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Abstract 
In 2018, the International Agency for Research on Cancer (IARC) estimated that 

prostate cancer (PCa) was the second leading cause of death in males 

worldwide. The number of deaths are expected to raise by 50 % in the next 

decade. This rise is attributed to the shortcomings of the current diagnostic, 

prognostic, and therapeutic biomarkers used in the management of the disease. 

Therefore, research into more sensitive, specific and effective biomarkers is a 

requirement. The use of biomarkers in PCa diagnosis and management takes 

advantage of the genetic alterations and abnormalities that characterise the 

disease. In this regard, a microRNA, hsa-miR-5698 was identified in a previous 

study as a differentiating biomarker between prostate adenocarcinoma and 

bone metastasis. Six putative translational targets (CDKN1A, CTNND1, FOXC1, 

LRP8, ELK1 and BIRC2) of this microRNA were discovered using in silico 

approaches.  

The aim of this study was to analyse via expression profiling and 

characterization, the target genes of hsa-miR-5698 in order to determine their 

ability to act as putative dynamic network biomarkers for PCa. The study was 

conducted using a combined in silico and molecular approach. The in silico part 

of the study investigated the putative transcriptional effects of hsa-miR-5698 on 

the promotors of its translational targets, the correlation between hsa-miR-5698 

and mRNA expression profiles as well as the co-expression analysis, pathway 

analysis and prognostic ability of the target genes. A number of computational 

software were employed for these purposes, including, R Studio, Trident 

algorithm, STRING, KEGG, MEME Suite, SurvExpress and ProGgene. The 

molecular part of the study involved expression profiling of the genes in two PCa 

cell line LNCaP and PC3 via qPCR.  
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The study on the putative transcriptional effects of hsa-miR-5698 indicated that 

the microRNA has binding sites in the promoters of CDKN1A and FOXC1. Thus, 

forming a triplex structure with the promoter. Correlation analysis indicated a 

negative correlation between the microRNA and all its targets in both of the cell 

lines used (LNCaP and PC3), with the exception being FOXC1, whose expression 

profile was positively correlated to that of hsa-miR-5698 in PC3.  

A co-expression analysis was done to identify genes putatively co-expressed with 

the target genes. Five genes were identified namely, CDK2, CDK4, TP53, CCND1 

and PCNA. Pathway analysis of the co-expression network genes (CDKN1A, 

CTNND1, FOXC1, LRP8, ELK1, BIRC2, CDK2, CDK4, TP53, CCND1 and PCNA) 

indicated that CDKN1A was involved in the Phosphatidylinositol-3 kinase/Protein 

kinase B (PI3K/Akt) pathway specifically functioning in cell growth and 

proliferation. The MEME Suite package was used to identify transcription factor 

binding sites in the promotors of the 11 genes in the bid to understand the 

regulatory networks the genes are involved in. Two statistically significant novel 

transcription binding motifs were identified in the promoter sequences of the 

co-expression network genes. A search for transcription factors (TFs) matching 

the sequences of the motifs in the JASPAR database yielded one top match for 

each motif, namely FOXD3 and TBX2 corresponding to motif 1 and 2 

respectively. The regulatory networks built using the identified putative TFs, co-

expressed genes and hsa-miR-5698 identified two FFLs involved in PCa 

progression from adenocarcinoma to bone metastasis namely, the microRNA-

FFL and the TF-FFL (FOXD3-FFL, TBX2-FFL).  

The investigation into the prognostic value of the co-expression genes in terms 

of survival, recurrence and metastasis was undertaken via two online survival 

analysis tools, SurvExpress and ProGgene. The datasets used for survival analysis  

and recurrence were the PRAD - TCGA - Prostate adenocarcinoma dataset, the 
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Galsky - Prostate - GSE45705 and the Kollmeyer-Jenkins Prostate GSE10645-

GPL5858 each curating 497, 61 and 596 samples respectively. These datasets 

were obtained from the SurvExpress database. The metastatic analysis was 

undertaken on the Lapointe Prostate PNAS dataset curating 28 samples. This 

dataset was available from ProGgene database. Results from two datasets 

indicated that CDKN1A, BIRC2 and FOXC1 might serve as good prognosis 

markers for metastasis in PCa. With presence of CDKN1A and BIRC2 indicating 

good prognosis for survival and relapse free survival and presence of FOXC1 

indicating poor prognosis for the same. An evaluation of the metastatic 

prognostic ability of the target genes in the Human Cancer Metastasis Database 

(HCMD) yielded similar results indicating oxer-expression of FOXC1 in 

metastasised tissue samples but a down-regulation of CDKN1A and BIRC2.  

The qPCR analysis of the expression profiles of hsa-miR-5698 targets and their 

co-expressed genes found that there was an up-regulation of CDKN1A, BIRC2 

and CDK4 in LNCaP, and their down-regulation in PC3. There was also a down-

regulation of FOXC1 in LNCaP and an up-regulation in PC3. This study indicated 

significant differences in the expression profiles of hsa-miR-5698 target genes 

between the two prostate cancer cell lines, which correspond to two different 

stages of the disease. The genes CDKN1A, BIRC2 and FOXC1 are able to 

distinguish between LNCaP and PC3 cell lines. The results obtained from the 

study indicate these biomarkers together with the microRNA hsa-miR-5698 

could serve as network biomarkers in the monitoring and management of 

prostate cancer patients. These findings will be further investigated in human 

prostate tissues to validate these data. 

C.P Lombe 

PhD, Thesis, Department of Biotechnology, University of the Western Cape. 
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Chapter 1 

Literature Review 

1.1  Prostate Cancer 

 

Cancer is currently one of the greatest health concerns worldwide, with 17 

million new cases of cancer reported in 2018 (IARC, 2018; WHO, 2018). After 

Lung cancer, prostate cancer is the second leading cause of death in men 

globally (Figure 1.1) (IARC, 2018). Key statistical reports for 2018 by the World 

Health Organisation (WHO) reported that 70 % of deaths from prostate cancer 

occur in low and middle income countries, specifically in Africa, Asia and Latin 

America (WHO, 2018). Some of the reasons given for the large percentage of 

deaths in these populations include late stage presentation of the disease, which 

is mainly attributed to the lack of accessible diagnostics, pathology services and 

treatment facilities, available to citizens of countries in these continents, 

especially in the public health institutions. (IARC, 2018; WHO, 2018). 

 

The Cancer Association of South Africa (CANSA) reports that one in six males and 

one in seven females have some type of cancer with prostate cancer (PCa) being 

most prevalent in the former and breast cancer in the latter (Herbst and  Joubert 

2017). 
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As of 2017, only 26 % of low income countries reported having these resources  

 

 

 

However, a study by Roux et al., 2015 questions such figures, stating that they 

could be an underestimation of PCa cases in South Africa. In their study on PCa 

among different racial groups in the Western Cape, Heyns et al., 2011, 

attributed that such underestimates could be as a result of less awareness and 

education about the disease among patients and physicians as well as the fear 

and taboo of diagnostic methods such as the digital rectal examinations. 

 

 

 

 

Figure 1.1: The leading cause of death by cancers worldwide (for males) in 2018, 

with prostate cancer accounting for 13.5 %. (Adapted from IARC, 2018). 
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1.2 Development of prostate cancer 

 

Two factors contributing to the development and progression of prostate cancer 

are hereditary (genetic) and/or environmental factors (Migliore and Coppedè, 

2002; Parsa, 2012). It has been proposed however, that the environment is the 

dominant determinate in the variability of cancer from population to population 

as well as from country to country.  

This is because, while there are a number of disease causing alleles distributed 

unequally in populations, they cannot explain the dramatically different 

incidence rates of various cancers throughout the world (Weinberg 2013; 

Crocetti et al., 2017). This has been demonstrated by measuring cancer rates in 

migrant populations. The rate of stomach cancer in Japanese populations is 4 to 

8 times higher than that of Americans. A case study was conducted on Japanese 

migrants settling in the United States, within a generation, their offspring exhibit 

stomach cancer rates that are comparable to that of the surrounding population 

(Peto, 2010). Thus, for the great majority of cancers, disease risk therefore 

seems to be “environmental,” where this term is understood to include both 

physical environment and lifestyle. 

 

 

1.3 Risk factors of PCa 
 

There is no single factor considered to be solely responsible for the development 

of PCa. However, there are a number of risk factors that have been identified 

which are associated with its pathogenesis and development. Evidence for these 

risk factors is from both observational studies as well as randomised controlled 

trials (Fan et al., 2018; Shakil et al., 2018).  As such, prostate cancer risk factors 
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may be presented as, (i) non-environmental risk factors and (ii) environmental 

risk factors.  

 

 

1.3.1 Non-environmental risk factors 
 

These are classified as those factors that have a strong association with PCa risk 

and are currently beyond human or medical intervention such as age, family 

history of PCa, genetics, race and hormonal levels (Godtman et al., 2016; 

Roberts et al., 2018).  

 

 

1.3.2 Age 
 

One of the strongest risk factors of prostate cancer is age. Studies have shown 

that occurrence of PCa in individuals younger than 50 years old is uncommon. 

With less than 0.1 % of diagnosed patients falling under the age of 50 and over 

75 % of diagnosed patients falling above the age of 65 (Godtman et al., 2016; 

IARC, 2018).  Recently, the cumulative risk of PCa at the age of 74 has been 

calculated to be 12.8 % worldwide (Godtman et al., 2016; Cancer Research UK, 

2018). However, there has been a recent age migration of the disease over the 

last decade. This has been brought about by the availability of screening 

methodologies such as the prostate specific antigen (PSA) biomarker test 

(Godtman et al., 2016; Roberts et al., 2018).   

Thus, a relatively larger proportion of men are now diagnosed at an earlier age, 

which has also led to earlier staging and grading of the disease (Godtman et al., 

2016).  However, the benefits of this stage and age shift on the quality of life for 
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PCa patients remains unclear and is widely debated (Godtman et al., 2016; 

Braunhut et al., 2018; Cancer Research UK, 2018). Further research into 

survivorship experience of clinically presented and screen detected patients may 

provide valuable information on harms and benefits of early diagnosis. 

 

 

1.3.3 Family history 
 

A family history has been firmly established as a risk factor for prostate cancer 

(Drake et al., 2008; Rudichuk et al., 2016). When examining the family history of 

PCa, two classifications can be made for the disease, namely familial and 

hereditary (Rudichuk et al., 2016). Familial PCa is marked by one or more than 

one first degree relative being affected by the disease (Vertosick et al., 2014; 

Rudichuk et al., 2016). Hereditary PCa shows a pattern of cancer distribution 

resulting from Mendelian inheritance of a susceptibility gene (Vertosick et al., 

2014). 

 

There have been a number of studies that have shown an increased risk of PCa 

for sons and brothers of men with the disease. The relative risk of an individual 

to develop PCa increases significantly according to the number of individuals 

affected in family, their relationship with the index case/s as well as the age at 

which they developed the disease (Liss et al., 2014; Selkirk et al., 2015).  

 

Studies have shown that if a brother or father of an individual had PCa, the 

relative risk of PCa in that individual is doubled with risk of 15 % (Drake et al., 

2008; Giri and Beebe-Dimmer, 2016). If the aforementioned relative had the 

disease before the age of 60, the relative risk increases three fold (Giri and 
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Beebe-Dimmer, 2016). As a result, individuals with hereditary predispositions to 

PCa are generally diagnosed as much as six to seven years earlier than those 

with sporadic cancer (Giri and Beebe-Dimmer, 2016). However, there are no 

differences between the clinical features of patients with hereditary and 

sporadic PCa in terms of tumour grade and pathological stage at diagnosis 

(Selkirk et al., 2015; Giri and Beebe-Dimmer, 2016).  

 

A comparison of the survival of sporadic and familial PCa patients shows that 

there is no significant difference observed between the two (Roehl et al., 2006; 

Stewart et al., 2017). However, such a comparison can be difficult to undertake, 

this is because of the earlier stage of diagnosis, differentiation and localisation of 

disease among hereditary cancers. Some studies show that these characteristics 

lead to longer survival rates (Lythgoe et al., 2016; Blackwelder and Chessman, 

2018).  In addition, PCa is a complex disease with its initiation arising from 

interaction between genetic and non-genetic factors. Perhaps the factors of how 

it arises may have an impact on survival rates.  

 

Even though prostate cancer exhibits the highest reported heritability of any 

major cancer, the ability to define hereditary prostate cancer genes has been 

limited (Hjelmborg et al., 2014; Mucci et al., 2016; Rebbeck, 2017). However, 

some genes responsible for hereditary prostate cancer that have been identified 

mainly in European populations. These include HPC1 (1q24-25), PCAP (1q42-43) 

(Berry et al., 2000), HOXB13 (Breyer et al., 2012; Xu et al., 2013) and HPC20 

(Berry et al., 2000; Rebbeck, 2017). These data remain largely uncorroborated in 

African populations. As a result, of this, there is a lack of genetic testing for 

hereditary PCa and subsequent recommendations for risk reduction in clinical 

practice in many African countries (Rebbeck, 2017). Several studies have been 

conducted on African populations in the Americas, but how geographic location 
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and differences in gene pools affects the disease incidence has not been 

extensively detailed (Rebbeck, 2017; Nettey et al., 2018). 

 

1.3.4 Germline genetics of prostate cancer 

 

Prostate cancer has strong heritable components and deleterious germline 

variants in certain genes can increase the risk of the disease (Patrick et al., 

2017). Genome-wide association studies have identified over 100 single 

nucleotide polymorphisms (SNPs) associated with prostate cancer risk (Spencer 

et al. 2009; Goh et al. 2012; Dias et al., 2017). Single nucleotide polymorphisms 

in the BRCA1, BRCA2, MMR, HOXB13, CHEK2, and NBS1 genes confer moderate 

risks with some leading to aggressiveness of the disease (Mikropoulos et al., 

2014; Dias et al., 2017). 

The gene HOXB13 is currently of interest in prostate cancer progression. This 

gene functions in segmentation during embryonic development. It interacts with 

the androgen receptor in both the normal prostate as well as in PCa. Thus, it is 

an important regulator of cellular response to androgens (Kim et al., 2010; Dias 

et al., 2017). A G84E SNP in this gene has been recorded by a number of studies 

and has been associated with increased risk of hereditary PCa as well as 

progression and aggression as the mutation encourages proliferation of 

androgen independent cells (Dias et al., 2017; FitzGerald et al., 2017; Johng et 

al., 2017).  

Another gene that has been associated with germline inheritance of prostate 

cancer is CHEK2; this gene encodes a G2 checkpoint kinase involved in DNA 

repair leading to cell-cycle arrest, activation, apoptosis and cell death. The 
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mutation of this gene has been linked to high risk of breast cancer as well as 

prostate cancer (Wang et al., 2015). However, a recent study found that unlike 

the HOXB13, CHEK2 could not differentiate between the risk of lethal and 

indolent disease (Zheng et al., 2017). Thus, no link to disease progression and 

aggressiveness is currently known.  

Germline variants can influence diverse treatment modalities and thus making 

use of genetic biomarkers to guide treatment decisions is highly beneficial to 

clinical practice. A study by Kearns et al., 2016 on a cohort of surgically treated 

PCa patients showed that an SNP, rs11568818 located on the MMP7 gene is 

associated with pathological upgrading of the disease (Kearns et al., 2016). This 

finding has also been confirmed in a second cohort of patients on active 

surveillance (Kearns et al., 2016) as well as in another study on a different cohort 

with the same conditions (Cooper et al., 2017). Statistics show that 

approximately 30 % of patients on PCa active surveillance move on to definitive 

treatment in the first five years of perception of the cancer (Dias et al., 2017), 

because of this, precise genetic information would be of great value in informing 

treatment stratification.  

 

 

1.3.5 Somatic molecular alterations in PCa 

 

Prostate tumour development and progression involves alterations in numerous 

genetic pathways. As the understanding of these pathways and molecular 

alterations has evolved, the markers involved have also been elucidated. Several 

markers have been identified for their roles in the prediction of disease outcome 

as well as therapeutic targets. (Nelson et al., 2009; Netto et al., 2017). Some of 
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the specific markers identified include the tumour suppressor genes (p53, p21, 

Rb and PTEN), the oncogenes (c-myc, HER2 and Bcl2), the apoptosis regulators 

(survivin and TGF β), the prostate tissue lineage specific markers (PSA and PCA3), 

and the adhesion molecules (CD44 and PI3K/akt/mTOR pathway members 

(Netto, 2015; Engelstein, 2017; Neto et al., 2017). Somatic mutations of some of 

the markers above has been related to high incidences of metastatic PCa and 

variations in treatment response.  

There are a number of candidate genes such as AR, TP53, PIK3CA, CHEK2, PTEN, 

KIT, c-myc, FOXA1 and ZFHX3 that are prone to somatic mutations in the 

development and progression of prostate cancer (Tapia-Laliena et al., 2014; 

Alvarez-Cubero et al., 2018; Martinez-Gonzalez et al., 2018). However, there is 

very little information available for somatic mutations involved in tumour 

development at the metastatic stage (Alverez-Cubero et al., 2017). Perhaps this 

is due to the difficulty in obtaining enough quality tissue to undertake the 

studies since bone is the primary site of metastasis in PCa (Mehra et al., 2011). 

Nevertheless, a recent study found that a substitution – missense mutation in 

PIK3CA at  position 1047, H➞R results in poor prognosis for the disease and 

could lead to metastasis (Pearson et al., 2018).  

 

 

1.3.5.1 PTEN (Phosphatase and Tensin Homolog) 

 

The gene PTEN is a tumour suppressor gene found on chromosome 10q23.3. It 

encodes a 403 amino acid protein involved in the cell cycle. It regulates cell cycle 

progression by maintaining the G2/S phases of the cell cycle checkpoint 

(Mulholland et al., 2012). There are a great number of studies focused on the 
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relationship of PCa and mutations related to it in the disease.  A recent study 

found that a homozygous loss of function mutation of the gene is associated 

with a higher Gleason score, regional pathological staging and recurrence of 

disease after radial therapy (Geybels et al., 2017; Jamaspishvili et al., 2018). 

PTEN loss is also associated with suppression of androgen receptor (AR) 

transcriptional output. Phosphoinositide 3-kinase (PI3K) inhibitors are  known to 

activate the AR signalling, perhaps a combination of therapies targeting the PI3K 

and AR signalling pathways may enhance treatment efficacy.  

 

 

1.3.5.2 PIK3CA 

 

The gene PIK3CA is a gene that codes for a protein subunit that forms part of the 

phosphatidylinositol 3-kinase. It is located on chromosome 3q26.32 (Alvarez-

Cubero et al., 2018). In many cancers including breast and colorectal cancers, 

PIK3CA undergoes a mutation in the p110 alpha subunit of the PI3 kinase 

enzyme. This mutation rises late in tumorigenesis, just before or concurrent with 

invasion and migration (Samuels and Waldman, 2010; Alvarez-Cubero et al., 

2018). Martinez-Gonzalez et al., 2018 evaluated 125 prostate biopsies for genes 

undergoing somatic mutations. They found that in 50 % of their subjects, PIK3CA 

underwent either of two substitutions (3129G > T and 3139C > T) in the 

aforementioned subunit that results in a nonsense mutation (Martinez-Gonzale 

et al., 2018). The altering of the PI3K enzymes inhibits its entrance into the 

PI3K/Akt/mTOR pathway and is linked to the survival and metastasis of PCa cells, 

the development of drug resistance as well as development of castration 

resistant PCa (Robinson et al., 2015; Tang and Ling, 2014). 
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1.3.5.3 TMPRSS2-ERG gene fusion 

 

The transmembrane protease serine 2:v-ets erythroblastosis virus E26 oncogene 

homolog (TMPRSS2-ERG) gene fusion is a common occurrence in 50 % of 

prostate cancers (Tomlins et al., 2008; Wang et al., 2017). However, its 

functional role is not fully understood. There are a number of studies that have 

been conducted to elucidate the function of this gene fusion in human prostate 

cancers.  

The TMPRSS2 gene encodes a protein that belongs to the serine protease family. 

Thus, its protein product is a transmembrane receptor (Ko et al., 2015). The 

gene is located on the human chromosome 21. A significant feature of this gene 

that begins to highlight its importance in prostate cancer is that it has several 

androgen receptor elements (AREs) located upstream of its transcription start 

site (Lucas et al., 2014; Shen et al., 2017). It has been demonstrated that 

TMPRSS2 activates the protease activated receptor 2 (PAR-2), which is a G-

protein coupled receptor. This activation causes an up-regulation of an enzyme 

called metalloproteinase-2 (MMP-2), which is a key protease in tumour 

metastasis (Lucas et al., 2014; Shen et al., 2017).  Additionally, this gene is up-

regulated by androgenic hormones in prostate cancer cells and down-regulated 

in androgen-independent prostate cancer tissue (Ko et al., 2015). Therefore is 

could be a distinguishing clinical marker for cancer progression and perhaps 

treatment.  

The ERG gene encodes the erythroblast transformation-specific (ETS) protein 

which is a member of the transcription factor family. This transcription factor is 

one of a number of key regulators of cell proliferation, differentiation, 

angiogenesis, inflammation, and apoptosis (Lee et al., 2018). 
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In a recent study, Wang and co-workers (2017), found that the TMPRSS2 and 

ERG genes were mostly altered in prostate cancer, and the most frequent 

alteration was a translocation of TMPRSS2 resulting in the gene fusion (Wang et 

al., 2017). Additionally, examination of four independent prostate cancer 

datasets from Oncomine and cbioportal demonstrated that the ERG gene was 

significantly upregulated in prostate clinical samples compared with the normal 

prostate gland fusion (Wang et al., 2017). Another study by Hägglöf et al., 2014 

knocked down ERG and found a cell-cycle arrest at G0/G1 phase, and 

consequently, a reduction in cell proliferation (Hägglöf et al., 2014).  

 

This gene fusion could thus serve as an important marker in clinical and 

prognostic monitoring. In this regard, some studies have been conducted to 

characterise the difference between TMPRSS2-ERG and non-TMPRSS2-ERG 

fusion PCa patients and the possible implications. Some studies conducted on 

this fusion gene have identified a statistically significant association between the 

TMPRSS2-ERG fusion and prostate cancer specific death. Thus, these results 

suggest that prostate cancer with TMPRSS2-ERG fusion is a distinct molecular 

subtype. However, there exists great diversity in the precise structure of the 

TMPRSS2-ERG hybrid transcripts in human prostate (Demichelis et al., 2007; The 

Cancer Genome Atlas Research Network, 2015; Arora and Barbieri, 2018). 

Perhaps PCa sub-typing and specific death is as a result of a particular subtype. 

Additionally, the TMPRSS2-ERG fusion has been linked to a more aggressive 

tumour stage as well as a PCa phenotype (Hägglöf et al., 2014; Kulda et al., 2016; 

Sanda et al., 2017).  

There is increasing evidence of the importance of the TMPRSS2-ERG gene in 

prostate cancer prognostics. However, for the percentage of patients who do 

not present with this gene fusion, other biomarkers need to be investigated.  
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1.3.6 Race 

 
Several studies have linked a higher risk of PCa development in black men when 

compared to Caucasians and Asian men. With black men being 1.5 to 2 times 

more at risk of developing the disease than white men. However, white men 

have a higher risk of the disease when compared to their Asian counterparts 

(Rebbeck, 2016; Nettey et al., 2018; Li et al., 2018). The differences in the 

incidence of PCa raise questions as to whether they are as a result of genetic 

predisposition of certain races to develop the disease or a product of differential 

distribution of other factors like socio-economic status of individuals, their 

dietary and lifestyle habits and access to health care services. In addition, several 

studies have been conducted on Asian men, specifically those of Chinese and 

Japanese decent living in Western countries. They show that there are higher 

incidences of PCa in immigrants compared to their counterparts (Brawley, 2012; 

Lichtensztajn et al., 2014; Rebbeck, 2017). 

 

Thus, if genetic pre-disposition is the major contributing factor, then the 

substantial difference in incidence among men of the same origin, living in 

different countries cannot be explained. These findings thus suggest that there is 

a possible role of lifestyle and dietary patterns as contributing factors in PCa 

development. Although genetics play a vital role in PCa development, 

considerable evidence suggests that environmental factors (mainly diet and 

lifestyle) are important in the development of PCa (Dall’Era et al., 2018; Li et al., 

2018; Nettey et al., 2018). However, gene-environment interactions must play a 

central role in the development of the disease. 
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Findings from autopsy studies suggest the prevalence of small prostate cancers 

in numerous populations regardless of race or ethnic variations in the incidence 

(Zlotta et al., 2013; Jahn et al., 2016). The question then arises whether the 

factors resulting in these slow growing tumours are the same as the factors 

responsible for the development of larger and clinically significant disease. Thus, 

even though multiple factors including androgen levels in the body, lifestyle 

factors and diet are considered to be associated with differential tumour biology 

among different races, the evidence on all these factors remains unclear 

(Brawley, 2012). 

 

 

1.3.7 Hormones as risk factors 
 

There is increasing biological evidence that hormones, particularly androgens 

play a vital role in the development of PCa. As a result, androgens have 

remained a mainstay of therapy for advanced PCa (Dai et al., 2017). 

Testosterone and dihydrotestosterone are the two most important androgens in 

normal prostate development. They bind to the androgen receptors (AR) and 

lead to the activation of transcriptional programs that are critical for the 

maintenance of mature prostate physiologic functions (Griffin, 1992; Green et 

al., 2012). Thus, signalling via the AR axis is thought to be important in 

facilitating prostate carcinogenesis, although the precise mechanisms driving 

initiation and progression of prostate cancer are not well elucidated (Green et 

al., 2012). However, there have been several postulations put forward 

suggesting that there are alternative pathways of androgen synthesis from the 

canonical pathway.  
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During normal prostate physiological function, the canonical biosynthesis of all 

steroid hormones begins with a 27-carbon cholesterol, which undergoes 

stepwise modification by a small complement of enzymes first to 21-carbon 

steroids (progestins) and subsequently to 19-carbon androgens (Figure 1.2).  

