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ABSTRACT 

 

Changes in climate patterns have raised concerns for environmentalists globally and across 

southern Africa. The changes greatly affect the growth dynamics of vegetation to such an 

extent that climate elements such as rainfall have become the most important determinant 

of vegetation growth. In arid and semi-arid environments, vegetation relies on near-surface 

groundwater as the main source of water. Changes in the environment due to climate can be 

examined by using remotely sensed data. This approach offers an affordable and easy means 

of monitoring the impact of climate variability on vegetation growth. This study examined the 

response of vegetation to rainfall and temperature, and assessed the dependence thereof on 

groundwater in a climatically variable region of the semi-arid Karoo.  

The methodology used included sampling plant species in the riparian and non-riparian areas 

over two plant communities in seven vegetation plots. The Normalised Difference Vegetation 

Index (NDVI) derived from the Landsat OLI and TM was used to measure vegetation 

productivity. This was compared with rainfall totals derived from the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) and the mean monthly temperature totals. 

A drought index, (Standardised Precipitation Index – SPI) was an additional analysis to 

investigate rainfall variability. Object-based Image Analysis (OBIA) and Maximum Likelihood 

supervised classification approaches together with indicators of groundwater discharge areas 

(Topographic Wetness Index – TWI, and profile curvature) were used to map vegetation and 

surface water that depend on groundwater.   

The findings showed that the study region is dominated by shrubland with most plant species 

characterized as drought-resistant. The NDVI trends and rainfall patterns displayed a weak 

association in most vegetation plots, with the former responding a few months after a major 

rainfall event. The rainfall showed a decreasing trend (-1.127 mm/year) over the years while 

temperatures showed an increasing trend, particularly maximum temperatures 

(0.057°C/year). A rainfall anomaly and an SPI-12 displayed a cycle of wet and dry seasons, 

approximating 4 to 6 years. Analysis showed that temperature is strongly related to NDVI (r = 

0.47 and r = 0.45 for maximum and minimum temperatures respectively), while long-term 

rainfall was not significantly associated with NDVI (r = 0.10). At a vegetation community scale, 
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the NDVI responded differently to rainfall and temperatures in the floodplain woodland and 

the hillslope shrubland communities when compared with the immediately preceding rainfall 

(i.e. no lag) and the preceding 3-month rainfall totals. In the hillslope shrubland community 

the NDVI had a strong correlation with both climate elements and in the floodplain woodland, 

it only showed a strong correlation with temperatures in most vegetation plots. In assessing 

the combined effect of rainfall and temperature on vegetation productivity, the multiple 

regression model suggests that both climate elements are contributing factors to vegetation 

growth. The land cover classification results and indicators of groundwater discharge areas 

highlighted areas where vegetation and surface water may be considered groundwater 

dependent in that both consistently display greenness and wetness despite prolonged dry 

periods.  
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CHAPTER 1:   INTRODUCTION 

 
1.1. | Background  

Vegetation is a significant component of our natural environment, so much so that other 

natural processes and livelihoods of some societies depend on vegetation. It provides a range 

of essential services many of which are of considerable economic value to society. However, 

due to the changes in climate patterns, the growth dynamics of vegetation are strongly 

affected by surface temperatures and variations in seasonal rainfall and long-term cycles. 

In most catchments, rainfall is the most important determinant of vegetation growth (Xu et 

al., 2012; Huxman et al., 2004). As a result, variations in rainfall and the effects on vegetation 

growth has implications for catchment hydrological processes such as runoff, infiltration, 

evapotranspiration and consequently on river discharge and sediment availability. In highly 

variable rainfall environments, some vegetation (groundwater dependent ecosystem types) 

may rely on near-surface groundwater as the main source of water (Klove et al., 2011).  

However, the dependence of vegetation on groundwater is temporal and spatially variable, 

depending on depths to groundwater (WetlandInfo, 2014). Therefore, this indicates a need 

for an improved understanding of how climate affects the spatiotemporal variability of 

Groundwater Dependent Ecosystems (GDEs). Temperature also plays a significant role in 

vegetation growth mainly through the impact on photosynthesis and respiration (Allen and 

Platt, 1990). Climate projections (IPCC, 2013) suggest that surface temperatures are 

increasing. Thus, increased temperatures beyond the norm can have a dire effect on 

vegetation growth, primarily during the developmental stages. It can also cause plant 

respiration rates to increase relative to photosynthesis, resulting in no gain net in biomass 

production (Turyahikayo, 2014).  

In the Touws River catchment, vegetation is significantly influenced by climate variations. 

Dominant vegetation types in this area are vulnerable to declining rainfall and increasing 

temperatures (Midgley et al., 2001). Aridity and moisture stress has resulted in shrub-like 

vegetation rather than grasses. This is associated with drought events where dry periods are 

of longer duration than moist periods in this area (Milton et al., 1998). The importance of this 

study relates to the fact that there is limited research conducted on the influence of climate 
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on vegetation cover in the Touws River catchment and that research on GDEs in South Africa 

is at an early stage (Colvin et al., 2007). Ample research on the influence of climate on 

vegetation has been based in the Klein and Great Karoo at large (du Toit and O’Connor, 2014; 

Kraaij and Milton, 2006; Roux and Vorster, 1983). Hence, this study focuses on analyzing the 

response of vegetation to climate elements (i.e. rainfall and temperature) in order to 

determine whether groundwater dependent ecosystems occur in the Touws River catchment, 

and if so, what is their spatial and temporal occurrence. In essence, this is recorded through 

observations from remote sensing technologies that offer data archives of the earth’s 

environment from present time to several decades back. 

1.2. | Aim and objectives  

Aim: 

The primary aim of this study is to examine vegetation sensitivity to climate variables and 

assess the dependence of vegetation on groundwater in a climatically variable region of the 

semi-arid Karoo, South Africa.  

Objectives: 

This study has two main objectives: 1.) to develop an understanding of spatiotemporal 

dynamics of rainfall in the Touws River quaternary catchments and provide a basis for 

assessing the role of rainfall and temperature variations on vegetation productivity, 2.) to 

investigate the spatial occurrence of groundwater dependent ecosystems in 2017.  

1.3. | Description of the study area 

1.3.1. | Location  

The Touws River catchment area lies in the Western Cape Province of South Africa (33° 20’ 

16” S; 21° 10’ 55” E), approximately 183 km from Cape Town. The catchment forms part of 

the Klein Karoo and is a sub-catchment of the Gouritz River catchment system, and part of 

the Gouritz Water Management Area (WMA). The catchment is 95.81 km2 in area. The Touws 

River is considered to be in a good ecological state (Gordon et al., 2004; River Health 

Programme, 2007). The river rises in the Matroosberg Mountains (Hex River Mountains), near 

the town of De Doorns and flows east through the Touws River town and south into the Klein 
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Karoo, where it joins the Groot River. However, considering the time and cost of field-work, 

this research focused on two quaternary catchments (J12L and J12H) as indicated in Figure 

1.1.  

 

Figure 1.1: The location of the selected quaternary catchments in South Africa and in the Western Cape 

Province. 

1.3.2. | Climate 

Previous studies have looked at the climate of the entire Klein Karoo or the Gouritz WMA (Le 

Maitre et al., 2009; DWS, 2015) rather than individual catchment areas. In this study, the 
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description of climate is also based on that of the Klein Karoo and the Gouritz WMA. The Klein 

Karoo receives low rainfall of 100 mm to 450 mm/year (Le Maitre et al., 2009). The Gouritz 

WMA is divided into three areas (two inland zones and a coastal belt) with different climates. 

Rainfall varies from winter-dominant in the west to summer-dominant in the east (Le Maitre 

et al., 2009) (Figure 1.2). Winter rains are carried by cold fronts associated with low-pressure 

systems and westerly winds, while summer rainfall is dominated by moisture from the east 

and convective systems which are less affected by orographic gradients (Le Maitre et al., 

2009).  

 

Figure 1.2: Map of the Gouritz WMA. The study area is located in the south-west (indicated by the greyed out 

region). 

 

The rainfall pattern in the area is also characterized by extremely high rainfall events, 

associated with cut-off low-pressure systems, which can result in major floods. In hilly slopes, 

the rainfall ranges from 900-1 650 mm and the low-lying central valley receives 100-300 

mm/year. Variation in rainfall patterns in the Gouritz WMA increases as the rainfall decreases 

(Le Maitre et al., 2009). Spatial variability in rainfall is demonstrated in Figure 1.3, which 

shows rainfall throughout the catchment in May 1995.  
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Figure 1.3: The spatial distribution of rainfall patterns in the Touws River catchment in May 1995 (the wettest 

month between 1984 and 2017). The map is created using CHIRPS rainfall dataset. 

 

Temperatures in the summer season typically range from 22-25°C, exceeding 30°C in February 

and ranges between 18-21°C in winter (Petersen et al., 2017). Excessive temperatures results 

in high evaporation rates which exceed 2 250 mm/year (> 10 times than rainfall) in the dry 

central region (Le Maitre et al., 2009).  

1.3.3. | Geology  

The geological setting of the study area consists of a wide range of groups, sub-groups, and 

formations, which form part of the Cape Supergroup and the Karoo Supergroup (Figure 1.4 

and 1.5). These consist of the Bokkeveld Group shale and sandstone; the Table Mountain 

Group (TMG) sandstone/quartzite; the Witteberg group; and the Ecca and Dwyka groups.  
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Figure 1.4: Schematic representation of the distribution of Cape Supergroup and the Karoo Supergroup. 

(Source: Johnson et al., 2006). 

 

Figure 1.5: The geological setting of the Touws River catchment area. (Source: Department of Environmental 

Affairs, 2018). 

1.3.3.1. | Table Mountain Group (TMG)  

The TMG is 520 million years old and consists of sediments deposited from early Ordovician 

to early Carboniferous times, approximately 500-340 million years ago (Duah, 2010). The TMG 
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forms the higher mountains (Swartberg, Kammanassie and Rooiberg mountains) and 

comprises resistant quartzitic sandstone (Midgley et al., 2005; River Health Programme, 

2007).  

1.3.3.2. | Bokkeveld and Witteberg Groups  

The central part of the Touws River catchment is dominated by the Witteberg and Bokkeveld 

Groups (Figure 1.5). The Bokkeveld Group are predominantly mudstones.  The Witteberg 

Group consists of quartzitic sandstone and micaceous mudrock and forms part of the 

uppermost layer of the Cape Supergroup (Buttner et al., 2016). The sandstones form a series 

of north-west to south-east trending ridges (Hiller and Dunlevey, 1978). The group consists of 

Weltevrede Subgroup, Weltevrede Formation, Witpoort Formation, Lake Mentz Subgroup, 

and Kommadagga Subgroup (Johnson et al., 2006).  

1.3.3.3. | Dwyka Group  

The Dwyka Group, also referred to as Dwyka Tillite, forms the lowermost and oldest deposit 

in the Karoo Basin. The Dwyka Group is divided into two facies: a valley highland facies and a 

shelf facies (Visser, 1986). Dwyka Group rocks rest directly on top of the Witterberg shales 

and consist of boulders, cobbles, and pebbles (Buttner et al., 2016). The rock was deposited 

by glaciers during a major ice age that affected the southern hemisphere supercontinent 

(Gondwana) during the late Carboniferous period.  

1.3.3.4. | Ecca Group  

Early deposition during the Cape Orogeny resulted in material being deposited into the Karoo 

basin to form the upper Ecca turbidites and prograding deltas (Geel et al., 2013). The Ecca 

Group comprises 16 formations which are grouped into three geographical areas (southern, 

western, north-western and north-eastern). In the western and north-western; Tierberg, 

Skoorsteenberg, Kookfontein, and Waterford Formations. (Smith, 1990; Hodgson et al., 2006; 

Johnson et al., 2006).  
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1.3.4. | Vegetation 

The area has a rich biodiversity with two dominant vegetation biomes; Fynbos and the 

Succulent Karoo (Figure 1.6).  

 

 

Figure 1.6: The dominant vegetation biomes in the selected Touws quaternary catchments. 

 

1.3.4.1. | Fynbos biome 

The Fynbos biome has the largest number of plant species of any biome in the country. The 

biome includes both Fynbos and Renosterveld vegetation. Fynbos tends to grow on poor soil 

and is extremely rich in plant species, while Renosterveld grows on richer soil (Rutherford and 

Westfall, 1994). Fynbos is a medium tall shrubland, comprising hard-leafed, evergreen, fire-

prone shrubs, and is characterized by four major plant types: restioids, ericoids, proteoids and 

bulbs (River Health Programme, 2007). In addition, the Fynbos is also characterized by the 

presence of seven endemic or near-endemic plant families: Blacktips; Guyalone; Sillyberry; 

Brickleaf; Buttbush; Dewstick and Candlestick (Cowling et al., 2003). It grows in a 100-200 km 
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wide coastal belt from Clanwilliam on the west coast to Port Elizabeth on the southeast coast.  

The Fynbos in the western region is richer and more varied than in the eastern region of South 

Africa (Low and Rebelo, 1998). Renosterveld is dominated by shrubs from the Asteraceae 

family and is particularly known for its extraordinary diversity of geophytes, which during 

their spring flowering bring a profusion of colour (Curtis and Bond, 2013). 

1.3.4.2. | Succulent Karoo biome 

The Succulent Karoo biome is found mostly west of the western escarpment from Namibia 

through the western belt of the Northern Cape and Western Cape (Mucina and Rutherford, 

2006). The biome is mostly flat with gently-curvy plain and hilly veld, situated to the west and 

south of the escarpment and north of the Cape Fold Belt. The biome is characterized by low 

winter rainfall, ranging between 20 mm and 290 mm. However, the biome adapts better to 

arid conditions and higher summer temperatures than the Fynbos vegetation type (Truc et 

al., 2013). The Succulent Karoo is characterized by a dwarf shrubland, succulent and non-

succulent shrubs (Milton et al., 1998). Vygies (Mesembryanthemaceae) and Stonecrops 

(Crassulaceae) are prominent (Low and Rebelo, 1996). Extravagant mass flowering displays of 

annuals occur in the spring season, often on degraded or fallow lands (Low and Rebelo, 1996).  

1.4. | The structure of the thesis  

The thesis outline is as follows:  

 Chapter 1 provides an introductory background to the research, aim and objectives, 

climate and the physical environment of the Touws River catchment. 

 Chapter 2 presents a review of relevant literature to develop a strong theoretical 

background to investigate the influence of climate on vegetation productivity and 

vegetation dependency of groundwater.  

 Chapter 3 presents a description of datasets used and a detailed outline of the 

methods used in this study.  

 Chapter 4 examines the relationship between changes in vegetation vigor and 

variations in climatic elements. Presents image classification and assessment of 

indicators of groundwater discharge areas. This chapter contributes to achieving the 

objectives of this study.   
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 Chapter 5 provides an overall general discussion, integrates key findings and 

formulates a conclusion for this study. Suggestions for future research directions are 

also provided. 
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CHAPTER 2:   LITERATURE REVIEW  

 
2.1. | Introduction  

The aim of this chapter is to review previous research findings and methodologies that 

investigated the impact of climate on vegetation and the dependence of vegetation on 

groundwater. This chapter begins by describing the role of temperature and rainfall on 

vegetation productivity (Section 2.2). Section 2.3 reviews the impact of climate on vegetation 

in the Touws River catchment. This is followed by a description of GDEs in the context of South 

Africa (Section 2.4). A review of methodological approaches used in examining vegetation 

productivity and in identifying GDEs is provided, and a description of the limitations of remote 

sensing and ways of overcoming such limitations (Section 2.5). Finally, a review of previous 

studies on the use of remote sensing in vegetation studies is provided in Section 2.5.7.  

2.2. | The role of temperature and rainfall on plant growth and development: a broader 

overview  

Recent climate projections by the Intergovernmental Panel on Climate Change (IPCC) suggest 

that global warming will reach 1.5°C between 2030 and 2052, and 2°C by the end of the 

century if temperatures continue to increase at the current rate (IPCC, 2018). The report 

further suggests that limiting global warming to 1.5°C lowers the impacts on species loss and 

extinction. It is against this background that the impact of extreme temperatures and rainfall 

variations due to climate change on vegetation productivity should be considered.  

2.2.1. | Temperature  

Temperature plays a major role in plant growth and development. It influences plant growth 

(i.e. foliage, shoots, and stem wood) through the impact on photosynthesis and respiration 

(Allen and Platt, 1990). The response to temperature and demand for light varies amongst 

plant species throughout their life cycle, despite growing in the same environment (Tyler, 

2001) primarily due to individual phenological responses and stages of plant development 

(Hatfield and Prueger, 2015). The differences are signified by a certain range of maximum, 

minimum and optimum temperatures, thus forming a boundary of observable growth 

(Hatfield and Prueger, 2015). Therefore, when temperature rise does not meet a certain 
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species’ optimum level, plant development is significantly affected. This is illustrated by 

Hatfield and Prueger (2015, p.5) “Temperature which would be considered extreme and fall 

below or above specific thresholds at critical times during development can significantly 

impact productivity”. Frost, for instance, results in leaf damage through freezing of external 

and internal plant water. An increase in air temperatures beyond the optimum level result in 

moisture stress and subsequently vegetation losses. The resulting net effect is the loss of 

above-ground biomass through top-kill (Whitecross et al., 2012).   

