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Abstract

Unmanned Aerial Vehicles (UAVs) have recently offered significant technological achievements. The
advancement in related applications predicts an extended need for automated data muling by UAVs, to
explore high risk places, ensure efficiency and reduce the cost of various products and services. Due to
advances in technology, the actual UAVs are not as expensive as they once were. On the other hand,
they are limited in their flight time especially if they have to use fuel. As a result, it has recently been
proposed that they could be assisted by the ground static sensors which provide information of their
surroundings. Then, the UAVs need only to provide actions depending on information received from
the ground sensors. In addition, UAVs need to cooperate among themselves and work together with
organised ground sensors to achieve an optimal coverage. The system to handle the cooperation of
UAVs, together with the ground sensors, is still an-interesting research topic which would benefit both
rural and urban areas.

In this thesis, an efficient ground sensor network for optimal UAVs coverage is first proposed. This is
done using a clustering scheme wherein, each cluster member transmits its sensor readings to its cluster
head. A more efficient routing scheme for delivering readings to cluster head(s) for collection by UAVs is
also proposed. Furthermore, airborne sensor deployment models are provided for efficient data collection
from a unique sensor/target. The model proposed for this consists of a scheduling technique which
manages the visitation of UAVs to target. Lastly, issues relating to the interplay between both types of
sensor (airborne and ground/underground)’networks are addressed’ by proposing the optimal UAVs task
allocation models; which take caters.for both the ground networking and aerial deployment.

Existing network and traffic engineering techniques were adopted in order to handle the internetworking
of the ground sensors. UAVs deployment is addressed by adopting Operational Research techniques
including dynamic assignment and scheduling models. The proposed models were validated by simula-
tions, experiments and in some cases, formal methods used to formalise and prove the correctness of key
properties.
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1. Introduction

1.1 Motivation

In this section, the key motivating applications for conducting this research are highlighted.

1.1.1 Motivation. The use of UAVs started a long time ago [2] and was limited to military usage.
Nowadays, the use of UAVs is justified in situations where the task to be performed is too dangerous,
expensive or difficult to be performed by human beings [3], or, if not too difficult, can in any case be
performed more cheaply and/or efficiently by UAVs. There are many such applications which are the
subject of ongoing research and development.

Target search is a common application for the purposes of rescue [4, 5], monitoring [6, 7] or destruction
[8]. Another popular application is that of area coverage or exploration for multiple purposes such as
environment mapping [9], surveillance [10, 6, 11, 12], sensor deployment [13], acting as communications
hubs for immobile wireless sensor networks [13, 14], smart city assistantships [15], or aero-biological
sampling [16].

These and other research works mention applications such as weather forecasting, fire detection and
observation (in both urban and rural environments), environmental clean-up, space exploration, traffic
surveillance, logistics in warehouses and factories; agricultural monitoring and interior surveillance of
buildings.

New and unforeseen applications also continue to surface [17]. There have been efforts in Israel and Aus-
tralia to search for groundwater through the use of aerial drones. More recently, commercial applications
using drones have emerged in niche areas where these vehicles have been found much more practical and
more economically sound than traditional methods or approaches. These include the case where drones
are being used commercially i) as marketing gimmicks [18]ii) to"deliver pizza by the Dominos pizza
company in the US [19], iii) to deliver flowers on Valentines Day [20], iv)to deliver urgently needed blood
to hospitals in East Africa [21], and v) to deliver beer during a festival [22]. As another typical drones
application, it has been reported that camera drones have been deployed to help combat the scourge of
rhino-poaching on game farms in Africa [23], while the Australian defence force has started using these
vehicles to monitor the coastline along its vast ocean borders [24].

With their recent acquisitions of aerospace companies (Ascenta by Facebook and Titan Aerospace by
Google), Facebook and Google are investing in drones for supplying remote areas on the planet earth with
broadband and Internet connectivity. The use of a team of drones instead of a single drone is possible
when the mission to be performed can be broken down into basic tasks, i.e. the mission is inherently
distributed in terms of space, time and functionality [25].

These applications along with the potential for drones to deliver life-saving medicines and supplies to
isolated communities (rural and disaster zones) when overland access is not an option makes the multi
drone task allocation an interesting research area that may benefit both urban and rural areas of the
world [26].

1.1.2 Multiple UAVs usage. Multiple UAVs usage has been proven to be advantageous in many
different ways [27, 28, 29, 30, 31, 26]. They may be classified according to one of three properties.
(1)For efficiency, it is especially advantageous to use multiple UAVs when tasks are not order-dependant,
because then multiple tasks can be performed simultaneously and the mission will take less time to
complete. (2) On robustness through redundancy, the energy and computation required to perform
the mission is distributed across team members, so if one member ceases to function, its role can be
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assigned to another member. (3) Lastly for flexibility: the required functionality can be distributed
across robots, although this advantage only becomes apparent when the mission is composed of diverse
tasks: a team of robots with different specialisations, i.e. a heterogeneous team, can be engineered more
cheaply and easily than a single robot capable of performing each kind of task.

1.2 Deployment scenarios

UAVs and ground sensors can be used in many deployment scenarios and tasked to achieve different
goals in a multilayer network including airborne and terrestrial layers. The terrestrial layer consists of
a static sensor network which collects local data to be forwarded to the patrolling UAVs. The UAVs
form the airborne layer where a mobile network created by the UAVs can move to collect their readings
[32, 33]. The two layers needs to be individually and collectively studied, alongside their interaction in
order to investigate how optimal UAV coverage can be achieved.

1.2.1 Airborne deployment models. Two types of deployments are considered and are described as
follows.

Single UAV deployment

UAV- sensor. This situation is when a single-UAV-is given-a_-number of points to visit in a defined area
that has been equipped with sensor devices, and the -UAV.is required to collect environmental variables
at these specified points, or take pictures, if equipped with a camera sensor.

Another deployment is UAV-gateway. In this scenario, a UAV is equipped with a collection device, such
as a sensor gateway, aimed at collecting sensor readings from sensors located at specified points in the
defined area.

UAV-relay is another deployment scenario., Here the UAV. may be equipped with a relaying device and
play the role of an intermittent communication relay between two specified points in the area.

Multi-UAVs deployment

Deployment scenarios for multi drone task allocation may include UAVs-sensor, representing the case
where a number of UAVs have to visit a number of points in an area which are equipped with sensor
devices. The UAVs are required to collect environmental variables at the specified points or take pictures
if equipped with a camera sensor. In contrast to the previous examples of a single UAV carrying out a
simple search or visitation, these vehicles will need to be able to avoid collisions and restricted air zones
due to regulations. Among other requirements, these UAVs will have to deal with the possibilities of
danger, losses and failures. UAVs-gateway is another option, and consists of UAVs which are equipped
with collection devices (sensors gateway) that can collect sensor readings from sensors located at the
specified points within an area. These UAVs also need to be able to avoid collisions as well as be able to
cope with previously mentioned situations. Finally, UAVs-relay is the situation where UAVs are equipped
with relaying devices and play the roles of intermittent communication relays between pairs of specified
points in the area.

1.2.2 Terrestrial deployment models. Three types of terrestrial networks are considered. They are
described as follows.



Section 1.3. Sensor network monitoring Page 3

Unconstrained network deployment

To explore a region, UAVs do not need to visit each and every sensor. It is better if they are assisted
with a ground sensor network. The ground sensor network collects local readings and gathers together
the data to be collected and interpreted by UAVs. Two scenarios are involved in this case. The first
is a centralised deployment, where, a selected number of ground sensors act as the ground gateways,
which are the ones that forward data to the UAVs. This would be benefitial in situations where a large
sensor network needs to be monitored by a relatively small number of UAVs. The second senario is a
distributed deployment, where all the UAVs may have access to all the ground sensors in order to collect
information from the ground sensor network. This is applicable in the case where the number of UAVs
is sufficient to visit all sensors.

Constrained network deployment

In cases where there are obstacles, for illustrative purposes, given a UAV and three nodes x,y and z. The
UAV may be unable to visit node x directly from node y without passing through node z. This might be
cause by obstacles (such as houses, mountains etc,) in the region being explored. In such cases given a
set of ground sensor positions allocated to a single UAV to cover, each UAV would have limited direct
access to any other parts of the ground sensor network. Note that restrictions on path followed by the
UAVs are based on obstacles.

Hybrid network deployment.

Note that both the unrestricted sensor network land the restricted sensor network depend on how the
ground sensors communicate with each other.  The hybrid network is the network where sensors can com-
municate with each other and can also-be-visited-by-UAVs-subjected to permanent obstacles. Examples
of the three networks are shown in Figure 1.1.
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(a) Hybrid network. (b) Restricted network. (c) Unrestricted network.
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Figure 1.1: Hybrid network partition as a combination of both the restricted (see the network with red
links) and unrestricted network (see the network with black links).

1.3 Sensor network monitoring

In this section, we discuss the network monitoring in two steps: the first step consists of discussing
related network surveillance models and the last discuses the general problems which might be adopted
to address the monitoring issues.
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1.3.1 Network surveillance. As discussed in [34], UAVs are able to perform network surveillance by col-
lecting information about intruders from Unattended Ground Sensors (UGS). The persistent surveillance
in basic defence mission and pursuit is ensured by UGS revisit deadline handling. Here the revisit deadline
is handled by minimizing the late and early visitations. This problem is mathematically formulated and
proven to be intractable (NP-hard). The heuristic algorithm to coordinate the UAVs surveillance and pur-
suit is presented. Completeness and complexity of the algorithm is provided, and then, the effectiveness
of the heuristic is illustrated by simulation.

