]
eik·x , (3.133)

where h(η,x) obeys,

h′′(η,x)− 2Hh′(η,x)−∇2h(η,x) = S(η,x) , (3.134)

obtained from projecting out the tensor part of the ij-component of the Einstein field

equations. In Fourier space (3.134) is written as,

h′′(k)− 2Hh′(k) + k2h(k) = S(k) , (3.135)

where S(k) is the source term. Following [102] Sij(η,x) is given as,

Sij(η,x) = 8

[
∂iΦ∂jΦ +

2

8πGa2ρ
∂i
(
Φ′ +HΦ

)
∂j
(
Φ′ +HΦ

)]T

, (3.136)

where the superscript ‘T’ denotes the tensor part. Using Φ(x) = g(η)Φ0(x), we can

simplify (3.136) as,

Sij(x) = 8

[
∂iΦ∂jΦ +

1

4πGa2ρ

(
g′

g
+H

)2

∂iΦ∂jΦ

]T

. (3.137)

We can derive the following useful relation [72],

g′

gH = f − 1 , (3.138)

and use it to show that (3.135) becomes,

Sij(η,x) = 8

[
1 +

H2f2

4πGa2ρ

][
∂iΦ∂jΦ

]T
. (3.139)
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Since 4πGa2ρ = (3/2)ΩmH2 we finally obtain,

Sij(η,x) = 8

[
1 +

2f2

3Ωm

][
∂iΦ∂jΦ

]T
. (3.140)

The Fourier transform of (3.140) gives,

Sij(k3) = −3ΩmH4
(
3Ωm + 2f2

) ∫
d(k1,k2,k3)

1

k2
1k

2
2

[
k1ik2j + k2ik1j

]
. (3.141)

Then the source term S is given by,

S(k3) = eij(k3)Sij(k3)

= −3ΩmH4
(
3Ωm + 2f2

) ∫
d(k1,k2,k3)

1

k2
1k

2
2

[
k1ik2j + k2ik1j

]
eij(k3) . (3.142)

Because k1ik2je
ij = k2ik1je

ij we can write (3.142) as,

S(k3) = −6ΩmH4
(
3Ωm + 2f2

) ∫
d(k1,k2,k3)

k1ik2j

k2
1k

2
2

eij(k3) . (3.143)

In general, the solution to (3.135) for the amplitude of the second-order tensor, h(k),

is given by an integral over the Green’s function, G(η, k), written in spherical Bessel

functions [102],

h(η,k) =
1

a

∫ η

0
dη̃

ηη̃

k2

[
j1(kη)y1(kη̃)− j1(kη̃)y1(kη)

]
a(η̃)S(η̃,k) . (3.144)

However, for simplicity we consider the solution for h(k) in the matter era where S(η,k)

is nearly constant in time at high redshift and therefore, we can approximate (3.144) to

[86],

h(η,k) ≈ G(η, k)

k2
S(η,k) , (3.145)

where,

G(η, k) = 1 +
3
[
kη cos (kη)− sin (kη)]

(kη)3
. (3.146)

Using the results of (3.143) and (3.145) in (3.133) and (3.130) we obtain the Fourier

transform as follows,

∆
(2)
gT (x) =

∫
d3k3

(2π)3
∆

(2)
gT (k3) eik3·x , (3.147)

where,

∆
(2)
gT (k3) =

∫
d(k1,k2,k3)K(2)

T (k1,k2,k3) . (3.148)
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K(2)
T is the second-order kernel for tensor perturbations and takes the form,

K(2)
T (k1,k2,k3) =

3ΩmH4

k2
3

{[(
3Ωm + 2f2

)(
2f −Q+

2H′
H2

)
+ 4f

f ′

H − 3Ωm

(
1 +

2H′
H2

)]
G(η, k3)

+
(
3Ωm + 2f2

)G′(η, k3)

H

}
T123 , (3.149)

where,

T123 =
1

k2
1k

2
2

[
eij(k3)k1ik2jn

lnmelm(k3) + ēij(k3)k1ik2jn
lnmēlm(k3)

]
. (3.150)

Equation (3.150) requires the following:

• The projection of the polarization tensors along the line of sight which gives,

eij(k1)ninj =
1√
2

(1− µ2
1) cos 2φn , (3.151)

ēij(k1)ninj =
1√
2

(1− µ2
1) sin 2φn , (3.152)

eij(k2)ninj =
1√
2

[(
1− µ2

12

)
sin2 ω − µ2

12

(
1− µ2

1

)
cos2 ω cosω

+ 2µ1µ12

√
1− µ2

1

√
1− µ2

12 − µ2
1

(
1− µ2

12

)]
, (3.153)

ēij(k2)ninj =
1√
2

[
µ12

(
1− µ2

1

)
sin 2(ω − 2µ1

√
1− µ2

1

√
1− µ2

12 sinω

]
, (3.154)

eij(k3)ninj =
1√
2

{(
1− µ2

1

)
sin2 ω − k2

2

k2
3

[(
k1

k2
+ µ12

)(
1− µ2

1

)
cos2 ω

+ µ2
1

(
1− µ2

12

)]
− 2

(
k1

k2
+ µ12

)
µ1

√
1− µ2

1

√
1− µ2

12 cosω

]}
,

(3.155)

ēij(k3)ninj =
1√
2

k2

k3

[
−
(
1− µ2

1

)(k1

k2
+ µ12

)
sin 2ω + 2µ1

√
1− µ2

1

√
1− µ2

12 sinω

]
.

(3.156)
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• The contraction of the polarization tensors with the mode vectors as,

eij(k3)k1ik2j = − k
2
1k

2
2√

2k2
3

(1− µ2
12) , (3.157)

ēij(k3)k1ik2j = 0 , (3.158)

eij(k2)k1ik3j = − 1√
2
k2

1(1− µ2
12) , (3.159)

ēij(k2)k1ik3j = 0 , (3.160)

eij(k1)k2ik3j = − 1√
2
k2

2(1− µ2
12) cos 2φ , (3.161)

ēij(k1)k2ik3j = − 1√
2
k2

2(1− µ2
12) sin 2φ . (3.162)

Here also, the cyclic symmetry over the ki’s is broken and therefore, we give the explicit

forms of the different permutations,

T123 =
1

4k4
3

(
1− µ2

12

)[
k2

3 − k2
1 +

(
k2

1 − 2k2
2 − k2

3

)
µ2

1 +
(
2k1k2µ

2
1 − 2k1k2

)
µ12 +

(
3k2

2µ
2
1 − k2

2

)
µ2

12

+ 4k2

(
k1 + k2µ12

)
µ1

√
1− µ2

1

√
1− µ2

12 cosω

−
(
1− µ2

1

)(
k2

1 + 2k1k2µ12 + k2
2µ

2
12 + k2

3

)
cos 2ω

]
, (3.163)

T231 = − 1

2k2
3

(
1− µ2

1

)(
1− µ2

12

)
cos 2ω , (3.164)

T312 =
1

4k2
3

(
1− µ2

12

)[(
1− µ2

12

)(
1− 3µ2

1

)
+ 4µ1µ12

√
1− µ2

1

√
1− µ2

12 cosω

−
(
1− µ2

1

)(
1 + µ2

12

)
cos 2ω

]
, (3.165)

where we have eliminated the sin2 and cos2 terms by using the trigonometric identities,

sin2 θ =
1

2

(
1− cos 2θ

)
, cos2 θ =

1

2

(
1 + cos 2θ

)
. (3.166)

In the extreme squeezed limit (µ12 = −1), (3.163)-(3.165) are 0 and therefore, there are

no tensor contributions to the galaxy number count bispectrum.

3.3 The galaxy power spectrum

The dark matter overdensity, δT(x) is usually modeled as a random field which is homo-

geneous and isotropic. This does not necessarily mean that it is Gaussian. Its Fourier

transform δT(k) follows a simple relation [103, 104],

〈δT(k)δT(k′)〉 = (2π)3Pm(k)δD(k + k′) , (3.167)
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for some function Pm(k) which is known as the matter power spectrum. It only depends

on the magnitude of k and not on its direction [105]. The notation “〈 〉” denotes the

ensemble average over all possible realizations. At tree-level, the matter power spectrum

involves only the first-order δT and therefore,

〈
δ

(1)
T (k)δ

(1)
T (k′)

〉
= (2π)3P (k)δD(k + k′) , (3.168)

where P (k) is the first-order matter power spectrum in T-gauge. Its expression is given

in [38],

P (z, k) =
9

25

1

Ω2
m0

(
k

H0

)4

T 2(k)D2(z)PΦP
(k) , (3.169)

where we have restored the redshift dependence. T (k) is the transfer function. It ensures

that the amplitude of the k-modes of the gravitational field Φ which enter the Hubble

sphere during radiation era, are suppressed relative to the modes which re-enter later,

during the matter era. The plot for T (k) is shown in Figure 3.5 below. We have used

10−4 10−3 10−2 10−1 100

k /Mpc−1

10−3

10−2

10−1

100

T
(k
)

k = H0 k = keq.

Figure 3.5: The transfer function T versus the wavenumber k /Mpc−1. The
wiggles show the effect of the baryons. The two critical scales are: the matter-
radiation equality scale, keq. ≈ 10−2 Mpc−1 and the Hubble scale at present time,

H0 ≈ 2.26× 10−4 Mpc−1.

the fitting formula provided by [106],

T (k) =
Ωb0

Ωm0
Tb(k) +

Ωc0

Ωm0
Tc(k) , (3.170)

which is a very good approximation. It splits the transfer function into baryonic and cold

dark matter (CDM) parts where, Tb(k) and Tc(k) are the baryonic and CDM transfer

http://etd.uwc.ac.za/



Chapter 3. The Fourier galaxy bispectrum 78

functions respectively. Ωb0 and Ωc0 are the densities of baryon and CDM defined today

respectively. Ωm0 is the total matter density where,

Ωm0 = Ωb0 + Ωc0 . (3.171)

The other variables in (3.169) are:

• D(z) is the growth factor and,

• PΦP
is the power spectrum of the primordial gravitational field ΦP determined

from inflation. It is given by [38],

PΦP
(k) =

50π2

9k3

(
k

H0

)n−1

δ2
H

[
Ωm0

D(z = 0)

]2

. (3.172)

where n = 0.9677 is the spectral index [16]. The parameter δH is the curvature

perturbation at horizon crossing during inflation and it can be parameterized by

[106],

δH = 1.94× 10−5Ω−0.785−0.05 ln Ωm0
m0 e−0.95(n−1)−0.169(n−1)2

. (3.173)

For the tree-level galaxy power spectrum we can write [28],

〈
∆(1)
g (k)∆(1)

g (k′)
〉

= (2π)3Pg(k)δD(k + k′) . (3.174)

where ∆
(1)
g is the first-order galaxy number count fluctuation. Using the Fourier trans-

form of ∆
(1)
g given in (3.16) and the definition of the linear dark matter power spectrum

in (3.168), we can show that (3.174) leads to [28],

Pg(k) = K(1)(k)K(1)(−k)P (k) . (3.175)