The influence of temperature on vegetation growth has been observed in previous studies. 

Barlow et al. (2015) reviewed existing knowledge on the impacts of extreme heat and frost 

on crop production. It was found that temperature was a key factor determining the impact 

of heat shock and frost events on wheat production. Allen and Platt (1990) compared 

variations in seed crop size and climatic factors between Craigieburn Range and Mount 

Thomas Forest in New Zealand. A positive correlation between daily temperatures and seed 

production was found. However, the correlation varied between the two areas based on the 

elevation of the surrounding environment. Hatfield and Prueger (2015) assert that increasing 

climate change scenario will likely result in air temperatures exceeding the optimum range 

for many species. This will trigger constraints in plant species development because growth 

patterns will be negatively affected, and plant species will have to adapt to the changing 

climate, consequently, reducing production quantity and quality. 

2.2.2. | Precipitation  

Precipitation comes in many forms such as rain, snow, sleet, hail, and ice. Different forms of 

precipitation influence vegetation growth in several ways. In this study, the focus was 

explicitly based on water availability for vegetation growth through rain-water. The 

availability of water plays a major role in the growth stages of vegetation (Holding and Streich, 

2013). However, water availability is influenced by several factors such as the type of 

precipitation, soil properties, temperature and wind (Enroth, 2014). Plants require a certain 

amount of water for growth, too much or too little water has major consequences on plant 

development. Too much water can reduce oxygen in the soil and heavy rain can damage 

plants, soil and can cause erosion (Enroth, 2014). Too little or no rain delays plant 

development and may cause plant death in the event of extremely dry conditions.  
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The southern Africa region is characterized by a high degree of rainfall variability (Ambrosino 

et al., 2011). The rainfall patterns in this region have shown strong inter-annual fluctuations 

since the 1970s, with persistent wet and dry periods (Rouault and Richard, 2003; Dieppois et 

al., 2016). According to Enroth (2014), variations in rain-water can permanently or 

temporarily influence vegetation productivity depending on how long the condition lasts. 

Richard et al. (2008) argue that in semi-arid African regions, characterized by annual rainfall 

between 200 and 600 mm, the vegetative photosynthetic activity is highly sensitive to inter-

annual rainfall variability. Therefore, rainfall amount and intensity determine the availability 

of water for mechanisms that allow healthy plant growth. This further determines the type 

and density of plants that will grow. A study by Wessels (2008) showed that a decline in 

vegetation cover in arid and semi-arid lands could largely be attributed to variation in rainfall. 

Cisse et al. (2016) studied the influence of intra-seasonal spatiotemporal variability of rainfall 

on the seasonal variation of vegetation in the Ferlo region, Senegal. A stronger sensitivity of 

vegetation to rainfall was found two to three weeks after a rainfall anomaly. Dry spells of 

seven days’ length were also found to significantly affect vegetation growth in the Ferlo 

region. 

2.3. | The influence of climate on vegetation productivity in the Touws River catchment and 

the Klein Karoo 

The Touws River catchment forms part of the Klein Karoo and is characterized as a water-

stressed area (Le Maitre et al., 2009). Grass species respond to summer rainfall and the Karoo 

bushes are sensitive to autumn and spring rainfall (Milton et al., 1998). The seasonal rainfall 

variations stimulate plant phenological characteristics and this results in the physiognomy of 

the Karoo veld (False Upper Karoo) to change considerably from grassy to shrub-like (Milton 

et al., 1998). The dwarf Succulent shrubs decrease further inland in the Karoo due to low and 

seasonally variable rainfall (Milton et al., 1998). A similar trend has been detected by 

Masubelele et al. (2014) in the central semi-arid South Africa, dominated by shrubby 

vegetation.  

The Klein Karoo is recognized as a biodiversity hotspot, with the meeting of three biomes; the 

Succulent Karoo, the Albany Thicket and the Fynbos biome (Mucina and Rutherford, 2006). 

However, the region is predicted to be affected by future incidences of drought, which will 
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cause intensive drying and loss of species richness (Murray, 2015). Limited rainfall in the Klein 

Karoo has meant that groundwater is an important water source (Le Maitre et al., 2009), 

particularly for irrigation. Shrubby vegetation on shallow soils is dependent on groundwater 

as the main source of water. This is because shrubs can outcompete grasses during drought 

periods where they have access to deeper soil water (Letts et al., 2010) which is stored and 

flows through fractures and fault systems (Le Maitre et al., 2009).  

2.4. | Groundwater Dependent Ecosystems (GDEs) 

2.4.1. | Defining GDEs  

GDEs are defined as ecosystems that rely on near-surface groundwater or groundwater 

discharging from an aquifer to maintain their structure and ecosystem processes and services 

(Figure 4.1) on a permanent or irregular basis (Munch and Conrad, 2007; Klove et al., 2011; 

Richardson et al., 2011). Key characteristics of GDEs determine accessibility of groundwater: 

1.) the physical aquifer characteristics that regulate the amount of groundwater occurrence 

and discharge; 2.) and biophysical characteristics that regulate dependency and uptake of 

water by the ecosystem (Colvin et al., 2007). In South Africa, the alternative term, Aquifer 

Dependent Ecosystems (ADEs) is increasingly preferred to GDEs because the term aquifer is 

more relevant or removes confusion about the primary water source (Colvin et al., 2007), but 

in this study, the term GDEs is used, as the water supply is not necessarily from an aquifer, 

but potentially from interflow sources. GDEs are normally found in water-scarce regions or 

areas that exhibit high rainfall variations. In South Africa, such ecosystems occur in areas 

where aquifer flows and discharge influence ecological patterns and processes (Colvin et al., 

2007). In most environments, GDEs have a direct access to groundwater (direct dependence). 

However, indirect dependence may occur where species that can access groundwater sustain 

species that are unable to access groundwater (Colvn et al., 2002).  
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Figure 2.1: GDEs and their locations (A and B). (Source: Klove et al., 2011; WetlandInfo, 2014). 

 

2.4.2. | Types of GDEs  

The examples of known South African GDEs that are relevant to the study are shown in the 

table below. 

Table 2.1: Types of South African GDEs that are relevant to the study.  

Source: Colvin et al. (2007) and Colvin et al. (2002). 

 

2.4.3. | The importance of understanding GDEs 

GDEs are essential as they provide critical habitat for sensitive species in arid and semi-arid 

environments (Huntington et al., 2016). In several countries, GDEs are quantified and 

managed at a critical level. In South Africa, the protection and management of GDEs is an 

Surface/Sub-

surface 
GDEs Example location 

Surface 

Terrestrial vegetation Keystone species (Acacia erioloba) in the Kalahari. 

Riparian Zones Seasonal alluvial systems of the Limpopo. 

Springs and seeps 
In TMG sandstone in the Western Cape; on the Karoo dolerite 

sills. 

Sub-surface 
In-aquifer ecosystems In the dolomites in the North Western Province. 

Riverbed  
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essential water management policy initiative of the Integrated Water Resource Management 

(IWRM) programme. In addition, groundwater allocation has become an important issue in 

the country and, therefore, the identification of GDEs is important in defining what 

restrictions should be placed on the available groundwater allocation (Munch and Conrad, 

2007; Rohde et al., 2017). An understanding of aquifers, of which GDEs depend on, and the 

nature of dependency is crucial before pumping groundwater (Colvin et al., 2007). In 

Australia, more than 50% of groundwater is used by vegetation that grows over shallower 

groundwater table (Zencich et al., 2002). Human exploitation exceeds natural recharge rates, 

and this affects GDEs, specifically in areas where dependency on groundwater increases with 

increased aridity (Hatton et al., 1997).  

2.5. | Application of remote sensing on monitoring vegetation and identifying GDEs 

Traditional methods of mapping vegetation have been criticized as time-consuming, date 

lagged, costly, and covering small areas (Mutanga et al., 2016). Remotely sensed data has 

replaced the traditional methods by providing appropriate and precise spatial information on 

a finer resolution to map vegetation over a short period of time (Vinod and Kamal, 2010). The 

availability of data archives, from several decades back, has prompted researchers and 

application specialists to use remote sensing in mapping vegetation (Xie et al., 2008). Remote 

sensing technology can extract meaningful phenological information such as growing period, 

date of the peak of greenness and end of the growing season (Wessels, 2008). This has 

provided users with a detailed analysis of vegetation properties such as quality, species, 

biomass etc. (Mutanga et al., 2016). 

2.5.1. | Vegetation Indices (VIs) 

Vegetation can be assessed quantitatively and qualitatively by analyzing reflectance 

information from canopies using passive sensors (Xue and Su, 2017). However, climate and 

time influence solar varieties and this affects the quality of reflected information received. 

Therefore, remotely sensed data must be corrected before use. Jackson and Huete (1991) 

argue that a simple measure of light reflected from the surface is not enough to discriminate 

the surface in a repeatable manner. To overcome such limitation, data must be combined 

from two or more spectral bands to form a vegetation index with a single value that signifies 

the amount of vegetation within a pixel (Campbell and Wynne, 2011). VIs record vegetation’s 
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reactive contrast in the visible red and near-infrared (NIR) wavelengths, sometimes with 

additional channels included (Lanfri, 2010). VIs can be calculated from sensor voltage output, 

radiance values, reflectance values and satellite digital numbers (DN) (Jackson and Huete, 

1991). The commonly used VIs in vegetation studies and in identifying GDEs are discussed 

below. 

2.5.1.1. | The Normalized Difference Vegetation Index (NDVI) 

The NDVI is one of the most widely used spectral reflectance indices in vegetation studies. 

The index has been previously used to discriminate sugarcane vegetation classes (Vinod and 

Kamal, 2010) and monitoring of GDEs in arid and semi-arid environments (Huntington et al., 

2016). It is an indicator of vegetation phenology such as green-up, peak and offset of 

development (Beck et al., 2006). The NDVI is defined through absorption of red radiation by 

chlorophyll and leaf pigments and the scattering of near-infrared radiation by foliage (Beck et 

al., 2006). The values of this index range from -1.0 to +1.0  

2.5.1.2. | The Normalized Difference Water Index (NDWI) 

The NDWI measures vegetation liquid water content (Gao, 1996) and is derived from the 

near-infrared (NIR) and short-wave infrared (SWIR) channels.  The SWIR spectral band is 

sensitive to both changes in vegetation water content and spongy mesophyll structure in the 

vegetation canopies while the NIR spectral band is sensitive to the leaf internal structure and 

the leaf dry matter content (Gao, 1996). The values of this index are similar to those of NDVI 

and range between -1.0 and +1.0 (Sanchez et al., 2016). Studies have demonstrated that both 

indices can be applied simultaneously. Barron et al. (2012) used the NDVI and NDWI to 

describe areas of greenness and surface moisture content. The results showed a classification 

of GDEs-related cover classes using the two indices.   

2.5.2. | Data analysis with multiple sensors  

In remote sensing, the integration of two or more satellite sensors is common when 

examining a common feature. The advantage of using multiple sensors is embedded in the 

idea of extracting better information and comparing the capabilities of different sensors while 

considering the characteristics (i.e. temporal and spatial resolution) of each satellite sensor. 

However, data needs to be consistent and synthesized before use to standardize sensor 
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characteristics such as pixel sizes, time of acquisition and scales (Thenkabail et al., 2004). 

Govender et al. (2008) compared the Hyperion hyperspectral sensor and multispectral Proba 

CHRIS (Compact High-Resolution Imaging Spectrometer) in classifying vegetation. The authors 

compared different classification techniques and degrees of accuracies varied between the 

two sensors, with an overall classification accuracy of 98%.  Agapiou et al. (2014) compared 

the performance of seven satellite sensors (ALOS, ASTER, IKONOS, Landsat 4-7 and SPOT 5 

HRV) in detecting archaeological remains. IKONOS produced significant results while other 

sensors showed comparatively similar accuracy and sensitivity. In assessing the ability of 

Landsat OLI imagery for mapping bracken fern weed, Matongera et al. (2017) found the OLI 

imagery to be comparative to the overall accuracy of WorldView-2 imagery. 

2.5.3. | Image classification  

Land cover change analysis can also be used to monitor vegetation. In essence, image 

classification is used by classifying images of a certain area taken in different dates to detect 

changes in vegetated surfaces. Image classification is the process of assigning pixels to classes 

based on values in several spectral bands (Campbell and Wynne, 2011). The classes represent 

regions in an image for further analysis. Two classification approaches; supervised and 

unsupervised have been traditionally followed. The object-based classification method has 

progressed over the years and is mostly preferred than the traditional classification methods 

(Figure 2.2).  
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Figure 2.2: A schematic representation of the classification approaches in remote sensing. 

 

2.5.3.1. | Supervised classification  

The supervised classification approach follows a two-step process: 1.) Defining training sites 

- where a user directs the image processing software to assign pixels to land cover classes. 

The analyst can use common knowledge of the geographical area and familiarity of the actual 

surface cover types (through fieldwork or knowledge from the existing map) present in an 

image to determine the appropriateness of training sites (Levin, 1999); 2.) A decision-making 

phase - to assign class labels to all other image pixels by classifying each pixel to which of the 

trained classes the pixel is most familiar (Levin, 1999). Statistical characterizations of the 

information are then created and these are called signatures. The signatures guide the 

classification algorithm to assign specific values to relevant classes (Campbell and Wynne, 

2011). The maximum likelihood classification is the most commonly used supervised 

classification method.  
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2.5.3.2. | Unsupervised classification 

The unsupervised classification requires plotting of all pixels (spectral classes) of the image in 

a feature space and analyze feature space in other to group the feature vectors into clusters 

(Levin, 1999). Unsupervised classification incorporates no prior knowledge of the 

characteristics of the themes being studied (Xie et al., 2008). However, the user must specify 

the number of clusters to be obtained, the maximum cluster size (in the feature space) and 

the minimum distance that is allowed between different clusters. The process builds clusters 

as it scans through the image. When a cluster becomes larger than the maximum size, it is 

split into two clusters and when two clusters get nearer to each other than the minimum 

distance, they are merged into one (Levin, 1999). It is easy to apply and widely available in 

image processing and statistical software packages (Langley et al., 2001). The two most 

frequently used methods are the K-mean and the ISODATA clustering algorithms (Xie et al., 

2008).  

2.5.3.3. | Object-based image analysis (OBIA)  

The OBIA is different from the traditional pixel-based approaches in that it classifies the 

spatial units or image objects by considering the neighboring and sub-image objects (Pauw, 

2012). Object-based classifiers make use of the spatial context information around a pixel, 

thus considering the spectral, structural and hierarchical properties of each object (Bock et 

al., 2005). Additional information about objects such as the mean, median, minimum and 

maximum values are also provided (Blaschke, 2010). Object-based image classification uses a 

two-step procedure; image segmentation and the actual classification algorithm.  

Segmentation algorithms 

Image segmentation is the process of dividing an image into spatially continuous, disjoint and 

homogenous regions (Blaschke et al., 2004) based on spectral values of their pixels and 

analyst-determined constraints (Campbell and Wynne, 2011). The regions are then 

recognized by further processing steps and transferred into meaningful objects (Blaschke, 

2010). In OBIA the analyst has the freedom of deciding on a set criterion that regulates the 

measures used to assess homogeneity and distinctness and the thresholds for a specific 

classification problem (Campbell and Wynne, 2011). Image segmentation methods have been 
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commonly divided into four categories; point-based, edge-based, region-based and combined 

(Blaschke, 2010).  

The point-based method uses image thresholding (i.e. assigning a unique value) to identify 

homogenous pixels throughout an image. Elements that fall within the threshold are 

identified and these are grouped into regions considering they spatially connect (Pauw, 2012). 

Edge-based methods attempt to find an edge between regions and determine the segments 

as regions within these edges (Blaschke et al., 2004) by applying an edge-detection filter then 

transform to object outlines using a contour-generating algorithm (Pauw, 2012). Region-

based methods compare image elements (pixels or regions) to identify similarities. Two 

approaches are used; region growing and region splitting. Region growing starts with seed 

pixels and combine neighboring pixels to regions and repeat the process until a certain 

threshold is reached (Blaschke et al., 2004). Region-spitting divides the image into sub-regions 

and these are further split into smaller objects based on spectral properties (Blaschke et al., 

2004).  

The most preferred and widely used segmentation algorithm is the region-based 

multiresolution segmentation method. The method merges input elements into a set of 

objects, ensuring that heterogeneity of pixels or object is minimized while homogeneity is 

significantly maximized (Pauw, 2012). The method uses a mutual-best-fitting approach where 

a seed object is evaluated in correspondence with the identified neighboring object. Once the 

best fitting is identified (in terms of meeting the required threshold), the objects are merged 

and if not, the neighboring object becomes the new seed (Pauw, 2012). The process is 

repeated until no more merges are allowed. Fitting is defined by the properties of 

homogeneity between objects such as spectral properties and shape (Pauw, 2012).  