It is assumed that the ground sensors cannot communicate with each other, but can communicate with
UAVs, and also that the ground sensors are optimally placed before the mission, using the techniques
discussed in [35] (alarm placement).

As stated in [34], No method treats a framework where the mobile agents fully rely on static sensors
placed on an arbitrary road network to track and intercept intruders nor does the framework provide a
path planning algorithm for the mobile agents. The paper [34] does not address the issues of obstacles
and collision. Issues relating to obstacles have been addressed in [36, 37] by adopting the Particle Swarm
algorithm. In [36], many robots aim to find a single target but the obstacle is unique and considered to
be either a square or a circle. In [37], path finding in an unknown environment is handled. However, in
neither paper is the collision issue addressed. The collision issue is handled in [36, 37] where the assumed
environment is predictable. Here, UAVs are considered to be point masses whose trajectories are straight
lines. UAVs are required to visit ground sensors in such a way as to reduce costs. This may be achievable
if the selected nodes are able to collect data from other nodes and then forward these data to UAVs.

1.3.2 Network operational research.

e Travelling salesman problem (TSP).

The travelling salesman problem is detailed and discussed iin a survey conducted during the last
decade in [38]. The problem is formalised in different forms and it is proven to be NP-hard. The
problem was able to be solved exactly for a 200-nodes network within a few minutes. A survey
of the exact heuristics algorithms.used to-solve the problem is made. As indicated, the problem
assumes the following:

— Hamiltonian graphs.
— The associated weight function satisfies the triangular inequality.

— An algorithm is presented in the paper as a heuristic which allows nodes to be visited more
than once. In this case, the TSP is considered to be symmetric that is if c;; is the cost to
move from node ito j, then c;=c;.

It is possible to adopt heuristics to solve the Salesman problem which do not make these three
assumptions. The TSP has been solved by successful use of a natural metaphor in [39], wherein
behaviour of ants in colonies was used to address the obstacles issues. However, all ants are
considered to have the same capacity which is an unnecessary assumption in the UAVs case.

e Knapsack problem.

The Knapsack problem, also called Rucksack problem, is a combinatorial optimisation problem
defined as follows: given k items with their mass and values, and a bag of size W , determine
the number of each item to include in the bag so that the total weight is less than or equal to a
given limit W and the total value is as large as possible. The problem has been surveyed in [40],
where heuristic and exact algorithms are provided. In some of the cases ([41, 42, 43], etc.) the
number of items is either 0 or 1 and the corresponding problem is known as 0-1 Knapsack problem
or binary Knapsack problem.
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In case two, bags are to be used to collect items, the problem is called the 0-1 quadratic knapsack
problem and it has been surveyed in [44] where exact and heuristic methods are discussed.

Given k > 2 bags, the problem is still an open challenge. In this case an overview of the problem
is in [45]. Heuristics are presented and pseudo exact methods, with their limitations, are shown.

e Generalized assignment problem. The assignment problem is one of the fundamental combina-
torial opti- mization problems in the branch of optimization or operations research in mathematics.
It assumes a number of agents and a number of tasks. Any agent can be assigned to perform any
task, incur- ring some cost that may vary depending on the agent-task assignment. The require-
ment is to perform all tasks by assigning exactly one agent to each task and exactly one task to
each agent in such a way that the total cost of the assignment is minimized. The assignment prob-
lem can take various forms some of which are known to be NP-hard. These include the Quadratic
Assignment Problem [46] where, the cost related to the interaction of agents is considered; the
Dynamic Assignment Problem [47], where the assignment cost for each agent may change with
time due to the resources and agents dynamical availability over time. This is why the generalized
assignment problem take care of all these cases and hence it is NP-hard. This problem has been
exactly and approximatly solved using various algorithms, which are surveyed in [48].

e Vehicle routing problem. Given a link weighted network, the problem consists of finding the
cheapest route from a single depot while visiting every node only once and using one or more
vehicles. Heuristic and exact algorithms are presented in [49]. The assumption here is that alll the
used vehicles are identical. The heuristics presented-are-for big networks, and it is mentioned that
the better ones still need attention.” For this optimisation problem, the main constraints are put
into the following groups:

— Time to visit each city

— Time to visit all cites in one route
— Capacity of every city

— The number or cities at every route

— Precedence of visiting the cities

Note that when dealing with one vehicle, the problem could be transformed into the TSP 1.3.2.

1.4 Introduction to Z notation

The Z notation [50] was developed, largely at Oxford in the early to mid 1980's to clarify the descrip-
tion of complex discrete transition systems (the analogue case is dealt with satisfactorily by differential
equations). It views a transitions system, like AODV, as a state-based system with operations on it and
this provides techniques for the structured description of state and for the structured description of the
operations on state (with input and output). Here we give a summary of the notation, referring to [50]
for details.

The state S of a discrete system consists of several typed observables, vector v : V, subject to some
invariants P (where P is a predicate with free variables v). This is expressed by schema:
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For example a system Fven whose state consists of just an even integer n is written

__ Fven
n: 42

Am :Z en=2m

In writing P, conjuncts are written on separate lines, with A omitted.

Schemas may be nested by using a schema as a type V. An observable v : V regarded as input
is written v? : V and one regarded as output is written as v! : V (notation inherited from process
algebra). State-before is written s and state-after written s’ for each observable s.

Each system operation Op takes a state s : S before.and an input in? : In and returns a state s’ : §
after and an output out! : Out, subject-to the‘invariant property-Q (s, s’, in?, out!):

—Op
5,8 :8
m?: In
out! : Out
Q

For convenience AS is defined to be

AS
S
Sl

Note that inclusion of AS brings into scope the observables s and s’ of type S, for use in predicate
(). Both s and s’ are automatically constrained by the predicate P in S, which does not need to be
repeated. In Z, a variable not explicitly constrained is assumed to take an arbitrary value (of its type).
We therefore find that it is convenient to use the variation, due to object Z [51], A(wvs) where state
variables not in the vector vs of variables remain unchanged. Thus with the type Even for a pair of
distinct even numbers,
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_ Fvens
a,b: Fven

a#b

we have

A FEvens _ AFEwven
Evens a,a’,b, b : Bven

, o la#b
FEvens o £ b

whilst

—_ Evens(a)
AFEven

b=1"0

Projection notation is inherited from that for records in programming. If z : Fven then z.a and z.b
denote the two components of z. Note that no ordering implied between the variables a and b of Evens.
For example an operation which inputs an even integer, adds it to the state and outputs the result, is
written

__ Fop
A FEven
in?, out! : Z

m? : Bven
n' = out! =n -+ in?

State is initialised by further constraining state to satisfy the initialization property; for example.

_Init
FEven

n=2~0

Finally all ingredients are combined to produce a class consisting of state, initial state and operations.
For example functions examples appear in the remainder of the report.
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__ Fve
_ Fven _Init
n:4 Even

dAm:Z en=2m n =

_Fop
A FEven
in?, out! : Z

m? ;. Even
n' = out! = n +in?

Figure 1.2: class Eve

1.5 Thesis Motivation and contributions

1.5.1 Motivation. Cooperating UAVs is a special case of using a multi-robot systems to perform a spe-
cific task, which is generally difficult to solve, especially as the number of degrees of freedom increases.
In a typical UAV application, the number of used-vehicles. are to ensure the optimal coverage, subjected
to different constraints, including: limited time, collision avoidance; limited speed and maximum accel-
eration. It has recently been shown in [34] that it is important to assist UAVs by using ground sensors
to perform some of the tasks for the UAVs. Furthermore, optimal placement of ground sensors has been
introduced in [35]. The system built by the two models ([34, 35]) was for surveillance and pursuit of a
single intruder entering the network. The placement of sensors depended on maximizing the chances of
capturing an intruder and sending information-to' UAVs regularly visiting these sensors.This recent sys-
tem is still accompanied by assumptions, such as communication based ones, and requires improvement
by considering more features, which iinclude 'scenarios where the ground sensor network works together
with the UAVs assignment, to achieve a more efficient coverage. Furthermore, optimal communication
and exploration models for the ground sensor network ‘need to be in place and customized. This thesis
aims to build on the above mentioned system, and propose model for a such system for more efficient
data transport from a ground sensor network to a point where the data could be processed further. In
this thesis, communication among sensors is assumed guaranteed in order to produce data collection,
transport and delivery with improved efficiency.
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1.5.2 Contributions. The contributions of this thesis are summarised in Figure 1.3.

Figure 1.3: Contribution summary.

1. Topology optimisation and engineering. The first case to consider is a single UAV- Multi-
sensor deployment, where one UAV has to visit a number of locations (of sensors). The locations
are connected in two ways: first, with respéct to-the possible paths the UAV may take to visit
sensors and secondly, with respect to the way the sensors-can communicate. Well known classic
problem/algorithms ([52, 53, 54]) have been used extensively to solve various scenarios of this
type of problem. For all these scenarios, every location needs to be visited. However, in this work,
a single UAV is constrained and cannot visit each and every sensor. Thus the key sensors to be
visited by the UAV must be selected so as to minimise the data muling by UAVs. The selected
key sensors need to collect local sensor readings and-relay this information to the UAV as soon as
it arrives. This is why, for this kind of deployment, it is necessary to use a clustering scheme for
efficient data collection and transport.