During the conversion of androstenedione (AD) to dihydrotestosterone (DHT), 

AD first forms first forms testosterone through reduction of its 17-keto moiety 

mediated by 17β-HSD, before 5α-reduction to DHT by SRD5A (Figure 1.2). In 

contrast, an alternative pathway has been described, in which AD can bypass 

testosterone as an obligate precursor, instead undergoing 5α-reduction to an 

intermediate 5α-androstanedione (5α-dione), followed by 17-keto reduction to 

DHT (Chang et al. 2011). This pathway is appears to be the favoured mechanism 

in all prostate cancer cell lines as well as sampled castration resistant prostate 

cancer biopsies from patients (Chang et al., 2011; Dai et al., 2017).  
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Figure 1.2: Pathways of androgen biosynthesis in normal physiology and prostate cancer. Key enzymes are denoted next to 

arrows for each reaction. (Adapted from Dai et al., 2017). 
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1.3.8 Environmental risk factors of prostate cancer  
 

The aetiology of PCa is not well understood. However, the role of environmental 

factors on the development and progression of PCa has been extensively 

investigated and reported in several populations. North American populations 

have the highest incidence rate of the disease with men of African heritage 

having higher rates that those of European and Asian ancestry respectively 

(Malik et al., 2018). Some of these statistics are attributed to various 

environmental influences such as diet, consumption of tobacco and exposure to 

heavy metals and industrial chemicals (Korc et al., 2017; Darcey and Boyle, 2018; 

Vineis and Fecht, 2018).  

There are currently no reports linking the association of consumption of tobacco 

smoking and PCa incidence (Darcey and Boyle, 2018). However, there a number 

of publications reporting modest associations between tobacco smoking and 

PCa recurrence, overall mortality and prostate-cancer specific mortality (Islami 

et al., 2014; Rieken et al., 2015; Ganesh et al., 2016; Darcey and Boyle, 2018). 

This suggests an impact of tobacco smoking on survival and recurrence of the 

disease. However, the mechanisms behind these associations are not well 

documented and poorly understood. Perhaps studies in these aspects could 

benefit from the use of biomarkers to monitor recurrence and mortality in PCa 

patients who are tobacco smokers. 

Several studies have shown the implication of diet in the development of 

prostate cancer (Fan et al., 2018; Schneider et al., 2018). Animal fats, dairy and 

calcium have all been linked to an increased risk of prostate cancer as well as 

aggressiveness of the disease in several populations including African American 

and Caucasian populations (Aune et al., 2015; Schwingshackl et al., 2017). Data 

http://etd.uwc.ac.za/



18 
 

in these studies also suggests that a Mediterranean- style diet and a greater 

consumption of whole grains, vegetables and fruits promotes a protective effect 

against aggressive PCa.  

However, further studies are needed to determine dietary ratios and link to the 

aggressiveness of the disease. Additionally, these data need to be compared 

and/or corroborated in African populations, as the socioeconomic features of 

the continent are different from the American and European aspects which 

leads to great differences in dietary components.  

A number of molecular biomarkers are reported to be involved in prostate 

tumourigenesis and clinical progression. There is increasing evidence that these 

markers are targets of essential metals such as zinc, copper and iron (Tan and 

Chen, 2011; Vella et al., 2017). Additionally, epidemiological studies have shown 

that exposure to non-essential heavy metals such as cadmium and arsenic may 

have roles in prostate carcinogenesis (Tan and Chen, 2011). These metals are 

thought to act via several mechanisms including, ROS generation, deregulation 

of proliferation, apoptosis and angiogenesis as well as by hormone-mimicking 

mechanisms (Vella et al., 2017). Heavy metals, such as cadmium (Cd) and arsenic 

(Cd) act as endocrine disruptors by interfering with androgen signalling 

pathways in prostate cancer. The Cd may bind to the androgen receptor and 

induce proliferation in androgen dependent prostate cells (Vella et al., 2017). 

  

 

1.4 Screening, diagnosis and prognosis of prostate cancer 
 

Prostate cancer survival is related to a number of factors, including the extent of 

tumour at the time of diagnosis (Hoffman et al. 2018). The five-year relative 
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survival rate among men with PCa confined to the prostate (localized) is as high 

as 95 % percent, compared with 29.3 percent among those diagnosed with 

distant metastases (Ries et al., 2007). While men with advanced stage disease 

may benefit from palliative treatment, their tumours are generally not curable. 

Therefore, a screening program that could accurately identify asymptomatic 

men with aggressive localized tumors might be expected to substantially reduce 

prostate cancer morbidity, as well as painful metastases, and subsequently  

mortality. 

 

 

1.4.1 Prostate specific Antigen 
 

Currently, prostate cancer screening is done in part through the use of the 

prostate specific antigen (PSA) blood test often combined with a digital rectal 

exam (DRE). Not all high PSA levels are indicative of prostate cancer, as PSA 

levels are organ specific and not cancer specific (Schröder et al., 2014; Hoffman 

et al., 2018). Despite routine application of PSA assays, PSA screening has been 

very controversial. As of October 2011, the United States Preventive Services 

Task Force (USPSTF) recommended against the use of PSA as a screening tool for 

prostate cancer in asymptomatic men. The controversy around the use of PSA as 

a screening tool stems from the fact that PSA is organ-specific and not disease-

specific, thus making it prone to high false-positive diagnosis. In addition to 

prostate cancer, there are several reasons for elevated levels of PSA found in a 

man's blood. These include: benign prostate hyperplasia, prostatitis (Basch et al., 

2012), recent ejaculation, digital rectal exam, and prostate biopsy. Biopsies show 

that over two-thirds of men with PSA levels greater than 4 ng/mL, do not have 
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prostate cancer (Hoffman et al., 2018). In the meantime, there are men with PSA 

levels in the normal range (below 4ng/mL) who have prostate cancer 

(Heidenreich et al., 2011). According to the Mayo Clinic, 76 % of men with raised 

PSA levels do not test positive for it upon biopsy (Tollefson, 2012). Additionally, 

in 2004, Thompson et al., conducted a study over a period of 7 years in 2,950 

males who had never had PSA levels higher than 4.0 ng/mL or an abnormal DRE. 

Prostate biopsies showed that there was a 15.2 % (n=449) prevalence of PCa in 

men with PSA levels no higher than 4.0 ng/mL. High-grade prostate cancer 

(defined as Gleason score ≥7) was also seen in 15.8 % (n = 71) of these men. 

In 2006, Dyche et al., investigated the prevalence and outcome of PSA testing for 

prostate cancer screening or diagnosis in men 45 years to 75 years of age over a 

period of 6 years. The study was conducted on 8797 males and a total of 82,672 

visits were made over the time period. The findings were that 5.7 % of these 

men underwent at least one PSA test. Of that 5.7 %, 3.4 % were under the age of 

55. Overall, the prevalence of PSA testing was 14.9 % in the 45 to 54 years old 

age group and 11.8 % in the 55 to 64 years old age group and 10.3 % in the 65 to 

75 years old age group. The study concluded that PSA testing for prostate cancer 

screening and diagnosis appears to be less effective with advancing age.  

Another important limitation of PSA as a biomarker is its inability to identify 

patients with aggressive and lethal forms of prostate cancer. Because many 

forms of prostate cancer are apathetic and do not progress to metastasis and 

death, it would be important for new biomarkers to be able to distinguish those 

from aggressive prostate cancer (Heidenreich et al., 2011; Hoffman et al., 2018). 

Over the last 25 years, no new blood test, genetic test or medical x-ray have 

been able to replace PSA. However, the lack of specificity of PSA requires 

supplementation in order to improve patient management, and to differentiate 

cancer from benign diseases of the prostate. 
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1.4.2 Digital rectal examination (DRE) 

 

Although digital rectal examinations (DREs) have long been used to diagnose 

PCa, recent studies suggest not performing the digital rectal examination (DRE) 

for prostate cancer screening either alone or in combination with prostate-

specific antigen (PSA) screening. This is because of a lack of evidence of 

reduction in the morbidity or mortality of Pca when detected by DRE at any age 

in controlled studies (Marshall, 2005; Chua et al., 2014; Hoffman et al., 2018). 

Additionally, there are a number inherent limitations to the DRE. It can detect 

palpable abnormalities such as nodules, asymmetry and induration in the 

posterior and lateral aspects of the prostate gland where the majority of cancers 

arise (Chua et al., 2014; Kohestani et al., 2018;  Hoffman et al., 2018).  However, 

other areas of the prostate where cancer occurs are not reachable by a finger 

examination (Carter et al., 2013). Furthermore, DREs are dependent on the 

ability of a doctor to feel the differences between a normal prostate and a 

tumour. In addition, stage T1 prostate cancers are nonpalpable by definiton and 

are easy to miss (Horwich et al., 2010). 

The National Health Institute (NIH) in the UK released statistics on digital rectal 

examinations for the year 2014. In the report, it is indicated in a test group of 

men aged between 50 and 70 years old only 47.6 % underwent a DRE (Federman 

et al., 2014). Approximately, 54 % of the tested men had induration, marked 

asymmetry, or nodularity of the prostate. Conclusions from the study indicated 

that DREs had an estimated sensitivity of 51 %, a specificity of 59 %, and a 

calculated overall positive predictive value of 41 % for detection of prostate 

cancer. It was also concluded that DRE screening increased the likelihood of 

finding early disease. However, the quality of evidence in the study was very low 

and there was substantial heterogeneity across studies that was not taken into 
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account. Therefore, the use of DRE screening for prostate cancer remains 

controversial.  

 

 

1.4.3 The prostate cancer antigen 3 gene (PCA3) 
 

The PCA3, is highly overexpressed in almost all prostate cancer tissue specimens 

but not in normal or hypertrophied tissue (Carroll et al., 2001). A PCA3 score, 

based on the ratio of PCA3 mRNA over prostate-specific antigen (PSA) mRNA 

(which is not related to serum PSA levels or cancer), can be determined from a 

urine specimen collected after a vigorous digital rectal examination (Vlaeminck-

Guillem et al., 2015; Rodon et al., 2018). Prostate cancer antigen 3 has been 

evaluated for guiding biopsy decisions when PSA levels are in an indeterminate 

range (3 to 7.0 ng/mL) and for men with previously negative biopsies but 

persistently elevated PSA levels (Rodon et al., 2018). Four clinical trials 

evalutaing the diagnostic performance of PCA3 reported a sensitivity range of 53 

% to 84 % and a specifity range of 71 % to 80 % (Vlaeminck-Guillem et al., 2010; 

Bradley et al., 2013). While, another three reported a sensitivity range of 47 % to 

58 %, and specificity range of 71 % to 72 % (Vlaeminck-Guillem et al., 2015). 

However, the latter three studies were performed following a previous negative 

biopsy (Rodon et al., 2018).  

These results indicate that PCA3 may eventually have a role in reducing 

unnecessary biopsies. However, more data on clinical outcomes are needed to 

support its routine use (Vlaeminck-Guillem et al., 2015; Rodon et al., 2018). The 

PCA3 biomarker is currently approved by the US Food and Drug Administration 

(FDA). However, there is a caveat, its main usage is to inform decisions on 
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whether to repeat a prostate biopsy in men ≥50 years with one or more previous 

negative biopsies (Hoffman et al., 2018). 

 

 

1.4.4 Prostate biopsy 
 

A prostate biopsy can be ordered as a follow up on a PSA test, DREs and/or a 

PCA3 test (Pilatz et al., 2018). However, there are many factors that should be 

considered before a biopsy. The patient’s medical history, age, ethnicity, 

heredity, other present diseases, as well as results from any other preceding 

tests are all factors to consider. A biopsy is a procedure in which a sample of 

body tissue is removed and examined under a microscope (Basch et al., 2012; 

Sriplakich et al., 2018). A core needle biopsy is the main method used to 

diagnose prostate cancer. Using transrectal ultrasound to have an image of the 

prostate gland, a clinician then inserts a thin, hollow needle through the wall of 

the rectum into the prostate. When the needle is pulled out it removes a small 

cylinder of prostate tissue. This can be repeated from 8 to18 times (Pilatz et al., 

2018). While biopsies and an analysis of the tumour histology can allow 

clinicians to appropriately determine the patient’s disease and its severity, the 

biopsy procedure can also lead to adverse events, such as infection, bleeding, 

and urinary difficulties (Carter et al., 2013). There is also a risk of false diagnosis. 

This can happen if the needle misses the tumour (Pilatz et al., 2018; Sriplakich et 

al., 2018).  
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1.4.5 Prostate cancer prognosis  
 

As reviewed in the previous sections, the diagnostics of prostate cancer is 

complicated due to the heterogeneity and differentiated progression in various 

subgroups of the disease. These conditions also plague the management of the 

disease and to date, there is no FDA approved biomarker used to monitor the 

progression of the disease as well as a therapeutic biomarker (Ali et al., 2018; 

Chistiakov et al., 2018).  

There have been several studies focused around the discovery of and validation 

of novel prognostic biomarkers to improve the identification of patients at risk 

of aggressive PCa or of tumour relapse (Ali et al., 2018; Lamy et al., 2018; 

Chistiakov et al., 2018). There are currently six prognostic markers approved by 

the FDA for use in PCa cases. These markers are licensed by several co-

operations and are available in parts of Europe and the USA (Lamy et al., 2018). 

Two of the tests are blood based, the Prostate Health Index (PHI), developed by 

Beckman Coulter (Loeb and Catalona, 2014) and the 4Kscore, developed by 

OPKO Health (Voigt et al., 2017). One test is urinary based, the MiProstate Score 

Urine test (MiPS), developed by MLabs (Lebastchi et al., 2017). The remaining 

three are molecular signature based tests, the Genomic Prostate Score (GPS) by 

Genomic Health (Klein et al., 2016), Prolaris Cell Cycle Progression score (CCP), 

by Myriad Genetics (Ontario Health Technology, 2017) and the Decipher 

Genomic Score (GC), developed by GenomeDx. (Dalela et al., 2016). 

Before examining the performance of the biomarkers/tests, it is necessary to 

understand the ranking system that is used to describe the strength of the 

results (based on prognosis, diagnosis, economic and decision analysis) 

measured in a clinical trial or research study. These are level of evidence (LOE), 

clinical validity and clinical utility (Burns et al., 2011).  The level of evidence is a 
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system of rating evidence (Table 1.1) when determining the effectiveness of a 

particular intervention (Burns et al., 2011). For the purpose of this research, the 

prognostic factor is examined.  

 

 

Table 1.1: Levels of evidence for prognostic studies (Adapted from Burns et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

The clinical validity corresponds to the biomarker’s discriminatory power and its 

ability to divide; independently of other classical markers, a group of patients 

into subgroups based on a given characteristic, such as tumour aggressiveness or 

clinical recurrence (Bossuyt et al., 2012; Lamy et al., 2018) 

Level Type of evidence 

I High quality prospective cohort study with adequate 

power or systematic review of these studies. 

II Lesser quality prospective cohort, retrospective cohort 

study, untreated controls from an RCT, or systematic 

review of these studies. 

III Case-control study or systematic review of these studies 

IV Case series. 

V Expert opinion; case report or clinical example; or 

evidence based on physiology, bench research or “first 

principles” 
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The clinical utility of a biomarker corresponds to the additional value relative to 

the usual markers and to the benefit/risk ratio linked to the use of that 

biomarker such as the number of unnecessary biopsies avoided and number of 

aggressive cancers missed (Bossuyt et al., 2012). The clinical utility needs to be 

significant enough to lead to a change in patient management (Lamy et al., 

2018).   

Based on the above understanding, an extensive evaluation of the clinical 

validity, level of evidence and clinical utility of six prognostic markers was done 

by Lamy et al., 2018. They present evidence that only two of the markers, the 

blood based PHI and 4Kscore have the ability to predict aggressive prostate 

cancer and thus could help clinicians in the management of patients with 

localised PCa. The other biomarkers showed potential prognostic value, 

however, evaluation in additional studies is required to confirm their clinical 

validity (Lamy et al., 2018). These markers however are not available on the 

South American, Asian or African market. Additionally, their application 

protocols are complicated and include a blood based fluorescence immunoassay 

coupled with the calculation of an algorithm combining four kallikreins levels 

and clinical data for the 4Kscore test. Thus, there is a need for an ideal diagnosis 

or prognosis marker for the African market that is conveniently available to the 

general population, minimally invasive with a high level of evidence and clinical 

validity.  
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1.4.6 The effect of current prognostic biomarkers on management of 

prostate cancer  

1.4.6.1 Active surveillance 
 

The PHI test in conjunction with a tissue biopsy of DNA content is also available 

as a management option for active surveillance in men with localised PCa 

(Isharwal et al., 2011; Tosoian et al., 2012). Studies have shown that PHI 

measured at diagnosis as well as during the surveillance has discriminatory 

power when compared to the use of PCA3 and TMPRRS2:ERG (Isharwal et al., 

2011; Lin et al., 2013; Lamy et al., 2018).  The PHI also has a classified LOE of II 

(Described in Table 1.1). Thus, it improves the accuracy to predict unfavourable 

biopsies to 70 %. However, the reliance on biopsy procedure for reasons 

highlighted in Section 1.4.4 can be a determent to patients on active surveillance 

(Isharwal et al., 2011; Hirama et al., 2014). Additionally, there is no data on the 

clinical utility of PHI as an active surveillance marker (Lamy et al., 2018).  

 

 

1.4.6.2 Radical prostatectomy  
 

The PHI test has weak disciminatory power for endpoint prediction of tumour 

aggressiveness based on the Gleason score and staging on prostatectomy 

specimens (Guazzoni et al., 2012; Fossati et al., 2015). Lamy et al., 2018, 

corroborated these finding with a LOE assignment of V, which is the lowest in 

the classification. There are results on PHI as a prognostic marker from other 

studies which are not concordant with the above findings, with the LOE’s of II 

and III respectively (Ferro et al., 2015: Mearini et al., 2015). However, the 
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methodologies used were questionable (eg, subjective measurement of tumour 

volume, non-independent value of the marker, and very low number of events). 

Regardless of its shortcomings, studies show that the PHI test has additional 

value compared to classical parameters such as age, digital rectal examination 

and PSA (Guazzoni et al., 2012; Cantiello et al., 2015). Its influence on decision-

making in monitoring patients after radical prostatectomy remains limited in the 

clinical setting (Lamy et al., 2018).  

The 4Kscore test has also been used in conjunction with PSA to screen for 

metatstasis fater radical prostatectomy. The test scored a LOE of III as it 

enhanced prediction of metastasis compared with PSA alone (Stattin et al., 

2015). However, the marker had a low clinical validity (Stattin et al., 2015; Lamy 

et al., 2018).  

 

 

1.4.6.3 Adjuvant treatment  
 

A study by Ross et al., 2016 evaluated the use of the 4Kscore in a cohort of 545 

patients who received adjuvant radiotherapy as a consequence of stage 3 PCa 

(Ross et al., 2016). They found that the test is unable to predict biochemical 

recurrence as well as  distance metastaisis. A later study by Kretschmer et al., 

2017 reported similar results (Kretschmer et al., 2017). Ross et al, further 

evaluated the prognostic value of the marker in a cohort of 85 patients with 

high-risk PCa and biochemical recurrence after radical protatectomy. They found 

that 8% of patients with a low-risk profile based on the biomarker developed 

distant metastases within the follow-up period. They thus concluded that this 

marker may not be suitable for use as part of the clinical decision-making 
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process if adjuvant radiotherapy is considered in a high-risk patient (Ross et al., 

2016).  

It can be seen from the preceeding review that the diagnosis, treatment, 

prognosis and management of PCa continues to be challenging, as the most 

effective current biomarkers are kallikrein/prostate-specific antigen (PSA) based. 

The only reliable method for PCa diagnosis and management is the prostate 

biopsy (Ross et al., 2016). Thus, there is a need to identify a biomarker that 

could distinguish, malignant cancer from benign prostatic hyperplasia (BPH) 

during the early diagnosis of the disease as well as localised and metastasised 

disease.  

Studies have shown that aberrantly expressed microRNAs are a hallmark of 

several diseases such as cancer (Garzon et al., 2014; Hill and Tran, 2018). 

MicroRNA expression profiling has increasingly been shown to be associated 

with tumour development, progression and response to therapy in PCa (Fabris 

et al., 2016; Kanwal et al., 2017), suggesting their possible use as diagnostic, 

prognostic and predictive biomarkers.  

 

1.5 MicroRNAs  
 

MicroRNAs are naturally occurring endogenous, single stranded RNA molecules. 

They are 18 -24 nucleotide bases long and are non-protein coding (Macfarlane 

and Murphy, 2011; Kanwal et al., 2017). They control gene expression by binding 

to target mRNAs with imperfect complimentarity within the 3’-UTR, leading 

either to repression of translation or degradation (Cannell et al., 2008). 

MicroRNAs are subject of intensive research and as a result, a wealth of 

information on their biogenesis, function and significance in gene regulation has 

http://etd.uwc.ac.za/



30 
 

been amassed. MicroRNAs play important roles in a wide range of biological 

processes including cell proliferation and differentiation, organ development, 

apoptosis, as well as regulation of several processes related to eukaryotic 

development (Ardekani and Naeini, 2010).  As a consequence, misregulation at 

any point of these processes owing to abnormal microRNA mutation or 

expression can result in various disorders including cancer (Macfarlane and 

Murphy, 2011). 

MicroRNAs are known to regulate gene expression at either the transcriptional 

or the post-transcriptional level (Bartel, 2004). Studies have shown that 

microRNAs can target enhancers and thereby activate gene expression 

(Catalanotto et al., 2016). A recent study found that miR-24-1 targets enhancers 

in the KDM6B gene locus in the nucleus (Xiao et al., 2017). The study also found 

that this ability does not take away from the capacity of the microRNA to 

function canonically by repressing its target at the  mRNA level in the cytoplasm 

(Xiao et al., 2017). 

 

 

1.5.1 MicroRNAs and microRNA target genes as network biomarkers 

for PCa 
 

A number of studies have been published recently on network biomarkers (Wu 

et al., 2014; Yang et al., 2018).  This is because genes associated with a complex 

disease such as cancer never function alone, but work together in a complex 

network. Thus, employing network biomarkers and signatures such as 

microRNAs and their target genes as well as co-expressed genes in biomarker 
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discovery would greatly improve the methods currently being used (Wu et al., 

2014).  

A microRNA  miR-301a, was used by Damodaran et al., 2016 as a prognostic 

marker for to differentiate between PCa and benign prostate hyperplasia. They 

found that overexpression of the microRNA, activates invasion/migration of PCa 

cells, a pre-requiste for tumour proliferation (Damodaran et al., 2016). Another 

microRNA, microRNA-141 and its gene targets have recently been used as 

diagnostic and prognostic markers for prostate cancer in an Egyptian study (Ali 

et al., 2018). Their study found that the microRNA was significantly 

overexpressed in PCa patients with metastasis in comparison with those 

without.  

Preliminary studies have also been conducted on microRNAs and their target 

genes as regulatory pairs for predicting the response to chemoradiotherapy in 

rectal cancer using a bioinformatics approach (Peng et al., 2017). In the 

aforementioned study, candidate microRNAs were identified as associated with 

the response to chemoradiotherapy in rectal cancer using the PubMed platform.  

An inference was made that if the biomarker microRNAs can predict the 

response of rectal cancer to preoperative chemoradiotherapy, the mRNAs they 

regulate should also participate in chemoradiotherapy response and diverse 

associated biological pathways. Results from this study indicated that the target 

genes are indeed critical in the response to ionizing radiation and are therefore 

good candidatesmarkers for radiation therapy (Peng et al., 2017).  
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1.6 Bioinformatics as a tool for the detection of novel biomarkers  
 

Over the past years, major advances have been accomplished in the field of 

molecular biology and these have been linked with advances in high throughput 

technologies such as genomics, transcriptomics and proteomics (Yan and Yan, 

2017) Furthermore, these technologies have brought forward an explosive 

amount of biological information which has led to the need for computerised 

databases to store, organise, and analyse the data (Khudoshin and Yuryev, 2018; 

Singh et al., 2019).  

Hence, the field of bioinformatics, or systems biology, which is the merging of 

the computational and biological science disciplines, has been an important tool 

for the organisation and analysis of the vast amount of biological data (Singh et 

al., 2019). The main aim of bioinformatics is to find key biological information 

hidden amongst a mass of raw data to identify important trends and patterns 

which would eventually lead to novel biomarker discovery for both diagnostic 

and therapeutic purposes (Peng et al., 2017; Singh et al., 2019). Additionally, 

bioinformatics allows for the in silico simulations of complex disease 

physiologies, such as interactions between components, on their molecular level 

(Berman et al., 2013). Bioinformatics has presented ways in which data mining 

approaches can be used to filter valuable targets such as microRNAs and their 

target genes, or proteins for the discovery of possible novel biomarkers for 

diseases (Sommer et al, 2010; Peng et al., 2017).  

Identifying microRNAs, their target genes, and their respective regulatory 

functions is important for understanding normal biological processes as well as 

understanding their various roles in disease development (Zhang and Verbeek, 

2010; Liu et al., 2012; Fujiwara and Yada, 2013). Using software algorithms to 

search for characteristic markers allows the scanning of large sets of data in 
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minutes. It also allows the elimination of biomarkers that do not adhere to a set 

of detailed criteria (Peng et al., 2017).  The various bioinformatics software and 

algorithms used in this study will be discussed further in their respective 

chapters. 

 

 

1.7. Study rationale 

 

The principal involvement of microRNAs in the aetiology and progression of 

many common diseases indicates that these molecules are significant markers 

with potential use as diagnostic, prognostic and therapeutic tools. The discovery 

that microRNAs are detectable and quantifiable in the circulation of diseased 

persons adds further validity to their potential as biomarkers of disease and 

possible distinguishers between benign and malignant tumours.  

The microRNA hsa-miR-5698 was discovered to be a diagnostic and prognostic 

marker in PCa in a Master’s study; it is able to distinguish between and prostate 

adenocarcinoma and bone metastasis (Lombe, 2015).  Six translational targets of 

this microRNA were discovered using in silico approaches. This was done 

because it was inferred that if hsa-miR-5698 is a good candidate biomarker for 

PCa and can distinguish between metastasis and adenocarcinoma, then the 

genes it targets should also participate in the same associated biological 

pathways under certain conditions such as PCa. Thus, instead of using one 

biomarker such as the microRNA or one target gene, a set of candidate network 

biomarkers (consisting of the microRNA, and its target genes) can be used to to 

more accurately classify the various stages of PCa for improved diagnostics and 

prognostics.  
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1.7.1 Aims and Objectives 

 

Aim 

 

Thus, the purpose of this study was to analyse via expression profiling and 

characterization, the target genes of hsa-miR-5698 in order to determine their 

ability to act as putative dynamic network biomarkers for prostate cancer. The 

study was conducted using a combined in silico and molecular approach. The 

specific objectives are outlined as follows: 

 

Objectives 

 

 

1. Determine the hsa-miR-5698–mRNA expression associations in prostate 

cancer and their effects on the disease progression using correlation 

analysis (Chapter 2).  