Classifiers in OBIA 

There are several classifiers in OBIA that are available. The two commonly used methods 

include the rule-based expert systems and the nearest neighbor (NN) classification. In this 

study, the NN Fuzzy function classification method was used. The approach was found to be 

more accurate compared to the expert system by Pauw (2012). A detailed description of the 

rule-based classifiers is provided in Maxwell (2005) and Laliberte et al. (2006). The nearest 

neighbor classifier is an automatic generation based on sample objects (Wei et al., 2005). 
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Following image segmentation, the user selects object-based training samples for each class 

in the classification hierarchy and decides on appropriate features (Maxwell, 2005). Once the 

training samples have been identified, the remaining objects are assigned to the same class 

as the closest training object in feature space (Wei et al., 2005). The features are known as 

fuzzy logic membership functions and are used to define each class by assigning a 

membership value to each class that expresses the relationship between the class and the 

properties that describe it (Feizizadeh et al., 2017).  

The membership value is calculated as a function of distance in feature space between the 

object being classified and the nearest training object for each class (Maxwell, 2005). When 

the difference between the two is small, the membership value will be higher and therefore, 

once the feature space becomes more stable the classification is likely to be more accurate 

(Laliberte et al., 2006). The final step is to run the classification process. In the case of 

misclassification or unclassified objects, training samples can be re-edited by assigning 

samples of the misclassified or unclassified classes to the correct classes and run the 

classification process again (Wei et al., 2005).  

2.5.4. | Accuracy assessment  

In remote sensing, the classification process is often followed by an accuracy assessment. This 

measures the correspondence between the presumed correct entity and the classified image 

of unknown quality (Campbell and Wynne, 2011). In essence, the user select samples of raster 

elements (image objects) which represents the classes used for classification and compare 

the classification results with real world classes (Kerle et al., 2004). The real world classes are 

derived from field observations or high-resolution imagery such as aerial photos (Kerle et al., 

2004). The error matrix sometimes referred to as the confusion matrix, is a standard approach 

from which accuracy measures can be calculated. The error matrix identifies error and 

misclassification by category (Campbell and Wynne, 2011).  Accuracy assessment is an 

important step when conducting a land cover classification as the precision of the map allow 

the user to make a reference about specific points on the map (Campbell and Wynne, 2011).  
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2.5.5. | Limitations of remote sensing  

The use of remote sensing in vegetation studies is often associated with certain limitations. A 

mismatch between the resolution of remotely sensed imagery and the size of some 

ecosystems (i.e. spring groups, seeps, and individual springs) reduces the effectiveness of 

remote sensing approach in identifying GDEs (Perez Hoyos et al., 2016: Glanville et al., 2016). 

Despite the availability of finer resolution remote sensing imagery, a major problem is the 

cost, availability and huge volumes of such remote sensing datasets. Several issues are 

associated with NDVI and these include the influence of atmosphere, scaling problems, 

sensitivity to background variations, sensitivity to spectral effects, and asymptotic signals over 

high biomass conditions (Lanfri, 2010). 

2.5.6. | Overcoming limitations of remote sensing  

An approach that incorporates GIS techniques, spatial data and expert knowledge can offer a 

more comprehensive assessment of GDEs (Glanville et al., 2016). In addition, the inclusion of 

field studies and expert opinion provides validation of GDEs when remote sensing is applied, 

and this has been used in several studies (Doody et al., 2017; Tweed et al., 2007; Glanville et 

al., 2016). In South Africa, high scale datasets such as the SPOT series (SPOT 1-7) have become 

freely available to researchers. The Maximum Value Compositing (MVC) is a method used to 

eliminate atmospheric noise from NDVI and sensor errors such as line dropout (Beck et al., 

2006). To account for soil background reflectance values, NDVI may be modified by indices 

such as SAVI or WDVI (Lanfri, 2010).  

2.5.7. | A review of previous studies on the use of remote sensing in vegetation mapping 

and identifying GDEs 

The application of remote sensing to quantify changes in vegetative surfaces and understand 

the impact of climate elements on the growth dynamics of vegetation has been observed at 

different spatial scales across the globe (Dube et al., 2014; Feng et al., 2017; Barbosa and 

Kumar, 2016). Dube and Mutanga (2016) combined a WorldView-2 dataset with 

environmental variables (rainfall, temperature, slope, aspect, total wetness index, elevation, 

insolation, and soil) to quantify aboveground biomass (AGB) and aboveground carbon stocks 

(AGCS) in a plantation forest in KwaZulu-Natal. The authors discovered that a combination of 
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remotely sensed data and environmental variables provide high accuracy to estimate and 

map AGB and AGCS than using each of the datasets separately.  

The Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery are 

commonly used to evaluate GDEs changes relative to climate variability (Doody et al., 2017: 

Huntington et al., 2016). Munch and Conrad (2007) combined aerial photography, remote 

sensing, GIS modeling, and field validation to identify riverine and wetland GDEs. In their 

study, Zhou et al. (2013) investigated the groundwater-surface water interactions using 

various methods such as hydrograph separation technique and analyzed vegetation 

dependency on groundwater using the NDVI. The authors discovered that vegetation sourced 

groundwater where the groundwater table was shallower. 

Turyahikayo (2014) used the maximum likelihood classification to identify changes in 

vegetation density in the Molopo River catchment. Kotze and Fairall (2006) also used the 

supervised maximum likelihood classification to describe and map different plant 

communities and to determine the feasibility of using Landsat TM imagery for future 

vegetation mapping. Jumaat et al. (2018) mapped land cover change and detected major 

shifts in forest areas and built up areas using the object-based classification technique. Brooks 

et al. (2006) classified different agricultural crops using a combination of pixel-based 

unsupervised and object-based classification techniques. The object-based method had 

nearly identical accuracy to pixel-based approach. Adam et al. (2016) compared the 

performance of pixel-based and object-based classification algorithms by classifying land 

cover in Sudan. The pixel-based method performed slightly better than the object-based 

method.  
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CHAPTER 3:   RESEARCH METHODS  

 
3.1. | Introduction 

The aim of this chapter is to present the research methods which seek to answer the 

objectives of this study. Different analytical techniques that were implemented to achieve the 

aim and objectives of this study are presented. The criteria for data selection, acquisition and 

preparation are first outlined. This is followed by an in-depth detail of the processes of 

relevant methods in the subsequent sub-sections.   

3.2. | Data and data sources  

3.2.1. | Field-based vegetation data 

3.2.1.1. | Survey design  

Prior to field survey, potential locations were identified using digital aerial photography (0.5 

m) and remotely sensed imagery. During October 2017, sample plots of 10 m2 in size were 

placed on hillslopes and along the floodplain to provide an indication of how plant species in 

different locations respond to rainfall and temperature variations. The plot size was chosen 

to accommodate some large tree species in the study area. Sample plots were placed on 

visually homogeneous stands of vegetation, in terms of composition, structure and habitat 

type. In total, 7 sample sites were selected, and these were paired into riparian and non-

riparian plots, thus making a total of 14 vegetation plots (2 at each site, see Figure 3.2).  

Geographic coordinates of each sampled vegetation plot were taken using a Garmin eTrex H 

hand-held Global Positioning System (GPS) receiver. In each sample plot, plant species were 

identified (Appendix A), and the percentage cover abundance was estimated for each 

dominant plant species in each quadrat.  
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Figure 3.1: Setting up sample plots (quadrat) and collecting plant samples in the Touws River quaternary 

catchments. 

 

Figure 3.2: Map of the quaternary catchments showing the location of the paired vegetation plots.  
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3.2.1.2. | Identifying plant communities  

In naming the plant communities, dominant species were used in conjunction with 

environmental variables (slope, aspect, and rockiness of the soil surface) gathered during the 

sampling period. Dominant species are those with greatest areal cover and occurrence (see 

Section 3.2.1.1).  

3.2.1.3. | Grouping sample plots  

Plant communities in combination with field observations and environmental variables were 

used to group the sample plots into hillslope shrubland and floodplain woodland groups. The 

hillslope shrubland group comprises plot 1, 2, 3 and 5 and the floodplain woodland group 

comprises plot 4, 6 and 7.  

3.2.2. | Satellite data  

3.2.2.1. | Sensors  

The study used images from four satellite sensors: 1.) Landsat Thematic Mapper (TM 4 and 

5), 2.) Landsat Operational Land Imager (OLI) both obtainable from the United States 

Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov), 3.) WorldView-2 

obtainable and operated by DigitalGlobe Corporate, and 4.) SPOT 7 obtainable from the South 

African National Space Agency (SANSA). Freely available historical multi-spectral image scenes 

and consistency motivated the selection of Landsat imagery. According to Xie et al. (2008), 

small-scale mapping requires high-resolution imagery. Hence, the application of WorldView-

2 and SPOT 7 imagery to provide a finely detailed classification of GDEs. Table 3.1 indicates 

the spectral and spatial properties of the satellite sensors that were used in this study. 

3.2.2.2. | Criteria for image selection  

The decade beginning in 1984 was selected for this study because of the availability of 

cloudless, Landsat Surface Reflectance (SR) data which goes back until 1984 for the study 

region. A total of 132 Landsat SR images were utilized for a period of 34 years (1984-2017). 

The year 2012 was omitted because of missing data in the Landsat archive. The dates on which 

the images were acquired are listed in Appendix B. The WorldView-2 was selected to 

correspond with the exact dates of the field data collection.  
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Table 3.1: The spectral properties of Landsat TM and OLI, WorldView-2 and SPOT 7 sensors. 

Satellite Sensor Bands 
Wavelengths 

(μm) 

Spatial 

resolution (m) 

Temporal 

resolution 
Launch date 

Landsat 4 & 5 

 

 

 

 

 

 

 

 

 

Landsat 8 

 

 

TM 

B1 (blue) 

B2 (green) 

B3 (red) 

B4 (near-IR) 

B5 (SWIR-1) 

B6 (Thermal) 

B7 (SWIR-2) 

0.45 – 0.52 

0.52 – 0.60 

0.63 – 0.69 

0.76 – 0.90 

1.55 – 1.75 

10.40 – 12.50 

2.08 – 2.35 

30 

30 

30 

30 

30 

30 

30 

16 days 

1982 – 2012 

(*no longer 

operational) 

OLI 

B1 (coastal) 

B2 (blue) 

B3 (green) 

B4 (red) 

B5 (near-IR) 

B6 (SWIR-1) 

B7 (SWIR-2) 

B8 (PAN) 

B9 (cirrus) 

0.43 – 0.45 

0.45 – 0.51 

0.53 – 0.59 

0.64 – 0.67 

0.85 – 0.88 

1.57 – 1.65 

2.11 – 2.29 

0.50 – 0.68 

1.36 – 1.38 

30 

30 

30 

30 

30 

30 

30 

15 

30 

2013 

TIRS 
B10 (RIRS-1) 

B11 (TIRS-2) 

10.60 – 11.19 

11.50 – 12.51 

100 

100 

WorldView-2 

PAN 

B1 (blue) 

B2 (green) 

B3 (red) 

B4 (near-IR-1) 

450 – 800 

450 – 510 

510 – 580 

630 – 690 

770 – 895 

0.5 

2.0 

2.0 

2.0 

2.0 

1.1 days 2009 

SPOT 7 

PAN 

B1 (blue) 

B2 (green) 

B3 (red) 

B4 (near-IR) 

0.450 – 0.745 

0.450 – 0.525 

0.530 – 0.590 

0.625 – 0.695 

0.760 – 0.890 

1.5 

6.0 

6.0 

6.0 

6.0 

1 day 2014 

 

3.2.2.3. | Image pre-processing  

 Landsat 

Traditionally, all Landsat data products were rescaled to Top of the Atmosphere (TOA) 

reflectance and/or radiance for analysis purposes. The reorganized Landsat archive consists 

of tiered (Tier 1, Tier 2) and Real-Time (RT) data collection structure, which represents a 

significant change in Landsat data. Landsat Collection 1 Level-2 data products include 

corrected SR data (Masek et al., 2006; Vermote et al., 2016) that do not require rescaling. 

Therefore, no pre-processing was applied to the Landsat images. SR image processing and 

subsequent image analysis were handled in ESRI ArcMap software (10.3.1).  
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 SPOT and WV-2 

The SPOT 7 standard ortho-products are delivered application-ready: pan-sharpened, in most 

cases, and orthorectified imagery in natural colour (Parage et al., 2014). The standard ortho-

products are georeferenced in earth geometry, corrected for acquisition and terrain off-nadir 

effects (Parage et al., 2014). DigitalGlobe provides 50 cm orthorectified imagery products that 

are application-ready. The images are radiometrically corrected, sensor corrected and 

orthorectified with a digital terrain model (DigitalGlobe, 2013b). DigitalGlobe offers three 

image band options; panchromatic, multispectral (4 or 8 bands) and pan-sharpened product 

in most cases. In this study, a 4-band multispectral image with the panchromatic band was 

used. Radiometric and geometric preprocessing processes were therefore not necessary in all 

images.  

Mosaic and pan-sharpening 

SPOT and WV-2 images were delivered in a tiled format, both multispectral and 

panchromatic. These were colour balanced and mosaiced in ENVI to give full seamless 

coverage. Pan-sharpening or data fusion was applied to create a high-resolution multispectral 

image. This yielded means to identify GDEs through change detection in a fine resolution 

imagery. Pan-sharpening refers to the process of integrating a high resolution one hand 

panchromatic image with a low resolution multispectral image (Campbell and Wynne, 2011). 

The technique is applicable when images are acquired on the same date or have close dates 

and they should register to each other (Campbell and Wynne, 2011). The process is computed 

on a pixel by pixel basis, thus changing the low-resolution image into a high-resolution colour 

image by fusing a co-registered fine spatial resolution image of the same area (Alimuddin et 

al., 2012). Different pan-sharpening methods have different capabilities. Alimuddin et al. 

(2012) found the Ehler method to be highly accurate when comparing different fusion 

methods using a WorldView-2 image. In this study, the Ehler technique, also known as 

intensity-hue-saturation (IHS) was compared with the Color Normalised (Brovey) and the 

Gram-Schmidt (GS) technique in ENVI. The Ehler method demonstrated to be a better option 

for pan sharpening the SPOT images, while the GS technique showed better results in the WV-

2 image.  
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3.2.3. | Climate data  

3.2.3.1. | Rainfall data  

The monthly rainfall data for the period from 1984-2017 was obtained from the Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS, available at 

http://chg.geog.ucsb.edu/data/chirps). CHIRPS is a 30+ year quasi-global rainfall dataset that 

incorporates a high-resolution satellite imagery (0.05°) with ground rainfall station data. The 

daily, pentadal (5-day rainfall) and monthly rainfall dataset cover all regions of the globe 

between 50°S - 50°N starting in 1981 to near-present (Funk et al., 2015).   

3.2.3.2. | Temperature data  

The daily and mean monthly temperature data for the study period (1984-2017) was sourced 

from both the Agricultural Research Council Institute for Soil, Climate, and Water (ARC-ISCW) 

and the South African Weather Service (SAWS). The data was recorded from neighboring 

stations in the study area (Figure 3.3). Table 3.2 provides a detailed summary of the weather 

stations.  

 

Table 3.2: A detailed summary of the weather stations. 

Station No Station Name Data period Latitude (°) Longitude (°) Altitude (m) 

20157 Rouxpos 1988 - 2017 -33,4049 21,06639 641 

30906 Ladismith Buffelsvlei 1984 - 1987 -33,4991 21,21111 468 
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Figure 3.3: The location of the weather stations relative to the study region. 

 

3.3. | Methods  

3.3.1. | Vegetation density assessment 

3.3.1.1. | Normalized Difference Vegetation Index (NDVI) 

The NDVI is the most commonly used vegetation index that makes use of the red and near-

infrared bands of the electromagnetic spectrum to determine vegetation status and 

photosynthetic activity in each area (Khosravi et al., 2017). The algorithm is explained through 

the equation: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
          (𝐄𝐪. 𝟏) 
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where NIR is the reflectance in the near-infrared band and red is the reflectance in the red 

visible channel. The resulting values range between -1 and +1. Where vegetation is dense, the 

index is close to +1 and it decreases with minimal vegetation cover till -1. 