2. Topology and traffic optimisation. |We further propose ja central routing model where local
sensors need to send data to the sink which is assumed to be visited by many UAVs, coming
from different directions. This is done in two steps: (i) the optimal sink/centroid which ensures
efficient data gathering, transport and delivery by UAVs is determined; (ii) this is complemented
by proposing an efficient routing algorithm, which is formalised, verified and analysed.

3. Persistent scheduling. Here, a many-UAVs-one-sensor deployment is considered which consists
of many UAVs visiting a single location/sensor. This persistent visitation problem is addressed by
proposing an efficient persistent scheduling scheme which is formalised, and analysed.

4. Persistent data muling. A multi-sensors-multi-UAVs deployment is considered. Here, many
UAVs visiting various connected sensors and the UAV path planning is addressed. In fact, each
sensor to be visited is assumed to be a local gateway, where local information is gathered. This
model is applicable in a distributed deployment system, where many UAVs may visit all sensor
nodes.

1.6 Declaration of publications

Some models and figures in the thesis have appeared in the following papers, which have been published.
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1.7 Thesis organisation

Figure 1.4 shows the dependency of chapters in this thesis. Note: Chapter z is abbreviated to Chap z
for x=1 to 6.

Figure 1.4: Chapter dependency.

As shown by Figure 1.4, the arrows-pointing-to-a—nede-n-coming from the prerequisite chapter to
understand the content of one shown by-the node-n." The tail of each arrow indicates a prerequisite
chapter.

The above chapters are organised as follows.

After introducing the thesis in Chapter-1,-a clustering-scheme-is-proposed in Chapter 2. The UAV-aware
data routing model is proposed in Chapter 3 and a scheduling model to visit one target is proposed in
Chapter 4.

The multi-targets-multi-UAVs visitation is proposed in‘Chapter 5'and the thesis is concluded in Chapter
6.



2. UAV-aware topology optimisation

This chapter considers a case where an Unmanned Aerial Vehicle (UAV) is used to monitor an area. The
UAV is assisted by a Sensor Network (SN) which is deployed in the area. The region to be monitored
has a reasonable size and hence may contain many sensors for efficient and accurate data collection. In
this case, it would be expensive for one UAV to visit each and every sensor. It is therefore important
to partition the ground network into an optimum number of clusters, so that the UAV only has to visit
cluster heads (i.e. fewer sensors). The collected data would be sent to cluster heads to be forwarded
to the UAV, upon its arrival. In this chapter a clustering scheme is proposed, not only to optimise
the WSN communication energy, but also the energy used by the UAV while covering the area. The
optimal number of clusters in a dense and uniformly distributed sensor network is calculated, to support
the k-means clustering. Furthermore, for general networks, an efficient clustering model that recognises
nodes connectivity is proposed and analysed through simulations.

2.1 Introduction

The use of Unmanned Aerial Vehicles (UAVs) continues to be not only one of the most efficient ap-
proaches, but also less expensive and risky ones, for various exploratory problems. These problems
include rescuing, data delivery/collection, surveillance;-and-many more. In the case of city surveillance,
it has been found efficient to assist UAVs-with-a-Sensor-Network-(SN) comprising static ground sensors,
which collect local information and deliver them to-the UAVs-visiting them [34]. In case more detailed
information is to be captured, large-scale and complex SNs are usually deployed in the zone of interest.
In this case, the use of UAVs continues to be one of the most efficient ways to handle the mentioned
situations. However, UAVs' flights are generally constrained by their limited flight time, fuel and energy
usage when powered by battery. Therefore, the UAV exploration of targeted environments necessitates
the optimization of energy usage to ensure the scalability and resilience of the data capturing. This is
why it is generally important to minimize the UAVs' 'moves, yet collect maximal information by having
the UAVs visit only an optimal number of selected ground sensors serving as ground gateways. Each
ground gateway receives information collected from other ground 'sensor nodes for collection and data
muling by a UAV upon its visit. It is then important to assign to each gateway an optimal team of sensor
nodes providing the sensed data. Here, we refer to the teams of sensor nodes as cluster members, while
their gateways are referred to as cluster heads, and the corresponding partition of the sensor network is
called clustering.

2.1.1 Related Work. Cluster-based sensor networking has been a subject of high interest in the liter-
ature. In [55], the physical-access control cross-layer analytical approach for determining the optimum
number of clusters has been proposed. The proposed model minimizes the communication-energy con-
sumption in a highly-dense sensor network. In [56], the Euclidean distance (communication range and
the area on which the network is deployed) from nodes to a cluster head was considered in order to design
clusters with the objective of minimizing the energy required for efficient communication. In the latter
paper, the energy usage is minimized with the increase of the number of clusters. A connectivity-based
k-hop to the cluster head was proposed as a clustering technique in [57]. In the work, it was shown that
the efficiency of messages transmissions from the cluster heads to the sink of the underlying network is
reduced with the number of clusters. This raises the issue of finding the optimal number of clusters in
a network (note that it exists). An optimal, temporal clustering algorithm was proposed in [58], as an
adaptive model for a wireless micro-sensor network, to ensure efficient utilization of its energy. In [1],
the optimal number of cluster heads and their locations were analytically computed for efficient wireless
sensor network communication. The main goal of the paper was to ensure optimal data transfer in the

12
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network by adopting the cluster head selection method in [59], which is based on the calculated proba-
bility of a node to be a cluster head. Simulations in [1] showed a better performing clustering, compared
to the k-means algorithm-based [60] schemes, including those presented in [61, 62, 63, 64, 65].

The k-means is a clustering algorithm aiming to partition nodes into Voronoi cells (see [66] for example).
Given the number k£ of centroids (cluster heads), the algorithm consists of the following steps.

1. Initialization: this is done by randomly selecting k£ nodes to be cluster heads.

2. Assignment step: this step consists of assigning cluster members to cluster heads, based on the
least Euclidean distance between the node and cluster heads.

3. Update: for each cluster, a centroid (most central node) is computed, and if it is different from
the current cluster head, it replaces it.

4. lteration: this step consists of alternating Steps 2 and 3 until no more updates are possible.

The clustering problem being an NP-hard problem, the k-means is its heuristic solution, whose limitations
include: (i) local convergence, (ii) the choice of the number % of cluster heads influencing the optimality
of the clustering, (iii) the initialization step impacting the running time of the algorithm, and (iv)
Euclidean distance used as the utility function for clustering. To address issues related to the above four
properties, different versions of the algorithm have been. proposed, respectively a globally-converging
clustering [67], an optimal number of ‘clusters for image segmentation [68, 69], a better initialized k-
means [70] algorithm, and the multi-norm_clustering [71]. However, to the best of our knowledge, there
is no k-means algorithm that has been proposed to ensure the connectivity of all cluster members to
corresponding cluster heads in order to avoid orphan/isolated nodes in a sensor network. Two versions
of the k-means algorithm were considered in [1]: (i) the deterministic k-means algorithm, which is built
around the same principles as the classical k-means-algorithm;-and. (ii) the adaptive k-means algorithm,
which uses the classical k-means algorithm iteratively to cluster n sensor nodes for n times by varying
the parameter k£ from 1 to n and sélecting ‘the clustering  result with the minimum energy cost. The
Distance-based Crowdedness Clustering (DCC) was also proposed in [1] as a greedy algorithm, which,
for a given general network, outputs the corresponding clustering by using node degrees as a way of
selecting the best cluster head (one of highest degree) and building corresponding clusters. In DCC, the
length of the underlying network’s links is used to select the clustering radius (the length of one of the
links), and every neighbor of the selected cluster head at a distance less than the radius is added to
the cluster. This process continues to all remaining nodes, until each node belongs to a cluster. After
performing clustering once, the corresponding cost (a function of the radius) is computed, and for all
possible values of the radius, a clustering corresponding to the least cost is chosen to be the output of
the algorithm.

Figure 2.1a shows a comparison of DCC and the adaptive k-means algorithms. In the figure, the solid
lines represent clusters with the DCC, while the dotted lines represent the adaptive k-means clustering
for 100 nodes, on a 200 m x 200 m area. The figure reveals that DCC outperforms k-means in terms
of cluster-based node density. Similarly, Figure 2.1b shows that the DCC outperforms the k-means in
terms of Total Energy Consumption (TEC) efficiency for 10 consecutive runs of both algorithms.
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Figure 2.1: Comparison between Distance-based Crowdedness Clustering (DCC) and deterministic k-
means [1]. (a) Clustered nodes; (b) minimum energy per round. TEC, Total Energy Consumption.

