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Abstract

Mathematical modeling of the transmission dynamics of malaria

in South Sudan

Abdulaziz Y.A. Mukhtar

PhD thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

Malaria is a common infection in tropical areas, transmitted between humans

through female anopheles mosquito bites as it seeks blood meal to carry out

egg production. The infection forms a direct threat to the lives of many peo-

ple in South Sudan. Reports show that malaria caused a large proportion of

morbidity and mortality in the fledgling nation, accounting for 20% to 40%

morbidity and 20% to 25% mortality, with the majority of the affected people

being children and pregnant mothers. In this thesis, we construct and ana-

lyze mathematical models for malaria transmission in South Sudan context

incorporating national malaria control strategic plan. In addition, we inves-

tigate important factors such as climatic conditions and population mobility

that may drive malaria in South Sudan. Furthermore, we study a stochastic

version of the deterministic model by introducing a white noise. The models

have also been parameterized in a Bayesian framework using Bayesian Markov

Chain Monte Carlo (MCMC). The mathematical analysis for this study has

included equilibria, stability and a sensitivity index on the basic reproduc-
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tion number R0. The threshold R0 is also used to provide a numerical basis

for further refinement and prediction of the impact of climate variability on

malaria transmission intensity over the study region. One of the stimulating

contributions to this study was to validate our model with field data using

Bayesian inferences and implement parameter estimation to increase realism

of the model predications to the disease course. The results of the study

pointed to the importance of incorporating detailed mosquito bionomics with

climate-dependence into models for predicting the risk for malaria. The model

predictions confirm that migration of a large number of people (for example in

the case of an armed conflict) and their circulation can favor malaria transmis-

sion significantly compared to a lower migration scenario. It was also found

that the disease persists in the low transmission areas when there is human in-

flow although the intervention coverage reaches 77%. The basic reproduction

number R0 obtained from the numerical simulation confirms a substantial

increase of incidence cases if no form of intervention occurs in the commu-

nity. The study suggests that an effective use of LLINs can reduce malaria

transmission in South Sudan. The thesis concluded that malaria sensitivity

to human mobility is high and has implications on malaria control in South

Sudan. Therefore, efforts to ameliorate health, monitor migrants and collect

disaggregated data on malaria must be strengthened. We hope that the results

of this study may be used to inform decision-making toward efficients malaria

control in South Sudan.
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Chapter 1

General Introduction

Malaria (derived from Italian word "Mal aria" for bad air) is undoubtedly one of the

ancient diseases that still torment humans. Many discoveries have led to continuous sci-

entific studies which have resulted in the current understanding of the disease. In 1880,

the French physician Charles Alphonse Laveran was the first to discover the malaria

parasites followed with William MacCallum discovery on the sexual reproduction of a

malaria-like parasite with a related haematozoan and Haemoproteus columbae, in birds

in 1897 [32]. In the same year of MacCallum discovery, Ronald Ross, a British officer, was

the first to prove that malaria parasites could be transmitted from infected patients to

mosquitoes. Then year later a team of Italian scientists (Giovanni Grassi, Amico Bignami

and Giuseppe Bastienelli) demonstrated conclusively that human malaria parasites were

transmitted by Anopheles Claviger mosquitoes. Thus by 1890 it was known that malaria

was caused by a protozoan parasite, and there were three species with specific period-

icities namely, Plasmodium Vivax, Plasmodium Falciparum and Plasmodium Malariae.

Moreover, in 1922 John Stephens who worked in West Africa recognized a fourth species

described as Plasmodium Ovale, then later clinicians in South-East Asia have considered

Plasmodium knowlesi malaria as the fifth human malaria parasite [5, 10]. These back-

grounds of discoveries were an important step towards the development of new approaches

for assessing and preventing transmission in nature.

2
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Chapter 1: General Introduction

Figure 1.1: Source: [19], malaria life cycle

1.1 Life cycle of human malaria parasite

Malaria parasites, in order to survive successfully need to complete their life cycle in two

alternative hosts of evolutionarily distant species (i.e. human and mosquito) illustrated

in Figure 1.1 . Malaria transmission intensity varies geographically according to vector

species of Anopheles mosquitoes. In tropical countries, the Plasmodium Falciparum is

the most virulent parasite species that causes a large burden of disease. There are many

species of Anopheles mosquito, each with its favorite aquatic habitats [32].

The life cycle starts when the infected female Anopheles mosquito bites a person and

inoculates sporozoites which are injected with the saliva into the bloodstream. Within

few minutes they invade the liver cells and multiply for 7-10 days forming thousands of

merozoites [19]. Thereafter, the merozoites burst out of the liver and invade the Red

Blood Cells (RBCs). Again they develop through ring forms to trophozoites and finally

to multi-segmented schizonts. The infected RBCs (erythrocytes) rupture after about 12-

16 days for falciparum (The exo-erythrocytic cycle). This reproduction can lead to the

3
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Chapter 1: General Introduction

thousands of cells infected with parasites in the host bloodstream causing clinical signs

and perhaps a complications of malaria [31].

Therefore, the parasites multiplication in the mosquito is known as the sporogonic

cycle, the gametocytes are ingested by an anopheles mosquito from humans. The male

and female gametes generate zygotes and developed to oocysts. The oocysts grow, rup-

ture, and release sporozoites, which make their way to the mosquito’s salivary glands.

Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle

[5]. Hence, the parasite is identified by slow evoluation either in the Anopheles mosquito

(15 days) and in human (15 days in the liver, 72 hours in the blood). Human infection

cycle begins again when the mosquito takes a blood meal, injecting the sporozoites from

salivary glands into the human bloodstream [31].

1.2 Malaria control/elimination

In about a century ago the discovery of the parasite life cycle was the first exertion of ratio-

nale malaria control. Subsequently, a Global Malaria Eradication Program (GMEP) cam-

paign was a major success in the 1950s and 1960s, particularly in North America, Europe,

and Australia. Nevertheless, the campaign was discontinued fourteen years later when

it was recognized that eradication could not be achieved [92], and there were many bur-

den countries in Africa lacking the technical assistance, funding, and infrastructure [127].

The first African malaria conference held in Kampala, Uganda (Garki proj) endorsed

that malaria should be controlled by the modern methods such as Dichloro-Diphenyl-

Trichloroethane (DDT) whatever the degree of endemicity [37]. Another approach was

introduced during the 1950s by Ross-Macdonald’s mathematical model to support a global

eradication, which highlighted the significant superiority in increasing vector mortality

[74, 110, 114].

Over the decades later, the Millennium Development Goals have renewed attention and

resources to the global fight against malaria. The 60 years following Ross’s identification

of the vectors of malaria, important new tools such as Artemisinin drugs, insecticide-

4
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Chapter 1: General Introduction

treated bednets and indoor residual spraying with insecticides have been added to the

malaria control arsenal[6, 81]. Many countries and international organizations continu-

ously support the eradication process of this fatal disease by significantly increased bednet

coverage with great impact.

The year 2015 was the final year for targets set by the World Health Assembly and Roll

Back Malaria to reduce all suspected malaria cases and to mitigate almost to zero percent

malaria deaths [140]. Hence, significant progress has been made globally as a result of

increased coverage based on both Artemisinin-based Combination Therapy (ACT) and

vector control through Long-Lasting Insecticidal Nets (LLINs) as well as an Indoor Resid-

ual Spraying (IRS) of insecticides. It is therefore estimated that between 2000 and 2015,

malaria intervention saved over 6.2 million lives. Additionally it was found that about

5.9 million of the saved lives were under the age of five. The disease has been virtually

eliminated in most parts of the world. Regrettably, millions of lives are still threatened by

extreme malaria endemic in Africa, with about 90% of malaria related deaths occurring in

Sub-Saharan Africa [49]. The death percentages could have been reduced in this region if

there were sufficient distribution coverage of vector control interventions. Studies revealed

that approximately 300 million people in sub-Saharan Africa are still lacking access to

protective insecticide-treated nets [139].

1.3 Motivation of the study in South Sudan

Malaria remains a major problem globally as far as public health is concerned, causing

human high morbidity and mortality in Africa especially. A report by WHO [140] es-

timated the number of cases of malaria worldwide in 2013 to 219 million people (range

124-283 million) with 584 000 (range 367 000-755 000) of malaria-related deaths. Over

80% of all malaria episodes and 90% of all malaria deaths occur in Sub-Saharan Africa

[140]. In South Sudan alone, the number of malaria incidences has gradually increased

from 71 948 in 2008 to 1 198 357 in 2012 and with the deaths of an estimated 44,000

people per year, while the mortality rate of children under the age of five is estimated

5
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Chapter 1: General Introduction

to 250 per 1,000 live births [21]. The country has the highest rate of malaria burden in

sub-Saharan Africa and its entire population is considered to be at risk of contracting the

disease. Moreover, parasite prevalence rate in children under 5 years is in the range of

30%-40% and deaths are especially common amongst children under the age of five years

and pregnant women. The levels of transmission are perennial with seasonal variations in

rural areas and the peak malaria incidence occurs towards the end of the rainy season.

South Sudan is a landlocked country in east-central Africa which shares borders with

six countries and comprises ten States (before the recent division) in three regions il-

lustrated in Figure 1.2: Greater Equatoria region includes Eastern Equatoria, Western

Equatoria and Central Equatoria; Greater Bahr el Ghazal region includes Western Bahr

el Ghazal, Northern Bahr el Ghazal, Warrap and Lakes and Greater Upper Nile region

includes Unity, Upper Nile and Jonglei. In South Sudan, malaria transmission rates can

Figure 1.2: Source: [124], South Sudan map by State

differ depending on local factors such as environmental and climatic (e.g massive flood-

ing), movement of populations with little immunity into areas of high transmission and
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types of mosquito species (Anopheles Gambiae, A. Arabiensis and Anopheles Funestus)

in the area. The causative period of parasite occurs for 5 to 6 months of the year in the

northern part of the country and for 7 to 8 months of the year in the southern part.

The infrastructures of the country are very poor and the public health system is not

well constructed and remains totally devastated due to a number of reasons such as the

legacy of long period of violence and instability. In addition 80% of healthcare system

which is available is still provided and ran by international NGOs [106].

As a consequence of the situation explained above, the malaria infection constitutes

20% − 40% of all out-patient visits and 30% of all hospital admissions and it is a major

cause of deaths in South Sudan [88]. During gestation period, malaria might lead to

serious maternal health problems such as, abortions, stillbirths, miscarriages, anemia,

and a low birth weight born babies.

1.4 Rationale and Statement of the Research Prob-

lem

Over years South Sudan has been exposed to the brunt of chronic warfare and probably

has one of the highest malaria burden in the world where the entire population is at risk.

The situation of the country is aggravated by an increase in the number of population

due to refugees, returnees, and also about 131,990 internal conflict-related displacements

in 2013 [22]. This situation has created a major stumbling block to malaria control.

Also, there was no clear evidence of malaria reduction in all reports. Moreover access to

diagnosis and treatment remains an obstacle due to long distances to health facilities, lack

of functional microscopes, stock-outs of Rapid Diagnosis Test (RDTs) and anti-malaria

treatment. The only key operational vector available is the distribution of LLINs that

control intervention with limited use of IRS. Countrywide LLINs mass campaigns has

been piloted with the target coverage of 80% and only about 4.7 million LLINs have been

delivered to the population who are in need [106]. Despite this, the number of infected

cases and deaths increased in all age groups. Malaria Indicator Survey-South Sudan (MIS-
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SS) in 2009 indicates that the proportion of structures protected through IRS is about

2.1% of the population at risk.

The South Sudan House Hold Survey (SHHS) provides comprehensive surveys based

on representative household sample estimates of a range of health and demographic indi-

cators. These surveys conducted in the period from 2006 to 2010 indicate the proportion

of 11.6%−34.2% of households ITN ownership. However, only 27.4% of children less than

5 years of age slept under an LLINs [22].

Government of South Sudan has limited funding and inadequate support for malaria

control with high degree of donor dependency, mainly provided by the Global Fund,

UNICEF, WHO, USAID with contributions from the World Bank, Department for In-

ternational Development(DFID) and Malaria Consortium. Generally, malaria parasite

propagation still very high and that requires consistent and expansively scaled-up cover-

age of effective tools of control [35]. Control with existing tools is quite challenging due to

ecological diversity of malaria transmission in Africa with wide range of epidemiological

settings [119]. Dynamic mathematical models of this disease with a particular emphasis

on South Sudan are uncommon. Also, no mathematical study has been conducted previ-

ously in South Sudan to establish the effects of multi intervention on the malaria epidemic.

The research aims to explore the prediction of malaria prevalence, using model scenario

based on intervention and local factors incorporating real data of MIS-SS between 2010

to 2015.

1.5 Literature review

Mathematical modeling has become an important tool in understanding the mechanisms

of disease transmission and in decision making processes regarding intervention programs

for controlling diseases. Over the years several mathematical models have been developed

to gain insight into transmission dynamics of malaria, starting from the basic malaria

model of Ross [110] and Macdonald [74]. Subsequently, these models have been extended

by researchers considering different factors related to malaria transmission dynamics and
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control.

Age structure

Forouzannia and Gumel [41] designed a new deterministic model of age-structured and

rigorously analyses the transmission dynamics of malaria in a community. The result

of numerical simulations indicates that the cumulative number of new cases of infection

and mortality due to malaria increase with increasing average lifespan and birth rate of

mosquitoes.

Filipe et al. [40] explored a model of age-structured of malaria transmission that acquired

immunity and acts in three different ways: reducing likelihood that an infected person

develops a symptomatic disease, speeding the clearance of parasites, and increasing toler-

ance to subpatent infections. Their results show that the first two mechanisms together

leads to patterns of malaria by age group that is consistent with those observed in dif-

ferent malaria endemic environments in Africa. Their model also suggests that immunity

to symptomatic disease has shorter memory, develops faster if there are higher levels of

infection in the population, and increases with age. On the other hand, their model sug-

gests that immunity that helps to clear infection lasts longer (20 years or more), develops

later in life, and does not depend on the amount of transmission in the population.

Ngonghala et al. [90] described a dynamic model for malaria spread between human

and mosquito and explore the impact of ITNs on malaria infection and control. The

function used to model personal protection through ITN captures the decrease in effec-

tiveness due to physical decay and human behavior, as well as mosquito biting behavior

as a function of time. In their compartmental model, the human population is divided

into four classes: susceptible, exposed, infectious, and immune humans (partial immunity)

and mosquito population into susceptible, exposed and infectious mosquitoes. Lastly they

perform uncertainty and sensitivity analyses to identify and rank parameters that play a

critical role in malaria transmission and control.

Mwanga et al. [83] proposed a deterministic model for the transmission of the malaria,

including in particular asymptomatic carriers and two age classes in the human pop-

ulation. Their model demonstrates four possible control strategies to be used namely
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long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of

symptomatic and asymptomatic individuals. The results show that by use of optimal con-

trol the disease can be brought to a stable disease free equilibrium when all four controls

are used.

Immunity

Dietz et al. [36] developed a mathematical model of malaria for comparing the expected

parasitological effects of alternative control measures. They considered three aspects of

immunity that are acquired at different rates: loss of infectivity, increase in recovery,

and decrease in detectability. They also described both the temporal changes of the P.

Falciparum infection rate and the immunity level of the population as a function of the

dynamics and characteristics of the vector populations.

Okell et al. [94] developed a mathematical model of malaria transmission in human and

mosquito population by introducing artemisinin-based combination therapy (ACT) and

alternative first-line treatment in six regions of Tanzania with different level of malaria

transmission. In their study, they found that ACT may reduce malaria transmissions

in low transmission area if were widely used as effective as the widespread use of the

insecticide-treated bednet. Their model also shows that in the area with high transmission

the use of long-acting treatment with or without artemisinin component might be a good

method to reduce the transmission. The finding suggests that properties of antimalarial

drugs need to be taken into a consideration together with the level of transmission in the

areas in order to achieve highest impact on malaria transmission.

Yang [143] presented malaria transmission model by taking into account different

levels of acquired immunity among human and most importantly temperature-dependent

parameters related to vector mosquitoes. Model analysis was carried out by means of

basic reproduction number R0 and also derived an expression for an endemic equilibrium

that is biologically relevant only when R0 > 1.

Climate change

Parham and Michael [104] in their effort, investigated a simple model that permitted

valuable and novel insights by considering the simultaneous effects of rainfall and temper-
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ature on mosquito population dynamics, malaria invasion and the impact of seasonality

on transmission. On their result identified a temperature window of around 32 ◦C-33◦C

where endemic transmission is optimized. Another key result on their finding is that by

influencing vector abundance, changes in rainfall patterns in particular strongly govern

malaria endemicity, invasion, and extinction. Martens et al. [79] used a rules-based mod-

elling approach to examine how climate change might affect global malaria transmission.

Their model consists of several linked systems: the climate system, the malaria system

(divided into a human subsystem and a mosquito subsystem), and the impact system.

They used temperature and precipitation as the main climate factors that have a bearing

on the malarial transmission potential of the mosquito population.

Hoshen and Morse [58] formulated dynamic mathematical malaria model comprising

both the weather-dependent within-vector stages and the weather-independent within

host stages. Lindsay and Birley [71] presented a simple mathematical model to inves-

tigate the effects of temperature on the ability of Anopheles Maculipennis to transmit

Plasmodium Vivax malaria.

Chitnis et al. [23] proposed a malaria model by evaluating the sensitivity indices of the

reproductive number, and the endemic equilibrium to model parameters at the baseline

values. In their study point out that, the reproductive number and the equilibrium

proportions of infectious humans are both most sensitive to the mosquito biting rate in

areas of low transmission, while, in areas of high transmission the equilibrium proportion

of infectious humans is also most sensitive to the human recovery rate. According to their

study, controlling the rate of mosquito bites and the human recovery rate is a successful

control strategy.

Case of optimization

Okosun and Makinde [97] investigated the possible impact of optimal treatment and

control of drug resistance on the transmission of malaria disease by introducing a class of

drug resistant individuals into the population. Theoretically, they carried out the stability

properties of the model and determine conditions on the parameters for the existence of

equilibrium solutions.
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Rafikov et al. [108] proposed a mathematical continuous model that considers the

generation overlapping and variable environment factors by using optimal control problem

strategies. Their model considers interactions between wild and transgenic mosquito

populations in a variable environment.

Jia [60] formulated and examined a mathematical model for malaria transmission

that includes incubation periods for both infected human hosts and mosquitoes. Briët

and Benny [16] considered using stochastic individual based models to run the dynamic

simulation of malaria on the OpenMalaria platform. They tried to determine optimal

LLIN distribution rates by examining the malaria transmission and disease dynamics in

scenarios with sustained LLINs and CM interventions. They examined also the effects of

abruptly halting LLIN distribution. Their result concluded that in the long-term, LLIN

repeated distributions might sustainably reduce transmission and disease burden in all

settings. In addition, they note that progress towards malaria control and elimination

requires coverage of effective intervention such as insecticide-treated nets (ITNs), IRS,

Intermittent Preventive Treatment (IPT), diagnostic testing and appropriate treatment.

The scaling up of these interventions coverage is based on evidence on the effectiveness of

programme.

Griffin et al. [51] Constructed individual-based simulation model for Plasmodium

Falciparum transmission in an African context incorporating the effect of the switch to

artemisinin-combination therapy (ACT) and increasing coverage of LLINs. Their findings

explored the possibility of available control measures to reduce parasite prevalence to a

low level as laid out in the control phase of the global elimination framework.

White MT et al. [136] made significant contribution to the literature by conducting a

systematic review of the published works on the costs of all malaria control interventions

using electronic database. Result of the study identified 78% of fifty-five studies of the

costs and forty three studies of the cost-effectiveness of malaria interventions in Sub-

Saharan Africa. Economies of scale were observed in the implementation of ITNs, IRS

and IPT, with lower unit costs reported in their studies with population level benefit, the

median incremental cost effectiveness ratio per disability adjusted life year averted was
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provided to inform rational resource allocation by donors and domestic health budgets.

Smith et al.[115] used mathematical models to establish rationally defined endpoints,

timelines and criteria for monitoring and evaluation of ITN programs. The model predicts

that over the period of 5-10 year endemic control will be stabilized and it is also possible

to transform malaria in the short to medium-term through high levels of ITN ownership.

Stuckey et. al [126] introduced OpenMalaria stochastic simulation modeling to simu-

late the impact of case management and malaria control interventions (singly and/or in

combination of interventions) in western Kenya compared to the corresponding simulated

outputs of a case without interventions. Their results indicate that increased coverage of

vector control intervention has a huge impact compared to adding an IST intervention to

the current implementation strategy.

The epidemiology of malaria has moved beyond the parasite and the risk factors

associated with its transmission to more insights into disease behaviour. These extensive

studies of malaria models integrating various factors confirm that they are significantly

relevant in understanding the occurrence of the disease in the studied regions and assessing

the impact of these factors on the course of the epidemic. Hence, in this study, we

apply mathematical models that incorporate various factors to draw insight into further

understanding of malaria in South Sudan as the first step as its particularly important

for epidemiologist in developing effective intervention strategies.

1.6 Aim and Objectives

The aim of this thesis to understand the course of the malaria epidemics in South Sudan

by paying attention to the different factors that sustain the epidemics through the means

of deterministic and stochastic models.

1.6.1 Objectives

The specific objectives are to:

13

http://etd.uwc.ac.za/



Chapter 1: General Introduction

• To review literature on the malaria in South Sudan and on the factors that promote

its spread

• To validate mathematical models using Bayesian approach and illustrate the malaria

dynamics and projection by means of numerical simulations

• To investigate the impact of possible types of interventions available that may curb

the spread of malaria. The coverages of these combined interventions will be tar-

geted, rather than of "one size fits all" type.

• To establish stability analysis of the models in terms of the basic reproduction

number and other invariants.

1.6.2 Hypotheses

The study intends to examine the hypotheses that emerge from the following factors:

• Climate: Malaria transmission is seasonal across the country, with peaks towards

the end of the rainy season from September to November due to freshwater pools

serving as mosquito breeding sites. Based on the foregoing and established studies,

the heterogeneity of malaria in South Sudan can be explained by the varied agro-

climatic conditions that exist between the regions. Therefore, I intend to explore

the potential links between climate and malaria infection in South Sudan’s three

climatically distinct regions (Chapter 5).

• Intervention coverage: According to ongoing studies, a gradual increase in malaria

burden across the country can be attributed to the constant decline in LLIN cover-

age from 2009. I intend to assess LLINs ownership and use by predicting parasite

prevalence at State level based on the coverage given by Malaria Indicator Sur-

vey between 2009 -2013 using a deterministic model ideally to support metrics for

pre-elimination and recommend a scaling-up entry point of LLIN distribution that

targets households in areas at risk of malaria (Chapter 6).
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• Human movement: In recent years (since independence), South Sudan has experi-

enced a huge human mobility which includes returnees; refugee from Sudan; and

mass population displacements. On the other hand, incidence of malaria across

many areas of the country (since 2013) is gradually increasing and the chance of

a second consecutive season marked by extremely high numbers of malaria cases

and preventable death is imminent. Against this backdrop, I assume that the large

mobility and constant displacement from conflict-affected areas to safety areas may

have significantly influenced the malaria trend observed after 2013 onward. Hence, I

emphasize on the role of population movement in the prevalence of malaria parasite

using stochastic model (Chapter 7).

1.7 Research outline

Chapter 1 presents the historical background of malaria discoveries and the parasite cycle.

It discusses malaria eradication programs and their implication in addressing the ultimate

public health challenges worldwide. It describes the rationale of the study, research prob-

lems and an overview of mathematical models of malaria. The objectives and hypotheses

of the study are laid out and the introductory chapter is concluded with the structure of

the thesis.

Chapter 2 provides definitions of some terminologies, theorems and basic reproductive

numbers that will be useful in the subsequent chapters. Chapter 3 introduces the overall

profiles of South Sudan including population distribution and urbanization, population

migration(internal displaced persons, Refugees), topography and climate, health system

and malaria epidemiology. It also provides an overview of malaria control and the broad

evolution of policies and strategies. Chapter 4 presents pressure tests on four different

nested mathematical models of malaria. Tests include assumptions and results. Chapter 5

presents a mathematical model for malaria transmission examining the impact of climate

variability as a first step to a further understanding malaria in the whole South Sudan.

In Chapter 6 a compartmental model of malaria is developed to provide some assistance
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in defining the specific needs of malaria interventions in different parts of the country.

Chapter 7 further extends the model in Chapter 6 by incorporating stochasticity on

human compartments of the model. The movement of human population is captured

to provide further insights into the development of effective intervention strategies. We

conclude and summarize the main results in Chapter 8.
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Chapter 2

Mathematical Preliminaries

Consider the following n dimensional first order ordinary differential equation (ODE):

dX

dt
= F (X), (2.0.1)

X(0) = X0, (2.0.2)

where X ∈ R
n and F : Rn → R

n is bounded in the neighborhood of the initial condi-

tion.

Now to prove that there is a unique solution to the initial value problem (2.0.1 - 2.0.2),

we have the following the theorem.

Theorem 2.1 (See Birkhoff and Rota [15]) Let E be an open subset of Rn containing

X0 and assume that F ∈ C1(E) ((C1 ⇒Lipschitz) Every continuously differentiable

function is locally Lipschitz), theere exists an a > 0 such that the initial value problem of

the system (2.0.1) has a unique solution X(t) on the interval [−a, a]

By Considering the n dimensional initial value autonomous system (2.0.1). An equi-

librium solution X∗ (steady-state solution, fixed point, or critical point) of the differential

system is a constant solution X following algebraic equation

The characteristic equation at X∗ is given by:

P (λ) := det(λI − J(X∗)) = 0 (2.0.3)
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The stability of X∗ is determined by the roots of (2.0.3).

In particular,

a. If all the roots of (2.0.3) have negative real parts, then X∗is locally asymptotically

stable.

b. If at least one root of (2.0.3) has a positive real part, then X∗ is unstable.

In order to derive sufficient conditions for the global stability and asymptotic stability

of such a rest point, we will apply the so called direct method of Lyapunov and Routh-

Hurwitz Criteria. Routh-Hurwitz Criteria is an important Criteria that gives necessary

and sufficient conditions for all of the roots of the characteristic equation to lie in the left

half of the complex plane are known as the Routh-Hurwitz Criteria. The Routh-Hurwitz

Criteria are used in the next chapters to determine local stability of an equilibrium point

for nonlinear systems of differential equations. We state the Routh-Hurwitz Criteria in

the next theorem.

Theorem 2.2 (see Allen [4]) Routh-Hurwitz Criteria. Given the polynomial

P (λ) = λn + a1λ
n−1 + ..+ an−1λ+ an,

where the coefficients ai are reals constants, i = 1; . . . ;n, define the n Hurwitz matrices

using the coefficients ai of the characteristic polynomial:

H1 = (a1), H2 =






a1 1

a3 a2




 , H3 =










a1 1 0

a3 a2 a1

a5 a4 a3










,

and

Hn =

















a1 1 0 0 ... 0

a3 a2 a1 1 ... 0

a5 a4 a3 a2 ... 0
...

...
...

... ...
...

0 0 0 0 ... an

















where aj = 0 if j > n. All of the roots of the polynomial p(λ) are negative or have negative
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real part if the determinants of all Hurwitz matrices are postive:

det(Hj) > 0, j = 1, 2, . . . , n.

When n = 2 Routh-Hurwitz Criteria simplfy to det(H1) = a1 > 0 and

det(H2) = det






a1 1

0 a2




 = a1a2 > 0

or a1 > 0 and a2 > 0. For polynomial of degree n = 2, 3, 4 and 5, we summarize the

Routh-Hurwitz Criteria below

Routh-Hurwitz Criteria for n = 2, 3, 4, and 5

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0 and a2 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4.

n = 5 : ai > 0 i = 1, 2, 3, 4, 5, a1a2a3 > a2
3 + a2

1a4 and

(a1a4 − a5)(a1a2a3 − a2
3 − a2

1a4) > a5(a1a2 − a3)
2 + a1a

2
5.

Definition 2.3 (see Allen [4]). Let U be an open subset of R2 containing the origin.

A real-valued C1(U) function, V : U → R, [(x, y) ∈ U, V (x, y) ∈ R] is said to be positive

definite on the set U if the following two conditions hold.