In the new Landsat SR products, values of spectral indices are different from the values of 

previous images. Pixel values with a spectral index of less than or equal to -1.0 are set to -10 

000 and a spectral index greater than or equal to +1.0 are set to 10 000 in the output product 

(Masek et al., 2006; Vermote et al., 2016). However, for analysis purposes, the NDVI values 

were rescaled to values ranging between -1 and +1 to enable proper representation. Using a 

raster calculator in ArcMap, the scale factor of 0.0001 (mentioned in the USGS SR product 

guide) was used to convert the data range to -1 and +1 using the method:  

(𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑁𝐷𝑉𝐼 ∗  0.0001)          (𝐄𝐪. 𝟐) 

 

3.3.2. | Climatic data analysis  

3.3.2.1. | Examining rainfall seasonality  

Average monthly rainfall totals were obtained by extracting the study area from the CHIRPS 

Africa monthly rainfall dataset using the extraction tool in spatial analyst tools, ArcMap 

toolbox. The monthly averages were used to analyze rainfall seasonality and anomaly for the 

study period (1984-2017). CHIRPS pixel values in each sample point were used to present 

rainfall record in each plot. 

3.3.2.2. | Measuring variations in rainfall 

The Coefficient of variation (CV) was used to test the level of variability of rainfall in each 

sampled vegetation plot. The CV (%) measures the probability of fluctuations by considering 

the mean and is independent of the original unit of measure in being expressed as a 

percentage (Schulze, 2011). A rule of thumb established by Conrad (1941) as cited by Schulze 

(2007) is that the higher the mean annual precipitation (MAP), the lower its inter-annual 

variability. The study area is characterized by low MAP and has high inter-annual rainfall 

variability, hence the need to measure variability. The CV is calculated as the standard 

deviation of the annual series divided by the mean (Chen et al., 2014):  
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 𝐶𝑉 =  
𝜎

𝜇
 × 100          (𝐞𝐪𝐮. 𝟑) 

where CV is the coefficient of variation; σ is standard deviation, and μ is the mean 

precipitation. Low CV is represented by values less than 20 (CV <20), moderate (20 <CV <30) 

and high (CV >30) (Hare, 2003).  

3.3.2.3. | Standardized Precipitation Index (SPI) 

The SPI is a drought index that is explicitly based on precipitation data and can be used to 

identify the intensity and duration of droughts. The rainfall record is first fitted to a gamma 

distribution and transferred to a normal distribution using an equal probability 

transformation (Zargar et al., 2011). The mean is then set to zero and as such, values above 

zero indicate wet periods and values below zero indicate dry periods (Mckee et al., 1993). The 

MDM (Meteorological Drought Monitor) software from the AgriMetSoft (Agricultural and 

Meteorological Software) center was used to calculate the 12-month SPI from the CHIRPS 

average monthly rainfall totals. Further details on how to compute the SPI can be obtained 

from McKee et al. (1993) and Hayes et al. (1999). The SPI-12 was selected because it provides 

a reflection of long-term precipitation patterns (WMO, 2012).  

Table 3.3: Drought classification according to SPI values.  

SPI value Classification description 

≥ 2.00 Extremely wet 

1.50 to 1.99 Very wet 

1.00 to 1.49 Moderate wet 

0 to -0.99 Near normal 

-1.00 to -1.49 Moderate dry 

-1.50 to -1.99 Severely dry 

≤ -2.00 and less Extremely dry 

Source: McKee et al. (1993). 

 

3.3.2.4. | Analyzing seasonal temperatures  

The mean monthly maximum and minimum temperatures were analyzed to identify seasonal 

variations and for correlation determinations between temperature and vegetation 

productivity for a long-term series and for different seasons between 1984 and 2017.  
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3.3.3. | Linear correlation and multivariable analysis  

The Pearson correlation coefficient was used to determine the strength of a linear 

relationship between monthly mean NDVI and monthly mean precipitation and between 

monthly mean temperature and NDVI. The correlations were computed for different seasons 

and for a long inter-annual time-series. A correlation coefficient is a statistical value used to 

measure the strength of a linear association between two variables:  

𝑟 =
𝑛 ∑ 𝑥𝑦 − (∑𝑥)(∑𝑦)

√𝑛(∑𝑥2) − (∑𝑥)² √𝑛 (∑𝑦2) − (∑𝑦)²
          (𝐞𝐪𝐮. 𝟒) 

where r is a product correlation coefficient, n is the number of scores, x and y are variables, Σ 

𝑥𝑦 is the sum of x and y, Σ𝑥 is the sum of x, Σ𝑦 is the sum of y. 

The results range between -1 and +1. +1 in the case of a perfect positive linear relationship 

and -1 in the case of a perfect negative linear relationship. Values between -1 and +1 in all 

other cases indicate the degree of linear independence between the variables. A value near 

zero indicates a nonlinear relationship. The closer the coefficient is to either -1 or 1, the 

stronger the correlation between the variables (Turyahikayo, 2014) as indicated below: 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒                     𝑆𝑚𝑎𝑙𝑙 𝑜𝑟 𝑛𝑜𝑛𝑒                         𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

                  𝑟 =  −1                                  𝑟 = 0                                   𝑟 = +1                       
  

Time lag analysis was carried out to consider the lag between vegetation productivity and 

changes in rainfall and temperature. A zero-month lag and 3-month lag relationships were 

investigated, and the results are presented in section 4.1.8.  

A multivariate analysis refers to the impact of multiple variables to a single variable (Fox, 

1997). It allows an analysis of the independent contribution of each variable to the dependent 

variable. In this study, a multiple regression model was used to observe the influence of 

rainfall and temperature on vegetation productivity and quantify the combined effect of 

independent variables on vegetation productivity. The multiple regression model was 

computed in the IBM Statistical Package for the Social Sciences (SPSS) software program using 

the stepwise method.   
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3.3.4. | Assessing Groundwater Dependent Ecosystems (GDEs) 

The year 2017 was considered a suitable year for identifying potential GDEs. The year was 

extremely dry as indicated by low annual rainfall (Table 3.4). The dry conditions provided a 

basis to detect vegetation and water that rely on groundwater. For this section, a sub-region 

of the original study area was created and this consisted of the sampled vegetation plot sites 

and the center of the sampling region (Figure 3.4). The reasoning for creating a sub-region 

was to be able to map GDEs at a manageable scale and to avoid miss-classifications which 

were encountered during the initial classification using a map of the entire study area.  

The mapping of GDEs comprised land cover classification using the supervised image 

classification approach, and identifying groundwater discharge areas. Eamus et al. (2006) 

have also argued that GDEs are likely to be situated in areas where groundwater is discharged 

to the surface. It is important to note that this section focused on surface GDEs, i.e. those 

reliant on a surface expression of groundwater with a specific focus on vegetation and water.  

 

Table 3.4: Annual precipitation by year during the study period (1984-2017) calculated from the CHIRPS rainfall 

dataset. 

Year 
Annual precipitation 

(mm) 
Year 

Annual precipitation 
(mm) 

1984 256.61 2001 298.07 

1985 400.72 2002 349.02 

1986 299.50 2003 317.73 

1987 267.19 2004 336.62 

1988 312.51 2005 301.52 

1989 362.81 2006 346.99 

1990 342.92 2007 358.94 

1991 271.86 2008 267.12 

1992 311.85 2009 318.12 

1993 370.29 2010 237.67 

1994 306.43 2011 326.41 

1995 430.37 2012 346.80 

1996 341.06 2013 344.95 

1997 285.81 2014 266.79 

1998 343.78 2015 301.34 

1999 340.23 2016 270.80 

2000 253.31 2017 200.68 
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Figure 3.4: Map of the quaternary catchments showing the boundary of the sub-region and sample plots.  

 

3.3.4.1. | Image classification  

Three images were used for land cover classification; an ortho-corrected WorldView-2 image, 

which was taken during the period of data collection (28th October 2017), and two standard 

ortho-corrected SPOT 7 images taken on the 17th of July 2017 and 13th of September 2017. 

The SPOT image dates were the only available images in the South African National Space 

Agency (SANSA) online catalog for 2017, thus leading to a default selection.  

Image classification was performed in Definiens eCognition version 9.0 and ENVI version 5.3 

using the object-based and pixel-based classification methods respectively. The land cover 

classes used for classification are listed in Table 3.5. A true colour composite (red, green, blue) 

was used; bands (1, 2 and 3) for SPOT 7 and bands (3, 2 and 1) for WorldView-2.   
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Table 3.5: The land cover classes of GDEs used for classification.  

Type Land cover classes 

GDE related 

LC 1 
Healthy green vegetation: vegetation that has permanent access to water, 
shows consistent greenness and wetness even after a prolonged dry 
period. 

LC 2 
Water bodies: consistent water content and wetness, with low greenness 
during the dry season. 

Source: Barron et al. (2012). 

 

Object-based classification 

The object-based classification process can be divided into two main workflow steps as shown 

below; segmentation and classification of the resulting image objects.  

 Segmentation 

Image segmentation was carried out using the multi-scale segmentation (MSS) algorithm.  

Spectral band selection and weighting 

Each layer or image band is assigned a weight in the segmentation process. All bands were 

used in this study and these were assigned an equal weighting of 0.1 (default value in 

eCognition), expect the NIR band which was assigned a weight of 2. The reasoning for 

assigning the NIR band a different weight was that vegetation reflects high in the NIR band 

and this was considered important for delineating vegetation that relies on groundwater.  

Scale, shape and compactness parameter selection 

To produce visually pleasing segmentation results, the trial and error process was conducted. 

Three levels of scale (180, 100, and 60) combined with a shape factor of 0.1 and a 

compactness of 0.6 (Table 3.6) were tested in the error and trial process. At level 4, the scale 

factor of 40 combined with a shape factor of 0.1 and a compactness of 0.6 provided visually 

appealing segmentation results after costing a great deal of time.  

Table 3.6: Segmentation parameters and criterion. 

Segmentation level Scale Shape Compactness 

1 180 0.1 0.6 

2 100 0.1 0.6 

3 60 0.1 0.6 

4 40 0.1 0.6 
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 Classification  

The images were classified using a combination of user-defined fuzzy membership functions 

and the nearest neighbor classifier. Training samples were randomly created for each land 

cover class (Table 3.7). These differed in each image in order to identify surface changes in 

terms of vegetation and water, thus meeting the objective of classification (i.e. to identifying 

GDEs). The feature extraction and analysis function based on features listed in Table 3.8 were 

used to identify a suitable threshold value for separating classes. The feature properties, 

which are described through fuzzy rules, are mainly used for dealing with uncertainty and 

vagueness in cases where an image object belongs to more than one class (Feizizadeh et al., 

2017). The selection of features was guided by the characteristics of surface features in the 

study area and the literature (Benz et al., 2004). The nearest neighbor classifier with the 

defined membership functions for each class was computed to classify the SPOT images.  

Table 3.7: Land cover classes and the random samples created in each image for classification.  

Land cover classes 

Samples by image 

SPOT 7 (17-

July) 

SPOT 7 (13-

September) 

WorldView-2 (28-

October) 

Healthy green vegetation 250 125 92 

Water bodies 43 53 15 

 

Table 3.8: Features considered for separating objects in object-based image classification. 

Attribute Properties 

Spectral attributes  
Mean  

Standard deviation  

Geometric attributes 

Extent Area 

Shape (Asymmetry, Border index, Compactness, and Shape index) 

Texture 
Mean of sub-objects: standard deviation  

Average mean difference to neighbors of sub-objects  

 

Pixel-based classification  

The WorldView-2 image was initially classified in eCognition. However, the process was time-

consuming and the results displayed enormous misclassification. To rectify the errors, other 

possible combinations of threshold values were required to separate the classes and samples 

needed to be reassigned to the misclassified areas. This was time-consuming and the software 
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eventually ran slow. Therefore, the WorldView-2 image was alternatively classified in ENVI 

using the traditional supervised maximum likelihood method.  

 Defining training sites and classifying 

The same classes in Table 3.7 were used to create training sites by assigning pixels to these 

land cover classes. A signature file which contains statistical information about the reflectance 

values of the pixels within the training sites for each class was created. A maximum likelihood 

algorithm was used to classify the image based on the signature file. 

Classification problems encountered 

In segmenting image objects, the major challenge experienced was choosing the appropriate 

segmentation parameters. The mapped area consists of objects that vary in size substantially. 

For instance, the size of shrubs is significantly small compared to the size of water bodies or 

bare land. Therefore, some small individual shrubs were merged with bare land or unclassified 

area. The mapped area is located in the Karoo, a semi-desert environment, and therefore 

some vegetated areas have similar reflectance signatures to bare land due to their 

composition and texture. The classification algorithm classified such features as a single class, 

thus resulting in misclassification. 

3.3.4.2. | Indicators of groundwater discharge areas  

A 30 m SRTM Digital Elevation Model (DEM) obtained from the USGS Earth Explorer website 

was used to create profile curvature, Topographic Wetness Index (TWI) and the hill-shade 

which was used to visualize elevation. A threshold value of 0.01 derived from Tweed et al. 

(2007) was used to calculate the profile curvature.  

As demonstrated by Tweed et al. (2007), topographic depression can be used to detect 

potential zones of groundwater discharge. In this study, the TWI was used to identify potential 

zones of saturation. The modified wetness index (w) was calculated using the following 

equation (Moore et al., 1991): 

𝑤 = 1n (
1

tan 𝛽
) ,          (𝐞𝐪𝐮. 𝟓) 
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where 𝛽 is the slope gradient (in degrees). A threshold technique of >10, adopted from Tweed 

et al. (2007), was used on the wetness index to map topographic depressions and areas of 

potential groundwater discharge. 

3.3.4.3. | Validation 

The classification results were assessed through the producer and user accuracy, overall 

accuracy, and Kappa coefficient derived from the confusion matrix. Producer accuracy 

determines the degree of accurately classified reference data and user accuracy is a 

descriptive summary of how much of the entire classified area was correct (Barron et al., 

2012). The Kappa coefficient measures the agreement between classification and reference 

data. Accuracy assessment of the classified WorldView-2 image was computed using the 

ground truth region of interest (ROIs) approach in ENVI. Training samples of the same classes 

as those in the classified image were created using the random sampling method which is 

recommended by Kerle et al. (2004).  

The classified SPOT 7 images were assessed by comparing the location and class of each 

ground truth sample of the reference image with the corresponding location and class of the 

same sample in the classified image. The natural colour image that was used for classification 

was also used for accuracy. 300 sample points were randomly created in ArcGIS. These were 

converted to a raster file and imported in eCognition. The points were linked with 

corresponding classes by manually creating samples where a pixel correspond with a point 

and saving the results as a TTA mask which was used to calculate the accuracy assessment. 

The method has been previously used by Kongo and Pavlique (2015).  

GDEs were further validated by examining the characteristics of the dominant plant species 

in both the floodplain woodland and the hillslope shrubland plant communities (Chapter 5). 

This was guided by the literature.  

http://etd.uwc.ac.za/



pg. 41 

 

 

Figure 3.5: A flow diagram of the research methods from data acquisition to data analysis.  
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CHAPTER 4:   THE IMPACT OF RAINFALL AND 

TEMPERATURE ON VEGETATION PRODUCTIVITY, AND THE 

SPATIAL RANGE OF GROUNDWATER DEPENDENT 

ECOSYSTEMS (GDEs) 

 

4.1. | Results 

4.1.1. | Introduction  

The aim of this chapter is to present the results used to address the objectives of this study; 

“To develop an understanding of spatiotemporal dynamics of rainfall in the Touws River 

quaternary catchments and provide a basis for assessing the role of rainfall and temperature 

variations on vegetation productivity” and “To investigate the spatial occurrence of 

groundwater dependent ecosystems in 2017”. Extensive analysis of the generated findings 

and a detailed discussion is carried out. This chapter starts by delineating the plant species 

gathered in each sampled vegetation plot, and their communities. This is followed by a 

presentation of inter-annual variation of vegetation productivity and precipitation at plot 

scale. Analysis of temperature and rainfall data on different time scales is performed, 

followed by a correlation analysis. The results of image classification are presented followed 

by a detailed analysis of the indicators of groundwater discharge areas and lastly, a 

comprehensive discussion is carried out. 

4.1.2. | Vegetation analysis  

4.1.2.1. | Description of plant communities  

The plant communities of the study area can be grouped as follows:  

1. Floodplain woodland community  

2. Hillslope shrubland community  

2.1. Vygie-open succulent sub-community 

 

1. Floodplain woodland community (Figure 4.1 a & b) 

The floodplain woodland community grows along the river banks and along the edges of the 

floodplain, where the soil is poorly developed. The alluvium is sand, or gravel and the water 
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is slightly saline. The deposited material in the floodplain also consists of medium to large 

pebbles and small boulders. The vegetation in this community is dominated by a 9-12 m 

Vachellia karroo trees (Table 4.1). Other species present include Veronica anagallis-aquatica 

subsp. anagallis-aquatica, an annual macrophyte of 30-120 cm tall, Mesembryanthemum 

guerichianum, Gomphocarpus fruticosus subsp. fruticosus, a perennial plant, and Calpurnia 

aurea subsp. aurea, which grows on moist sandy soil. The floodplain woodland community is 

found in vegetation plot 4, 6 and 7.  

2. Hillslope shrubland community (Figure 4.1 c & e)  

The hillslope shrubland community is commonly found in rocky flats and hilly arid surfaces. 