The galaxy power spectrum is also a real-valued function but unlike the matter power

spectrum, it depends both on the magnitude and direction of k. This is because the

kernel K(1) contains the first-order relativistic lightcone projection effects (see (3.17)

and (3.18)) which depend on the direction cosine parameter µ = k̂ · n̂. K(1) is of the

following form,

K(1) ∼
[
O(k0) +O(k−2)

]
+ iO(k−1) , (3.176)

and therefore, we find that the linear galaxy power spectrum can be written as a series

in k−n,
Pg(k)

P (k)
∼ [...]

k0
+

[...]

k2
+

[...]

k4
. (3.177)
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where n = 0, 1, 2, 3, 4. We can work out the full expression of Pg by using the exact

forms of K(1) given by (3.17) and (3.18). We then obtain,

Pg(k)

P (k)
= (b1 + fµ2)2 +

[
µ2(γ2

1 + 2fγ2) + 2b1γ2

] 1

k2
+

4γ2
2

k4
. (3.178)

Since the galaxy power spectrum is a function of k and µ, it can be decomposed into

its multipole moments, P `g (k) using the special Legendre polynomials, L`(µ). This is

written as follows [72, 107–109],

Pg(k) =
`=4∑

`=0

P `g (k)L`(µ) , (3.179)

where ` is the multipole index. It follows from (3.178) that the non-zero multipoles are

` = 0, 2 and 4. The corresponding multipoles are obtained as [109],

P `g (k) =
(2`+ 1)

4π

∫ 2π

0
dφ

∫ +1

−1
dµPg(k)L`(µ) . (3.180)

Integrating over the azimuthal angle φ yields [72, 108],

P `g (k) =
(2`+ 1)

2

∫ +1

−1
dµPg(k)L`(µ) . (3.181)

Here, we have assumed the “local plane-parallel approximation” as explained in [110].

In this approximation, the position vectors (x,x′) of a pair of galaxies separated by

relevant scales are locally parallel i.e., k · x ≈ k · x′ [109].

We consider the case of the monopole i.e., ` = 0 and L0(µ) = 1. Using (3.178) in

(3.181) we find that,
P 0
g (k)

P (k)
= P0 +

P2

k2
+
P4

k4
, (3.182)

where,

P0 = b21 +
2

3
fb1 +

f2

5
, (3.183)

P2 =
γ2

1

3
+ 2γ2

(
b1 +

f

3

)
, (3.184)

P4 = 4γ2
2 . (3.185)

In the Newtonian limit, γ1 = γ2 = 0 and hence, P2 = P4 = 0. Then (3.182) recovers the

result presented in [108],

P 0
gN(k)

P (k)
= P0 = b21 +

2

3
fb1 +

f2

5
. (3.186)
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where the subscript ‘N’ denotes Newtonian. We show the numerics below in Figure 3.6

and Figure 3.7. We have used the latest Planck best-fit values [16], in particular for
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Figure 3.6: Left: The monopole of the linear galaxy power spectrum at z = 1.0. The
solid curve is the full relativistic (GR) case given by (3.182). The dashed curve is the
Newtonian (N) case given by (3.186). Right: The percentage difference relative to the

Newtonian curve.
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Figure 3.7: Left: The redshift evolution of the monopole of the linear galaxy power
spectrum. Right: The percentage difference relative to the Newtonian curve.

h = 0.678 and Ωm0 = 1− ΩΛ0 = 0.308. For the first-order galaxy bias we have chosen,

b1 =
√

1 + z , (3.187)

and we have set the evolution bias and magnification bias to 0, i.e., be = Q = 0. We

have neglected all the integrated terms. The left plot in Figure 3.6 shows the Newtonian

approximation (dashed) and the full relativistic curve (solid). The GR effects boost the

galaxy power spectrum on large scales with a percentage contribution of ∼ 0.1% on

equality scales and & 10% on Gpc scales (right plot). The left plot in Figure 3.7 shows

the redshift evolution of the monopole at keq. = 10−2 Mpc−1. The percentage difference

varies between 0.01% and 1% (right plot).
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3.4 The galaxy bispectrum

We begin with the Fourier definition of the bispectrum [104, 111, 112],

〈∆X(z,k1)∆X(z,k2)∆X(z,k3)〉 = (2π)3BX(z,k1,k2,k3)δD(k1 + k2 + k3) , (3.188)

where ∆X is the Fourier transform of the number density field of any biased objects. At

tree-level the only combinations of terms that contribute to the bispectrum are,

〈∆X(k1)∆X(k2)∆X(k3)〉 =
1

2

〈
∆

(1)
X (k1)∆

(1)
X (k2)∆

(2)
X (k3)

〉
+ 2 cyc. perm. , (3.189)

where we suppress the redshift dependence for brevity. The factor 1/2 comes from the

perturbative expansion of ∆X,

∆X = ∆
(1)
X +

1

2
∆

(2)
X . (3.190)

The “2 cyc. perm.” indicates two cyclic permutations of the k-vectors. Hence, for the

galaxy number count fluctuation we can write,

1

2

〈
∆(1)
g (k1)∆(1)

g (k2)∆(2)
g (k3)

〉
+ 2 cyc. perm. = (2π)3Bg(k1,k2,k3)δD(k1 + k2 + k3) ,

(3.191)

where Bg is the tree-level galaxy bispectrum. Applying the Newtonian-GR split (refer

to Section 2.6) to the perturbations on the left-hand side of (3.191), we obtain the

following,

〈
∆(1)
g (k1)∆(1)

g (k2)∆(2)
g (k3)

〉
=
〈
∆

(1)
gN(k1)∆

(1)
gN(k2)∆

(2)
gN(k3)

〉
+
〈
∆

(1)
gGR(k1)∆

(1)
gGR(k2)∆

(2)
gGR(k3)

〉

+
〈
∆

(1)
gN(k1)∆

(1)
gN(k2)∆

(2)
gGR(k3)

〉
+
〈
∆

(1)
gGR(k1)∆

(1)
gGR(k2)∆

(2)
gN(k3)

〉

+ 2
[〈

∆
(1)
gN(k1)∆

(1)
gGR(k2)∆

(2)
gN(k3)

〉
+
〈
∆

(1)
gN(k1)∆

(1)
gGR(k2)∆

(2)
gGR(k3)

〉]

+ 2 cyc. perm. , (3.192)

where the first line splits into pure Newtonian and GR parts while the last two lines

show the Newtonian-GR cross correlations.

3.4.1 Wick’s theorem

It is possible to express the galaxy bispectrum in terms of the kernels K(1) and K(2) by

using the Wick’s theorem. To begin, we use the Fourier transforms of ∆
(1)
g and ∆

(2)
g

given by (3.16) and (3.62) respectively in the left-hand side of (3.191). We obtain the
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following,

1

2

〈
∆(1)
g (k1)∆(1)

g (k2)∆(2)
g (k3)

〉
=

1

2

∫
d3k′1
(2π)3

∫
d3k′2K(1)(k1)K(1)(k2)K(2)(k′1,k

′
2,k3)

×
〈
δ

(1)
T (k1)δ

(1)
T (k2)δ

(1)
T (k′1)δ

(1)
T (k′2)

〉

×δD(k′1 + k′2 − k3)

−1

2

[
δD(k3)

〈
∆(2)
g

〉] 〈
∆(1)
g (k1)∆(1)

g (k2)
〉
, (3.193)

where the ensemble average of ∆
(2)
g in the last line is given by[72],

〈
∆(2)
g

〉
=

∫
d3k

(2π)3
P (k)K(2)(k,−k,0) . (3.194)

We apply the Wick’s theorem [113–115] in the first line of (3.193) to split the 4-point

correlators as products of 2-point correlators,

〈
δ

(1)
T (k1)δ

(1)
T (k2)δ

(1)
T (k′1)δ

(1)
T (k′2)

〉
=
〈
δ

(1)
T (k1)δ

(1)
T (k2)

〉〈
δ

(1)
T (k′1)δ

(1)
T (k′2)

〉

+
〈
δ

(1)
T (k′1)δ

(1)
T (k1)

〉〈
δ

(1)
T (k′2)δ

(1)
T (k2)

〉

+
〈
δ

(1)
T (k1)δ

(1)
T (k′2)

〉〈
δ

(1)
T (k2)δ

(1)
T (k′1)

〉
. (3.195)

Use the definition of the first-order matter power spectrum given in (3.168), we show

that (3.195) becomes,

〈
δ

(1)
T (k1)δ

(1)
T (k2)δ

(1)
T (k′1)δ

(1)
T (k′2)

〉
= (2π)6

[
P (1)(k1)P (1)(k′1)δD(k1 + k2)δD(k′1 + k′2)

+ P (1)(k′1)P (1)(k′2)δD(k′1 + k1)δD(k′2 + k2)

+ P (1)(k1)P (1)(k2)δD(k1 + k′2)δD(k2 + k′1)

]
.

(3.196)

We then use (3.196) in the first line of (3.193) and perform the integrals. We use the

symmetrical property of the Dirac-delta function i.e., δD(−k) = δD(k) and we obtain

the following,

1

2
(2π)3P (1)(k1)δD(k1 + k2)K(1)(k1)K(1)(k2)δD(−k3)

[∫
d3k′1
(2π)3

P (1)(k′1)K(2)(k′1,−k′1,0)

]

+ (2π)3K(1)(k1)K(1)(k2)K(2)(k1,k2,k3)P (1)(k1)P (1)(k2)δD(−k1 − k2 − k3) ,

where the first line is just,

1

2

[
δD(k3)

〈
∆(2)
g

〉] 〈
∆(1)
g (k1)∆(1)

g (k2)
〉
,
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which cancels with the second term in (3.193). Therefore, we are finally left with,

1

2

〈
∆(1)
g (k1)∆(1)

g (k2)∆(2)
g (k3)

〉
= (2π)3K(1)(k1)K(1)(k2)K(2)(k1,k2,k3)P (1)(k1)P (1)(k2)

× δD(k1 + k2 + k3) . (3.197)

Then (3.191) and (3.197) imply that,

Bg(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)(k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cyc. perm. ,

(3.198)

and splitting the kernels into Newtonian and GR parts leads to,

Bg(k1,k2,k3) =

[
K(1)

N (k1)K(1)
N (k2)K(2)

N (k1,k2,k3) +K(1)
GR(k1)K(1)

GR(k2)K(2)
GR(k1,k2,k3)

+K(1)
N (k1)K(1)

N (k2)K(2)
GR(k1,k2,k3) +K(1)

GR(k1)K(1)
GR(k2)K(2)

N (k1,k2,k3)

+ 2K(1)
N (k1)K(1)

GR(k2)
{
K(2)

N (k1,k2,k3) +K(2)
GR(k1,k2,k3)

}]
P (k1)P (k2)

+ 2 cyc. perm. , (3.199)

where K(2)
GR = K(2)