(i) V (0, 0) = 0

(ii) V (x, y) > 0 for all (x, y) ∈ U with (x, y) 6= 0.

The function V is said to be negative definite if −V is positive definite.

Definition 2.4 (see Jordan and Smith [62]). V (X) is said to be positive (negative)

definite in a neighbourhood U of the origin if V (X) > 0 (V (X) < 0) for all X 6= 0 in

U , and V (0) = 0. V (X) is positive (negative) semidefinite in a neighbourhood U of the

origin if V (X) ≥ 0 (V (X) ≤ 0) for all X 6= 0 in U , and V (0) = 0.
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Theorem 2.5 ( see Jordan and Smith [62]). Let X∗(t) = 0, t ≥ t0, be the zero

solution of the regular system Ẋ = X(t), where X(0) = 0. Then X(t) is uniformly stable

for t ≥ t0 if there exists V (X) with the following properties in some neighborhood of

X = 0:

(i) If V (X) and its partial derivatives are continuous;

(ii) If V (X) is positive definite;

(iii) If V̇ (X) is negative semi-definite.

Theorem 2.6. Suppose that all the conditions of the Theorem (2.5) apply, except that

condition (iii) is replaced by

(iii)′ V̇ is negative definite.

Then the zero solution is asymptotically stable (and such a function V is called a strong

Lyapunov function for the system).

2.1 Basic Reproduction Number R0

The basic reproduction number, denoted by R0, plays a vital role in understanding the

propagation of the relevant epidemic. It is defined as the average number of secondary

infections that occur when one infective individual is introduced into a completely sus-

ceptible host population. Basic reproduction number, R0; is determined by the method

of next generation matrix in Watmough and Van den Driessche [132]. For simple cases,

when there is only a single infected compartment, the value for R0 is simply the product

of the infection rates and the duration of the infection.

We consider the following system of equations for the disease transmission model

(epidemic model)

ẋi = fi(x) = Fi(x) − Vi(x), i = 1, ...., n, (2.1.4)

where
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f(x) =

















f1(x)
...
...
...

fn(x)

















, and x =

















x1

...

...

...

xn

















models the rate of change of xi (where xi ≥ 0, is the number of individuals in each

compartment i) with

Vi = V−
i − V+

i

and

• Vi(x) is the rate of appearance of new infections in compartment i,

• V−
i (x) is the rate of transfer out of the ith compartment,

• V+
i (x) is the rate of transfer into the ith compartment,

and each of these functions is assumed to be continuously differentiable at least twice.

Also,

Xs = {x ≥ 0|xi = 0; i = 1, ....,m}

Xs represents the set of all disease-free state. We assume that, these functions satisfy the

assumptions (H1, . . . ,H5) as described below:

H1 If xi ≥ 0, then Vi(x), V−
i (x), V+

i (x) ≥ 0 for i=1,...,n.

H2 If xi = 0,then V−
i (x) = 0 and in particular, V+

i (x) = 0, if X ∈ Xs for i = 1,...,m

this implies that there can be no transfer of individuals out of an empty compartment by

any means. These two assumptions imply that if xi = 0, then fi(x) ≥ 0. Therefore the

equation (2.1.4) is positively invariant; that is if the initial conditions are positive, then

so are the solutions.

H3 Fi = 0 if i > m holding for the fact that the rate at which infection occurs (incidence

of infection) in an uninfected compartment is zero.
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H4 Fi = 0 and V+
i (x) = 0 if x ∈ Xs, i = 1, ....,m. This condition is to guard against the

disease-free subspace being altered and the assumption H4 implies that if a population

is free of disease then it remains free with no room for immigration of infectious into the

diseases free compartment.

H5 If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

The following lemma [132] assures that, under conditions (H1, . . . ,H5) the Jacobian,

Df(x0) can be partitioned into a matrix of new infection and that of transfer of individ-

uals in and out of a compartment.

Lemma 2.7. If x0 is a Disease-Free Equilibrium (DFE) of (2.1.4) and Fi(x) satisfies the

assumptions (H1 ) through (H5 ), then the derivativesDF (x0) andDV (x0) are partitioned

as

DF(x0) =






F 0

0 0




 , and DV(x0) =






V 0

J3 J4






, where F and V are the m×m matrices defined by

F = [ ∂Fi

∂xj
(x0) ], and V = [ ∂Vi

∂xj
(x0) ], where1 ≤ i, j ≤ m

Further, F is non-negative, V is a non-singular M -matrix and all the eigenvalues of

Jacobian matrix J4 have positive real parts. Thus the matrix V −1 is non-negative, and

so is FV −1.

If an infected individual is introduced into a compartment k of a disease free population,

then the (j, k) entry of V −1 can be interpreted as the average length of time this individual

spends in compartment j during its lifetime and the (i, j) entry of F can be interpreted

as the rate at which infected individuals in compartment j produce new infections in

compartment i.

The FV −1 matrix is called the next generation matrix for the model [132]. The (i, k) entry

of the next generation matrix is the expected number of new infections in compartment

i produced by the infected individual originally placed into compartment k. The basic

22

http://etd.uwc.ac.za/



Chapter 2: Mathematical Preliminaries

reproduction number, R0 , is to

R0 = ρ(FV −1)

where ρ(FV −1) denotes the spectral radius of the FV −1. R0 is a threshold parameter for

the stability of the DFE.

2.2 Stochastic differential equation theory

A stochastic process is called a diffusion or a random process if it satisfies the Markov

property and if its paths Xt are continuous functions [98].

Definition 2.8 (Ito diffusion). An Ito diffusion is a time homogeneous stochastic

process Xt : [t0,∞) × Ω → R
n which is the solution of the following stochastic differential

equation

dXt = f(t, x)dt+ g(t, x)dBt withXt0 = x, t ≥ 0 (2.2.5)

where f is the continuous deterministic component or drift coefficient, g is the continuous

random component or diffusion coefficient [65], defined by f : Rn × [t0,+∞) → R
n and

g : Rn × [t0,+∞) → R
n×m, and Bt is an m-dimensional Brownian motion. For our case

study we need only the one-dimensional with Brownian motion m = 1 and n = 4.

Theorem 2.9 (Ito’s theorem). Let Xt be an Ito process and f, g ∈ C1×2([0,∞) ×R
n).

Then

Yt = g(t,Xt)

is again Ito process, and

dg(t,Xt) =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1∂2g

2∂x2
(t,Xt)(dXt)

2 (2.2.6)

with Xt0 = x, t ≥ 0 holds with (dt)2 = dtdB = 0 and (dB)2 = dt.

Definition 2.10. Let Xt be an Ito diffusion. Then the infinitesimal generator ∆ is defined

by

∆z(x) = lim
t→0

Ex[z(Xt)] − z(x)

t
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Now we apply Ito’s theorem 2.9 and define a function z ∈ C2
0(R) in order to find a

relation between the generator ∆ and the coefficients f and g. We have

z(Xt) = z(X0) +
∫ t

0
(f(Xs)

∂z

∂x
(Xs) +

1

2
g2(Xs)

∂2z

∂x2
(Xs))ds (2.2.7)

+
∫ t

0
(g(Xs)

∂z

∂x
(Xs)dBs (2.2.8)

Setting up the expectation one gets the following equation by using the martingale prop-

erty of the Ito integral.

E[z(Xt)] = z(X0) + E
[ ∫ t

0
(f(Xs)

∂z

∂x
(Xs) +

1

2
g2(Xs)

∂2z

∂x2
(Xs))ds

]

. (2.2.9)

A complete proof can be found in [98] of øksendal.

2.3 Statistical approaches

In general, there are few techniques that can be used for parameter estimation, namely

least-squares estimation (LSE), maximum likelihood estimation (MLE) and Bayesian es-

timation. For linearly parametrized systems, the least squares method generally gives

the optimal estimate of parameters, however, it has no basis for testing hypotheses or

constructing confidence intervals. In the use of maximum likelihood approach a nonlinear

mathematical model that confronts a data can be influenced by the exact relationship be-

tween the parameters or by the complexity of the model [117]. The Bayesian estimation of

distribution parameters is given as the mean of the posterior distribution which are based

on the likelihood, combined with a prior probability distribution. The Bayesian frame-

work, in particular, Markov chain Monte Carlo (MCMC) approaches have demonstrated

to be a powerful inference tool for complex systems to data analysis which provides a

clear advantage over MLE [48, 53, 117]. In addition, the MCMC method is to be used in

the process of parameter estimation in the dynamics of nonlinearly model, ability to gen-

erate statistical samples from a high dimensional targeted distribution and convenience

for statistical analysis of results [48].
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In order to estimate the unknown parameters θ using a Bayesian approach in nonlinear

ODEs given by the following equation as a representation of a biological system:

dx

dt
= F (θ, x(t), t), x(t0) = x0, (2.3.10)

y(t)= G(x(t)) + ǫ(t), where x ∈ Rn denotes the system’s state variables, x0 is the initial

state, θ represent all the parameters that describe dynamic reactions and assume positive

values, y ∈ Rn represents a sample (observed) data subject to a Gaussian white noise

ǫ(t) ∼ N(0, σ2), F(.) is a set of nonlinear functions describing the dynamical property

of the biological systems, and G(·) represents a measurement function such as, Binomial,

Poisson, etc. With parameter values θ, p(θ) is the prior and the “evidence,” p(y) is the

probability of the data according to the model.

If Y1, Y2, · · · , Yn denote the random variables associated with a sample of size n, the

notation L(y1, y2, · · · , yn|θ) denote the likelihood of the sample.

Using the likelihood of the data and the prior on θ, it follows that the join likelihood

of Y1, Y2, · · · , Yn is

f(y1, y2, · · · , yn) = L(y1, y2, · · · , yn|θ) × p(θ)

and that the marginal density or mass function of Y1, Y2, · · · , Yn is

m(y1, y2, · · · , yn) =
∫ ∞

−∞
L(y1, y2, · · · , yn|θ) × p(θ)dθ.

Then we have Bayes’s rule (the posterior density of θ|y1, y2, · · · , yn) as follows:

p(θ|y1, y2, · · · , yn) =
L(y1, y2, · · · , yn|θ) × p(θ)

∫∞
−∞ L(y1, y2, · · · , yn|θ) × p(θ)dθ

So to obtain estimates for parameters conditional on the data, we consider that the

data represent Poisson samples with expectation p∗I, where p is the reporting proportion.

Hence the basic of all regression models for count data is the Poisson regression model

[102] expressed as

yi ∼ pois(λi)
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where

λi = exp(xTi θ)

, xi = [1, xi1, xi2, . . . , xip]
T is the covariate vector for sample i

θ = vector of parameter estimates

Assuming an equal dispersion

E[yi|xi] = var[yi|xi] = exp(xTi θ)

26

http://etd.uwc.ac.za/



Chapter 3

South Sudan profile and data

During the past 50 years Southern Sudan was the most violent and marginalized region

in Sudan. The region has been destructively affected by two civil conflicts. One broke out

immediately after Sudan independence in 1955 and ended by the Addis Ababa Agreement

of 1972. The second war began 1983 and ended by the Comprehensive Peace Agreement

(CPA) in Naivasha-Kenya 2005 [50, 111]. In 2011 after enduring two decades of civil war,

the people of Autonomous Regions have voted on break away from Sudan and declare an

independent country under the name Republic of South Sudan. However, the political

violence in the fragile country does not end with independence but takes on new forms.

In the run-up to December 2013, a political difference within the ruling party triggered

violence in Juba County, which later spread to the rest of the country’s counties. Civilians

throughout the country were targeted based on their location and ethnicity, and with

hundreds of thousands fleeing their pre-crisis homes for safety [121].

The bearings of these two wars have led to a substantial population displacement.

More than four million have fled their home to major Towns and mainly into Khartoum

as Internally Displaced People (IDPs). There were also up to one million refugees, living

mainly in camps and cities in Kenya, Uganda, Central Africa Republic, Ethiopia, Egypt

and other neighboring countries [50]. Up to 1.9 million people have been killed throughout

the 20 year conflict by violence, disease and starvation [111]. Most of these IDPs have

returned to Southern Sudan during the referendum period. However, less than two years
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Table 3.1: Socio-economic and demographic data

Indicators Value Period source

Population (last census) 8.260 million 2008 Census

Population (projection) 11.296 million 2013 WHO

Population density 13 km square 2012 WHO

Urban composition 18 % 2011 WHO

Population growth rate 4.12 % 2014 WHO

Total fertility rate 5.9 2013 WHO

Crude birth rate 37.68 birth/ 1,000 2013 [124]

Crude death rate 8.42 death/1000 2013 WHO

Infant mortality rate 68.16 death/1000 2014 WHO

Maternal mortality rate 2,054 daeth/1000 2006

Net migration rate 11.9/1000 2014 WHO

Life expectancy at birth 55 years 2012 Census

Health life expectancy at birth 48 years 2012 Census

after independence two million individuals have been displaced, including over 500,000

refugees, and an estimated 1.5 million internally displaced persons for the recent on-

going conflict. The war has had a major impact on the operation of the basic health

system, schools, and water and sanitation supply throughout the country. The mortality

of children under the age of five years is counted one of the highest in the world [133],

which are exposed to deadly epidemics diseases such as measles, diphtheria, whooping

cough, tetanus, and malaria.

The vast majority of the population is rural and the standard of living in the household

largely dependent on subsistence farming at 80.7%. Over 7.9% lived mainly on salaries,

6.1% on business, 1.5% on property income and 3.8% on remittances and aid. Among the

female-headed households, 81.8% live mainly on subsistence farming, partly as a result of

young men migrating to urban zones in search of employment. Rural to urban migration

has also deprived households of productive labor. The pre-independence national census
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estimated population at 8.2 million people in 2008, with 42% of the population aged under

15 years, 19% group of the median age and only 5% population aged over 60 years [120].

The present estimate may be as high as 11 million due to natural population growth rates

and returnees. According to 2008 census, over 368,436 people live in the capital city of

Juba, with the crude population density of 20 persons per km2 but this is highly variable

across the country. The birth and death rates were estimated to 406.2 births and 125

deaths per 1000 people in 2013 (Table 3.1).

The country’s fertility rate is 5.9 births per women in [120]. The household average size

is 7.5 in 2008 and one-third of households have a chronically ill family member. Country

has the highest rate of maternal mortality in the world, at 2,054 per 100,000 live births.

The Census reported life expectancy at birth for both sexes increased by 7 year(s) over

the period of 2000-2012, while the World Health Report (WHR) regional average of life

expectancy increased by 7 year(s) in the same period.

3.1 Climatic patterns

The country covers approximately 640,000 square kilometers (km2), and lies between

250 to 300 east longitude and 40 to 120 north latitude [122]. The proximity to the

equator and the running of the white Nile throughout the country are major contributors

to the diversity of the country’s landscape which consists of tropical rainforest. South

Sudan is one of the world’s largest wetlands and its climate varies but is essentially

tropical where terrain includes tropical forests, swamps, grassy savannas and the sudd

is a large swampy, comprising more than 15% of the total area. The country has an

average annual high temperature of 33.7◦ C and a low temperature of 21.6◦ C. The total

average annual rainfall is 953.7 mm (37.54 inches) and to a certain extent the south and

west region receives between 1,000–1,500mm while the north and southeastern regions

receive between 500–750mm[109]. In a large part of South Sudan people depend on the

rainfall for basic agriculture and many of them are nomadic, traveling with their herds of

sheep and cows. Along the White Nile, there is well-irrigated farms growing cash crops.
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Therefore, agriculture is the main source of income for more than 85% of the population.

Climate change plays a key role in malaria infection as warmer temperature enhance

physiological processes of parasites, similarly in mosquito activity such as biting rate,

growth and reproduction. Hence, prevalence of malaria depends on temperature. For

instance, a small climate variation would, therefore, affect the lifespan and patterns

of mosquitoes and also provide transiently suitable conditions for unstable transmission

within populations and then demography. In addition, the sensitivity of tropical climates,

where there is sufficient rainfall and subsequent stagnant waters provide an enabling envi-

ronment for mosquito breeding. More rainfall might increase the abundance of mosquito

larvae and this eventually leads to more vectors to spread the disease [1].

Th country has a tropical climate with a bimodal rainfall pattern and two seasons

(wet and dry). Rains normally commences in March-June with a break in late June and

restart in July-December. Average temperatures range between 27-30◦ Celsius in January

to February and 30-35◦ Celsius from December to March [124]. Though, rain seasons

continue to mid-December and are usually a period for crop production, people are very

vulnerable to mosquitoes biting. Thus, this period coincides with the malaria transmission

period of up to 8 months occurring in some areas of agriculture schemes areas, while the

urban cities may have another transmission during winter (December- February ) due to

broken water pipes and stagnant waters.

3.2 Public Health System

The health system has collapsed gradually in the Republic of South Sudan during a long

civil war and about 80% of primary health care was delivered by Non-Governmental Or-

ganizations (NGOs) and Faith-Based Organizations (FBOs). Within the Comprehensive

Peace Agreement (CPA), the Ministry of Health (MoH) recommenced responsibility for

rebuilding and transforming the public health system. In the route with a decentralized

management structure, the Ministry of Health (MoH) and the State Ministry of Health

(SMoH) are in advocating for the health sector policy, partner coordination, and health
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Figure 3.1: Source: [75], South Sudan Health Districts

financing [57]. It provides stewardship and guidance to the sector, manages the Tertiary

(Teaching) Hospitals and executes a supportive role to the State Ministries of Health

(SMoH). In the 10 States of South Sudan, leadership is provided by the State Ministry

of Health for the health service delivery and management to State Hospitals, and County

Hospitals [122] as well as County Health Departments (CHD) (Table 3.2). At the County

level the health structure is divided into the 79 CHD to oversee the delivery of primary

health care services in 270 primary health care centers and 1377 primary health care units

across their respective County ( see facilities map 3.1).

Nevertheless almost all the facilities are now either run privately or by Non-Governmental

Organizations (NGOs) with largest support from Would Health Organizations (WHO).

At the national level there are over 110 health partners who contribute in the Health

Cluster. Here are the most effective NGOs/agencies working hand to hand with Gover-

ment of South Sudan (GoSS) to provide health services: UNICEF, International Medical
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Table 3.2: Public health facilities managed by State

States County # Hospitals Primary health care Health provider

Central

Equatorial
6

3 county

hospitals,4 state

hospitals and 4

other

32 centers and

160 units

26 health facilities

by NGOs and the

rest by GoSS

Eastern Equatoria Kapoeta Hospital
46 centers and

165 units

Almost all health

facilities are run

by

NGOs(UNICEF)

Jonglei 11
3 county hospitals

and 1 state

44 centers and

176 units

25 health facilities

run by NGOs and

the rest by GoSS

Lakes 8
5 county hospitals

and 1 state

20 centers and 88

units

Almost all health

facilities are run

by NGOs

Northern Bahr El

Ghazal
4

1 state hospital, 2

military clinic and

1 police clinic

11 centers and 72

units

Almost all by

NGOs (Save the

Children,

CONCERN, FR,

MSF, PPF)

Unity 9 State hospital
25 centers and 10

units

Almost all health

facilities are run

by NGOs

Upper Nile 13

7 county

hospitals, 1 state

hospital

61 centers and

124 units

Almost all health

facilities are run

by NGOs

Warrap 5 county hospitals
23 centers and 89

units

3 hospital and all

PHCCs in the

States are run by

an NGOs

Western Bahr el

Ghazal
3 5 hospitals

3 centers and 7

units

The health

facilities available

are either run

privately or by

NGOs
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Corps (IMC), MSF France International, Catholic Relief Services (CRS), Sudanese Red

Crescent Society (SRCS), Danish Red Cross (DRC); Deimzubeir, Boro Madina, German

Leprosy Relief Association (GLRA) , WHO, WFP, GOAL, ADRA, World Vision, IRD,

Oxfam GB, PACT, Tear Fund, ICRC, Save The Children USA, MSF Holland, White

Nile Petroleum Company (WNPOC), CARE, ACF, Greater Nile Petroleum Operating

Company (GNPOC) , World Relief, World Relief, CCM, ADARA.

3.3 Malaria epidemiology

Malaria history in South Sudan is not a new phenomenon. However transmission is

perennial due to multitude of local factors such as environmental/climate (e.g rain pat-

tern, favorable temperature), movement of populations with little immunity into areas of

high transmission, socio-economical instability, war related improper housing/ camps and

unaffordable preventive means. The burden of disease attributable to malaria varies sub-

stantially between different regions of the country which depend on amount of rain and air

temperature. It is important to obtain information on the endemicity levels by region or

county so that malaria control interventions and treatment can be targeted accordantly.

But is not the case in south Sudan, where relevant data on the microepidemiology of

parasiteamia, morbidity, mortality are limited.

The household cluster sample surveys carried out in 2005 with a total of 2,797 house-

holds in 150 different locations. The result shows that malaria prevalence was 24.5%

among children under age of five and 9.9% among pregnant women [106]. About 64% of

children and 46% of pregnant women were affected by anemia. Only 2% of households

were covered by indoor residual spraying (IRS) [47]. Dating back in 1960s the latest

comprehensive malariametic survey was conducted and demonstrated percentage of Plas-

modium falciparum distribution per region which oscillated around 83.6% in Greater

Equatoria, 56.8% in Greater Bahr el Ghazal and 86.1% in Greater Upper Nile. According

to Malaria indicator survey of 2009, the parasite prevalence ranged from less than 1%

in mid northern area to more than 40% in the greater Equatoria region with an average
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prevalence rate of 14.2% among children fewer than five years of age.

Table 3.3: MIS 2009, Malaria incidence by States 2009-2012

2009 2010 2011 2012

CES 128494 201632 241099 236878

EES 8113 44454 122169 95291

JNG 10948 23433 30779 80178

LAKES 17308 45594 89133 87460

NBGZ 18330 24701 99280 71469

UNITY 17698 36508 46350 81805

UNS 14800 23625 23458 174291

WBGZ 19955 16207 107910 94824

WES 23894 85682 134348 159639

WRP 28107 48574 103605 116522

In the year 2005, the disease burden goes higher as it goes South, and prevalence could

be in some counties as higher as 75%-100%. This can be attributed to climate is being

more favorable to the disease in the South than it is in the North. Or, it could be explained

by the high consideration of refugee camps in the South. These are speculations.

Malaria situation in South Sudan is hard to quantify due to patchy reporting and

the lack of updated information confirming the epidemiology and distribution of parasite

species. Estimates of morbidity and mortality therefore contrast enormously. In 2009 it

was estimated that 85 per 100, 000 population of mortality are related to malaria and

cases were more than 500 per 1000 population and roughly the number of incidences has

gradually increased from 71 948 in 2008 to 1 198 357 in 2012 [35] (see Table 3.3).

The three species of Anopheles that are abundant in South Sudan and have high rates

of transmission of malaria, are Anopheles Funestus, Anopheles Gambiae, and Anopheles

Arabiensis. The Anopheles Gambiae is the main malaria vector. Plasmodium Falciparum

is the predominant species, which is responsible for up to 90% of malaria infections and

Plasmodium Vivax accounts for 5% (see Table 3.3). Beside Plasmodium Malariae may
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Table 3.4: Source [123] Malaria Parasites species percentage by region

P. Falciparum P. Vivax P. Malariae
Mixed

species

Rural 94.5 4.8 0.8 6.5

Urban 93.7 6.3 0 4.7

Upper Nile 100 0 0 0

Bahr El Ghazal 100 0 0 3.5

Equatoria 92.4 6.8 0.9 7.9

Total 94.4 5 0.7 6.3

account for up 0.7% of infection [20, 123]. Consequently, malaria is endemic across the en-

tire country with year-round transmission but peaking towards the end of the rainy season

from September to December. Endemicity varies between meso-, hyper- and holoendemic

[35].

3.4 Malaria control

It has been quite a journey from the WHO, which supported the beginnings in 1998

when the first health policy was launched in the South Sudan region before indepen-

dent. Since the signing of the comprehensive peace agreement (CPA) in 2005, South

Sudan has achieved major milestones in the fight against malaria. Subsequently the

Malaria Task Force was established in 2003 with only a Programme Manager. Then a

year later,National Malaria Control Programme (NMCP) was formed [21]. The NMCP

has so far implemented a single Strategic Plan (July 2006-July 2011) with many malaria

policies, guidelines and staff capacity have been developed at all levels. In 2007 the tran-

sitions to the Malaria Technical Working group akin to the country Roll Back Malaria

(RBM) partnership. The fact of the matter is that malaria has a clear priority in the Na-

tional Health Policy (2007-2011), included National Health Sector Strategic Plan and the

Health Sector Development Plan (2012-2016) which are a key component of the Ministry
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of Health basic package of health services.

During the past decade, the first-line treatment against uncomplicated Plasmodium

Falciparum malaria was the Chloroquine (CQ) with Sulphadoxine-Pyrimethamine (SP)

as the second line treatment [125]. A study in South Sudan has shown high parasite

resistance to CQ and SP which ranges between 40% and 93% for CQ and from 15% to

69% for SP. An in vivo study was carried out on the efficacy of CQ, SP in Kajo Keji

County, which provides important missing data. The study pointed out that none of

these drugs could be used in monotherapy against Falciraum malaria. This suggests that

even in combination with artemisinin, cure rates might not be efficient enough [125].

Plasmodium Falciparum resistance to chloroquine was detected in Lui (Mundri) of West

Equitoria in 2002, with 91% of treatment failure. Another trial was carried out in Upper

Nile State in 2001 to test for the efficacy of Amodiaquine (AQ), CQ and SP. Rresults

revealed that CQ and AQ produced treatment failures of 11.5% and 5.6% respectively

[122]. The low efficacy of CQ can be described by the regular use of the drug within and

outside the official health system. However in Africa, SP preserved its efficacy until the

late 1990s but since then its resistance has spread quickly [22]. SP was introduced in

Sudan since the early 1970s. In 2002/2003 testing for CQ and SP in several sentinel sites

reported an overall failure rate of CQ as 43.7% in the Northern Sudan and 80.2% in the

Southern Sudan [106]. Nevertheless, recently the country has replaced its treatment policy

to Artemisinin-based Combination Therapy (ACT) in order to avoid malaria aggravation

induced morbidity and mortality. Although SP is still the drug of choice for Intermittent

Presumptive Treatment (IPTp) for malaria in pregnancy [47].

With limited data, Dichloro-diphenyl-trichloroethan (DDT) was one of insecticide re-

sistance identified for susceptibility of Anopheles species populations without any charac-

terization to malaria vectors species [124]. A study in Juba County found that Anopheles

species were tolerant to DDT and deltamethrin [125]. Moreover, in the late 70s and early

80s indoor residual spraying and larviciding was used to prevent malaria transmission in

and around the major towns and municipalities. However, due to the collapse of infras-

tructure and public services as a result of civil Wars (1955-1972 and 1983-2005), these
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interventions and treatments have ceased. After several decades without any vector con-

trol, programmatic control of the malaria vectors was relaunched in Sudan along with

malaria case management in 2004 [57].

Since then considerable progress has been made in the country relative to first Malaria

Strategic Plan (2006-2011). This formed the first framework within which malaria control

would be implemented in South Sudan. The National Malaria Strategic Plan of 2014-

2020 aimed at reducing by 80% reported malaria morbidity and deaths of 2013 levels

and malaria parasite prevalence by 50% of the 2013 levels, by 2021 [124]. The strategy

precisely targets at reducing mortality rate of children under-5 year of age mortality rate

from 250 to 140 per1000 live births [124].

However, in South Sudan mosquito nets remain the most effective prevention avail-

able against malaria. Insecticide-treated bednets (ITNs) usage has long history in South

Sudan, where they were first introduced through the Upper Nile Project in 1996. On the

other hand ITNs distribution is hard to maintain in the post-conflict situation. Therefore,

LLINs remain the main present strategy whereby pregnant women and children under 5

years of age are major targets particularly in the rural and remote areas.