While the models and algorithms presented above focused the optimization process on a ground-
based /terrestrial sensor network, the works in [72, 73, 74, 75, 76] are among those that have addressed
UAVs' related clustering. In [72], UAVs were presented-as-moving agents, which were clustered by using
their mobility attributes to predict their-motion,-hence leading to-clusters’ predictions. In [73], the UAVs
also were clustered with the goal of computing.the optimal route discovery. In [74], a clustering scheme
was proposed to provide Internet connectivity, using a mobile sink (a UAV). In the paper, the clustering
was performed based on the distance separating potential cluster heads and other ground sensor nodes,
and also the proximity of the UAV, and a UAV's move was predicted in order to determine its corre-
sponding cluster. To the best of our knowledge, this was one of the first clustering schemes considering
different positions of a UAV (path). However, the paper did not consider the energy spent by the UAV
while moving from one position to another, which isa requirement to allow the UAV to aggregate data
as much as possible prior to being recharged. The works in [75, 76] considered a multi-layer model with a
team of UAVs playing the role of an airborne gateway network for a ‘terrestrial sensor network. While [75]
proposed an initial model showing through simulation how the multi-layer network can be designed, the
model in [76] was based on MIMO clusters to increase the terrestrial sensor network lifetime by avoiding
disconnections that can lead to orphan/isolated sensors or groups of sensors that are unable to deliver
their data.

2.1.2 Motivation and Contribution. As discussed in Section 2.1.1, the k-means algorithm (see [60]
for example) and its variants are some of the most popular clustering models. This algorithm aims to
minimize the sum of distances (standard deviations) between k cluster heads and their cluster mates.
The deterministic k-means algorithm finds the best number £, and a clustering cost function may be used
to evaluate the cost corresponding to each value of k£ ranging from one to the number of observations.
Alternatively, mathematical methods using calculus are used to compute the number k. When the
connection (affinity) between cluster members is one of the requirements, this algorithm is outperformed
in terms of TEC, even in dense networks (see [1]). Note that for the k-means algorithm, nodes are
grouped based on their statistical characteristics. However, statistical approaches alone could be less
efficient in case the relationship of observations matters. The affinity of data points/nodes has been
addressed in [77, 78, 79], but could not guarantee a perfect assignment of the node to the correct cluster
head (the node to which all cluster members are connected). This is why the DCC algorithm proposed
in [1] could outperform the adaptive k-means algorithm.
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This chapter extends [80] to revisit the problem of clustering as a way of optimizing hybrid terres-
trial /airborne sensor networks by proposing a novel clustering model that combines efficient sensor
network communication and efficient cluster heads' visitation by a UAV. The clustering problem for
a hybrid network (UAV routes and the communication-based SN) is firstly proposed. Thereafter, the
optimal number of clusters is rigorously computed for uniform and dense network distribution settings.
A heuristic clustering is then proposed for general networks; and its extension to cater for the sen-
sor nodes’ isolation is supported through relaxation techniques. Our work is closely related to DCC
in [1], but differs by proposing a clustering scheme that (i) takes care of the relationship of nodes
while DCC does not and (ii) considers a multi-layer approach that caters for the efficient cluster heads’
visitation by a UAV. While different clustering schemes and algorithms have been proposed in the lit-
erature, they have either focused the optimization process on a single layer (UAV layer or terrestrial
layer) [55, 56, 1, 60, 61, 62, 63, 64, 65] or consisted of non-optimization techniques that show how
UAVs can be used as mobile sensor networks [34] for different purposes including city surveillance. Our
model is based on an optimization process that considers both layers of a hybrid sensor network. Fur-
thermore, the presence of orphan nodes (which could be either cluster heads or normal nodes) may lead
to (i) a dislocated network with part of the data produced by the orphan nodes not reaching the network
gateway and (i) an energy-inefficient hybrid network with a UAV's energy being wasted to visit an orphan
cluster head that does not have data to be collected. While all previous works have discounted the issue
of orphan nodes, the clustering solution presented in this chapter addresses this issue by the proposed
mitigation processes to reduce the number of orphan nodes.

The rest of the chapter is organized as follows.-The problem.is mathematically formulated in Section 2.2,
and the proposed algorithmic solution-is-described-in-Section-2.3.-To adopt a special case, the proposed
algorithm is relaxed in Section 2.4, and the-performance of the proposed model is discussed in Section 2.5,
whereas in Section 2.6, the chapter is concluded.

2.2 Problem Formulation

In this section, the clustering problem is formalized as an energy optimization problem, under network-
related constraints. The focus lies on an energy-efficient desigh where a single UAV located at a specific
base station is used to collect sensor data from a number of collection points. The network 4 can
be considered as a hybrid network H(#,,#,) combining the terrestrial sensor sub-network 7{, and the
airborne muling sub-network 7, consisting of all possible UAVs' paths. Note that while having the same
number of nodes, the H, network might differ from #, as it is based on potential UAV path restric-
tions related to obstacles and Distance-based Crowdedness Clustering (DCC) different environmental
limitations. This is illustrated by Figure 2.2.

Figure 2.2 reveals that while the two network configurations in Figure 2.2a (aerial and ground networks)
have the same sets of nodes, they may have different sets of links and hence different routing paths.
Therefore, they may result in different energy consumption patterns (£, # &,). This raises the issue
of energy consumption in a hybrid network (Figure 2.2b) and the need for an optimization model that
combines the energy consumed by both networks &, = f(&,,&,).
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Figure 2.2: Terrestrial, airborne, and hybrid networks. (a) Physical topology; (b) conceptualized topol-
ogy.

2.2.1 The Energy Models. As suggested earlier, this chapter considers an energy-efficient model where
the energy consumption is described below.

L (2.2.1)
EIll=IBEIH ~El, (2.2.2)

where the constants 3 and v are proportionality-constants showing'the weighting of £, and £, respec-
tively, and the energy components F,, E;, E., and E, are defined below.

e Energy for sensor-data reception (E,); This is the energy/spent by cluster heads due to its topo-
logical and environmental properties, the physical/electronic properties of the receiving node, and
the nature of messages to be received. We assume that all possible cluster heads are in the same
and good condition; hence, they require the same quantity of energy to receive a message. It is
assumed that nodes communicate directly with their corresponding cluster head, and in the case a
multi-hop communication is applicable, the least interference beaconing protocol (see [81]) is used
to find sensor communication route.

e Energy for data transmission among sensors (£;): This is the total energy required to move the
captured data from each cluster node to its corresponding cluster head. This form of energy is
directly proportional to the distance separating the two communicating sensors. We assume one-
hop inter-cluster communication, and hence, the considered distance is the Euclidean length of
links. All nodes of the network are assumed to require the same quantity of energy for message
transmissions.

e Energy for UAV data transport (E,): This refers to the expected energy required for a UAV to
visit cluster heads. This energy depends on the number of cluster heads in the H, network and
the distance between these nodes (the expected link length).

e Energy for UAV data collection (£.): This is the energy spent by the UAV to collect data from
the sensor nodes (cluster heads).
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From Equation (2.2.1), the overall energy Ej, for data dissemination in the terrestrial ground-based sensor
network to cluster heads and data muling by the UAV can be expressed by the weighted sum of energy
consumption in both ground and airborne networks as expressed by:

E, = aE, + BE, +vE., (2.2.3)
where, o represents the weighting of
The Terrestrial Network Energy Consumption: £,

Let L x L units of area be the area of the field where sensors are distributed. It follows that one cluster's
area is \/L?/k x \/L?/k, based on the Voronoi diagram (see [82]).

It has been shown in [1] that the total energy £ for data gathering in a uniformly-distributed network of
type H, is expressed as follows.
L? 4L

E=0C2n—-2k+a-k)E.+nE,+ (n—k)e 3_l<;+a k - em =g (2.2.4)
where a (with 0 < a < 1) denotes the data compression ratio: an input of k bits results in an output of
a - k bits after compression; E, denotes the energy for driving the electronics; E, is the energy for data
processing; n the number of all sensors in the field; and the constants e; and e,, represent the coefficient
corresponding to the effects of the clusters-intra-distances-and-inter-distances, respectively.

The considered case in this chapter assumes.that there.is no-inter-cluster communication, and thus,

atl = M.

This is why the gathering energy £, for the uniformly-distributed network of type H, is computed as

follows.
LZ

l; Qfgzy

(2n—-2k+a-k)E. +nE, +(n—k) (2.2.5)

On the other hand, for the generally-distributed network, the energy may be computed as follows. Let C
be a set of clusters; c¢; represents the node i of cluster ¢, and ¢ denotes the cluster head of cluster c.

E,=(2n—2k+a-k)E, +nE, + > Y d(c;, c"), (2.2.6)
ceC 1€c

where the function d(c;, c") represents the Euclidean distance between node i and the cluster head in
the cluster c.

The Data Collection Energy Consumption: F.

This is the total energy for data collection from cluster heads by a UAV. Let 1, 2, ...k be the indices
corresponding to k cluster heads. If F; is the energy required by the UAV to receive data from the cluster
head i (with 1 < i < k) and ¢; is the energy required by the cluster head to forward the gathered data
to the UAV, then the total energy E. for data collection is expressed as follows.

k k
B.=Y (Ei+e)= Z (Ei + &) (2.2.7)
=1 =1

?rl?r
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Hence,
E.=k(E +%), (2.2.8)

where E and € are the expected value of the energy required to receive and forward data, respectively.

Energy for UAV Transportation: F,

The transportation energy E; depends on the length of the used path, which gets longer as the number
of clusters increases. We assume that the UAV moves from one node to another, using Dijkstra’s
algorithm [83] on the network of type H,. This will enable us to evaluate the goodness of a node to be
in a particular cluster or even to be a cluster head.