S + K(2)
V + K(2)

T and we write P for P (1) from now on. The equation

above is the full expression for the galaxy bispectrum. If we neglect the GR lightcone

projection effects, then the only term surviving in (3.199) is the first term which is the

Newtonian galaxy bispectrum,

BgN(k1,k2,k3) = K(1)
N (k1)K(1)

N (k2)K(2)
N (k1,k2,k3)P (k1)P (k2) + 2 cyc. perm. . (3.200)

3.4.2 The multipoles of the galaxy bispectrum

In Section 3.2 we have seen that the kernels are complex and therefore, they can be

represented as follows,

K(1) = K(1)
R + iK(1)

I and K(2) = K(2)
R + iK(2)

I . (3.201)

This makes the galaxy bispectrum to be a complex function. We can work out the real

and imaginary parts by using (3.201) in (3.198). We find that the real part is,

BgR =

[
K(2)

123R

(
K(1)

1RK
(1)
2R −K

(1)
1I K

(1)
2I

)
−K(2)

123I

(
K(1)

1RK
(1)
2I +K(1)

1I K
(1)
2R

)]
P (k1)P (k2)

+ 2 cyc. perm. , (3.202)
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and the imaginary part is,

BgI =

[
K(2)

123R

(
K(1)

1RK
(1)
2I +K(1)

1I K
(1)
2R

)
+K(2)

123I

(
K(1)

1RK
(1)
2R −K

(1)
1I K

(1)
2I

)]
P (k1)P (k2)

+ 2 cyc. perm. , (3.203)

where K(1)
i ≡ K(1)(ki) and K(2)

ijk ≡ K(2)(ki,kj ,kk). Both BgR and BgI depend on the

three mode vectors and angles (µ1, ω) i.e.,

BgR ≡ BgR(k1, k2, k3, µ1, ω) , BgI ≡ BgI(k1, k2, k3, µ1, ω) . (3.204)

The dependence on µ1 and ω can be expanded in spherical harmonics, Y`m(µ1, ω). The

spherical harmonics are a set of basis functions for solutions of the Laplace equation,

∇2
ΩY`m(µ1, ω) = 0 , (3.205)

defined on a sphere. They are related to the Legendre function L`(µ1) as [116, 117],

Y`m(µ1, ω) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
L`(µ1)eimω , (3.206)

and follow the orthogonal rule [117],

∫
dΩY`m(µ1, ω)Y`′m′(µ1, ω) = δ``′δmm′ , (3.207)

where ` = 0, 1, 2, 3, ..., m = −`,−` + 1, ..., ` + 1, ` and dΩ = −dµ1dω. We expand the

real and imaginary parts of the galaxy bispectrum as,

BgR(k1, k2, k3, µ1, ω) =
`=∞∑

`=0

m=∑̀

m=−`
B`m
gR (k1, k2, k3)Y`m(µ1, ω) , (3.208)

BgI(k1, k2, k3, µ1, ω) =

`=∞∑

`=0

m=∑̀

m=−`
B`m
gI (k1, k2, k3)Y`m(µ1, ω) . (3.209)

Inverting (3.208) and (3.209) leads to [117],

B`m
gR (k1, k2, k3) =

√
1

4π(2`+ 1)

∫ 2π

0
dω

∫ +1

−1
dµ1BgR(k1, k2, k3, µ1, ω)Y ∗`m(µ1, ω) ,

(3.210)

B`m
gI (k1, k2, k3) =

√
1

4π(2`+ 1)

∫ 2π

0
dω

∫ +1

−1
dµ1BgI(k1, k2, k3, µ1, ω)Y ∗`m(µ1, ω) ,

(3.211)
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where (B`m
gR , B

`m
gI ) are the multipoles and Y ∗`m(µ1, ω) is the complex conjugate of Y`m(µ1, ω).

The integration over µ1 and ω moves the xyz-axes around n covering all the possible

triangular orientations. If we consider the spherical harmonics as a set of real functions,

usually known as tesseral spherical harmonics, then (3.206) is written as,

Y`m(µ1, ω) = (−1)m
√

2

√
(2`+ 1)

4π

(`− |m|)!
(`+ |m|)!L`(µ1) sin |m|ω for m < 0 , (3.212)

Y`0(µ1) =

√
(2`+ 1)

4π
L`(µ1) for m = 0 , (3.213)

Y`m(µ1, ω) = (−1)m
√

2

√
(2`+ 1)

4π

(`−m)!

(`+m)!
L`(µ1) cosmω for m > 0 . (3.214)

In this thesis, we work with m = 0 for simplicity. Most of the information is in the m = 0

modes [118]. Therefore, (3.213) shows that the spherical harmonics are proportional to

the Legendre polynomials i.e.,

Y`0(µ1) = Y ∗`0(µ1) ∝ L`(µ1) , (3.215)

which have even powers of µ1 for even `’s and odd powers of µ1 for odd `’s. With

SymPy (Symbolic Python), it is possible to obtain the exact expressions for the real and

imaginary parts of the galaxy bispectrum (neglecting vectors and tensors for simplicity)

as,

BgR(k1, k2, k3, µ12, µ1, ω) =
∑

i=even

∑

j=even

Rij(k1, k2, k3, µ12)µ i
1 cos j(ω)

+
∑

i′=odd

∑

j′=odd

Ri′j′(k1, k2, k3, µ12)µ i′
1

√
1− µ2

1 cos j
′
(ω) ,

(3.216)

BgI(k1, k2, k3, µ12, µ1, ω) =
∑

i=odd

∑

j=even

Iij(k1, k2, k3, µ12)µ i
1 cos j(ω)

+
∑

i′=odd

∑

j′=even

Ii′j′(k1, k2, k3, µ12)µ j′

1

√
1− µ2

1 cos i
′
(ω) .

(3.217)

Then, the integration over µ1 and ω in (3.210) and (3.211) admits,

B`0
gR(k1, k2, k3) = 0 , B`0

gI (k1, k2, k3) 6= 0 , for ` = 1, 3, 5, ... (3.218)

B`0
gR(k1, k2, k3) 6= 0 , B`0

gI (k1, k2, k3) = 0 , for ` = 0, 2, 4, ... (3.219)
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For the monopole, ` = 0 and L0(µ1) = 1. Then we have,

B0
g(k1, k2, k3) = B00

gR(k1, k2, k3) , (3.220)

where we define the shorthand notation B`
g ≡ B`0

g . We find that the monopole is always

real. For the case of the dipole (` = 1) we have,

B1
g(k1, k2, k3) = B10

gI (k1, k2, k3) , (3.221)

which is purely imaginary. Future work will look at the different multipoles of the galaxy

bispectrum in more details.

3.4.3 The monopole in the squeezed configuration

We derive the analytical expressions for the monopole in the squeezed limit (θ12 =

180◦ =⇒ µ12 = −1). In that configuration we have,

k2 ≈ −k1 = −kS , k3 = kL, kS · kL ≈ 0, µ2 ≈ −µ1 = −µS , µ3 = µL , (3.222)

and for the magnitudes of the mode vectors,

k1 ≈ k2 = kS � k3 = kL , (3.223)

where S and L denote the short and long modes respectively. To obtain µL, we start

by defining ε (� 1) which is the angle between k1 = kS and k2 ≈ −kS in the head-tail

configuration for a closed triangle with the third side k3 = kL. Since θ12 is the angle

between k1 and k2 when they are tail to tail then,

θ12 = arccos k̂1 · k̂2 = π − ε . (3.224)

Applying (3.222) to the identities given in (3.104) and (3.106) we obtain,

µ2 = µS

(
− 1 +

ε2

2

)
+ ε
√

1− µ2
S cosω +O(ε3) , (3.225)

k2
L = k2

Sε
2 +O(ε4) . (3.226)

Neglecting the higher powers for ε leads to,

µ2 = −µS + ε
√

1− µ2
S cosω and kL = εkS . (3.227)
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Then, using the conservation for the mode vectors given by (3.105) we have,

µL = −
(
µS + µ2

)kS
kL

= −
√

1− µ2
S cosω . (3.228)

We can now obtain the exact expressions for the kernels. At first order (see (3.16)),

K(1)(kS) = b1S + iγ1
µS
kS

+O(k−2
S ) and K(1)(kL) = b1L + iγ1

µL
kL

+
γ2

k2
L

, (3.229)

where we define,

b1S = b1 + fµ2
S and b1L = b1 + fµ2

L . (3.230)

At second-order, the F2 and G2 kernels (see (3.27) and (3.28)) become,

F2(kS ,−kS) = 0 , F2(kS ,kL) =
10

7
, G2(kS ,−kS) = 0 and G2(kS ,kL) =

6

7
.

(3.231)

We neglect the tidal term for simplicity. Then, the Newtonian kernel in (3.63) gives,

K(2)
N (kS ,−kS ,kL) = b2 , (3.232)

K(2)
N (kL,kS ,−kS) = bSL + fb1SµSµL

kS
kL

, (3.233)

K(2)
N (−kS ,kL,kS) = K(2)

N (kL,kS ,−kS)
∣∣
µS→−µS

, (3.234)

where,

bSL =
10

7
b1 + b2 +

6

7
µ2
S + b1f

(
µ2
S + µ2

L

)
+ 2f2µ2

Sµ
2
L . (3.235)

For the second-order scalars (S) given by (3.65) we obtain,

K(2)
S (kS ,−kS ,kL) = O(k−2

S ) , (3.236)

K(2)
S (kL,kS ,−kS) = Γ5

µSµL
kSkL

+

(
Γ7 + Γ8µ

2
S

)

k2
L

+ i

[
Γ2

µS
kSk2

L

+
(
Γ9 + Γ12µ

2
S

)
µS
kS
k2
L

+
(
Γ11 + Γ13µ

2
S

)µL
kL

]
+O(k−2

S ) , (3.237)

K(2)
S (−kS ,kL,kS) = K(2)

S (kL,kS ,−kS)
∣∣
µS→−µS

. (3.238)

For the vectors and tensors (see Section 3.2.2.2 and Section 3.2.2.3) we obtain exactly 0

(squeezed limit =⇒ µ12 = −1) i.e.,

K(2)
V (kS ,−kS ,kL) = K(2)

V (kL,kS ,−kS) = K(2)
V (−kS ,kL,kS) = 0 , (3.239)

K(2)
T (kS ,−kS ,kL) = K(2)

T (kL,kS ,−kS) = K(2)
T (−kS ,kL,kS) = 0 . (3.240)
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We now have all the tools to derive the analytical expressions for the galaxy bispectrum

in the squeezed limit,

Bsq
g = K(1)(kS)K(1)(−kS)

[
K(2)

N (kS ,−kS ,kL) +K(2)
GR(kS ,−kS ,kL)

][
P (1)(kS)

]2

+K(1)(−kS)K(1)(kL)
[
K(2)

N (−kS ,kL,kS) +K(2)
GR(−kS ,kL,kS)

]
P (1)(kS)P (1)(kL)