Notably LLIN is one of the most effective preventive measures for malaria in South

Sudan. In 2008, the successful mass distribution campaign of free LLINs was done in all

States countrywide. With support from partners, over 9,335,035 LLINs were distributed

over the review period although only 2,141,806 (53%) of these LLINs were deemed protec-

tive of the entire population by the end of 2013 [124]. Further intervention considered by

NMCP since 2007 included, early diagnosis through diagnosis test (RDTs), with limited

use of Indoor Residual Spraying (IRS) and Larviciding and intermittent preventive treat-

ment (IPTp) [22]. People also use locally untreated bednet made out of cotton, called

Aldamuria. Furthermore, the proportion of children below the age of 5 years sleeping un-

der an ITN at night increased to at least 60%. Additionally,the proportion of households

with at least one ITN increased to 70% and structures in targeted areas sprayed with

quality IRS to at least 80%.

The mosquito bednets survey in 2009 provides information on the percentage of house-
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holds with ITN and LLIN (Table 3.4). However, malaria control has recently been imple-

mented through a combination of Case Management (CM) and LLINs, in Central Equa-

torial State and in some other States, although CM coverage may not be achieved in the

near future. Ownership of mosquito net by Central Equatorial State count of 54%. The

intervention was nearly as effective as expected, probably because of suboptimal LLIN

coverage, retention, and utilization. Many of the targeted households were sleeping out-

doors, without a bednet. Some used the distributed nets for fishing or fencing. Although

the national guidelines for intervention distributions recommended that only bednet types

that had been prequalified by the WHO to be distributed, not all of the distributed nets

met this criterion [22]. Countrywide, LLINs mass campaigns were piloted with the target

coverage of 80% and only about 4.7 million were delivered to the population who are in

need. Despite this, the number of infected cases and deaths increased in all age groups.

Malaria indicator survey in 2009 indicates that the proportion of structures protected

through IRS is about 2.1% of the population at risk.

Table 3.5: Percentage of households with at least one and more than one mosquito net

South Sudan MIS 2009

Charactersitic Rural Urban Countrywide

PH have at least one ITN 52% 64.1% 54.2%

PH have more than one ITN 39.4% 51% 42%

PH have at least on LLIN 49% 69.9% 51%

PH have more than one LLIN 37.7% 49.5% 39.8%

Average number of Nets per houshold 1.9 1.6 1.7

Number of Bednets 3092 821 3913
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3.5 Migrant pattern

In South Sudan, displacement is closely related to ethnic affiliation, which is often tied

to ancestral homelands and traditional grazing areas. The country has an extremely mo-

bile population, with many herders undertaking seasonal migration as a result of cattle

grazing. Natural hazards, predominantly flooding, cause regular disaster-induced dis-

placement, while more recent conflicts, as well as rural-to-urban migration have caused

many people to live in a location that is different to their ancestral home [50, 121].

Table 3.6: South Sudan Refugees and IDPs by State [130]

State Refugees IDPs Total Percentage

Central Equatorial 17,665 63,400 81,055 5.3%

Eastern Equatoria 7600 7600 0.5%

Jonglei 2339 579,700 582039 38%

Lakes 0 133,800 133,800 8.7%

Northern Bahr El Ghazal 0 700 700 0.5

Unity 84,895 280,800 365,695 23.9%

Upper Nile 128,944 193,700 322,644 21.1%

warrap 0 8800 8800 0.6%

western equaroria 9,394 25 9419 0.6%

Western Bahr el Ghazal 0 12,600 12,600 0.8%

More than a million Southern Sudanese were living in Khartoum (North Sudan) and

initially sought refuge after the invasion of Khartoum in 1956. Many people were able

to return to their homes (southern region) to safe areas in the early 1980s, following

the Addis Ababa agreement. Upon signing the comprehensive peace agreement in 2005,

South Sudan has been receiving a steady stream of returnees (internal displacement and

refugee) people who were displaced during the civil war and wishing to resettle in the

newly independent country.

Since the outbreak of the fight and political upheavals in December 2013, some capri-
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cious States of the world’s youngest country are experiencing complex humanitarian emer-

gency situations with ongoing armed and intercommunal violence. Access to displaced

people is so difficult and refugees/IDPs have faced serious humanitarian concerns such

as hunger, the destruction of markets, massive disruption to livelihoods caused by people

fleeing from the conflict and water-borne diseases, in particular malaria. The UNHCR

estimates to 1,660,141 individuals who remain internally displaced in 258 locations across

the country (shown in Table 3.6 by State) and more than 505,298 individuals refugees to

Sudan, Kenya, Ethiopia and Uganda [130].

According to a recent assessment, more than 35,000 South Sudanese people were forced

to flee Maridi County. In addition, 196 houses were burnt and the town market entirely

looted. Had it not been assumption responsibility taken by international donors and

NGOs to support basic health services, the situation would have worsened. However,

estimates one in five of South Sudan’s 11 million people have fled their homes, often

hiding in the bush without access to bednets, food, water or medical care. While the

security situation has stabilised in some parts of the country, the situation remains fragile

and there have been relatively few voluntary returnees from displacement sites. Some of

these sites are located at Swamp areas which are highly attractive to mosquito breeding.

There is increasing pressure to relocate IDPs from Protection of Civilian (PoC) sites, but

most IDPs are reluctant to leave these sites until peace is restored throughout the country.

Major displacement sites in six of the most conflict-affected States in South Sudan are

Central Equatoria, Jonglei, Lakes, Unity, Western Bahr el Ghazal and Upper Nile, which

are also home to the largest concentrations of internally displaced persons [130].

In week 29 of 2015, a total of 5,715 malaria cases were reported with the highest

malaria incidence (cases per 10,000) being reported in Bentiu PoC (270), followed by

UN House (216), Malakal (166) and Renk (117) and these are the top camps that count

for the morbidity among IDPs and registered a proportionate morbidity of 28.9%, which

represents an increase when compared to 18% in the corresponding week of 2014 [140] (for

more details see Table ??). In August 2015 the Medecins Sans Frontieres (MSF) described

malaria as skyrocket with 4,000 patients receiving treatment each week in Bentiu camp
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and the vast majority of them were women and children, who have endured a difficult

and dangerous journey to reach the camp [120]. Nevertheless, access to the most conflict

affected settings remains a challenge affecting health service delivery. For instance in the

bigger part of the Upper Nile areas, Unity, Jonglei , and Central Equatoria States where

thousands are displaced, access to health facilities continues to be hampered by insecurity.
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Chapter 4

Pressure-testing some mathematical

models of malaria transmission

4.1 Introduction

Over the last decade, the significance of the topic of mathematical modelling and real-

world examples in all fields has increased enormously. In particular, compartmental mod-

els of mathematical epidemiology have become an important tool in understanding the

mechanisms of disease transmission and in decision making processes regarding interven-

tion programs for controlling the diseases in many countries. A large number of math-

ematical models in epidemiology have been developed to gain insight into transmission

dynamics of malaria, starting from the basic malaria model of Ross [110] and Macdonald

[74]. Subsequently these models have been extended by researchers considering different

factors related to malaria transmission dynamics and control, such as latent period of

infection in mosquitoes and humans, acquired immunity, the effect of climate change, the

effect of age-structure on malaria spread and control [8, 9, 30, 66, 73, 86].

Aron [8] presented two different approaches to study the dynamics of acquired immu-

nity to malaria. These approaches were exposure to infections to generate qualitatively

different results. Chiyaka et al. [25] proposed a deterministic model with two latent

periods in the non-constant hosts and vector populations for assessing the impact of per-
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sonal protection, vaccination and treatment in curtailing the spread of malaria. Buonomo

and Vargas [17] extended the vector-bias model of malaria transmission introduced by

Chamchod and Britton [20] to incorporate both immigration and disease-induced death

of humans. In their extended model, they examined for exhibit backward bifurcation by

using the theory of center manifold. Moreover, nonlinear stability analysis by means of

the Lyapunov theory and the LaSalle invariance principle has been performed. Esteva

et al. [39] proposed a deterministic model for monitoring malaria transmission dynamic

with impact of anti-malarial drug.

Okell et al. [94] developed a mathematical model of parasite transmission in human

and mosquito population by introducing artemisinin-based combination therapy (ACT)

and alternative first-line treatment in six regions of Tanzania with different level of malaria

transmission. In their study, they found that in low transmission area ACT may reduce

malaria transmissions if it is widely used effectively as well the widespread use of the

insecticide-treated bednets. The model also shows that in the area with high transmis-

sion the use of long-acting treatment with or without artemisinin component might be a

good method to reduce the transmission. Their findings suggested that properties of anti-

malarial drugs need to be taken into consideration together with the level of transmission

in the areas in order to achieve highest impact on malaria transmission.

Smith et al. [114] review the historical development of a theory for mosquito-transmitted

pathogens and the development of strategies for mosquito-borne disease prevention by

Ross followed by Macdonald’s seminal contributions and subsequently described Ross-

Macdonald models as the best set of assumptions identified, including the concept of vec-

torial capacity, methods for measuring key components of transmission by mosquitoes,

and a quantitative theory of vector control.

In all of these models, there are no ideal models that can be suitable for malaria

disease whilst different structures may be used to model the same situation. However, the

structure of the model involves identification of parameters that can strongly influence

model outcomes and also model assumptions that when relaxed can strongly affect the

results of the model. Moreover, the main reason for building a model in the first place
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is to make novel predictions that stimulate subsequent rounds of disease dynamics. The

rationale for testing models is significantly important by measuring model parameters

directly from actual observation data which many of these models ignore.

In this chapter, we aim to pressure test four different structures of models. The mod-

els are validated using malaria incidence data of the highest transmission State (Central

Equatoria) of South Sudan to estimate their parameters by fitting empirical observations.

This can help understand the nature of the models and their trajectory behaviour dif-

ferences that can be applied to make predictions on the course of malaria dynamics and

to control its transmission. An important benefit derived from mathematical modelling

is that it requires transparency and accuracy regarding our assumptions that enable us

to test our understanding of the disease epidemiology by comparing model results and

observed patterns. Importantly, these can alert us to the deficiencies of our current under-

standing of the disease course, and propose important questions to investigate. Models

can also help to make a decision by making projections on important issues such as

intervention-induced changes in the spread of disease.

4.2 Compartmental Models

We consider different compartmental models to test how they fit observation data and

compare their outcome and prediction of the disease dynamics. The first model consists

of a simple SIR-model (Susceptible - Infected - Recovered) for human and a simple SI

(Susceptible - Infected) for mosquito with the assumption that at any time, drug therapy

and intervention coverage can be incorporated into the model. The second model consid-

ered is a simple SEIR-model (extension of SIR models that include an exposed class)for

human and a simple SEI for mosquito. Third model as an intermediate example based on

a slight modification of a host-vector model presented by Filipe et al. [40]. The expression

of the SEIAR Model for the human host which infected class of the model II is subdivided

into two categories clinically infectious individuals I, asymptomatic infectious individuals

A and SEI Model formulation for vector with the presence of drug therapy. The fourth
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model is as more complex model, similar to that of Griffin et al. [51] which consists of six

human distinct compartments and three mosquitoes incorporated with drug therapy.

Sh Ih

Rh

βhSh

λhIh

Sv

σ

Iv
βvSv

b

µh

µhµh

δΛh

µvµv

Λv

Figure 4.1: State diagram for the SIR model

4.2.1 An SIR Model

The simple compartmental model without an incubation period is based on a previous

model of malaria transmission [110] with five compartments, for both human population

and mosquito population at time t. The susceptible compartments for both humans and

mosquitoes are recruited by birth at a rate of Λh = µ×Nh and Λv respectively. The total

human population Nh is divided into a proportion of the susceptible (Sh) that is assumed

to be infected at a rate βh then becomes infectious (Ih).

Some individuals from the Ih class recover from the disease and become part of the

Rh class with lifelong immunity and individuals may not become susceptible again. The

Mosquito population Nv consists of a two compartments, the susceptible (Sv) popula-
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tion gets infected with rate βv which then becomes infectious (Iv) and mosquitoes do not

recover. The model [110] in which the classes have been formulated in a general SIR com-

partmental epidemic model with the attractiveness of infectious humans to mosquitoes,

will now be pressed. The ordinary differential equations that describe the dynamics of

malaria in the human and mosquito populations with initial value are as follows.







dSh

dt
= Λh − βhSh − µhSh, Sh(0) = Sh0 ≥ 0

dIh

dt
= βhSh − λIh − δIh − µhIh, Ih(0) = Ih0 ≥ 0

dRh

dt
= λIh − µhRh, Rh(0) = Rh0 ≥ 0

dSv

dt
= Λv − βvSv − µvSv Sv(0) = Sv0 ≥ 0

dIv

dt
= βvSv − µvIv, Iv(0) = Iv0 ≥ 0

(4.2.1)

Table 4.1: Model Variables

Symbols Description

Sh Susceptible individuals

Ih Individuals with malaria symptoms

Rh Recover individuals

Sv Susceptible mosquitoes

Iv Infectious mosquitoes

where

βh =
ǫbIv
Nh

and

βv =
ǫσIh
Nh
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represent the force of infection (the infectious rate) on humans and mosquitoes respec-

tively. They controls the rate of spread which represents the probability b, σ of trans-

mitting the disease between a susceptible human and an infectious mosquito and ǫ is the

bite rate. The parameter λ = 1
D

is the recovery rate determined by the average duration

of infection D. Human either die naturally with the rate µh or due to the disease with

probability δ. The parameter µv is the mosquito death rate.

Sh Eh Ih

Rh

βhSh ρh

συ

Sv

ζ2

Ev
βvSv

Iv
ρv

ζ1

µh

µhµhµh

δΛh

µvµvµv

Λv

Figure 4.2: State diagram for the SEIR model

4.2.2 An SEIR Deterministic Model

In the case of an SEIRS model, we considered Buonomo and Vargas [17] extended the

vector-bias model of malaria transmission introduced by Chamchod and Britton [20] to

incorporate both immigration and disease-induced death of humans. The human popu-

lation Nh is divided into four classes: Susceptible, Sh; exposed Eh; infectious, Ih; and

recovered (immune), Rh and the female mosquito population Nv into three classes: Sus-
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ceptible, Sv; exposed Ev and infectious, Iv. Such that Nh = Sh + Eh + Ih + Rh and

Nv = Sv + Ev + Iv. Individuals move from one class to the other as their status with

respect to the disease evolves.

Susceptible, Sh class represent population size of individuals not yet infected with the

malaria parasite at time t and assumes that all individuals are not necessarily at risk.

The class size is enlarged by recruitment through birth and immigration at constant rate

Λh = µhNh, and is decreased either through infection or reinfection to the infectious class

or death at a rate µh.

Exposed class represent the fraction of population whose individuals are newly-infected,

but are not capable of transmitting the infection to susceptible mosquitoes. During this

stage, parasite abundance is very low for effective transmission to other susceptible hosts.

The interaction between susceptible and exposed classes happen at the rate βh when an

infectious mosquito bites a susceptible human, with some finite probability ζ1 that the

parasite will be passed on to the human. Individuals become infected at a rate determined

by the force of infection in the population, which is dependent of the ratio of vectors to hu-

mans, the biting rate per mosquito on humans and the proportion of infectious mosquitoes

in the vector population. The biting rate is the average number of humans bitten by a

mosquito per unit time. The force of infection βh and βv are given by

βh =
ζ1ǫIv
Nh

and

βv =
ζ2ǫIh
Nh

Infectious class, Ih represent the fraction of population which progresses from exposed

class to infectious class at the rate ρh, then infected individuals move to join the immune

class at rate σ due to treatment or natural immunity. While some individual leave the

population through natural death rate µh or disease-induced death rate are δ. Recovered

(immune), Rh represent populations who have recovered from the disease. We assumed

that recovered human have no plasmodium parasites in their bodies and hence they can
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not transmit the infection to mosquitoes. The model equations are given by:







dSh

dt
= Λh − βhSh − µhSh + υRh,

dEh

dt
= βhSh − ρhEh − µhEh,

dIh

dt
= ρhEh − σIh − δIh − µhIh,

dRh

dt
= σIh − (υ + µh)Rh,

dSv

dt
= Λv − βvSv − µvSv,

dEv

dt
= βvSv − ρvEv − µvEv,

dIv

dt
= ρvEv − µvIv,

(4.2.2)

with initial conditions Sh(0), Sv(0) > 0, Eh(0), Ih(0), Rh(0), Ev(0), Iv(0) ≥ 0>0.

Table 4.2: Model parameters

Parameters Description

ǫ Infectious mosquito bites rate

ζ1 Probability of infection

ζ2 Onward infectivity from an asymptomatic infectious

Λh Birth/ Migration rate of humans

Λv Per ca-pita birth rate of mosquitoes

µh Natural death rate of humans

µv Daily mosquito mortality

ρh Human infectious rate

ρv Daily survival probability of mosquito infection

σ Recovery rate

υ human Re-susceptibility rate
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Figure 4.3: Flow diagram for the SEIAR model

4.2.3 An SEIAR deterministic model

We performed an analysis of the parasite transmission using a deterministic compartmen-

tal structure similar to that of Filipe et al [40]. Human population is represented by five

classes (this model takes with treatment into account): Susceptible S, latent E, infected

with the symptomatic disease (severe and clinical cases) I, asymptomatic patient infec-

tion A and recovery R. It’s assumed that individuals become infected at rate βh which

depends on the biting rate ǫ, the prevalence of infection in the mosquito population Z

and the probability of developing blood stage infection b. The following set of differen-

tial equations describes the transmission dynamics among the human population and the

mosquito population in the presence of treatment:
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dS
dt

= Λh − βhS + ηR − µhS

dE
dt

= βhS − ρE − νE − µhE

dI
dt

= νE − τπI − (1 − π)αI − δI − µhI

dA
dt

= ρhE − σA− µhA

dR
dt

= σA+ τπI + (1 − π)αI − ηR − µhR

dX
dt

= Λv − βvX − µvX

dY
dt

= βvX − µvY − ρvY

dZ
dt

= ρvY − µvZ

(4.2.3)

with initial conditions S(0), X(0) > 0, E(0), I(0), A(0), R(0), Y (0), Z(0) ≥ 0. For the

treatment of symptomatic (clinical) infection, we assume that access to treatment happen

at a rate of π and the duration of both drug recovery and the period of seeking treatment

at a rate of τ while natural recovery period is at rate α. The model include births at rate

Λh and deaths at rate µh which can sustain an epidemic or allow new introductions because

new births provide more susceptible individuals. The transmission among mosquitoes is

integrated dynamically and responds to changes in the prevalence of infected humans.

Mosquitoes are recruited into a susceptible class X at a rate Λv and if they become

infected they enter a latent class Y before becoming infectious Z. A constant death rate

µv and population size is assumed. The transitions between these states are described by

Λv, the rate at which mosquitoes become infectious once infected and ρv is the progression

rate of mosquito. The force of infection for human βh and that for mosquito βv are given

by

βh =
bǫZ

Nh

and

βv =
ζiǫI + ζaǫA

Nh

,

where b is the probability of infection if bitten by an infectious mosquito with 0 < b ≤ 1,

ζa is the onward infectivity from an asymptomatic infectious with 0 < ζa ≤ 1, and ζi is

the onward infectivity from a clinical infection with 0 < ζi ≤ 1.
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Table 4.3: Model Parameters: Description and value

Symbol Description Estimate & Ref

Λh Birth rate of humans Humans/Day Est

Λv Per ca-pita birth rate of mosquitoes 0.13 [23]

µh Natural death rate of humans 0.00006614 Est

ǫ Mosquitoes biting rate Derived from data

b Probability of infection Derived from data

ζa Onward infectivity from an asymptomatic infectious 0.2 fixed [134]

ζi Onward infectivity from a clinical infectious Derived from data

ρh Probability of asymptomatic infectious 0.0071 fixed [134]

ν Probability of acquiring clinical disease Derived from data

α Clinical infection rate Derived from data

σ Asymptomatic infection rate 1/200 (1/180-1/250) fixed [52]

δ Humans death rate due to malaria 0.0004 (0.00027-0.0005) fixed [26]

η Human Re-susceptibility rate Based on drug

µv Daily mosquito mortality Derived from data

ρv Daily survival probability of mosquito infection Derived from data

4.2.4 An individual-based simulation model

Here we introduce a slightly modified model of Griffin et al. [51] which is an individual-

based simulation model for parasite transmission incorporating the effect of the switch to

Artemisinin-Combination Therapy (ACT). The model found to explore the potential for

available control measures to reduce parasite prevalence to a low level as laid out in the

control phase of the global elimination framework.

The dynamics of the human host is described by six infectious states: susceptible (S),

treated clinical disease (T), untreated clinical disease (D), asymptomatic patent infec-

tion (A), sub-patent infection (U) and protected by a period of prophylaxis from prior

treatment (P). People move between these states with rates/probabilities described under
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the assumption that on infection, individuals either progress to the clinical disease at a

probability φ or develop patent asymptomatic infection at probability (1 − φ). For those

of clinical disease progress at the probability rate of fT of being treated successfully (T)

and for those of fail treatment move to the class( D) at the probability rate 1−fT which is

eventually becomes patently asymptomatic (A) with rate rD. From patent asymptomatic

infection, individual assumed to be moved to sup-patent stage (U) at a rate rA. It is

assumed that those who are treated enter the period of prophylactic protection (P) with

rate rT before return to susceptible class at a rate of rP .

S I P

D

A U

φβh fT αT

αP

(1 − fT )

αD
βh(1 − φ) φβh

αA

φβh

βh(1 − φ)

αU

SvEv
βh

µh

µh µh

µh

µh µh

µvµv

Λh

Λv

Iv

µh

Pβh

Figure 4.4: Flow diagram for Human and Mosquito infection model

In the deterministic form and without age dependence, the model can be written as
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the following ordinary differential equation (ODE):







dS
dt

= Λh − (βh + µh)S + PαP + UαU

dI
dt

= φfTβh(S + A+ U) − I(µh + αT )

dD
dt

= φ(1 − fT )βh(S + A+ U) −D(µh + αD)

dA
dt

= (1 − φ)βh(S + U) +DαD − φβhA− A(µh + αA)

dU
dt

= AαA − βhU − U(µh + αU)

dP
dt

= IαT − P (µh + αP )

(4.2.4)

where t represents time, fT ratio of clinical cases receiving effective treatment and αT , αD, αA, αU , αP

symbolise human infection durations. We assumed people have a similar biting rate irre-

spective of their body size, in conjugation with Okell study assumption and hence ingnore

the age effect on the force of infection given by βh = ǫbIv/N, where ǫ is the Entomolog-

ical Inoculation Rate (EIR) as measured for adults at time t and b is the probability of

infection if bitten by an infectious mosquito. For the mosquito model, considered the

Anopheles Gambiae as main species transmit Plasmodium falciparum in the country. As-

sumed a vector can be in one of three states, susceptible (Sm), latently infected (Em)

and infectious (Im). The dynamics of infection in the mosquito is given by the set of

differential equations:
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dSv

dt
= Λv − βvSv − µvSv

dEv

dt
= βvSv − λvEv − µvEv

dIv

dt
= λv − µvIv,

(4.2.5)

where λv is the probability that a mosquito survives the extrinsic incubation period (EIP),

µv is the death rate, βv is the force of infection acting on mosquito.

Table 4.4: Model Parameters: Description and value

Symbol Description Estimate & Ref

1/µh Human life expectancy, years Estimated

fT Proportion treated varied between sites Estimated

αA Patent infection duration fixed days Derived from data

αI Clinical disease duration (treated) 5 days (fixed) [51]

αD Clinical disease duration (untreated) 7 days (fixed) [51]

αU Subpatent infection duration fixed days Derived from data

αA prophylaxis from treatment Derived from data

φ The probability of clinical disease Derived from data

4.2.5 Data fitting

In this section, we fit the models presented in section (4.2) to data cases of malaria ob-

tained from the National Malaria Indicator Survey (MIS) of South Sudan. There are a

few statistical techniques that are usually used to undertake parameter estimation when

building a statistical model. In particular, Bayesian arguments are the most novel sta-

tistical tools used to provides a general framework in which models can be successfully

parametrized from data.

In this study we utilise Markov Chain Monte Carlo (MCMC) to obtain the posterior
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Figure 4.5: Model (4.2.1) fits to data and trajectory: For model fitting, black points

show data used to estimate the model parameter values while the red line indicates the

observation generated by the model with the confidence intervals of 50th and 95th. For

simulation shows SIR-states trajectory for human and SI-states trajectory for mosquito.

samples of the parameters of the models. The models fitting was undertaken by using

weekly malaria cases data of 2011 for Central Equatorial State on each model (shown in

Figures 4.5- 4.8. 6. We consider stage variable (I) of all the models to track the daily

number of new cases, assuming that these new cases are reported when they become

symptomatic or infectious. We assume that weekly malaria data were reported according
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Figure 4.6: Model (4.2.2) fits to data and trajectory: For model fitting, black points show

data used to estimate the model parameter values while the red line indicates the observa-

tion generated by the model with the confidence intervals of 50th and 95th. For simulation

shows SEIR-states trajectory for human and SEI-states trajectory for mosquito.

to a Poisson process with reporting rate γ. Since the reporting rate is unknown we

assume it to be no larger than 85%. Assume also that xij (i = 1, . . . , n; j = 1, . . . , 3) are

the observed weekly malaria cases for State j during week i.

Dynamic models take as input the parameters controlling the spread of disease, pro-

ducing predicted incidence of malaria cases as output. During the models fitting process,
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we used uniform distributions to model the prior belief regarding the mosquito biting

rate ǫ and the clinical duration of infections. Our models parameters ǫ, µ, α, σ, ρ, ν, π, b =

0.7, αT , αA, θ, αU , αD, αP , µv, βv, σa and σi were estimated or fixed (in agreement with pre-

vious studies) in setting. These parameters were assumed to be constant and were jointly

estimated by utilizing fitR (version 0.1 [18]) to obtain posterior samples of 10000 iterations

and a burn-in of 1000 iterations used for three chains. The credibility intervals produced

in Figure 4.5 - 4.8 was a 95% confidence intervals with different accepting rate of each

figure.

4.3 Discussion and conclusion

In this chapter, we have presented different models of epidemics, the structure of which

can be determined by the biology of the causative factor and its effects on the host: (i)

the SIR model, when immunity is permanent, (ii) the SEIR model which immunity is not

permanent, (iii) the SEIAR model which represents clinical and subclinical infections and

for infections that do not elicit a long-lasting immune response and (iv) the SIDAUP model

that describeS host-vector systems with life-long protection following for both clinical and

subclinical infections.

In order to assess which of the predictions provided by the trustworthy model, it

is essential to examine the results of different models, thus enabling us to test our un-

derstanding of the disease epidemiology by comparing observed patterns. This study

describes the differential equations that govern the classic deterministic SIR, SEIR and

SEIAR compartmental models to simulate an SIR/SEIR models. In this category of mod-

els, we assumed that individuals experience a different infectious duration, for instance

with/without a long incubation (the “exposed” category) duration where the individual

cannot yet transmit the parasite to others. We have presented and studied the dynamics

of a various determinist models of malaria transmission between human and mosquito,

we fitted these models to actual data and predicted the existence of Disease-Free Equilib-

rium (DFE) and Endemic Equilibrium (EE) of the model within the simulation trajectory
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Figure 4.7: Model (4.2.3) fits to data and trajectory: For model fitting, black points

show data used to estimate the model parameter values while the red line indicates the

observation generated by the model with the confidence intervals of 50th and 95th. For

simulations, shows SEIAR-state trajectory for human and SEI for mosquito trajectory.

Figure (4.5-4.8). Our study also shows that the transmission of the disease is strongly

influenced by the model structure and uncertainty around the parameter’s value. To ac-

count for the real-world complexity of malaria transmission, numerous parameters have

been added to the first two simple models to increase its predictive power.
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Figure 4.8: Model (4.2.4)- (4.2.5) fits to data and trajectory: For model fitting, black

points show data used to estimate the model parameter values while the red line indicates

the observation generated by the model with the confidence intervals of 50th and 95th.

For simulations shows SIAUDP-state trajectory for human and SI for mosquito trajectory.

We observed that the simulations trajectory of each model acts differently Figure (4.9-

4.12). In particular, the SEIR model consists of epidemic, extended peak and short tail

compared to a single SIR pandemic, and it may have more than one peak due to latency.