2. Identify and analyse novel sequence motifs in the promoters of the target 

genes of hsa-miR-5698 to decipher transcription factor binding and thus 

transcriptional regulation in prostate cancer disease progression (Chapter 

3). 

3. Build microRNA, transcription factor and gene regulatory networks to 

determine role of the dynamic network biomarkers in PCa progression 

(Chapter 3). 

4. Use transcriptomic data and online survival analysis software to assess the 

prognostic value of the dynamic network biomarkers in PCa (Chapter 4). 
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5. Expression analysis of the candidate biomarkers in PCa cell lines using 

qPCR (Chapter 5). 
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Chapter 2 

 

MicroRNA and Target Gene Correlation analysis  

 

2. 1 Introduction  
 

There has been compelling evidence that microRNA expression is dysregulated 

in human cancers. This is accomplished through various mechanisms including 

the amplification or deletion of microRNA genes (Hayashita et al., 2006; Tagawa 

and Seto, 2005), abnormal transcriptional control of microRNAs (Wang et al., 

2014), dysregulated epigenetic changes (Lehmann et al., 2008; Donzelli et al., 

2015), and defects in the microRNA biogenesis machinery (Walz et al., 2015). 

Thus, dysregulated microRNAs have been shown to affect the hallmarks of 

cancer by, sustaining proliferative signalling, evading growth suppressors, 

resisting cell death, activating invasion and metastasis, and inducing 

angiogenesis (Hanahan and Weinberg, 2011). Depending on their target genes, 

microRNAs can function as either oncogenes or tumour suppressor under 

certain conditions.  

MicroRNAs were previously thought to regulate gene expression in a solely 

negative manner, including translational inhibition, mRNA sequestration and 

mRNA de-adenylation and degradation (Bartel, 2004; Bartel, 2009). However, 

there is increasing evidence indicating that microRNAs oscillate between 

repression and stimulation in response to specific cellular conditions, sequences 

and cofactors (Vasudevan, 2012). Additionally, alternative mechanisms of 

microRNA target recognition at the promoter level have also been elucidated for 

transcriptional gene silencing (Majid et al., 2010; Catalanotto et al., 2016). These 
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findings thus indicate there is still a lot to understand about how microRNAs 

regulate gene expression.  

 
 

2.1.2 MicroRNAs form triplexes with double stranded DNA at sequence 

specific binding sites to alter gene expression  
 

MicroRNAs may function to regulate gene expression by binding to the 

promoter regions of certain genes (Li, 2006; Janowski, 2007; Check, 2007). This is 

done via the binding of the microRNA to the major groove of the DNA duplex 

forming structures called triplexes. The binding is via a non-Watson-Crick base 

pairing termed a Hoogesteen bond (Hoogesteen, 1963; Nikolova, 2011). A 

Hoogsteen hydrogen bond forms between the N7 position of the purine base, 

which acts as the hydrogen bond acceptor and the C6 amino group (Figure 2.1 A) 

of the pyrimidine base which is the hydrogen bond donor, which is subsequently 

bound to another purine via Watson-Crick pairing in the N3–C4 positions 

(Hoogesteen, 1963; Nikolova, 2013).   

Triplexes can also be formed by reverse Hoogesteen bonds. In this instance, the 

base not involved in the formation of the double helix is rotated 180° with 

respect to the one involved in the binding. Additionally, two types of triplexes 

can be formed based on the orientation of the third strand (5’- 3’ or 3’-5’). 

Parallel triplex structures are formed by TA•U and CG•C+ triplets and antiparallel 

triplexes are formed by TA•A, and CG•G. In the case of CG•C+, an acidic 

condition is favourable for triplex formation because the protonation of cytosine 

is required for effective triplet formation (Li et al., 2016). 
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Figure 2.1: Hoogsteen base pair between adenine and uracil (A).  

 

The Hoogsteen hydrogen bonding by the microRNA is weaker than the Watson-

Crick hydrogen bonding in the duplex structure. Therefore, there are some 

limitations to the formation of the triplex structure, especially under 

physiological conditions such as the acidic conditions mentioned above (Duca et 

al., 2008).  

Given that triplex formation requires base-pairing that is weaker than Watson-

Crick base pairing or unusual protonation states for the bases involved, it is 

significant to consider the existence of such interactions in vivo. There are a 

number of studies making use of bioinformatics tools that suggest the potential 

for a large presence of DNA-microRNA triplexes in the human genome (Buske et 

al., 2012; Paugh, 2016).  

Interestingly, these motifs tend to accumulate in the gene-regulatory regions, 

particularly in promoter regions, leading to a proposal that triplex formation 

might play significant regulatory roles in vivo. More direct evidence of triplex 

formation in vivo comes from using triplex-binding antibodies, as well as 
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fluorescent molecules that selectively recognize triplex structures (Lubitz et al., 

2010; Gorab and Pearson, 2018). 

This chapter will use computational methods to determine the hsa-miR-5698–

mRNA expression associations in prostate cancer and their effects on the disease 

using correlation analysis. Further, the chapter will investigate whether hsa-miR-

5698, has binding sites in the promoters of its translational target genes to form 

hetero-triplex structures, thereby implicating it in transcriptional control. In 

chapter three, the thesis will go to use the information obtained in this chapter 

to build regulatory networks in prostate cancer that may help to understand cell 

and gene regulation during the initiation and progression during the disease.  

  

 

2.1.3 Pearson Correlation Analysis  
 

A correlation analysis is used to quantify the association between two 

continuous variables. That is, between an independent and a dependent 

variable or between two independent variables. In this case, the former holds, 

as the microRNA is taken to be the independent variable because it targets the 

3’ UTR of the mRNA of the target genes preventing gene expression into protein, 

and consequently, the gene (mRNA) is the dependent variable as its expression 

may be dependent on the action of the microRNA. Understanding the 

relationships between the early stages of prostate cancer, its development, 

metastasis and the action of cellular microRNAs, is crucial in the development of 

therapeutic strategies in the management of the disease.  

There have been several studies (both experimental and computational) 

conducted that examine the correlation between the expression profiles of 
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microRNAs and their target genes under various conditions (Huang et al., 2007; 

Wang and Li, 2009; Kang et al., 2017).   In both the experimental and 

computational studies, results indicate that mRNAs targeted for degradation by 

microRNAs exhibit an inverse relationship (negative correlation) (Baskerville and 

Bartel, 2005; Wang et al., 2007; Diaz et al., 2015). On the other hand, intronic 

microRNAs show a positive expression with their host genes (Wang et al., 2007; 

Diaz et al., 2015). In this study, a Pearson Correlation analysis will be performed 

using the formula 2.1 given below.  

 

 

 

 

 

 

 

 

In a correlation analysis, a sample correlation coefficient is estimated, which is 

denoted as r. This coefficient ranges between -1 and +1 and quantifies the 

direction and strength of an association between two variables (microRNA and 

mRNA expression profiles in PCa) (Benesty et al., 2009). 

The sign of the correlation coefficient indicates the direction of the association 

between the two variables, whilst the magnitude of the correlation coefficient 

indicates the strength of the association (Benesty et al., 2009; Wang, 2013). For 

example, a correlation of r = 0.9 suggests a strong, positive association between 

                          (2.1) 

Where, 

• X is the expression profile of hsa-miR-5698 in each cell line LNCaP and PC3 

and; 

• Y is the expression profile of each gene respectively in each cell line LNCaP 

and PC3. 
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two variables, whereas a correlation of r = -0.2 suggest a weak, negative 

association. A correlation close to zero suggests no linear association between 

the variables (Wang, 2013). 

 

 

2.2 Aims and objectives 

 

2.2.1 Previous work 

 

The microRNA, hsa-miR-5698 was found to be up-regulated in prostate cancer 

cell lines LNCaP and PC3 in a previous Master’s study (Lombe, 2015). A set of 

bioinformatics tools were used to predict the 3’ UTR targets of this microRNA in 

order to best understand its role in prostate cancer onset and progression and 

the predicted targets were as follows, CDKN1A/p21, CTNND1, ELK1 BIRC2, 

FOXC1 and LRP8 (Lombe, 2015).  

The chapter aims to investigate if any, the role of hsa-miR-5698 as a 

transcriptional regulator of the promoters of its translational targets. This is 

because previous studies (Buske et al., 2011; Paugh, 2016) have shown that 

binding of microRNAs to gene promoters may result in gene activation by up-

regulation of mRNA transcription levels. Thus, the aim is to investigate the dual 

role of hsa-miR-5698 in the regulation of gene expression in PCa and the 

implications of this in disease progression and metastasis.  

Consequently, this chapter also aims to investigate the distribution of positive 

and negative correlations between the expression of hsa-miR-5698 and the 

expression of its translational targets in the prostate adenocarcinoma cell line 
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LNCaP and the metastatic cell line PC3. This is because genes containing 

sequences favouring microRNA triplex formation are markedly enriched (3.3 

fold, p<2.2 × 10−16). That is their expression is positively correlated with 

expression of microRNAs targeting the triplex binding sequences. 

 

 

Specific objectives: 

1. Identify any putative transcriptional effects of hsa-miR-5698 on its translational 

targets’ promoter sequences using the Trident algorithm and PyMOL. 

2. Determine whether there is enriched triplex formation for genes whose 

expression is positively correlated with the expression of hsa-miR-5698 and the 

implications in PCa progression. 

3. Calculate the expression relationship between hsa-miR-5698 and its targets in 

LNCaP and PC3 cell lines using Pearson Correlation analysis in R Studio. 

4. Use the obtained information as well as network inference to build hsa-miR-

5698-mRNA putative regulatory networks responsible for primary to metastasis 

transitions in prostate cancer (Chapter 3).  
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2.3 Methodology 

2.3.1 Identification of putative transcriptional effects of hsa-miR-5698 

on its translation targets’ promoter sequences. 

 

2.3.1.1 Extraction of gene promoters from the Ensembl database 

 

The promoters sequences were extracted for the set of 6 target genes of hsa-miR-5698 

using the Ensembl Genome Browser 91 and saved in FASTA format. The promoter 

sequences 1000 bp upstream and 200 bp downstream from the transcription start site 

were extracted in Ensembl by pasting the official gene ID individually into the search 

box provided on the website and selecting the return button. The configure settings in 

Ensembl were used to adjust the flanking positions around the transcription start site 

(TSS). Each of the retrieved promoters was 1000 bp long. 

To make certain that the promoter sequences obtained from Ensembl were bonafide, 

the BLAT tool of the UCSC Genome Browser (accessed at http://genome.ucsc.edu/cgi-

bin/hgBlat?command=start) was used to align them to the sequences annotated in the 

UCSC database and checking for matches. The BLAT tool also has a CpG islands feature 

that was turned on to further verify that the promoter sequences were true. 

 

 

2.3.1.2 MicroRNA triplex binding sites on promoters of target genes 

 

To assess the landscape of potential microRNA triplex binding sites on the promoters of 

the target genes, the database Trident accessed at http://trident.stjude.org was used. 

This database makes use of a computational algorithm that identifies Hoogsteen and 
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reverse Hoogsteen interactions between single stranded oligonucleotides such 

(microRNAs) and double-stranded oligonucleotides (duplex promoter DNA). The results 

obtained are tabulated in table 2.2. 

 

 

2.3.2 Visualization of microRNA and promoter DNA triplex 

 

The predicted microRNA-DNA triplex formation obtained from Trident was 

visualised using PyMOL version 2.2 available at https://pymol.org/2/. 

 

 

2.3.3 Correlation of expression profiles between hsa-miR-5698 its 

mRNA targets in LNCaP and PC3 cell lines. 

 

The data used  in this study was generated in a previous masters study (Lombe, 

2015). The expression data for the mature microRNA, hsa-miR-5698 in the 

LNCaP and PC3 cell lines were generated via qPCR (Lombe, 2015) and the mRNA 

expression data was generated as described in section 5.2.1. Both sets of data 

were normalised as described by Pfaffl (2004). Statistical analysis was performed 

using the R Studio software (RStudio Team, 2015). The Pearson Correlation 

Coefficients and p-values were computed and used to test the association 

between the expression profiles of hsa-miR-5698 and its predicted targets in 

LNCaP and PC3 cell lines.   
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2.4 Results and discussion 

   

2.4.1 hsa-miR-5698 as a possible transcriptional target of its 

translational target genes 

 

The landscape of the potential hsa-miR-5698 triplex binding sites on the 

promoters of its target genes was assessed using the Trident algorithm to 

identify Hoogesteen and reverse Hoogesteen interactions. For each detected 

triplex binding site, a thermodynamic binding energy and heuristic score was 

determined (Table 2.1), with higher heuristic score and a lower thermodynamic 

energy indicating stronger interaction. The heuristic score is determined based 

on the number of triplex forming pairs found between hsa-miR-5698 and the 

helix.   

The Trident algorithm was able to predict interaction between hsa-miR-5698 

and two genes the set of six genes, namely CDKN1A (p21) and FOXC1. The gene 

FOXC1 gave a higher heuristic score (164.0) and lower thermodynamic score of -

342.70 kJ indicating a stronger interaction between the single oligonucleotide 

and the DNA. The number of bases participating in the pairing between the two 

was 14 (Figure 2.3 and Table 2.1).  

The p21 gene had a lower heuristic score of 148.0, the thermodynamic sore was 

significantly higher at -198.28 kJ, eight bases on the promoter participated in the 

pairing. In both cases, parallel triplex structures are formed by Hoogesteen base 

pairing. The reverse sequence of hsa-miR-5698, an antisense strand (negative 

control) could not maintain favourable reverse Hoogsteen base pairing, with 

only four interactions between the microRNA and the helix when compared to 

the eight formed by the sense strand for the p21 promoter region (Figure 2.2). In 
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comparison, the antisense strand could not maintain any Hoogesteen base 

pairing with the FOXC1 promoter region. The results thus indicate that there is 

enriched triplex formation between the FOXC1 promoter and hsa-miR-5698. This 

result is interesting because this gene has been shown to the involved in 

increased tumour size, stromal invasion, and lymph node metastasis in 

androgen-independent PCa (van Der Heul‐Nieuwenhuijsen et al., 2009; Han et 

al., 2017). Additionally, there is positive correlation between the expression 

profile of this gene and hsa-miR-5698 in PC3 (Figure 2.4) which is an androgen 

independent metastasis cell line of prostate cancer. 
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Table 2.1:  Putative interaction of hsa-miR-5698 and the promoters of its translational targets. (Generated with Triden

Gene  hsa-miR-
5698 
promoter 
Interaction  

Type of 
match 

Disease 
Type 

Binding 
Strand 

Position 
on 
promoter  

Gibbs 
Free 
energy 
(kJ) 

Heuristic 
Score 

Hit structure 

CDKN1A/p21 Yes Direct Prostate  Sense 853-874 -198.28 148.0 

GGUGUUAGUGACGUGAGGGGGU 
            | |||||||  
CACCGCACTCTGGGGAGGGGGC 
GTGGCGTGAGACCCCTCCCCCG 

CTNND1 No N/A Prostate  N/A N/A  N/A 

 BIRC2 No Direct Prostate  Sense N/A  N/A 

 FOXC1 Yes Direct Prostate  Sense 453-476 -342.70 164.0 

GGUGUUAGUGACGUGAGG--GGGU 
|| |   | || | ||||  |||  
GGCGGCGGGGAGGAGAGGCTGGGG 
CCGCCGCCCCTCCTCTCCGACCCC 

ELK1 No N/A Prostate  N/A N/A  N/A N/A 

LRP8 No N/A Prostate  N/A N/A  N/A N/A 
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Figure 2.2: Molecular model of hsa-miR-5698-DNA triplex. (A): the model predicted for the interaction of hsa-miR-5698 (cyan strand) and the 

promoter of the gene CDKN1A (p21) showing 8 favourable Hoogsteen base pairings. (B): negative control (antisense hsa-miR-5698) (cyan strand) 

showing less interactions; 4 favourable Hoogsteen base pairings. Both microRNA and DNA duplex are largely twisted and nearly all predicted 

Hoogsteen pairings cannot be stably maintained. The microRNA bases not involved in the pairing are not shown.  

A 
B 
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Figure 2.3: Molecular model of hsa-miR-5698-DNA triplex. The model predicted for the interaction of hsa-miR-5698 and the promoter of the 

gene FOXC1  showing 14 favourable Hoogsteen base pairings. Both microRNA and DNA duplex are largely twisted and nearly all predicted 

Hoogsteen pairings cannot be stably maintained. The microRNA bases not involved in the pairing are not shown. The antisense of hsa-miR-

5698 could not yield a structure for the negative control.  
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2.4.2 Correlation between hsa-miR-5698 its targets expression 

profiles in LNCaP and PC3 cell lines. 

 

The correlation analysis at the P <0.05 level in the PC3 cell line revealed a 

positive relationship (0.84) between FOXC1 and hsa-miR-5698 (Table 2.2). 

The table also shows that all the other gene expression profiles were 

negatively correlated to the hsa-miR-5698 expression profile with CDKN1A, 

CTNND1 and ELK1 showing a moderate negative linear relationship and 

BIRC2 and LRP8 showing a weak negative relationship.  Table 2.2 and 

Figure 2.4 also show a negative correlation between the expression profiles 

of hsa-miR-5698 and all the gene expression profiles in the LNCaP cell line. 

The gene p21 expression profile showed a strong negative linear 

relationship to hsa-miR-5698, whilst CTNND1 and LRP8 had a moderate 

negative relationship and BIRC2, FOXC1 and ELK1 showed a weak negative 

correlation. All correlations conducted in this study were significant (Table 

2.2). 

 

Table 2.2: hsa-miR-5698 and their corresponding genes show correlating 

expression profiles.  

Gene  Gene/hsa-miR-
5698  in PC3 

p-value  Gene/hsa-
miR-5698  in 
LNCaP 

p-value 

CDKN1A -0,60 4.27979E-18 -0,95 0.000168359 

CTNND1 -0,63 0.001341139 -0,66 7.36352E-14 

BIRC2 -0,24 2.08821E-16 -0,17 9.44111E-09 

FOXC1 0,84 1.54113E-22 -0,25 2.02307E-16 

LRP8 -0,12 4.16011E-13 -0,53 3.02294E-22 

ELK1 -0,57 4.18344E-12 -0,14 1.99265E-13 
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Negative correlation between the expression profiles of the hsa-miR-5698 

and the genes accounts for up to 92 % of the analysis conducted. This could 

indicate that negative regulation is dominant in hsa-miR-5698-mRNA 

relationship in PC3 and LNCaP. However, an in vivo study would have to be 

conducted to validate these results. There have been a number of studies 

that have conducted similar analyses to explore microRNA–mRNA 

expression relationships, but their results were inconsistent. In a 

correlation analysis on a different set of microRNA and target genes in 

human bone cells, Laxman et al., found more positive rather than negative 

correlations (Laxman et al., 2015).  
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Figure 2.4: Correlation analysis showing the strength of the relationship between 

hsa-miR-5698 and its targets in the PC3 and LNCaP prostate cancer cell lines.  

 

In another study, Wang and Li (2009) highlighted the effect of different 

microRNA target prediction tools on correlation analysis. MicroRNA-mRNA 

target pairs predicted with miRBase showed 46.2 % negative correlation 

and those predicted by TargetScanHuman appeared 14 % higher at 60.7 % 

(Wang and Li 2009). The targets in this study were predicted by both tools 

(Lombe, 2015). A number of positive correlations have been detected by 

Vasudevan et al., 2007, Nunez-Iglesias et al., 2010 and most recently Wang 

et al., 2018. 
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 It was further interestingly found that the genes whose expression profiles 

were found to be negatively correlated with the expression profile of hsa-

miR-5698 are enriched in the gene ontology, biological process (BP) related 

to gene expression regulation (Lombe, 2015). The finding suggests that 

hsa-miR-5698 could interact with gene expression regulators to indirectly 

regulate downstream gene expression.  

 

 

2.5 Conclusion 
 

This study used the Trident algorithm to search for potential hsa-miR-5698 

triplex-forming sites in the promoters of the microRNA’s translational 

targets. This was done to understand the dual action of the microRNA in 

gene regulation in PCa progression. The software PyMOL was used to 

visualize the binding. It was found that the promoter regions of the genes 

CDKN1A (p21) and FOXC1 had binding sites for hsa-miR-5698, with the 

former sustaining eight Hoogesteen base pairs and the latter 14 

Hoogesteen base pairs. The study investigated the expression relationship 

between hsa-miR-5698 and its targets in LNCaP and PC3 cell lines using 

Pearson Correlation analysis. 

Thus, results indicated hsa-miR-5698 regulation of mRNA expression for 

CDKN1A and FOXC1 might occur through a cis-regulatory effect. That is, the 

microRNA may bind to the promoter of the gene and result in 

transcriptional activation of the gene. The microRNA may also have a trans-

regulatory effect on the two genes as well as on the other four genes in the 

study set (no triplex formation). This is in light of the fact that it is well 
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documented that microRNA regulation occurs mainly at the post-

transcriptional mRNA level, through binding to 3′UTR region of 

complementary mRNAs  rather than at the transcriptional DNA level. The 

potential limitation to this study is that the hsa-miR-5698–mRNA pairs used 

were predicted and have yet to be validated by cellular and molecular 

experiments.  

It was also observed that there was enriched triplex formation between 

the microRNA and FOXC1 (Figure 2.3 and Table 2.1). This was consistent 

with previously recorded findings that positively correlated gene-microRNA 

expression profiles form more Hoogesteen base pair bonds during triplex 

formation. From Section 5.3, it was seen that FOXC1 is down-regulated in 

LNCaP, but up-regulated in PC3 (Figure 5.1). Thus up-regulation of this 

gene may be cardinal to the progression of PCA to metastasis.  

In conclusion, this study examined the correlations between hsa-miR-5698 

expression and six of its predicted translational mRNA targets, as well as 

the potential for the microRNA to regulate these targets via a 

transcriptional effect. The significant negative correlations discovered and 

the formation of the triplex between the microRNA and CDKN1A and 

FOXC1, are evidence that there are cis-regulatory interactions between 

hsa-miR-5698 and these genes in PC3 and LNCaP. However, the study 

should be improved by performing luciferase assays to determine the true 

targets of the microRNA. An electrophoresis mobility shift assay (EMSA) 

and modified chromatin immunoprecipitation assay (ChIP) can be 

employed to validate the physical interactions between hsa-miR-5698 and 

the promoter regions. 

The relationship between the gene promoters and hsa-miR-5698 in 

prostate cancer regulatory networks may serve as a future research target 
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for an in-depth investigation of the microRNA’s biological functions in the 

disease as well as for better understanding of its molecular pathogenesis in 

the cancer.  
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Chapter 3 

MicroRNA and Transcription Factor gene co-regulation 

3.1.1 Background 
 

Proteins perform several specific functions within the cell. Thus, the proper 

functional integration and development of an organism is dependent on 

the manufacturing and control of these proteins within set defined 

concentrations, which are spatially dependent (Yilmaz and Grotewold, 

2010). Protein expression can be controlled at multiple points during the 

central dogma of molecular biology including at the chromatin structure 

level, transcription, post-transcriptional processing and translation 

(Schwanhäusser et al., 2011). Proteins can also be regulated via the action of 

microRNAs. Additionally, the transport and stability of a protein is also an 

integral part to the regulation of gene expression. Following translation 

and processing, proteins must be carried to their site of action in order to 

be biologically active. The stability of the protein varies depending on 

specific amino acid sequences present in the proteins as well as on its 

resulting folding (Hebert and Molinari, 2007; Alberts et al., 2010). The 

primary focus of this chapter is to use computational approaches to 

investigate gene regulation at the transcription level of the genes 

identified, specifically focusing on promoters and transcription factors (TFs) 

and their potential role in diagnostics of prostate cancer. In particular, 

those TFs that regulate the genes targeted by the microRNA of interest 

hsa-miR-5698. 
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3.1.2 Regulation of Gene Expression 
 

The regulation of gene expression is the control of the amount of a 

functional product of a gene as well as the timing of its appearance in a cell 

(Tomilin, 2008; Schwanhäusser et al., 2011). This control of expression is 

vital because it allows a cell to produce only what it needs and where it 

needs it to avoid unnecessary energy expenditure and in turn allowing the 

cell to adapt to variable environments (Schwanhäusser et al., 2011). 

Additionally, regulation of gene expression is the underlying basis of 

control of form, function and structure of an organism, particularly cellular 

differentiation, morphogenesis and the versatility of an organism (Yilmaz 

and Grotewold, 2010; Schwanhäusser et al., 2011). 

There are a number of regulatory mechanisms, which include those acting 

at the transcription level and at the translation level. At the translation 

level, gene regulation is carried out in various ways, including in the 

following mechanisms; (i) the mRNA may undergo secondary structure 

folding and inhibit its entrance into the ribosome, (ii) antisense RNA 

binding, (iii) the microRNA binding and (iv) protein binding. The 

transcription level involves various regulatory proteins; these include 

transcription factors, enhancers, activators and sigma factors. Upon 

binding to DNA, these regulatory proteins convey signals to the basal 

transcriptional machinery, containing the respective RNA polymerases, 

resulting in particular rates of gene expression (Boeva, 2016). Identifying 

and characterizing transcription factors and other DNA binding motifs that 

control the current genes of interest is a prerequisite to understanding the 

regulation and function of these genes in prostate cancer networks.  
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3.1.2.1 Promoters 
 

A gene promoter is a region of DNA that initiates transcription of a 

particular gene (Sharan, 2007). Promoters are located near the 

transcription start sites of genes (TSS) or near a cluster of transcription 

start sites (TSSs). The role of promoters in transcriptional regulation of 

genes is as transcription factor binding sites (TFBSs). These are located 

upstream to the gene being regulated and can vary in length from 100 to 

1000 base pairs (Sharan, 2007). Promoters contain specific DNA sequences 

that provide a secure initial binding site for RNA polymerase and for 

transcription factors, which are known to recruit the RNA polymerases. 