+K(1)(kL)K(1)(kS)
[
K(2)

N (kL,kS ,−kS) +K(2)
GR(kL,kS ,−kS)

]
P (1)(kL)P (1)(kS) ,

(3.241)

where K(2)
GR = K(2)

S +K(2)
V +K(2)

T . We drop the first line in (3.241) because the coupling

between two short modes is negligible compared to the coupling between a short- and

long mode i.e.,
[
P (1)(kS)

]2 � P (1)(kS)P (1)(kL). For the scalars we find,

Bsq
gS

P (1)(kL)P (1)(kS)
=

(
b1L + iγ1

µL
kL

+
γ2

k2
L

)(
b1S + iγ1

µS
kS

){
bSL + fb1SµSµL

kS
kL

+ Γ5
µSµL
kSkL

+

(
Γ7 + Γ8µ

2
S

)

k2
L

+ i

[
Γ2

µS
kSk2

L

+
(
Γ9 + Γ12µ

2
S

)
µS
kS
k2
L

+
(
Γ11 + Γ13µ

2
S

)µL
kL

]}

+

(
b1L + iγ1

µL
kL

+
γ2

k2
L

)(
b1S − iγ1

µS
kS

){
bSL − fb1SµSµL

kS
kL
− Γ5

µSµL
kSkL

+

(
Γ7 + Γ8µ

2
S

)

k2
L

+ i

[
− Γ2

µS
kSk2

L

−
(
Γ9 + Γ12µ

2
S

)
µS
kS
k2
L

+
(
Γ11 + Γ13µ

2
S

)µL
kL

]}

(3.242)

The expansion of (3.242) gives,

Bsq
gS

2P (1)(kL)P (1)(kS)
= b1Sb1LbSL +

[
b1S
(
bSLγ2 − fγ2

1µ
2
Sµ

2
L

)
+ b1Sb1L

(
Γ7 + Γ8µ

2
S

)

− b1Lγ1

(
Γ9 + Γ12µ

2
S

)
µ2
S − b1Sγ1

(
Γ11 + Γ13µ

2
S

)
µ2
L

]
1

k2
L

+ γ2

[
b1S
(
Γ7 + Γ8µ

2
S

)
− γ1

(
Γ9 + Γ12µ

2
S

)
µ2
S

]
1

k4
L

, (3.243)

where we neglect the terms proportional to odd powers of µS and µL because,

1

2

∫ +1

−1
dµS

(
µS
)n

=
1

2π

∫ 2π

0
dω
(
µL
)n

= 0 for odd n. (3.244)

We average (3.243) over ω to eliminate µ2
L since (3.228) shows that,

1

2π

∫ 2π

0
dω µ2

L = 1− µ2
S . (3.245)
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Then, we average over µS to obtain the monopole as,

Bsq 0
gS

2P (1)(kL)P (1)(kS)
= B0 +

B2

k2
L

+
B4

k4
L

, (3.246)

where,

B0 =
20

7
b31 +

52

21
b21f + 2b21b2 +

4

3
b1b2f +

68

105
b1f

2 +
4

3
b31f +

4

3
b21f +

12

35
b1f

3

+
12

15
b2f

2 +
12

245
f3 +

4

105
f4 , (3.247)

B2 =
2

105

{
γ2

(
80b1f + 42b1f

2 + 105b21 + 70b21f + 105b1b2 + 35b2f + 18f2 + 6f3
)

+7b1

[
5
(
3b1 + f

)
Γ7 +

(
5b1 + 3f

)
Γ8

]
− γ1

[(
35b1 + 7f

)
Γ11 +

(
7b1 + 3f

)
Γ13

]

+f
[(

35b1 + 7f
)
Γ7 +

(
7b1 + 3f

)
Γ8

]
− γ1

[(
7b1 + 3f

)
fγ1 + 7

(
5b1 + f

)
Γ9

+3
(
7b1 + f

)
Γ12

]}
, (3.248)

B4 =
2

15
γ2

[
5
(
3b1 + f

)
Γ7 +

(
5b1 + 3f

)
Γ8 − γ1

(
5Γ9 + 3Γ12

)]
. (3.249)

In the absence of relativistic projection effects, the only surviving term is the Newtonian

term B0.
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Chapter 4

The GR projection effects in the

Gaussian galaxy bispectrum

In this chapter we present the numerical results. We are using our own Fortran code

which computes the galaxy bispectrum for any triangular shapes, including all the

second-order local relativistic effects discussed in Chapter 3. We choose an isosceles

configuration,

k1 = k2 = kS and k3 = kL = kS
√

2(1 + µ12) . (4.1)

where we have set r = 1 in (3.107). For the astrophysical parameters, we use:

b1(z) =
√

1 + z, b2(z) = −0.1
√

1 + z, be = Q = 0 , (4.2)

and consider z = 1. We want to show the contributions of the second-order scalars

(S), vectors (V) and tensors (T) in the monopole3. Since the vectors vanish for an

equilateral shape (see (3.126)-(3.128)), therefore we choose a moderately squeezed shape

with µ12 = −0.999 (θ12 = 177◦). Then, from (4.1) we find that k3 ≈ kS/16.

4.1 Method of computation

• We define:

– The Newtonian galaxy bispectrum BgN(k1,k2,k3) as,

K(1)
N (k1)K(1)

N (k2)K(2)
N (k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cycl. perm. (4.3)

3The imaginary part of the monopole of Bg is always 0 (refer to Section 3.4.3).
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– The GR galaxy bispectrum with second-order scalars BgS(k1,k2,k3) as,

K(1)(k1)K(1)(k2)K(2)
S (k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cycl. perm. (4.4)

where K(1) = K(1)
N +K(1)

GR.

– The GR galaxy bispectrum with second-order vectors BgV(k1,k2,k3) as,

K(1)(k1)K(1)(k2)K(2)
V (k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cycl. perm. (4.5)

– The GR galaxy bispectrum with second-order tensors BgT(k1,k2,k3) as,

K(1)(k1)K(1)(k2)K(2)
T (k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cycl. perm. (4.6)

– The full GR galaxy bispectrum Bg(k1,k2,k3) as,

K(1)(k1)K(1)(k2)K(2)(k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cycl. perm. (4.7)

where K(2) = K(2)
N +K(2)

S +K(2)
V +K(2)

T .

• We compute the following two cases:

– Method 1: The absolute value of (3.220) i.e.,
∣∣B0

g

∣∣.

– Method 2: The monopole of the absolute value,

Babs,0
g =

∫ +1

−1
dµ1

∫ 2π

0
dω
∣∣Bg(k1, k2, k3, µ1, ω)

∣∣ , (4.8)

where Bg = BgR + iBgI. This method receives contributions from all the

multipoles of Bg.

4.2 The effect of the tidal term

We begin with (4.3),

BgN(k1,k2,k3) = K(1)
N (k1)K(1)

N (k2)K(2)
N (k1,k2,k3)P (1)(k1)P (1)(k2) + 2 cycl. perm.

(4.9)
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which is the Newtonian galaxy bispectrum. The first- and second-order kernels are given

by (3.17) and (3.63) respectively. We list them down again,

K(1)
N (k1) = b1 + fµ2

1 , (4.10)

K(2)
N (k1,k2,k3) = b1F2(k1,k2) + b2 + fG2(k1,k2)µ2

3 −
2

7
(b1 − 1)S2(k1,k2)

+ f2µ1µ2

k1k2

(
µ1k1 + µ2k2

)2
+ b1

f

k1k2

[(
µ2

1 + µ2
2

)
k1k2 + µ1µ2

(
k2

1 + k2
2

)]
.

(4.11)

where the expression for the tidal bias coefficient is given in [64],

bTidal = −2

7
(b1 − 1) . (4.12)

We can use (4.10) and (4.11) in (4.9) and isolate the tidal term such that we obtain,

BgN(k1,k2,k3)︸ ︷︷ ︸
standard Newtonian

→ BgN(k1,k2,k3) +BgTidal(k1,k2,k3) , (4.13)

where,

BgTidal(k1,k2,k3) = −2

7
(b1 − 1)

[
b21 + b1f(µ2

1 + µ2
2) + f2µ2

1µ
2
2

]
S2(k1,k2)P (k1)P (k2)

+ 2 cycl. perm. (4.14)

Figure 4.1 shows the plots. The Newtonian galaxy bispectrum is purely real. The top

left plot is the absolute value of the monopole. The tidal term makes the standard New-

tonian curve (BgN, orange) to go negative on large scales (red curve). We use dashed

line to indicate negative.

Explanation: We are considering z = 1 and this gives b1 ≈ 1.41. Therefore, in (4.14)

the only term which controls the overall sign of BgTidal must be S2 because all the other

terms are positive. In the exact squeezed limit we have,

S2(kS ,−kS) =
2

3
and S2(−kS ,kL) = S2(kL,kS) = −1

3
, (4.15)

which leads to,

BgTidal(kS ,−kS ,kL) = −
[
...
]
P (kS)P (kS) , (4.16)

BgTidal(−kS ,kL,kS) = BgTidal(kL,kS ,−kS) = +
[
...
]
P (kS)P (kL) . (4.17)

The P (kS)P (kS) term in (4.16) is neglected since it is very small. Hence, BgTidal is

positive and makes the overall BgN in (4.13) always positive. However, in moderate
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squeezed configurations, S2 grows positive on large scales [119]. The P (kS)P (kS) term

does contribute to BgTidal and dominates over the P (kS)P (kL) term. This results in the

overall BgN to be negative on large scales.

In the coming sections on GR effects we include the tidal term throughout.
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Figure 4.1: The monopole of the galaxy bispectrum at z = 1 in the Newtonian
approximation. The triangular configuration is a moderately squeezed shape (k1 =
k2 = kS , k3 ≈ kS/16). We use solid line for positive and dashed line for negative. Left:
Monopole computed using Method 1. Right: Monopole computed using Method 2.

4.3 Correlations in the galaxy bispectrum

The complete expression for the relativistic galaxy bispectrum contains various 3-point

correlations as given in (3.199),

Bg(k1,k2,k3) =

[
K(1)

N (k1)K(1)
N (k2)K(2)

N (k1,k2,k3) +K(1)
GR(k1)K(1)

GR(k2)K(2)
GR(k1,k2,k3)

+K(1)
N (k1)K(1)

N (k2)K(2)
GR(k1,k2,k3) +K(1)

GR(k1)K(1)
GR(k2)K(2)

N (k1,k2,k3)

+ 2K(1)
N (k1)K(1)

GR(k2)
{
K(2)

N (k1,k2,k3) +K(2)
GR(k1,k2,k3)

}]
P (k1)P (k2)

+ 2 cyc. perm. , (4.18)

where K(2)
GR = K(2)

S + K(2)
V + K(2)

T . The correlations which are unaffected by the second-

order GR projection effects (S, V and T) are,

〈
∆

(1)
N (k1)∆

(1)
N (k2)∆

(2)
N (k3)

〉
,
〈
∆

(1)
N (k1)∆

(1)
GR(k2)∆

(2)
N (k3)

〉
,
〈
∆

(1)
GR(k1)∆

(1)
GR(k2)∆

(2)
N (k3)

〉
.