In Figure 4.13 we observe that the infection has died out or turned to zero so rapidly
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Figure 4.9: Distribution of disease incidence and prevalence generated by the

model (4.2.1): Time responses of the state variables Sh, Ih, and Rh with initial con-

ditions Sh = 882, Ih = 10.00, Rh = 0 against time. Where the parameters: ǫ = 80.5,

µh = 0.00006166, λ = 1/35, δ = 0.0000027, σ = 0.00628, µv = 0.132, and b = 0.7. For

this model Only the susceptible state exists. The human population of infective, and

recovery classes approach zero and reaches disease-free equilibrium

in the case of the model (4.2.1) and (4.2.3) due to the impact of treatment, while in the

case of model (4.2.2) the disease gradually decrease compared with model (4.2.4)- (4.2.5)

where the infection in the steady stage (is much stable). This informs the significance of

the structure of models to reveal the true underlying system traits.

From the analytical point of view, the ideal is to harness mathematical models that

represent the population in specific environments as a system, that is changing over time.

The behavior of the system can be modified by controlling one or more variables that

can be manipulated (e.g., treatment) to achieve the desired outcomes. Based on ideal

representation, a basic decision can be defined using the principles of optimal control.

In the next chapters, we consider a more realistic model by incorporating the important
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Figure 4.10: Distribution of disease incidence and prevalence generated by the

model (4.2.2): Time responses of the state variables Sh, Eh, Ih, and Rh with initial

conditions Sh = 882, Eh = 0, Ih = 10.00, Rh = 0 against time. Where the parameters:

ǫ = 185.5, µh = 0.00006166, δ = 0.0000027, σ = 0.00628, µv = 0.132, and b = 0.7.

ρh = 1/12, ν = 1/350, ρv = 0.08. For this model all the distinct states coexist in the

population and therefore approach endemic equilibrium

factors that may drive the malaria disease into a particular setting. In addition, we also

take into account the degree of vulnerability of human populations in the model.
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Figure 4.11: Distribution of disease incidence and prevalence generated by the

model (4.2.3): Time responses of the state variables S, E, I, A, and R with initial

conditions S = 882, E = 0, I = 10.00, A = 0, R = 0 against time. Where the param-

eters: ǫ = 125.5, µh = 0.00006166, δ = 0.0000027, σ = 1/200, µv = 0.132, ν = 1/10,

π = 0.6 b = 0.7. ρ = 1/36, τ = 1/9, α = 1/8, βv = 0.083, ζa = 0.3, and ζi = 0.62784. For

this model Only the uninfected state exists. The human population of Infective classes

approach zero and reaches disease-free equilibrium
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Figure 4.12: Distribution of disease incidence and prevalence generated by the

model (4.2.4-4.2.5): Time responses of the state variables S, I, A, D, U ,and P with

initial conditions S = 882, A = 0, I = 10.00, U = 0, D = 0, P = 0 against time. Where

the parameters: ǫ = 250, b = 0.75, µh = 0.000514, αT = 0.03523, ft = 0.71, αA = 1/56,

θ = 0.04, αU = 1/200, αD = 1/21, αP = 1/50, σa = 0.0084, σi = 0.092, µv = 0.0013,

λv = 0.08. For this model all the distinct states coexist in the population and therefore

approach endemic equilibrium
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Chapter 5

Assessing the role of climate factors

on malaria transmission dynamics

Malaria is endemic in South Sudan and it is one of the most severe diseases in the war-

torn nation. There has been much concern about whether the severity of its transmission

might depend upon climatic conditions that are related to the reproduction of the single-

cell parasite attaching to female mosquitoes, especially in high altitude areas. The country

experiences two different climatic conditions; namely one tropical and the other hot and

semi-arid. In this study, we aim to assess the potential impact of climatic conditions on

malaria prevalence in these two climatically distinct regions of South Sudan. We develop

and analyze a host-mosquito disease-based model that includes temperature and rainfall.

The model has also been parametrized in a Bayesian framework using Bayesian Markov

Chain Monte Carlo (MCMC). The mathematical analysis for this study has included

equilibria, stability and a sensitivity index on the basic reproduction number R0. The

threshold R0 is also used to provide a numerical basis for further refinement and predic-

tion of the impact of climate variability on malaria transmission intensity over the study

region. The study highlights the impact of various temperature values on the population

dynamics of the mosquito.
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5.1 Introduction

Malaria is the most prevalent human mosquito-borne disease caused by a single-cell par-

asite that infects female Anopheles mosquitoes [11, 24]. This disease remains one of the

biggest health threats facing humanity and is transmitted more robustly and incessantly

in Sub-Saharan Africa than it is elsewhere. The Republic of South Sudan (RSS), the

youngest country with civil unrest is one of the countries in Sub-Saharan Africa that

is severely confronted by malaria. There have been approximately 1.54 million malaria

episodes and almost 718 deaths reported in 2014, with 65% of those being children [49].

Moreover, malaria is endemic within the country [49]. However, little is known about local

environmental conditions that may contribute to the severity of the disease during wet

seasons. Improving our perception of host-parasite interactions in the war-torn nation is

a priority in which mathematics can bring insight, especially regarding conjectures that

attribute this gravity to climatic factors.

The malaria parasite depends upon the Anopheles mosquito to supplement its life

cycle through a human intermediary. This relationship means that a climatic influence

on mosquitoes’ bionomics will trigger the trend towards malaria that is most likely to

follow the climatic pattern, especially in the endemic zone. For this reason, an increase

in mosquito density leads to a higher risk of malaria prevalence. For instance, Abiod and

Ewing [1, 34] have recently revealed that climate fluctuations not only have a reproducible

effect on the mosquito lifespan, but also impact positively on the development of sporo-

gonic stages of the malarial parasite within the mosquito’s body. Warmer temperature

increases mosquito activity and more rainfall can lead to an abundance of mosquito larvae

[11, 12, 59, 101]. Thus, the use of mean temperatures might be appropriate under certain

conditions, which are generally found to have significant implications in determining the

risk of malaria [14, 112].

Similar research [103, 129] has shown that mosquitoes are particularly active at dusk

and dawn, while prolonged sun exposure can lead to their dehydration. Little is known

about the survival of mosquito-borne diseases and malaria transmission during the winter,
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however, it is often noted that mosquitoes tend to disappear in winter or when tempera-

tures drop below 10◦C. Nonetheless, the vertebrate host is the immediate source of winter

infection in mosquitos, since the virus simply survives in the cold weather, waiting for

warmer weather to reproduce. According to a study by [129] female mosquitoes spawn

tumblers, which ultimately freeze in winter (or at temperatures below 10◦C). The frozen

eggs are saved until the temperature warms, when mosquito proliferation begins again,

with disastrous effects on humans. These findings point to the effect of changes in ambient

temperatures and precipitation levels on mosquito populations and thus stimulates inter-

est in understanding the impact of these factors on mosquito-borne disease transmission.

In South Sudan malaria transmission is alleged to be perennial across the country,

with peaks towards the end of the rainy season from September to November [35, 78], as

freshwater pools become mosquito breeding sites. The country has two different climatic

conditions, a hot semi-arid climate and a tropical climate. It is observed that malaria

prevalence is significantly higher in the southern region (a tropical region, i.e., Central

Equatorial State (CES)) than it is in northern region (a hot semi-arid region, i.e., Western

Baher El Ghazal State (WBZ)) as is illustrated in Figure 5.1. The disease prevalence could

be as high as 75% to 100% in some counties in the South. It is still uncertain, and a matter

of discussion, whether and how the changes in transmission might occur. Understanding

the dynamics of mosquito population is crucial for gaining insight into the abundance of

mosquitoes, and thus design operational strategies for control. With this backdrop, we

endeavor to understand the exact role that climate plays on the transmission of malaria in

two different climatic zones of South Sudan through mathematical modelling. The CES

and WBZ States are chosen (one from each climatic zone) due to the severity of malaria

within their region. This is the first study designed for this purpose in CES and WBZ

since the call for the implementation of the malaria control program.

A number of studies using mathematical models have established the direct role that

climate variables, such as temperature and rainfall, play in the transmission dynamics of

vector-borne diseases [11, 29, 34, 45, 58, 64, 71, 79, 101, 112, 143]. Yang [143] presented

a malaria transmission model by taking into account different levels of acquired immu-
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Figure 5.1: Weekly malaria reported cases of 2015 for (A) Western Baher el Ghazal State

(in region 2) and (B) Centeral equatorial State (in region 1)

nity among humans and, most importantly, temperature-dependent parameters related

to vector mosquitoes. A model analysis was carried out by means of the basic repro-

duction number R0. Additionally, an expression was derived for an endemic equilibrium

that is biologically relevant only when R0 > 1. Hoshen and Morse [58] formulated a dy-

namic malaria model comprising both the weather-dependent within-vector stages and the

weather-independent within-host stages. Martens et al. [79] used rules-based modelling

approach to examine how climate change might affect global malaria transmission. Their

model consists of several linked systems: the climate system, the malaria system (divided

into a human subsystem and a mosquito subsystem), and the impact system. Birley [71]
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presented a simple mathematical model to investigate the effects of temperature on the

ability of Anopheles maculipennis to transmit Plasmodium vivax malaria.

In recent decades also several contributions have been made in Africa concerning the

distribution of mosquitoes affected by various environmental (climatic) factors such as

temperature, humidity, rainfall and wind [1, 3, 33, 59, 63, 72, 104, 141, 142]. For instance,

Parham et al. [104] developed an integrated modeling framework for assessing and pre-

dicting the simultaneous effects of rainfall and temperature on malaria dynamics. They

illustrated the role that large-scale climate simulations and infectious disease systems may

provide in predicting changes in the basic reproduction number across Tanzania. This

offers powerful tools for understanding geographic shifts in incidence as climate changes.

Yamana et al. [141] assessed the influence of climate change on malaria transmission

in West Africa. Their simulation results stated that the changes in the pattern of rain-

fall play a significant role on malaria transmission compared to the potential impact of

rising temperatures. They suggest that it will be necessary to integrate the changes in

rainfall pattern in order to accurately project the environmental suitability for malaria

transmission in future climates. Lunde et al. [72] formulated a realistic representation of

Anopheles Gambiae s.s. and Anopheles Arabiensis in order to ameliorate the understand-

ing of the dynamics of these vectors. Their study highlight how parameters can influence

the success of these two species, as temperature, relative humidity and mosquito size are

essential aspects in malaria transmission.

In spite of these studies, most modellers often ignore to validate their climate-based

models with field data in order to carry out a quantitative assessment of the human

component of the model. The aim of this chapter is to assess the impact of temperature

and rainfall on the dynamics of mosquito population of a certain region of South Sudan

and taking into consideration the climate-driven dynamics model. In addition, we further

consider the importance of evaluating the numerical values of the model parameters with

real data in order to allow for a computational simulation of dynamics that provides

accurate prediction of the reaction.

Without accurate predictions, calculations of the basic reproduction number which ex-
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plains the capability of a disease to persist in a population, will be subject to a significant

error. This may help in a better understanding of the regulations of the biological system

of the disease that can help decision-makers in developing efficient intervention strate-

gies to tackle the disease. Therefore, the model framework is designed to accommodate

human-mosquito population dynamics and to estimate its parameters using the Bayesian

approach. Bayesian approaches, in particular Markov Chain Monte Carlo (MCMC) turn

out to be a powerful inference tool for complex systems raised in behavioral science and

computational biology [48, 144]. The input data required to validate our model are malaria

incidence cases at state level in each region for a given period of time. The climate data

are obtained from [122] and Regional Meteorological Service [42].

5.2 Spatial trends

According to Köppen and Geiger, South Sudan has two different climates [106]:

(i) A tropical savanna climate which is characterized by a rainy season of high humidity

followed by a dry season with mild temperatures ranging from an average minimum of

20◦C to a maximum of 38◦C [106], (ii) A hot semi-arid climate characterized by a more

moderate summer temperature regime, with daily mean temperatures of around 19◦C.

The study is conducted in two climatically distinct regions: Equatorial region and Baher

El Ghazal region. A map of the study area is provided in Figure 5.2. The seasonal

changes in these environments drive a strong vectorial capacity that sustains high levels

of transmission. Our study domain is determined by longitude and latitude, which is

interpolated to the spatial resolution data. These two distinct regions are described as:

Region (1): The Southern Part of the country is characterized by an equatorial (trop-

ical) climate, forested, with comparatively lower refugee migration flows, but with some

seasonal migration related to agricultural work. This region is divided into 241 counties

and mostly comprised of greenbelt, hills and mountains. Average rainfall is between 901

and 1800 mm annually, with the longest rainy season lasting from 7–8 months, as can

be seen in Figure 5.2( right). Humid conditions and a relatively warm climate make this
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region conducive to the reproduction of mosquitoes. Our study focuses on the Central

Equatorial State (CES) as a representative of this region.

Region (2): The northern part of the country is divided into 128 counties and has

a climate that is classified as hot and semi-arid. The landscape features western and

eastern flood plains that slope gently towards the rivers. Annual average rainfall ranges

from between 400 to 600 mm and the duration of the rainy season is from 5–6 months (see

Figure 5.2( right)). Our study focuses on the Western Baher El-Ghazal State (WBGZ)

as a representative of this region.
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Figure 5.2: South Sudan States Map (left) and Average rainfall and Temperature for CES

& WBGZ (right)
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5.3 Method

We begin with the formulation of a classical epidemiological model that considers human

and mosquito populations. The model structure is similar to that of [87] that includes

a realistic, climate-based model for capturing the simultaneous effects of rainfall and

temperature on malaria transmission. The human component is utilized to fit the model

to the actual observed data via a Bayesian approach in order to predict future samples

with available observational data. Both components of the model are used simultaneously

to estimate mosquito bite rate that is assumed to be influenced by LLINs intervention

coverage and not climate-dependent. We hence end this section by applying a Bayesian

approach to estimate the posterior distribution of parameters given actual-settings data.

5.3.1 Model formulation

Based on the foregoing and established studies, we presume the heterogeneity of malaria

in South Sudan can be explained by the varied agro-climatic conditions that exist between

the regions. Consequently, we slightly extend the model in [87] by using a deterministic

compartmental structure for the endemic malaria disease incorporating the climate factor

that leads to understanding the impact of temperature and rainfall. This compartmental

model captures the situations including intervention coverage and allows to calibrate

parameters against the real observed data. The human components of the model is

presented to capture the relationship between effective treatment and parasitic prevalence.

The total mosquito population NM is divided into aquatic mosquitoes (egg, larva and

pupa) stage denoted by M and adult mosquitoes NV . The adult mosquitoes is sub-

divided into susceptible mosquitoes Sv, mosquitoes exposed to malaria parasite Ev and

infectious mosquitoes IV . In model formulation, we assume all variables represented in

each compartments are differentiable with respect to time and all parameters are non-

negative. As illustrated in the flow diagarm (Figure 5.3.1) the total population of humans

and mosquitoes at time t will be:

NH(t) = SH(t) + EH(t) + IH(t) +RH(t);
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and

NM(t) = M(t) +NV (t)

respectively.

M
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RH

SH

EH
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η(T,R) ΛV

σV T

ρ
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σH

βV T (1 − M
K
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µV T

µV T
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µH

µH

(δ + µH)

µH

Γ

Figure 5.3: Flow diagram for Human and Mosquito infection model

The susceptible compartment is recruited by birth into the community at a rate Γ

and increased with recovery rate κ when individuals loose their immunity. We presume

susceptible individuals (S) acquire malaria and become infected at a rate ΛH when they

are bitten by infectious mosquitoes (entomological inoculation rate; EIR). After bites

from infectious mosquitoes, individuals move to the exposed humans compartment. The

exposed human population remains exposed for a fixed number of days as the parasites

still in the asexual stages in their bodies before moving to infected humans with proba-

bility σH . On infection, they develop clinical infection in which they have gametocytes

in their bloodstream. Those that are developing disease either die (naturally or due to

the disease with probability δ) or successfully recovered (naturally or with treatment)

with rate ρ and subsequently enter a period of prophylaxis (recovery state R). Upon

treatment intervention, the rate ρ is determined by the proportion of treatment access

π, duration of drug recovery period ν and treatment seeking period τ , hence is given by

ρ = (1 − π)/γ + π/(ν + τ), where γ is natural recovery period. Those who are recovered
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either lose their immunity and return to susceptible class or naturally die. The determin-

istic model for the human dynamics is as follows







dSH
dt

= κRH − ΛH SH − SHµH + Γ,

dEH
dt

= ΛH SH − (µH + σH)EH ,

dIH
dt

= σHEH − (µH + δ + ρ) IH ,

dRH

dt
= ρ IH − (µH + κ)RH ,

(5.3.1)

where t represents time and the force of infection ΛH is assumed to vary by degree of

exposure to mosquito due to geographic variation, governed by the function

ΛH =
ǫβHV IV
NH

,

where ǫ = (1−V χ)ǫ is mosquito biting rate that is assumed to be influenced by LLINs in-

tervention coverage, βHV is the probability of infection if bitten by an infectious mosquito.

We consider Anopheles Gambiae mosquitoes which is the main anopheles species that

transmits Plasmodium Falciparum in South Sudan to be included in the model. We

model a life cycle of mosquito in a compartmental formulation [70], starting with aquatic

mosquitoes stages, eggs, larvae and pupae grouped into a single compartment M and

further subdivide adult mosquito into three compartments. When Adult mosquitoes lay

eggs at rate βV T which is temperature dependent, the aquatic (immature) mosquitoes

population is then produced at the temperature and rainfall-dependent rate βV T (1 −
M/K) [87, 105], by the usage of the carrying capacity parameter K for limitation of

the immature mosquito population that depend on habitat availability. The immature

mosquito population develop into adult mosquitoes at the birth rate η(T,R) which is

dependent on temperature- and rainfall and also decreases by natural death rate µi(T ).

Figure 5.4 illustrates the effect of climate on these parameters of immature mosquitoes.

Thereafter, adult mosquito population is subdivided into three compartments: sus-

ceptible SV , latent infected EV and infectious IV . Susceptible female mosquitoes emerge
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from the last immature stage at the birth rate adapted from [87, 105] as

η(T,R) =
̟(T )pi(R)p2(T )

τEA(T )
,

where ̟(T ) is the total number of eggs laid per adult per oviposition which is temperature

dependent, and pi(R) is the daily survival probability of immature in stage i given rainfall

R (where i = 1, 2, and 3 corresponds to eggs, larvae, and pupae respectively). It is assumed

that survival probability of eggs and pupae are independent of temperature [33, 105] and

p2(T ) = exp (−(0.00554T − 0.06737)) is daily survival probability of the temperature

dependent larvae. The total development time of immature mosquito, denoted by τEA(T )

is given by 1/(−0.00094T 2 + 0.049T − 0.552).

In addition, the extreme levels of rainfall may decrease the immature mosquitoes by

flushing out larvae and breeding sites [11]. Thus, assumed that a quadratic relationship

between Rainfall R and the daily survival probabilities of immature mosquitoes pi(R) is

defined by [105] as pi(R) =
4∗P ∗

i

R2
L

R(RL − R), where RL is the rainfall limit beyond which

breeding site get flushed out and no immature mosquitoes survive and P ∗
i is the maximum

daily survival probability of each stage i.

Adult mosquitoes seeking host for meal might die at a temperature-dependent rate

µV T . Survivors seeking meal acquire malaria at a rate ΛV which depends on the infec-

tiousness of the human population, since study mainly performed on human host.

ΛV =
ǫ(βV HIH +RHξ)

NH

where βV H and ξ are probability of infection from infectious and recovery humans to

susceptible mosquitoes respectively.

When the mosquito bites an infectious human, the parasite (in the form of gameto-

cytes) enters the survivors mosquito, and subsequently process to the infectious compart-

ment IV through a latent period EV . The mosquitoes become infectious at rate σV T to

humans and remain infectious for life (until they die). The population dynamics and in-

fection process of anopheles Gambiae mosquitoes are given by the following set of ordinary

differential equations.
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dM

dt
= βVT

(

1 − M

K

)

(NV ) − µiM − η(T,R)M,

dSV
dt

= η(T,R)M − ΛV SV − SV µVT ,

dEV
dt

= ΛV SV − (µVT + σVT )EV ,

dIV
dt

= σVTEV − IV µVT ,

(5.3.2)

Table 5.1: Parameters for Anopheles Gambiae Model

Description Estimate and function form Ref

Per capita egg deposition rate, βV T −0.153T 2 + 8.61T − 97.7 [100]

Immature mosquito death rate, µi(T ) 1.0257 − 0.094T − 0.0025T 2 [87]

Adult mosquito death rate , µV T − ln(0.522 − 0.000828T 2 + 0.0367T ) [82]

Adult mosquito birth rate, η(T,R) ̟(T )p1(R)p2(R)p2(T )p3(R)
τEA(T )

[82]

The lifetime number of eggs laid, ̟(T ) βV T/µV T ) [82]

Daily survival probabilities of eggs, p1(R) 4∗.93
R2

L

R(RL −R) [105]

Daily survival probabilities of larva, p2(R) 4∗0.25
R2

L

R(RL −R) [105]

Daily survival probabilities of pupae, p3(R) 4∗0.75
R2

L

R(RL −R) [105]

Daily survival probabilities of larva, p2(T ) e−(0.00554T−0.06737) [105]

Rainfall beyond which no immature stages survive, RL 50 [87]

Duration of immature development, τEA(T ) 1/(−0.00094T 2 + 0.049T − 0.552) [82]

Progression rate of mosquitoes, σV T e˘1/(−4.41+1.31T−0.03T 2) [33]

Carrying capacity of larvae K 1000000 [87]

We note that the model describes a population and therefore it is very important to

prove that all the state variables SH(t);EH(t); IH(t);RH(t);M(t);SV (t);EV (t) and IV (t)

are non-negative at all times. For the biological benefit System (5.3.1) and (5.3.2) will be

analyzed in a suitable feasible region ℜ defined by.

ℜ =

{

(SH ;EH ; IH ;RH) ∈ R
4
+|0 ≤ NH(t) ≤ Γ

µH
, (M ;SV ;EV ; IV ) ∈ R

4
+|0 ≤ NV (t) ≤ ηM

µV T

}

.
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Figure 5.4: Simulation of model parameter function, showing mosquitoes cycle develop-

ment against various values of mean monthly temperature in the range of 15- 40◦C and

rainfall in the range of 0-50 mm, using parameter functions in Table 5.1, (A) dependence

of eggs deposition rate process on temperature (B) dependence of the daily survival prob-

ability of mosquito during aquatic stages on temperature (C) the per-capita death rate

of mosquito during aquatic stages depend on temperature (D) the per-capita maturation

rate of pupae (into adult mosquitoes) as a function of rainfall and temperature.

If the system has non-negative initial data, then the solution will remain inside ℜ for

all time t > 0. Thus we state the following lemma.

Lemma 5.1.

Given the model (5.3.1), suppose that SH(0) ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥
0,M(0) ≥ 0, SH ≥ 0, EH(0) ≥ 0, IH(0) ≥ 0 for all t. Then the solution SH(t); EH(t);
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IH(t); RH(t); M(t); SV (t); EV (t); IV (t) of the model remain positive for all time t > 0.

Moreover,

lim
t7→∞

NH(t) ≤ Γ

µH

Furthermore, if

NH(0) ≤ Γ

µH

then

NH(t) ≤ Γ

µH

In particular, the region ℜ is positively invariant. It can be seen from the result in

Figure 5.8 that human mobility is sufficient to preserve malaria disease firmness in the

patches with the low transmission.

Proof. Let us assume that the set X below is bounded.

X = {T ≥ 0 : SH > 0, EH > 0, IH > 0, RH > 0;M > 0;SV > 0;EV > 0; IV > 0, ∀ 0 ≤ t ≤ T}.

Then X has a supremum T . Since SH(t), EH(t), IH(t), RH(t),M(t), SV (t), EV (t) and IV (t)

are continuous, we have T > 0. From the first equation of the model (5.3.1) we have

dSH
dt

= Γ − ΛHSH + κRH − µHSH .

Let B(t) = exp{µHt+
∫ t

0 ΛH(s)ds}, and note that B(0) = 1.

Then we have

d

dt
[SH(t).B(t)] = ṠH(t).B(t) + SH(t).Ḃ(t)

= ṠH(t).B(t) + SH(t).B(t)(µh + ΛH(t))

= B(t)[ṠH(t) + SH(t).(µH + ΛH(t))]

= (Γ + κRH(t))B(t).

(5.3.3)

Hence

SH(T ).B(T ) − SH(0).B(0) =
∫ T

0
(Γ + κRH(t))B(t)dt,
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so that

SH(T ) = B(T )−1[SH(0) +
∫ T

0
(Γ + κRH(t))B(t)].

Note that RH(t) > 0, B(t) > 0 for all t, and so SH(0) ≥ 0. Therefore SH(T ) > 0.

A similar reasoning on the remaining equations shows that EH , IH , RH , M , SV EV , and

IV are always positive for t > 0.

Further by adding the equations of the system (5.3.1) we obtain

dNH

dt
= Γ − µHNH(t).

Using a standard comparison

NH(t) =
Γ

µH
+ (NH(0) − Γ

µH
)e−µH t

Therefore,

lim
t7→∞

supNH(t) =
Γ

µH
.

This establishes the invariance of X as claimed. ✷

5.3.2 Model fitting

In this subsection, we fit our model to data in a Bayesian framework using Markov Chain

Monte Carlo (MCMC) methods. The Bayesian method combines the likelihood of the data

as well as the prior distribution of the parameters of the model to obtain the posterior

distribution of the parameters of the model, expressed by

p(θ|Data) =
p(Data|θ)p(θ)
p(Data)

,

where p(θ|Data) is the posterior, p(Data|θ) is the likelihood, p(θ) is the prior, p(Data)

is a normalization constant. This allows one to make inference based on the posterior

mean/ median of the parameters. The parameters driving the human model were jointly

estimated by utilizing MCMC in fitR (version 0.1 [18] ) package to clinical incidence data,

weighted by a demographic change.
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Figure 5.5: Illustration of the model fitting and the trajectory simulation, the model

assessment (line) run against data (dots) of CES for 2015 attached with the parameters

estimated during fitting process in Table 5.2.

The process of parameter estimation will guide to more accurate and informative model

predictions of malaria disease on these specific locations. A compartmental equation was

added into the human model to account for malaria incidence cases during model fitting

process. The model fitting was undertaken by using weekly malaria data of 2015 for each

region under investigation (for CES and WBGZ shown in Figure 5.5 and 5.6 respectively)

using MCMC. The model is run from the year 2000 to reach a steady state before being

fitted to data from the year 2011, then validated with data from 2011 to 2015.

We assume that weekly malaria data were reported according to a Poisson process

with reporting rate ζ. Since the reporting rate is unknown we assume it to be no larger

than 85%. We assume that xij(i = 1, . . . , n; j = 1, . . . ,m) are the observed weekly malaria

incidence cases for state j during week i. We used uniform distributions to model the

prior belief regarding the parameters. During this fitting process the model parameters

βHV , ǫj, γ, τ , ν, and κ were estimated and presented in Table 5.2. These parameters were

assumed to be constant and were jointly estimated by utilizing fitR (version 0.1 [18]) to

obtain posterior samples 10000 iterations and a burn-in of 1000 iterations used for three

chains. The confidence intervals produced in Figure 5.5 and 5.6 was a 95% confidence
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Figure 5.6: Illustration of the model fitting and the trajectory simulation, the model

assessment (line) run against data (dots) of WBGZ for 2015 attached with the parameters

estimated during fitting process in Table 5.2.

intervals with accepting rate of 0.22 and 0.178 for CES and WBGZ respectively.