Since the UAV-transportation energy is directly proportional to the length of the path used, it is also
directly proportional to the number of cluster heads and the average distance from one cluster head to
another and hence the distance D to travel from one node to another. Therefore, E; is computed as
follows,

E,=b-k-D. (2.2.9)

where b is the proportionality constant and D = E(E;(d)) is the expected value of the average length
of shortest paths d from each sensor node j to others, where E;(d)) expresses the expected Dijkstra's
shortest distance d from the node j to any node in the underlying network (here, it is H,).

Considering a network whose number of nodes-is m;-let-A,., = {d;} be the matrix where each
entry d;; corresponds to the shortest distance-from-node-i to-node j based on Dijkstra’s algorithm.
Here, d; = 0 Vi because d;; represents the-distance from-node i to itself. The index D may be
calculated as follows.

n n n

e =k (2210)

j= j=1 i=1

Notice that the denominator is n — 1 to exclude the case where ¢ = j with related terms equal to zero.

It follows from Equations (2.2.7), (2.2.5), (2.2.8), and (2.2.9) that the total energy used in data collection
is expressed as follows. B
En(k) =E, + bkD + k(E +€). (2.2.11)

The main issues involved in the optimal clustering model considered in this work are (i) finding the
optimal number of clusters, (ii) selection of the optimal cluster heads/sinks, and (iii) associating the
cluster members with the sinks. These issues can be solved by three algorithmic solutions: (a) a myopic
k-means clustering algorithm where the optimal number of clusters k& = K,,; is computed and the
classical K-means algorithm is applied with & = K,,, (b) an optimized k-means clustering algorithm
where the optimal number of clusters k = K, is computed and the IC,,; best cluster heads are selected
and fed to the k-means algorithm to guide the clustering process, and (c) a multi-step clustering algorithm
where a sequence of cluster head selection and cluster member association is performed on the network
until all the nodes are assigned a cluster head or member status. Note that while the k-means algorithm
can be applied to a dense and uniform network where each sensor node is able to communicate with
its neighbors (see [1]), the multi-step algorithm would be more suitable for general networks where the
connectivity property may not be met.

2.2.2 Problem Definition. The network considered in this chapter is denoted by H(N, Py, Pu, &y, Ea),
where N is the set of sensor nodes and the UAVs' base stations’ locations, P, is the set of paths
expressing possible sensors communication pathways in the ground-based terrestrial network, P, the
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set of paths in the airborne network consisting of possible routes followed by the UAVs to collect data
delivered by the ground-based sensor network, and the energy consumed by the set of paths P, and P,
is respectively represented by £, and &,. Given a hybrid network #, the problem consists of finding the
nodes’ partition P(N) to minimize the total energy &, (see Equation (2.2.7)), such that each partition
(cluster) is connected and its optimum head is known. The energy &, is referred to as the clustering
cost. The network design consists of finding a network configuration that minimizes the clustering
cost function subject to node selection and topology constraints with the objective of partitioning the
network into two sets: a dominating * set of UAV collection points and a dominated set of cluster
members forming the edge of the network. Mathematically formulated, the design process consists of
finding a network partition C derived from the graph of the type explained in Figure 2.2b, which leads
to the optimal energy consumption &,,:, such that AV is divided into disjoint clusters, where the cluster
head is communicatively connected with all its cluster mates.

Eopt = min By, = min(aE, + fE, +vE,) (2.2.12)
Subject to,
Vee C,dzec,Vyec,(z,y) €P, (2.2.13a)
C1, C2 € C, C1 N =9 (2213b)
=N (2.2.13¢)
ced

where, Constraints 2.2.13a shows the dominating set property of the set of cluster heads and 2.2.13b
and 2.2.13c represent the network partitioning properties.

2.3 The Proposed Clustering;Models

Two clustering algorithms were developed:

1. The UAV-Aware k-Means (UAKM) algorithm, which computes the number k of optimal clusters
for hybrid dense networks to support/complement k-means clustering. Here, the number k is

calculated using both the ground and the aerial networks, and hence, it considers the movement
of the UAV.

2. The UAV-Aware DCC (UADC) algorithm, which adapts the DCC algorithm to include the UAVs
data collection process.

2.3.1 The UAV-Aware K-Means Algorithm. In this subsection, we express the forms of energy in
terms of the number of clusters £ a hybrid network (see Section 5.2.2) needs to be partitioned into and
use calculus to compute the value k£ that minimizes the total energy required for data collection. Energy
Equation (2.2.11) can be expressed in terms of the number of clusters k, which in turn can be used to
determine the optimal number of clusters, as shown in Equation (2.3.1).

1"In graph theory, a dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is
adjacent to at least one member of D. The domination number (G) is the number of vertices in a smallest dominating set
for G [84].
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o8 _
ok

LPef(k —n) L?e —
E.(a—2 — bD+ E +e€ 231
(a—2)+ 72 5y TPtE+e (2.3.1)

By solving the equation, % = 0, where £ > 1, we obtain the optimal value of &, for:

L2
Kope = AL (2.3.2)
3(Ec(a—2)+ bD+ E+%e)

Notice that the second derivative is:

D&y, 2L%(k—n) 2L%
o2 3@ 3 (2:33)

We know that all observables in Equation (2.3.3) are positively valued. Furthermore, the difference
k — n is always negative (the number of cluster heads cannot exceed the number of all existing nodes).
It follows that,

028,
5 2 0. (2.3.4)

This confirms that the the total energy &, (k) is a minimum at KC,,;, as shown in Equation (2.3.2).

Since the optimal number of clusters-has to be a positive integer, the optimal number of clusters is
denoted by K, and it is calculated as follows:

. _{m f B([k) < B(Lk) (235)

ey | |k| otherwise

Consider three networks on which the following parameters (Referring to Equations 2.2.6 and 2.2.11)
are defined in Table 2.1. The corresponding graphs of the energy ‘are shown in Figure 2.3.

Parameter Network 1 Network 2 Network 3 Units
n 100 100 200
E, 20 20 20 nJ/bit
E, 21 21 21 nJ/bit/signal
ef 1 1 1 pJ/bit/m?
L 30 60 30 m
a 0.0008 0.0008 0.0008
b 9 9 9
D 6 6 6

E+e 3 3 3 nJ/bit/signal

Table 2.1: Parameters and their corresponding values.

In Table 2.1, E 4+ € can be set to zero if we need to consider a case where some sensors are located

together with refueling/repairing stations, which increase the energy of a UAV even if it were collecting
data.
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Figure 2.3: Energy required versus the number of clusters: (a) 30m x 30m network with 100 nodes ;
(b) 60m x 60m network with 100 nodes; (c) 30m x 30m network with 200 nodes.

Figure 2.3, showing the energy required compared to. the number of clusters, reveals the optimal number
of clusters for the three different networks. Figure 2.3a—c shows that the optimal number of clusters
increases with the network size. Figure 2.3a shows that the number /C,,; for the first network (Network
1) lies in the interval (4,5). On the other hand, using Equation (2.3.2), K,,; = 4, 84. It follows from

Equation (2.3.5) that,
if £(5) < E(4
’Copt = {5 I (5) o ( ) (236)

4 otherwise.

Thus, the optimal number of clusters in this case is K.,y = 5. Similarly, it can be shown that for the
second network (Network 2),

6 if £(6) < E(5
Kopt = T B¢ )._ ( )7 (2.3.7)
5 otherwise.
leading to /C,,t = 6. For the third network (Network 3),
7 if £(7) < E(6
Kopt = it E(T) < BO). (2.3.8)
6 otherwise.

leading to a value of K, = 7.
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2.3.2 The UAV-Aware DCC Algorithm. The UADC algorithm has been designed based on a multi-
step process using the following cluster head selection assumptions:

e Density-aware selection policy, where nodes are assigned the cluster head identity based on their
node degree deg(i). While leading to the UAV choosing data collection points with a high volume
of data, this policy might lead to the UAV flying longer distances to collect these data, and hence,
depleting its energy during its inbound journey.

e Distance-aware selection policy, where nodes are elected cluster heads based on the expected
Dijkstra's shortest path from the nodes to all other nodes, following the links in the airborne
network (links of the network #,). This policy aims at minimizing the energy usage of the
airborne sensor network, but might lead to the UAV being tasked with collecting data at collection
points with very few data.

e A hybrid policy that combines features from dense and distance-aware cluster head selection by
combining both parameters into a weighted sum metric expressed by:

P(i) = X deg(i) +z/%i. (2.3.9)

Here, deg(i) represents the number of available neighbors (of node 7) in the network of type #,, whereas
D; is the average distance from node i to all nodes-in the.network of type H,. A and 1 are coefficients
corresponding to the node degree in #, and average distance in H;, respectively.

This policy is used in clustering as shown by the proposed algorithm described as follows.

Input: The graph of type H(H4, H,)

Output: A dictionary of cluster heads and their cluster mates

In Algorithm 1, the first steps consist of computing a list L of all link lengths in the SN (network
of type H,) and the dictionary Dp, whose keys are the sensor labels, and the corresponding values
consist of the average distance'to each node'in the restricted network (network of type H,). The
minimum coverage energy E,,;, is initialized to infinity. The network clustering is expressed in the
form of a dictionary whose keys are the cluster heads, and the values correspond to the clusters’
members. The clusters’ dictionary C is initially set to empty (Line 4). The cluster dictionary is
assumed to have the cluster heads as keys, and their corresponding values are the list of nodes
each cluster head is to support.
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Algorithm 1: Optimal clustering.