Since TFs have specific activator or repressor sequences that, attach to 

specific promoters thereby regulating gene expression (Sharan, 2007; 

Boeva, 2016). 

 

3.1.2.2 Transcription factors (TFs) 
 

The rate of transcription of genetic information from DNA to mRNA is 

controlled by transcription factors (TFs). Transcription factors serve as 

activators or repressors of transcription and a number of ways in which this 

is achieved have been recognized (Lambert et al., 2018). As activators, 

transcription factors bind to promoters after which the TF interacts with 

components of the RNA polymerase. This interaction attracts the RNA 

polymerase in the vicinity of the gene promoter, thereby facilitating its 

binding to the core promoter. When the TF binds the DNA, the chromatin 
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structure in the promoter region changes and the binding area of the RNA 

polymerase becomes more accessible (Sharan, 2007). 

As a repressor, a transcription factor will compete with an activator for a 

particular binding site, thereby decreasing the effect of the activator. This 

leads to less efficient binding of the RNA polymerase to the promoter, 

resulting in lower expression levels of the gene (Sharan, 2007). 

 

 

3.1.2.3 MicroRNAs 
 

MicroRNAs are naturally occurring endogenous, single stranded non-coding 

RNA molecules that range between 18 – 24 bases in length (Munker and 

Calin, 2013). MicroRNAs control gene expression by binding to target 

mRNAs with imperfect complementarity within the 3’-UTR, leading either 

to repression of translation or mRNA degradation (Cannell et al., 2008). 

Ambros et al., 1993 first discovered them in Caenorhabditis elegans. Since 

their discovery, they have become the subject of intensive research, which 

has amassed a wealth of information on their biogenesis, function and 

significance in gene regulation. MicroRNAs play important roles in a wide 

range of biological processes including cell proliferation and differentiation, 

organ development, apoptosis, as well as regulation of several processes 

related to eukaryotic development (Ardekani and Naeini, 2010). Thus, 

dysregulation at any point in these processes, owing to microRNA mutation 

or abnormal expression can result in a diseased state. Therefore, this work 

examines the role of these non-coding RNAs and their roles in gene 

regulatory networks with transcription factors in prostate cancer. 
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3.1.3 Transcription factor and microRNA co-regulatory networks 
 

Gene expression in cells is controlled at both the transcription and post-

transcriptional levels. Transcription factors coordinate gene transcription, 

while microRNAs regulate gene expression by mediating post-

transcriptional events, such as mRNA degradation and protein translation 

(Yang et al., 2013). MicroRNAs and TFs co-regulate gene expression via 

feed-forward loops (FFLs) and feedback loops (FBLs) (Shalgi et al., 2007; 

Yang et al., 2007).  In the FFL, either of two outcomes can be achieved; (i) a 

transcription factor will regulate a microRNA, by activating or repressing it 

(Figure 3.1 A).  (ii) The microRNA will regulate the transcription factor by 

repressing it (Figure 3.1 B). Either scenario will lead to the co-regulation of 

their gene target (Figure 3.1 A and B) (Shalgi et al., 2007; Zhang et al., 

2015).   

 

  

 

 

 

 

 

 

Figure 3.1: Feed Forward Loops classified by the master regulator. Blunt arrows 

with dot end represent transcriptional activation or repression, T-shaped arrow 

represents repression. 
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On the other hand, the feedback loop motif acts differently in that the TF 

and the microRNA regulate each other and each of them then regulates 

their targets separately.  Two types of FBLs exist, the single negative and 

double negative loops (Figure 3.2 A and B). In the single negative feedback 

loop, a TF activates the transcription of a microRNA, which in turn inhibits 

the translation of the TF (Zhang et al., 2015). An example of this is the 

microRNAs in the miR-17-92 cluster which participate in a single negative 

feedback loop with the TF E2F1 whose levels are critical for cell cycle 

progression (O’Donnell et al., 2005; Bommer et al., 2007). In the double 

negative loop, the TF and the microRNA repress each other (Figure 3.2 A 

and B). This loop exists in two steady states, where the TF is on and the 

microRNA is off. The double negative loop thus has key roles in cell 

differentiation (Zhang et al., 2015).  

 

 

 

 
                                                                                

 

 

Figure 3.2: Feedback Loops. A is the single negative loop and B is the double 

negative loop. The sharp arrow indicates activation. 
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3.1.4 DNA Sequence motifs (transcription factor binding sites) 
 

A DNA sequence motif is a nucleotide sequence pattern that has, or is 

presumed to have biological significance. Sequence motifs often indicate 

sequence specific binding sites on DNA for proteins such as nucleases and 

transcription factors (TF) making them important in gene regulation 

(D'haeseleer, 2006).  Studies have shown that the presence of certain 

sequences in promoter regions can determine how effective the regulation 

of gene transcription can be in regulatory networks and disease (Barash et 

al., 2003; Casimiro et al., 2008). 

Promoter regions contain various regulatory sequences, such as the 

aforementioned DNA sequence motifs, which are necessary to control 

gene transcription (Abe and Gemmell 2014). They are part of gene 

regulatory networks and are known as cis-regulatory elements because 

they act near the gene of interest binding transcription factors to perform 

their gene regulatory functions (Wittkopp and Kalay, 2011).  Promoters and 

their cis-regulatory element compositions are the initial checkpoints for 

transcriptional gene activities and they define the potential spatiotemporal 

expression of a gene (Mariño-Ramírez et al., 2009). Various studies have 

shown that any structural changes in DNA sequence motifs can affect the 

cis-regulatory activity critically (Wray et al., 2003; Vinces et al., 2009; 

Bolton et al., 2013; Abe and Gemmell 2014).  

Sequence motifs can be key factors in the maintenance of promoter 

architecture (D'haeseleer, 2006). This is especially important when looking 

at regulation of genes in a particular disease such as prostate cancer 

networks. This chapter will investigate novel DNA sequence motifs present 

in the promoters of genes regulated by the microRNA hsa-miR-5698 in 
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prostate cancer, their role in cis-regulatory activity and consequently their 

biological significance and relevance in the disease. 

The identification of DNA sequence motifs is a difficult problem in 

molecular biology. This can be alluded to the fact that a transcription factor 

may bind to regions that are highly variable (Hertzberg et al., 2005; 

Hernandez-Garcia and Finer 2014). Wet bench methodologies such as the 

STARR-seq (self-transcribing active regulatory region sequencing) and in 

vitro translation assays have been developed to overcome this problem. 

However, they are very costly and time consuming. Thus, making use of the 

availability of complete genomic sequences including the intergenic 

regions, computational methods can be used to better understand these 

regulatory mechanisms (Hernandez-Garcia and Finer 2014). 

Currently, the algorithms and tools for searching DNA sequence motifs can 

be divided into two major classes: Firstly, methodologies that search for 

well-known validated DNA sequence motifs, for example using the position 

specific scoring matrices (PSSMs) which is demonstrated in MatInspector, a 

database curating transcription factor binding sites (Quandt et al., 1995; 

Elkon et al., 2003; Aerts et al., 2003). The second major class involves 

methodologies that try to detect novel motifs within a set of DNA 

sequences as demonstrated by the MEME (Multiple Em for Motif 

Elicitation) Suite (Bailey and Elkan 1994; Bailey et al., 2006; Bailey et al., 

2009; Bailey et al., 2009). This chapter presents a method that searches for 

novel transcription factor binding sites using the database MEME Suite. 

There are a number of bioinformatics (computational) platforms were used 

to perform the experiments in this chapter. An introduction of these 

platforms and their functions follows below.  
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3.1.5 Gene/protein interaction analysis using the STRING database 
 

Complete knowledge of all direct and indirect interactions between 

proteins in a given cell would represent an important milestone towards a 

comprehensive description of cellular mechanisms and functions. 

Presently, protein interactions and associations are annotated at various 

levels of detail via online resources, ranging from raw data repositories to 

highly formalized pathway databases (Franceschini et al., 2013).  

One such online database that predicts protein-protein/gene interactions is 

the STRING database (Search Tool for the Retrieval of Interacting 

Genes/Proteins). The database is accessible at http://string-db.org/. This 

database aims to provide a comprehensive, yet quality controlled 

collection of protein-protein associations for a large number of organisms 

(von Mering et al., 2003; von Mering et al., 2007; Franceschini et al., 2013). 

The protein associations are derived from high throughput experimental 

data, from the mining of databases and literature, and predictions based 

on genomic context analysis (von Mering et al., 2005). STRING integrates 

and ranks these associations by benchmarking them against a common 

reference set, and presents evidence in a consistent and intuitive web 

interface.  

The STRING database currently holds 730 000 proteins in 180 fully 

sequenced organisms (von Mering et al., 2005). The database has three 

unique features for protein interaction prediction. Firstly, it provides 

uniquely comprehensive coverage, with over 1000 organisms, 5 million 

proteins and more than 200 million interactions stored.  Secondly, it is one 

of very few sites to hold experimental, predicted and inferred interactions, 

together with interactions obtained through text mining. Thirdly, it 
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includes a wealth of accessory information, such as protein domains and 

protein structures (Franceschini et al., 2013).  In this study, this database 

was used to find genes that may be co-expressed with the six target genes. 

 

 

3.1.6 The IntAct database for co-expression analysis 
 

The IntAct database is an open source database and software suite for 

modelling, storing and analysing molecular interaction data. Understanding 

the interactions that a protein makes with the molecules in its immediate 

environment, is critical for a full understanding of the processes in which 

that protein is involved and the mechanisms by which it is regulated 

(Kerrien et al., 2007; Kerrien et al., 2012). The IntAct database is built with 

data procured from published literature. The data is manually annotated to 

take into consideration, experimental methods used to obtain the data as 

well as conditions of the experiment and interacting domains of the 

proteins (Hermajokob et al., 2004; Kerrien et al., 2012).  The database 

includes more than 126 000 binary protein interactions extracted from 

over 2100 scientific publications (Kerrien et al., 2012). The web site 

provides tools allowing users to search, visualize and download data from 

this repository. The IntAct database is accessible at 

http://www.ebi.ac.uk/intact . It was used to find genes co-expressed with 

our gene target list. 
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3.1.7 The KEGG Pathway database 
 

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a database that 

curates a wide knowledge base that can be used in the analysis of gene 

functions as well as the linkage of genomic information with higher order 

functional information in organisms (Kanehisa and Goto, 2000).  The KEGG 

database has an array of directories embedded that store various 

information. The genomic information is stored in the Genes database, 

which is a collection of gene catalogues for all completely sequenced 

genomes and some partial genomes. This database also includes an up-to-

date annotation of gene functions (Kanehisa and Goto, 2000; Kanehisa et 

al., 2016). The Pathway database stores functional information which 

includes the graphical representations of various cellular processes 

including metabolism, signal transduction, cell cycle and membrane 

transport. The Ligand database contains information about chemical 

compounds, enzymatic molecules and enzymatic reactions (Kanehisa et al., 

2016). The KEGG database is regularly updated and made freely available 

at http://www.genome.ad.jp/kegg/. This database was used to examine 

the roles of the identified target genes in prostate cancer. 

 

 

3.1.8 Ensembl 
 

The Ensembl database provides genomic information across the species 

chordate and some selected eukaryotes. The result of this is unique 
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datasets of gene annotation, multiple alignments, gene homology 

relationships and regulatory annotations. The database also integrates 

resources from other domains such as UniProt, HGNC and the Encyclopedia 

of DNA Elements (ENCODE) portal at UCSC. The Ensembl database is 

available at http://www.ensembl.org (Aken et al., 2017). The database was 

used to extract promoter sequences of the target genes in this study.  

 

 

3.1.9 MEME (Multiple Em for Motif Elicitation)  
 

The MEME is a tool for discovering novel un-gapped (recurring fixed 

length) motifs in a group of related DNA sequences (Bailey et al., 1994). 

The MEME tool takes a group of sequences as input and as output provides 

as many motifs as requested. The tool uses statistical modelling techniques 

to choose the best width (number of characters in the sequence pattern), 

number of occurrences and description for each motif pattern (Bailey et al., 

1994; Bailey et al., 2009). 

The MEME tool represents motifs as position-dependent letter-probability 

matrices, which describe the probability of each possible letter at each 

position in the pattern (Bailey et al., 200). The MEME online portal is 

accessible at http://meme-suite.org/tools/meme. 
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3.1.9.1 TOMTOM 
 

The TOMTOM web application found under the MEME SUITE database, 

compares an input DNA motif to the elements of a database of known 

motifs and their DNA reverse complements (Gupta et al., 2007; Bailey et 

al., 2009). For each query, TOMTOM reports a list of target motifs, ranked 

by a p-value. The E-value and the q-value for each match are also reported. 

The q-value is the minimal false discovery rate at which the observed 

similarity is deemed significant (Gupta et al., 2007). A comparison of de 

novo motifs to databases of known motifs is important in the in the 

assignment of function to the identified motifs. For the purpose of this 

study, the JASPAR database was used as the search medium (Sandelin et 

al., 2004; Mathelier et al., 2016). This database curates transcription 

factors, and is a standalone database linked to the MEME Suite platform.  

The TOMTOM online portal is accessible through MEME SUITE at 

http://mccb.umassmed.edu/meme/cgi-bin/tomtom.cgi . 

 

 

3.1.9.2 Gene Ontology for Motifs (GOMo) 
 

The acronym GOMo stands for Gene Ontology for Motifs. This application 

is found under the MEME SUITE database, and is launched at http://meme-

suite.org/tools/gomo .  

The program performs a genome wide promoter scan using the provided 

nucleotide motifs as the input, to determine if any motif is significantly 

associated with genes linked to one or more Gene Ontology (GO) terms. 
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The significant GO terms can suggest the biological role/s of the motifs 

(Buske et al., 2010). The program determines the significance of a GO term 

by estimating the Mann-Whitney rank-sum p-value of the term’s genes. 

The significant GO terms associated with the target genes of the motif are 

sorted by a q-value. A q-value is derived from a p-value following the 

method of Benjamini and Hochberg, where 'q-value' is the minimal false 

discovery rate at which a given GO-term is deemed significant (Bailey et al., 

2009; Buske et al., 2010). 
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3.1.10 Previous work 
 

The microRNA, hsa-miR-5698 was found to be up-regulated in prostate 

cancer cell lines LNCaP and PC3 in a previous Master’s study in the lab 

(Lombe, 2015). A set of bioinformatics tools was used to predict the targets 

of this microRNA in order to best understand its role in prostate cancer 

onset and progression. The microRNA was predicted to target the following 

genes, CDKN1A/p21, CTNND1, ELK1 BIRC2, FOXC1 and LRP8. A literature 

review on these genes indicated that p21 and BIRC2, FOXC1 and CTNND1 

are up-regulated in prostate cancer with p21 being a major inhibitor of 

tumour cell proliferation.  The genes ELK1 and LRP8 are recorded to be 

down-regulated in PCA.  

 

Aim 

As mentioned earlier, because gene expression relies on both 

transcriptional and translational control, this chapter aims to, Identify 

novel transcription factor binding sites in the promoters of hsa-miR-5698 

target genes and investigate their biological significance in the progression 

of PCa.  

 

Specific objectives: 

1. To identify genes that are co-expressed with the hsa-miR-5698 target 

genes as co-expressed genes are potentially co-regulated using STRING. 

2. Understand role of co-expressed genes in PCa by pathway analysis in KEGG. 
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3. Identify novel putative transcription factor binding sites (motifs) in the 

promoters of the target genes of hsa-miR-5698 and their co-expressed 

genes using MEME Suite. 

4. Identify the putative transcription factors that bind to the motifs using 

JASPAR database. 

5. Use databases and literature mining using tools such as Gene Expression 

Atlas, Protein Expression Atlas, The Cancer Genome Atlas and Human 

Proteinpedia Database (HPRD) to determine the expression profiles of the 

identified transcription factors in prostate cancer cell lines, and tissue. 

6. Use obtained information and correlation analysis to build putative hsa-

miR-5698 and TF gene regulatory networks involved in PCa progression. 
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3.2 Methodology 

3.2.1 (a) Co-expression analysis via STRING 
 

The official gene IDs for the six genes (ELK1, LRP8, BIRC2, CTNND1, 

CDKN1A, FOXC1), targeted by hsa-miR-5698 were used as input for the 

generation of a gene network using the Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING) database Version 10.5 (Franceschini et 

al., 2013; Szklarczy et al., 2017). The STRING database is launched at 

https://string-db.org/. The combined set of six genes was used as a driver 

to produce a co-expression network. Co-expressed genes are known to be 

co-regulated (Meier 2011) and thus their upstream sequences may share 

common DNA motifs.  

To generate a co-expression network in STRING, the official gene identifiers 

of the six targets were pasted into the search box and Homo sapiens was 

selected as the organism. Additionally, the following parameters in the 

STRING database were chosen; (i) a confidence level of 0.7, (ii) a network 

depth of four and (iii) restriction to show only the top 50 interactions 

between the six genes targeted by miR-5 and their co-expressed genes. 

 

 

3.2.1 (b) Co-expression analysis via IntAct  
 

The official gene IDs for the six genes, targeted by hsa-miR-5698 were used 

as input for the generation of a gene network in the IntAct Molecular 

Interaction Database curated by the European Bioinformatics Institute 
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available at https://www.ebi.ac.uk/intact/. The number of interactions 

were downloaded in table form and Cytoscape 3.5.1 (Shannon et al., 2003) 

was used to visualize the interactions. Cytoscape is an open source 

platform for complex network data Integration, analysis, and visualization. 

It is available for download at https://cytoscape.org/. A final working gene 

list of the six genes targeted by hsa-miR-5698 and genes common to both 

the STRING and IntAct co-expression networks were selected for further 

analysis. The total number of genes in the generated co-expressed network 

was 11. 

 

 

3.2.2 Extraction of gene promoters from the Ensembl database 
 

Promoters sequences were extracted for the set of 11 genes using the 

Ensembl Genome Browser 91 and saved in FASTA format. The promoter 

sequences 1000 bp upstream and 200 bp downstream from the 

transcription start site were extracted in Ensembl by pasting the official 

gene ID into the search box provided on the website and pressing the 

return button. The configure settings in Ensembl were used to adjust the 

flanking positions around the transcription start site. Each of the retrieved 

promoters was 1000 bp long. 

To make certain that the promoter sequences obtained from Ensembl were 

bona fide, the BLAT tool of the UCSC Genome Browser (accessed at 

http://genome.ucsc.edu/cgi-bin/hgBlat?command=start) was used to align 

them to the sequences annotated in the UCSC database and checking for 
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matches. The BLAT tool also has a CpG islands feature that was utilized to 

further verify that the promoter sequences were true.  

3.2.3 De novo motif discovery using MEME (Multiple Em for Motif 

Elicitation) SUITE 
 

The MEME Suite online portal accessed from http://meme-

suite.org/tools/meme was used to submit the unaligned promoter 

sequences of the 11 genes. The following parameters were used in the 

purpose of this analysis; DNA was selected for the sequence alphabet, 

motif discovery mode was set to normal, site distribution was selected to 

zero or one occurrence per sequence and number of motifs was set to 10. 

The rest of the parameters of the database were left at default. The output 

from MEME was appropriately saved for further analysis. 

 

 

3.2.4 Comparison of discovered motifs to elements of databases 

of known motifs using TOMTOM 
 

The identified set of de novo motif sequences from MEME were used as 

the input into TOMTOM, which is accessed at 

http://mccb.umassmed.edu/meme/cgi-bin/tomtom.cgi. The parameters 

were set as follows; search database, JASPAR CORE and the motif column 

comparison function was set to the Pearson correlation coefficient. The 

rest of the parameters were left at the default setting. 
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3.2.5 Gene Ontology (GO) analysis for the discovered motifs using 

Gene Ontology for Motifs (GOMo) 
 

The identified set of de novo motif sequences from MEME were used as 

the input into GOMo, which is accessible at http://meme-

suite.org/tools/gomo. The application has one parameter, which was set to 

search promoters of Homo sapiens. 

 

3.2.6 Building the regulatory relationships among hsa-miR-5698, 

its target genes and putative transcription factors in PCa 
 

The computational targets of the microRNA hsa-miR-5698 were predicted 

in the TargetScanHuman, MAGIA and miRBase databases in a Master’s 

study (Lombe, 2015). The TargetSCan database and the MATCH tool of the 

Transfac database were used to identify hsa-miR-5698 and transcription 

factor regulatory pairs. The Transfac database is launched from  

http://gene-regulation.com/.    

The expression data generated via qPCR in Figure 5.1 as well as the Pearson 

Correlation coefficient calculated in Chapter 2 and shown in Table 2.1 were 

used to select significant relationships to build networks. A correlation 

coefficient ≤ -0.20 with a p-value <0.05 for all pairs. The relationship pairs 

investigated were, hsa-miR-5698-mRNA, hsa-miR-5698-TF, TF-gene and TF- 

hsa-miR-5698. Literature mining was undertaken on the putative 

transcription factors linked to motif 1 and motif 2 and their expression 

profiles in prostate cancer. The data obtained was used in the construction 

of the hsa-miR-5698-TF, TF-gene and TF- hsa-miR-5698 regulatory 

relationships. 
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3.3 Results and discussion 

3.3.1 Co-expression analysis via STRING and IntAct 
 

When genes share a similar expression profile under specific conditions 

such as a particular disease like prostate cancer, they may under-go co-

expression. Co-expression may imply the presence of a functional biological 

linkage between the genes such as carcinogenesis (Tavazoie et al., 1999).  

Thus, a set of prostate cancer biomarkers can be used in the generation of 

co-expression networks to identify other markers that can predict disease 

stage as well as the clinical outcome for the disease. This could help 

understand the disease pathogenesis and provide personalized treatment 

(Yuan et al., 2017). 

One important goal of analysing gene expression data is to discover co-

regulated genes. Similar patterns in gene expression profiles usually 

suggest relationships between the genes. According to (Lee et al., 2002), 

genes targeted by the same transcription factors tend to show similar 

expression patterns spatially.  

Co-expression analysis was performed by the STRING and IntAct databases 

using the six targets of hsa-miR-5698 as input. The result from both 

databases was an intersection set of genes co-expressed with the six input 

genes. The intersection set was PCNA, CDK4, CDK2, TP53 and CCND1. A co-

expression network consisting of the intersection set and the hsa-miR-5698 

target genes was generated using the Cytoscape platform (Figure 3.3). 

There were a total of 11 genes in the co-expression network; namely, ELK1, 

LRP8, BIRC2, CTNND1, CDKN1A, FOXC1, PCNA, CDK4, CDK2, TP53 and 

CCND1.   
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The hsa-miR-5698 targets and the co-expressed genes all showed direct 

interaction with each other (Figure 3.3). The gene CDKN1A (p21) is a 

central member in the co-expression network. It is a member of the cyclin-

dependent kinase inhibitor family and is a major transcriptional target of 

the p53 protein. In prostate cancer, it inhibits cellular proliferation by 

inhibiting the proliferating cell nuclear antigen (PCNA); also shown in 

Figure 3.3. The protein product of PCNA is required for S phase progression 

during the cell cycle (Abbas and Dutta, 2009; Jain et al., 2013). Pathway 

analysis via KEGG was performed on the genes in the co-expression 

network to better understand their roles in the processes of apoptosis, cell 

cycle and autophagy (three hallmarks of cancer), the results are shown in 

Figure 3.3.  
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Figure 3.3: Protein co-regulation network from STRING and IntAct, visualized in Cytoscape. The microRNA gene targets are outlined in the black 

boxes and the co-regulated genes are outlined in blue. 

KEY 
  From curated database (known interaction) 
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3.3.2 KEGG pathway analysis 
 

The analysis of the set of 11 genes in the KEGG pathway showed that three 

of the genes namely, CDKN1A/p21, CDK2 and TP53/p53 annotated by the 

red boxes are involved in the prostate cancer pathway (Figure 3.4). The 

gene CDKN1A (p21) was found to be involved the Phosphatidylinositol-3 

kinase/Protein kinase B (PI3K/Akt) pathway in the KEGG database. The PI3-

kinases have been linked to various cellular functions including cell growth, 

proliferation, apoptosis, differentiation, survival and cellular trafficking 

(Osaki and Oshimura, 2004).   

The role of Akt in cell proliferation is as a modulator of various substrates 

such as the cyclin-dependent kinase inhibitors p21/Waf1/Cip1 and 

p27/Kip2 (Liang et al., 2002; Viglietto et al., 2002). The CDKN1A gene is a 

cyclin-dependent kinase inhibitor and encodes the p21 protein (Eastham et 

al., 1995; Warfel and El-Deiry 2013). This protein is an inhibitor of cell cycle 

progression in the G1/S and G2/M transitions. It does this by inhibiting 

CDK4 and CDK2 respectively. The protein disrupts the phosphorylation of 

Rb by CDK-Cyclin, which is a regulator of cell cycle progression (Wang et al., 

2011). Upregulated expressions of CDKN1A by adenoviral vectors has been 

shown to inhibit prostate cancer growth both in vivo and in vitro. Thus, this 

gene is an ideal target for gain-of-function manipulation to suppress the 

growth of prostate cancer cells (Warfel and El-Deiry 2013). According to a 

previous study conducted in our laboratory, this gene is targeted by hsa-

miR-5698, which the study showed to be overexpressed in prostate cancer 

cell lines LNCaP and PC3 using qPCR (Lombe, 2015).  

Several studies have been conducted on the effect of various microRNAs 

and their effect on p21 in several cancers. One such study by Chuanchang 
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and co-workers (2017) found that p21 is a target of the microRNAs hsa-

miR-1236-3p and hsa-miR-370-5p. Their study showed that these 

microRNAs activate p21 expression in the bladder cancer cell line T24 and 

the non-small-cell lung carcinoma cell line A549. However, both microRNAs 

failed to induce expression of p21 in the hepatocellular cell line HepG2. 

Similarly, a study by Li et al in 2017, showed transfection of hsa-miR-3617-

5p into prostate cancer cell lines DU145 and PC3 induces expression of p21 

by targeting its promoter region and inhibiting prostate cancer cell 

proliferation (Li et al., 2017). From Chapter 2, the Pearson Correlation 

analysis revealed that hsa-miR-5698 may work to down-regulate p21 in 

LNCaP, but up-regulate it in PC3 as evidenced by the correlation 

coefficients (Figure 2.4). 