5.4 Model analysis

The existence of a trivial equilibrium of the model (5.3.1) and (5.3.2) will be explored by

setting the equations equal to zero. Consider the following disease free model:

dSH

dt
= Γ − µHSH

dM
dt

= βV T
(

1 − M
K

)

SV − µi (T )M − η (T,R)M

dSV

dt
= η (T,R)M − µV TSV

(5.4.4)

This system has two equilibrium points:

i. The vector free equilibrium point E00 =
(

Γ
µH
, 0, 0

)

and

ii. The disease free equilibrium point

E0 =

(

Γ

µH
,
KµV T (η (T,R) + µi (T )) (Θ − 1)

η (T,R) βV T
,
KµV T (η (T,R) + µi (T )) (Θ − 1)

βV TµV T

)
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Table 5.2: Parameters for the human transmission model

Description Est for CES Est for WBZ

Human natural death rate, µH 0.00006166 0.00006166

Population size, N 882846 266745

Mosquito biting rate, ǫ 26.065 18.895

Probability of infection from infected mosquito , βHV 0.6458 0.7458

lost of immunity, κ 1/25 1/36

Rate of progression of humans from E to I, σH 1/16 1/13

Proportion of infected population receving treatment π 0.84978 0.92258

All elimination half-life, ν 7 5

Treatment seeking period, τ 4 3

Natural recovery period, γ 166 152

Clinical death rate of humans due to malaria, δ 0.0027 0.0011

Probability of infection from Infected human , βV H 0.48 0.48

probability of infection from recovery human, ξ 0.06 0.0028

where Θ := η(T,R)βV T

µV T (µi(T )+η(T,R))
.

Note that the disease free equilibrium is positive if and only if Θ > 1.

Next, we show that Θ is the basic offspring number.

Consider the submodel of (5.4.4) formed by the equations of the vector only, that is

dM
dt

= βV T
(

1 − M
K

)

SV − µi (T )M − η (T,R)M

dSV

dt
= η (T,R)M − µV TSV

(5.4.5)

Let G =






βV TSV

0




 denote the vectors of new offspring in the disease free model (5.4.5)

and

let W =






βV T
M
K
SV + µi (T )M + η (T,R)M

−η (T,R)M + µV TSV




 be the vector formed by the other

transfers.
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The next generation matrix is given by GW−1 where G and W are the Jacobian

matrices evaluated at (0, 0) of G and W respectively.

Such that :

GW−1 =






− η(T,R)βV T

(µi(T )+η(T,R))µV T

βV T

µV T

0 0




 .

The basic offspring number, Θ, is given by the spectral radius of GW−1.

We obtain

Θ = ρ (GW−1) = max
(

0,
∣
∣
∣− η(T,R)βV T

(µi(T )+η(T,R))µV T

∣
∣
∣

)

= η(T,R)βV T

(µi(T )+η(T,R))µV T
.

Evaluating the Jacobian matrix at the vector free equilibrium, we obtain:

J0 =










−µH 0 0

0 −µi (T ) − η (T,R) βV T

0 η (T,R) −µV T










The characteristic polynomial of the Jacobian matrix evaluated at E00, is

(µH + z)
(

z2 + (η (T,R) + µi (T ) + µTV ) z + µTV (η (T,R) + µi (T )) (1 − Θ)
)

Hence, E00 is locally asymptotically stable if and only if Θ < 1.

Similarly, the Jacobian matrix at the disease free equilibrium

J1 =










−µH 0 0

0 −βV TSV 0

K
− µi (T ) − η (T,R) βV T

(

1 − M0

K

)

0 η (T,R) −µV T










The characteristic polynomial of the Jacobian matrix evaluated at E0, is

(µH + z)






Kz2 + (η (T,R)K + µi (T )K +KµV T + βV TSV 0) z

+βV Tη (T,R)M0 + SV 0βV TµV T +K (η (T,R)µV T + µi (T )µV T ) (1 − Θ)






Hence, E0 is locally asymptotically stable if Θ > 1.

Next, we calculate the basic reproduction number. The basic reproduction number,

denoted by R0, plays a vital role in the propagation of the relevant epidemic. It gives
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conditions on when a disease free equilibrium exists or is unstable. The threshold quan-

tity, R0, is defined (see [131] for instance) as the average number of new infections that

occur when one infective individual is introduced into a completely susceptible human

population. Here, the R0 of the model (5.3.1) and (5.3.2) is establish in Lemma 5.2 using

the next generation matrix concomitant with disease free equilibrium.

Lemma 5.2. The basic reproduction number of the system (5.3.1) and (5.3.2) is

R0 =

√
√
√
√
ǫ2σV TσHµHβV HβHVK (ξ ρ+ κ+ µH) (µi (T ) + η (T,R)) (Θ − 1)

ΓβV T (ρ+ δ + µH) (σH + µH) (κ+ µH) (σV T + µV T )µV T
.

Proof.

Let F denote the vectors of new infection in the full model and let F and V be the

vector formed by the other transfers. We have

F =

















ǫ βHV IV SH

SH+EH+IH+RH

0

0

ǫ(ξ RH+βV H IH)SV

SH+EH+IH+RH

0

















,V =

















(σH + µH)EH

−σHEH + (ρ+ δ + µH) IH

−ρ IH + (κ+ µH)RH

(σV T + µV T )EV

µV T IV − EV σV T

















The next generation matrix is given by FV −1 where F = ∂FE0 and V = ∂VE0 denote the

jacobian matrices of F and V evaluated at E0. Note that some of our model parameters

are climate dependent, but during the calculation procedure of the next generation matrix

are deemed as constant. We obtain:

FV −1 =

















0 0 0 ǫ βHV σV T

(σV T +µV T )µV T

ǫ βHV

µV T

0 0 0 0 0

0 0 0 0 0

A B C 0 0

0 0 0 0 0
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where

A =
βHVKǫσHµH (η (T,R) + µi (T )) (κ+ µH + ξρ) (Θ − 1)

ΓβTV (σH + µH) (δ + ρ+ µH) (κ+ µH)

B =
βHVKǫµH (η (T,R) + µi (T )) (κ+ µH + ξρ) (Θ − 1)

ΓβTV (δ + ρ+ µH) (κ+ µH)

C =
ǫ βV Hξ µHK (µi (T ) + η (T,R)) (Θ − 1)

Γ βV T (κ+ µH)

The eigenvalues of FV −1 are 0,−
√

ǫβHV σT V A
µT V (σT V +µT V )

and
√

ǫβHV σT V A
µT V (σT V +µT V )

.

Therefore the basic reproduction number for the system is as claimed. ✷

According to a general result established in [131], we conclude that the disease-free

equilibrium E0 of the model (5.3.1) and (5.3.2) is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

We will now analyse the sensitivity index of R0 with respect to the parameters V , χ,

T and R according to the definition below.

Definition 1. The sensitivity index of R0 with respect to a parameter p is given by

ΓpR0
=
∂R0

∂p

p

R0

.

The sensitivity index of R0 with respect to χ and V are illustrated in Figure 5.7 and

given by

SV :=
∂R0

∂V

V

R0

=
χV

χV − 1
=
∂R0

∂χ

χ

R0

With regard to the sensitivity index of R0 to T and R, we observe from Figure 5.8

that when the rainfall is averaging 50 mm, temperatures below 33.7◦C have a negative

impact on R0 with the proportional decrease in R0 declining with increasing temperatures

to reach zero when the temperature reaches 33.7◦C. Beyond this value, the temperature

starts having a positive impact on R0 in which increased disease transmission. We also

observe that when the rainfall is equal to 70 or 80 mm, temperatures below 28.8 ◦C have

a positive impact on R0. Moreover, as temperature increases, the proportional increase in

R0 declines to become equal to zero when the temperature reaches 28.80C. Above 28.8◦C,
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any increase in temperature leads to a decline in R0 with the proportional decline in R0

increasing as temperature increases.

Figure 5.7: Sensitivity index of R0 with respect to χ and V .

Figure 5.8: Sensitivity index of R0 with respect to R and T .

Endemic equilibrium point E∗

For simplicity, we first convert the systems (5.3.1) and (5.3.2) parameters into a constant

version by setting η(T,R) = η, βV T = βV , σV T = σV , µV T = µV and µm(T ) = µm,

then evaluate the critical points of the systems (5.3.1) and (5.3.2). The systems have the

nontrivial critical point E∗ = (S∗
H , E

∗
H , I

∗
H , R

∗
H ,M

∗, S∗
V , E

∗
V , I

∗
V ) defined by
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S∗
H = Γ(ρ+δ+µH)(κ+µH)(σH+µH)

(ρ+δµH)(κ+µH)(ΛH+µH)(σH+µH)−ΛHκρσH

E∗
H = ΓΛH(ρ+δ+µH)(κ+µH)

(ρ+δ+µH)(κ+µH)(Λ+µH)(σH+µH)−ΛHκρσH

I∗
H = ΓΛHσH(κ+µH)

(ρ+δ+µH)(κ+µH)(Λ+µH)(σH+µH)−ΛHκρσH

R∗
H = ΓΛHρσH

(ρ+δ+µH)(κ+µH)(Λ+µH)(σH+µH)−κΛρσH

M∗ = βV NV K
(βV Nv+µmK+βV K)

S∗
V = βV βV NvK

(σV +µV )(βV NV +µmK+ηK)

E∗
V = ΛV βV ηNV K

(ΛV +µV )(σV +µV )(βV NV +µmK+ηK)

I∗
V = ΛV σV βV ηNV K

µV (ΛV +µV )(σV +µV )(βV NV +µmK+ηK)
.

(5.4.6)

In this study, we consider the global stability of endemic equilibrium of our system.

Lemma 5.3 If R0 > 1, then the unique endemic equilibrium of the system is globally

asymptotically stable in the interior of ℜ.

Proof: Consider a nonlinear function

G = L1(SH , EH , IH , RH) + L2(M,SV , EV , IV ),

where

L1 =

(

SH−S∗
H−S∗

H ln
SH
S∗
H

)

+ A1

(

EH−E∗
H−E∗

H ln
EH
E∗
H

)

+A2

(

IH−I∗
H−I∗

H ln
IH
I∗
H

)

+ A3

(

RH−R∗
H−R∗

H ln
RH

R∗
H

)

,

L2 =
(

M−M∗−M∗ ln
M

M∗

)

+

(

SV −S∗
V −S∗

V ln
SV
S∗
V

)

+B1

(

EV −E∗
V −E∗

V ln
EV
E∗
V

)

+B2

(

IV −I∗
V − I∗

V ln
IV
I∗

)

The time derivative of G computed along solutions of system is

∫ t

0
dG(SH , EH , IH , RH ,M, SV , EV , IV ) =

∫ t

0
[LL1 + LL2]du
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For the underlying deterministic model we note that at endemic steady state E∗ we

get,






Γ = ǫβHV IV S
∗
H − κRH + µHS

∗
H ,

βV = (η+µm)KM∗

K−M∗
,

η =
(ǫβV HI

∗

H
+µV )S∗

V

M∗
,

σV =
µV I

∗

V

E∗

V

,

(σH + µH) =
ǫβHV I

∗

V
S∗

H

E∗

H

,

(ρ+ δ + µH) =
σHE

∗

H

I∗

H

,

(κ+ µH) =
ρI∗

H

R∗

H

,

(σV + µV ) =
ǫβV HI

∗

H
S∗

H

E∗

H

.

(5.4.7)

Then let us compute LL1 and LL2 in detail using the relation in (5.4.7).

LL1 =
(

1 − S∗
H

SH

)
dSH
dt

+ A1

(

1 − E∗
H

EH

)
dEH
dt

+ A2

(

1 − I∗
H

IH

)
dIH
dt

+ A3

(

1 − R∗
H

RH

)
dRH

dt

=
(

1 − S∗
H

SH

)

(ǫβHV I
∗
V S

∗
H + µHS

∗
H − ǫβHV IV SH − µHSH − κR∗

H + κRH)

+A1

(

1 − E∗
H

EH

)(

ǫβHV IV SH − ǫβHV I
∗
V S

∗
H

EH
E∗
H

)

+ A2

(

1 − I∗
H

IH

)(

σHEH − σHE
∗
H

IH
I∗
H

)

+A3

(

1 − R∗
H

RH

)(

ρIH − ρI∗
H

RH

R∗
H

)

= −µH
(SH − S∗

H)2

SH
− ǫβHV

(

1 − S∗
H

SH

)

(IV SH − I∗
V S

∗
H) + κ

(

1 − S∗
H

SH

)

(RH −R∗
H)

+A1ǫβHV

(

1 − E∗
H

EH

)(

IV SH − I∗
V S

∗
H

EH
E∗
H

)

+ A2σH

(

1 − I∗
H

IH

)(

EH − E∗
H

IH
I∗
H

)

+A3ρ
(

1 − R∗
H

RH

)(

IH − I∗
H

RH

R∗
H

)

and

LL2 =
(

1 − M∗

M

)
dM

dt
+
(

1 − S∗
V

SV

)
dSV
dt

+B1

(

1 − E∗
V

EV

)
dEV
dt

+B2

(

1 − I∗
V

IV

)
dIV
dt

=
(

1 − M∗

M

)(

(µm + η)(K −M)M∗

(K −M)
− (µm + η)M

)

+
(

1 − S∗
V

SV

)(

ǫβV HI
∗
HS

∗
V

M

M∗
− ǫβV HIHSV + µV S

∗
V − µV SV

)
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+B1

(

1 − E∗
V

EV

)(

ǫβV HIHSV − ǫβV HI
∗
HS

∗
V

EV
E∗
V

)

+B2

(

1 − I∗
V

IV

)(

σVEV − σVE
∗
V

IV
I∗
V

)

= −(µm + η)K

(K −M∗)

(M −M∗)2

M
− µV

(

1 − S∗
V

SV

)

(SV − S∗
V ) − ǫβV H

(

1 − S∗
V

SV

)(

IHSV − I∗
HS

∗
V

M

M∗

)

+B1ǫβV H

(

1 − E∗
V

EV

)(

IHSV − I∗
HS

∗
V

EV
E∗
V

)

+B2σV

(

1 − I∗
V

IV

)(

EV − E∗
V

IV
I∗
V

)

.

Thus we have,

Ġ = LL1 + LL2 = −µH
(SH − S∗

H)2

SH
− ǫβHV

(

1 − S∗
H

SH

)

(IV SH − I∗
V S

∗
H) + κ

(

1 − S∗
H

SH

)

(RH −R∗
H)

+A1ǫβHV

(

1 − E∗
H

EH

)(

IV SH − I∗
V S

∗
H

EH
E∗
H

)

+ A2σH

(

1 − I∗
H

IH

)(

EH − E∗
H

IH
I∗
H

)

+A3ρ
(

1 − R∗
H

RH

)(

IH − I∗
H

RH

R∗
H

)

− (µm + η)K

(K −M∗)

(M −M∗)2

M

−µV
(

1 − S∗
V

SV

)

(SV − S∗
V ) − ǫβV H

(

1 − S∗
V

SV

)(

IHSH − I∗
HS

∗
V

M

M∗

)

+B1ǫβV H

(

1 − E∗
V

EV

)(

IHSV − I∗
HS

∗
V

EV
E∗
V

)

+B2σV

(

1 − I∗
V

IV

)(

EV − E∗
V

IV
I∗
V

)

By introducing new variables, letting SH

S∗

H

= x, EH

E∗

H

= y, IH

I∗

H

= z, RH

R∗

H

= n, M
M∗

= m, SV

S∗

V

=

u, EV

E∗

V

= v, IV

I∗

V

= w, it follows that

Ġ = −µH
(SH − S∗

H)2

SH
− ǫβHV I

∗
V S

∗
H

(

1 − 1

x

)

(xw − 1) + κR∗
H

(

1 − 1

x

)

(n− 1)

+A1ǫβHV I
∗
V S

∗
H

(

1 − 1

y

)

(xw − y) + A2σHE
∗
H

(

1 − 1

z

)

(y − z)

+A3ρI
∗
H

(

1 − 1

n

)

(z − n) +
(µm + η)K

(K −M∗)

(M −M∗)2

M

−µV S∗
V

(

1 − 1

u

)

(u− 1) − ǫβV HI
∗
HS

∗
V

(

1 − 1

u

)

(uz −m)

+B1ǫβV HI
∗
HS

∗
V

(

1 − 1

v

)

(uz − v) +B2σVE
∗
V

(

1 − 1

w

)

(v − w)

The positive constant B1, B2, A1, A2 and A3 are chosen such that the coefficient of xw, w,

uz, y and n are equal to zero, that is
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uz(−ǫβV HI∗
HS

∗
V +B1ǫβV HI

∗
HS

∗
V ) = 0, xw(−ǫβHVA1I

∗
V S

∗
H +ǫβHV I

∗
V S

∗
H) = 0, y(A2σHE

∗
H −

ǫβHVA1I
∗
V S

∗
H) = 0, v(B2σVE

∗
V − ǫβHVB1I

∗
HS

∗
V ) = 0, n(κR∗

H − A3ρI
∗
H) = 0,

Solving above equations, we get

A1 = 1, B1 = 1, A2 =
ǫβHV I

∗
V S

∗
H

σHE∗
H

B2 =
ǫβV HI

∗
HS

∗
V

σVE∗
V

, A3 =
κR∗

H

ρI∗
H

.

Then,

Ġ = −µH
(SH − S∗

H)2

SH
− (µm + βv)K

(K −M∗)

(M −M∗)2

M

+

(

S∗
H

SH
− S∗

HRH

SHR∗
H

− IHR
∗
H

I∗
HRH

)

κR∗
H

+

(

3 − S∗
H

SH
− EHIH
E∗
HI

∗
H

− SHE
∗
HIV

S∗
HEHI

∗
V

)

ǫβHV I
∗
V S

∗
H

+

(

3 − S∗
V

SV
− E∗

V IV
EV I∗

V

− SVE
∗
V IH

S∗
VEV I

∗
H

)

ǫβV HI
∗
HS

∗
V

+

(

2 − S∗
V

SV
− SV
S∗
V

)

µV S
∗
V .

Note that since the arithmetic mean is greater than or equal to the geometric mean, it

follows that (Ġ) is less or equal to zero with equality only if SH = S∗
H , EH = E∗

H , IH = I∗
H ,

RH = R∗
H , SV = S∗

V , EV = E∗
V and IV = I∗

V . Thus, given E∗ as endemic equilibrium,

the largest compact invariant set is the singleton E∗. LaSalle’s invariant principle then

implies that E∗ is globally asymptotically stable in the interior of ℜ . This completes the

proof. ✷

5.5 Result and Discussion

In this section, we presented and analyzed a mathematical model in order to explore

the impact of climatic conditions on malaria infections in two distinct regions of South

Sudan. Model fitting via MCMC and the trajectory simulation of human dynamics were

carried out. We derived the basic reproduction number R0 and examined the model for

the existence of vector free and disease-free equilibrium points. We have discussed the

stability of the diseases–free equilibrium of the model. We then performed a sensitivity

analysis of R0 with respect to temperature and precipitation was performed. Temperature
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and rainfall define the mosquito life cycle and control mosquito activity, including egg

disabuse. Mosquitoes have been described as cold-blooded insects which are unable to

regulate temperature on their own [29, 100]. This means that their body temperature is

dependent on the atmosphere in which they live.

Yet, temperature’s role in exacerbating malaria and the impact of weather and rainfall

has been a controversial topic in recent years. Here Figure 5.4 (D) illustrates, the occur-

rence of Mosquito abundance when the mean monthly temperature and rainfall values

lie in the ranges of 25 -30◦C and 20 -30 mm respectively. The results demonstrate that

mosquitoes are active once temperatures are consistently above 10◦C, and are sedentary

when temperatures reach 35◦C. The results also indicate that the survivor probability of

immature mosquitoes (eggs, larvae, pupae) could be reduced by low or excessive levels of

rainfall (see Figure 5.4 (C)). Furthermore, the results suggest that daily rainfall in the

range of 17–20 mm and temperatures in the range of 20◦C to 35◦C are ideal for progres-

sion of mosquitoes, and hence, for the spread of malaria. Our results also highlight the

significant role of warmer temperatures in the aggravation of the disease, acting in the

same direction of [1].

It can also be observed that the immature mosquitoes are more sensitive to temper-

atures at 25◦C than the mature mosquitoes. These patterns were incorporated into a

deterministic model of Anopheles gambiae population dynamics, in order to gain insight

into the abundance of mosquitoes, thus providing an effective tool for control strategies

in combating the spread of malaria. Temperatures in the range of 25◦C to 30◦C are more

suitable for the progression of mosquitoes at all stages in their life-cycle (shown in Fig-

ure 5.9). This indicate that, mosquito dynamics are strongly shaped by warm weather

ecology which appears to be consistent with other studies [12, 87, 101, 105, 112]. Ac-

cordingly, understanding the effect of climate change on malaria transmission dynamics

is crucial in designing effective anti-malaria measures.

A model with a seasonal averaged climate in two study region is analyzed regarding

malaria transmission. For example, investigated the sensitivity of R0 to average monthly

temperature and rainfall data that are presented in Table 5.3. In numerical calculation
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Table 5.3: Estimate of basic reproduction number R0 against Mean Rainfall (MR) and

Average Temperature (AT) using parameter values from Table 2

CES WBGZ

Month AT(C) MR(mm) R0 AT(C) MR(mm) R0

Jan 38 6.1 1.11414 26.8 0 0.971627

Feb 38 27.9 3.89315 28.5 0 0.747225

Mar 38 31.4 3.58896 30.7 6 6.315132

Apr 37 72.2 4.62567 31.1 21 20.506707

May 34 132 8.62933 29.5 87 19.370367

Jun 32 146 14.27812 27.4 107 20.816907

Jul 30 304.5 20.89713 26.1 152 13.340053

Aug 31 91 17.32905 26.2 169 10.366855

Sep 32 93.1 14.27812 26.6 131 12.509831

Oct 33 111 11.70291 27.5 78 30.831914

Nov 35 28.3 7.73881 27.3 6 11.329622

Dec 36 15 5.09080 26.5 0 1.011970

of R0, we assume 50 mm of rain will flushed out mosquitoes from their breeding site,

therefore the precipitation is considered during the peak period to be less than 50 mm in

R0 approximation. From April R0 is overestimated due to rainfall that increase above

the average of 50 mm, we instead used a fix value of 40 mm. Our results indicate that R0

varies monotonically with the influence of rainfall and temperature. We note in the results

that the reproduction number value increases during the peak period of the rainy season

starting from March to October in CES. The onset of increased transmission intensity

between July and September can be explained by the seasonal increase in A. Gambiaes

and a weakening of the clinical immunity of individuals. A similar pattern in transmission

applied to WBGZ but with low disease intensity compared to CES which is most likely

owing to the climate differences. Findings of this study are in agreement with other
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Figure 5.9: Simulation of the model, using parameter values in Table 1, assess the impact

of various temperature values on the population dynamics of the mosquito

studies [1, 103] that demonstrate disease behavior changes with changes of local climate.

These findings also suggest that the factor of climate can be a decisive determinant of

malaria spatial distribution throughout the country.

Furthermore, in the case of WBGZ, the mosquito birth rate tends towards zero when

the rainfall is minimal from November to February, hence, the reproduction number tends

to zero. After February it begins to increase, reaching a peak in the months from June

to October. This pattern, along with mean local rainfall and temperature shown in Fig-

ure 5.8, confirms our hypothesis that malaria transmission is influenced by weather and

rainfall, since the disease is more prevalent in the favorable climate of CES than it is

in WBGZ. This study, therefore, highlights the difference between the high transmis-

sion rate in tropical climates (CES) and the low transmission in hot semi-arid climates
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(WBGZ), a difference which further coincides with the two distinct but adjacent cohorts

of mesoendemic seasonal and holoendemic perennial malaria transmission [103].

These results point to the importance of incorporating detailed mosquito bionomics

with climate-dependence into models for predicting the risk for malaria. These models

can also be used to understand the possible changes in malaria prevalence in regions

experiencing climate change: in the case of South Sudan, changes to regional climates,

including changes in rainfall and temperature patterns, will alter the variability of malaria

cases.

Using a realistic representation of the coupled mosquito–human model will aid to un-

derstand the dynamics of malaria over the study region. Noting that parameters such as

mosquito size and mosquito bite assumption rate can influence the realization of disease

behavior [72]. Hence, it was stimulating to validate our model with field data and im-

plement parameter estimation to increase realism. Therefore, the mosquito model that

provides a detailed mosquito bionomics with climate-dependence in line with several stud-

ies [12, 33, 34, 142] for predicting the risk for malaria is carried out. Moreover, our research

sought to filter out the climatic factors affecting the force of infection which consist of

infectious bites, and hence altered it with the effect of intervention coverage, unlike the

studies [11, 63, 87, 141]. As the measurement of entomological inoculation rate (EIRs,

measuring the number of infectious bites per person per year) is related to the measure of

infection intensity, therefore it should be estimated during the model fitting process with

the effect of intervention coverage given the disease incidence cases.

The availability of mosquito climate-based models and realistic parameter values de-

termined through data fitting process allows researchers to predict more reliably disease

transmission dynamics. We hope that this study improves understanding of the climate

role as the first step in providing information that may lead to significant changes in the

way that the disease is transmitted in these regions to incorporate the effective interven-

tions.
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5.6 Conclusion

We proposed a host-mosquito model for malaria transmission in two climatic regions in

South Sudan. We used MCMC to fit the model to malaria data from these two regions.

The validated model is further used to calculate the basic reproductive number and assess

its sensitivity to climate factors. The basic reproductive number is used to provide a nu-

merical basis R0 is used to provide a numerical basis for further refinement and prediction

of the impact of climate variability on malaria transmission intensity in two regions (i.e.

CES and WBGZ).

The results in these both regions indicate that malaria trend follows the climate pattern

with its epidemiological peak between February-December and between March-November

when temperature and rainfall progressively increase in the CES and WBGZ respectively.

The findings also demonstrated that disease is more effective and severe in tropical (CES)

region than in a hot semi-arid (WBZ) region due to climate conditions. Hence, we con-

cluded that this study which analyzes observed phenomena also seeks ways of informing

decision making together with ideas for the continuation of malaria control in South Su-

dan. A model calibration was one of the main contributions that this study has achieved,

complemented with the realistic representation of Anopheles Gambiae population dynam-

ics to gain insight into the abundance of mosquitoes and hence the course of the epidemic.

However, malaria is a complex disease that can reemerge from other factors such

as socioeconomic situation and population movement which need to be incorporated in

studying malaria transmission. These aspects are worthy of attention in future studies.
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Modelling the effect of bednet

coverage on malaria transmission

A campaign for malaria control, using Long Lasting Insecticide Nets (LLINs) was launched

in South Sudan in 2009. The success of such a campaign often depends upon adequate

available resources and reliable surveillance data which help officials understand existing

infections. An optimal allocation of resources for malaria control at a sub-national scale

is therefore paramount to the success of efforts to reduce malaria prevalence. In this

chapter, we extend an existing SIR mathematical model to capture the effect of LLINs

on malaria transmission. Available data on malaria is utilized to determine realistic

parameter values of this model using a Bayesian approach via Markov Chain Monte Carlo

(MCMC) methods. Then, we explore the parasite prevalence on a continued rollout of

LLINs in three different settings in order to create a sub-national projection of malaria.

Further, we calculate the model’s basic reproductive number and study its sensitivity to

LLINs’ coverage and its efficacy. From the numerical simulation results, we notice a basic

reproduction number, R0, confirming a substantial increase of incidence cases if no form

of intervention takes place in the community. This work indicates that an effective use

of LLINs may reduce R0 and hence malaria transmission. We hope that this study will

provide a basis for recommending a scaling-up of the entry point of LLINs’ distribution

that targets households in areas at risk of malaria.
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6.1 Introduction

The Republic of South Sudan (RSS) is among the countries in sub-Saharan Africa that

are most severely affected by malaria and is currently experiencing an unprecedented

outbreak of malaria. Médecins Sans Frontières (MSF) have reported that, in the year

2015, malaria outbreaks in South Sudan were considered to be the most hazardous in

the region [31, 93]. The country is facing a number of tremendous challenges, the most

notable being the limitation of human and financial resources due to the ongoing war

and civilian instability. Nonetheless, the government agencies of South Sudan, as well as

many Non-Governmental Organizations (NGOs) have committed to reducing this ongoing

outbreak of malaria.

Recently, the National Malaria Control Program (NMCP) reported, in its strategic

plan, that LLINs have been the main health intervention deployed to reduce malaria

transmission in South Sudan since it gained independence [35]. A number of LLINs

nets have been distributed since 2008, when the free mass LLIN distribution campaign

was piloted in the States of Warrap, Western Bahr-El-Ghazal and Western Equatoria.