L <— set of the lengths of links in L,

D, <— dictionary of nodes (keys) and their expected length of the shortest path to each sensor
node in H, (values).

Epin — 00

Crin = {}

for Radius € L do

N,quq <— dictionary of nodes (keys) and a list of their available neighbors at distance
dist < Radius

Order N, in terms of the decreasing order of the value of the price P of the keys
(cluster heads)

Ch <— List of N,,q ordered keys (cluster heads)

Cv «— List of Nrad ordered values (cluster mates)

C <— empty dictionary, which will contain clusters

while Ch # @ do

CCho — C’Uo

Remove Chy and all nodes in Cyy from Ch.

N,qq <— dictionary of nodes in Ch (keys) and a list of their neighbors not in any formed
clusters

Order N,,q in terms of the value of the price P of the keys (cluster heads)

Ch <— List of N,,q ordered keys(cluster-heads)

Cv «— List of Nrad ordered values (cluster mates)

end

Calculate the price P(C') using Equation (3.3)

if P(C) < E,;, then

Epmin <— P(C)
end

end
Return C,;,

e Complexity: Line 5 shows that the time complexity depends on the total number £ of links and

both Lines 6 and 11 show that the time complexity depends also on the total number n of the
nodes in the network. Since Line 11 shows that there is an inner loop, it is clear that the worse
case scenario would reveal that the time complexity for the algorithm is O(n - L).

From Line 5 on, each link length (Euclidean distance between two connected nodes) is used as the
clustering radius (maximum distance of nodes and cluster heads), to form a corresponding clustering C.

Clustering is done using a dictionary N4, consisting of nodes and their H, neighbors at a distance less
than or equal to the chosen radius. Note that the radius is only chosen from a list of lengths of the H,
links, and it is assumed to be the same for all clusters to be formed. This dictionary gets formed (Line
6), and using the pricing shown by Equation (3.3), it is decreasingly ordered (Line 7).

Let Ch be a list of ordered N,,q keys (list of potential cluster heads) and Cv be the list of the corre-
sponding keys (possible cluster members). To form the first cluster, we take the first element of the list
Ch to be the cluster head, and the first list in C'v constitutes the corresponding cluster mates.

N,qq is then updated to contain the remaining possible cluster heads and their neighbors, which are the
nodes not in any of the formed clusters.
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The process of using the available nodes in the list N,,; to make one cluster is repeated (Line 11-16)
until no more cluster heads are available. In this case, one clustering configuration is done, and its cost
is computed using Equation (5.2.3) (Line 17).

Each new clustering-related cost is compared to the existing minimum cost to check the possibility of
updating the best cluster C,,;, and the corresponding cost E,,;,.

An example that shows graphically how Algorithm 1 works is presented below. For simplicity, only the
network of type H,, is shown. The considered cluster radius is assumed to be the maximum link length,
and hence, cluster heads will be associated with all their neighbors in H,.

(a) (b)

Figure 2.4: Beginning.steps.—(a) Step-0: initial-network; (b) Step 1.

Figure 2.5: Processing steps. (a) Step 2; (b) Step 3.
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Figure 2.6: Last steps. (a) Step 4; (b) Step 5.

Figures 2.4, 2.5, 2.6 show the different steps involved in the clustering algorithm example and are
explained below:
Step 0 is the initial step revealing the initial network.

Step 1 selects Node 8 as the one with highest utility (computed by Equation (3.3)) to become the cluster
head. The first cluster is formed by assigning all its neighbors as its cluster members.

Step 2 selects Node 2 as the next best-cluster-node. Here,-to ealculate the utility, the nodes or links
involved in the formed cluster are not considered.  Thisis why for example Node 2 has a new
degree of two. The new degree of Node 0-is greater than-that of Node 2 even though the utility
of Node 2 is highest since it is the closest node to the remaining nodes.

Step 3 is a step where Node 9 is selected as the next best cluster head, which is joined by only Node 4 as
its cluster member.

Step 4 is a step where Node 0 is selected as the last best cluster head, which is joined by Node 11 as its
neighbor to form the last cluster.

Step 5 is the last phase where the resulting cluster and the corresponding communication links through
which nodes have to send sensor readings to cluster heads are shown.

Proposition.

Algorithm (1) satisfies the following properties.

P1. The produced cluster heads constitute a dominating set of the network of type #, (see Con-
straint 2.2.13a).

P2. The set C of the produced clusters is a partition of the set of all nodes (see 2.2.13b and 2.2.13c).

proof.

P1. Dominating set property: Lines 6, 8, and 11 show that at the end, each node becomes either a
cluster head or a cluster member. On the other hand, Lines 1, 2, 9, and 6 show that only neighbors
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of the cluster head are added in the same cluster to be cluster members. It then follows that when
the algorithm halts, if a node is not a cluster head, then it is connected to the cluster head in the
same cluster.

P2. Partition property: Line 13 shows that no node (cluster member or cluster head) belongs to
more than one cluster. Hence, the formed clusters are mutually exclusive. On the other hand,
Lines 6, 8, and 11 show that the algorithm halts when each node has either been a cluster member
or (exclusively) a cluster head. This shows that in the end, each node belongs in a unique cluster.
Hence, cluster nodes constitute a partition of the ground network nodes.

2.4 Issues and Relaxation

In this section, we discuss two main issues and address them to improve the performance of the algorithm.

2.4.1 Energy Inefficiency. The proposed algorithm is greedy in terms of the way cluster members are
assigned to cluster heads. The assignment of all neighbor nodes (at a distance less than or equal to a
threshold) to cluster heads does not necessarily lead to the best association between cluster members
and cluster heads. This may lead to the case where nodes are assigned to cluster heads that are not
closest to them. This would result in higher energy/cost for data aggregation on cluster heads. This
issue is depicted in Figure 2.7a.

Figure 2.7a shows an inefficient clustering where Node 3 has been-allocated as the cluster member of
Node 0 instead of Node 4, which is the closest cluster head. Figure 2.7b reveals that through relaxation,
nodes re-choose their corresponding clusters depending on their closest elected cluster heads, thus leading
Node 3 to become a cluster member of Node 4. The solution to the energy inefficiency issue above
consists of applying the relaxation algorithm below to improve the UAKM and UADC algorithms.

Figure 2.7: Relaxation: energy inefficiency. (@) Non-relaxed clustering; (b) Distance-aware clustering.

Input:

— The graph of type H(H,, H,).

— the initial clustering (using Algorithm 1): each node and its initial cluster head denoted by n
and n.pg, respectively.

Output:

< A more efficient clustering.



© 0O N O OO &b W N =

-
o

Section 2.4. Issues and Relaxation Page 27

Denote n., the new cluster head of node n. Assume C' is the set of all cluster heads and N is the set
of all cluster members (all the H nodes excluding cluster heads).

Algorithm 2: Distance-aware node redistribution.

> Loop to allocate each node a cluster head

for n € N do
Neh < Ncho
> Loop to compute the closest cluster head to node n
for c € C' do
if d(n,c) <d(n,nq) and (¢,n) € P, then
‘ Nep, < C
end
end
end

As calculated the time complexity for Algorithm 1 , It is clear that the time complexity of Algorithm 2
is O(n - C), where C is the size of the set C.

2.4.2 Orphan Nodes. The presence of orphan nodes leading to isolated cluster heads is another issue of
the proposed greedy algorithm that can reduce the utility of the hybrid network as it can lead to the UAV
being tasked to collect data on a cluster-head with-very-reduced data. This is illustrated by Figure 2.8a,
which reveals a sensor network with three-clusters: the first cluster-with Node 0 as the cluster head and
Nodes 1, 2, and 5 as cluster members, the second with Node 4/ as the cluster head and Nodes 6 and
7 as cluster members, and the last cluster, which has the orphan Node 3 as the isolated cluster head.
By applying a distance-aware node redistribution| process, the sensor network will be restructured into a
two-cluster network similar to the one depicted by Figure 2.8b with two clusters: the first cluster with
Node 0 as the cluster head and Nodes'1, 2, and 5'as cluster members and the second cluster with Node
4 as cluster head and Nodes 3, 7, and 6 as cluster members.

- oy

Figure 2.8: Relaxation: orphan nodes. (a) Non-relaxed clustering; (b) relaxed clustering.

Figure 2.8a reveals a clustering where Node 3 is an orphan node in a cluster consisting of only one
cluster head with no cluster member, while Figure 2.8b reveals a situation where the orphan cluster head
is assigned to the optimal cluster whose cluster head is nearest to the orphan node, thus becoming one
of its cluster members. The solution to the orphan node inefficiency issue related to the above consists
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of applying the cluster restructuring algorithm below to improve the UAKM and UADC algorithms.
Note that while this algorithm is based on the same principles as the distance-aware node redistribution,
cluster restructuring may require balancing the benefits due to energy efficiency and the data muling
utility in order to decide on whether to move an orphan node into another cluster to become a cluster
member or leave the orphan node in its current cluster.

Input:

— The graph of type H(H,, H,).

— the initial clustering (using Algorithm 1): each node and its initial cluster head denoted by n
and 7m0, respectively.

Output:

< Distance-aware clustering.