The substrate is dominated by gravel on hard ground, made up of stones and fines of less 

than 2 cm in size. The community is composed of drought-resistant low growing shrubs, which 

mostly flower in spring. Plant species in this community include Pteronia pallens, Rhigozum 

obovatum, Drosanthemum micans, Searsia crenata, Salsola aphylla, Indigofera aspalathoides, 

Ruschia muricata, Euclea undulata, Monsonia camdeboensis, and Anchusa capensis (Table 

4.2). The hillslope shrubland community is found in vegetation plot 1, 2, 3 and 5.  

2.1. Vygie-open succulent sub-community (Figure 4.1 d)   

The Vygie is a sub-community of the hillslope shrubland community and is found on a gentle 

to flat open surface, with undulating sand deposits along the floodplain. It is characterized by 

sandy soils, with exposed pebbles ranging from 20% to 80%. The vegetation forms scattered 

groups of low to short shrubs. The dominant species in this community is the 

Mesembryanthemaceae fenzl, a succulent dwarf shrub. This sub-community is found in 

vegetation plot 5.  
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Figure 4.1: Vegetation community types described and characterized in the Touws quaternary catchments: (A 

and B) Floodplain woodland community, (C and E) Hillslope shrubland community, and (D) Vygie – open 

succulent sub-community. 

 

4.1.2.2. | Plant species by vegetation community  

The plant species gathered at sample plots in the study site are presented in Table 4.1 and 

4.2. Each vegetation plot is paired into a riparian (A) and non-riparian area (B) and the 

percentage cover is based on the dominant plant species in each plot, denoted by the asterisk 

(*):   

Table 4.1: Plant species collected during the survey period in the floodplain woodland community. 

Plots 
Location of 

occurrence 
Scientific name  Family name  Cover (%) 

Plot 4 

A 

riparian 

Ruschia muricate *  Aizoaceae  50-70 

Anchusa capensis  Boraginaceae   

Pteronia pallens  Asteraceae   

B 

non-riparian 

Vachellia karroo *  Fabaceae  70-90 

Calpurnia aurea subsp. aurea  Fabaceae   

Plot 6 

A 

riparian 

Indigofera aspalathoides *  Fabaceae  60-90 

Pteronia pallens  Asteraceae   

B 

non-riparian 

Ruschia muricata  Aizoaceae   

Vachellia karroo *  Fabaceae  45-60 

Euclea undulata  Ebenaceae   

Indigofera aspalathoides  Fabaceae   

Plot 7 

A 

riparian 

Pteronia pallens  Asteraceae   

Ruschia muricate *  Aizoaceae  35-60 

B 

non-riparian 

Vachellia karroo *  Fabaceae  65-80 

Mesembryanthemum guerichianum  Aizoaceae   

*indicates dominant plant species in each area.  
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Table 4.2: Plant species collected during the survey period in the hillslope shrubland community. 

Plots 
Location of 

occurrence 
Scientific name Family name Cover (%) 

Plot 1 

A 

(riparian) 

Vachellia karroo * Fabaceae 75-80 

Euclea undulata Ebenaceae  

Searsia crenata Anacardiaceae  

B 

(non-riparian) 

Pteronia pallens Asteraceae  

Salsola aphylla Amaranthaceae  

Drosanthemum micans Aizoaceae  

Indigofera aspalathoides Fabaceae 30-50 

Ruschia muricata Aizoaceae  

Plot 2 

A 

(riparian) 
Veronica anagallis-aquatica subsp. anagallis-aquatica * Plantaginaceae 60-70 

B 

(non-riparian) 

Monsonia camdeboensis * Geraniaceae 20-45 

Rhigozum obovatum Bignoniaceae  

Euclea undulata Ebenaceae  

Plot 3 

A 

(riparian) 

Vachellia karroo * Fabacea 50-70 

Gomphocarpus fruticosus subsp. fruticosus Apocynaceae  

B 

(non-riparian) 
Euclea undulata * Ebenaceae 70-80 

Plot 5 

A 

(riparian) 

Euclea undulata * Ebenaceae 60-90 

Rhigozum obovatum Bignoniaceae  

B 

(non-riparian) 

Vachellia karroo * Fabaceae 40-65 

Ruschia muricata Aizoaceae  

Rhigozum obovatum Bignoniaceae  

Mesembryanthemaceae fenzl Aizoaceae  

*indicates dominant plant species in each area.  

 

4.1.3. | Inter-annual variability of NDVI and precipitation 

This section shows the variations of vegetation productivity and precipitation in the sampled 

plot sites for the study period (1984-2017). The two areas in each vegetation plot, (i.e. area A 

and area B) represent riparian (shown in green, area A) and non-riparian (shown in red, area 

B) areas respectively. It is worth noting that within the CHIRPS rainfall dataset, plot 1 and 2 

are within the same pixel and have the same rainfall values. Plots 6 and 7 are also within the 

same pixel and have the same rainfall values. The vegetation plots are presented in the 

following order: plot 1, 2, 3 and 5 (hillslope shrubland community) and plot 4, 6 and 7 

(floodplain woodland community). Descriptive statistics of rainfall and NDVI for each plot site 

were calculated (Table 4.3 and Table 4.4).  
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Table 4.3: Descriptive statistics of the sampled vegetation plots calculated from the full NDVI dataset. 

Plots 
Location of 

occurrence 

Community 

name 
Average Maximum Minimum 

Standard 

deviation 

Plot 1 

Area A 

(riparian) 

Hillslope 

shrubland 

community 

0,2715 0,3363 0,1479 0,03747 

Area B 

(non-riparian) 
0,2582 0,3498 0,1125 0,03966 

Plot 2 

Area A 

(riparian) 
0,2708 0,3661 0,1919 0,03657 

Area B 

(non-riparian) 
0,2546 0,3466 0,1817 0,03215 

Plot 3 

Area A 

(riparian) 
0,2683 0,3328 0,1318 0,03547 

Area B 

(non-riparian) 
0,2550 0,3634 0,1000 0,04051 

Plot 4 

Area A 

(riparian) 
Floodplain 

woodland 

community 

0,2924 0,4173 0,1987 0,03907 

Area B 

(non-riparian) 
0,2860 0,8940 0,1037 0,11968 

Plot 5 

Area A 

(riparian) 
Hillslope 

shrubland 

community 

0,3707 0,4740 0,1292 0,05286 

Area B 

(non-riparian) 
0,2542 0,8610 0,1574 0,07238 

Plot 6 

Area A 

(riparian) 

Floodplain 

woodland 

community 

 

0,4518 0,6390 0,1915 0,07690 

Area B 

(non-riparian) 
0,3327 0,4391 0,1703 0,05601 

Plot 7 

Area A 

(riparian) 
0,4046 0,5062 0,1074 0,06028 

Area B 

(non-riparian) 
0,2886 0,4256 0,1451 0,05243 

 

Table 4.4: Descriptive statistics of the sampled vegetation plots calculated from the CHIRPS rainfall dataset.  

Plots 
Location of 

occurrence 

Average 

(mm) 

Maximum 

(mm) 

Minimum 

(mm) 

Standard 

deviation (mm) 

PLOT 1 & 2 
 

7.17 10.16 2.56 1.37 

PLOT 3 
 

10.30 13.55 3.61 2.02 

PLOT 4 

Area A 

(riparian) 
8.65 12.54 3.07 1.71 

Area B  

(non-riparian) 
7.19 10.77 2.60 1.41 

PLOT 5 
 

7.31 11.07 2.56 1.46 

PLOT 6 & 7 
 

7.40 10.55 2.66 1.41 

 

 

 

 

 

http://etd.uwc.ac.za/



pg. 47 

 

Table 4.5: The units used in NDVI scatter plots and the corresponding Landsat image dates (1984-2017).  

No. Date No. Date No. Date 

1 04-Jul 
1984 

129 30-Apr 

1995 

269 24-Dec 2006 

5 25-Nov 131 01-Jun 275 02-Jun 

2007 29 01-Dec 1986 132 19-Jul 276 04-Jul 

30 18-Jan 
1987 

134 05-Sep 277 05-Aug 

31 03-Feb 139 12-Feb 

1996 

283 13-Feb 2008 

54 23-Jan 

1989 

143 03-Jun 298 06-May 
2009 

56 28-Mar 143.5 19-Jun 298.5 22-May 

57 29-Apr 144 21-Jul 309 07-Apr 2010 

58 15-May 145 22-Aug 321 10-Apr 2011 

59 16-Jun 148 10-Nov 350 06-Sep 

2013 
61 03-Aug 150 13-Jan 

1997 

350.5 22-Sep 

64 07-Nov 150.5 29-Jan 351 24-Oct 

65 09-Dec 151 14-Feb 352 25-Nov 

67 27-Feb 

1990 

152 02-Mar 356 17-Mar 

2014 

71 19-Jun 154 21-May 357 18-Apr 

72 05-Jul 156 08-Jul 359 21-Jun 

72.5 21-Jul 158 10-Sep 360 07-Jul 

73 06-Aug 158.5 26-Sep 361 24-Aug 

75 25-Oct 161 15-Dec 362 25-Sep 

76 26-Nov 163 01-Feb 

1998 

363 11-Oct 

77 28-Dec 164 21-Mar 365 14-Dec 

78 13-Jan 

1991 

168 11-Jul 366 15-Jan 

2015 

80 02-Mar 174 19-Jan 

1999 

368 20-Mar 

81 19-Apr 175 04-Feb 370 07-May 

82 21-May 178 11-May 371 08-Jun 

85 09-Aug 179 12-Jun 372 10-Jul 

88 29-Nov 186 22-Jan 

2000 

373 27-Aug 

94 07-May 

1992 

190 13-May 376 01-Dec 

95 08-Jun 195 20-Oct 376.5 17-Dec 

97 27-Aug 196 05-Nov 377 02-Jan 

2016 

100 15-Nov 197 23-Dec 380 07-Apr 

101 17-Dec 235 02-Feb 

2004 

381 25-May 

104 07-Mar 

1993 

236 21-Mar 384 29-Aug 

104.5 23-Mar 239 09-Jun 385 14-Sep 

108 13-Jul 239.5 25-Jun 388 03-Dec 

109 14-Aug 240 11-Jul 389 04-Jan 

2017 

113 20-Dec 252 14-Jul 
2005 

391 25-Mar 

114 21-Jan 

1994 

256 19-Nov 392 10-Apr 

117 11-Apr 261 12-Apr 

2006 

394 13-Jun 

118 13-May 261.5 28-Apr 394.5 29-Jun 

122 02-Sep 264 01-Jul 397 01-Sep 

127 09-Feb 

1995 

265 18-Aug 398 03-Oct 

128 13-Mar 267 05-Oct 399 04-Nov 

129 30-Apr 268 06-Nov 400 06-Dec 

 

The gaps in NDVI scatter plots (Figure 4.2 to 4.8) show the missing data from the Landsat 

archive and the excluded images because of cloud cover. The numbers on the x-axes of each 

NDVI scatter plot represents the dates of Landsat images converted to numbers based on the 

length of the dataset and these are displayed in Table 4.5. This was to provide a clear 

visualization of the missing data and to make the scatter plots more readable. In plot sites (1, 

2, 3 and 4), the NDVI display a similar trend throughout the years, with minimal difference 

between the two areas. However, the riparian area is consistently greener in all plot sites as 

indicated by high NDVI values. Differences between the riparian and the non-riparian area 
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are most noticeable in plots 5, 6 and 7 (Figure 4.5, 4.7 and 4.8). This is further illustrated in 

the statistics; firstly, the difference in average and maximum values between plot 1 and plot 

4 is minimal compared to the difference between plot 5, 6 and 7. Secondly, the difference 

between the minimum and the maximum values from plot 5 to 7 is comparatively high, thus 

indicating very little overlap in terms of NDVI values for riparian and non-riparian areas. 

Figure 4.2 display the spread of NDVI and precipitation in the riparian and non-riparian area 

in vegetation plot 1 for the observed time series 1984-2017. The NDVI is low in both areas, 

and this is demonstrated by fairly low maximum values, 0.3362 in the riparian area and 0.3498 

in the non-riparian area (Table 4.3). However, vegetation productivity in the riparian area is 

generally higher (0.2715 on average) than in the non-riparian area (0.2582 on average), 

except where the latter surpasses the former most notably in July 1997 as indicated in Figure 

4.2a. This plot also experiences low precipitation, and this is highlighted by the monthly 

average of 20.62 mm and a maximum precipitation of just above 80 mm (Table 4.4). April 

1989 and April 1993 are the only months with rainfall of more than 80 mm (Figure 4.2b). 

Precipitation is predominantly below the average (20.62 mm). Most precipitation is received 

between autumn (March – May) and summer (December – February), while precipitation is 

low in winter (June – August). The NDVI displays a similar pattern, where values are low during 

winter and high in spring and in summer (Figure 4.2a and Table 4.5).  
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Figure 4.2: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 1 (1984-2017). 
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Vegetation plot 1 and 2 are comparatively similar, both displaying low NDVI throughout the years. A similar NDVI pattern is observed in both 

plots where the riparian and non-riparian areas overlap almost every month. In Figure 4.3a most of NDVI is clustered between the range of 0.2 

and 0.3 from January 1989 to December 2000 as indicated. This shows a uniform linear pattern and indicates less dispersal of NDVI values 

(standard deviation of 0.03657 in the riparian area and 0.03215 in the non-riparian area, Table 4.3). However, the difference in average values 

between the riparian and non-riparian area is statistically significant. This was tested using a student t-test at 0.05 probability level.  
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Figure 4.3: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 2 (1984-2017). 
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In vegetation plot 3, the riparian and non-riparian areas are clustered in the same way as in plots 1 and 2. This makes the separation between 

the two areas challenging, especially when identifying patterns over the years. Plot 3 experienced the lowest NDVI value (0.1) in the non-riparian 

area in May 2000 (Figure 4.4a). Plot 3 has the highest monthly precipitation average (29.61 mm), the highest maximum precipitation value 

(133.40 mm), but also the highest standard deviation (18.89 mm) of all plots (Table 4.4). Precipitation in this plot is highly variable. A substantial 

number of months have precipitation of more than 40 mm, indicating sporadic, large rainfall events in this plot (Figure 4.4b). However, the NDVI 

has low values and therefore shows little response to these conditions.    
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Figure 4.4: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 3 (1984-2017). 
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In vegetation plot 5 the spread of NDVI is strong in both the riparian and non-riparian area, with the former consistently higher. May 1991 is the 

only time the NDVI was lowest in the riparian area (0.1292) and November 1984 emerges with an exceptional NDVI value (0.8610) in this plot 

(Figure 4.5a). Only a few months have precipitation of more than 50 mm in plot 5 (Figure 4.5b). Most of the precipitation received between 1984 

and 2017 is less than the average. Some years are characterized by extremely low precipitation, most notably 2017 where November is the only 

month with precipitation of (34.37 mm) more than the average. Other years, such as 1999 and 2011, received precipitation of more than the 

average for most months and rainfall occurred almost throughout the entire year.  
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Figure 4.5: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 5 (1984-2017). 
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In plot 4 (Figure 4.6a) the NDVI values for the non-riparian area are more dispersed than the riparian area and this is indicated by the high 

standard deviation of 0.11968 (Table 4.3). The riparian area, on the other hand, shows an almost linear pattern and low variability (SD of 

0.03907). The overlap between February 2004 and December 2017 (indicated in Figure 4.6a) demonstrate a minimal difference between the 

two areas and this is further indicated by the slight difference in NDVI average values, 0.2871 in the riparian area and 0.2667 in the non-riparian 

area. In addition, the difference in average values was found to be statistically insignificant. Both areas have varying rainfall totals in plot 4 and 

the riparian area has increasingly high precipitation (Figure 4.6b). This area also has a maximum monthly rainfall value of 105.82 mm and an 

average monthly rainfall of 24.88 mm. The non-riparian area has a maximum monthly rainfall value of 84.16 mm and average monthly rainfall 

of 20.66 mm (Table 4.3).  

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



pg. 57 

 

 

 

 

Figure 4.6: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 4 (1984-2017). 
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Figure 4.7a reveals that vegetation plot 6 has high NDVI values (a maximum value of 0.3690) and the spread in riparian and non-riparian areas 

is wide. The difference between the two areas is more visible and can be detected by average values (Table 4.3). The difference in average values 

was found to be statistically significant. However, the pattern between February 2004 and December 2017 is quite similar to the pattern in plot 

4 where the riparian and non-riparian areas overlap substantially. The distribution of rainfall in plot 6 (Figure 4.7b) suggests that only a few 

months have rainfall totals of more than the monthly average (21.27 mm) and this is comparable with rainfall conditions in vegetation plot 5. 