However, their distribution and utilization still remain relatively low [22]. Subsequently,

the programme was extended to the entire country reaching a total of 2 602 021 LLINs in

2009 [21, 106]. This number declined to 1 836 401 LLINs in 2011 and then, further down

to 1 592 507 LLINs in 2012 in various states [47]. Moreover, in these campaigns ownership

of LLINs by community members varied by State. For instance, Eastern Equatoria has

the highest (58 %) LLINs coverage, while the lowest coverage rates are found in Warap

(17%), Unity (20%) and Upper Nile (22 %). Likewise, malaria infection takes a larger toll

in the rural areas where the availability of LLINs is slightly lower (31 %) than in urban

areas (44 %) [57].

These control measures were not sufficient to eliminate the parasite over a short time

scale and failed to sustain control programs. The malaria trend increased between 2011

and 2015 in almost all of the states, as is shown in Figure 6.1. This reported case data

is accumulated on a weekly-basis. The data exhibits noise and some missing data is
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observed. Nonetheless, understanding the role of insecticide-treated nets in mosquito

vectors is the first and most important step in disease eradication. Here, we focus on

current malaria control actions and their impact on human infection. This will help to

define the specific needs for successful malaria interventions in various settings, while

increasing the impact of control tools and maintaining value for money. The key to

effective control is to choose policies that are appropriate to local settings. The Ministry

of Health (MoH) has endeavored to scale up malaria control efforts in the country in

order to lower both the morbidity and mortality rates of malaria by 80% by the year

2020. As this 80% reduction in malaria prevalence may not be achieved through a ‘more

of the same’ approach, mathematical modelling may play a role in operational strategies

on control.
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Figure 6.1: Weekly malaria reported cases from the beginning of 2011 until end of 2015 in

Central Equatoria State (CES), Western Bahr El Ghazal State (WBZ) and Warrap State

(WRP). The data was obtained from National Malaria Control Programme of South

Sudan (NMCP).

Mathematical models usually depend on a set of parameters. In the present case,

each parameter carries a biological significance such as force of infection, recovery rate

or, mortality rate. It is therefore important to evaluate the numerical values of these

quantities with real data in order the computational simulation to predict the reactions
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accurately, and thus to give us a better understand of the disease epidemiology. In

recent years there has been an increased interest in parameters determination procedures

[55, 116, 128]. Bayesian approaches and in particular, the Markov Chain Monte Carlo

(MCMC) have proven to be powerful inference tools for complex systems developed in

behavioral science and computational biology [48, 54, 69, 77, 107, 138].

Many mathematicians and epidemiologists (see for example, [13, 23, 26, 67, 66, 89, 90,

94, 114, 134]) have provided different mathematical models for understanding the trans-

mission dynamics of malaria in human populations and also for consolidating various in-

tervention tools, such as LLINs, Indoor Residual Spraying (IRS), drugs and even vaccines.

For example, Ngonghala et al. [89] developed a mathematical model for malaria dynamics

that incorporates Insecticide-Treated Nets (ITNs) coverage. They concluded that when

the reproduction number R0 < 1, the mosquito-free equilibrium is a globally asymptoti-

cally stable (GAS), whereas, when R0 is greater than one, a locally asymptotically stable

human-mosquito equilibrium exists. Their study shows that constant ITNs-efficacy may

underestimate the disease transmission risk. Chitnis et al.[23] adapted a mathematical

model to compare the impact of malaria vector-control Interventions consist of ITNs and

IRS, implemented individually and in combination; their results showed that ITNs were

more effective than IRS. Okumu et al [99] used a deterministic model of the mosquito life

cycle to investigate the effect of untreated nets or LLINs with IRS combinations on the

disease at the community level, they concluded that the insecticidal potential impact of

LLINs and IRS is mainly due to the personal protection provided by the nets, rather than

insecticidal effectiveness. Briët and Penny [16] used a stochastic simulation model based

on individuals in scenarios with sustained LLIN distributions, and varying degrees of Case

Management (CM) coverage. The modelling analysis indicated that under sustained vec-

tor control and scaled-up CM, transmission can rebound to higher levels than when using

LLIN distribution alone. Griffin et al.[51] developed an individual-based simulation model

for Plasmodium falciparum transmission in an African context incorporating the impact

of the switch to Artemisinin-Combination Therapy (ACT) and scaling up the coverage of

interventions from the year 2000 onwards.
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In this chapter, we propose a modification of the age structured model developed by

Filipe et al. [40], in the expression of the SEIR and SEI Model formulation for host and

vector respectively. Our model does not include an age structure, but accounts for LLINs’

waning effect in order to forecast epidemiological aspects of malaria in South Sudan’s

different regions and states. Consequently, a parameter estimation of this model is carried

out under a Bayesian framework via Markov Chain Monte Carlo (MCMC) methods,

wherein the likelihood function is combined with the prior values of the parameters in

order to calculate the posterior values for model parameters from time series data.

6.2 Study area and demography

South Sudan is a tropical landlocked country in East-Central Africa which shares borders

with some of the most malaria-endemic countries in the world. Prior to 2015, the country

was divided into ten states comprised of three regions.

The pre-independence national census estimated the South Sudan population at 8.2

million people in 2008, with 42% of the population aged under 15 years, 19% at the median

age and only 5% aged over 60 years [120]. The population projection for 2009 may be

as high as 11 million due to both growth rates and the estimated numbers of returnees,

Figure 6.2. The birth rate is estimated at 40.62 per thousand people and the maternal

mortality rate is estimated at 1,700 deaths per 100,000 live births [123]. The country’s

fertility rate of 6.7 births per woman is the highest in the Eastern Mediterranean region

[123]. The census reported a life expectancy at birth of 42 years for both sexes [124]. This

study is conducted in states chosen randomly in three different regions, namely:

1. Equatoria (South), we have chosen the state of Central Equatoria,

2. Bhar El Ghazal (North-west), we have chosen the state of Western Bahr El Ghazal,

3. Upper Nile (North-east), we have chosen the state of Warrap.

The map of the study area is given in Figure 6.3.
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Figure 6.2: Population density of South Sudan 2009
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Figure 6.3: South Sudan selected state analysis map.

6.3 Method

We use a deterministic compartmental structure for the endemic malaria disease. The

total human population denoted by N is subdivided into susceptible individuals S, pre-

infectious with malaria parasite individuals E, clinical infectious individuals I, asymp-

102http://etd.uwc.ac.za/



Chapter 6: Malaria transmission modeling with intervention scenario

tomatic infectious individuals A and protected individuals R, Eq (6.3.1). The total

mosquito population denoted byM is subdivided into susceptible mosquitoesX, mosquitoes

exposed to the malaria parasite Y and infectious mosquitoes Z, Eq (6.3.2). The com-

partmental model is illustrated in the flow diagram in Figure 6.3, which translates to

Eqs (6.3.3) and Eqs (6.3.6).

N(t) = S(t) + E(t) + I(t) + A(t) +R(t), (6.3.1)

M(t) = X(t) + Y (t) + Z(t). (6.3.2)

S E I R

A

Λh η

ρ

α1

α3

α2

X

σa

σi

Y
Λv

Z
β

µ

µµ

µ (µ+ δ)

µvµvµv

b

Γ

Figure 6.4: Flow diagram for Human and Mosquito infection model

The human components of the model is presented to capture the relation of effec-

tive treatment and parasite prevalence. The second components of the model represent

mosquito population dynamics to capture the effects of LLINs on vector mortality and in

preventing transmission. The model excludes a delay in the force of infection and includes

seasonality with respect to epidemics of this disease. We examine the model and data

set, by applying Bayesian approach to estimate the posterior distribution of parameters.

The prior estimates of some parameters were obtained from the literature [115, 137].
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6.3.1 Human model formulation

Since we are modelling the endemic malaria on a longer scale, we include birth and death

rate in the model. Hence, the susceptible compartment is recruited by birth at a rate Γ.

We presume susceptible individuals (S) acquire malaria and become infected at a rate

Λh when they are bitten by infectious mosquitoes (the entomological inoculation rate,

EIR). After bites from infectious mosquitoes, individuals progress to the pre-infectious

compartment E and remain on average 12 days (latent period) before becoming fully

infective. Upon infection, they either develop clinical infectious with probability rate η

to enter compartment I or proceed with asymptomatic infection with probability rate ρ

to enter compartment A. Those that develop disease (with symptoms) are successfully

treated and naturally recovered with the rate α1 and subsequently enter a compartment of

recovery (or a protected compartment R) which are assumed to lose immunity and move

to the susceptible compartment at a rate of α3. Individuals with asymptomatic infection

are assumed to recover naturally with a constant per ca-pita recovery rate α2 and enter

R compartment. All compartments are stratified by level at which people are bitten by

mosquitoes and also drop individuals at a natural death rate of µ = 1
q×360

day−1 where q

is the human life expectancy in years. The deterministic model for the human dynamics

is as follows

dS
dt

= Γ − ΛhS + α3R − µS,

dE
dt

= ΛhS − ηE − ρE − µE,

dI
dt

= ηE − (α1 + δ + µ)I,

dA
dt

= ρE − (α2 + µ)A,

dR
dt

= α1I + α2A− α3R − µR,

(6.3.3)

where t represents time and α1 and α2 symbolize human infection durations while α3 is

depend on the loss of immunity duration. The force of infection, Eq (6.3.4) is assumed to

vary by degree of exposure to mosquitoes due to geographic variation and is governed by
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the function

Λh = EIR b = (
ǫZ

N
)b (6.3.4)

where EIR denotes the entomological inoculation rate, b is the probability of infection if

bitten by an infectious mosquito, with 0 < b ≤ 1. The parameter ǫ is the per capita biting

rate of mosquitoes to be measured for adults at study settings level.

6.3.2 Mosquitoes model formulation

We consider Anopheles Gambiae mosquitoes which is the main anopheles species that

transmits Plasmodium Falciparum in South Sudan [38]. The mosquito population is di-

vided into three classes: susceptible X, latently infected Y , infectious Z. Susceptible

female mosquitoes are recruited at the birth rate Ψ. We assume reduction in this com-

partment at the death rate µv and at the force of infection (see Eq (6.3.5)). Thus, the adult

susceptible mosquito acquires malaria at a rate Λv which depends on the infectiousness

of the human population:

Λv =
σaǫA+ σiǫI

N
(6.3.5)

where σa is the onward infectivity from an asymptomatic infectious and σi is the onward

infectivity from a clinical infection. The parasite (in the form of gametocytes) enters

the mosquito with some probability when the mosquito bites an infectious human and

the mosquito moves from the susceptible to the infectious class at a rate determined by

the force of infection. Once mosquitoes are infected, they pass through a latent period.

Mosquitoes then become infectious to humans and remain infectious for life (until they

die). They leave the population through a per ca-pita density-dependent natural death

rate. The population dynamics and infection process of anopheles Gambiae mosquitoes

are given by the following set of ordinary differential equations.
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dX
dt

= Ψ − ΛvX − µvX,

dY
dt

= ΛvX − (β + µv)Y,

dZ
dt

= βY − µvZ,

(6.3.6)

where β is the probability that a mosquito survives the extrinsic incubation period (EIP)

(see Equation (6.5.12) for more details), µv is the death rate and Λv is the force of infection

acting on mosquitoes.

6.3.3 Model fitting

In this section, our quantitative mathematical model is fitted to data. There are a few sta-

tistical techniques that are usually used to undertake parameter estimation when building

a statistical model. In particular, maximum likelihood estimation (MLE) and Bayesian

estimation are the most novel statistical tools used. As with the usage of MLE, a mathe-

matical model that confronts a data can be influenced by the exact relationship between

the parameters or by the complexity of the model [53, 117]. The Bayesian method com-

bines the likelihood of the data as well as the prior distribution of the parameters of the

model to obtain the posterior distribution of the parameters of the model. This allows

one to make inference based on the posterior mean/ median of the parameters.

In this study we utilise Markov Chain Monte Carlo (MCMC) to obtain the posterior

samples of the parameters of the model. The model fitting was undertaken by using weekly

malaria data of 2011 for each region under investigation (shown in Figures 6.5 - 6.7) using

MCMC. The model is run from the year 2000 to reach a steady state before being fitted to

data from the year 2011. We assume that weekly malaria data were reported according to

a Poisson process with reporting rate γ. Since the reporting rate is unknown we assume

it to be no larger than 85%. Assume also that xij(i = 1, . . . , n; j = 1, . . . , 3) are the

observed weekly malaria cases for state j during week i. We used uniform distributions

to model the prior belief regarding the mosquito biting rate ǫ and the clinical duration
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of infections α1. Specifically we assume ǫ ∼ U(0, 200) and α1 ∼ U(0, 50) [137]. During

this fitting process the model parameters described in Table 6.1, b, ǫj, α1, and α3 were

estimated and δ, α2 , ρ and η were fixed (in agreement with previous studies) in each

setting. These parameters were assumed to be constant and were jointly estimated by

utilizing fitR (version 0.1 [18]) to obtain posterior samples 10000 iterations and a burn-in

of 1000 iterations used for three chains. The credibility intervals produced in Figures 6.5 -

6.7 was a 95% confidence intervals with different accepting rate of each figure. It seems as

if the model does not fit the weekly malaria data very well since the seasonality observed

in the data has not been accounted for. Below we attempt to do so.

Table 6.1: Model Parameters: Description and value

Symbol Description Estimate Ref

µ Natural death rate of humans 0.00006614 Est

σa Onward infectivity from an asymptomatic infectious 0.2 [134]

ρ Probability of asymptomatic infectious 0.0071 (fixed) [134]

α2 Asymptomatic infection rate 1/200 (1/180-1/250) fixed [52]

δ Humans death rate due to malaria 0.0004 (0.00027-0.0005) fixed [26]

η Probability of acquiring clinical disease 1/12 (fixed) day−1 [52]

Γ Birth rate of humans Humans/Day Est

σi Onward infectivity from a clinical infectious Derived from data

b Probability of infection Derived from data

ǫj Mosquitoes biting rate for state j Derived from data

α1 Clinical disease rate Derived from data

α3 Human Re-susceptibility rate Based on drug

In the second model, we calculate the mean of postorier distribution for further vali-

dation and better fitting results, using weekly malaria data between 2011 to 2015 plotted

in Figure 6.8. This includes a simple parametric model to account for seasonality, as

the weekly malaria count displayed strong seasonality. We specifically assume that the
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Figure 6.5: Parameters estimation by fitting model to weekly malaria cases of CES:

The deterministic model (for both human and vector) trajectories and model assessment

(lines) run against the CES data (points) with ǫ = 91.60, b = 0.4356804, α1 = 0.02169197

(duration of infections 46.1), σi = 0.6792, α3 = 0.5882 and initial state value (S =

882846, E = 0, I = 300, A = 0, R = 0, X = 600, Y = 0, Z = 0) with the mean

and the median as well as the 95th and 50th percentiles of the replicated simulations are

displayed

seasonal component is modelled as

β0(t) =
2∑

j=1

aj cos(twj) + bj sin(twj), (6.3.7)

where wj = 2πj/52 and t represents time. We assume that the prior distribution of

aj and bj are both Gaussian random variables with mean 0 and variance σj = 1.67001

[137]. For a given set of parameters, let the model-predicted malaria in site j be θj, the

number of initial susceptible individuals at risk and number of malaria cases be Ej and xij

respectively. The hierarchical model used to validate the model for the observed malaria
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Figure 6.6: Parameters estimation by fitting model to weekly malaria cases of WBGZ:

The deterministic model (for both human and vector) trajectories and model assessment

(lines) run against the WBGZ data (points) for 2011, with ǫ = 79.50, b = 0.79836,

α1 = 0.025, α3 = 0.01785714, σi = 0.06274 and initial state value (S = 266745, E =

0, I = 200, A = 0, R = 0, X = 500, Y = 0, Z = 0); the mean and the median as well

as the 95th and 50th percentiles of the replicated simulations are displayed

counts is thus:

xij|θj, β0 ∼ Poisson(Eje
β0θj),

θi ∼ U(l1, l2),

where l1 and l2 are known constants. The Ej values were obtained using [123].

6.4 Basic reproductive number R0

To determine the stability of this model we first evaluate the critical points of the

model (6.3.3 and 6.3.6) of ODEs. The trivial critical point with no infected individu-
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Figure 6.7: Parameters estimation by fitting model to weekly malaria cases of WRP:

The deterministic model (for both human and vector) trajectories and model assessment

(lines) run against the WRP data (points), with ǫ = 56.0, b = 0.63984, α1 = 0.0191938,

α3 = 0.05, σi = 0.789852 and initial state value (S = 778342, E = 0, I = 200, A =

0, R = 0, X = 500, Y = 0, Z = 0); the mean and the median as well as the 95th and

50th percentiles of the replicated simulations are displayed

als is the point E0 = (S∗, E∗, I∗, A∗, R∗, X∗, Y ∗, Z∗) = (Γ
µ
, 0, 0, 0, 0, Ψ

µv
, 0, 0). The basic

reproduction number, denoted by R0, plays a vital role in understanding the propaga-

tion of the relevant epidemic. It is defined as the average number of secondary infections

that occur when one infective individual is introduced into a completely susceptible host

population [132].

For the purpose of our model, the basic reproduction number of the models can be

established by using the next generation matrix as presented in [132]. In Proposition 6.1

we compute the basic reproduction number for the system.
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Figure 6.8: Model validation by fitting to malaria cases on weekly basis between 2011-

2015: The posterior mean densities of the mosquito bite rate ǫ in CES, WBGZ and WRP

with 95% credibility interval at a chosen number of 10,000 iterations.

Lemma 6.1. The basic reproduction number of the model (6.3.3 and 6.3.6) is

R0 =

√
√
√
√

ǫ2bβσaρ

µv(β + µv)(η + ρ+ µ)(µ+ α1)
+

ǫ2bβσiη

µv(β + µv)(η + ρ+ µ)(µ+ δ + α2)
(6.4.8)

Proof. Set x = (I, A,E, S)T, with WT being the transpose of the vector W . Then the

system can be written as

ẋ = F(x) − V(x)

where
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F(x) =

















µvǫbIvS
ψ

0

0

σaǫAX+σiǫIX
Γ

0

















,

V(x) =

















(η + ρ+ µ)E

(µ+ α1)A− ρE

(µ+ δ + α2)I − ηE

(β + µv)Ev

−βEv + µvIv

















.

According to the theory of [132], the basic reproduction number R0 of our system is the

spectral radius of FV −1, where F and V are the matrices

F =




















0 0 0 0 µvǫbΓ
µψ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 σiǫµψ
µvΓ

σaǫµψ
µvΓ

0 0

0 0 0 0 0




















and

V =

















(η + ρ+ µ) 0 0 0 0

−ρ (α1 + µ) 0 0 0

−ρ 0 (α2 + δ + µ) 0 0

0 0 0 (β + µv) 0

0 0 0 −β µv

















.

The matrix F is a non-negative matrix of rank one and can be written as the product of
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the vectors, where V is a non-singular M-matrix. The inverse of V is

V −1 =

















1
η+ρ+µ

0 0 0 0

−η+
(η+ρ+µ)(α2+δ+µ)

1
α2+δ+µ

0 0 0

ρ
(η+ρ+µ)(α1+µ)

0 1
α1+µ

0 0

0 0 0 1
γ+µv

0

0 0 0 −β
(β+µv)µv

1
µv

















.

Multiplying F and V −1 gives the next generation matrix

G := FV −1 =




















0 0 0 k1 k2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k3 k4 k5 0 0

0 0 0 0 0




















, (5.3)

where

k1 = βǫbΓ
(β+µv)µψ

k2 = ǫΓσi

µψ

k3 = ησiµǫψ
η+ρ+µ)(α2+δ+µ)µvΓ

+ ρσaǫµψ
(η+ρ+µ)(α1+µ)µvΓ

k4 = σiµǫψ
(α2+δ+µ)µvΓ

k5 = σaǫµψ
(α1+µ)µvΓ
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Hence we compute the eigenvalues from (5.3) to obtain the spectral radius of the

matrix FV −1. The spectral radius is the reproductive number R0. There are five eigen-

values obtained from FV −1 and maximum eigenvalue is λ =
√
k1k3. Therefore the basic

reproduction number for autonomous system (6.3.3 and 6.3.6) is as claimed. ✷

6.5 Intervention with bednets (LLINs)

In this section we incorporate the impact of bednets intervention on malaria transmission

with used of the threshold R0. The LLINs is the only intervention used in the study

and hence, by testing its scale up effect on disease transmission. We use data of LLINs

coverage at state level for 2009 as baseline calculated from the given number of LLIN

distribution which is provided by MIS and has been presented in [123]. In our model,

LLINs intervention results (shown in Table 6.2) in:

1. Mosquito biting rate: A reduction of the mosquito biting rate is given by

(1 − χV )ǫ

where χ is the proportion of LLINs coverage and V is the effectiveness of LLINs.

For the sake of calculating the basic reproduction number of the model with LLINs

intervention, we assume that V is constant. However, in simulation practice, we

consider the efficacy of LLINs wanes with time since mass distribution of LLINs

campaigns were run in just one to four states in any single year. To account for

this, we use in our model simulations, the following formula taken from [118].

V (t) = 1 − a exp (−e−x(t−y)) (6.5.9)

where a and x are real numbers and y is a positive integer.

2. Mosquito mortality rate: LLINs intervention is also assumed to have three effects

on the adult mosquito population. Firstly, increase the overall mosquito death

that land on the nets. Secondly, repelling and possibly diverting mosquitoes to an
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animal blood host due to either insecticide irritation or the physical barrier of the

net. Thirdly, lengthening the duration of the gonotrophic cycle leading to a reduced

oviposition rate. Interested readers may also consult [52, 70] for further details.

The probability that a surviving mosquito succeeds in feeding during a single at-

tempt is given by

W = 1 + χφ(s− 1) (6.5.10)

where φ is the proportion of people in bed when they are bitten and s is the prob-

ability of a mosquito feeding successfully on a person sleeping under a bednet.

The probability of a mosquito being repelled without feeding is thus

Q(χ) = φχr. (6.5.11)

where r is probability of a mosquito being repelled by a bednet. At χ LLIN coverage,

the duration of a feeding cycle is given by 1/f(χ) = τ1/(1 − Q) + τ2 where τ1 is

the time spent searching for a blood meal and τ2 is the time spent resting which is

unaffected with intervention.

Thus, the probability of a mosquito surviving one feeding cycle is given by

β(χ) =

(

β1β2W

1 −Qβ1

)f(χ)

(6.5.12)

where β1 =e−µ(0)τ1 and β2 =e−µ(0)τ2 are the probability of a mosquito surviving the

periods of feeding and resting. Note that the the probability Qβ1 < 1 sine Q < 1

and β1 < 1.

The mosquitoes mortality which depend on bednets coverage is thus

µv(χ) = − log β(χ) (6.5.13)

On introducing the use of LLINs, R0 becomes

R0(χ)=

√
√
√
√

(1 − V χ)2ǫ2bβ(χ)σaρ

µv(χ)(β(χ)+µv(χ))(η+ρ+µ)(µ+α1)
+

(1 − V χ)2ǫ2bβ(χ)σiη

µv(χ)(β(χ)+µv(χ))(η+ρ+µ)(µ+δ+α2)

(6.5.14)
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We will now analyse the sensitivity index of R0 with respect to the parameters χ, V and

ǫ according to the definition below.

Definition 6.1. The sensitivity index of R0 with respect to a parameter p is given by

ΓpR0
=
∂R0

∂p

p

R0

.

Rewriting Equation (6.5.14) as

R0(χ) = Cǫ(1 − V χ)g(χ), (6.5.15)

where

C =

√
√
√
√

b

(η+ ρ+ µ

[

σaρ

µ+ α2

+
σiη

µ+ δ + α1

]

and

g(χ) =

√
√
√
√

β(χ)

µv(χ)(β(χ) + µv(χ))

and using the definition above, we have:

• The sensitivity index with respect to ǫ is

ΓǫR0
=
∂R0

∂ǫ

ǫ

R0

=
Cǫ(1 − V χ)g(χ)

R0

= 1.

This means that 10% increase (reductions) in ǫ would results in 10% increase (re-

ductions) in R0.

• The sensitivity index with respect to V is

ΓVR0
=
∂R0

∂V

V

R0

= −Cχg(χ)
V

Cǫ(1 − V χ)g(χ)
=

−V χ
C(1 − V χ)

.

This means that 10% increase (reductions) in V would result in 10V χ
C(1−V χ)

% increase

(reductions) in R0.
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• The sensitivity index with respect to χ is

ΓχR0
=

∂R0

∂χ

χ

R0

= (1 − V χ)(g(χ))′ χ

Cǫ(1 − V χ)g(χ)

=
χ(−V g(χ) + (1 − V χ)(g(χ))′)

Cǫ(1 − V χ)g(χ)
.

This means that 10% increase (reductions) in χ would result in
10χ(−V g(χ) + (1 − V χ)(g(χ))′)

Cǫ(1 − V χ)g(χ)
%

increase (reductions) in R0.

It is to be noted that we have omitted the explicit expression of g′(χ) to avoid pre-

senting long mathematical derivations.

Table 6.2: Intervention Parameters

Symbol Description Estimate Ref

Ψ Per ca-pita birth rate of mosquitoes 0.13 [23]

χ LLIN coverage Est from data

f Inverse of gonotrophic cycle 1/3 day−1 [51]

φ Proportion of bites taken on humans when in bed 0.89 [51]

s Probability that a mosquito feeds successfully by a bednet 0.03 [137]

r Probability of a mosquito being repelled by a bednet 0.56 [52]

τ1 Time spent seeking blood meal during gonotrophic cycle 0.69 days [51]

τ2 Time spent resting during gonotrophic cycle 2.31 days [137]

β1 Probability of a mosquito surviving the periods of feeding 0.91 [137]

β2 the probability of a mosquito surviving the periods of resting 0.74 [137]

V (t) The efficacy of LLIN Equation (6.5.9) [118]

W (χ) Probability of mosquito successfully feeding Equation (6.5.10) [52]

Q(χ) Probability of mosquito repeating Equation (6.5.11) [52]

β(χ) Daily survival probability Equation (6.5.12) [52]

µv(χ) Daily mosquito mortality Equation (6.5.13) [52]
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6.6 Results

The model fitting results are presented first before evaluating the predicted partial impact

of the reduction-focused LLINs interventions. We simulate the model trajectory show-

ing the population dynamics of humans expressed in susceptible, pre-infectious, clinical

infectious, asymptomatic infectious, and in recovery compartments and vector popula-

tion dynamics while simultaneously fitting the infectious class to data, using package fitR

(version 0.1 [18]). The model does display some misfit due to missing values and the

simplicity of the basic model. In Fig 8 model parameters estimated are b, ǫj, α1, and

α3, again projected to five years of data after a run in order to reach a steady state,

incorporating a seasonal model. We carried out a sensitivity analysis of different param-

eters: all parameters are fixed and one is left to hold different values (+/- 10%) so that

its influence on the system behaviour can be assessed. We found that the disease trans-

mission increases or decreases greatly with an increase or decrease in the contact rate to

susceptible mosquito σi and the biting rate ǫ. We also observed that, a longer infection

period 1/α1 enhances disease transmission, which may lead to an increased contact rate

to susceptible mosquitoes. To check the accuracy of our results, we ran the model using

various sets of parameter values (independent chains) and tested whether individual dis-

tributions converge to the expected parameter value. Indeed, we found that the parameter

sets converged to the posterior parameter values. Furthermore, on different occasions, the

reproduction number, R0 is the parameter most sensitive to the biting rate. For instance,

R0 reaches 15 when the bite rate is 117 per person per year but it is reduced to 6 when

the bite rate is 34 per person per year, as obtained using Eq( 6.4.8). This means that the

prevalence of malaria will increase with an increase in the corresponding rate of mosquito

bites and it will decrease with optimal mosquito control. The sensitivity index of R0

with respect to χ and V are simulated in Figures 6.9 and 6.10 respectively where the

parameter values from Tables 6.1 and 6.2 were used.

The model’s key parameters are estimated through data-fitting procedures and along

with those presented in Tables 6.1 and 6.2 are used to project the disease. The model
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Figure 6.9: Sensitivity index of R0 with respect to χ for different values of V .