Another cyclin-dependent kinase that plays an essential role in the 

regulation of multiple events of the cell cycle is CDK2 (cyclin-dependent 

kinase 2/Cyclin E). Various studies have shown that CDK2 is functionally 

associated with hyper-proliferation in multiple cancers and tumour cells. 

Thus, it could also be regarded as a potential prognostic and therapeutic 

target (Flores et al., 2010; Chohan et al., 2015). The KEGG Pathway shows 

that this gene is inhibited by p27 in the prostate cancer pathway (Figure 

3.4). It can also be seen that when expressed, CDK2 phosphorylates the 

retinoblastoma protein (pRb) thereby inhibiting it from binding the 

transcription factor E2F, thus allowing transition of the cell from G1 to the 

S phase and facilitating cell growth. Additionally, CDK2 may also regulate 

G2 transition into M phase independently of p53, another gene that was 

part of our generated co-expression network using Cytoscape (Figure 3.3). 

This is particularly important, because there is a G2/M checkpoint that 

remains intact in p53- deficient cancer cells (Chung and Bunz 2010). 
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Figure 3.4: The prostate cancer pathway from KEGG database. The pathway shows the position of three of the genes of interest in the pathway (red 

boxes). 
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3.3.3. De novo motif discovery  
 

Sequence motifs are short, recurring patterns in DNA that are presumed to 

have a biological function. Often they indicate sequence-specific binding 

sites for proteins such as nucleases and transcription factors (D'haeseleer, 

2006). The TATA promoter sequence is an example of a highly conserved 

DNA sequence motif found in eukaryotes. Previously, binding sites were 

determined through DNase foot-printing, and gel-shift or reporter 

construct assays (D'haeseleer, 2006; MacIsaac, 2006). However, as stated 

earlier, these methods have been known to be time consuming and 

expensive. Currently, computational methods are generating a flood of 

putative regulatory sequence motifs. The common methodology for this is 

using algorithms to search for overrepresented (and/or conserved) DNA 

patterns in promoter regions of functionally related genes such as those 

with similar expression patterns or similar functional annotation 

(D’haeseleer, 2006).  

In this study, three de novo motifs were identified among the proximal 

promoter regions of the microRNA target genes and their co-regulated 

genes via MEME. Figure 3.5 represents a sequence logo of the discovered 

motifs, whilst Figure 3.6 represents their reverse complements (antisense 

strand). Each letter shows the conservation of that base and its frequency 

of occurrence at that position. In motif one, at position one, adenine has a 

score of 2 bits, which shows that it is conserved at that position and occurs 

there 100 % of the time. A number of sites contribute to the construction 

of each motif. For motif one, there are eight contributing sites, motif two 

has five and motif three has seven.  
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MEME reports an E-value for each motif it finds. The E-value of a motif is 

an estimate of the number of motifs expected to be found by chance if the 

letters in the input sequences were shuffled. It is based on the size of the 

motif, the number of sites used to build the motif and the frequency of 

returning the same motif over background noise upon a repeat search 

(Bailey et al., 2006; Bailey et al., 2009). The associated E-value for each 

motif was less than 0.05. This indicates that each motif is statically 

significant and is unlikely to be a random sequence artefact.  
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Figure 3.5: Sequence logos of three identified motifs common among the microRNA target genes and their co-regulated genes. Column one represents the 

motif number as designated by MEME. Column two represents the E-value associated with the motif prediction and the number of sites contributing to the 

construction of the motif. Column three represents the sequence logo of the motif. 

Motif 1 

Motif 3 

Motif 2 9.5e-003 

6 sites 

4.3e-004 

8 sites 

2.5e-001 

11 sites 

http://etd.uwc.ac.za/



110 
 

 

 Motif 1 

Reverse 

complement 

Motif 3 

Reverse 

complement 

Motif 2 

Reverse 

complement 

9.5 e-003 

6 sites 

4.3e-004 

8 sites 

2.5.0e-001 

11 sites 

Figure 3.6: Sequence logos of the reverse complements (antisense strand) of the three identified motifs common among the microRNA target genes 

and their co-regulated genes. Column one represents the motif number as designated by MEME. Column two represents the E-value associated with 

the motif prediction and the number of sites contributing to the construction of the motif. Column three represents the sequence logo of the motif. 
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Figure 3.7 shows the location of each of the three motifs on the promoter 

sequence of each gene provided as input. Each block shows the position 

and strength of the motif site. The height of a block gives an indication of 

the significance of the site, as taller blocks are more significant. The height 

is calculated to be proportional to the negative logarithm of the p-value of 

the site. Because DNA is double stranded, the sites on the coding strand 

are shown above the line and those shown below the line are on the 

reverse complement or antisense strand (Bailey and Elkan, 1994). 

From Figure 3.7, it can be seen that motif two has a greater height than 

motifs one and three. The figure also shows that the motif is located in 

various positions along the promoters of the following genes, 

CDKN1A/p21, CTNND1, CCND1, TP53, CDK2 and CDK4. The motif is located 

on the antisense strand of the promoter of genes CDKN1A, TP53, CCND1 

and CDK4 and the sense strand of promoters of genes CTNND1 and CDK2. 

However, this does not affect the function of the motif. One study found 

that for many motifs, function does not depend on the orientation of 

binding, but rather the event of binding itself, gene-locus and specific 

additional factors such as enhancers or repressors (Lis and Walther, 2016).  

The size of the motif is 40 bases long (Figure 3.5, 3.6 and Table 3.1). For the 

CDKN1A/p21 promoter, the motif begins at position 9 and ends at position 

49.  This is upstream of the transcription start site. It can be seen from 

Figure 3.7 and Table 3.1 that motif one is located up stream of the 

transcription start site in all the promoters it has been discovered in. Thus, 

this motif perhaps follows canonical transcription factor binding on the 

promoter sequences. Motif 3 was found in the promoters of all the genes. 

This coupled with its shortness in height (shortest of the three) suggests it 

is not a strong motif and perhaps this accounts for its commonality. 
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Table 3.1: Position and size of motif 2 on the promoters of the corresponding 

genes 

Gene Location Width 

 Starting 

base 

Ending base  

CDKN1A/p21 9 49 40 

CTNND1 120 160 40 

TP53 348 388 40 

CCND1 23 63 40 

CDK2 467 502 40 

CDK4 103 143 40 
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                           Gene promoter sequence                                                     p-value                           Motif location 

Motif 1 

 
Motif 2 

 
Motif 3 

Figure 3.7: Location and p-value of the three identified de novo motifs on the promoters of the submitted genes. From one to 11, the gene promoters’ 

sequences are as follows, CDKN1A/p21, CTNND1, ELK1, BIRC2, FOXC1, LRP8, PCNA, TP53, CCND1, CDK2 and CDK4. The positive sign denotes the sense 

strand and the negative sign denotes the antisense strand. 
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All three motifs were identified in the promoter of the cyclin-dependent 

kinase inhibitor, CDKN1A (p21) Figure 3.8.  Motif 1 was identified in the 

promoters of two targets (ELK1 and BIRC2) of the microRNA, hsa-miR-5698 

whilst motif 2 was identified on CTNND1 and motif 3 on LRP8 and FOXC1, 

which are also targets of the same microRNA. Among the co-expressed 

genes, PCNA was the only gene in which only one motif was identified 

(motif 3). 

 

 

 

 

 

 

 

 

 

 

 

      

 

CDKN1A 

TP53 

CCND1 

CDK2 

CDK4 

LRP8 

FOXC1 

PCNA 

ELK1 

BIRC2 

CTNND1 

Motif 1 

Figure 3.8: Venn diagram of motif distribution on the gene promoters. The genes in 

black indicate the starting gene list. These are the targets of the microRNA hsa-miR-

5698. Those in red indicate the genes co-expressed (STRING/IntAct) with the hsa-miR-

5698 targets.  

Motif 2

 
 Motif 1 

Motif 3 
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3.3.4 Comparing the discovered motifs to known transcription 

factor binding profiles in the JASPAR database using TOMTOM 

 

The use of computational methods to discover novel transcription factor 

binding sequence motifs (DNA sequence motifs) in a set of promoter 

sequences has some limitations and thus can be a difficult task. This is 

owing to the fact that these binding sites tend to be short and degenerate 

especially in eukaryotes. Additionally, searching for sequences without 

prior knowledge of binding sites or nucleotide patterns can be biased and 

validation should be performed. Thus, the MEME Suite application 

TOMTOM was used to compare the de novo motifs to the JASPAR 

database, which is a database of transcription factor binding profiles (Table 

3.2). The TOMTOM result showed that motif 1 matched 28 transcription 

factor binding profiles in the JASPAR database, motif 2 matched 15 and 

motif 3 matched 43 profiles. Only the top five matched profiles based on 

statistical significance are tabulated in Table 3.2 and were examined 

further.  
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Table 3.2: Top matched transcription profiles for each de novo motif. 

Motif  Matched profiles Top five matched 
profiles 

p-value q-value E-value 

1 28 MA0041.1 (FOXD3)  
 MA1184.1 (RVE1)  
MA0940.1 (AP1)  

MA1125.1 (ZNF384) 
MA0277.1 (AZF1)  

 

5.31e-06 

6.08e-04 

8.80e-04 

9.79e-04 

1.15e-03 

1.66e-02 

4.74e-01 

4.78e-01 

4.78e-01 

4.78e-01 

8.30e-03 

9.50e-01 

1.38e+00 

1.53e+00 

1.79e+00 

2 15 MA0688.1 (TBX2) 
MA0802.1 (TBR1) 

MA0800.1 (EOMES) 
MA0803.1 (TBX15) 

MA0685.1 (SP4) 

1.34e-03 

1.67e-03 

1.77e-03 

1.92e-03 

2.06e-03 

9.39e-01 

9.39e+00 

9.39e-01 

9.39e-01 

9.39e-01 

1.88e+00 

2.35e-01 

2.49e+00 

2.70e+00 

2.89e+00 

 3 43 MA0528.1 (ZNF263) 
MA1274.1 (OBP3) 

MA1268.1 
(AT1G69570) 

MA1277.1 (Adof1) 
MA1267.1 

(AT5G66940) 

3.98e-06 

7.26e-07 

1.18e-06 

 
1.79e-06 

3.02e-06 

1.01e-03 

1.01e-03 

1.09e-03 

 
1.24e-03 

1.67e-03 

6.67e-04 

1.02e-03 

1.66e-03 

 
2.51e-03 

4.24e-03 

 

 

In the JASPAR database, one of the transcription binding profiles that was 

found to be structurally similar to motif 1 was MA0041.1, which is the 

binding profile of the TF FOXD3. This match was over the first 12 base pairs 

of motif 1 (Figure 3.9.) with an offset of two bases at position 5 and 8. The 

match was found in the Rattus norvegicus species database.  This 

transcription factor is from the class of transcription factors called the Fork 

head or the winged helix factors. FOXD3 is a transcriptional regulator in 

embryogenesis and is understood to be critical for maintenance of self-

renewal, survival, and pluripotency in murine embryonic stem cells (Wang 

et al., 2016).  In some cancers (colon, lung and colorectal), it acts as a 
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tumour suppressor and inhibits cell growth, invasion, angiogenesis and 

proliferation (Yan et al., 2015; He et al., 2016; Li et al., 2017). This finding 

could suggest that motif 1 is a novel motif in humans and may perform 

similar functions. 
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Motif 2 was found to be structurally similar to the transcription binding 

profile, MA0688.1, which is the binding motif for the transcription factor 

(TBX2) a T-box transcription factor.  The match was over bases 14 to 24 of 

motif 2, with no offsets. Thus, this may not be a novel motif. The matched 

transcription factor TBX2 was from the Homo sapiens species database. 

This transcription factor has been reported to be implicated in tissue 

development at different sites in the TiGER (Tissue-specific Gene 

Expression and Regulation) Database (Liu et al., 2008). Aberrant expression 

Figure 3.9: Optimal alignment of the two motifs. The sequence logo of the target 

motif is shown aligned above the logo for the query, which was motif 1.  
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of the factor in many malignant tumours has been demonstrated to be 

conducive to tumour progression. In breast cancer, overexpression of TBX2 

contributes to carcinogenesis by accelerating cell proliferation and making 

cells resistant to chemotherapy (Sunwoo and Suresh, 2013, p. 989). In 

prostate cancer, the knockdown of TBX2 in PC3 and LNCaP (prostate 

carcinoma and metastatic cell lines respectively) inhibits cell metastatic 

abilities by down regulating fibronectin, which protects prostate cancer 

tumours from necrosis. Subsequently, immunohistochemistry results 

indicate that expression levels of this factor in prostate tumour tissue are 

elevated when compared to adjacent normal tissues (Du et al., 2017). 

 

 

 

 

 

 

Figure 3.10: Optimal alignment of the two motifs. The sequence logo of the target 

motif is shown aligned above the logo for the query, which was motif 2. 

.  
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The JASPAR database matched motif 3 to the transcription profile 

MA0528.1 which is the binding motif for the transcription factor ZNF263, 

Figure 3.11.  It belongs to the zinc finger factors. The match was over the 

first 12 bases of the motif, with an offset of two bases at position 2 and 6. 

The matched transcription factor, ZNF263 was from the Homo sapiens 

species database.   

The expression profiles of the three putative transcription factors FOXD3, 

TBX2 and ZNF263 were investigated in the TiGER database (Liu et al., 

2008). It was found that they are all expressed in prostate cancer and motif 

1 was detected as a cis regulatory module in prostate cancer Figure 3.11. 

 

 

 

 Figure 3.11: Optimal alignment of the two motifs. The sequence logo of the 

target motif is shown aligned above the logo for the query, which was motif 3.  
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3.3.5 Gene Ontology (GO) analysis via GOMo 

 

To determine if our predicted motifs are valid and to determine their 

possible functions, the motifs were scanned against Gene Ontology terms 

using the GOMo tool in the MEME database. The gene ontology is a 

description of vocabularies to describe key domains of molecular biology 

including gene product attributes and biological sequences (Bodén and 

Bailey 2008; Buske et al., 2010). In this case, we applied a gene ontology 

search on the de novo motifs to determine if there was any match to one 

or more gene ontology terms, the results of this search are tabulated in 

Table 3.3.  All the motifs were found to be involved in the biological 

process of DNA damage checkpoint and repair. Additionally, motif 1 and 2 

were also involved in G-protein coupled receptor activity.  
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Table 3.3: Representation of the total number of GO terms predicted per motif as 

well as the top predicted GO terms of the three motifs with BP being Biological 

Process, MF Molecular Function and CC cellular Component. 

Motif Total  
Predictions 

Identified Gene ontology term 

(Top predictions) 

1 20 BP - G-protein coupled receptor protein signalling   
        pathway 
      - double-strand break repair 
      - DNA damage checkpoint 
      - DNA integrity checkpoint 
MF - G-protein coupled receptor activity 

2 88 CC - external side of plasma membrane 

MF - transmembrane receptor activity 

       - G-protein coupled receptor activity 

BP  - immune response, DNA damage checkpoint 

3 30 BP - DNA damage checkpoint 
       - regulation of organ growth 

       - G-protein coupled receptor protein   
          signalling pathway 

       -  gene expression 

MF - double stranded RNA binding 

  
 

 

 

3.3.6 MicroRNA and DNA sequence motifs co-regulation of gene 

expression 

 

As discussed in section 3.1.4, DNA sequence motifs have biological 

significance and often indicate sequence specific binding sites for proteins 

such as nucleases and transcription factors (TF). Three putative 

transcription factors identified as possible targets of the  discovered motifs 
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were FOXD3, TBX2 and ZNF263, corresponding to motif 1,2 and 3 

respectively. These transcription factors were used to analyse the 

microRNA-TF gene expression regulation networks and thus are referred to 

as motif-TF as described in Section 3.2.6. The Cytoscape program version 

3.5.1 was used to build the interaction network between the microRNA, 

target genes and the desired de novo motif Transcription factor. Four types 

of regulatory relationships among genes, miRNAs and TFs were predicted. 

The prediction results of the regulatory relationships are summarized in 

Table 3.4 below. By merging the regulatory relationships predicted in table 

3.4, 3-node feed forward loops (FFL) were formed, Figures 3.12 to 3.15. 

 

 

Table 3.4: Summary of relationships among PCa-related genes, hsa-miR-5698, and 

putative TFs. 

Relationship Gene or TF match Prediction method 

hsa-miR-5698-gene CDKN1A, CTNND1, BIRC2 
FOXC1, LRP8, ELK1 

TargeScanHuman, MAGIA 
and miRBase  

hsa-miR-5698-TF TBX2 TargeScanHuman and 
Transfac 

TF-gene CDKN1A, CTNND1, BIRC2 
FOXC1, LRP8, ELK1, CCND1, 
TP53, PCNA, CDK2, CDK4 

MEME Suite, JASPAR 

TF- hsa-miR-5698 TBX2, FOXD3 TargetScanHuman, Transfac 
(MATCH TM) 
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Figure 3.12: Integrative microRNA target genes and the DNA sequence motif 1 

transcription factor FOXD3 regulatory networks in the prostate adenocarcinoma 

cell line LNCaP. The Arrows indicate activation of the target by the transcription 

factor and/or the microRNA. The blunt lines indicate repression of the target by 

the transcription factor and/or the microRNA. Both the transcription factor and 

the microRNA activate each other. The genes with the blue coloured nodes are 

down-regulated in the LNCaP cell line, whilst the ones in yellow are up-regulated. 

 

 

Examining separate nodes in Figures 3.12-3.15 identifies two FFLs. The first 

is the microRNA-FFL, in which hsa-miR-5698 acting repressing or activating 

both the gene and the TF.  The second is the TF-FFL, in which the TF 

regulates the genes as well as hsa-miR-5698. When the regulatory network 
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of the gene CDKN1A is taken into consideration (Figure 3.12), it can be seen 

that in one FFL (microRNA-FFL), the gene is being repressed in the LNCaP 

cell line. In the other FFL (TF-FFL), the gene is activated by FOXD1. This 

transcription factor is a tumour suppressor in hepatocellular carcinoma (He 

et al., 2015), colon cancer (Li et al., 2017) and thyroid cancer progression 

(Yin et al., 2017). This may explain why the transcription factor acts against 

the microRNA and promotes CDKN1A whose protein p21 is an inhibitor of 

cell cycle progression in the G1/S and G2/M transitions (Wang et al., 2011). 

Activation of this gene has been linked to inhibition of prostate cancer cells 

(Jain et al., 2013; Li et al., 2017). 

In contrast, both the microRNA and the TF inhibit the FOXC1 gene in 

putative regulatory network (Figure 3.12). This gene (FOXC1) has been 

found to have dual effects as both a tumour suppressor and pro-metastatic 

mediator. Aberrant expressions of this gene have been linked to 

malignancy, proliferation, differentiation, survival and metastasis (Yang et 

al., 2017; Elian et al., 2018). However, overexpression of FOXC1 has also 

been linked to inhibition of invasive progression in prostate (van Der Heul‐

Nieuwenhuijsen et al., 2009; Yang et al., 2017). Expression profiling via 

qPCR conducted in LNCaP on this gene showed that it is down-regulated in 

the cell line (Figure 5.1). This could explain inhibition of this gene by the TF, 

which is a tumour suppressor. 

Figure 3.1.3 represents the regulatory networks of the TF FOXD3, genes 

and microRNA in PC3 cell lines. A comprehensive literature mining did not 

yield any expression data for this transcription factor in PC3 or metastasis 

prostate tumour samples. Thus, this is a very weak representation of a 

putative regulatory network in PCa.  
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Figure 3.13: Integrative microRNA target genes and the DNA sequence motif 

transcription factor FOXD3 regulatory networks in the prostate metastatic cell line 

PC3. The blunt lines indicate repression of the target by the microRNA. The 

dashed lines indicate that there no data available currently to make significant 

predictions about the relationship. The genes with the blue coloured nodes are 

up-regulated in the PC3 cell line, whilst the ones in yellow are down-regulated. 
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Figure 3.14: Integrative microRNA target genes and the DNA sequence motif 2 

transcription factor TBX2 regulatory networks in the prostate metastasis cell line 

PC3. The Arrows indicate activation of the target by the transcription factor 

and/or the microRNA. The blunt lines indicate repression of the target by the 

transcription factor and/or the microRNA. Both the transcription factor and the 

microRNA activate each other. The genes with the blue coloured nodes are up-

regulated in the PC3 cell line, whilst the ones in yellow are down-regulated. 

 

 

Motif-2 was linked to the transcription factor TBX2. Abnormal expression 

of this TF has been linked to cell proliferation and invasion in several 

malignancies including lung cancer (Khalil et al., 2017), ovarian cancer 

(Tasaka et al., 2017) and nasopharyngeal cancer (Yan et al., 2017).  Perhaps 

this could explain why this TF inhibits CDKN1A in the LNCaP cell line (Figure 
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3.14) putative regulatory network. The TF activates the FOXC1 gene, 

perhaps in this environment, the gene takes up its pro-metastatic role. 

 

 

 

 

Figure 3.15: Integrative microRNA target genes and the DNA sequence motif 2 

transcription factor TBX2 regulatory networks in the prostate adenocarcinoma cell 

line LNCaP. The Arrows indicate activation of the target by the transcription factor 

and/or the microRNA. The blunt lines indicate repression of the target by the 

transcription factor and/or the microRNA. Both the transcription factor and the 

microRNA activate each other. The genes with the blue coloured nodes are up-

regulated in the LNCaP cell line, whilst the ones in yellow are down-regulated. 
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The putative regulatory network in Figure 3.15, both genes FOXC1 and 

CDKN1A are inhibited by the TF and the microRNA. This network highlights 

the complexity of microRNA, TF gene regulation. The qPCR analysis showed 

that FOC1 is up-regulated in PC3, whilst CDKN1A is down-regulated (Figure 

5.1). However, this is not reflected in the network above. Thus, there is a 

need to perform validation studies via molecular techniques such as 

microRNA mimic studies, ChIP assays and SELEX assays.  

 

 

3.3.7 Conclusion 

 

This chapter aimed to identify novel transcription factor binding sites in the 

promoters of hsa-miR-5698 target genes and investigate their biological 

significance in the progression of PCa. This was done by first identifying 

genes co-expressed with the target genes using the databases STRING and 

IntAct databases, five genes were found to be co-expressed with the 

microRNA target genes, namely, TP53, CDK4, CDK2, PCNA and CCND1. A 

set 11 genes including the microRNA targets was the working list. The 

identification of the cis-regulatory module in the promoters of the working 

list was accomplished with the MEME Suite tool. Three motifs were 

identified and their sequences were searched against a database of known 

transcription factors in the JASPAR database. One top match for each motif 

was identified namely FOXD3, TBX2 and ZNF263 corresponding to motif 1, 

2 and 3 respectively. The expression profiles of the transcription factors 

was mined using protein expression databases. A correlation analysis was 

performed to determine the regulatory relationships between the TF, 
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microRNA and genes using the literature mining data (TF expression 

profiles), data from Chapter 5 (gene expression profiles) and data from 

Lombe 2015 (hsa-miR-5698 expression profiles). Two FFLs involved in PCa 

progression from adenocarcinoma to bone metastasis where identified. A 

significant feature in the putative regulatory network was the repression of 

FOXC1 by both TF and microRNA in LNCaP (blunt lines Figure 3.14), but its 

activation in PC3 (Figure 3.15). Thus, these networks are good candidates 

for molecular studies. 

Transcription factor binding motifs are essential to gene regulatory 

networks as checkpoints for gene transcription as well as the expression of 

genes at the right place and time within the cell. In the early 2000’s, upon 

the completion of the sequencing of the human genome, the use of 

algorithms to predict which transcription factors would bind to particular 

regions of gene promoters became popular, as it was a cost effective 

method compared to the wet bench applications that were being 

employed. The use of algorithmic methods for DNA motif discovery has 

gradually improved with the validation of many of the binding sites 

discovered. However, it is not without its drawbacks.  The hunt for a 

common motifs maybe quite complex as the motif sizes can be as small as 

eight base pairs in length and occur thousands of bases upstream of an 

unknown subset of genes of interest (D’Haeseleer, 2006). Thus, the use of 

computational methods to discover motifs should be undertaken with 

caution.  

Thus, several questions can be posed as to the robustness of the 

methodology used in this study. One such question would be the use of 

only one predictive algorithm. Given the false positives and negatives of 

motif discovery tools, it would be wise to use more than one algorithm to 
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predict a motif. However, the MEME algorithm accounts for this by 

counting the number of occurrences of all the motifs in a target sequence 

and calculates the ones most over-represented. Thus, a number of similar 

over-represented sequences are combined into a more descriptive motif. 

The algorithm was also run several times and the best scoring motifs of all 

the iterations were chosen. Additionally, the building of the best motifs for 

the target sequence was optimized by using a wide range of motif widths 

and number of sites. Even with the application of these stringent guidelines 

for the determination of the most probabilistic motif, the results obtained 

need molecular validation.  The current method used is the ChIP-seq assay, 

a Chromatin immunoprecipitation (ChIP) coupled to high-throughput 

sequencing.   

This study also had drawbacks in the construction of microRNA-TF-gene 

regulatory networks. This is because the study was limited to the available 

information available. Although the expression levels of hsa-miR-5698 are 

available in prostate cancer (LNCaP cell line) from a previous study (Lombe, 

2015), information on the transcription factor binding sites and their 

transcription factors and their effects on the target genes is limited due to 

their novelty. Additionally, the effect of the transcription factor on the hsa-

miR-5698 should also be investigated. Nevertheless, this can be the 

foundation for a more comprehensive validation of the findings as future 

work. 
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Chapter 4 

 

An in silico prognostic analysis of hsa-miR-5698 target genes in 

prostate cancer (PCa) 

 

4.1 Background 

 

A prognostic biomarker indicates an increase or decrease in the likelihood 

of a future clinical event, disease occurrence and/or its progression in a 

particular population (Roberts et al., 2001).  In order to measure a 

prognostic biomarker, a starting point or baseline needs to be defined. This 

means that monitoring of a particular marker can be done in individuals at 

risk for the disease, after diagnosis with no treatment, after treatment has 

commenced as well as between various types of treatment (FDA-NIH 

Biomarker Working Group, 2016; Tang et al., 2017).  

There are a number of markers used to indicate prognosis of a disease in 

clinical oncology, these include tumour size, number of lymph nodes 

positive for tumour cells, and presence of metastasis (Nalejska et al., 2014). 