The average monthly rainfall is 21.27 mm, the maximum is 79.03 mm and the minimum rainfall total is 2.87 mm.  
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Figure 4.7: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 6 (1984-2017). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 51 101 151 201 251 301 351 401

N
D

V
I

Month since (July 1984)

Plot 6B (non-riparian) Plot 6A (riparian)

0

20

40

60

80

100

120

140

R
ai

n
fa

ll 
(m

m
)

Month since (July 1984)

http://etd.uwc.ac.za/



pg. 60 

 

 

In vegetation plot 7 the overlap between the riparian and non-riparian area is infrequent, and the difference is immense. The difference can also 

be comprehended by the huge difference in average NDVI values, which was found to be significant using the t-test. The difference between 

standard deviations of the two areas is minimal; 0.06028 and 0.05243 in the riparian and non-riparian area respectively. This means both areas 

almost have the same pattern and the spread of NDVI is quite similar. Both riparian and non-riparian areas display a declining trend over the 

years, where NDVI decreases from July 1984 to December 2017. 
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Figure 4.8: The Normalised Difference Vegetation Index (NDVI) (a) and monthly precipitation (b) for vegetation plot 7 (1984-2017). 
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4.1.4. | Intra-annual rainfall variability  

The coefficient of variation (CV) was used to evaluate the variability of precipitation in each 

sampled vegetation plot (Figure 4.9 and 4.10). It is to be noted here that vegetation plot 1 

and 2 have the same CV because the two plots have the same precipitation totals. Plots 6 and 

7 also have the same CV. The results demonstrate that all vegetation plots received highly 

seasonal precipitation, except in 1984 where precipitation occurred throughout the year as 

indicated by a low to moderate CV (20-30%). The rainfall shows major seasonal variability 

prior to 1997 and between 2002 and 2009 in all vegetation plots. However, from 2010 to 2017 

there is less variability, indicating that rainfall commonly occurs throughout the year. This is 

similar in all sampled vegetation plots.  

 

 

Figure 4.9: Coefficient of variation in monthly precipitation amounts for vegetation plot 1 and 2 (a), and 3 (b) 

for the period between 1984 and 2017. 
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slightly more variable precipitation than the non-riparian area. However, the difference in CV 

values between the two areas is minimal. Plot 6 and 7 (Figure 4.10c) displayed the highest 

variability in 1996 (CV > 80%) and 1989 (CV of 79.25%).  

 

 

 

Figure 4.10: Coefficient of variation in monthly precipitation amounts for vegetation plot 5 (a), 4 (b), 6 and 7 

(c) for the period between 1984 and 2017. 
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4.1.5. | Long-term climatic trends  

4.1.5.1. | Analysis of precipitation trends 

The average annual rainfall for the 34-year data is 314.34 mm with an annual coefficient of 

variance of 48.80% (Table 4.6). The annual maximum and minimum rainfall totals are 754.67 

mm and 117.26 mm respectively. Figure 4.11 demonstrates that the year 1995 is the wettest 

year (430.37 mm) and 2017 is the driest year (200.68 mm) on record. This is further illustrated 

in Figure 4.13. Some months are significantly more variable than the annual record (CV 

48.80%). For instance, the rainfall variability is extremely high in December (CV 77.38%), 

November (60.19%), May (58.24%) and April (54.09%). The rainfall historical trend shows that 

most years received rainfall totals that were below the average (Figure 4.11). Furthermore, 

the rainfall recorded above the average is less than 450 mm and thus, leading to the 

conclusion that the region has received tremendously less precipitation. This statement is 

similar to what Le Maitre et al. (2009) asserted, i.e. that the Klein Karoo receives low rainfall 

of 100 mm to 450 mm per year. The slope of regression line also suggests that the annual 

rainfall is declining by -1.127 mm/year (Figure 4.11). However, the declining trend is 

insignificant (r2 = 0.0535). 

Table 4.6: The statistical summary of rainfall in the Touws quaternary catchments for the period (1984-2017). 

Month Min Max Mean SD CV % 

January 11.06 44.30 20.21 8.86 43.84 

February 9.12 51.97 20.93 9.96 47.61 

March 13.72 71.06 30.01 12.88 42.93 

April 13.91 95.91 39.96 21.61 54.09 

May 4.10 48.61 22.01 12.82 58.24 

June 11.27 61.88 26.01 10.31 39.63 

July 13.44 58.09 29.75 9.14 30.71 

August 10.83 75.66 27.65 13.37 48.35 

September 8.67 26.98 17.36 4.72 27.19 

October 10.10 69.60 30.60 16.03 52.40 

November 7.12 77.36 28.38 17.08 60.19 

December 3.92 73.25 21.47 16.62 77.38 

Annual 117.26 754.67 314.34 153.40 48.80 
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Figure 4.11: CHIRPS total annual precipitation record for the study period (1984-2017). 

 

As depicted in Table 4.6 and Figure 4.12, the rainfall trend also displays a random or sporadic 

pattern where rainfall is scattered and falls in various seasons throughout the years. The 

highest precipitation has been received mainly in autumn (March to May), with April having 

the highest average (39.96 mm) and maximum rainfall (95.91 mm) of all months (Table 4.6). 

Winter (June to August) also displays high rainfall followed by spring (September to 

November), specifically in October and November (Figure 4.12). Rainfall is generally low in 

summer (December to February). 

 

Figure 4.12: The mean monthly rainfall conditions in Touws quaternary catchments from 1984 to 2017.  
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dry spells. This suggests a 4 to 6-year cycle where a period of 2-3 years is characterized by 

floods and 2-3 years is characterized by drought (Figure 4.14). The variation of SPI-12 is 

identical to the variation of rainfall anomaly. Both graphs demonstrate that the year 1995 

experienced the highest rainfall, while the dry period from 2014 to 2017 was the longest 

drought. 2017 stand out as the year with the most intensive drought as indicated in Figure 

4.13 and 4.14.  

 

Figure 4.13: Rainfall anomaly with a 2-year moving average in the Touws quaternary catchments relative to 

1984-2017 average. 

 

Figure 4.14: The Standardized Precipitation Index (SPI) at 12-month scale for the study record (1984-2017). 
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4.1.5.2. | Analysis of temperature trends  

This section examines the temperature trends in the study region for the period of 1984-2017. 

In Figure 4.15, the maximum temperatures show greater variability than the minimum 

temperatures throughout the years. Temperatures are extremely high in summer (December 

to February) and begin to decline in autumn (March to May). They reach low levels during 

winter (June to August) and begin to intensify in spring (September to November). Figure 4.16 

depicts that the highest annual average maximum temperature between 1984 and 2017 is 

26.73°C in 2016, while the lowest is 23.88°C in 1984. The highest annual average minimum 

temperature is 12.94°C in 1999 and the lowest is 8.89°C in 1984.  

 

Figure 4.15: Average monthly temperatures of the Touws quaternary catchments from 1984 to 2017.  

 

Overall, both minimum and maximum temperatures indicate an increasing trend since 1984 

and this is further illustrated by the slope of regression line where temperatures have 

increased at a rate of 0.020°C/year and 0.057°C/year for minimum and maximum 

temperature respectively during the period from 1984 to 2017 (Figure 4.16). The increasing 

trend in maximum temperatures was found to be statistically significant (r2 = 0.55 at p <0.01), 

while that of minimum temperatures was not.  
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Figure 4.16: Average annual maximum and minimum temperature of the Touws quaternary catchments from 

1984 to 2017. 
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a month during 2015. 2013 was the last year of an anomalously wet season, while 2015 was 

during a drought phase (Figure 4.19).  
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Figure 4.17: The relationship between average monthly NDVI and monthly maximum temperatures of the Touws quaternary catchments (1984-2017).  
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Figure 4.18: The relationship between average monthly NDVI and monthly minimum temperatures of the Touws quaternary catchments (1984-2017). 
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Figure 4.19: The relationship between average monthly NDVI and monthly rainfall of the Touws quaternary catchments (1984-2017) with lag time between rainfall peak 

and NDVI peak.
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4.1.7. | The relationship between vegetation productivity, precipitation, and temperature  

This section provides a detailed statistical analysis of the relationship between NDVI, 

temperature and rainfall.  An analysis using average monthly totals with all vegetation plots 

is provided first. This is followed by an analysis by vegetation community and by riparian 

versus non-riparian area.  

4.1.7.1. | Inter-annual correlation 

A correlation coefficient (r0) and a multiple regression model in SPSS using the stepwise 

method were computed to examine the relationship between NDVI, rainfall, and temperature 

using average monthly totals with all vegetation plots for the study period (1984-2017). Table 

(4.7 to 4.10) summarizes the descriptive statistics and analysis results. Both maximum and 

minimum temperatures are positively associated with NDVI and this is statistically significant 

(p <0.01) at 99% level (Table 4.7). Rainfall also displays a positive association with NDVI (0.10), 

but the relationship is not statistically significant (Figure 4.20). The relationship between NDVI 

and minimum and maximum temperatures is demonstrated visually in Figure 4.21.  

Table 4.7: Descriptive statistical summary of the linear regression. 

 Rainfall T-max T-min 

NDVI 

Pearson Correlation .102 .474** .456** 

Sig. (1-tailed) .133 .000 .000 

N 120 120 120 

Note: ** statistically significant at the 0.01 alpha level (1-tailed). 

 

 

Figure 4.20: Correlation coefficient between monthly NDVI and monthly rainfall for the period 1984-2017. 
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Figure 4.21: Correlation coefficient between monthly NDVI and monthly maximum temperatures (a); between 

monthly NDVI and monthly minimum temperatures (b) for the period 1984 -2017. 
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correlated with maximum temperatures (i.e. multicollinearity). The results of the regression 

indicate that maximum temperatures explain 21.8% of the variance in NDVI and the 

combination of maximum temperatures and rainfall explains 26.4% of the variance in NDVI 

(Table 4.8). A significant regression equation was found (F (2.117) = 22.331, p < 0.000), with 
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millimeter in rainfall (Table 4.10). 

 

y = 0,0046x + 0,1952
R² = 0,2248

r = 0,47

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40

N
D

V
I

Max Temp (°C)

NDVI-T-max relationship

a)

y = 0,0064x + 0,2368
R² = 0,2085

r = 0,45

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

N
D

V
I

Min Temp (°C)

NDVI-T-min relationship

b)

http://etd.uwc.ac.za/



pg. 75 

 

Table 4.8: Multiple regression model summary. 

Model Summary c 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 
Durbin-Watson 

1 .474a .225 .218 .0446249  

2 .526b .276 .264 .0433017 1.973 

 

 

Table 4.9: Multiple regression ANOVA. 

ANOVA a 
Model Sum of Squares df Mean Square F Sig. 

1 

Regression .068 1 .068 34.217 .000b 

Residual .235 118 .002   

Total .303 119    

2 

Regression .084 2 .042 22.331 .000c 

Residual .219 117 .002   

Total .303 119    

 

Table 4.10: Multiple regression coefficients. 

Coefficients a     

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95,0% Confidence 
interval for B 

Collinearity Statistics 
 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound 

Tolerance VIF 

1 
(Constant) .195 .020  9.722 .000 .155 .235   

T-max .005 .001 .474 5.850 .000 .003 .006 1.000 1.000 

2 

(Constant) .162 .023  7.133 .000 .117 .207   

T-max .005 .001 .532 6.555 .000 .004 .007 .939 1.065 

Rainfall .001 .000 .234 2.885 .005 .000 .001 .939 1.065 

a. Dependent Variable: NDVI 

 

The p-values for regression coefficients (b) are statistically significant (p < 0.001 and < 0.005) 

for both maximum temperatures and rainfall respectively (Table 4.10). The standardized 

coefficient Beta suggests that maximum temperatures have the strongest relationship with 

NDVI (0.532), compared to rainfall (0.234). 

4.1.7.2. | Correlation by plant community in riparian and non-riparian area  

To observe how NDVI responds to rainfall and temperature in each plant community, a 

correlation coefficient was computed based on vegetation plots with a lag to consider the 

a. Predictors: (Constant), T-max 
b. Predictors: (Constant), T-max, Rainfall 
c. Dependent Variable: NDVI 

a. Dependent Variable: NDVI 
b. Predictors: (Constant), T-max 
c. Predictors: (Constant), T-max, Rainfall 

http://etd.uwc.ac.za/



pg. 76 

 

influence of previous rainfall and temperature on current vegetation conditions. In both plant 

communities, temperatures are more statistically significant than rainfall.  

Zero-month lag correlation 

In the hillslope shrubland community, correlations are mostly strong in autumn and spring 

(Table 4.11). Rainfall has a strong correlation with NDVI during summer and the correlations 

are equally distributed between the riparian and non-riparian area in vegetation plot 1, 2 and 

3. The correlations between NDVI and rainfall, NDVI and minimum temperatures are negative 

during summer but statistically significant. Maximum temperatures show insignificant 

correlation with NDVI in both areas (riparian and non-riparian) during summer. In other 

seasons (autumn, winter, and spring), rainfall shows insignificant correlation with NDVI in 

both areas. In the floodplain woodland community, both rainfall and temperature are not 

much of a factor for vegetation growth, and this is shown by fewer significant correlations. 

Most correlations (about 90%) are within the hillslope shrubland community, indicating that 

water availability and temperature are locally important in determining plant productivity. 

Rainfall is only significantly correlated with NDVI in the riparian area in vegetation plot 4 

during summer and shows zero correlation in other seasons. This indicates that local rainfall 

is not a factor in determining immediate plant growth in such settings. Correlation between 

NDVI and temperature is mostly distributed between autumn and spring in both areas.  

3-month lag correlation 

The results of the 3-month lag correlation also display that 90% of correlations are distributed 

in the hillslope shrubland community (Table 4.12). However, rainfall shows a large correlation 

with NDVI in summer and autumn. During autumn, the correlation between rainfall and NDVI 

is statistically significant (mostly at 95% level; p <0.05) in most vegetation plots in the non-

riparian area. In summer, the NDVI in the hillslope shrubland community is significantly 

correlated with rainfall and temperature, thus indicating that both climatic elements are a 

key factor for vegetation growth. In the floodplain woodland community, temperatures are 

more strongly correlated with NDVI than rainfall. Rainfall is only correlated with NDVI (r = -

0.454; p < 0.01) in plot 4 in the riparian area. 
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Table 4.11: A zero-lag correlation matrix of NDVI versus rainfall and temperatures at a vegetation community scale. 

 

Note: P for plot, t-max (maximum temperature), t-min (minimum temperature), * and ** statistically significant at 0.05 and 0.01 alpha level of significance respectively. 

 

 

 

 

 

Seasons  

Summer Autumn Winter Spring 

Community and area Plot 
NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

t-min 

NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

t-min 

NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

t-min 

NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

 t-min 

H
ill

sl
o

p
e

 s
h

ru
b

la
n

d
 

riparian 
area  

P 1 -0.477** 0.088 -0.519** 0.022 0.668** 0.642** -0.116 0.241 0.198 0.00 0.614** 0.704** 

P 2 -0.441* 0.130 -0.610** -0.198 0.696** 0.493** -0.046 0.302 0.300 -0.092 0.595** 0.616** 

P 3 -0.427* 0.082 -0.545** -0.089 0.486** 0.531** -0.112 0.047 0.473** 0.152 0.527** 0.419* 

P 5 -0.094 -0.237 -0.171 0.331 0.400* 0.384* -0.290 -0.270 0.174 -0.229 0.480* 0.287 

non-
riparian 

area  

P 1 -0.534** 0.191 -0.591** 0.115 0.616** 0.583** 0.045 0.401* 0.096 -0.097 0.523** 0.431* 

P 2 -0.442* 0.321 -0.601** -0.163 0.350 0.280 -0.007 0.410* 0.254 -0.042 0.495* 0.539** 

P 3 -0.542** -0.185 -0.621** 0.018 0.693** 0.669** -0.030 0.198 0.480** 0.082 0.489* 0.622** 

P 5 -0.163 -0.250 -0.414* -0.175 0.394* 0.453* -0.033 0.053 0.123 0.048 0.413* 0.580** 

Fl
o

o
d

p
la

in
 w

o
o

d
la

n
d

 

riparian 
area 

P 4 -0.454** -0.031 -0.576** -0.085 0.357* 0.254 -0.13 -0.222 0.241 -0.032 0.458* 0.376 

P 6 0.126 -0.032 0.231 0.098 0.430* 0.468** -0.195 -0.175 0.130 0.167 0.248 0.463* 

P 7 0.030 -0.302 -0.229 0.330 0.271 0.333 -0.123 -0.148 0.020 0.126 0.353 0.466* 

non-
riparian 

area 

P 4 -0.280 0.234 -0.231 0.030 0.503** 0.353 -0.08 -0.090 -0.232 0.136 0.449* 0.338 

P 6 -0.158 0.211 -0.117 0.035 0.568** 0.475** -0.019 0.298 0.343* 0.384 0.431* 0.538** 

P 7 -0.005 -0.433* -0.167 0.238 0.007 0.281 -0.077 -0.251 0.310 0.082 0.470* 0.500* 
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Table 4.12: A 3-month time lag correlation matrix of NDVI versus rainfall and temperatures at a vegetation community scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: P for plot, t-max (maximum temperature), t-min (minimum temperature), * and ** statistically significant at 0.05 and 0.01 alpha level of significance respectively. 