Figure 6.10: Sensitivity index of R0 with respect to V for different values of χ.

results were relatively robust to variations in the long lasting efficacy of LLINs which

decrease the biting rate and increase the mosquito mortality rate. The predicted potential

impact of the use of LLINs by humans as an intervention strategy for combatting malaria

in the three study areas (different states in different regions) is illustrated in Figure 6.11.

For instance, a slight change in LLINs coverage can drastically affect the lifespan and

hence the patterns of mosquito bites.

We further derived and examined the basic reproduction number in relation to biteing

rate values and LLINs coverage from Eq( 6.5.14) plotted in Figure 6.12. With the low

transmission of a bites rate of two infectious bites per person per year, the proportion of
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Figure 6.11: Projected cases of malaria in hundred thousands of people with: No inter-

ventions of LLINs, coverage based on 2009 LLINs distribution, and additional coverage

of LLINs; (A) in Central Equatoria, (B) in Western Bahr-El-Ghazal and (C) in Warrap.

infections resulting in the reproduction number falls to less than one with the impact of

intervention seemingly higher. But with more infectious bites per person per year LLINs

coverage alone has less impact and may not succeed in reducing the reproduction number

to less than one. Measuring the basic reproduction number can be difficult, but it can also

be the most direct measurement for examining the effect of vector control interventions.

6.7 Conclusion

In this chapter, we presented a mathematical model in order to explore the impact of

LLINs on malaria transmissions using a system of ordinary differential equations. The

model analysis was based on a modification of a host-vector model presented by Filipe et

al [40]. The Bayesian framework was incorporated to provide a posterior distribution of

the parameters of the model given the malaria trial data. The threshold parameter, R0,

is the number of humans and mosquitoes expected to be infected with malaria by a single

infected individual/mosquito introduced into a naive population. It was computed using

the next generation matrix method. Owing to the reproduction number’s sensitivity to
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Figure 6.12: Reproduction number as a function of Mosquito bite rate and LLINs coverage,

we observe that the optimum coverage window for falciparum malaria transmission is

80–90.

the mosquitoes biting rate, it is reasonable to recommend the use of LLINs as intervention

strategy for malaria transmission. Therefore, we modelled the intervention to behave like a

function comprised of three parameters: the proportion of LLIN coverage, the proportion

of individuals exposed to mosquito bites, and the effectiveness of the bednets. Simulation

results of R0 show that the use of bednets with long term effectiveness could reduces R0

to less than one in low transmission sites (at a bites rate of two infectious bites per person

per year). In the absence of any intervention, we note a large number of R0, confirming a

substantial increase in incidence of malaria in the community. We cannot be sure whether

the coverage of LLINs could eradicate malaria in an equivalent setting. Nevertheless, in

low-transmission areas, LLINs have the ability to reduce malaria transmission to low

levels, provided the interventions have high-use levels. Meanwhile, in moderate and high-

transmission in these selected settings there was little change in the incidence levels. Thus,

in these settings, novel tools and/or substantial social improvements might be required

to achieve considerable reductions in malaria prevalence. Finally, the model is useful for

further understanding future cases of malaria in South Sudan. This work shows that the
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use of LLINs with long term effectiveness may reduce R0 and hence malaria transmission.
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Chapter 7

Assessing the role of human mobility

on malaria transmission

South Sudan accounts for a large proportion of all annual malaria cases in Africa. In

recent years, the country has witnessed an unprecedented number of people on the move,

refugees, internally displaced people, people who have returned to their countries or areas

of origin, stateless people and other populations of concern, posing challenges to malaria

control. Thus, one can claim that human mobility is one of the contributing factors to the

resurgence of malaria. The aim of this chapter is to assess the impact of human mobility on

the burden of malaria disease in South Sudan. For this, we formulate an SIR-type model

that describes the transmission dynamics of malaria disease between multiple patches.

The proposed model is a system of stochastic differential equations consisting of ordinary

differential equations perturbed by a stochastic Wiener process. For the deterministic

part of the model, we calculate the basic reproduction number. Concerning the whole

stochastic model, we use the maximum likelihood appoarch to fit the number of malaria

cases to weekly malaria data of 2011 from Central Equatoria State, Western Bahr El

Ghazal State and Warrap State. Using the parameters estimated on the fitted model, we

simulate the future observation of the disease pattern. The disease was found to persist

in the low transmission areas when there is human inflow in these patches and although

the intervention coverage reaches 77%.
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7.1 Introduction

Malaria is a vector-borne disease that causes a lot of distress to people on a global scale.

In spite of recent achievements in the fight against malaria, which has led to a significant

reduction in the burden, the disease still counts amongst the top ten deadly diseases in

the world with an estimate of 400 000 deaths each year [140].

Malaria is transmitted more robustly and incessantly in Africa than it is elsewhere.

Further constraints regarding malaria dynamics complexity, are the recurring outbreaks

of conflicts on the continent which contribute to a large number of people’s displacement

and migration, increasing their vulnerability to infectious diseases [44, 56].

In this study we focus mainly on South Sudan, the youngest country in Africa which

has just emerged from two decades of civil war and sporadic violence. This has steered

to a deteriorating socioeconomic situation, collapsed health systems and disruption of

disease control programs. For instance, in the rural areas, the disease exerts an enormous

toll due to poor health services and lack of sufficient transport whereby people travel

long hours to reach the nearest health facility. The political unrest has further led to

substantial population mobility including mass population displacements [44]. There are

an estimated 1.61 million Internally Displaced People (IDPs), and over 975,801 refugees

in neighboring countries [120]. It was reported that in 2013 almost all states were affected

directly or indirectly by conflict-induced displacement, as shown in Figure 7.1. The fluidity

of displacement in the country makes it difficult for health care providers to reach all

conflict-affected populations. Moreover, the displaced people are associated with poor-

quality housing that makes them more vulnerable to mosquito bites and thus increases the

risk factor for malaria. If displaced people are not immunized, they may move to malarious

regions and acquire the infection, and if they are infectious, they may disseminate the

infection to other areas. Consequently, vector-borne diseases in particular malaria, across

many areas of the country have worsened. With this backdrop, it is more difficult to

comprehend how the epidemic is circulating among the population.

Mathematical models for malaria transmission can help better understand the oc-
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currence of the disease in the community and investigate how certain factors such as

migrations affect the course of the epidemic. In this regards, several mathematical mod-

els have been developed by researchers starting from the basic malaria model of Ross

[110] and Macdonald [74] to more complex models considering different factors relating to

malaria transmission dynamics and control [3, 33, 40, 41, 52, 56, 76, 79, 80, 86, 113, 135].

In a review article, Cosner et al.[28] explored optimal disease control in spatial envi-

ronment using models that account human mobility between patches. In a recent study,

Cosner et al. [27] showed, using empirical data combined with mathematical analyses, a

significant effect of host and vector movement patterns on the disease burden. Kim et al.

[68] pointed up the importance of border screening in the presence of human migration

in Africa during an outbreak. Acevedo et al.[2] explored analytically and via numerical

simulations how human mobility and spatial variation in transmission influence malaria

long-term persistence determined by the basic reproduction number R0, and prevalence.

They show that movement can reduce heterogeneity in exposure to mosquito biting. When

Figure 7.1: Source: [120], IDPs camp and movement patterns
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local transmission rates are highly heterogeneous, R0 declines asymptotically as human

mobility increases.

Using a two-patch model, Gao and Ruan [43] demonstrated that human movement can

aid malaria to turn from disease-free to endemic equilibria in both patches, even though

malaria could be eradicated in each patch when isolated. They concluded that decreased

mobility can lead to a disease-free equilibrium point.

Malaria occurrence may be accentuated critically by factors such as environmental

change, socioeconomic situation, and human mobility. For this reason, improving our

perception of host-parasite interactions that attests to the seriousness of these factors is

crucial. In our previous study [84], we focused on understanding the significant role that

temperature and rainfall play in the dynamics of the mosquito populations in the study

of malaria transmission in South Sudan. More precisely the study helps understand the

course of malaria epidemic in two different climatic regions experiencing climate change,

also gain insight into the abundance of mosquitoes with changes in rainfall and temper-

ature patterns within the region that alter the volatility of malaria cases throughout the

year. Consequently, the study proposed and analyzed a human-mosquito disease-based

model that includes temperature and rainfall on the mosquito component. The results

reflect that disease is more effective and severe in the tropical region than in a hot semi-

arid region of South Sudan. Note this study focused more on mosquito population and

how this is impacted by climate factor. This explain why asymptomatic infection class

for human was not included in the study.

In a different study [85], the focus of the study shifted to humans where intervention

variables were incorporated to contract the spread of malaria. Thus we added the asymp-

tomatic malarial infections compartment in this case. In both of the above-mentioned

works, human mobility is not taken into consideration in the transmission of malaria.

Hence, this study seeks to assess whether human mobility may have an impact on the

malaria epidemic in South Sudan. The model generalizes the mosquito biting rate for

each patch so that it applies to wider ranges of populations. We consider that the total

number of mosquito bites on humans depends only on the number of mosquitoes, similar
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to that model of [85, 91].

The deterministic modeling based on ordinary differential equations (ODEs) is the

most widely used approach. However, such systems are often subject to random influences

(such as people’s mobility) that are not fully understood or difficult to model explicitly.

To accommodate such randomness, we extend a classical deterministic SIR-type epidemic

model with migration flows by adding a stochastic noise term in the form of a Wiener

process to the model’s deterministic equations. The resulting model consists of a system

of stochastic differential equations (SDEs) comprising of deterministic terms which are

perturbed by a stochastic noise. To estimate the model’s parameter we use maximum

likelihood to fit it to weekly malaria data of 2011 from Central Equatoria State, Western

Bahr El Ghazal State and Warrap State.

7.2 Model formulation

In this section, we begin with the formulation of a deterministic metapopulation malaria

epidemic model which we further extend by adding a white noise perturbation. The

deterministic part of the model is based on the SEIAR-SEI model of [85], in which we

incorporate human migration factors similar to that considered [68]. The human compo-

nents in the model are utilized to capture disease dynamics and population’s movement.

Conflicts force individual irrespective of their health status to flee to safer zones. For the

purpose of our study, the migration factors considered in our model formulation account

for movement of people between n different states. We assume that disease transmission

conditions are homogeneous within each of these regions. Subsequently, we divide the

human population in each patch i, Ni (with i = 1, . . . , n) into susceptible individuals Si,

pre-infectious individuals with malaria parasite Ei, individuals with malaria symptoms

Ii, asymptomatic infectious individuals Ai and recovered individuals Ri, so that

Ni(t) = Si(t) + Ei(t) + Ii(t) + Ai(t) +Ri(t).

Accordingly, we assume that individuals of all disease classes are subject to migration

flows between patches. Although some individuals, during their travel, may change their
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Figure 7.2: Model flow diagram for human and mosquito populations in State i, where

ΘQ
i =

∑n
j 6=i=1 ψ

Q
j,iQj −∑n

j 6=i=1 ψ
Q
i,jQi, with Q = S,E,A,R and I.

disease status (for instance from susceptible to latently infected or symptomatic disease),

we assume, for simplicity, that individuals keep their disease status as they move between

patches. Subsequently, for each disease state Q = S,E, I, A,R, individuals are assumed

to immigrate from patch j to patch i at rate ψQi,j without changing their states. The

disease transmission dynamics and population’s migration are considered to have both

deterministic and stochastic components that operate simultaneously. This provides an

additional degree of realism compared to deterministic models. In order to account for

stochasticity, we introduce white noise stochastic perturbations onto deterministic model,

and formulate the necessary assumptions hitherto. Additionally, the mosquito compo-

nents in the model are represented to capture the effects of vector control in preventing

transmission. We consider Anopheles Gambiae mosquitoes which are the main anopheles

species that transmit Plasmodium Falciparum in South Sudan. The total mosquito pop-

ulation Mi is divided into susceptible mosquitoes Xi, mosquitoes exposed to the malaria
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parasite Yi, and infectious mosquitoes Zi, that is

Mi(t) = Xi(t) + Yi(t) + Zi(t).

Hence we propose the following system of stochastic differential equations:






dSi =
[

Γi − Λhi
Si − µhi

Si + ρiRi +
∑n
j 6=i=1 ψ

S
j,iSj −∑n

j 6=i=1 ψ
S
i,jSi

]

dt+ σ1SidW1(t)

dEi =
[

Λhi
Si − (λi + ζi + µhi

)Ei +
∑n
j 6=i=1 ψ

E
j,iEj −∑n

j 6=i=1 ψ
E
i,jEi

]

dt+ σ2EidW2(t)

dIi =
[

λiEi − (αi + δi + µhi
)Ii +

∑n
j 6=i=1 ψ

I
j,iIj −∑n

j 6=i=1 ψ
I
i,jIi

]

dt+ σ3IidW3(t)

dAi =
[

ζiEi − (πi + µhi
)Ai +

∑n
j 6=i=1 ψ

A
j,iAj −∑n

j 6=i=1 ψ
A
i,jAi

]

dt+ σ4AidW4(t)

dRi =
[

αiIi + πiAi − (ρi + µhi
)Ri +

∑n
j 6=i=1 ψ

R
j,iRj −∑n

j 6=i=1 ψ
R
i,jRi

]

dt+ σ5RidW5(t)

dXi = [Ψi − Λvi
Xi − µvi

Xi] dt

dYi = [Λvi
Xi − (ηi + µvi

)Yi] dt

dZi = [ηiYi − µvi
Zi] dt

(7.2.1)

where

• Λhi
(Zi, Ni) = ǫibZi

Ni
, represents the force of infection on humans defined as the prod-

uct of the average number of bites given to susceptible humans by each mosquito per

unit time, ǫiShMi/Ni to be measured at study settings level i, the probability that

an infected mosquito bite on a susceptible human to transmit the infection to hu-

mans, bi, the proportion of the total number of bites that are potentially infectious

to humans Zi/Mi.

• Λvi
(Ai, Ii, Ni) = ǫi(κiAi+νiIi)

Ni
, represents the force of infection on mosquitoes which

is defined similarly as on humans, assuming that the reservoir of possible infec-

tions from humans includes νi and κi defined as the probability that a susceptible

mosquitoes bite on an infected human to transfer the infection to the mosquito from
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Table 7.1: Model Variables

Symbols Description

Si Susceptible individuals

Ei Pre-infectious individuals with malaria parasite

Ii Individuals with malaria symptoms

Ai Asymptomatic infectious individuals

Ri Recover individuals

Xi Susceptible mosquitoes

Yi Mosquitoes exposed to the malaria parasite

Zi Infectious mosquitoes

a clinical infectious and an asymptomatic infectious human respectively, excluding

a recovery stage to be releasing merozoites into the bloodstream.

The recruitment rate of susceptible s into the population in patch i is given by Γi.

We assume that transmission occurs solely between individuals and mosquitoes from the

same state; subsequently susceptible individuals (Si) in patch i acquire malaria and be-

come pre-infectious and move to class Ei at a rate Λh when they are bitten by infectious

mosquitoes from the same patch i. Thereafter, individuals either develop clinical infec-

tion and progress to the infectious compartment Ii with probability λh or individuals turn

asymptomatic at a probability ζi, and enter compartment Ai. Those that develop disease

are successfully treated at rate αii and subsequently enter a period of prophylaxis (recov-

ery compartment Ri). The disease-induced mortality rate is denoted by δi. Individuals

with asymptomatic infection are assumed to recover naturally with a constant per capita

recovery rate πi and enter Ri compartment. We assume that recovered individuals move

to the susceptible compartment at rate ρi, when they are immunized. Super-infection is

possible to occur from the asymptomatic infection. All compartments are stratified in

patch i by level at which people are bitten by mosquitoes and also drop individuals at a
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natural death rate of µhi
=

1

q × 360
day−1 where q is the human life expectancy in years.

Susceptible female mosquitoes in patch i are recruited at the birth rate Ψi. We assume

Table 7.2: Model parameters

Symbols Description

Γ Per ca-pita birth rate of Humans. Humans/Day−1

ψ Immigration rate of humans. Day−1

µh Natural mortality rate of humans. Day−1

δ Mortality rate of humans due to malaria. Day−1

ǫ The average number of bites given to humans by each mosquito per unit time.

b Probability of transmitting malaria to susceptible humans from an infectious mosquito

provided that contact occurs between the two.

ν Probability of transmitting malaria to susceptible mosquitoes from a clinical infectious

human-provided that contact occurs between the two.

κ Probability of transmitting malaria to susceptible mosquitoes from an asymptomatic

infectious human-provided that contact occurs between the two.

λ Progression rate of humans from pre-infectious state to a clinical infectious state, that

is the reciprocal of the duration of the latent period. Day−1

ζ Progression rate of humans from pre-infectious state to asymptomatic infectious state,

that is the reciprocal of the duration of the patent infection. Day−1

α Per ca-pita recovery rate for humans from clinical infectious state to the recovered

state, that is the reciprocal duration of the infectious period. Day−1

π Per ca-pita recovery rate for humans from asymptomatic infectious state to the recov-

ered state, that is the reciprocal duration of the sub-patent infection period. Day−1

ρ Per ca-pita rate of loss of immunity, that is the reciprocal duration of the immune

(Prophylaxis following treatment) period. Day−1

η Progression rate of mosquitoes from pre-infectious state to infectious state.

µv Daily mosquito mortality.

Ψ Per ca-pita birth rate of mosquitoes.

131http://etd.uwc.ac.za/



Chapter 7: Quantifying the impact of human movement on malaria
transmission

that reduction in the susceptible mosquitoes occurs through natural death at rate µvi
,

or through infection at rate Λv. At this rate Λv susceptible mosquitoes move to the pre-

infectious class Yi (pass through a latent period of fixed length) from the same patch i,.

Latently infected mosquitoes move at rate ηi to infectious mosquitoes class and remain in

that class until they die at rate µvi
. We note here that we made all mosquito parameters

depend on the patch they live in to reflect dependency on some internal factors such as

temperature and rainfall.

7.3 Model well-posedness

Since it is a population system, it is important that we do not obtain negative values. In

order to find conditions of existence of unique positive global solution of the stochastic epi-

demic model, we use the method of Lyapunov functions. Let (Ω,F , {Ft}t≥t0 , P ) be a prob-

ability space which is right continuous with a filtration {Ft}t≥t0 . Let C2,1(R5 ×[0,∞);R+)

be the family of all nonnegative functions V (x, t) defined on R
5×[0,∞) which are continu-

ously twice differentiable in x and once in t. LetW (t) = (W1(t),W2(t),W3(t),W4(t),W5(t))

a 5-dimensional Wiener process defined on this probability space. The non-negative con-

stants σ1, σ2, σ3, σ4 and σ5 denote the intensities of the stochastic perturbations. We

shall assume that the components of the 1-dimensional Wiener process Wi are mutually

independent. It is important to show that the SDE model (7.2.1) has at least a unique

global solution in order for the model to have meaning and also that the solution will

remain positive whenever the initial conditions are positive. Thus, the following theorem:

Theorem 1. For model (7.2.1) and any initial value in R
8n
+ , there is a unique solution

L = (Si(t), Ei(t), Ii(t), Ai(t), Ri(t), Xi(t), Yi(t), Zi(t))i=1,···,n , of the system (7.2.1) for t ≥
0 which will remains in R

8n
+ with probability one.

Proof. The total human population in system (7.2.1) verifies the equation (7.3.2),

if (Si(s), Ei(s), Ii(s), Ai(s), Ri(s), )i=1,···,n ∈R5n
+ for all 0≤ s ≤ t almost surely (a.s)

dNi(t) < [Γi − ϕNi]a.s (7.3.2)
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where






Γi =
∑n
j 6=i=1 ψ

Q
i,jNj + Γi for Q = S,R and j = 1, · · · , n, j 6= i

ϕ = µhi
+
∑n
j 6=i=1 ψ

Q
i,j.

Hence, by integration we check

Ni(s) <
Γi

ϕ
+ (N0 − Γi

ϕ
) exp(−ϕs) for all s ∈ [0, t]a.s.

Then

N(s) <
Γi

ϕ
, so

(Si(s), Ei(s), Ii(s), Ai(s), Ri(s), )i=1,···,n ∈ (0,
Γi

ϕ
) for all s ∈ [0, t]a.s. (7.3.3)

Note that the coefficients of the system (7.2.1) are locally Lipschitz continuous, for any

given initial value, there is a unique maximal local solution

(Si(t), Ei(t), Ii(t), Ai(t), Ri(t), Xi(t), Yi(t), Zi(t))i=1,···,n on t ∈ [0, τe), where τe is the ex-

plosion time (see e.g., [7, 46]).

To show this solution is global, we need to show that τe = ∞ almost surely (a.s).

Letm0 > 0 such that (Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(0), Yi(0), Zi(0))i=1,···,n ∈ [ 1
m0
,m0].

For each integer m ≥ m0, define a sequence of stopping times by

τm = inf
{

t ∈ [0, τe) : S(t), E(t), I(t), A(t), R(t), X(t), Y (t)orZ(t) /∈
(

1

m
,m
)}

where we set inf∅ = ∞. Now since τm is nondecreasing, the following limit exists: τ∞ =

limm→∞ τm, and τ∞ ≤ τe (a.s.). We need to show that τ∞ = ∞ a.s.

If this statement is violated, then there exists T > 0 and ǫ ∈ (0, 1) such that

P{τ∞ ≤ T} > ǫ. (7.3.4)

Thus, there is an integer m1 ≥ m0 such that

P {τm ≤ T} ≥ ǫ, for all m ≥ m1.

Define a C2-function V : R8n
+ → R+ by

V (L) =
∑n
i=1

[

(Si − 1 − lnSi) + (Ei − 1 − lnEi) + (Ii − 1 − ln Ii) + (Ai − 1 − lnAi)

+ (Ri − 1 − lnRi) + (Xi − 1 − lnXi) + (Yi − 1 − ln Yi) + (Zi − 1 − lnZi)
]

(7.3.5)

133http://etd.uwc.ac.za/



Chapter 7: Quantifying the impact of human movement on malaria
transmission

By applying Itô’s formula we get,

dV (L) =
∑n
i=1

[ (

1 − 1
Si

)

dSi + 1
2S2

i

dSidSi +
(

1 − 1
Ei

)

dEi + 1
2E2

i

dEidEi

+
(

1 − 1
Ii

)

dIi + 1
2I2

i

dIidIi +
(

1 − 1
Ai

)

dAi + 1
2A2

i

dAidAi

+
(

1 − 1
Ri

)

dRi + 1
2R2

i

dRidRi +
(

1 − 1
Xi

)

dXi + 1
2X2

i

dXidXi

+
(

1 − 1
Yi

)

dYi + 1
2Y 2

i

dYidYi +
(

1 − 1
Zi

)

dZi + 1
2Z2

i

dZidZi,
]

and using (7.2.1) we obtain

dV (L) = LV dt+
(

1 − 1
Si

)

σ1SidW1(t) +
(

1 − 1
Ei

)

σ2EidW2(t) +
(

1 − 1
Ii

)

σ3IidW3(t)

+
(

1 − 1
Ai

)

σ4AidW4(t) +
(

1 − 1
Ri

)

σ5RidW5(t)

where

LV =
∑n
i=1 ǫibiZiNi − ǫibiSiZiNiEi + µhi

Ni + ζi + λi + ρi + αi + δi + πi

+
∑n
i=1 ǫiκiAiNi − ǫiκiAiXiNiYi − ρiRi

Si
− πiAi

Ri
− αiIi

Ri
− µhi

Ni

Si

+
∑n
i=1 ǫiνiIiNi − ǫiνiIiXiNiYi − Ψi

Xi
− ηiYi

Zi
− λiEi

Ii
− ζiEi

Ai

+
∑n
i=1 5µhi

+ Ψi + ηi + 3µvi
− µvi

Xi − µvi
Yi − µvi

Zi

+1
2

(σ2
1 + σ2

2 + σ2
3 + σ2

4 + σ2
5)

By (7.3.3) we assert that (Si(s), Ei(s), Ii(s), Ai(s), Ri(s), )i=1,···,n ∈ (0, Γi

ϕ
)foralls ∈ [0, t ∧

τm]a.s. Hence
∑n
i=1 ǫibZiNi <

Γi

ϕ
,
∑n
i=1 ǫiκiAiNi <

Γi

ϕ
and

∑n
i=1 ǫiκiIiNi <

Γi

ϕ
, therefore

LV ≤ µhi
Ni+ζi+λi+ρi+αi+δi+πi+5µhi

+Ψi+ηi+3µvi
+

1

2

(

σ2
1 + σ2

2 + σ2
3 + σ2

4 + σ2
5

)

=: D

Denote by ξ = min (τm, T ) , then

∫ ξ

0
dV (Si(s), Ei(s), Ii(s), Ri(s), Ai(s), Xi(s), Yi(s)) ≤

∫ ξ

0
Dds+H (ξ) , (7.3.6)

where

H(s) =
∫ s

0 (S(u) − 1)σ1dW1(u) +
∫ s

0 (E(u) − 1)σ2dW2(u) +
∫ s

0 (I(u) − 1)σ3dW3(u)

+
∫ s

0 (A(u) − 1)σ4dW4(u) +
∫ s

0 (R(u) − 1)σ5dW5(u).

(7.3.7)

Taking expectation, yields

E [V (Si(ξ), Ei(ξ), Ii(ξ), Ai(ξ), Ri(ξ), Xi(ξ), Yi(ξ), Zi(ξ))]

≤ V (Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(s), Yi(s)) + E
∫ ξ

0 Dds

≤ V (Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(s), Yi(s)) +DT.
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Set Ωm = {ω ∈ Ω : τm(ω) < T} for each m ≥ m1 and from equation set, we have P(Ωm) ≥
ǫ. Note that for every ν ∈ Ωm, we get

{Si (τm, ν) , Ei (τm, ν) , Ii (τm, ν) , Ai (τm, ν) , Ri (τm, ν)} ∩ [m,
1

m
] 6= ∅.

Consequently,

V
(

(Si(ξ), Ei(ξ), Ii(ξ), Ai(ξ), Ri(ξ))i=1,···,n

)

≥ Um

where

Um = min
u∈{1,a0}

{

m− u− u ln
m

u
,

1

m
− u− u ln

1

um

}

.

Then we obtain

V
(

(Si(0), Ei(0), Ii(0), Ai(0), Ri(0), Xi(s), Yi(s))i=1,···,n

)

+DT

≥ E(1Ωm
V
(

(Si(ξ), Ei(ξ), Ii(ξ), Ai(ξ), Ri(ξ))i=1,···,n

)

≥ ǫUm.

Lettingm → ∞ leads to the contradiction ∞ = V
(

(Si(0), Ei(0), Ii(0), Ai(0), Ri(0))i=1,···,n

)

+

DT < ∞. Thus, as τm ≥ τ∞, then τm = τ∞ = ∞ a.s. This completes the proof.

7.4 Basic Reproductive Number

The basic reproduction number, denoted by R0, is defined as the average number of sec-

ondary infections that occur when one infective is introduced into a completely susceptible

host population (see [131] for instance).

To evaluate R0, we need to determine the model’s disease free equilibrium points

which are given by the solutions of the following system






Γi −
(

µhi
+
∑n
j 6=i=1 ψ

S
i,j

)

Si +
∑n
j 6=i=1 ψ

S
j,iSj = 0,

−(ρi + µhi
)Ri +

∑n
j 6=i=1 ψ

R
j,iRj −

(
∑n
j 6=i=1 ψ

R
i,j

)

Ri = 0,

Ψi − µvi
Xi = 0,

We obtain Xi = Ψi

µvi

, and






∑n
j=1 ϕ

S
i,jSj = Γi

∑n
j=1 ϕ

R
i,jRj = 0,

(7.4.8)
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where






ϕQi,j = −ψQi,j for Q = S,R and j = 1, · · · , n, j 6= i

ϕSi,j = µhi
+
∑n
j 6=i=1 ψ

S
i,j and ϕ

R
i,j = ρi + µhi

+
∑n
j 6=i=1 ψ

R
i,j for j = i.

Using matricial form, equation (7.4.8) reads as







ϕSS = Γ

ϕRR = 0
(7.4.9)

where ϕQ =
(

ϕQi,j
)

1≤i,j≤1
, S = (S1, · · ·Sn)⊤ , R = (R1, · · ·Rn)⊤ and Γ = (Γ1, · · · Γn)⊤ .