Denote n., as the new cluster head of node n and ut(n) a Boolean value indicating if it is more beneficial
to restructure the network. The re-clustering may be required when the cost of sending data to n, is
smaller than the cost of visiting the node with a UAV.

Assume C' is the set of all cluster heads and N is the set of all cluster members (all the H nodes
excluding cluster heads).

Algorithm 3: Distance-aware cluster ‘restructuring.

> Loop to allocate each node a cluster head
for n € N do
Neh < Ncho
> Loop to compute the closest cluster head to node n
for c € C' do
if d(n,c) <d(n,nq) and ut(n) =1 and (¢, n) € P, then
‘ Nep, < C
end
end
end

Notice that the time complexity of Algorithm 3 is is O(n -C), where C is the size of the set C' (the same
as Algorithm 2).

2.4.3 The Update Step. As suggested above, both the UAKM and UADC algorithms can be updated
into a two-step algorithm that applies the basic algorithm first (UAKM or UADC) and thereafter balances
the network using the distance-aware relaxation algorithm above. We adapt the k-means update step to
achieve energy efficiency by using the fact that the knowledge of the cluster heads can help redistribute
cluster members according the closeness to cluster heads, as shown in Figure 2.7b. The same applies to
the UADC algorithm, which is complemented by a relaxation step to balance the energy consumption as
suggested above.

2.4.4 Remark.

e The distance-aware relaxation algorithm proposed above may lead to energy consumption improve-
ment.
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e The restructuring of the terrestrial sensor network is another relaxation technique that follows the
same distance-aware strategy for a different purpose, but it can also lead to energy consumption
improvement.

2.5 Results and Discussion

In this section, we report on the experimental results obtained from running the proposed algorithms
in different settings. The algorithms (both UADC and relaxed UADC) are analyzed and compared to
the DCC and UAKM for benchmarking purposes. We considered two network topologies: (i) a random
network and (ii) the city of Cape Town network used as a smart city use-case.

2.5.1 Smart City Use-Case. We considered the public safety network topology consisting of Cape
Town (South Africa) police stations as collection points of the terrestrial/ground sensor network. This
network was used as a smart city use-case aiming to provide citizen safety and city surveillance through a
combination of aerial and terrestrial traffic control. The Cape Town police stations are labeled in terms of
integers in the interval [1,49], and their GPS coordinates were used as their positions (see Figure 2.9a).
The corresponding positions on a map are shown in Figure 2.9b. The Radio Mobile software [85] was used
to create the hybrid network by having the terrestrial /ground communication network (see Figure 2.10a)
generated using a two-step process consisting of (i) generation by the mobile radio of a terrestrial network
that considers only connections whose link margin-is-greater than 50 dB in the white space spectrum
frequency and (ii) generation by the-mobile radio of an-aerial network consisting of UAV paths (see
Figure 2.10b) that considers only connections/links with @ link margin between 30 and 50 dB in the
same white space band. For the sake of clarity of links, the topology on the map does not necessarily
conform with the processed network.

2.5.2 Hybrid Clustering: o = § = 7= 10. We conducted the first experiment to study the impact
of the radius and number of clusters on the performance of a hybrid clustering model where both layers
were considered: airborne and terrestrial network by setting the clustering parameters to o = 10 and
B # 0 and v # 0. This parameter setting corresponds to the case where the energy spent by the UAVs
is considered and relate energy consumption has been.taken to be of the same importance. The results
presented in Figure 2.11a show that the coverage cost (total coverage energy) reduced with the increase
of the radius following a logarithmic function that led to a convergence value that did not necessarily
correspond to the optimal point.
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Figure 2.9: Case study.’ (a) GPS positions; (b) positions on the map.
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On the other hand, the results presented in Figure 2.11b reveal a different trend where the coverage cost
(total coverage energy) increases linearly with the increase of the number of clusters. These results are
in line with those presented in Figure 2.11a, since a lower radius will logically lead to a higher number of
clusters and subsequent higher cost, while a higher radius will logically lead to the algorithm finding a
lower number of clusters and subsequent lower coverage cost resulting from a high transportation cost.
The best clustering would then be the one related to the radius, which minimizes the number of clusters
and hence leads to the minimum transportation cost. In Figure 2.11a, such an optimal radius is 13, and
it corresponds to four clusters and a transportation cost of close to 25 joules.
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Figure 2.11: Impact of parameters on performance. (a) Cost versus radius; (b) coverage cost versus the
number of clusters.

2.5.3 Terrestrial Clustering: o = 10 and f =0 and v = 0 . We conducted a second experiment to
evaluate the impact of the UAV presence on the hybrid clustering process by setting the parameters o =
10 and 8 = 0 and v = 0, which represent a setting where only the energy consumed for transmission and
reception in the ground /terrestrial networkiis considered, discounting the data muling energy consumed
by the UAV.

The results presented in Figure 2.12a reveal a different trend compared to the hybrid network setting in
Figure 2.11a where:

1. The coverage cost function increases with the increase in the radius size following an exponential
function leading to a convergence value where the cost becomes constant.

2. The clustering process leads to much smaller coverage cost values (less than 1.0 joule) as compared
to the general case where the coverage cost values ranged between 20 and 370 joules.
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Figure 2.12: Impact of UAV on clustering. (a) Radius-cost; (b) communication network.

Similarly, Figure 2.12b shows a different trend compared to the hybrid clustering in Figure 2.11b, where
the coverage cost decreases with the increase in the number of clusters, but not necessarily following a
strict linear trend. The correlation between the values in Figures 2.11b and 2.12b is negative and smaller.

2.5.4 The Impact of the Cluster Head Selection Parameter on Performance. We conducted a
set of experiments to evaluate the impact of the cluster head selection policy on performance by setting
the parameters ¢ = 100 and varying.Afrom 0-to 1 as follows-(referring to Equation 3.3). We consider
the following parameter setting (referring to policies in Section 2:3.2).

e )\ = () expressing a distance awareness policy.
e )\ = (.25 expressing a balanced policy with a more focused distance awareness trend.
e )\ = 0.5 expressing a fair, balanced policy between density and distance awareness.

e )\ = (0.75 expressing a balanced policy with a more focused density awareness trend.

= 1 expressing the density awareness policy.

The goal was to assess how the three different policies would impact the overall coverage cost.

The results presented in Figure 2.13 revealed that:

e Distance awareness decreases the total coverage cost more slowly than density awareness: at any
given radius, the distance awareness policy cost is higher than the density awareness policy cost,
as revealed by the red curve corresponding to A = 0.

e Any balanced policy 0 < A\ < 1 leads to the same and lower energy cost as the density awareness
policy A = 1.
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Figure 2.13: Impact of the cluster-head selection policy.

2.5.5 UADC versus DCC Performance Comparison. We.conducted another experiment to compare
the performance of the DCC algorithm (using-only-density-awareness: A\ # 0 and ¢ = 0) to the UADC
algorithm (using both density and distance awareness: X =" 0-and ¢) # 0) using a variety of network
topologies. The following five settings/cases (see Figure 2.14) were considered:

Case 1: The UAV's paths constitute a proper sub-network of the terrestrial communication network.

Case 2: The terrestrial communication network is a proper sub-network of the UAVs' network.
This has been achieved by interchanging the networks chosen for the experiment in Figure 2.14a.

Case 3: The two networks (terrestrial and. aerial) are the same. Here, the assumed network is
shown by Figure 2.10a.

Case 4: In this experiment, positions were kept the same, and for both types of networks, the con-
nections were generated randomly.

Case 5: In this experiment, both the positions and links of both networks were generated randomly.
The total number of considered nodes was still 48, but their positions were generated by randomly

selecting the coordinates from a normal distribution with mean = 500 and a standard deviation of
300 (NV(500,300)).
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Figure 2.14: Algorithms comparison on different topologies. (a) Case 1; (b) Case 2; (c) Case 3; (d)
Case 4; (e) Case 5. UADC, UAV-Aware DCC.
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Figure 2.14 shows the UADC is outperformed by DCC when the radius is small (< 100km). However in
case the radius is high (> 100km) Figure 2.14e shows that UADC outperforms the DCC. This highlight
that there is no need to use UAVs in case clusters are not large enough.

Figure 2.15 reveals the total difference in coverage cost between the UADC and DCC algorithms as a
function of the radius. These results reveal that:

e With the exception of Case 5, UADC leads to higher coverage cost compared to DCC as a result
of the data muling cost due to the energy consumption of the UAV.

e The case where the terrestrial communication network is a proper sub-network of the aerial network
(Case 2) leads to lower coverage cost compared to the reverse case (Case 1) where the aerial
network is a sub-network of the terrestrial network.

e The lowest UADC cost is achieved when the aerial network and the terrestrial networks are the
same (Case 3).

e The case where both networks have the same positions, but randomly-generated connections
(Case 4) leads to higher coverage cost compared to the case where both networks are the same
(Case 3) for both the UADC and DCC algorithms.

e The case where positions and links are randomly generated for both networks (Case 5) is the only
case where the UADC algorithm outperforms-the DCC.algorithm for some of the higher radius sizes.