In addition to these clinical pathologic characteristics, there has been an 

increase in the use of molecular signatures measured on tumours, as 

indicators. In prostate cancer these include, elevated Prostate Specific 

Antigen (PSA) level at diagnosis, more advanced clinical and pathological 

tumour staging (Buhmeida et al., 2006; Martin et al., 2011) and higher 

Gleason score (D'Amico et al., 1998; D’Amico et al., 2003; Terada et al., 

2017). There have been a number of nomograms developed with both 
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clinical pathologic characteristics and molecular signatures to predict PCa 

outcome (Ross et al., 2001; Shariat et al., 2009). One such nomogram 

developed by Kattan and co-workers (1995) uses the aforementioned 

characteristics and signature to predict biochemical recurrence (PSA) after 

a prostatectomy.  

The clinical course of prostate cancer is long, particularly when the five to 

ten year lead-time added by PSA screening is taken into account. Many 

studies (Pound et al., 1999; Bianco et al., 2005; Terada et al., 2017) have 

used a rise in PSA following local therapy to assess the risk of disease 

progression.  However, this is not a perfect surrogate for prostate cancer 

mortality, as the vast majority of these patients do not succumb to their 

disease. 

 

 

4.1.1 Prognostic determinants in Prostate cancer (PCa) 

 

After the introduction of Prostate Specific Antigen (PSA) as a biomarker for 

the evaluation of the clinical course of prostate cancer, the search for 

prostate cancer biomarkers has shifted towards the identification of gene 

or protein expression levels capable of predicting the prognosis of the 

disease (Tahara et al., 2017). These expression signatures are useful in the 

evaluation of the best course of treatment and therapy after surgical 

resection (Fizazi et al., 2011). The identification of genes, whose expression 

signatures and protein products could serve as biomarkers for prostate 

cancer outcomes, would be a useful addition to the current methods used 

in the management of the disease. The following review outlines the 
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current methods used in the management of PCa. It examines their 

usefulness and shortcomings in the management of the disease.  

 

4.1.2 Clinical factors 

4.1.2.1 Serum Markers - Prostate Specific Antigen (PSA) 

 

Regular prostate cancer screening programs such as the digital rectal exam 

and the monitoring of the PSA biomarkers provide a means of early 

detection and bring about better disease prognosis, which also contributes 

to improved outcomes. However, PSA is organ-specific, but not cancer-

specific and it is not able to differentiate between indolent and aggressive 

forms of prostate cancer (Terada et al., 2017; Velonas et al., 2013). Thus, 

not all low or high PSA levels are indicative of prostate cancer. Studies also 

show that many men may harbour aggressive prostate cancer despite 

having low initial levels of serum PSA (Caram et al., 2016; Slatkoff et al., 

2011; Thompson et al., 2004).  

 

There have been a number of potential serum markers other than PSA that 

have been investigated for their role in providing prognostic information in 

PCa.  One such marker is the transforming growth factor beta gene (TGF-β) 

which has a significant role in the tumour microenvironment (Tu et al., 

2003). This gene secretes a protein that performs many cellular functions, 

including the control of cell growth, cell proliferation, cell differentiation 

and apoptosis in early tumourigenesis (Bello-DeOcampo and Tindall 2003; 

Dos Reis et al., 2011; Cao and Kyprianou, 2015). However, in later stages of 
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tumour progression, it acts as a tumour promoter. Over-expression of TGF-

β aids in tumourigenesis by stimulating angiogenesis and suppression of 

the immune system causing the cancer cells to become resistant to TGF-β 

induced inhibition and apoptosis (Bello-DeOcampo and Tindall 2003; Dos 

Reis et al., 2011).   Thus, high expressions of TGF-β in later stages of 

prostate cancer is associated with poor clinical outcome. However, the 

gene performs the same in many cancers including but not limited to 

breast cancer (de Kruijf et al., 2013; Zarzynska, 2014) and colorectal cancer 

(Chun et al., 2017; Jung et al., 2017).  

 

 

4.1.2.2. Gleason score 

 

As discussed earlier (section 3.1), a number of markers including clinical 

pathologic characteristics and molecular signatures measured on tumours 

are used to indicate prognosis of PCa. One of the clinical factors used in 

prognosis is the Gleason grade. The Gleason grade characterizes prostate 

tumour architecture and morphology via the assignment of a primary and 

secondary score with a summation of the total score within a range of 2 to 

10 (Gleason and Mellinger, 1974). Men diagnosed with Gleason grade 7 or 

higher tumours are at increased risk of extra-prostatic extension, increased 

risk of recurrence after initial therapy, and more likely to die of their 

disease (Buhmeida et al., 2006; Martin et al., 2011). In contrast, men 

diagnosed with well-differentiated Gleason 6 disease score are at very low 

risk of cancer-specific death. The distribution of Gleason grades has shifted 

over time (Albertsen et al., 2005; Stark et al., 2009), and in the era of PSA 
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screening, most men are now diagnosed with Gleason 6 or 7 tumours. As 

such, the accurate discrimination of prognosis among men with prostate 

cancer within this narrow range of Gleason scores is challenging. 

 

 

4.1.3. Molecular factors 

 

For many years, clinical factors have proven useful for risk identification 

and guidance of treatment decisions in prostate cancer. However, they are 

prone to significant clinical heterogeneity and as such; the exploration of 

molecular and genetic factors has been spearheaded to improve risk 

prediction (Buhmeida et al., 2006; Martin et al., 2011). An ideal prognostic 

marker should be measurable at diagnosis, have both high sensitivity and 

specificity for distinguishing indolent and lethal PCa and be cost effective 

(Ludwig and Weinstein, 2005). 

 

 

4.1.3.1 Tumours markers 

 

There have been a number of tumour related markers that have been 

studied as potential prognostic markers in prostate cancer. Early studies 

were based on small series of clinical cohorts. However, they did not have 

sufficient statistical power to detect meaningful associations (Martin et al., 

http://etd.uwc.ac.za/



149 
 

2011). Recently, protein expression of immuno-histochemical biomarkers 

has been widely utilized for prognostic value.  

 

 

(i) Tumour markers involved in evasion of apoptosis 

 

One of the hallmarks of cancer is resisting cell death. The process of 

apoptosis is well regulated and mediated by a number of factors many of 

which have been explored as prognostic factors in prostate cancer.  One 

such example is the protein P53, coded for by the gene TP53. This gene is 

regularly mutated in many cancers, however, in prostate cancer less 

frequently so (Kan et al., 2010). The potential prognostic utility of P53 lies 

in its localization. When sequestered in the nucleus, it indicates a stabilized 

mutation of the protein  and has been associated with poor prostate 

cancer prognosis (O'Brate and Giannakakou, 2003; Maki, 2010).   

 

 

(ii) Self-sufficiency in growth signals 

 

Tumour cells develop the ability to promote growth in the absence of 

signalling systems that are normally regulated. There are a number of 

signalling pathways that are inter-related and involved in promotion of 

growth. These include the androgen signalling pathway and the epidermal 

growth factor receptor (EGFR). Several studies (Di Lorenzo et al., 2002; 
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Baselga et al., 2005; Schlomm et al., 2007) have shown that the EGFR 

pathway is a prognostic tumour factor. An increase in EGFR staining and 

copy number is associated with an increased risk of recurrence following 

prostatectomy. The androgen receptor signalling pathway has great 

prognostic value (Shukla-Dave et al., 2009).  Taplin and co-workers found 

that mutations in the pathway are common in the castration resistant 

setting and are additionally associated with response to treatment. Later 

studies have supported this claim (Taplin et al., 1995; Lonergan and Tindall, 

2011; Tan et al., 2015).  

 

 

(iii) Signature markers of lethal prostate cancer  

 

There are a number of signature markers for prostate cancer prognosis. 

These have  been elucidated in many studies. One such study, conducted 

by Ding and co-workers found that a loss of the PTEN gene as well as the 

SMAD4 gene within the prostate resulted in the development of metastatic 

prostate cancer (Ding et al., 2011). Upon comparing mRNA expression 

profiles of tumours with PTEN and those without, they found alterations in 

several pathways including proliferation and invasion as well as metastasis. 

Additionally, they found that loss of the PTEN and SMAD4 coupled with 

high expression of CCND1 and SPP1 genes is a signature of poor prognosis 

in prostate cancer, being associated with biochemical recurrence and lethal 

prostate cancer. Although the four-marker signature shows better 

prediction of lethal prostate cancer than the Gleason score and the PSA, 
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more work is needed to validate the markers in a larger cohort of samples 

annotated with prostate cancer specific deaths.   

 

 

4.1.3.2 Urine markers 

 

With the urethra, being in close proximity to the prostate, urine may also 

be considered a prospective source of clinically useful biomarkers in men 

with prostate cancer. The prostate cancer antigen 3 (PCA3) is a gene that 

codes for the PCA3 protein. This protein has been found to be differentially 

expressed in prostate cancer compared to normal prostate tissue 

(Bussemakers et al., 1999; Marks and Bostwick, 2008). With an expression 

which is 60 fold greater in cancerous than benign prostate tissue (Merola 

et al., 2015). The prostate cancer antigen 3 is shed from the prostate 

tumour into the urine and its mRNA can be measured in the first void urine 

after a digital rectal exam (DRE) and a score associated with this 

measurement (Marks and Bostwick, 2008; Merola et al., 2015). Thus, PCA3 

can improve upon the specificity of protein specific antigen (PSA).  

Wei and co-workers (2015) performed a multivariate analysis on the 

association of PCA3 score to currently used indicators of prognosis 

(Gleason score, PSA and clinical stage). They found that a high PCA3 score 

in urine was significantly correlated with a high Gleason score as well an 

advanced clinical stage. Therein lies the ability of PCA3 to act as a prognosis 

biomarker for PCa. However, the collection of PCA3 is dependent on the 

tumour cells exfoliation. Thus, a prostate massage is required before 

sample collection and this is achieved via a digital rectal exam. This is an 
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invasive approach and may go against some advantages of the ease of 

urinary sample collection.  

Currently, there is a need for sensitive prognostic markers for prostate 

cancer and based on the review, molecular based signature markers are a 

promising tool for risk stratification in patients. Molecular based markers 

might particularly gain wider application if translated to easy-to-use 

procedures such as immunohistochemistry.  

 

 

4.1.3.3 The role of bioinformatics in biomarker discovery 

 

High throughput technology platforms in proteomics and genomics have 

accelerated the development of biomarkers. Furthermore, recent 

successes of several new agents in PCa treatment, such as immunotherapy, 

have stimulated the search for predictors of response and resistance. This 

chapter investigates the potential of hsa-miR-5698 and its target genes to 

serve as prognostic biomarkers in prostate cancer. The metastatic ability of 

the genes in prostate cancer will also be investigated. The study was 

conducted using in silico approaches.  

The high throughput technology platforms have led to the generation of a 

large number of datasets. These can be used to carry out various studies 

including validation, statistical analysis as well as meta-analyses of 

biomarkers. A number of datasets from online platforms were employed to 

perform prognostic analysis for this study, these included, ProgGene, 

SurvExpress, and the Human Cancer Metastasis Database (HCMD). 
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4.2.1 ProGgene 

 

The database ProGgene is a web application that can be used for studying 

prognostic implications of mRNA biomarkers in a variety of cancers. The 

database is compilation of data from public repositories such as GEO, EBI 

Array Express and The Cancer Genome Atlas. It can be launched from 

http://www.compbio.iupui.edu/proggene. ProgGene has 64 patient series 

from 18 cancer types in its database providing the most comprehensive 

resource available for survival analysis to date (Goswami and Nakshatri, 

2013). The ProGgene database accepts lists with Official Gene Symbol 

identifiers and survival measures can be analysed for metastasis, relapse 

and death. Returned results are based on a Kaplan Meier plot for the risk 

groups.  

 

 

4.2.2 SurvExpress®  

 

SurvExpress® available at http://bioinformatica.mty.itesm.mx/SurvExpress 

is a web based tool that provides survival analysis and risk assessment of 

cancer datasets. The SurvExpress® database comprises 20,000 samples 

from 20 different cancers curated in 130 datasets (Aguirre-Gamboa et al., 

2013). The database is a bioinformatics tool that examines the 

performance of mRNA biomarkers for survival and prognostic outcomes in 

various cancers. 
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The Survexpress® database accepts gene lists in the following identifiers 

Entrez, Official Gene Symbol, Ensembl, HGNC, MIM, Vega and HPRD. 

SurvExpress® is the largest and the most versatile free tool for analysing 

differentially expressed multi-gene biomarkers in human cancers at the 

same time (Aguirre-Gamboa et al., 2013). Analysis in the database is based 

on a Kaplan Meier plot for risk groups, clinical information available related 

to risk group, heat map representation of the gene expression values, a box 

plot across risk groups, and tables with the summary of the Cox fitting and 

the prognostic indices (Aguirre-Gamboa et al ., 2013). 

 

 

4.2.3 HCMDB: the human cancer metastasis database 

 

Metastasis is the spread of a cancer from one organ to another without 

being directly connected with it, and it is the principal cause of cancer-

related death (Fokas, 2007). The human cancer metastasis database 

(HCMDB) is a freely accessible platform that aids in the query of 

transcriptome data on metastases obtained from different platforms. It is 

available from http://hcmdb.i-sanger.com/index.  

The database was created from 620 datasets from the Gene Expression 

Omnibus (GEO) and the Sequence Read Archive (SRA) containing data on 

primary tumours and metastases. In addition, clinical data corresponding 

to metastasis-related expression was retrieved from The Cancer Genome 

Atlas (TCGA) and included in the database. Currently, the database has 

gene expression profiles of 29 primary tumour types from 455 experiments 

with a total of 11,500 samples (Zheng et al., 2018).  
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4.3 Aims and Objectives 

 

The microRNA hsa-miR-5698 was found to be up-regulated in prostate 

cancer in a previous study conducted in our lab. This chapter aims to 

investigate the signature of the microRNA’s targets (CDKN1A, CTNND1, 

ELK1, BIRC2, FOXC1, and LRP8) as molecular prognostic markers for 

prostate cancer (PCa) using in silico methods.  

Specific objectives: 

 

1. Evaluate the association between gene targets of hsa-miR-5698 and PCA 

patient survival, recurrence and metastasis using Kaplan-Meier analysis 

with the Log-rank test in the SurvExpress and ProgGene databases. 

 

2. Determine the effective prognostic ability of the hsa-miR-5698 targets in 

terms of metastasis in PCA using the Human Cancer Metastasis Database. 
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4.4 Methodology 

4.4.1. Log-rank survival, recurrence and metastasis analysis of the 

prognostic value of the target genes via SurvExpress 

 

The online biomarker validation tool SurvExpress was accessed online at 

http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp. The six 

microRNA target genes’ official gene symbols were used as input in the 

space provided for gene list and prostate selected as the tissue of analysis. 

Several datasets were used to analyse the genes as survival, recurrence 

and metastatic markers. The datasets used for survival analysis were the 

PRAD - TCGA - Prostate adenocarcinoma dataset, the Galsky - Prostate - 

GSE45705 and the Kollmeyer-Jenkins Prostate GSE10645-GPL5858 each 

curating 497, 61 and 596 samples respectively.  

The datasets used for recurrence analysis were the Lapointe Prostate 

PNAS, Taylor MSKCC Prostate and the Singh Prostate Nature each curating 

29, 140 and 98 samples respectively. 

Metastatic analysis was undertaken on the Lapointe Prostate PNAS dataset 

curating 28 samples (Aguirre-Gamboa et al., 2013). The analysis button was 

clicked and on the next page, “Survival, metastasis or recurrence was 

selected and the output downloaded in PDF format.   
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4.4.2 Log-rank relapse free survival and death analysis of the 

prognostic value of the target genes via ProGgene 

 

The database ProGgene was launched from  

http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=progge

ne. The six microRNA target genes’ official symbols were used as input in 

the space provided for gene list and prostate selected as the tissue of 

analysis. The databases used for relapse free survival was the GSE70769 

with 281 sample and The Cancer Genome Atlas (TCGA) dataset on prostate 

carcinoma with a data size of 498. The dataset used for relapse free 

survival was the GSE16560 with a data size of 264 and The Cancer Genome 

Atlas (TCGA) dataset on prostate carcinoma (size 498).  The analysis 

measure was done separately for relapse and death.  

 

 

4.4.3 Evaluation of the metastatic prognostic ability of the target 

genes using the Human Cancer Metastasis Database (HCMD) 

 

The Human Cancer Metastasis Database was launched from the following 

URL, http://hcmdb.i-sanger.com.  The official gene symbol of the six target 

genes were used as input into the space provided for the analysis and the 

cancer type prostate adenocarcinoma selected. The results returned are 

also available for download from http://hcmdb.i-sanger.com/download.   

 

http://etd.uwc.ac.za/

http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
http://watson.compbio.iupui.edu/chirayu/proggene/database/?url=proggene
http://hcmdb.i-sanger.com/
http://hcmdb.i-sanger.com/download


158 
 

4.5 Results and discussion 

 

The prognostic value of the hsa-miR-5698 target genes in terms of survival, 

recurrence and metastasis was examined using the methods outlined in 

Section 4.4.  

 

4.5.1 Log-rank metastatic analysis of the prognostic value of the 

target genes in prostate cancer via SurvExpress 

 

The prognostic potential of the genes was evaluated using the Lapointe 

Prostate PNAS dataset. Only results for four out of the six genes were 

returned for the event metastasis in the dataset, these were CDKN1A, 

CTNND1, BIRC2 and FOXC1. The dataset examined two cohorts, the 

prostate cancer high risk group (red) and the prostate cancer low risk 

group (green).  

With regards to expression of the candidate genes, it can be seen from 

Figure 4.1 that the genes FOXC1, BIRC2 and CDKN1A are significantly up-

regulated in the low risk group when compared to the high risk group as 

most of the samples expressing these genes lie in the upper quartile. On 

the other hand, there is no significant difference of CTNND1 expression in 

both cohorts. Thus, the three genes, CDKN1A, BIRC2 and FOXC1 may serve 

as good potential markers for metastatic prognosis in prostate cancer. 
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Figure 4.1: Gene expression values for each of the genes in each cohort (High risk 

red and Low risk green) represented by box and whisker plots. Lapointe Prostate 

PNAS dataset.  

 

Figure 4.2 shows the Kaplan-Meier plots by risk group, the log-rank test of 

differences between risk groups, the hazard-ratio estimate, and the 

concordance indices for the genes in the Lapointe Prostate PNAS dataset. 

From this figure, it can be seen that more candidates in the low-risk cohort 

(green) experience metastasis (event) when compared to the candidates in 

the high-risk cohort (red). However, after the median survival time, more 
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candidates from the high-risk cohorts who express the markers of interest 

significantly lower than their low-risk counterparts, experience the event 

and by the end of the study period, all the high-risk candidates have 

expired.   

An examination of the roles of the markers of interest could help in 

understanding their behaviour in this study. The gene CDKN1A as 

mentioned in section 3.3.2 is a Cyclin dependent protein that is an inhibitor 

of cell cycle progression in the G1/S and G2/M transitions. Up-regulation of 

this gene inhibits prostate cancer tumourigenesis. Perhaps, this could 

indicate why there are less candidates experiencing the event in the low-

risk group compared to their counterparts in the high-risk cohort, as the 

former expresses the marker significantly higher than the latter (Figure 

4.1). 

The gene FOXC1 is a forkhead box C1 transcription factor.  It has recently 

been shown to have profound and critical roles in the progression of 

several cancer types. This is following its initial identification as a key 

prognostic indicator of basal-like breast cancer (Han et al., 2015; Jin et al., 

2015). Aberrant expression of this gene has been linked to malignancy, 

proliferation, differentiation, survival and metastasis. (Yang et al., 2017; 

Elian et al., 2018). Overexpression of FOXC1 has been known to inhibit 

invasive progression in prostate cancer (Yang et al., 2017). Our data in 

Figure 4.1 shows that it is highly expressed in the low-risk cohort.  

The gene FOXC1 is also involved in cell invasion and metastasis in many 

cancers including prostate cancer (Kalluri et al., 2009). FOXC1 is 

consistently elevated by the overexpression of TGF-β1, snail and twist in 

the epithelial–mesenchymal transition pathway (EMT) (Batlle et al., 2000; 

Xu et al., 2012; Huang et al., 2015). Activation of this pathway characterises 
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cancer metastasis (Kalluri et al., 2009). This dual effect of FOXC1 as both a 

tumour suppressor and pro-metastatic mediator makes it an interesting 

target for further analysis. 

 

 

      

 

Figure 4.2: Combined Kaplan Meier analysis for four candidate genes for prostate 

cancer metastasis in the SurvExpress database. The X-axis represents time in 

months. The Y-axis represents the percentage probability of metastasis in the 

patients. Lapointe Prostate PNAS database. 
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The heat map shown in Figure 4.3 ranked the genes based on their 

prognostic ability. It showed that most of these genes are highly 

differentially expressed in the low-risk group. This data, coupled with the 

knowledge of the function of the said genes in prostate cancer may be an 

indication that their high expression might present a good prognostic 

outcome in prostate cancer patients with regards to metastasis. However, 

results from a qPCR analysis (Chapter 5, Figure 5.1) shows that in the 

metastasis prostate cell line PC3, the genes FOXC1 and CDKN1A are up-

regulated and the genes BIRC2 and CTNND1 are down-regulated. On the 

other hand, a caveat to this result is that cell lines are a snap shot of a 

single event, unlike tumours which are heterogeneous for PCa. 
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Figure 4.3: Heat map demonstrating expression of each of the candidate genes in 

each of the 29 samples used in the dataset. According to the colour key, red 

represents up-regulated genes and green represents down-regulated genes. Black 

represents unchanged expression. Lapointe Prostate PNAS database. 

 

 

In patients with metastatic prostate cancer, the median survival rate is 

approximately 30 months. This is reflected in our Kaplan Meier plot. 

However, it has been reported that the approximate median survival is 

dependent upon various factors including treatment with hormone therapy 

(American Society of Clinical Oncology, 2018). Initial studies showed that 

http://etd.uwc.ac.za/



164 
 

there is substantial inter-patient variation with this therapy as well as other 

therapies (Glass et al., 2003; Gravis et al., 2015). Thus, there are a number 

of major prognostic factors that have a major impact on patient outcome, 

that should be taken into consideration when examining this data, namely, 

appendicular versus axial disease, age, prostate specific antigen less than 

65 versus 65 ng/ml or greater and Gleason score less than 8 versus 8 or 

greater Glass et al., 2003).  

 

 

4.5.2 Log-rank relapse free survival (recurrence) analysis of the 

prognostic value of the target genes in prostate cancer via 

ProGgene. 
 

The prognostic potential with regards to recurrence for the genes was 

evaluated using the GSE70769 dataset. Results for all of the six genes were 

returned for the event relapse free survival. The dataset examined two 

cohorts, the high expression of the biomarker in prostate cancer (red) and 

the low expression of the biomarker in prostate cancer (green). 
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Figure 4.4: Combined Kaplan Meier analysis plot all microRNA target genes for 

prostate cancer relapse free survival in the ProGgene server. The X-axis represents 

time in days. The Y-axis represents the percentage probability of relapse free 

survival of the patients. GSE70769 dataset. 

 

 

Figure 4.4 shows the Kaplan-Meier plot by biomarker expression groups, 

which estimate the probability that subjects with a low expression (green) 

will experience relapse free survival (event) before subjects with a higher 

expression (red) for the GSE70769 dataset. From this figure, we can see 

that more candidates in the low biomarker expression cohort experience 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

Time (Days) 

http://etd.uwc.ac.za/



166 
 

the event when compared to the candidates in the high expression cohort. 

More than half of the patients not expressing the biomarker have had a 

relapse of the disease.    

One of the genes represented in this combined Kaplan Meier plot is ELK1 

which is a direct target of hsa-miR-5698. It codes for a transcription factor 

that is known to be involved in a number of functions including regulation 

of cell proliferation, cell cycle and apoptosis (Hipskind et al., 1991; Shao et 

al., 1998; Zhang et al., 2013).  In prostate cancer cell lines the androgen 

receptor (AR), which is a key driver of tumour progression has been 

suggested to function as a co-activator of ELK1. Silencing ELK1 retards the 

proliferation of AR- positive cells (Patki et al., 2013). A qPCR analysis of this 

gene in LNCaP and PC3 cell lines (Chapter 5 Figure 5.1) showed that it is up-

regulated in the adenocarcinoma LNCaP cell line but down-regulated in the 

metastatic PC3 cell line. It can also be seen that low expression of this gene 

is a good prognosis for relapse free survival (Appendix A, Figure 7.2 (1)).  

Another gene that is represented in the combined Kaplan Meier plot and is 

a direct target of our microRNA of interest is the LRP8 gene. This gene 

codes for the Lipoprotein Receptor-Related Protein 8. In our qPCR analysis, 

this gene was found to be up-regulated in both the LNCaP and PC3 cell 

lines. High expressions for this gene in prostate cancer is a poor prognosis 

for overall survival (Appendix A, Figure 7.3 (2)). 
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4.5.3 Log-rank overall survival analysis of the prognostic value of the 

target genes in prostate cancer via ProGgene. 

 

The prognostic potential with regards to overall survival for the genes was 

evaluated using the GSE16560 dataset and the PRAD dataset in The Cancer 

Genome Atlas (TCGA) database available from the ProGgene server platform. 

Results for all of the six genes were returned for the event overall survival. The 

dataset examined two cohorts, the high expression of the biomarker in prostate 

cancer (red) and the low expression of the biomarker in prostate cancer (green) 

(Figure 4.6). 

From Figure 4.5, it can be seen that prostate cancer overall survival is long, with 

some candidates from the study surviving to over 15 years after diagnosis in 

both cohorts. The same is seen in Figure 4.6 with data from the TCGA database 

on the same event. At the median survival time (y-axis 0.5) we see that after 

three years, approximately more than 80 % of the patients have not experienced 

the event. After five years, approximately 50 % of the candidates are still alive 

(Figure 4.5). At the end of the study, members of the cohort with a high 

expression of our markers of interest have expired in both datasets examined. 
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Figure 4.5: Combined Kaplan Meier analysis plot of all microRNA target genes for 

prostate cancer overall survival in the ProGgene server in the GSE16560 dataset. 