(4.19)

We show the plots below in Figure 4.2. The pure Newtonian correlation (red) domi-

nates on small scales. The correlation having only one first-order GR projection term

i.e.,
〈
∆

(1)
N (k1)∆

(1)
GR(k2)∆

(2)
N (k3)

〉
(cyan), is the most dominant on super-equality scales.
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Figure 4.2: The monopole for the 3-point correlations listed in (4.19) at z = 1. The
triangular configuration is a moderately squeezed shape (k1 = k2 = kS , k3 ≈ kS/16).
We use solid line for positive and dashed line for negative. Left: Monopole computed

using Method 1. Right: Monopole computed using Method 2.

If we omit the first-order GR projection effects, we will definitely miss this contribution

to the full squeezed galaxy bispectrum.

The remaining correlations which contain information about the second-order relativistic

effects are,

〈
∆

(1)
GR(k1)∆

(1)
GR(k2)∆

(2)
GR(k3)

〉
,
〈
∆

(1)
N (k1)∆

(1)
GR(k2)∆

(2)
GR(k3)

〉
,
〈
∆

(1)
N (k1)∆

(1)
N (k2)∆

(2)
GR(k3)

〉
.

(4.20)

It is important to isolate these correlations because they help to identify the dominant

relativistic terms in the full galaxy bispectrum. Here, we study these correlations in

details as follows:

• We split ∆
(2)
GR into scalars (S), vectors (V) and tensors (T).

• We look at the scalars which contain the quadratic first-order and intrinsic second-

order terms (refer to Section 1.6.3 and Section 3.2.2).

• Then, we consider the vectors and tensors.

We do not show plots for the monopole of the imaginary part of Bg because it is always

0 (by definition, Babs
g has no imaginary part). For other multipoles, the imaginary part

can be non-zero. We leave this topic for future work.

4.3.1 Quadratic first-order and intrinsic GR second-order scalars

We start by looking at the scalars. In that case the kernels to be used are:
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1. The first-order kernels, K(1)
N and K(1)

GR are given by (3.17) and (3.18) respectively.

2. The second-order Newtonian kernel, K(2)
N is given by (4.11).

3. The second-order kernel for the local relativistic scalars (K(2)
GR = K(2)

S ) is given by

(3.65).

• At first, we set the Γ̃’s to 0 in order to remove the intrinsic GR second-order

scalars (see Section 3.2.2). In this case, the second-order scalars are computed

in the Newtonian approximation.

• Then, we include the Γ̃’s and show their importance by computing the per-

centage fractional difference.
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Figure 4.3: Left panel: The monopole for the 3-point correlation〈
∆

(1)
GR(k1)∆

(1)
GR(k2)∆

(2)
GR(k3)

〉
at z = 1. The triangular configuration is a mod-

erately squeezed shape (k1 = k2 = kS , k3 ≈ kS/16). We use solid line for positive and
dashed line for negative. The magenta curve is for the quadratic first-order terms only.
The blue curve includes the intrinsic second-order terms. Top left panel: Monopole
computed using Method 1. Bottom left panel: Monopole computed using Method
2. Right panel: The percentage fractional difference between the blue and magenta

curves.
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Figure 4.4: Left panel: The monopole for the 3-point correlation〈
∆

(1)
N (k1)∆

(1)
GR(k2)∆

(2)
GR(k3)

〉
at z = 1. The triangular configuration is a moder-

ately squeezed shape (k1 = k2 = kS , k3 ≈ kS/16). We use solid line for positive and
dashed line for negative. The magenta curve is for the quadratic first-order terms only.
The blue curve includes the intrinsic second-order terms. Top left panel: Monopole
computed using Method 1. Bottom left panel: Monopole computed using Method
2. Right panel: The percentage fractional difference between the blue and magenta

curves.
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Figure 4.5: Left panel: The monopole for the 3-point correlation〈
∆

(1)
N (k1)∆

(1)
N (k2)∆

(2)
GR(k3)

〉
at z = 1. The triangular configuration is a moder-

ately squeezed shape (k1 = k2 = kS , k3 ≈ kS/16). We use solid line for positive and
dashed line for negative. The magenta curve is for the quadratic first-order terms only.
The blue curve includes the intrinsic second-order terms. Top left panel: Monopole
computed using Method 1. Bottom left panel: Monopole computed using Method
2. Right panel: The percentage fractional difference between the blue and magenta

curves.

The plots in Figure 4.3, Figure 4.4 and Figure 4.5 show that the intrinsic GR second-

order scalars becomes non-negligible on fairly large scales which are still within the hori-

zon. Failing to include these terms will lead to a wrong estimation when computing the

galaxy bispectrum. At this stage onwards, we take into account both the quadratic first-

order and intrinsic GR second-order terms when we consider the second-order scalars

(S).

4.3.2 Vectors and tensors

The second-order kernels for the vectors (V) and tensors (T) are given in (3.126)-(3.128)

and (3.163)-(3.165) respectively. We show the V-T contributions for the different cor-

relations given by (4.20) below in Figure 4.6. We can see that the second-order scalars

(blue) largely dominate over the vectors (green) and tensors (purple).
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Figure 4.6: V-T contributions in the monopole of the 3-point correlations listed in
(4.20) at z = 1. The triangular configuration is a moderately squeezed shape (k1 =
k2 = kS , k3 ≈ kS/16). We use solid line for positive and dashed line for negative. Left
panel: Monopole computed using Method 1. Right panel: Monopole computed using

Method 2.

4.4 The full local relativistic galaxy bispectrum

In Figure 4.7, we compute the monopole for the expression given in (4.7) which is for the

case of the full GR. We also show the percentage difference relative to the Newtonian

approximation. On scales around equality, we can find a power-law fit for the fractional
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Figure 4.7: The monopole at z = 1. The triangular configuration is a moderately
squeezed shape (k1 = k2 = kS , k3 ≈ kS/16). We use solid line for positive and dashed
line for negative. The red curve is the Newtonian appoximation. The black curve is
the full local relativistic galaxy bispectrum. Top left panel: Monopole computed using
Method 1. Bottom left panel: Monopole computed using Method 2. Right panel:

The percentage fractional difference relative to the Newtonian approximation.

GR corrections to the Newtonian prediction:

B0
g = B0

gN

[
1 + ∆B

]
, ∆B = ε

(
k3

keq

)−n
, 0.007 Mpc−1 . k3 . 0.07 Mpc−1 .

(4.21)

Table 4.1: Amplitude of the fractional GR corrections at k3 ∼ 0.01 Mpc−1 for Fig-
ure 4.7.

∆B ε× 102 n

Method 1 −0.0408 2.01

Method 2 0.0408 2.01
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4.5 2-D colour plot

To explore other triangular configurations, we generate a colour intensity map where we

impose the condition k1 ≥ k2 ≥ k3 to avoid redundancy and choose k1 = 0.01 Mpc−1.

The maps are given in Figure 4.8 with the colours being normalized. We show the

monopoles for the Newtonian (N) and full GR galaxy bispectra as defined in (4.3) and

(4.7) respectively. We also show the percentage difference relative to the Newtonian

approximation. The difference is greatest close the squeezed limit.
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Figure 4.8: The monopole of the galaxy bispectrum with k1 = 0.01 Mpc−1 at z = 1.0.
The upper left tip of the wedge is the squeezed limit (k1 = k2, k3 → 0) and the upper
right tip is the equilateral shape (k1 = k2 = k3). Top panel: Monopole computed using
Method 1. Bottom panel: Monopole computed using Method 2. Left column: The
Newtonian monopole (N). Middle column: The monopole for the full GR case. Right
column: The percentage fractional difference relative to the Newtonian approximation.
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In Figure 4.9 we show the colour plots for the monopoles with V (left) and T (middle)

only. We also compute the difference between the two plots (right) to show that the

second-order vectors and tensors contribute differently to the monopole.
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Figure 4.9: The monopole of the galaxy bispectrum with k1 = 0.01 Mpc−1 at z = 1.0.
The upper left tip of the wedge is the squeezed limit (k1 = k2, k3 → 0) and the upper
right tip is the equilateral shape (k1 = k2 = k3). Top panel: Monopole computed using
Method 1. Bottom panel: Monopole computed using Method 2. Left column: The
monopole with second-order vectors (V). Middle column: The monopole with second-

order tensors (T). Right column: The difference between V and T.
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Chapter 5

The GR projection effects in the

non-Gaussian galaxy bispectrum

5.1 Local primordial non-Gaussianity

The galaxy 2-point correlation function (2PCF) in real space or equivalently the galaxy

power spectrum in Fourier space is a powerful statistical tool which has been used to

put constraints on cosmological parameters extracted from galaxy surveys. In linear

perturbation theory, the statistical properties of the perturbations are often taken to

be Gaussian and therefore, they are fully explained by the power spectrum. On very

large scales, it is possible to detect non-Gaussian contributions to cosmological corre-

lations. The galaxy power spectrum already provides constraints on the amount of

non-Gaussianity on large scales. For better constraints, we have to go beyond the power

spectrum and the next level in the galaxy correlation function is the bispectrum (3PCF).

Future galaxy surveys e.g., the SKA, will increasingly make use of the galaxy bis-

pectrum to do the forecasts on cosmological parameters. These surveys will probe

higher redshifts and bigger volumes in the Universe at scales beyond the equality scale

(keq ∼ 10−2 Mpc−1). Those scales contain fossil records from the primordial Universe.

These are non-Gaussian features in the primordial gravitational potential Φp(x). The

most studied example is the local form of primordial non-Gaussianity (PNG) in which

Φp is expressed as a power series of a single primordial Gaussian field ϕ(x) [120–122],

− Φp(x) = ϕ(x) + fNL

(
ϕ2(x)− 〈ϕ2〉

)
+ ... , (5.1)

where the constant fNL measures the amount of non-Gaussianity. The minus sign arises

because of our convention for the first-order Φ and Ψ in (1.43). This local form of PNG

102
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shows high signatures in the galaxy bispectrum for the squeezed configuration. Different

models of inflation predict different values of fNL. In many multi-field inflationary

models, fNL is predicted to be of O(& 1) [123]. The single field slow-roll inflation predicts

a very small value for non-Gaussianity in the squeezed limit of the bispectrum [24].

Planck 2015 measurements of the Cosmic Microwave Background (CMB) bispectrum

gives −9.2 < fNL < 10.8 at 95% confidence level [124].