 

 

 

 

Seasons  

Summer Autumn Winter Spring 

Community Plot 
NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

t-min 

NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

t-min 

NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

t-min 

NDVI-

rainfall 

NDVI- 

t-max 

NDVI- 

 t-min 

H
ill

sl
o

p
e

 s
h

ru
b

la
n

d
 

riparian 
area 

P 1 -0.411* -0.375* -0.643** -0.391* 0.638** 0.367* 0.111 -0.422** -0.353* -0.10 0.552** 0.501* 

P 2 -0.540** -0.363* -0.761** -0.652** 0.627** 0.240 0.079 -0.390* -0.371* -0.228 0.510** 0.394 

P 3 -0.430* -0.330 -0.654** -0.300 0.436* 0.293 0.232 -0.390* -0.156 -0.196 0.615** 0.369* 

P 5 -0.176 -0.284 -0.151 0.135 0.378* 0.345 0.165 -0.423** -0.174 -0.427* 0.292 0.042 

non-
riparian 

area 

P 1 -0.552** -0.370* -0.756** -0.372* 0.575** 0.301 0.026 -0.281 -0.319 -0.221 0.488* 0.273 

P 2 -0.531** -0.438* -0.750** -0.441* 0.211 0.154 0.161 -0.318 -0.277 -0.103 0.552** 0.471* 

P 3 -0.369* -0.494** -0.680** -0.356* 0.655** 0.418* 0.293 -0.390* -0.195 -0.054 0.313 0.465* 

P 5 -0.255 -0.446* -0.441* -0.465** 0.261 0.362* -0.096 0.119 0.168 -0.100 0.351 0.453* 

Fl
o

o
d

p
la

in
 w

o
o

d
la

n
d

 

riparian 
area  

P 4 -0.230 -0.222 -0.583** -0.314 0.233 0.173 0.193 -0.425** -0.180 -0.341 0.595** 0.349 

P 6 0.126 -0.021 0.203 -0.186 0.348 0.409* -0.181 -0.255 -0.044 -0.145 0.266 0.233 

P 7 -0.010 -0.316 -0.275 0.126 0.199 0.271 0.146 -0.456** -0.293 -0.088 0.215 0.139 

non-
riparian 

area 

P 4 -0.381* 0.123 -0.218 -0.167 0.521** 0.342 0.327* 0.095 0.108 -0.124 0.507** 0.246 

P 6 -0.499** -0.152 -0.224 -0.175 0.599** 0.332 -0.006 0.258 0.247 0.022 0.628** 0.330 

P 7 0.205 -0.368* -0.187 0.126 -0.213 0.282 0.157 -0.387* -0.099 0.221 0.271 0.377 
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4.1.8. | The spatial range of Groundwater Dependent Ecosystems (GDEs) 

In this section, an analysis of land cover classification is provided first. This is followed by an 

analysis of the indicators of groundwater discharge areas.  

4.1.8.1. | An overview of land cover classification results  

The land cover classification was performed using the object-based (supervised Nearest 

Neighbor) and pixel-based (supervised Maximum Likelihood) classification methods. The 

classification results of the three image datasets are shown below (Figure 4.22, 4.24 and 4.26). 

Each classified image is presented with an original pan-sharpened true colour image which 

was used to create training samples for classification (Figure 4.23, 4.25 and 4.27). This is to 

visualize the accuracy of the classification results. The classified results are also assessed 

quantitatively using an error matrix (Table 4.13). 

4.1.8.2. | Assessment of classification in July 2017 

Figure 4.22 display the classification results of SPOT 7 imagery taken in July of 2017. The 

healthy green vegetation dominates, more specifically along the river channels and in narrow 

valleys. The dominance of vegetation with high photosynthetic activity may be explained by 

the impact of rainfall, which normally rains during winter (July to August) in the study region 

(Le Maitre et al., 2009). The green patches on the hillslopes indicate individual tree species 

and misclassifications, which appear to be enormous as demonstrated by the overall accuracy 

of this image (Table 4.13). Water is mainly distributed in the central area and the south-

eastern area of the map. 
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Figure 4.22: Land cover classification results of SPOT 7 imagery taken on the 17th of July 2017. 
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Figure 4.23: Sub-region of the pan-sharpened SPOT 7 image (17th July 2017). 

 

4.1.8.3. | Assessment of classification in September 2017 

In Figure 4.24 the quantity of healthy green vegetation has diminished and this can be 

detected along the river channels, in narrow valleys and in mountainous areas. This image 

was taken after the winter rainfall season, during which temperatures are below the required 

range of productivity. Water levels, as indicated by the dam and the river pools, have 

remained fairly static.  
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Figure 4.24: Land cover classification results of SPOT 7 imagery taken on the 13th of September 2017. 
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Figure 4.25: Sub-region of the pan-sharpened SPOT 7 image (13th September 2017). 

 

4.1.8.4. | Assessment of classification in October 2017 

In Figure 4.26 the misclassifications have significantly diminished. This is demonstrated by the 

reduced green patches on the hillslopes and high classification accuracy (Table 4.13). The 

healthy green vegetation has diminished remarkably in some areas. However, along the river 

channels and in the valleys, vegetation still display persistent amount of greenness. The water 

bodies are still visible in the central area, but have diminished in some parts of the south-

eastern area. Therefore, this suggests the persistent healthy green vegetation, which include 

the irrigated pasture fields in the centre of the map and some water bodies are dependent 

on groundwater supply (i.e. GDEs).  
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Figure 4.26: Land cover classification results of WorldView-2 imagery taken on the 28th of October 2017. 
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Figure 4.27: Sub-region of the pan-sharpened WorldView-2 image (28th October 2017). 

 

4.1.8.5. | Quantitative assessment of classification results   

The class ‘water bodies’ display high classification accuracy with a producer accuracy of 

99.99% in October 2017 (Table 4.13). However, the error matrix demonstrate that both 

healthy green vegetation and water bodies produced high accuracies on both the SPOT 7 

images and the WorldView-2 image. In comparing the overall accuracy of WorldView-2 and 

SPOT 7 images, Table 4.13 indicates that the pixel-based method produced better results with 

an overall accuracy of 96.07% and a Kappa coefficient of 0.93. The SPOT images yielded an 

overall accuracy of 69% and 72% respectively. 
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Table 4.13: Error matrix of land cover classification in eCognition for July and September 2017, and in ENVI for 

October 2017. 

July 2017 

User/reference 
class 

Healthy green 
vegetation 

Water bodies Total 

Healthy green 
vegetation  

13582 0 13582 

Water bodies  0 13582 13582 

Unclassified 135 18 153 

Total 13582 13582 27317 

 

Producer Accuracy 0.6512 0.9124 

 User accuracy 0.8012 1 

Overall accuracy (%) 0.69  

September 2017 

User/reference 
class 

Healthy vegetation Water bodies Total 

Healthy green 
vegetation 

13708 0 13708 

Water bodies 0 13708 13708 

Unclassified 80 9 89 

total 13708 13708 27505 

 

Producer accuracy 0.7521 0.8124  

User accuracy 0.9122 1 

Overall accuracy (%)  0.72  

October 2017 

Class Water bodies 
Healthy green 

vegetation 
 

Unclassified  0.01 5.39  

Water bodies 99.99 0 

Healthy green 
vegetation  

0 94.61 

Total 100 100 

Producer accuracy  99.99 94.61 

User accuracy  100 86.46 

Overall accuracy (%)  96.07  

Kappa coefficient  0.93  

 

4.1.8.6. | Analysis of the indicators of groundwater discharge areas  

As indicated by Eamus et al. (2006) GDEs are most likely found in areas where groundwater 

is discharged to the surface. Therefore, having identified vegetation and water bodies that 
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rely on surface expression of groundwater, the mapping of groundwater discharge areas also 

served as means of validating the areas identified as GDEs.  

Figure 4.28 display the results of the wetness index and the values range from -14.1 to 10.5. 

When the wetness index is high (i.e. greater than the threshold of 10), regions of topographic 

depressions are identified and therefore, potential groundwater discharge areas. Such areas 

are mainly located in gentle narrow valleys and in flat areas along the sides of the steeper 

mountain in the centre of the map. These are the areas where potential GDEs have been 

identified (topographic depression areas). 

 

Figure 4.28: The Topographic Wetness Index (TWI) highlighting topographic depressions.  

 

The curvature function in ArcGIS was used to compute the profile curvature map (Figure 4.29). 

The values of the profile curvature range from -4.5 to 4.3, and values greater than the 

threshold (0.01) were considered to indicate break of slope areas as potential groundwater 

discharge areas.  
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The results of profile curvature are comparable to those of the wetness index, where areas 

with a break of slope are frequently located along the valleys (i.e. concave slope) where 

healthy green vegetation dominates. The edges of the river channel in the north-eastern area 

and the central region also exhibit break of slope. However, it is worth noting that some areas 

with a break of slope do not perfectly match with the mapped potential GDEs in Figure 4.26.  

 

Figure 4.29: A profile curvature of mapped region showing break of slope areas. 

Summary  

The results in section 4.1.2 and 4.1.3 have shown that the study region is dominated by 

shrubs, which are drought-resistant and that the NDVI and rainfall patterns showed no clear 

relationship in most vegetation plots. Section 4.1.4 and 4.1.5 quantified the rainfall variability 

in the study region and observed rainfall and temperature trends. The results indicated that 

the region has experienced high variations in rainfall events (> 90%). Rainfall showed a 

decreasing trends over the years, with a long drought event from 2014 to 2017. 

Temperatures, on the other hand, showed an increasing trend. The relationship between 
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NDVI, rainfall and temperature was tested in a long-term inter-annual timescale and over 

seasonality in both plant communities. Results have shown that both maximum and minimum 

temperatures had a consistent and a positive association with NDVI. The significance of 

correlation between NDVI and rainfall was statistically insignificant. However, both climatic 

elements demonstrated to be the main factors for vegetation growth when a linear 

combination tested to be statistically significant. The zero-lag and 3-month lag correlations 

differed over four seasons (summer, autumn, winter and spring) between the floodplain 

woodland and the hillslope shrubland plant communities. These are further detailed in the 

following section. Section 4.1.8 mapped potential GDEs. The results have shown that the 

healthy green vegetation and water bodies in riparian zones maintain persistent levels of 

greenness and wetness even during dry seasons. The TWI and profile curvature indicated that 

potential GDEs are likely to occur in lowlands and in areas of break of slope, where 

groundwater is discharged to the surface. These results are discussed in more detail in the 

following section and in chapter 5.  

4.2. | Discussion  

4.2.1. | Analysis of plant species  

The plant samples collected during the survey (see Appendix A) and field observations suggest 

the study region is dominated by shrubs (Figure 4.30). This is consistent with Vlok et al. (2005) 

who observed that shrubs dominate the floodplain vegetation in the Little Karoo and that 

plant species in different plant communities within the Succulent Karoo biome change rapidly 

from one patch to the next. Dean et al. (1995) also argue that the Karoo is dominated by dwarf 

shrubland vegetation and that dwarf deciduous shrubs such as the Asteraceae family are most 

common.  

 

Figure 4.30: The dominance of shrubland in the study region mostly located in hilly slopes (right image), with 

woodland vegetation located along the river channel or in a valley forming a linear shape (central image). 
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4.2.2. | The influence of rainfall and temperature on vegetation productivity 

The study assessed the influence of rainfall and temperature on vegetation productivity. This 

was achieved by comparing time-series data of NDVI, rainfall, and temperature over the study 

period (1984-2017). What emerged strongly from the analysis was that the NDVI and rainfall 

showed no clear relationship in most vegetation plots (1, 2, 4 and 6), and this was indicated 

by high NDVI variability but relatively low rainfall levels. However, in plot 3 vegetation 

productivity was comparable to rainfall conditions, thus indicating a relationship between 

rainfall and NDVI. In addition, vegetation plot 5 and 7 demonstrated that vegetation 

productivity has declined over the years. This might be explained by moisture stress caused 

by the declining rainfall in the study region (Figure 4.11) and high evaporation rates in the 

Klein Karoo (Le Maitre et al., 2009). Du Toit and O’Connor (2014) and Roux and Vorster (1983) 

have also suggested that rainfall has decreased in the Klein Karoo over the years. 

Previous studies have confirmed that southern Africa is characterized by increasing rainfall 

variability since the late 1960s, which is suggested to be accompanied by widespread and 

intense drought events (Fauchereau et al., 2003). In this study, rainfall variability was 

quantified in each vegetation plot and an SPI-12 was calculated to measure drought. The 

results showed that the study region experienced high variations in rainfall events in both 

plant communities (> 90%). This is in agreement with Le Maitre et al. (2009) who observed 

that variability in rainfall increases as the rainfall decreases in the Klein Karoo. The results of 

the drought index demonstrated that the study region experienced the longest drought from 

2014 to 2017 (Figure 4.14). Therefore, excessive variations in rainfall may result in droughts 

which consequently can alter the composition of vegetation. This provides an understanding 

of the dominance of shrubs in the region which have adapted to dry conditions by accessing 

saturated soil water (Letts et al., 2010). 

The relationship between NDVI, rainfall and temperature was tested over a long-term inter-

annual timescale and over seasonality in the hillslope shrubland and floodplain woodland 

plant communities. In a long-term inter-annual timescale the correlation and model results 

indicated that trends in vegetation productivity were positively associated with temperature, 

with the best correlation (r = 0.47 and r = 0.45) for both maximum and minimum 

temperatures respectively. The relationship between NDVI and rainfall was statistically 
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insignificant (r = 0.10). The influence of a linear combination of rainfall and maximum 

temperatures on NDVI was statistically significant. This suggests both climatic elements 

emerge as contributing factors in vegetation growth in a long-term inter-annual timescale.  

At a plant community level, a zero-lag and 3-month lag correlations were carried out over 

four seasons (summer, autumn, winter, and spring). In the hillslope shrubland plant 

community temperatures plays a key role on vegetation productivity during autumn and 

spring. In a 3-month lag correlation (Table 4.12) vegetation demonstrate immediate response 

to rainfall during autumn, specifically in non-riparian areas.  The study region receives rainfall 

predominantly in winter (Le Maitre et al., 2009). However, the correlation between rainfall 

and NDVI in winter (Table 4.11 and 4.12) indicate that there is no vegetation growth because 

it is too cold and temperatures are too low to reach a desired species optimum level for plant 

development - which is highlighted by Hatfield and Prueger (2015).  

In summer, the availability of moisture is significant for vegetation productivity and this is 

displayed by statistically significant correlations between rainfall and NDVI. The correlation 

between NDVI and maximum temperatures indicates that excessively high temperatures are 

a limiting factor for vegetation growth. This has been previously indicated by Hatfield and 

Prueger (2015) and Whitecross et al. (2012) who asserted that exposure to extreme 

temperatures during plant development will reduce production quantity and quality. In a 3-

month lag correlation matrix (Table 4.12), maximum temperatures are significantly correlated 

with NDVI during summer. However, the correlations are not excessively higher to indicate 

improvements compared to the zero-lag correlations.   

In the floodplain woodland plant community temperatures also play a key role on vegetation 

productivity in autumn, winter and spring (Table 4.11 and 4.12). The significance of 

temperatures on vegetation growth in winter could be explained by the fact that this 

community has permanent access to water (Zaimes et al., 2007) and, therefore, productivity 

almost occurs throughout seasons. Rainfall is only statistically significant in explaining NDVI 

variance at one vegetation plot in summer (plot 4) in zero-lag correlation, and in plot 4 and 6 

during summer and winter in a 3-month lag correlation. This suggest that immediate rainfall 

is not important in explaining plant growth and that vegetation in this community respond to 

through flow and may be GDEs. Le Maitre et al. (1999) have also argued that plants in riparian 
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areas have root systems that remain in contact with saturated soil layers and are able to tap 

groundwater that is discharging into the stream. The River Health Programme (2007) also 

states that vegetation in riparian zones grows in greater densities than the surrounding 

terrestrial vegetation in the Karoo. 

4.2.3. | The occurrence of probable Groundwater Dependent Ecosystems (GDEs) 

Image classification was used to map two potential GDE classes (i.e. healthy green vegetation 

and water bodies) through change detection over a single dry year. The technique has been 

previously used to map GDEs (Barron et al., 2012; Dresel et al., 2010; Munch and Conrad, 

2007). The classification results demonstrated that the healthy green vegetation and water 

bodies in lowlands maintain consistent amount of greenness and wetness during dry seasons 

(Figure 4.22, 4.24 and 4.26). This is more visible in the WorldView-2 image (Figure 4.26), which 

has a higher classification accuracy than the SPOT images. According to Barron et al. (2012), 

such invariant vegetation and water are likely to be groundwater dependent, specifically in 

the absence of other water sources. This is consistent with field observations where surface 

water flow was non-existent but water and vegetation along the valleys and in riparian areas 

exhibited strong productivity and high levels of wetness. Bestland et al. (2017) also discovered 

that surface water pools are dependent on groundwater for their supply of water in dry 

seasons. Groeneveld and Griepentrog (1985) argue that groundwater is an essential source 

of supply to maintain the riparian zone, particularly in climatic regions with seasonal 

precipitation. However, during field data collection farmers indicated that the depth to 

groundwater when drilling boreholes was typically 60-100 m. In measuring groundwater 

levels at selected sites in the Gouritz WMA, the DWS (2015) also highlighted that the deepest 

groundwater level is more than 100 m. Therefore, it seems unlikely that the mapped potential 

GDEs are connected to the regional aquifer, but are likely receiving water from interflow 

(Figure 5.1). 