It can be shown that the matrix ϕQ is an invertible Z-matrix whose off-diagonal entries are

nonzeroimplying that system (7.4.9) has a unique solution R = 0 and S = S0 =
(

ϕS
)−1

Γ.

Thus, model (7.2.1) has a unique disease free equilibrium point

E0 =
((

S0
i

)

i=1,···,n
,0,0,0,0,

(

X0
i

)

i=1,···,n
,0,0

)

where 0 = (n×0, · · · , 0
︸ ︷︷ ︸

), (X0
i )i=1,···,n =

(

Ψi

µvi

)

i=1,···,n
and (S0

i )i=1,···,n =
(

ϕS
)−1

Γ.

We are now in a position to compute R0 for the deterministic counterpart of the stochastic

model (7.2.1) by following the approach of Van den Driessche and Watmough [131]. The

model’s diseased compartments are Ei, Ii, Ai, Yi and Zi.

First we rewrite the equations for the model’s infected classes

(E1, · · · , En, I1, · · · , In, A1, · · · , An, Y1, · · · , Yn, Z1, · · · , Zn)

as 





dEidt = Λhi
Si −∑n

j=1 ϕ
E
i,jEj

dIidt = λiEi −∑n
j=1 ϕ

I
i,jIj

dAidt = ζiEi −∑n
j=1 ϕ

A
i,jAj

dYidt = λvi
Xi − (ηi + µvi

)Yi

dZidt = ηiYi − µvi
Zi
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where 





ϕQi,j = −ψQi,j forQ = E, IorAandj = 1, · · · , nj 6= i

ϕEi,i = λi + ζi + µhi
+
∑n
j 6=i=1 ψ

E
i,j,

ϕIi,i = αi + δi + µhi
+
∑n
j 6=i=1 ψ

I
i,j,

ϕAi,i = πi + µhi
+
∑n
j 6=i=1 ψ

A
i,j

.

With these notations the vector of the rates of new infections and the vector of the ratres

of other transfers between disease states are respectively given by

F(x) =

















[ǫibiZiSiSi + Ei + Ii + Ai +Ri]i=1,···,n

0n

0n

[ǫiκiAiXi + ǫiνiIiXiSi + Ei + Ii + Ai +Ri]i=1,···,n

0n

















, and

V(x) =


















[
∑n
j=1 ϕ

E
i,jEj

]

i=1,···,n
[

−λiEi +
∑n
j=1 ϕ

I
i,jIj

]

i=1,···,n
[

−ζiEi +
∑n
j=1 ϕ

A
i,jAj

]

i=1,···,n

[(ηi + µvi
)Yi]i=1,···,n

[−ηiYi + µvi
Zi]i=1,···,n


















.

The Jacobian matrices of F and V with respect to infected classes (Ei, Ii, Ai , Yi, and

Zi) evaluated at the disease free equilibrium point E0 are respectively given by

F =

















O O O O F1,5

O O O O O

O O O O O

O F4,2 F4,3 O O

O O O O O

















and V =

















V1,1 O O O O

V2,1 V2,2 O O O

V3,1 O V3,3 O O

O O O V4,4 O

O O O V5,4 V5,5

















where 





F1,5 = diag {ǫ1b1, ǫ2b2, · · · , ǫnbn}
F4,2 = diag {ǫ1ν1X

0
1S

0
1 , ǫ2ν2X

0
2S

0
2 , · · · , ǫnκnX0

nS
0
n}

F4,3 = diag {ǫ1κ1X
0
1S

0
1 , ǫ2κ2X

0
2S

0
2 , · · · , ǫnκnX0

nS
0
n}
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and







V1,1 =
(

ϕEi,j
)

1≤i,j≤n

V2,1 = diag (−λ1, · · · ,− λn)

V2,2 =
(

ϕIi,j
)

1≤i,j≤n

V3,1 = diag (−ζ1, · · · ,−ζn)

V3,3 =
(

ϕAi,j
)

1≤i,j≤n

V4,4 = (η1+µv1 , · · · , ηn+µvn
)

V5,4 = diag (−η1, · · · ,−ηn)

V5,5 = diag (µv1 , · · · , µvn
)

and O is the n by n matrix with all entries being equal to 0.

The matrix F is a non-negative matrix of rank one and can be written as the product of

vectors. Matrices V1,1, V2,2, V3,3, V4,4 and V5,5 are irreducible non-singular M-matrix and

thus their inverses are

V −1 =

















V −1
1,1 O O O O

−V −1
2,2 V2,1V

−1
1,1 V −1

2,2 O O O

−V −1
3,3 V3,1V

−1
1,1 O V −1

3,3 O O

O O O V −1
4,4 O

O O O −V −1
5,5 V5,4V

−1
4,4 V −1

5,5

















The Next Generation Matrix is given by:

M = FV −1 =

















O O O M1,4 M1,5

O O O O O

O 0n×n O O O

M4,1 M4,2 M4,3 O O

O O O O O
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where 





M1,4 := F1,5V
−1

4,4 V5,4V
−1

5,5 ,

M1,5 := F1,5V
−1

5,5 ,

M4,1 := F4,2V
−1

1,1 V2,1V
−1

2,2 + F4,3V
−1

1,1 V3,1V
−1

3,3

M4,2 := F4.2V
−1

2.2

M4,3 := F4.3V
−1

3.3 .

Hence, the basic reproductive number R0 given by the spectral radius of FV −1, is

R0 = ρ (B)

where B is the n× n positive matrix given by

B = M1,4M4,1 = F1,5V
−1

4,4 V5,4V
−1

5,5

(

F4,2V
−1

1,1 V2,1V
−1

2,2 + F4,3V
−1

1,1 V3,1V
−1

3,3

)

.

F1,5V
−1

4,4 V5,4V
−1

5,5 = diag
(

−ǫ1b1η1

µv1(η1+µv1)
, · · · , −ǫnbnηn

µvn (ηn+µvn )

)

F4,2V
−1

1,1 V2,1V
−1

2,2 = diag {ǫ1ν1X
0
1S

0
1 , · · · , ǫnκnX0

nS
0
n}
(

ϕE
)−1

diag (−λ1, · · · ,− λn)
(

ϕI
)−1

F4,3V
−1

1,1 V3,1V
−1

3,3 = diag {ǫ1κ1X
0
1S

0
1 , · · · , ǫnκnX0

nS
0
n}
(

ϕE
)−1

diag (−ζ1, · · · ,−ζn)
(

ϕA
)−1

Clearly the calculation of ρ (B) invoques the invertion of n by n matrices which can lead

to some tedious calculations when n is large. We discuss the following particular cases:

• If we ignore population movement between patches, that is ψQi,j = ψQj,i = 0 for

j = 1, · · · , n j 6= i and Q = E, I or A, we have






ϕQi,j = 0forj = 1, · · · , nj 6= iandQ = E, IorA

ϕEi,i = λi + ζi + µhi
, ϕIi,i = αi + δi + µhi

, ϕAi,i = πi + µhi
.

Then

F1,5V
−1

4,4 V5,4V
−1

5,5 = diag
(

−ǫ1b1η1

µv1(η1+µv1)
, · · · , −ǫnbnηn

µvn (ηn+µvn )

)

F4,2V
−1

1,1 V2,1V
−1

2,2 = diag
{

−λ1ǫ1ν1X
0
1S

0
1ϕ

E
11ϕ

I
11, · · · ,−λnǫnνnX0

nS
0
nϕ

E
nnϕ

I
nn

}

F4,3V
−1

1,1 V3,1V
−1

3,3 = diag
{

−ζ1ǫ1κ1X
0
1S

0
1ϕ

E
11ϕ

A
11, · · · ,−ζnǫnκnX0

nS
0
nϕ

E
nnϕ

A
nn

}

Therefore

B = diag

{

ǫ2
1b1η1X

0
1

µv1 (η1+µv1)S0
1ϕ

E
11

(

λ1ν1ϕ
I
11 + ζ1κ1ϕ

A
11

)

, · · · , ǫ2
nbnηnX

0
n

µvn
(ηn+µvn

)S0
nϕ

E
nn

× Ψ

}

.
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Where

Ψ =
(

λnνnϕ
I
nn + ζnκnϕ

A
nn

)

Hence

R0 = max R0i

where

R0i =
ǫ2
i biηiX

0
i

µvi
(ηi+µvi

) (λi + ζi + µhi
)S0

i

(λiνiαi + δi + µhi
+ ζiκiπi + µhi

) .

• In the case of nonzero rates of population’s movement, we consider a situation where

the whole population is divided in two (large) patches only, that is n = 2, then we

have






F1,5 = diag {ǫ1b1, ǫ2b2}
F4,2 = diag {ǫ1ν1X

0
1S

0
1 , ǫ2ν2X

0
2S

0
2}

F4,3 = diag {ǫ1κ1X
0
1S

0
1 , ǫ2κ2X

0
2S

0
2}

and






V1,1 =
(

ϕEi,j
)

1≤i,j≤2

V2,1 = diag (−λ1,− λ2)

V2,2 =
(

ϕIi,j
)

1≤i,j≤2

V3,1 = diag (−ζ1,−ζ2)

V3,3 =
(

ϕAi,j
)

1≤i,j≤2

V4,4 = diag (η1+µv1 , η2+µv2)

V5,4 = diag (−η1,−η2)

V5,5 = diag (µv1 , µv2)

Then

B = F1,5V
−1

4,4 V5,4V
−1

5,5

(

F4,2V
−1

1,1 V2,1V
−1

2,2 + F4,3V
−1

1,1 V3,1V
−1

3,3

)

=






B11 B12

B21 B22
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where






B11 = −ǫ1b1η1

µv1(η1+µv1)
(

(ϕE
12)

2
+ϕE

11ϕ
E
22

)

(

ν1ǫ1(λ2ϕE
12ϕ

I
12−λ1ϕE

11ϕ
I
11)

(ϕI
12)

2
+ϕI

11ϕ
I
22

+
κ1ǫ1(ζ2ϕE

12ϕ
A
12−ζ1ϕE

11ϕ
A
11)

(ϕA
12)

2
+ϕA

11ϕ
A
22

)

B12 = ǫ1b1η1

µv1(η1+µv1)
(

(ϕE
12)

2
+ϕE

11ϕ
E
22

)

(

ν1ǫ1(λ1ϕE
11ϕ

I
12+λ2ϕE

12ϕ
I
22)

(ϕI
12)

2
+ϕI

11ϕ
I
22

+
κ1ǫ1(ζ1ϕE

11ϕ
A
12+ζ2ϕE

12ϕ
A
22)

(ϕA
12)

2
+ϕA

11ϕ
A
22

)

B21 = −ǫ2b2η2

µv2 (η2+µv2)

(

(ϕE
12)

2
+ϕE

11ϕ
E
22

)

(

ν2ǫ2(λ1ϕE
12ϕ

I
11+λ2ϕE

22ϕ
I
12)

(ϕI
12)

2
+ϕI

11ϕ
I
22

+
κ2ǫ2(ζ1ϕE

12ϕ
A
11+ζ2ϕE

22ϕ
A
12)

(ϕA
12)

2
+ϕA

11ϕ
A
22

)

B22 = −ǫ2b2η2

µv2 (η2+µv2)

(

(ϕE
12)

2
+ϕE

11ϕ
E
22

)

(

ν2ǫ2(λ1ϕE
12ϕ

I
12−λ2ϕE

22ϕ
I
22)

(ϕI
12)

2
+ϕI

11ϕ
I
22

+
κ2ǫ2(ζ1ϕE

12ϕ
A
12−ζ2ϕE

22ϕ
A
22)

(ϕA
12)

2
+ϕA

11ϕ
A
22

)

Hence

R0 =
1

2

(

B11 +B22 +
√

(B11 −B22)2 + 4B12B21

)

Thus if R0i > 1 for all i, then the disease-free equilibrium (DFE) is unstable and

the disease may invade the population, but if R0i < 1 for all i, then DFE is locally

asymptotically stable and the disease may be eliminated. It is worth noting that the basic

reproduction number of the deterministic model is closely related to that of thestochastic

model which is dependent on the initial number of infectious individuals for each patch i

Thus, it is important to reduce R0i in every patch i for the disease to be controlled.

One of the interventions that are aimed at reducing R0i is the Long-lasting insecticide

treated nets (LLINs) which mainly reduce the contact between humans and mosquitoes.

Implementing this intervention in our model can be expressed by (1 − χϑ)ǫ where χ is

the proportion of LLINs coverage and ϑ is the effectiveness of vector control. These two

parameters are estimated using the data fitting process.

7.5 Model fitting

We restrict our model simulations and data fitting to the three safest zones of Equato-

rial region: Central Equatoria State, Bahr El Ghazal region: Western Bahr El Ghazal

State and Upper Nile region : Warrap State. By doing so, we are assuming that move-

ments from and into other regions are negligible compared to those from these three main

regions. Basically, this turns out to considering the three regions together as a closed
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system, whereby only movements within and between these three regions are considered.

Our stochastic model is fitted to weekly malaria data of 2011 from these three regions

(shown in Figure 7.4) using the maximum likelihood approach. The model is run from

the year 2000 to reach a steady state before being fitted to data from the year 2011. We

assume that weekly malaria data were reported according to a Poisson process with re-

porting rate γ. Since the reporting rate is unknown we assume it to be no larger than 85%.

Model parameters are estimated during this fitting process and those which are not
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Figure 7.3: Illustration of the model fitting: the model assessment (line) run against

data (dots) of CES (a), WBGZ (b) and WRP (c) for 2011, attached with the parameters

estimated during fitting process in Table 7.3, along with the time-series of the extinction

probability (i.e. the proportion of faded out simulations).
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estimated were collected from literature and are listed in Table 4.4. These parameters

were assumed to be constant and were jointly estimated by utilizing fitR (version 0.1

[18]) and by plotting the mean and the median as well as the 95th and 50th percentiles

of several replicated simulations. We assume an underlying Poisson distribution with a

canonical vectors’ parameter, θ, to be estimated. The resulting model fit of the observed

measurement (the annual cases recorded) is shown in Figure 7.3.
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Figure 7.4: Simulation trajectory for the fitted model of human population dynamics

expressed in SEIAR for Patch 1

We add new state variable onto the model to track the daily number of new cases,

assuming that these new cases are reported when they become symptomatic or infectious.

In order for the model to predicted incidence of malaria cases, we use the simulation

function of the model with the initial state and given parameters calibrated with xi,j(i =

1, ..., n; j = 1, ...,m) as the observed weekly malaria cases for state j during week i.

Calculating the likelihood of each data point xi,j taking its observations (cases) member

and evaluating it with respect to a Poisson distribution centred around the member of the

model point. We assume that the Poisson probability of observing xi IID (Independent

and Identically Distributed) counts with unknown parameter θ.

143http://etd.uwc.ac.za/



Chapter 7: Quantifying the impact of human movement on malaria
transmission

X|θ ∼ Poisson(θ)

2011 2011.5 2012
0

1

2

3

4

5

6

S(t)

2011 2011.5 2012
1

1.5

2

2.5

3

3.5

4

4.5

5

E(t)

2011 2011.5 2012

Time in year

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Human dynamics in Patch 2(WBGZ)

I(t)

2011 2011.5 2012
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A(t)

2011 2011.5 2012
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R(t)

Figure 7.5: Simulation trajectory for the fitted model of human population dynamics

expressed in SEIAR for Patch 2
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Figure 7.6: Simulation trajectory for the fitted model of human population dynamics

expressed in SEIAR for Patch 3
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The likelihood function is:

L(θ|x1, x2, · · · , xn) = p(X = x1|θ)p(X = x2|θ) · · · p(X = xn|θ)

=
e−nθθx1+x2+···+xn

x1! x2! · · · xn!

=
e−nθθ

∑n

i=1
xi

∏n
i=1 xi!

and log likelihood function becomes

ln(L(θ|x1, x2, · · · , xn)) = −nθ +

(
n∑

i=1

xi

)

ln θ − ln(
n∏

i=1

xi!)

The model is fitted to three patch dataset, considering an iid sample xij for patch j

from a Poisson variable the log likelihood to be maximised as

ln(L(θj|xij)) =
n∑

i=1

3∑

j=1

xiθj − θj

7.6 Concluding remarks

In this chapter we investigated the role of human mobility on malaria severity in South

Sudan. We used a modified model of Mukhtar et al. [85] to carry out our investigation.

The model is a metapopulation deterministic model consisting of three patches in three

different regions of South Sudan. We incorporate a white noise in deterministic model to

account for unpredictable population. The basic reproductive number R0, for metapopu-

lation deterministic model, was calculated using the next generation matrix method. The

threshold parameter, R0, is the expected number of humans and mosquitoes that would

be infected with malaria by a single infected human/mosquito who had been introduced

into disease-free population. A precise usage of R0, is to advise on the disease steady

state of the considered patches. Another task in this study was to perform the model

calibration. To this end, model parameter value estimates are determined to provide

incidence case data (weekly cases data for the patches) for 2011.
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We used a statistical approach, namely the maximum likelihood of Poisson distri-

bution. Figure 7.3 illustrates the infectious class of the model fitted into data of three

patches using the package fitR (version 0.1 [18]) and this include the mean, the median

as well as the 95th and 50th percentiles of multiple replicated simulations.

The introduction of random motion increase realisticity of the model. One of the most

important lessons to be learned from stochastic model is that when the noise intensity is

high, the disease is susceptible to extinction in finite time (epidemic become extinct in

a more direct sense) unlike the deterministic model. This provide us with some useful

Table 7.3: Model parameters estimated during the fitting process

Symbols CES estimates WBGZ estimates WRP estimates References

Γ 0.0000514∗N1 0.0000514∗N2 0.0000514∗N3 Estimated

Ni N1 =7983420 N2 =9967450 N3 =78826740 [120]

ψ ψij=10−3,ψji=1/1800 ψij=1/20, ψji=10−3 ψij=10−2,ψji= 10−3 Estimated

µh 0.0000514 0.0000514 0.0000514 Estimated

δ 0.00004 0.00004 0.00004 [26]

ǫ 36.6 (25.24, 50.4) 29.7 (20.2, 40.4) 32.5 (20.7, 45.31) Estimated

b 0.84 (0.72, 0.94) 0.84 (0.72, 0.94) 0.84 (0.72, 0.94) Estimated

ν 0.48 0.48 0.48 Estimated

κ 0.4 0.4 0.4 [134]

λ 0.2 (0.083, 0.25); 0.167 (0.083, 0.25) 0.167 (0.083, 0.25) Estimated

ζ 0.0525 0.0525 0.0525 Estimated

α 1/16, 1/20, 1/18 Estimated

π 1/150 1/190 1/220 Estimated

ρ 1/25 1/20 1/37 Estimated

η 1/12 1/12 1/12 [26]

µv 0.04 0.04 0.04 [26]

Ψ 0.13 0.13 0.13 [85]
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control strategies to regulate disease dynamics.

We used simulation to generate an observation trajectory for the fitted model and

also to demonstrate the population dynamics of humans (see Figures 7.4- 7.6). The pre-

dicted pattern of observation for a stochastic model with a variety of migration pattern

was carried out, as shown in Figure 7.7. It turns out that the disease persists in the

low transmission patches when there is human inflow in these patches and even though

intervention coverage is as high as 77%. This implies that with an unprecedented number

of people who are on the move (one out of every five people in South Sudan have been

forcibly displaced) can pose challenges to malaria control and elimination. Figure 7.8

demonstrates the correlation pattern of malaria disease with intervention coverage and

no intervention involving mobility. With the usage of threshold R0, the result indicated

migration of a large number of people (the case of the conflict that leads to population

pressure) and their circulation can favor malaria transmission (increase of R0) compared

to less or no migration (see Figure 7.8). This confirms that human movement is one of

the contributing factors to the resurgence of malaria, which can be explained by when

infected individual move from areas where malaria was still endemic to malaria-free areas

and also could happen when susceptible people move to malarious regions, they can in-

a

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

5

10
Patch 1 (CES)

with migration
without migration

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

2

4

P
op

ul
at

io
n 

in
 th

ou
sa

ns

Patch 2 (WBGZ)

with migration
without migration

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Time in years

0

10

20
Patch 3 (WRP)

with migration
without migration

b

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

2

4
Patch 1 (CES)

with migration & chi=0.77, V=0.62
without migration & chi=0.77, V=0.62

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Time in years

0

5

10
Patch 3 (WRP)

with migration & chi=0.70, V=0.60
without migration & chi=0.70, V=0.60

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
-2

0

2

P
op

ul
at

io
n 

in
 th

ou
sa

ns

Patch 2 (WBGZ)

with migration & chi=0.75, V=0.60
without migration & chi=0.75, V=0.60

Figure 7.7: Projected cases of malaria using parameter values in Table 1, assess the impact

of movement between patches with no interventions of LLINs (a), with interventions of

LLINs (b)

147http://etd.uwc.ac.za/



Chapter 7: Quantifying the impact of human movement on malaria
transmission

crease their risk of acquiring the disease. It can be seen from the result in Figure 7.8 that

human mobility is sufficient to preserve malaria disease firmness in the patches with the

low transmission. We concluded that the sensitivity of malaria to the human mobility is

high that can cause the implications on malaria control in South Sudan, and efforts to

ameliorate health and monitoring of migrants and collect disaggregated data on malaria

and population movements must, therefore, be strengthened.
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Conclusion

We constructed and analyzed mathematical models for malaria transmission in the South

Sudan context incorporating national malaria control strategies plan by a scaling up of

Long-Lasting Insecticide-Treated nets (LLINs) coverage and the effect of the switch to

Artemisinin-Combination Therapy (ACT). Over years, South Sudan has been exposed

to the brunt of chronic warfare and has one of the highest malaria burdens in the world

where the entire population is at risk. The situation of the country is aggravated by an

increase in number of population due to refugees, returnees, and conflict-related internal

displacements which occurred in 2013. This situation has created a major stumbling block

to malaria control.

Moreover, malaria dynamics complexity emerges from other factors such as agro-

climatic zones, average rainfall, topography, deteriorated socio-economic situation and

lack of drugs and vaccination. LLINs mass campaigns countrywide have been piloted

with the target coverage of 80% and about 4.7 million LLINs have been delivered to

the population who are in need [106]. Despite this, the number of infected cases and

deaths increased in all age groups. Malaria Indicator Survey of 2009 indicates that the

proportion of disease burden goes higher in the Southern part than in the Northern part

of the country, and disease prevalence could be in some counties as higher as 75%-100%

in South. This can be attributed to some factors: the climate being more impactful to

the disease, the collapse of the health system caused by war or the high concentration of
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internally displaced persons (IDPs) camps in the South.

Against this background, the study answered the following research questions ideally

to support metrics for pre-elimination and recommended a scaling-up entry point of LLIN

distribution that targets households in areas at risk of malaria in the country.

• Could the heterogeneity on prevalence of malaria in South Sudan be explained by

the varied agro-climatic conditions ?

• What is the impact of LLINs coverage used on parasite prevalence in selected settings

based on the given coverage of MIS 2009 and 2013 as a baseline ?

• Could the huge burden in the aggregated distribution of malaria parasite among

hosts be ascribed to population distribution changes due to displacements?

We aimed at using mathematical models to assess the effect of various factors on the

severity of this disease as no mathematical study has been conducted previously in South

Sudan to establish the effects of multi-intervention on the malaria epidemic. Thus, we

proposed systems of deterministic and stochastic differential equations. To accommodate

stochasticity, we extended a classical deterministic SIR-type epidemic model with migra-

tion flows by adding a stochastic noise term in the form of a Wiener process to the model’s

deterministic equations. In chapter 4, we considered different compartmental models to

test how they fit to the available weekly malaria cases data. Importantly, the test guided

us in determining which of the available models in the literature best fitted the data. This

enabled us make an informed choice of models to consider as basis for further analysis

and better understanding of the disease epidemiology by comparing their outcome and

predictions.

In the subsequent chapters, the system of deterministic and stochastic are character-

ized by a certain set of parameters, each with a biological significance, such as the force of

infection, the recovery rate, the mortality rate, and so on. We considered the importance

of evaluating the numerical values of the model parameters with real data in order to

allow for computational simulations of dynamics that provides accurate prediction of the
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reaction. Without accurate predictions, calculations of the basic reproduction number

would be subject to a significant error. For a given set of parameters one can determine

the dynamics predicted by the model and then calculate the likelihood that the observed

data came from such dynamics. Available data on malaria was utilized to determine re-

alistic parameter values of deterministic models using a Bayesian approach via Markov

Chain Monte Carlo (MCMC) methods. Concerning the stochastic model, we used the

maximum likelihood approach to fit the number of malaria cases to weekly malaria data.

We then explored the parasite prevalence on a continued rollout of LLINs in different

settings in order to create a sub-national projection of malaria. The intervention model

comprised of three parameters: the proportion of LLIN coverage, the proportion of indi-

viduals exposed to mosquito bites, and the effectiveness of the nets. Simulation results

of R0 show that the use of bednets with long term effectiveness could reduce R0 to less

than one in low transmission sites.

We have pressure tested different structures of models and results show that the trans-

mission of the disease was strongly influenced by the model structure and uncertainty

around the parameter’s value. We observed that the SEIR model consists of an epidemic

with extended peak and short tail compared to a single SIR pandemic, and it may have

more than one peak due to latency. We hence considered a more realistic model by in-

corporating the important factors that may drive the malaria disease into a particular

setting. The effect of rainfall and temperature on mosquito abundance was examined.

We further derived the basic reproduction number R0 and examined the model for the

existence of vector free and disease-free equilibrium points. Sensitivity analysis of R0 to

temperature and rainfall indicates that when the rainfall is equal to 70 or 80 mm, tem-

peratures below 28.8◦C will increase R0 and was shown to be thermally constrained at

low and high temperatures. This study substantiated our claim that disease was more

severe in tropical region than in a hot semi-arid region due to climate conditions and

hence it should be treated as such whenever the intervention against malaria is applica-

ble. The findings obtained in this study are in agreement with other studies [1, 103] that

demonstrate disease behavior change with the change of local climate.
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Our model exhibits two common steady states, namely the free and the endemic

equilibrium points. Key to our analysis was the definition of the basic reproduction

number R0. We computed the sensitivity indices of R0 and the endemic equilibrium.

Under conditions which permit the existence of an endemic equilibrium point, we proved

global stability of the endemic equilibrium for R0 ≥ 1.

We further derived and examined the basic reproduction number in relation to biting

rate values and LLINs coverage from Eq (6.5.14) plotted in Figure 6.12. Simulation

results of R0 show that the use of bednets with long term effectiveness reduced R0 to less

than one in low transmission sites. In the absence of any intervention, we noted a large

R0, confirming a substantial increase in the incidence of malaria in the community. The

findings indicated that the disease transmission increases or decreases greatly with an

increase or decrease in the contact rate to susceptible mosquito and the biting rate. We

also observed that, a longer infection period enhances disease transmission, which may

lead to an increased contact rate to susceptible mosquitoes.

The predicted pattern of observations for a stochastic model with a variety of migra-

tion pattern was carried out and showed to have well-behaved solutions. The result in

Figure 7.8 shows that human mobility is sufficient to preserve malaria disease firmness in

the patches with the low transmission. The findings indicate that the disease persists in

the low transmission patches when there is human inflow and even though intervention

coverage is as high as 77%. This implies that an unprecedented number of people who

are on the move can pose challenges to malaria control and elimination.

We concluded that this study which analysis observed phenomena also seeks ways of

informing decision making together with ideas for the continuation of malaria control in

South Sudan. A model calibration was one of the main contributions that this study has

achieved, complemented with the realistic representation of Anopheles Gambiae popu-

lation dynamics to gain insight into the abundance of mosquitoes and hence the course

of the epidemic. We hope that this study improves understanding of the role of these

factors as the first step in providing information that may lead to significant changes in

the way that the disease is transmitted in the country to incorporate the effective inter-
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ventions. The thesis concluded that malaria sensitivity to human mobility and climatic

conditions are high. This has serious implications on malaria control in South Sudan. Ef-

forts to improve health during the wet season and to monitor migrants should, therefore,

be enhanced. However, malaria transmission can emerge from other factors such as lack

of education, poor healthcare system and a deteriorated socioeconomic situation. These

aspects are worthy of being factored in future studies of malaria transmission.
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