5.2 Second-order dark matter and velocity kernels in the

presence of PNG

In Fourier space, the dark matter density field δ and velocity divergence θ =∇ · v have

perturbative solutions [28],

δ(η,k) =

∞∑

n=1

∫
d(k1,k2, ...,kn)Fn(k1,k2, ...,kn) , (5.2)

θ(η,k) = −Hf
∞∑

n=1

∫
d(k1,k2, ...,kn)Gn(k1,k2, ...,kn) , (5.3)

where Fn and Gn are the nth-order Fourier kernels. The first-order (n = 1) solutions are

obtained by setting F1 = G1 = 1 and this gives,

δ(η,k) = δ
(1)
T (η,k) and θ(η,k) = −Hfδ(1)

T (η,k) , (5.4)

which we have seen in Chapter 3 (‘T’ denotes the total matter gauge). We relate δ
(1)
T to

the primordial Gaussian gravitational potential ϕ via the Poisson equation [28],

δ
(1)
T (η,k) = α(η, k)ϕ(k) , (5.5)

where,

α(η, k) =
2k2T (k)D(η)

3Ωm0H2
0

. (5.6)

Note that ϕ = −Φ(1). Then at second-order we can find that [28],

δ
(2)
T (η,k) =

∫
d(k1,k2,k)

[
F2(k1,k2) + fNL

α(η, k)

α(η, k1)α(η, k2)

]
, (5.7)

θ(2)(η,k) = −Hf
∫

d(k1,k2,k)

[
G2(k1,k2) + fNL

α(η, k)

α(η, k1)α(η, k2)

]
, (5.8)

where fNL introduces mode coupling. If it is 0, we recover (3.21) and (3.22).
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5.3 Galaxy overdensity with PNG

Apart from the Planck CMB data, galaxy surveys are also good tracers for the underlying

dark matter and velocity fields. The continuity equation gives the relation between these

two fields as [64],

Dηδ(η, q) = −θ(η, q)
[
1 + δ(η, q)

]
, (5.9)

where Dη = D/Dη is the convective derivative and q is the Lagrangian coordinate. If

we assume that there is no velocity bias between the galaxies and dark matter then,

Dηδg(η, q) = −θ(η, q)
[
1 + δg(η, q)

]
, (5.10)

where δg is the galaxy overdensity. We equate (5.9) and (5.10) and obtain the following

differential equation,
Dηδg

(1 + δg)
= −θ =

Dηδ

(1 + δ)
. (5.11)

In the Lagrangian frame, the convective derivative becomes a partial derivative (see

Table 5 in [64]) and therefore integrating (5.11) gives,

ln [1 + δg(η,x)] = ln [1 + δ(η,x)] + ln

[
1 + δg(ηf ,xf)

1 + δ(ηf ,xf)

]
, (5.12)

where we have fixed the integration constant with the galaxy overdensity, δg(ηf ,xf),

defined on the formation time slice with η = ηf and x = xf . Here, x is the Eulerian

coordinate corresponding to a fixed Lagrangian position, q = x(η = 0). Therefore,

xf corresponds to the position on the formation time slice. The mapping between the

Lagrangian and Eulerian coordinates is as follows [27, 28, 64],

x = q + Υ(1)(q, η) , (5.13)

where Υ(1) is the first order Langrangian displacement and Υ(1)(q, η = 0) = 0. We can

write (5.12) as,

1 + δg(η,x) =

[
1 + δ(η,x)

1 + δf

]
1 + δgf , (5.14)

and expand up to second-order as,

1 + δ(1)
g +

1

2
δ(2)
g = 1 + δ(1) − δ(1)

f + δ
(1)
gf

+
1

2
δ(2) − 1

2
δ

(2)
f +

1

2
δ

(2)
gf +

[
δ

(1)
f

]2 − δ(1)δ
(1)
f + δ(1)δ

(1)
gf − δ

(1)
f δ

(1)
gf , (5.15)

where the subscript ‘f’ denotes quantities evaluated on the formation time slice (ηf ,xf),

while those without a subscript ‘f’ are evaluated at (η,x). To simplify the right-hand
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side of (5.15) we begin with Υ(1) and express it in terms of δ(1) as [64, 125],

Υ(1)(η,x) = −∇∇2
δ(1)(η,x) = −∇∇2

D(η)δ
(1)
0 (x) , (5.16)

where D is the linear matter growth factor and ‘0’ denotes present time. Then using

(5.13) we have at first-order,

xf = x+

(
Df

D
− 1

)
Υ(1)(η,x). (5.17)

With (5.17) we can obtain the following expansion,

δ
(1)
f =

(
Df

D

)
δ(1) +

(
Df

D

)(
Df

D
− 1

)
Υ

(1)
i ∂iδ(1) , (5.18)

δ
(2)
f =

(
Df

D

)2

δ(2) +

(
Df

D

)2(Df

D
− 1

)
Υ

(1)
i ∂iδ(2) . (5.19)

Lastly, we need a bias prescription for the galaxy overdensity, δgf , and we use the fol-

lowing [28],

δ
(1,2)
gf =

[
b10

(
δ(1)+

1

2
δ(2)

)
+b01ϕ−b01Υ

(1)
i ∂iϕ+

1

2
b20

[
δ(1)
]2

+
1

2
b02ϕ

2+b11δ
(1)ϕ+

1

2
bTidal

[
Kij

]2
]

f

,

(5.20)

where Kij is given by (2.88). We can again use (5.17) to express the right-hand side in

terms of quantities evaluated at (η,x). Then we substitute (5.18), (5.19) and (5.20) in

(5.15), and collect the first- and second-order terms as,

δ(1)
g =

[
1 +

Df

D
(bf10 − 1)

]
δ(1) +

Df

D
bf01ϕ , (5.21)

δ(2)
g =

[
1 +

(
Df

D

)2

(bf10 − 1)

]
δ(2) +

[
2bf10

Df

D

(
1− Df

D

)
+

(
Df

D

)2

bf20

][
δ(1)
]2

+

(
Df

D

)2

bfTidal

[
Kij

]2
+
Df

D

(
Df

D
− 1

)
(bf10 − 1)Υ

(1)
i ∂iδ(1)

− 2bf01

Df

D

(
1 +

Df

D

)
Υ

(1)
i ∂iϕ+

(
Df

D

)2

bf02ϕ
2

+ 2

[
bf01

Df

D

(
1− Df

D

)
+

(
Df

D

)2

bf11

]
δ(1)ϕ . (5.22)

The definition for the Lagrangian displacement in (5.13) enables us to obtain an alter-

native way of writing the second-order solution of (5.7) as [27],

δ(2) =
34

21

[
δ(1)
]2

+
2

7

[
Kij

]2 −Υ
(1)
i ∂iδ(1) , (5.23)

where we have multiplied the first term by 2 to keep the consistency of our notation. If

we allow ηf → 0 (implying Df/D → 0), but define finite values for the Lagrangian bias
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as [64],

bL10 =
Df

D
bf10 , bL01 =

Df

D
bf10, bL11 =

(
Df

D

)2

bf11 , bL02 =

(
Df

D

)2

bf02 , bL20 =

(
Df

D

)2

bf20 ,

bLTidal =

(
Df

D

)2

bfTidal , (5.24)

and use (5.23) to eliminate Υ
(1)
i ∂iδ(1) in (5.22) we obtain,

δ(1)
g =

(
1 + bL10

)
δ(1) + bL01ϕ , (5.25)

δ(2)
g =

(
1 + bL10

)
δ(2) +

[
8

21
bL10 + bL20

][
δ(1)
]2

+

[
bLTidal −

2

7
bL10

][
Kij

]2 − 2bL01Υ
(1)
i ∂iϕ

+ bL02ϕ
2 + 2

(
bL01 + bL11

)
δ(1)ϕ . (5.26)

bL01, bL11 and bL02 are obtained from the combinations of the two independent Lagrangian

bias parameters, bL10 and bL20 as [27, 126, 127],

bL01 = 2fNLδcb
L
10 , bL11 = 2fNL

(
δcb

L
20 − bL10

)
and bL02 = 4f2

NLδc
(
δcb

L
20 − 2bL10

)
,

(5.27)

where δc is the threshold density in the halo mass function given by [128],

δc(z) =
3(12π)2/3

20

[
1 + 0.0123 lg Ωm(z)

]
. (5.28)

We can obtain the definition for the Eulerian bias parameters from (5.25) and (5.26)

(see Section 2 in [64]) as,

bE10 = 1 + bL10, bE01 = bL01 , bE20 =
8

21
bL10 + bL20 , bE11 = bL01 + bL11 , bE02 = bL02 ,

bETidal = bLTidal −
2

7

(
bE10 − 1

)
, (5.29)

and this leads to,

δE
g = bE10

(
δ(1)+

1

2
δ(2)

)
+bE01ϕ−bE01Υ

(1)
i ∂iϕ+

1

2
bE20

[
δ(1)
]2

+
1

2
bE02ϕ

2+bE11δ
(1)ϕ+

1

2
bETidal

[
Kij

]2
,

(5.30)

where δE
g is the galaxy overdensity in the Eulerian frame. We set bLTidal = 0 in (5.29) to

obtain the limit of the local Lagrangian bias [64]. Using (5.27) and (5.29) we obtain,

bE01 = 2fNLδc
(
bE10 − 1

)
, (5.31)

bE11 = 2fNL

[
δcb

E
20 +

(
13

21
δc − 1

)(
bE10 − 1

)]
, (5.32)

bE02 = 4f2
NLδc

[
δcb

E
20 − 2

(
4

21
δc + 1

)(
bE10 − 1

)]
. (5.33)
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5.4 PNG in the squeezed Newtonian galaxy bispectrum

The Fourier transform of (5.30) gives,

δE
g (k3) =

[
bE10 +

bE01

α(k3)

]
δ(1)(k3)

+
1

2

∫
d(k1,k2,k3)

[
bE10

(
F2(k1,k2) + fNL

α(k)

α(k1)α(k2)

)
+ bE20

−bE01

(
N2(k2,k1)

α(k1)
+
N2(k1,k2)

α(k2)

)
+

bE02

α(k1)α(k2)

+bE11

(
1

α(k1)
+

1

α(k2)

)
− 2

7
(bE10 − 1)S2(k1,k2)

]
.

(5.34)

The first line of (5.34) shows the scale-dependent part of the linear galaxy bias, bE01/α(k)

which is proportional to fNL/k
2. In the second line we have the non-linear effects of

PNG with the following:

• N2 is the Fourier kernel generated by the convective term, Υ
(1)
i ∂iϕ in (5.30). It is

given by [28],

2Υ
(1)
i (k3)∂iϕ(k3) =

∫
d(k1,k2,k3)

(
N2(k2,k1)

α(k1)
+
N2(k1,k2)

α(k2)

)
, (5.35)

where,

N2(k1,k2) =
k1 · k2

k2
1

. (5.36)

• The terms in bE01 and bE11 are proportional to fNL/k
2.