In comparing the results of image classification and indicators of groundwater discharge areas 

(TWI and profile curvature), the mapped probable GDEs occur in topographic depressions and 

in some areas of break of slope where groundwater is discharged to the surface (Figure 4.28 

and 4.29). Similar findings have been highlighted in the literature. Brydsten (2006) argues that 

groundwater discharge can occur in existing surface waters and at low angle slopes. Tweed 
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et al. (2007) used the standard deviation of the NDVI (SDVI) and also discovered that 

vegetation with stable photosynthetic activity indicates potential groundwater discharge 

areas.  

4.2.3.1. Uncertainties  

There is uncertainty with the proposed method of mapping potential GDEs. According to 

Barron et al. (2012) the use of remote sensing observations in measuring the dependency of 

systems to groundwater is relatively indirect. Therefore, hydrogeological information and 

groundwater dataset in addition to remote sensing indicators can be used to infer 

groundwater dependency. In this study, the validation of the identified GDEs was essentially 

limited by the inaccessible groundwater dataset and extensive field verification techniques 

associated with cost implications. However, the proposed method has produced probable 

GDE classes that are consistent with surface features in a true colour high-resolution 

WorldView-2 multispectral image.  
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CHAPTER 5:   GENERAL DISCUSSION, CONCLUSION AND 

RECOMMENDATIONS 

 
5.1. | General discussion  

5.1.1. | The response of plant communities to rainfall and temperature  

The correlation matrix (Table 4.11 and 4.12) between NDVI, rainfall, and temperature showed 

that responses to rainfall and temperature differed between the floodplain woodland and the 

hillslope shrubland plant communities. The hillslope shrubland community had a strong 

response to both rainfall and temperature, while the floodplain woodland community only 

showed a strong response to temperature in most vegetation plots. The high response of the 

floodplain woodland community to temperature can be explained by the need of 

temperature for plant growth and development (Hatfield and Prueger, 2015), while the low 

response to rainfall can be explained by the already existing water and moisture in riparian 

areas and along the valleys through groundwater. This is in accordance with a study by Zaimes 

et al. (2007) which indicated that riparian vegetation grows in greater densities than 

vegetation in terrestrial uplands because the former has more sources and greater amounts 

of water (Figure 5.1 and 5.2). In a study of vegetation response to climate variability, Rishmawi 

et al. (2016) also discovered that vegetation in wetter areas does not directly respond to 

rainfall variations. 

 

Figure 5.1: Delineating the response and water availability for riparian and non-riparian vegetation. 
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In the hillslope shrubland community, vegetation depends significantly on overland flow and 

responds immediately to rainfall, particularly when groundwater levels are low (Figure 5.1). 

Zaimes et al. (2007) have also indicated that rainfall is the primary source of water for 

vegetation in terrestrial uplands. The hillslope shrubland community also responds 

significantly to minimum temperatures. This analysis is similar to Esler and Rundel (1999), 

who also found that minimum temperatures allow continued growth of the Succulent Karoo 

vegetation following summer rainfall.  

 

Figure 5.2: The sampled vegetation plots highlighting the location of riparian and non-riparian areas in the 

study region. 

 

5.1.2. | Riparian vs non-riparian areas, and potential GDEs 

The riparian areas in both the floodplain woodland and the hillslope shrubland communities 

comprise the dominant plant species; Pteronia pallens, Euclea undulata and Vachellia karroo. 

Pteronia pallens and Euclea undulata have been classified as evergreen woody shrubs by 

Vorster (2017), and the Vachellia karroo is considered to grow where groundwater is available 

along drainage lines and sources groundwater with a long taproot system (Barnes et al., 

1996). However, Vlok et al. (2005) found the Vachellia karroo to be also present in the 

hillslopes. The authors also found that vegetation in the Succulent Karoo biome changes from 
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one patch to another. Similar findings were detected in this study where all three dominant 

species were also found in non-riparian areas (Table 4.1).  

Within the riparian areas, a GDE with permanent access to water (Figure 5.1 and 5.2) was 

identified (i.e. healthy green vegetation – see Section 4.1.8). In mapping vegetation in the 

Klein Karoo, Vlok et al. (2005) also found that aquatic habitat (which include riverine and 

floodplain vegetation) in the Klein Karoo is restricted to lowland landscapes. These vegetation 

units were found to be dependent on water and occur alongside permanent or seasonal water 

drainage zones, thus highlighting areas where water is available through subsurface flow or 

overland flow during rainfall seasons. In this study, there was no overland flow as the survey 

was conducted during a dry period. Therefore, the high vegetation productivity in riparian 

areas can be explained by the availability of water and high level of surface moisture through 

subsurface flow, probably delivered by interflow processes (Figure 5.1).  

The non-riparian areas are characterized by the dominance of the low Rhigozum obovatum 

shrub and the succulent Ruschia muricata species. Both plant species have been classified as 

terrestrial vegetation by Vlok et al. (2005) and grow in arid regions, and are thus resistant to 

drought conditions (Mucina and Rutherford, 2006). This is because humid air during winter 

prevents frost from damaging plant species, while sunlight plays a pivotal role in maintaining 

plant species during dry seasons in the Succulent Karoo biome (Vlok et al., 2005). This explains 

the persistent green tree species on the hillslopes (Figure 4.22, 4.24 and 4.26). However, some 

plant species perish and these are mostly non-drought tolerant and are assumed to have short 

root systems, thus incapable of sourcing groundwater in dry periods (Figure 5.1). Esler and 

Rundel (1999) also discovered that plant species with shallow root systems in the Succulent 

Karoo biome source near-surface groundwater after a rainfall event, and productivity 

decreases as rainfall decreases in late spring.  

The water bodies in Section 4.1.8 and in vegetation plot 6 and 7 (Figure 5.2) have been 

identified as groundwater dependent. These are manly situated in the river channel, occur in 

groundwater discharge areas (Figure 4.28 and 4.29) and remain in contact with groundwater 

during wet and dry seasons as demonstrated in Figure 5.1. This might be explained by the 

underlying geological formation of the mapped area, which is composed of the TMG and the 

Bokkeveld group (Figure 1.5). Because of folding and faulting in the Cape Fold belt, the TMG 
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and Bokkeveld group were fractured and therefore, water is able to move in voids between 

the rock particles (Roets, 2008). Such types of geological formations have been categorized 

as secondary fractured aquifers (Le Maitre et al., 2009) and are potential zones of 

groundwater discharge or recharge. 

5.2. | Conclusion  

The study showed that the Touws quaternary catchments are characterized by a decreasing 

highly variable rainfall.  The rainfall trends and the SPI-12 showed the study region is 

characterized by a cycle of wet and dry periods (4 to 6-year cycle), with more frequent 

drought seasons than wet seasons. Temperatures showed an increasing trend, particularly 

maximum temperatures. The identified climatic trends are also documented in the literature 

(Le Maitre et al., 2009). Analysis of vegetation plots showed that the trend between NDVI and 

rainfall is inconsistent, with the former responding a few months after a major rainfall event. 

However, the study region is dominated by shrubs, most of which are drought resistant, thus, 

indicating that some areas are persistently green throughout seasons. Correlation analysis 

and a multiple regression model between NDVI, rainfall, and temperature showed that both 

climate elements emerge as contributing factors in vegetation dynamics, particularly in a 3-

month lag relationship. However, the correlations differed between the floodplain woodland 

community and the hillslope shrubland community. The latter showed a strong correlation 

with rainfall and temperature, while the former only showed a strong correlation with 

temperature in most vegetation plots.  

In determining the ability of land cover classification and indicators of groundwater discharge 

areas in mapping potential GDEs, the spatial mapping of three image dates illustrated the 

location of vegetation with consistent photosynthetic activity and water. These were 

significantly located in the river channels, in narrow valleys and in riparian areas of the 

floodplain woodland and the hillslope shrubland communities where vegetation grows in 

greater densities due to permanent access to water through subsurface flow. The non-

riparian areas in both plant communities were largely dominated by drought-resistant plant 

species with seasonal access to water and more responsive to overland flow during rainfall 

seasons. In addition to the error matrix and groundwater discharge areas, analysis of the 

characteristics of plant species and the literature were used to validate the identified 
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probable GDEs. In overall, the study showed that climatic trends (rainfall and temperature) 

are the main factors of vegetation change and the dependence of vegetation on groundwater 

can be potentially assessed by mapping surface change.  

5.3. | Recommendations  

The influence of climate on vegetation productivity as well as the dependence of vegetation 

on groundwater could be further expanded. The study recommends the following for future 

research:  

 Remote sensing such as hyperspectral remote sensing can be used to help 

environmental scientists to better observe changes in vegetation productivity and 

mitigate measures to overcome severe impacts on vegetative landscapes caused by 

climate variability. 

 The consideration of the range of variability in NDVI as a discriminator of GDEs.  

 The inclusion of more fine resolution satellite images in mapping vegetation of the 

semi-desert areas can help to discriminate and identify plant species with small sizes. 

This can further improve land cover classification, specifically in areas where land 

surface features have similar reflectance properties.  

 The addition of high-resolution DEM such as LiDAR and hydrogeological information 

can help improve the mapping of groundwater discharge areas as a means of locating 

GDEs. In addition, the break of slope technique may be highly suitable for regions with 

large-scale changes in topographic relief.  

 Prospective research work in the study area could use the sap flow technique to 

understand the uptake of groundwater by vegetation and the use of groundwater 

level measurements can provide means to estimate transpiration originating from 

groundwater. 
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APPENDIX A – Sample plant species collected during the survey.  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure A1: The dominant plant species identified during the field survey in each sample plot. 

 

 

 

Salsola aphylla L.f. 

 

Pteronia pallens Salsola aphylla Drosanthemum micans Indigofera aspalathoides 

Ruschia muricata Vachellia karroo Euclea undulata Searsia crenata 
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* Anchusa capensis sample faded shortly after the survey period and therefore could not be photographed. The image above was obtained from the SANBI webpage.  
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APPENDIX B – Spectral and spatial characteristics of the used satellite sensors with acquisition dates.  

Table B1: Characteristics of the satellite sensors and scene dates. 

Satellite Sensor Scene ID Projection Datum Date Acquired 
Cloud 

Cover% 
Path & 

Row 
Bands 
used 

Resoluti
on (m) 

Wavelength 
(Micrometers) 

Landsat TM 

LT51740831996315JSA00 
LT51740831997013JSA00 
LT51740831997029JSA00 
LT51740831997045JSA00 
LT51740831997061JSA00 
LT51740831997141JSA00 
LT51740831997189JSA00 
LT51740831997253JSA00 
LT51740831997269JSA00 
LT51740831997349JSA00 
LT51740831998032JSA00 
LT51740831998080JSA00 
LT51740831998192JSA00 
LT51740831999019JSA01 
LT51740831999035JSA00 
LT51740831999131JSA00 
LT51740831999163JSA00 
LT51740832000022JSA00 
LT51740832000134JSA00 
LT51740832000294JSA00 
LT51740832000310JSA00 
LT51740832000358JSA00 
LT51740832004033JSA00 
LT51740832004081JSA03 
LT51740832004161JSA00 
LT51740832004177JSA00 
LT51740832004193JSA00 
LT51740832005195JSA00 
LT51740832005323JSA02 
LT51740832006102JSA00 

 
UTM 

 
WGS84 

1996-11-10 
1997-01-13 
1997-01-29 
1997-02-14 
1997-03-02 
1997-05-21 
1997-07-08 
1997-09-10 
1997-09-26 
1997-12-15 
1998-02-01 
1998-03-21 
1998-07-11 
1999-01-19 
1999-02-04 
1999-05-11 
1999-06-12 
2000-01-22 
2000-05-13 
2000-10-20 
2000-11-05 
2000-12-23 
2004-02-02 
2004-03-21 
2004-06-09 
2004-06-25 
2004-07-11 
2005-07-14 
2005-11-19 
2006-04-12 

0.00 
0.00 
5.00 
0.00 
1.00 
6.00 
0.00 
0.00 
0.00 
0.00 
0.00 
8.00 
4.00 
1.00 
1.00 
0.00 
0.00 

21.00 
0.00 
4.00 
4.00 
0.00 
0.00 
0.00 
4.00 
0.00 
1.00 

12.00 
0.00 
0.00 

 
174/83 

3 
4 

30 
30 

0.63-0.69 
0.76-0.90 
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LT51740832006118JSA00 
LT51740832006182JSA00 
LT51740832006230JSA00 
LT51740832006278JSA00 
LT51740832006310JSA00 
LT51740832006358JSA00 
LT51740832007153JSA00 
LT51740832007185JSA00 
LT51740832007217JSA00 
LT51740832008044JSA01 
LT51740832009126JSA01 
LT51740832009142JSA01 
LT51740832010097JSA00 
LT51740832011100JSA00 

2006-04-28 
2006-07-01 
2006-08-18 
2006-10-05 
2006-11-06 
2006-12-24 
2007-06-02 
2007-07-04 
2007-08-05 
2008-02-13 
2009-05-06 
2009-05-22 
2010-04-07 
2011-04-10 

0.00 
0.00 
1.00 

11.00 
0.00 
3.00 
0.00 
0.00 
0.00 
0.00 
0.00 
8.00 
4.00 
2.00 

 

Landsat OLI 

LC81740832013249LGN01 
LC81740832013265LGN01 
LC81740832013297LGN01 
LC81740832013329LGN01 
LC81740832014076LGN01 
LC81740832014108LGN01 
LC81740832014172LGN01 
LC81740832014188LGN01 
LC81740832014236LGN01 
LC81740832014268LGN01 
LC81740832014284LGN01 
LC81740832014348LGN01 
LC81740832015015LGN01 
LC81740832015079LGN01 
LC81740832015127LGN01 
LC81740832015159LGN01 
LC81740832015191LGN01 
LC81740832015239LGN01 
LC81740832015335LGN01 
LC81740832015351LGN01 
LC81740832016002LGN02 

UTM WGS84 

2013-09-06 
2013-09-22 
2013-10-24 
2013-11-25 
2014-03-17 
2014-04-18 
2014-06-21 
2014-07-07 
2014-08-24 
2014-09-25 
2014-10-11 
2014-12-14 
2015-01-15 
2015-03-20 
2015-05-07 
2015-06-08 
2015-07-10 
2015-08-27 
2015-12-01 
2015-12-17 
2016-01-02 

0.13 
0.26 

16.04 
0.83 
0.57 
0.90 
0.02 
0.97 
0.04 
0.20 
1.08 
8.05 
0.05 
0.03 
0.17 
0.01 

16.05 
27.70 
6.39 
0.00 
0.04 

174/83 

 
4 
5 
 

 
30 
30 

 

 
0.64-0.67 
0.85-0.88 
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LC81740832016098LGN01 
LC81740832016146LGN01 
LC81740832016242LGN01 
LC81740832016258LGN01 
LC81740832016338LGN01 
LC81740832017004LGN01 
LC81740832017084LGN00 
LC81740832017100LGN00 
LC81740832017164LGN00 
LC81740832017180LGN00 
LC81740832017244LGN00 
LC81740832017276LGN00 
LC81740832017340LGN00 

2016-04-07 
2016-05-25 
2016-08-29 
2016-09-14 
2016-12-03 
2017-01-04 
2017-03-25 
2017-04-10 
2017-06-13 
2017-06-29 
2017-09-01 
2017-10-03 
2017-12-06 

11.60 
0.01 
2.17 
7.87 
0.00 
5.82 
0.16 
1.23 

11.24 
1.04 
0.01 
5.56 
2.22 

 

SPOT 7 

P_201707170813440_ORT_SPO
T7_20180806 

UTM WGS84 

2017-07-17 

0.00 
 

 

1-4 

1.5 
 

MS_201707170813440_ORT_SP
OT7_20180806 

6.0 

P_201711300820370_ORT_SPO
T6_20180806 

2017-09-13 
1.5 

MS_201711300820370_ORT_SP
OT6_20180806 

6.0 

     

WorldView-2 

057595185010_01_P001_MUL 

2017-10-28 

2.0 
 

057595185010_01_P001_PAN 50 cm 

057595185010_01_P002_MUL 2.0 

057595185010_01_P002_PAN 50 cm 

057595185010_01_P003_MUL 2.0 

057595185010_01_P003_PAN 50 cm 
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