 

In Figure 4.6, analysis of the same event in a different dataset shows  that at the 

median survival time, after three years, an estimate of more than 95 % of the 

candidates in both cohorts have not experienced the event. The same holds for 

the five-year mark. The relative survival rate for localized or regional prostate 

cancer is 98 % after the first five years (American Society of Clinical Oncology, 

2018). 
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Figure 4.6: Combined Kaplan Meier analysis plot of all microRNA target genes for 

prostate cancer overall survival in the ProGgene server. The X-axis represents time in 

days. The Y-axis represents the percentage probability of overall survival of the patients. 

The Cancer Genome Atlas dataset. 

 

 

4.5.4 Metastatic prognostic ability of the target genes using the Human 

Cancer Metastasis Database (HCMD) 
 

The metastatic prognostic ability of the genes was examined in the HCMD. Two 

datasets were examined for this study, the EXP00437 and the EXP00438 
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datasets each containing 494 and 542 samples respectively. The EXP00437 

dataset was used to examine the primary tumours with metastasis versus 

primary tumours without metastasis, whilst the EXP00438 dataset was used to 

examine normal prostate tissue with primary tumour for all the genes. The data 

is a collection of several microarray experiments normalised in the National 

Cancer Institute database and curated in The Cancer Genome Atlas. The sites of 

metastasis explored were bone, non-regional and distant lymph nodes. The 

results obtained are represented in Figure 4.7.  

 

 

 

Figure 4.7: Comparison of gene expression profiles in prostate normal tissue, prostate 

adenocarcinoma primary tumour and metastatic tumour from The Human Cancer 

Metastasis Database (HCMD). 
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An examination of the primary tumour metastasis column in Figure 4.7 shows 

that the genes CDKN1A and CTNND1 are significantly down-regulated in 

metastasis when compared to normal expression and in the primary tumour. 

From the survival analysis plots on metastasis in SurvExpress (Figure 4.1 and 

4.2), it can be seen that a high expression of these genes in patients with 

prostate cancer is a good prognosis of metastasis for the disease.  

For the genes ELK1 and BIRC2, we see that their expression in primary tumour 

tissue is higher than in normal tissue and even slightly higher in the metastatic 

tissue. However, the difference in expression is not significant to conclude the 

performance of this marker in metastasis of PCa. The same can be said for LRP8, 

as the trend of its expression profile is analogous to the previous two genes 

albeit at very low expression levels.  

The gene FOXC1 is highly expressed in the metastatic tissue when compared to 

the primary tumour and normal tissue; this is a contrast to Figure 4.1. 

Additionally, the survival curve (Figure 4.2) indicates that a high expression of 

FOXC1 is a good prognosis for metastasis. However, FOXC1 is known to be 

involved in progression of prostate cancer (Han et al., 2017), several studies 

have shown it to be highly expressed in prostate cancer tissue and cell lines and 

even more so in androgen independent prostate cancer and metastasis (van Der 

Heul‐Nieuwenhuijsen et al., 2009). Thus, hormone depravation therapy for 

prostate cancer based on androgen may not be a good therapy for individuals 

with high expression of this gene.  
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4.6 Conclusion  

 

The study investigated the potential of hsa-miR-5698 target genes as molecular 

signature markers of prostate cancer prognosis. The prognostic value of the 

target genes was investigated in terms of log-rank survival, recurrence and 

metastasis via the online survival analysis tool SurvExpress. The prognostic value 

of the target genes in terms of log-rank relapse free survival and death analysis 

of the via ProGgene tool. Results indicated that from the set of six markers 

studied, a high expression of FOXC1 and LRP8 indicated a poor prognosis for PCa 

in terms of relapse free survival. A high expression of CDKN1A and ELK1 

indicated a poor prognosis for relapse free survival. There was no significant 

difference between high and low expression for the genes BIRC2 and CTNND1 

for relapse free survival (Figure 7.1-7.3 Appendix A).  

In terms of overall survival, it was found that high expression FOXC1 leads to 

poor prognosis for overall survival of the disease. High expression of CTNND1, 

ELK1 BIRC2 and LRP8 showed a good prognosis for patient outcome in prostate 

cancer for overall survival (Figure 7.4 – 7.6 Appendix A). In terms of metastasis, it 

was found that low expression of CDKN1A, CTNND1, BIRC2 and FOXC1 indicates 

poor prognosis of prostate cancer.  

From the data obtained, it can be observed that these markers behave 

differently for the three outcomes examined. The Human Cancer Metastasis 

database was used to further investigate the expression profiles of the genes in 

bone, lymph node and distant site metastasis in prostate cancer. It was found 

that the expression profiles of CDKN1A and CTNND1 are significantly lower than 

in normal prostate tissue and even primary tumour, indicating that indeed a low 

expression of these genes results in a poor outcome in prostate cancer 

metastasis. However, for the genes ELK1, BIRC2 and LRP8, we see no significant 
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difference in their expression profiles among the three conditions examined. 

Whilst FOXC1 is highly expressed in primary tumour and even more so in the 

metastasized sites. Thus, it may be concluded that in PCa, high expression of 

FOXC1 is a poor marker for metastasis.  

We see from the results obtained that it is difficult to make strong conclusions 

about the prognostic roles of the targets of hsa-miR-5698 because of their 

variance in performance. Thus, a number of considerations may come in handy 

when employing these biomarkers in the management of PCa. One such way 

would be the combined use of clinical factors with a panel of several of the 

molecular markers during the early stages of the disease such as CDKN1A and 

FOXC1. There should be continued observation of these markers after any 

treatments as indications of relapse and subsequently metastasis.  

The variance in performance of these biomarkers across the cohorts used in the 

studies also demonstrates the need for a personalized approach to prostate 

cancer management and care. Especially at the screening and diagnostic level as 

the one-size-fits all PSA screening approach has led to over screening in low risk 

individuals (Liss et al., 2015). 

The differential expression and presence of the protein products of these genes 

in body fluids could provide an easy means of monitoring PCa, therefore we 

proceeded to monitor the expression of these proteins in cancer and non-cancer 

cell lines using a molecular approach in the following chapter. 
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Chapter 5 

Molecular Validation of microRNA-target genes as Putative Biomarkers 

for the Detection and progression of Prostate Cancer. 

5.1 Introduction  

 

A highly conserved microRNA will target the mRNA of hundreds of distinct genes 

to act as a primary regulator of gene expression in many basic cellular processes, 

including cell proliferation, cell differentiation and apoptosis (Section 1.5). In 

animals, this is primarily through TNRC6-mediated repression. Thus, there has 

been increasing evidence that microRNAs can directly regulate specific 

intracellular mRNA concentrations by RNA degradation, as well as regulate 

mRNA levels by targeting the cascade of proteins that modulate their 

downstream transcriptional or post-transcriptional regulation (Park and Shin, 

2014;  Xu et al., 2016).  

In this study, we focus on the putative targets of hsa-miR-5698, which is known 

to be up-regulated in the prostate adenocarcinoma cell line (LNCaP) and a 

prostate metastasis cell line (PC3). A  functional role has been described for hsa-

miR-5698 in transcriptional mis-regulation in cancer (Lombe, 2015). To further 

investigate the role of hsa-miR-5698, its influence on the mRNA levels of its 

putative genes CDKN1A, BIRC2, FOXC1, ELK1, CTNND1 and LRP8 as well as their 

co-regulatory genes (CCND1, TP53, PCNA, CDK2 and CDK4) generated by STRING 

and IntAct (Sections 3.15 and 31.6)  in the prostate cancer cell lines LNCaP and 

PC3 was analysed using qPCR. This is in a bid to investigate their potential as 

diagnostic and therapeutic targets in prostate cancer as well to build regulatory 

networks that the genes may be involved in.  
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5.1.1 Quantitative real-time PCR (qPCR)  

 

The quantitative real-time polymerase chain reaction (qPCR) analysis of gene 

expression has rapidly become the most widely used measure of gene 

expression in many fields of biological research (Kuang et al., 2018). This 

technique depends on the fluorescence-based detection of amplicon DNA and 

permits the kinetics of PCR amplification to be monitored in real time, making it 

possible to quantify nucleic acids with ease and precision (Higuchi et al., 1993; 

Williams, 2008). 

This method has been used as a common approach to measure the expression 

of target genes in a wide range of samples from many sources, such as tissues 

blood, and cultured cells and can be taken advantage of in the study of various 

pathological states such as cancer. It offers a broad range of advantages over 

other standard RNA quantification methods such as the Northern blot, and in 

situ hybridization due to its specificity, sensitivity, simplicity, low cost and high-

throughput nature (Adamski et al., 2014; Kralik and Ricchi, 2017; Kuang et al., 

2018).  

  

 

5.1.2 Quantification Strategies in qPCR  

 

There are two strategies used to quantify gene expression in qPCR; absolute 

quantification and relative quantification. Absolute quantification relies on a 

standard curve, which is generated by using a serially diluted sample of known 

concentration. The log of these dilution concentrations are plotted against the 
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crossing points (Cp). The crossing point (Cp) is the cycle at which fluorescence 

achieves a defined threshold (Rodriguez-Lazaro and Hernandez, 2014; Tille, 

2017). It corresponds to the cycle at which a statistically significant increase in 

fluorescence is first detected (Tille, 2017). The Cp value decreases linearly with 

an increase in target quantity. Thus, Cp values can be used as a quantitative 

measure of the input target number (Heid et al., 1996).  

 

Relative Quantification compares the levels of two different target sequences in 

a single sample, such as the target gene of interest and another gene; and 

expresses the final result as a ratio of these targets (van Peer et al., 2012). For 

comparison purposes the second gene is a reference gene that is found in 

constant copy numbers under all test conditions (Yuan et al., 2006; Gotfred-

Rasmussen et al., 2016). This reference gene, which is also known as 

endogenous control, provides a basis for normalizing sample-to-sample 

differences (Heid et al., 1996).  Moreover, qPCR can also provide semi-

quantitative results without standards but with controls used as a reference. In 

this case, the observed results can be expressed as higher or lower multiples 

with reference to the control. This application of qPCR has been extensively used 

for gene expressions studies (Bustin et al., 2009). 
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5.1.3 Aims and objectives 

 

This section of the study aimed to determine the expression of hsa-miR-5698 

target genes and their co-expressed genes in the prostate cancer cell lines PC3 

and LNCaP using Real-time Polymerase Chain Reactions (qPCR).  

 

Specific Objectives: 

1. Growth of a prostate cancer cell line LNCaP (adenocarcinoma) and PC3 (bone 

metastasis) and mRNA extraction followed by cDNA synthesis.  

 

2. Molecular expression profiling of the six hsa-miR-5698 target genes and their co-

expressed genes via qPCR in LNCaP and PC3 cell lines. 

 

3. Identify which target genes in the examined set are related to two stages of PCa.  

 

4. Use the information to understand the regulatory networks that hsa-miR-5698 

and its targets are involved in prostate cancer (Chapter 3).   
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5.2 Materials and methods 

 

All the reagents used in the study as well as their suppliers are listed 

alphabetically in Table 5.1. 

 

          Table 5.1: General reagents and suppliers 

Reagent  Supplier 

Kaighn's Modification of Ham's  
F-12 Medium (F-12K)  

Lonza 

Roswell Park Memorial Institute 
Medium (RPMI) 1640 

Lonza 

Dimethyl Sulphoxide (DMSO)  Sigma 

Fetal Bovine Serum (FBS) Lonza 

Phosphate Saline Buffer (PBS)  Lonza 

Trypsin EDTA Lonza 

β-mercaptoethanol Sigma 

KAPA SYBR® FAST qRT-PCR Kit KAPA Biosystems 

RNeasy Mini Kit (RNA extraction)  Qiagen 

Nuclease free dH2O  Merck 

Transcriptor First Strand cDNA 
synthesis kit 

Roche diagnostics 

PenStrep (antibiotic) Lonza 
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5.2.1. Cell culture 

The cell lines used in the study as well as the media used to maintain them are 

depicted in Table 5.2.  The LNCaP (passage 5) cell line  was purchased from 

American Type Culture Collection (ATCC). The PNT1a (passage 7) and PC3 

(passage 4) cell lines  were obtained from Luiz Zerbini of the International Centre 

for Genetic Engineering and Biotechnology (ICGEB) Cape Town. All three cell 

lines are epithelial and adherent.  

 

Table 5.2: Cell lines used to investigate gene expression in prostate cancer. 

Cell line Tissue Description Complete growth 
medium 

LNCaP 
 

Prostate AR-sensitive prostate 
adenocarcinoma 

RMPI, PenStrep,  
FBS 10 % 

PC3 
 

Prostate Bone metastasis  F-12K, PenStrep, 
FBS 10 % 

PNT1a 
(Normalizer) 

Prostate  Normal prostate 
epithelium 

RPMI, PenStrep, 
FBS 10% 

 

 

5.2.2. Start-up of cell culture from frozen cells 

 

The frozen cryovials were held under 25 °C running tap water for about one 

minute until defrosted. The vial was wiped down with 70 % ethanol and placed 

in a lamina flow hood where the vial contents were emptied into a 15 ml tube to 

which 5 ml of pre-warmed complete media was added (Table 5.2). The tube was 
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then centrifuged for 5 minutes at 2039 x g using a Sorvall H4000 TC6 centrifuge 

(American Instrument Exchange, Inc). The supernatant was removed and 

discarded.  

The pellet was re-suspended in fresh culture media and the suspension 

transferred to a 25 cm2 flask (T25). The flask was then incubated in a humidified 

incubator at 37 °C with 5 % CO2 for 24 hours after which the media was checked 

for contamination. After an additional 24 hours of culturing, the flask was 

viewed under a Nikon TMS microscope at 200X magnification to check if the 

cells had adhered to the flask. The media was removed and replaced with fresh 

culture media to remove any traces of DMSO left over from the 

cryopreservation media. 

 

 

5.2.3. Maintaining the cell lines 

 

A schedule of cell culture maintenance was conducted as follows; media was 

visually examined for contamination daily and flasks were examined under a 

microscope for culture confluence. When contamination was not observed and 

the confluence was below 50 %, old media was replaced with fresh complete 

growth media.  At a confluence of 80 %, the cells were sub cultivated.  

 

 

5.2.4. Sub-cultivation and trypsinization for mRNA extraction 
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To sub-cultivate (passage) the cultures, old media was aspirated with a sterile 

Pasteur pipette and discarded. The culture was then washed with 3 ml 1X 

Phosphate Buffered Saline (PBS) (Table 5.1) pre-warmed at 37 °C which was then 

discarded. One millilitre of 1.25 % trypsin EDTA was added to the culture and the 

flask incubated at 37 °C for 2 minutes after which the culture was viewed under 

a microscope to check for detachment of the cells. When the cells were 

detached, 5 ml of fresh complete growth media was added to deactivate the 

trypsin. The suspended cells were collected to a pellet by centrifugation at 2039 

x g to be used for RNA extraction. 

 

 

5.2.5. Extraction of RNA 

 

The procedure for the extraction of RNA was performed on the LNCaP and PC3 

cell lines according to the manufacturer’s instructions (RNeasy Mini Kit Qiagen). 

For the RNA extraction, the confluent cell lines were harvested as per Section 

5.2.4, at a concentration of 4.8 x 106 cells/ml. The cells were transferred to an 

Eppendorf Tube®  and centrifuged at 2000 × g for 5 minutes at 4 °C using an 

Eppendorf 5417R bench top centrifuge. Thereafter, the supernatant was 

removed and the cells in the pellet lysed by adding 350 μL of RLT lysis buffer 

containing 3.5 μL of a β-mercaptoethanol solution. The resulting lysate was 

homogenised by passing through a 20 gauge needle (0.9 mm fitted to an RNase-

free syringe) five times. A volume of 250 µL of 70 % ethanol was added to the 

lysate and 700 µL of the resulting solution added to a RNeasy Mini spin column 

placed in a 2 ml collection tube. This was centrifuged for 15 s at 8000 x g and the 

flow-through discarded. A volume of 500 μL of RPE buffer was added to the 
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RNeasy spin column which was centrifuged for 15 s at 8000 x g to wash the 

membrane, the flow-through was discarded. This step was repeated.  The 

RNeasy spin column was placed in a new 2 ml collection tube  and centrifuged at 

12 000 x g for 1 min to dry the membrane. The RNeasy spin column was placed 

in a new 1.5 ml collection tube and a volume of 40 μL RNase-free water added 

directly to the spin column membrane, the tube centrifuged for 1 min at 8000 x 

g to elute the RNA. The concentration and quality of RNA was assessed using the 

Nanodrop ND-1000 spectrometer (ThermoScientific) and all the RNA samples 

were stored at -80 °C. 

 

 

5.2.6. Primer design 

 

Gene specific primers were designed for qPCR and their sequences are shown in 

Table 5.3. Each primer was designed to be 20 bp long using the NCBI Primer-

BLAST algorithm accessible at https://www.ncbi.nlm.nih.gov/tools/primer-

blast/.  

The oligonucleotide sequences were sent for synthesis to Inqaba biotech 

http://www.inqababiotec.co.za/. The primers were delivered as a lyophilized 

pellet and a 10 μM working stock solution was prepared by re-suspending the 

pellet in 1X TE buffer (10 mM Tris, pH 7.5 to 8.0, 1 mM EDTA), the primers were 

stored at -20 °C. 
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 Table 5.3: Primer sequences for PCR amplification of cDNA 

Primer FWD 5’- 3’ REV 5’ - 3’ 

CDKN1A TGCCCGCCTTTCTTTTTGAG AGTTTGAAGCTGCAGTGAGC  

CCND1 AAAAACCGTCCACAGCAGAG AAGCTCCAAAAAGGCAGCAC 

TP53 AGCTCGCGGTTGTTTCATTC ACTGGCGCTGTGTGTAAATG 

LRP8 CAACATGCAACTACCCATGC GATTTCCCTCACCCCAAAAT 

PCNA AACCGCGTTCGAAATACAGC   TCATTGCCGGCGCATTTTAG  

BIRC2 TTGGGCTTGTTGTGTTGGTG CGCTGTCTTTCTGCAAACAC 

CDK2 TGTTGGCACACTGATTCAGC TAAATGGGCAGCAGGTGTTC 

CDK4 TGCAAGGCATGTGTCATGTG AGGCCCTGCAATAGAAAACG 

CTNND1 GCTGCCAGATCAGTTTGTCA GCCAAGGTGCTGAGAAAGAC 

ELK1 CAGACCCCAGCTACTTCTCG GAGACAGGAGCCACAAGAGG 

FOXC1 CTCCCCTCTCTTGCCTTCTT CGTCAGGTTTTGGGAACACT 

GAPDH ACCCACTCCTCCACCTTTG CTCTTGTGCTCTTGCTGGG 

HPRT-1 TGCTCGAGATGTGATGAAGG  TCCCCTGTTGACTGGTCATT 

 

 

5.2.7. Reverse transcription of mRNA to cDNA 

The cDNA was synthesized using the Transcriptor First Strand cDNA synthesis kit 

from Roche diagnostics, according to the manufacturer’s instructions. All the 

reagents were kept on ice. The template RNA mixture was prepared with the 

reagents as shown in Table 5.4 in sterile, nuclease-free, thin walled PCR tubes to 

a final volume of 13 μL. The tubes were then incubated at 65 °C for 10 minutes, 
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after which the cDNA synthesis reagents in Table 5.5 were added to make a final 

volume of 20 µL. 

 

 

    Table 5.4: Reagents and components  for cDNA synthesis 

     

Component/Reagent Volume Final Concentration 

RNA Variable 1 µg 

Oligo dT primer 1 µL 2.5 µM 

PCR grade water Variable  

Transcriptor Reverse 

Transcriptase Reaction 

Buffer 

4 µL 1 X 

(8mM MgCl2) 

Protector RNase 

Inhibitor 

0.5 µL 20 U 

Deoxynucleotide Mix 2 µL 1 mM 

Transcriptor Reverse 

Transcriptase 

0.5 µL 10 U 

Final volume 20 µL  

 

 

 

The reaction was incubated at 55 °C for 30 min followed by an transcriptase  

inactivation step of 5 minutes at 85 °C. The concentration of the synthesised 

cDNA was determined with a NanoDrop Spectrophotometer ND1000. The cDNA 

was diluted to a final working concentration of 250 ng. 
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5.2.8 Analysis of gene expression profiles of the genes in cancer and 

control cell lines using qPCR 

 

Expression profiles of the genes were analysed via qPCR in the LNCaP and PC3 

cell lines as well as the PNT1a cell line, which was used as the normalizer. The 

house keeping genes GAPDH and HPRT-1 were used as calibrators. All reactions 

were performed on the LightCycler® 480 System (Roche diagnostics) instrument. 

The reactions were prepared as outlined in Table 5.5. 

   

 

            Table 5.5: Reagents for a standard qPCR reaction 

Reagents Final Concentration 

SYBR Green Master Mix (10 X) 1 X 

Forward Primer  1 µM 

Reverse Primer 1 µM 

cDNA 25 ng 

PCR Grade dH2O Variable to make 20 µL 

Final Volume 20 µL 

 

 

The qPCR reactions were performed by analysis of each of the genes in each cell 

line. In addition, reactions for the reference housekeeping genes and a no-

template control (water) were also set up for each cell line. A 18 μL aliquot of 
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reaction master-mix was pipetted into each well of a 96 well plate and a 2 μL 

aliquot (250 ng) of cDNA from each cancer cell line was then added as the qPCR 

template to each well respectively. The 96 well plates were sealed with clear 

sealing film and a qPCR run set up on the LightCycler® 480 instrument according 

to the parameters in Table 5.6 and 5.7. The evaluating parameters selected for 

data analysis were fluorescence (d[F1]/dT), melting temperature (Tm) and 

crossing point (Cp). The Second Derivative Maximum algorithm was employed 

for Cp determination where Cp was measured at the maximum increase of 

fluorescence.  

Specificity of real-time PCR primers was determined by amplification plots, 

melting temperature, and melting curve analysis using LightCycler Software, 

Version 1.5 (Roche Diagnostics). Standard curves were generated using a 

dilution series in the concentration range 250 ng to 0.025 ng. The PCR 

efficiencies were calculated using the REST® software and all threshold cycle (Ct) 

values were taken into consideration according to the following equation: E=10[-

1/slope] (Pfaffl 2002). 

 

 

 

             Table 5.6: Cycling Protocol for the qPCR                                                                                          

 

 

 

 

 

 

Programme Cycles Analysis Mode 

Pre-incubation 1 None 

Amplification 45 Quantification 

Melting Curve 1 Melting Curve 

Cooling 1 None 
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           Table 5.7: Specific LightCycler® 480 parameters for the qPCR 

Programme 

Name 

Target Temp ( °C) Acquisition  

Mode 

Hold  

(hh:mm:ss) 

Pre-incubation 95 None 00:03:00 
 

Amplification 95 None 00:00:10 
 

Primer 

Dependent      

50 -  67 

One 00:00:20 
 

Melting curve 95 None 00:00:05 
 

65 None 00:01:00 

97 Continuous 5-10 
acquisitions/
ºC 
 

Cooling 40 None 00:00:10 
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5.3 Results and Discussion 

 

The expression profiles of a set of 11 genes comprising six putative translational 

targets of hsa-miR-5698 and their five co-expressed genes were analysed using 

qPCR, in the PNT1A, LNCaP and PC3 cell lines. The results of the analysis are 

depicted in Figure 5.1. This discussion will focus on and highlight those genes 

whose expression profiles shows significant changes between the cell lines. 

 

 

 

 

Figure 5.1: Relative expression ratio plot of the targets of hsa-miR-5698 targets and 

their co-expressed genes in the prostate cancer cell lines LNCaP and PC3. 
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The qPCR results showed an up-regulation of CDKN1A (p21), ELK1, CTNND1, 

BIRC2 and CDK4 in LNCaP, and their down-regulation in PC3. There was a down-

regulation of FOXC1 in LNCaP and an up-regulation in PC3. From Figure 2.4, it 

was seen that the expression profile of CDKN1A showed a moderate negative 

linear relationship to the expression profile of hsa-miR-5698 in PC3 (-0,60) and a 

highly negative linear relationship in LNCaP (-0,95).  The gene p21 was found to 

be the most robust target of hsa-miR-5698 (Lombe, 2015). This was based on 

various criteria used in microRNA target prediction algorithms, such a highly 

conserved seed region and microRNA-recognition elements (MREs). Thus, the 

gene scored highly as a target in four databases, namely, TargetScanHuman, 

miRDB, miRBase as well as DIANA Tools. 

The protein product of this gene is a potent cyclin-dependent kinase inhibitor, 

which inhibits the activity of cyclin-CDK2, -CDK1, and -CDK4/6 complexes, and 

thus functions as a regulator of cell cycle progression at G1 and S phase (Chuxia 

et al., 1995; Gartel and Radhakrishnan, 2005; Li et al., 2017). Many studies 

examining the role of p21 on CDK2 activity in cell lines have shown it to have a 

bifurcate role following mitosis, such that, cells with high p21 levels enter a 

G0/quiescent state, whilst those with low p21 levels exhibit increased 

proliferation (Spencer et al., 2013; Li et al., 2017). This may perhaps explain the 

result obtained in the qPCR, where the metastasized cell line exhibits lower 

expression profiles of the gene (Figure 5.1). 

Place et al, 2012 as well as Li et al, 2017 demonstrated the effect of microRNA 

action on p21 in prostate cancer both in vitro and in vivo. The latter study 

demonstrated that an overexpression of endogenous hsa-miR-3619-5p induced 

p21 expression and down-regulated cyclin D1-CDK4/6 levels, and consequently 

inhibited prostate cancer cell proliferation.  Both studies cited microRNA 
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activation of gene expression by the targeting of promoter elements as a 

possible mechanism of action in their experiments.   

In the correlation analysis performed in Section 2.3.3, it was seen that the 

expression profile of FOXC1 showed a strong positive linear relationship to hsa-

miR-5698 in PC3 (0,84) (Figure 2.4), this suggests that as the expression profile 

of  hsa-miR-5698 decreases, the expression profile of FOXC1 increases in PC3. In 

contrast, there is a weak negative linear relationship in the LNCaP cell line (-

0,25).  The product of FOXC1 is a transcription factor which has various roles in 

cancer, including the promotion of cell proliferation and contribution to tumour 

angiogenesis (Li et al., 2017; Elian et al., 2017).  