• The term in bE02 is proportional to f2
NL/k

4.
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The above modifies the first- and second-order Gaussian Newtonian kernels given in

(4.10) and (4.11) respectively as,

K(1)
NnG(k1) = bE10 + fµ2

1 +
bE01

α(k1)
, (5.37)

K(2)
NnG(k1,k2,k3) = bE10

[
F2(k1,k2) + fNL

α(k3)

α(k1)α(k2)

]
+ bE20

+ f2

[
2µ2

1µ
2
2 + µ1µ2

(
µ2

1

k1

k2
+ µ2

2

k2

k1

)]

+ fbE10

[
µ2

1 + µ2
2 + µ1µ2

(
k1

k2
+
k2

k1

)]
− 2

7
(bE10 − 1)S2(k1,k2)

+ fµ2
3

[
G2(k1,k2) + fNL

α(k3)

α(k1)α(k2)

]
+ bE11

(
1

α(k1)
+

1

α(k2)

)

− bE01

(
N2(k2,k1)

α(k1)
+
N2(k1,k2)

α(k2)

)
+

bE02

α(k1)α(k2)

+ fbE01

[
µ2

1

α(k2)
+

µ2
2

α(k1)
+ µ1µ2

(
k1

α(k1)k2
+

k2

α(k2)k1

)]
. (5.38)

Henceforth, we suppress the superscript ‘E’ to reduce clutter. In the squeezed limit,

N2(kS ,−kS) = −1 , N2(−kS ,kL) = 0 , N2(kL,kS) = 0 . (5.39)

We again omit the tidal term for simplicity. Then at first-order,

K(1)
NnG(kS) = K(1)

NnG(−kS) = b10 + fµ2
S +

b01

α(kS)
, (5.40)

K(1)
NnG(kL) = b10 + fµ2

L +
b01

α(kL)
. (5.41)

At second-order,

K(2)
NnG(kS ,−kS ,kL) = b20 +

2

α(kS)

(
b11 − b01

)
, (5.42)

K(2)
NnG(−kS ,kL,kS) = b10

[
10

7
+

fNL

α(kL)

]
+ b20 + fµ2

S

[
6

7
+

fNL

α(kL)

]

+ fb10

[
µ2
S + µ2

L − µSµL
(
kS
kL

+
kL
kS

)]

+ f2

[
2µ2

Sµ
2
L − µSµL

(
µ2
S

kS
kL

+ µ2
L

kL
kS

)]

+ b11

[
1

α(kS)
+

1

α(kL)

]
+

b02

α(kS)α(kL)

+ fb01

[
µ2
S

α(kL)
+

µ2
L

α(kS)
− µSµL

(
kS

α(kS)kL
+

kL
α(kL)kS

)]
,

(5.43)
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K(2)
NnG(kL,kS ,−kS) = b10

[
10

7
+

fNL

α(kL)

]
+ b20 + fµ2

S

[
6

7
+

fNL

α(kL)

]

+ fb10

[
µ2
S + µ2

L − µSµL
(
kS
kL

+
kL
kS

)]

+ f2

[
2µ2

Sµ
2
L + µSµL

(
µ2
S

kS
kL

+ µ2
L

kL
kS

)]

+ b11

[
1

α(kS)
+

1

α(kL)

]
+

b02

α(kS)α(kL)

+ fb01

[
µ2
S

α(kL)
+

µ2
L

α(kS)
+ µSµL

(
kS

α(kS)kL
+

kL
α(kL)kS

)]
.

(5.44)

We can now work the analytical expression for the non-Gaussian Newtonian galaxy

bispectrum in the squeezed limit,

Bsq
gNnG = K(1)

NnG(kS)K(1)
NnG(−kS)K(2)

NnG(kS ,−kS ,kL)
[
P (1)(kS)

]2

+K(1)
NnG(−kS)K(1)

NnG(kL)K(2)
NnG(−kS ,kL,kS)P (1)(kS)P (1)(kL)

+K(1)
NnG(kL)K(1)

NnG(kS)K(2)
NnG(kL,kS ,−kS)P (1)(kL)P (1)(kS) . (5.45)

In doing so, we neglect the following:

•
[
P (1)(kS)

]2
because

[
P (1)(kS)

]2 � P (1)(kS)P (1)(kL).

• 1/α(kS) because it is proportional to
(
1/k2

S

)
� 1.

For the long mode kL we have T (kL) ≈ 1 (refer to Figure 3.5). Hence,

α(kL) ≈ 2k2
L(1 + z)D(z)

3ΩmH2
. (5.46)

We average (5.45) over ω and µS to obtain the monopole as,

Bsq 0
gNnG =

[
B0 +

D1

k2
L

+
D2

k4
L

]
P (1)(kS)P (1)(kL) , (5.47)

where the first term is the same B0 given by (3.247),

B0 =
20

7
b310 +

52

21
b210f + 2b210b20 +

4

3
b10b20f +

68

105
b10f

2 +
4

3
b310f +

4

3
b210f +

12

35
b10f

3

+
12

15
b20f

2 +
12

245
f3 +

4

105
f4 , (5.48)
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which is the monopole of the galaxy bispectrum in the Newtonian approximation with

initial Gaussian conditions (refer to Chapter 3). The others are the PNG coefficients,

D1 =
1

35

ΩmH2

(1 + z)D(z)

[(
6f2 + 54b10f

2 + 210b210f + 210b310

)
fNL + 70b20b01

(
f + 3b10

)

+ 3b01f
(
3f2 + 28b10f + 35b210

)
+ 7b11

(
f2 + 10b10f + 15b210

)]
,

(5.49)

D2 =
3

70

Ω2
mH4

(1 + z)2D2(z)

[
b01f

(
3f + 5b10

)(
28fNL + b01

)
+ 35b01b11

(
f + 3b10

)]
, (5.50)

which give 0 when fNL = 0. Equations (5.49) and (5.50) are in agreement with [28, 99].
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Figure 5.1: Left panel: The monopole at z = 1.0. We use solid line for positive and
dashed line for negative. The red curve is the Gaussian Newtonian galaxy bispectrum.
The pink curve is the non-Gaussian Newtonian galaxy bispectrum. The black curve is
the full Gaussian relativistic galaxy bispectrum in Chapter 4. Top left panel: Monopole
computed using Method 1. Bottom left panel: Monopole computed using Method 2.
Right panel: The percentage fractional difference relative to the Gaussian Newtonian

curve.

Figure 5.1 shows the plots for the moderately squeezed configuration (k1 = k2 =

kS , k3 ≈ kS/16). We choose a value of fNL = 0.5 to get the non-Gaussian Newto-

nian curve close to the full Gaussian GR curve (this value is consistent with [99]). The

left plots show that the non-Gaussian Newtonian curve (pink) is trying to mimic the
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full Gaussian GR curve (black).

The percentage fractional difference relative to the Gaussian Newtonian curve shows

that the non-Gaussian Newtonian and full Gaussian GR curves are roughly the same

order of magnitudes. This shows that it is possible to find a value of fNL (which will

depend on the galaxy bias, evolution bias, magnification bias and redshift) that closely

matches the effect of the second-order relativistic corrections to the Gaussian Newtonian

prediction. Therefore, neglecting the second-order GR projection effects in the galaxy

bispectrum will lead to a misinterpretation of primordial Universe. This is because on

the false basis of a Newtonian interpretation, we will conclude that the primordial Uni-

verse is significantly non-Gaussian and that the non-Gaussianity is of the local type [96].

This has already been shown in [31, 34] for the case of the galaxy power spectrum.

5.5 PNG in the full relativistic galaxy bispectrum

fNL does not affect the second-order kernels for the vectors and tensors but, it does

modify that of the second-order scalars in large proportion. The changes to the Newto-

nian kernels are already given in (5.37) and (5.38). For the second-order GR scalars, we

begin with the kernel in the Gaussian case given by (3.65) in Chapter 3 as,

K(2)
S (k1,k2,k3) =

1

k2
1k

2
2

{
Γ1 + Γ̃1 + E2(k1,k2,k3) Γ̃2

+ i (µ1k1 + µ2k2) Γ2 +
k2

1k
2
2

k2
3

[
F2(k1,k2) Γ3 +G2(k1,k2) Γ4

]

+ (µ1k1µ2k2) Γ5 + (k1 · k2) Γ6 +
(
k2

1 + k2
2

)
Γ7 +

(
µ2

1k
2
1 + µ2

2k
2
2

)
Γ8

+ i

[ (
µ1k

3
1 + µ2k

3
2

)
Γ9 + (µ1k1 + µ2k2) (k1 · k2) Γ10

+ k1k2 (µ1k2 + µ2k1) Γ11 +
(
µ3

1k
3
1 + µ3

2k
3
2

)
Γ12

+ µ1µ2k1k2 (µ1k1 + µ2k2) Γ13 + µ3
k2

1k
2
2

k3
G2(k1,k2) Γ14

]}
.

(5.51)

Below, we list the changes that PNG brings to (5.51):

• By (5.7) and (5.8), F2 and G2 need to be modified as,

F2(k1,k2)→ F2(k1,k2)+fNL
α(k3)

α(k1)α(k2)
, G2(k1,k2)→ G2(k1,k2)+fNL

α(k3)

α(k1)α(k2)
.

(5.52)
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• We have additional terms to the dynamical correction Γ̃1 as follows:

Γ̃1 → Γ̃1 + Γ̄1 , (5.53)

where,

Γ̄1

H4
=

27

10
Ω2
mfNL

[
− 1 + 2f + be − 4Q− 2(1−Q)

χ̄H − H
′

H2

]

+
9

5
ΩmffNL

[
5− 2f − 4Q− 2(1−Q)

χ̄H − 3H′
H2

]

+
6

5
ffNL(3− be)−

9

5
ΩmfNL

f ′

H . (5.54)

• Because fNL introduces coupling between the short and long modes, we have to

restore the long modes v
(2)
GR and δ

(2)
T GR .

– We have the Doppler term ∂‖v
(2)
GR that leads to a term of the form,

iµ3k3

[
Γ̄2(z) + E2(k1,k2,k3) Γ̄3(z)

]
/(k1k2)2 , (5.55)

where,

Γ̄2

H3
=

9

2
Ωmf

[
− be + 2Q+

2(1−Q)

χ̄H +
H′
H2

][
1− 2

5
fNL

(
1 +

2f

3Ωm

)]
,

(5.56)

Γ̄3

H3
= 3Ωmf

[
be − 2Q− 2(1−Q)

χ̄H − H
′

H2

]
. (5.57)

– We have the GR correction to the second-order Kaiser term −H−1∂2
‖v

(2)
GR

which gives,

µ2
3k

2
3

[
Γ̄4(z) + E2(k1,k2,k3) Γ̄5(z)

]
/(k1k2)2 , (5.58)

where,

Γ̄4

H2
= −9

2
Ωmf

[
1− 2

5
fNL

(
1 +

2f

3Ωm

)]
,

Γ̄5

H2
= 3Ωmf . (5.59)

– δ
(2)
T GR modifies Γ6 and Γ7 as follows,

Γ6 → Γ6 + Γ̄6(z) , Γ7 → Γ7 + Γ̄7(z) , (5.60)
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where,

Γ̄6

H2
=

3

2
Ωm

[
1 +

2f

3Ωm
+

12

5
fNL

(
1 +

2f

3Ωm

)]
, (5.61)

Γ̄7

H2
= −3Ωm

[
1 +

2f

3Ωm
− 3

5
fNL

(
1 +

2f

3Ωm

)]
. (5.62)

• The first line in (5.34) shows the linear galaxy bias which can be written as,

b1(z, k) = b10(z) +
b01(z)

α(k)
. (5.63)

Due to the scale dependent part of (5.63) we have the following extra terms:

1

(k1k2)2

{(
k2

1

α(k1)
+

k2
2

α(k2)

)
Γ̄8(z) + i

[(
µ1k

3
1

α(k1)
+
µ2k

3
2

α(k2)

)
Γ̄9(z)

+ k1k2

(
µ1k2

α(k2)
+
µ2k1

α(k1)

)
Γ̄10(z)

]}
,

(5.64)

where,

Γ̄8

H2
=

3

2
Ωm

[
b01

(
1− f + be − 4Q− 2(1−Q)

χ̄H − 3H′
H2

)
+
b′01

H + 2

(
1− 1

χ̄H

)
∂b01

∂ ln L̄

]

− f
[
b01

(
− 4 + be −

2H′
H2

)
+
b′01

H

]
, (5.65)

Γ̄9

H = −3

2
Ωmb01 , (5.66)

Γ̄10

H = f

[
b01

(
− 1 + be − 2Q− 2(1−Q)

χ̄H − 3H′
H2

)
+
b′01

H + 2

(
1− 1

χ̄H

)
∂b01

∂ ln L̄

]
.

(5.67)
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Therefore (5.51) becomes,

K(2)
S (k1,k2,k3) =

1

k2
1k

2
2

{
Γ1 + Γ̃1 + Γ̄1 + E2(k1,k2,k3) Γ̃2

+ i
[

(µ1k1 + µ2k2) Γ2 + µ3k3

(
Γ̄2 + E2(k1,k2,k3) Γ̄3

)]

+
k2

1k
2
2

k2
3

(
F2(k1,k2) + fNL

α(k3)

α(k1)α(k2)

)
Γ3

+
k2

1k
2
2

k2
3

(
G2(k1,k2) + fNL

α(k3)

α(k1)α(k2)

)
Γ4

+ (µ1k1µ2k2) Γ5 + µ2
3k

2
3

(
Γ̄4 + E2(k1,k2,k3) Γ̄5

)

+ (k1 · k2)
(
Γ6 + Γ̄6

)
+
(
k2

1 + k2
2

) (
Γ7 + Γ̄7

)

+

(
k2

1

α(k1)
+

k2
2

α(k2)

)
Γ̄8 +

(
µ2

1k
2
1 + µ2

2k
2
2

)
Γ8

+ i

[ (
µ1k

3
1 + µ2k

3
2

)
Γ9 +

(
µ1k

3
1

α(k1)
+
µ2k

3
2

α(k2)

)
Γ̄9

+ (µ1k1 + µ2k2) (k1 · k2) Γ10 + k1k2 (µ1k2 + µ2k1) Γ11

+ k1k2

(
µ1k2

α(k2)
+
µ2k1

α(k1)

)
Γ̄10 +

(
µ3

1k
3
1 + µ3

2k
3
2

)
Γ12

+ µ1µ2k1k2 (µ1k1 + µ2k2) Γ13

+ µ3
k2

1k
2
2

k3

(
G2(k1,k2) + fNL

α(k3)

α(k1)α(k2)

)
Γ14

]}
.

(5.68)

Figure 5.2 shows the comparison between the Gaussian and non-Gaussian galaxy bis-

pectra. We are still working with fNL = 0.5. The Gaussian Newtonian curve (red) goes

negative on super-Hubble scale due to the tidal term. With fNL, this negative part is

pulled within the horizon scale (pink). For the case of the full Gaussian relativistic curve

(black), it goes negative on large scales because the second-order scalars are negative.

Adding the effect of fNL moves the negative part towards the right i.e., further within

the horizon scale (grey).
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Figure 5.2: The monopole at z = 1.0. We use solid line for positive and dashed line
for negative. The red and black curves are the Gaussian Newtonian and full relativistic
galaxy bispectra (refer to Chapter 4). The pink and grey curves are the non-Gaussian
Newtonian and full relativistic galaxy bispectra respectively. Top left panel: Monopole
computed using Method 1. Bottom left panel: Monopole computed using Method 2.
Right panel: The percentage fractional difference relative to the Gaussian Newtonian

curve.
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Chapter 6

Conclusion and future work

First we highlight the main findings of the project.

6.1 Summary

We begin by giving a summary of each chapter:

• Chapter 1 starts with the fundamentals of cosmology. It talks about the standard

model of the background Universe and gives the relevant important equations for

an expanding FLRW Universe. It then explores the first- and second-order pertur-

bation theory in the ΛCDM model. It also summarizes the essential cosmological-

related sciences of the SKA.

• Chapter 2 shows a detailed derivation on the first-order relativistic corrections in

the galaxy number count. At second-order, it uses the general formula provided

by [49] and breaks down the highly complex equation into simple parts: scalars,

vectors and tensors. All integrated terms are omitted since we work with the

Fourier galaxy bispectrum at a fixed redshift so that we necessarily are within the

plane-parallel approximation where integrated and wide-angle effects cannot be

simply incorporated. In order to include these effects we need to use the angular

bispectrum which also would allow for the correlation of different redshift bins

(we work at fixed redshift). The initial condition for the primordial gravitation

potential is assumed to be Gaussian.

• Chapter 3 derives all the Fourier kernels for the first- and second-order terms

discussed in Chapter 2. It then shortly introduces the galaxy power spectrum

and fully derives the galaxy bispectrum, giving the analytical expressions in the
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squeezed limit. Unlike the galaxy power spectrum which is always a real quantity,

the galaxy bispectrum has real and imaginary parts. With m = 0, the even

multipoles of the bispectrum are always real whilst the odd multipoles are always

imaginary.

• Chapter 4 looks at the monopole of the galaxy bispectrum for a moderately

squeezed configuration with k1 = k2 = kS and k3 = kL ≈ kS/16. It explores the

different correlations in the galaxy bispectrum, showing the contributions from the

scalars (S), vectors (V) and tensors (T). For the chosen configuration, the scalars

dominate over the vectors and tensors, and provide a good approximation to the

full GR galaxy bispectrum.

• Chapter 5 complements the results presented in Chapter 4. First, it adds the effect

of non-Gaussanity i.e., the fNL parameter to the Newtonian prediction. We find

that at z = 1.0, the non-Gaussian Newtonian curve with fNL = 0.5 mimics the full

Gaussian GR curve on large scales (top left plot in Figure 5.1). Finally, it shows

the full non-Gaussian GR curve where a value of fNL = 0.5 pulls the negative part

of the curve well inside the Horizon scale as compared to the full Gaussian GR

case (top left plot in Figure 5.2).

6.2 Major findings of the project

The effect of non-Gaussianity in the galaxy distribution is generated by the following:

• Primordial nature of the gravitational field Φ.

• Intrinsic second-order GR projection effects.

• Quadratic first-order GR projection effects.

The standard Newtonian galaxy bispectrum takes care of redshift space distortions and

excludes all other relativistic projection effects. This has further been explored in [129]

where they consider the GR effect arising from weak lensing and omit all the other

lightcone effects. This PhD thesis complements their work by computing for the first

time the galaxy bispectrum for a primordial Gaussian Universe, including all the local

GR projection effects up to second order. We assume the plane-parallel approximation

in Fourier space which breaks down on the ultra-large transverse scales. The galaxy

bispectrum is very sensitive to the galaxy bias parameters. To avoid spurious gauge

effects, we incorporate a careful treatment of the galaxy bias on ultra-large scales. We

choose to work with the local model for the non-linear bias which includes the tidal effect
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[64]. This leads to a relativistic bias relation for the Poisson-gauge galaxy overdensity

contrast given by (2.89).

We give a full analysis on the second-order scalars (S), vectors (V) and tensors (T)

in the galaxy bispectrum. We present all the details on the Fourier geometry in Chap-

ter 3. We give the explicit forms of the kernels for S, V and T in (3.65), (3.126)-(3.128)

and (3.163)-(3.165) respectively. We also provide the analytical formula for the squeezed

galaxy bispectrum in (3.246). We show the plots for a moderately squeezed configuration

(k1 = k2 = kS , k3 ≈ kS/16) in Figure 4.7. The GR lightcone effects can be significant

e.g., when the short modes are at equality scale (kS = 0.01 Mpc−1) we have a percentage

GR correction of O(50%) in the bispectrum monopole at z = 1.0. To show information

on other triangular configurations, we generate 2-D colour intensity maps as shown in

Figure 4.8 and Figure 4.9. These maps show the percentage difference between the GR

and Newtonian galaxy bispectra. The difference is greater near the squeezed limit.

We also look at the Newtonian galaxy bispectrum in a non-Gaussian Universe. We

show in Chapter 5 a full description on the non-linearities due fNL. The bias relation is

given by (5.30) and the Fourier kernels are presented in (5.37) and (5.38). We derive the

analytical expression for the non-Gaussian Newtonian monopole in (5.47). At z = 1.0,

we find that the non-Gaussian Newtonian monopole with a value of fNL = 0.5 mimics

the full local GR effects in the Gaussian case. This is shown in the top panel of Fig-

ure 5.1. Then we attempt to include the effect of fNL in the full local relativistic galaxy

bispectrum. This leads to the modification of the kernel for the second-order scalars

which is given by (5.68). The vectors and tensors are unaffected by fNL. We show the

plot for the case of a moderately squeezed configuration in Figure 5.2.

6.3 Upcoming projects

We have taken the first step towards a complete analysis of the second-order lightcone

projection effects in the galaxy bispectrum. Our results are incomplete because we have

omitted:

• Second-order effect of the radiation era on initial conditions for sub-equality modes.

• Non-local projection effects i.e., the integrated GR effects.

• Wide-angle and radial (cross-bin) correlations.

The first point will require the use of a second-order Boltzmann code, as in [98]. The

last two points will be the hardest ones to achieve since they will require an angular
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bispectrum analysis on the past lightcone. This will involve a high degree of complexity

[129]. Other possible interesting projects in the pipeline for publications will be:

• Extracting information from the other multipoles of the galaxy bispectrum.

• Applying our derived second-order Fourier kernels to the case of HI intensity map-

ping. This will require setting,

Q = 1 ,
dQ

d ln L̄
= 0 and (6.1)

inputting a proper model for the evolution bias as in [130],

be = −d ln
[
(1 + z)−3n̄g

]

d ln (1 + z)
with n̄g = (1 + z)2HT̄HI , (6.2)

where the background HI brightness temperature is given by the fitting formula

[131],

T̄HI(z) = 5.5919× 10−2 + 2.3242× 10−1 z − 2.4136× 10−2 z2 mK . (6.3)
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