Additionally, several studies have shown a positive correlation between FOXC1 

expression and tumour stage, tumour size, stromal invasion, and lymph node 

metastasis in gastric cancer, melanoma, cervical carcinoma and breast cancer 

(Ray et al., 2010; Ray et al., 2011; Xu et al., 2016; Wang et al., 2016; Huang et al., 

2017). However, overexpression of FOXC1 has been known to inhibit invasive 

progression in prostate cancer and there is no significant evidence between 

FOXC1 expression and clinicopathological features of the disease (van Der Heul‐

Nieuwenhuijsen et al., 2009; Yang et al., 2017).  

The BIRC2 gene encodes the Baculoviral IAP repeat-containing protein 2. It is a 

member of the inhibitor of apoptosis family that inhibit apoptosis by interfering 

with the activation of caspases (Liston et al., 1996; Yang et al., 2016). This gene 

has been found to be deregulated in many cancer cells including prostate cancer 

and thus, may represent a potential target for therapy (Parajuli et al., 2014). 

Because of its role as an apoptosis inhibitor, its down regulation has been linked 

to a possible contribution to prostate cancer aggression (Luk et al., 2014). This is 

a possible explanation of what is  observed in the qPCR result (Figure 5.1), where 
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there is overexpression of BIRC2 in the metastasized cell line PC3 when 

compared to the localized adenocarcinoma LNCaP.  

Animal models have demonstrated that rno-miR-29 is a direct target of BIRC2. 

Its overexpression reduces BIRC2 mRNA and protein levels leading to an increase 

in apoptosis, whilst its down regulation  plays an apoptosis inducing role in 

neuroblastoma (Huang et al., 2015). In this study, there is a weak negative 

correlation between the expression profiles of hsa-miR-5698 and BIRC2 in both 

cell lines Table 2.1. However, this was a predicted relationship and would need 

to be validated via a luciferase assay as well as microRNA transfection mimic and 

inhibition studies.  

The gene ELK1 codes for a transcription factor that is known to be involved in a 

number of functions including regulation of cell proliferation, cell cycle and 

apoptosis (Shao et al., 1998; Zhang et al., 2013).  The androgen receptor, a key 

driver of tumour progression, is a co-activator of ELK1 in PCa and silencing it 

retards the proliferation of AR- positive cells (Patki et al., 2013). This could be an 

explanation for what can be seen in Figure 5.1 where the LNCaP cell line, which 

is androgen sensitive, expresses it more when compared to the PC3 cell line 

which is AR-independent. There has been very little evidence to describe the 

role of this gene in prostate cancer apart from the referenced publication. This 

study used qPCR to support the previous publication. However, a larger panel of 

cell lines as well as investigations in tissue biopsies should be used to further 

validate these findings. 

The gene CTNND1 (p120) encodes a member of the Armadillo (Arm) family of 

proteins, which function in cell-cell adhesion and signal transduction. It functions 

to stabilize the E-cadherin-based complex that controls tissue integrity at cell–

cell junctions (Dohn and Reynolds, 2011; Schackmann et al., 2013). Loss or 
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functional inactivation of this gene is a cardinal event in the acquisition of 

migration and invasion properties to a cell, which is strongly linked to the 

progression towards metastasis (Vleminckx et al., 1991; Jeanes et al., 2008; 

Kalluri and Weinberg, 2009). This could explain the result seen in Figure 5.1, 

where the gene is down-regulated in PC3. Recently, a study by Tang and co-

workers examined the role of this gene in hepatocellular carcinoma (HCC) and 

found that it promoted cell proliferation, migration and invasion in vitro and 

promoted HCC cell tumour formation and metastasis in vivo (Tang et al., 2016). 

However, a role for this gene in prostate cancer has not yet been elucidated and 

this study is the first to attribute differential expression of the gene between 

two stages of PCa in vitro (Tang et al., 2016). 

In another study, Wu et al., 2016, predicted that this gene is a target of hsa-miR-

409-3p in osteosarcoma and  examined the effect of the microRNA on the gene 

in the disease. They found that overexpression of miR-409-3p in osteosarcoma 

cells (U2OS) inhibited cell migration and invasion via the repression of the gene 

(Wu et al., 2016). Thus, validation of CTNND1 as a target of hsa-miR-5698 as well  

microRNA transfection investigations are cardinal to the understanding and 

elucidation of the role of the gene in PCa. 

 

 

5.4 Conclusion 

 

The expression levels of hsa-miR-5698 targets and their co-expressed genes 

were determined in the prostate cancer cell lines PC3 and LNCaP using qPCR. It 

was found that there was an up-regulation of CDKN1A (p21), BIRC2 and CDK4 in 
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LNCaP, and their down-regulation in PC3. There was also a down-regulation of 

FOXC1 in LNCaP and an up-regulation in PC3. 

Over the past few years, there have been a number of genes found to be 

involved in prostate cancer progression including two genes examined in this 

study, BIRC2 and CDKN1A (Hughes et al., 2005; Parajuli et al., 2014). However, 

there has been no linkage of the genes to various stages of the disease. 

Additionally, there are very few studies that investigate the dual roles of 

microRNAs and their targets in prostate cancer as well as its progression. This 

study indicated significant differences in the expression profiles of hsa-miR-5698 

target genes between the two prostate cancer cell lines which correspond to 

two different stages of the disease. It was found that CDKN1A (p21), ELK1, 

CTNND1, BIRC2 and FOXC1 are able to distinguish between LNCaP and PC3 cell 

lines, with the FOXC1 gene being the only one in the set that was overexpressed 

in PC3. 

However, more cell lines and patient samples would need to be evaluated to 

establish the specificity of the expression of these genes in the stages of PCa. 

These markers hold great potential in the improvement of screening predictive 

accuracy or prognostics as well as treatment outcomes in PCa.  
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Chapter 6 

General Discussion and Conclusion 

6.1 General discussion 

 

According to the World Health Organization, prostate cancer (PCa) is the 

second most common cause of cancer in men worldwide and a major cause 

of cancer-related morbidity and mortality (Bray et al., 2017; IARC, 2018). 

Additionally, studies have shown that approximately 30 % of PCa patients 

develop clinical recurrence after radical prostatectomy, and the survival 

period of this phase of the disease can be limited and variable (Moschini et 

al., 2016). Thus, the challenge lies in identifying those patients most at risk 

for relapse, as well as metastasis. Currently, factors such as serum PSA 

level, Gleason score, and tumour stage are used for diagnosis, 

prognostication, and treatment decision making (Roberts et al., 2015; Sun 

et al., 2015).  

However, none of these alone or in combination are adequate indicators 

for accurate clinical decision making in PCa treatment and management. 

This study aimed to assess the role of the targets of hsa-miR-5698 (a 

microRNA found to be up-regulated in LNCaP and down-regulated in PC3) 

in the progression of the disease as well as their role if any, in the 

aggressiveness of the disease. This was done to determine the usefulness 

of the genes as a set of dynamic network biomarkers for clinical decision 

making in PCa.  

Using different bioinformatics tools and processes, Lombe (2015) identified 

a novel microRNA (hsa-miR-5698) associated with prostate cancer. This 
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microRNA was found to be up-regulated in LNCaP and down-regulated in 

PC3 in the same study. Bioinformatics algorithms from different databases 

were used to predict a set of genes targeted by this microRNA. In a bid to 

assign function to it, the gene ontologies of these genes was performed 

and it was found that many of them were involved in cell proliferation, 

apoptosis and migration and invasion properties in prostate cancer. The 

function of these genes led to the proposal of their usage as putative 

markers for diagnosis, prognosis and therapeutics in PCa. 

An understanding of the relationship in terms of expression profiles 

between the microRNA and the targets was done using a correlation 

analysis. This was to determine how the expression of the target genes is 

related to microRNA up-regulation or down-regulation. An in silico analysis 

was done to identify any possible transcriptional effects of the microRNA 

on the targets as their prediction was translational. This was in a bid to 

determine the effects if any, of different types microRNA-gene targeting on 

PCa progression. A possible prognostic implication of these targets in PCa 

patient survival, recurrence and metastasis was done using Kaplan-Meier 

analysis. Finally, the expression profiles of the target genes was examined 

in LNCaP and PC3 cell lines by qPCR. 

This study made use of the advent of high throughput analysis technologies 

which provide a fast means of genomic analysis for differential gene 

expression in disease conditions. This allows the prediction and publishing 

of the protein products of these genes as candidate cancer biomarkers 

(Dragani et al., 2016; Yuan et al., 2016).  

A correlation analysis of the expression profiles of hsa-miR-5698 and its 

translational targets showed that expression of CDKN1A (p21), CTNND1, 

BIRC2, LRP8 and ELK1 are negatively correlated to the expression of the 
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microRNA in PC3 (Figure 2.4). This means that with the down-regulation of 

this microRNA in the PC3 cell line, the genes are up-regulated. The genes 

BIRC2 and LRP8 on the other hand exhibited a weak correlation co-efficient 

of - 0.24 and - 0.12 respectively, whilst FOXC1 exhibited a positive 

correlation (Table 2.1). In the LNCaP cell line, the microRNA was found to 

be up-regulated and all its targets are negatively correlated with CDKN1A 

having a strong correlation at -0.95 (Figure 2.4). All the other genes had a 

moderately strong negative correlation except BIRC2 and ELK1 which had a 

weak correlation.  

The correlation analysis was used as an aid to understand the action of 

microRNAs on their translational targets and it has been used widely in 

many publications to understand the relationship between differentially 

expressed genes and the microRNA acting on them (Wang et al., 2009; 

Laxman et al., 2015; Wang et al., 2018).  However, there are some 

weaknesses associated to this analysis and they have been extensively 

documented (Ratner, 2009). One of the shortcomings is that the 

correlation coefficient interval (−1, +1) is restricted by the individual 

distributions of the two variables being correlated. Another one is an 

assumption of linearity is made when performing the correlation. It was 

thus assumed that the relationship between the microRNA and its target 

genes is linear. However, this cannot be the case for a number of reasons 

which will be outlined shortly.  

MicroRNAs act to regulate gene expression by binding to the 3’ UTR of a 

mRNA and do either of three things, translational repression, degradation 

and destabilization of mRNA (Section 1.5) all of these mechanisms result in 

a down-regulation of gene expression of the particular marker under 

examination. In this case, a microRNA gene relationship may be said to be 
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linear. However, this is not the only documented action of microRNAs. 

They have also been known to up-regulate gene expression in response to 

the state of the cell and/or in the presence of specific factors (Remsburg et 

al., 2018).  

Thus, the assumption of linearity cannot be a reliable measure. This can be 

supported by the result in Figure 5.1, where it can be seen that in LNCaP, 

all but two of the genes are up-regulated when the microRNA is also up-

regulated. Thus, a luciferase assay would need to be performed to first 

determine which of the putative genes are actually targets of hsa-miR-

5698, then microRNA mimic and inhibition studies would be done to 

monitor how over-expression of the microRNA affects the target 

expression in real time, in both cell lines.  

The transcriptional action of microRNAs on gene expression was also taken 

into consideration to better understand microRNA regulatory networks. 

Only two genes (CDKN1A and FOXC1) were found to have sequences 

complementary to hsa-miR-5698 in their promoter regions. The algorithm 

Trident was used to identify the microRNA binding sites in genomic DNA. 

The microRNA sequence was obtained from the MiRbase database 

http://www.mirbase.org/ version 22, the promoters of the target genes 

were extracted from Ensembl genome browser version 94 

https://www.ensembl.org/.  

There have been some recent studies that have examined the formation of 

triplexes between non-coding microRNAs and DNA. One study by 

Jenjaroenpun et al., used computational methods to predict triplex target 

DNA sites for several microRNAs, these sites were then presented in a 

database called the Triplex Target DNA Site Mapping and Integration 

(TTSMI; http://ttsmi.bii.a-star.edu.sg) (Jenjaroenpun et al., 2015). A more 
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recent study by Paugh and co-workers used the Trident algorithm to 

identify several specific binding sites in five genomes including Homo 

sapiens (Paugh et al., 2016).   

Thus, the regulatory action of microRNAs on gene promoter regions can be 

extensively studied via computational methods and several conclusions 

may be made.  However, there is a caveat to the current computational 

methods available, algorithms such as Trident favour microRNAs with a 

purine-pyrimidine imbalance. MicroRNAs with a purine or pyrimidine 

content of 75 % or higher account for over 90 % of the binding sites. In 

addition to purine-pyrimidine content imbalance being an important 

determinant of triplex formation, lower than average U content, higher 

than average G or C content also predicts affinity for double stranded DNA 

binding (Jenjaroenpun et al., 2015; Paugh et al., 2016). Thus, hsa-miR-5698 

conformed to both these conditions (Table 2.1).  

To further understand the effect of hsa-miR-5698 and its targets in PCa 

regulatory networks, novel DNA binding motifs that bind to the promoters 

of the target genes were investigated via the MEME SUITE database 

http://meme-suite.org/tools/meme version 5. Three novel motifs (Figure 

3.5) were discovered on a set of promoters of 11 genes, comprising the six 

targets of hsa-miR-5698 and five genes which are putatively co-regulated 

with the target genes. The discovered motifs were putatively matched to a 

number of known transcription factors involved in various gene ontologies 

including transcriptional control and DNA damage checkpoints (Table 3.3).  

The transcription factors together with hsa-miR-5698 and its targets were 

used to build regulatory networks involved in the progression of PCa. 

However, only two transcription factors corresponding to motif-1 and 

motif-2 were used in the construction of the putative regulatory networks. 
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Motif 3 and its transcription factor were eliminated in the putative network 

construction for PCa progression; this is because it was the shortest motif 

(Figure 3.7) in terms of height, indicating a weakness in its proportion to 

the negative logarithm of the p-value of the site. The putative regulatory 

networks constructed identified two FFLs involved in the regulation of PCa 

progression. The first was the microRNA-FFL, in which hsa-miR-5698 acted 

as both a repressor and/or activator of both the gene and the TF.  The 

second was the TF-FFL, in which the TF acted as a regulator of the genes as 

well as hsa-miR-5698. 

The positive and negative modulating effects of microRNAs in gene 

regulatory networks may both contribute to gene expression, and the 

findings in this study demonstrate that. Additionally, there are a number of 

studies published that have attempted to build microRNA-gene-TF 

regulatory networks in cancer for various purposes, such as monitoring 

cancer progression. In one study conducted in colorectal cancer (CRC), 

Wang and co-workers used in silico prediction data to construct regulatory 

networks for CRC prognosis identifying two cardinal microRNAs, two genes 

and one transcription factor having good prediction for survival of the 

disease (Wang et al., 2017).  Sadeghi et al., 2016, performed a similar study 

in prostate cancer and were able to identify that miR-671-5p, miR-665, 

miR-663, miR-512-3p and miR-371-5p deregulate STAT3 in the progression 

of metastasis in PCa (Sadeghi et al.,2016).  However, the current study is 

the only known study to date that has attempted to use in silico prediction 

data to construct regulatory networks for PCa progression. To validate and 

strengthen the interactions in the network, the targets of the microRNA 

would have to be experimentally validated via the luciferase assays, 

microRNA overexpression studies and ChIP-seq assays for TF verification.  
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The effective prognostic ability of the targets of hsa-miR-5698 was 

determined for patient metastasis, recurrence and overall survival, using 

the Kaplan-Meier plots in the various datasets curated in the SurvExpress 

and ProGgene databases. Results from two datasets indicated that 

CDKN1A, BIRC2 and FOXC1 could serve as good prognosis markers for 

metastasis in PCa.  Two of these genes, BIRC2 and CDKN1A were under-

expressed in PC3 (Figure 5.1), but not LNCaP whilst FOXC1 was over-

expressed. This was also reflected in the data from the Lapointe dataset 

(Figure 4.1) and shows that these genes are capable of distinguishing 

between high, low and risk patient groups. This coupled with an 

understanding of the roles of these genes in PCa may provide support for 

their use as a combined set in the monitoring of metastasis progression in 

PCa.  

The prognostic potential for the set of genes for recurrence in PCa was 

undertaken in the GSE70769 dataset in the ProGgene database. From the 

survival curves, p21, FOXC1 and CTNND1 showed significant p-value as 

predictors for recurrence of PCa, whilst BIRC2, LRP8 and ELK1 were poor 

predictors of the relapse in the disease in the dataset (Figures 7.1-3, 

Appendix A). This means that patients with a higher expression of the 

biomarkers are most likely not to have a recurrence of the disease.  

These results were corroborated in the qPCR result where the poor 

predictor genes are under-expressed in the metastasised cell line PC3. The 

ability of SurvExpress and ProGgene tools to support results from the qPCR 

is an indication that the tools are effective for in silico analysis of 

prospective biomarkers. This could perhaps give credence to the further 

analysis of these genes in PCa management. Further, studies would have to 
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be conducted in tissue samples as well as in larger population samples than 

that of the given dataset to monitor the behaviour of the markers. 

The prognostic potential for the set of genes for overall survival in PCa was 

undertaken in the GSE16560 dataset in the PRAD dataset in the TCGA 

database. From the Kaplan Meier plots, it was seen that only CDKN1A and 

FOXC1 were good markers for overall survival in PCa, the other genes were 

poor markers (Figures 7.4-6 Appendix A). However, taking into 

consideration the length of the course of PCa and the relative survival rate 

for the localized disease is 98 % in the first five years, the biomarkers would 

need to undergo further rigorous examinations in larger cohorts. Overall, 

the prognostic analysis of the genes in PCa showed that an intersection set 

could be observed for the markers with good prognosis for metastasis, 

recurrence and overall survival in PCa. This set comprised two genes, p21 

and FOXC1.  

The differential expression signature of the targets of hsa-miR-5698 and 

their co-expressed genes was undertaken in two prostate cancer cell lines 

using qPCR. It was found that six genes out of the set of 11 genes could 

distinguish Between the two stages of the cancer. The genes CDKN1A, 

BIRC2, CTNND1, ELK1 and CDK4 were significantly down-regulated in PC3 

when compared to LNCaP, whilst the gene FOXC1 was down-regulated in 

LNCaP, but significantly up-regulated in PC3.  Thus, these genes may also 

serve as putative biomarkers for the monitoring of the progression of the 

disease. However, cell lines merely give a glimpse of a single event unlike 

tumours which are heterogeneous for the disease and thus, qPCR and 

western blot analysis on the latter samples would be beneficial in this 

study.  
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A comparison of the qPCR result with microarray studies on tumours in 

various stages of PCa in the Human cancer metastasis database showed a 

corroboration for some of the genes namely, CDKN1A, CTNND1 and FOXC1 

(Figure 4.8). The expression of the other genes showed no significant 

difference between the primary tumour and metastasis. 

 

 

6.2 Conclusion  

 

The outcome of the analysis, expression profiling and characterization of 

hsa-miR-5698 target genes as putative dynamic network biomarkers for 

prostate cancer: a combined in silico and molecular approach, was as 

follows; 

 Based on the Pearson correlation analysis, the expression profiles of 

CDKN1A, CTNND1, BIRC2, LRP8 and ELK1 were negatively correlated to the 

expression of hsa-miR-5698 in the PC3 and LNCaP cell lines. The expression 

of FOXC1 on the other hand was positively correlated to the expression of 

hsa-miR-5698 in the PC3 cell line, but negatively correlated in the LNCaP 

cell line. 

 In addition to being an instigator of translational control of gene expression 

for the set of genes under investigation, hsa-miR-5698 was also found to 

bind to the promoters of CDKN1A and FOXC1 using in silico analysis in 

Chapter 2 indicating possible transcriptional control.  

 KEGG pathway analysis in Chapter 3 placed one of the genes of interest 

(CDKN1A) in a cardinal position for cell cycle progression in the prostate 

cancer pathway. 
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 Two statistically significant novel sequence motifs were discovered on the 

promoters of the set of genes comprising hsa-miR-5698 targets and 

putative genes in their co-expression networks.  

 Two putative TFs corresponding to the discovered motifs were identified  

and used in the building of putative regulatory networks in PCa progression 

(Chapter 3).  

 The regulatory networks identified two feed forward loops involved in the 

progression of PCa from adenocarcinoma to the metastatic phase, namely 

the hsa-miR-5698-FFL and the FOXD1/ TBX2-FFL. 

 The prognostic analysis of the set of genes targeted by hsa-miR-5698 

showed that the two genes CDKN1A and FOXC1 were good putative 

indicators for metastasis, recurrence and overall survival in PCa. With the 

high expression of the CDKN1A offering good prognosis for all three 

conditions examined and the high expression of FOXC1 indicating a poor 

prognosis for the same (Chapter 4). 

 The qPCR analysis in Chapter 5 resulted in six genes being able to 

distinguish between the PCa stages in two cell lines PC3 and LNCaP. The 

genes CDKN1A, BIRC2, CTNND1, ELK1 and CDK4 were significantly down-

regulated in PC3 when compared to LNCaP, whilst the gene FOXC1 was 

down-regulated in LNCaP, but significantly up-regulated in PC3.   
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6.3 Future Work 

 

Further understanding of the expression patterns of the microRNA 

deregulation and how that affects gene expression may allow development 

of novel diagnostic, prognostic and therapeutic strategies involving 

microRNA augmentation or inhibition in the future. The present study 

revealed that targets of hsa-miR-5698 as well as genes putatively co-

expressed with them in PCa regulatory networks play important roles in 

the progression of prostate cancer. This was because they demonstrated 

over or under-expression when comparing two prostate cancer cell lines. 

Some of the genes also demonstrated their ability as prognosis markers for 

survival of PCa at different stages. 

However, validation that indeed the set of six genes are targeted by hsa-

miR-5698 would have to be undertaken via luciferase assays. The effect of 

microRNA over-expression and under-expression studies should also be 

done via mimics and inhibitors of hsa-miR-5698. Confirmation of the 

formation of triplexes between hsa-miR-5698 the promoters of genes 

CDKN1A and FOXC1 must be done via Electrophoretic Mobility Shift Assay 

(EMSA) and NMR spectroscopy. Further investigation of these genes in 

actual tumour samples as well as larger patient cohorts will help to define 

their potential role as possible diagnostic, prognostic and therapeutic 

biomarkers in the future.  
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Appendix A 
Chapter 3 

Table 7.1: Cis-Regulatory Module (CRM) detections in prostate cancer. The Transcription factor FOXD3 is highlighted in yellow. 

ChromID CRM 
start pos 

CRM end 
pos 

Gene name TSS pos Orientation Min 
energy 

TFs 

X 11041910 11041937 NM_013423 11043752 -1 -
1.04075 

LHX3::POU3F2::CDC5::MRF-2::C/EBPbeta 

X 11041779 11041889 NM_013423 11043752 -1 -
1.15725 

LHX3::POU3F2::CDC5::TBP::MRF-2 

X 11441359 11441444 NM_013427:NM_006125 11443478 -1 -
1.34933 

LHX3::AFP1::FOXJ2::TFIIA::TBP 

X 11441263 11441345 NM_013427:NM_006125 11443478 -1 -
1.16739 

LHX3::CDC5::AFP1::FOXJ2::TFIIA 

X 11440729 11440902 NM_013427:NM_006125 11443478 -1 -
1.52763 

LHX3::TBP::CDC5::POU3F2::HNF-1 

X 11438478 11438511 NM_013427:NM_006125 11443478 -1 -
1.10624 

LHX3::CART-1::C/EBPgamma::POU1F1::CDC5 

X 11064848 11065210 NM_013422 11068255 -1 -
3.66859 

LHX3::C/EBPgamma::FOXJ2::C/EBP::STAT5A 

X 11064192 11064271 NM_013422 11068255 -1 -
1.02577 

LHX3::OCT-1 

X 49291939 49292016 NM_007003 49296939 1 - TBP::POU3F2::HNF-1::STAT5A::OCT-1 
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1.55932 

X 49292274 49292536 NM_007003 49296939 1 -
1.86017 

POU3F2::MRF-2::CRX::LHX3::FOXD3 

X 66543001 66543086 NM_000044 66546894 1 -
1.21695 

LHX3::FOXJ2::POU3F2::STAT5A 

X 66543308 66543638 NM_000044 66546894 1 -
2.36525 

LHX3::C/EBPgamma::AFP1::POU3F2::POU1F1 

X 66543654 66543664 NM_000044 66546894 1 -
1.03644 

HNF-1::TEF::AFP1::STAT5A::POU3F2 

X 66543667 66543678 NM_000044 66546894 1 -
1.11525 

TBP::HNF-1::TEF::AFP1::STAT5A 

X 66543728 66543732 NM_000044 66546894 1 -
1.00763 

HNF-1::TBP::TEF::NKX2-2::HSF2 

X 66543803 66543807 NM_000044 66546894 1 -
1.02288 

HNF-1::TBP::TEF::POU3F2 

X 1,19E+08 118706185 NM_001000 1,19E+08 -1 -
1.07987 

LHX3::POU3F2::C/EBPalpha::CART-1::CRX 
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Chapter 4 

Relapse free survival curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Kaplan Meier analysis plots for CDKN1A (1) and CTNND1 (2) for prostate cancer relapse 

free survival in the ProGgene server in the GSE70769 dataset. 

1 

2 

Time (days) 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

Time (days) 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

http://etd.uwc.ac.za/



229 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (days) 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

Time (days) 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

1 

2 

http://etd.uwc.ac.za/



230 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Kaplan Meier analysis plots for ELK1 (1) and BIRC2 (2) for prostate cancer relapse free 

survival in the ProGgene server in the GSE70769 dataset. 

1 

2 

Time (days) 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

R
el

ap
se

 f
re

e 
su

rv
iv

al
 (

%
) 

http://etd.uwc.ac.za/



231 
 

 

 

 

Overall Survival  

  

Figure 7.3: Kaplan Meier analysis plots for FOXC1 (1) and LRP8 (2) for prostate cancer relapse free 

survival in the ProGgene server in the GSE70769 dataset.  
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Figure 7.4: Kaplan Meier analysis plots for CDKN1A (1) and CTNND1 (2) for prostate cancer relapse 

free survival in the ProGgene server in the TCGA-PRAD dataset. 
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Figure 7.5: Kaplan Meier analysis plots for ELK1 (1) and BIRC2 (2) for prostate cancer relapse free 

survival in the ProGgene server in the TCGA-PRAD dataset. 
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Figure 7.6: Kaplan Meier analysis plots for FOXC1 (1) and LRP8 (2) for prostate cancer relapse 

free survival in the ProGgene server in the TCGA-PRAD dataset. 
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