The proposed algorithm evolves. It shows that-when the-UAVs" paths constitute a sub-network of the
communication network, the adoption of the DCC's policy was best for all the algorithm's steps (see Fig-
ure 2.15a). However, considering the converse case (Figure 2.15b), the UAV-aware policy outperformed
the adopted DCC in only two cases, but the lowest energy corresponded to the adoption of the DCC. For
the case in Figure 2.15d, we observe -more cases where the UAV-aware policy was better than adopting
the DCC, but still, the minimum energy corresponds to the DCC adoption. Randomly generating the
nodes positions, Figure 2.15e shows that'the UAV-aware policy wasithe one corresponding to the lowest
energy and hence outperformed the adoption of the DCC.
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Note fluctuation in both Figures 2.14 and 2.15. This is caused by the size of clusters. It is important to
mention that UAVs usage in a small cluster (cluster of small radius) consumes more energy. However, if
the radius is significantly large, the UADC is more efficient that DCC.

2.5.6 The Impact of Relaxation on Performance. In this subsection, we show the impact of the
relaxation algorithm (see Algorithm 2) on performance by revealing the difference of the total coverage
cost between the UADC algorithm without and with relaxation for the same five different cases described
above.

The results presented in Figure 2.15 for all five cases reveal positive values for all radii. This reveals that
the proposed distance-aware relaxation (and similarly, the distance-aware restructuring) had a positive
impact on the performance achieved by the UADC algorithm. Furthermore, the figures reveal an increase
of the coverage cost difference with the radius. The results also reveal a variation of such an increase
with the cases where it is more pronounced for some cases compared to others, as shown by the slope
and values of the different cost difference functions.

2.5.7 Reliability of the Family of k-Means Algorithms. In this subsection, we evaluate the connect-
edness of the network configuration, which expresses the reliability of the k-means and UAKM algorithms
in terms of intra-cluster connectivity. The connectedness is a key property that determines the efficiency
of the data muling process handled by the UAV in the hybrid network scenario since the sensor readings
are collected by the moving UAV only when visiting cluster heads. Therefore, a highly-disconnected
network will lead to high missing data. Note that a poorly-connected and less reliable network config-
uration will reveal lower intra-cluster connectivity, while a-more reliable and highly-connected network
configuration will result in higher intra=cluster-connectivity.~~The-results are shown in Figures 2.16a,b
and in Table 2.2 in terms of average disconnectedness. -Figure 2.16a and Table 2.2 reveal the results
for the city of Cape Town network depicted by Figure 2.10a, while Figure 2.16b shows the results of
a random network. The average disconnectedness was computed as the percentage of (orphan) nodes
that have been assigned to clusters by the k-means algorithm, but that were not connected to related
cluster heads. A hundred runs were performed for every run-and every value k of the cluster with the
number k of clusters ranging from one to the total number of nodes of the network. Figure 2.16b shows
the average disconnectedness for a random 100-node network where the coordinates of the 100 nodes’
positions were randomly chosen from a standard normal distribution of size 1000, and the links were also
randomly generated to get a connected graph.

Disconnectedness (%)
Disconnectedness (%)

] 10 20 30 40 50 o 20 40 60 80 100
Number of clusters Number of clusters

(a) (b)

Figure 2.16: K-means algorithm. (a) Average disconnectedness: Cape Town network; (b) average
disconnectedness: random network.

On the other hand, Table 2.2 reports on the disconnectedness results of the UAKM algorithm where the
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value k was set to four to reflect the optimal number of clusters. For every cluster, the colored and bold
nodes in Table 2.2 are the ones that are disconnected from their corresponding cluster heads.

Table 2.2: Average disconnectedness: UAKM algorithm.

Cluster Head Cluster Members Disconnectedness
33 38, 47, 37, 35, 34, 32 66.6
3 25, 45, 15, 17, 44, 30, 29, 0, 6, 9 80.0
2 42, 24, 26, 27, 20, 21, 22, 23, 28, 43, 1, 5, 4, 7, 8, 11, 13, 12, 14, 16, 19, 18, 31 52.2
36 46, 10, 39, 40, 41 80.0

The results presented in Figure 2.16 for the k-means algorithm show that the expected cluster’s discon-
nectedness was significantly high. They also show that it was close to zero only when all cluster heads
were orphan nodes. This could lead to excessive energy consumption resulting from the UAV visiting
each and every node of the network for data muling. Figure 2.16b shows that the disconnectedness level
of the random network was higher than the Cape Town network disconnectedness. Furthermore, the
results presented in Table 2.2 for the UAKM algorithm also show significant disconnectedness in each
of the four clusters. This confirms that the k-means algorithms were significantly less reliable than the
proposed UADC algorithm.

2.6 Conclusions

In this chapter, a model for optimal sensor network design has been provided where a multi-sink ground-
based terrestrial sensor network is expanded by an airborne network of UAVs. The UAVs ferry the sensor
data from the sinks of the terrestrial sensor network to the gateway where they would be processed.
The coverage problem has been mathematically formulated-as-an optimization problem aiming at finding
the optimal number of clusters to achieve an energy-efficient hybrid terrestrial /airborne sensor network
using an UAV as the mobile gateway. A, clustering madel has, been.proposed and discussed to address
the defined problem. Results of simulations carried out show that the energy spent by the UAV on data
muling has the most significant impact on the total energy consumed by the entire data transporation
process. The efficiency of the proposed model has been compared with DCC and the k-means algorithms,
and the results showed that the proposed mode is more reliable in terms of cluster head selection and
overall energy consumption..



3. UAV-aware data routing

The emerging Internet of things (IOT) applications are prompting the deployment of sensor devices in
thousands of computing elements into multi-technology and multi-protocol platforms. In this complex
system, access to information will be available not only at any time and anywhere, but also using any
device. The efficient management of such a complex system is still a subject of research. This chapter
considers the case of a ground sensor network assisted by a team of Unmanned Aerial Vehicles (UAVs)
to collect sensor readings and deliver them to a base station where they can be processed further. Given
a network of ground sensors and the positions of the UAV base stations, firstly a model is proposed
for an optimal gateway selection, for efficient data muling by the UAVs. This chapter also revisits
the Least Interference Beaconing Algorithm (LIBA) proposed for IOT settings, and proposes preventive
mechanisms to ensure that efficient performance in terms of traffic engineering for the emerging 10T.
The LIBA based data transport issues are revealed and addressed by proposing a more efficient routing
scheme to assist a UAV-integrated data transport system. The problem is mathematically formalised and
the underlying data structure is described. The proposed algorithm has been verified to be correct and
simulations show that the proposed solutions improve the load balancing and delay handling.

3.1 Introduction

The integration of Radio-Frequency'ldentification—(RFID)-and sensor technologies is emerging as an
important component of first mile connectivity-of the Internet,called the Internet of Things (loT). Here,
information needs to be accessed not only anytime and anywhere, but also by anyone using anything.

A typical loT deployment scenario consists of a proactive monitoring system, where a network of RFID
tags is attached to objects and a set of readers, integrated into sensor motes, is used as an ubiquitous
sensor network (USN) [86]. The tags collect information on-identification and environmental parameters
of the object they are attached to, and. transmit this information to a gateway where the information
is processed. A variety of services using this information are delivered to users. This concept may be
applied in many fields including health-care, environment monitoring and protection, smart cities, public
safety and precision agriculture.

The emergence of the loT has revealed a need for new communication protocols and a redesign of some
of the traditional protocols, to achieve efficient routing of information over islands of interconnected
lightweight networks. The aim is to support human-to-human, machine-to-machine, and machine-to-
human communications. Such protocols require a very high level of survivability, reliability and trust.
Failure by these protocols to achieve their assigned tasks may lead to risks that could result in loss of
human lives. For example, when a train derails because the loT system failed to deliver the right signal
to the right node, at the right time, during machine-to-machine interaction. Furthermore, fire-fighters
could be misled in a rescue operation during machine-to-human interaction as a result of a faulty loT
visualization algorithm directing them towards an empty room, while the people who need to be rescued
are located in another room. Reliability and trust enhancements can be obtained through formal protocol
specifications using standard formal methods such as process algebra [87] or Z-notation [50, 88, 51]
not only for specification, but also to prove the correctness of some of the fundamental properties of
protocols or their underlying algorithms. Formal methods can also be used to discover hidden properties
or errors that have never been unearthed. A body of research work on formal verification of network
protocols exists but are mostly focused on security related issues.. The correctness of network algorithms
and the choice of an appropriate formalism for different types of protocols are two issues which still need
to be investigated more by the research community.

39
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The Collection Tree Protocol (CTP) described in [89] is a routing protocol which consists of sending
periodic routing messages in a network to find paths from each node of the network to the node which
initiated the routing. [90] shows that the main C'TP goals are reliability, robustness, efficiency and
hardware independence. Here, simulation shows that this is achieved by using a collection tree and
adaptive beaconing features, as described in [89]. However, the algorithm is challenged by the link
dynamics and route inconsistencies such as loop creation.

Tiny OS Beaconing (7'0OB) is described in [91] as a protocol with a simplified data structure and hence
a simple node structure. This is because in TOB, each node's routing table keeps information of only
its parent as the next neighbour for the traffic routed from the node to the base station (the sink).
This makes the used routing tables simpler than in C'T'P, where nodes keep information about a whole
path to the sink. However, TOB raises issues including lack of resilience to node failures and also the
tree-like many-to-one dissemination model causing uneven power consumption across the network, and
additionally, the potential of a big sub-tree being removed from the network in the case of the failure of
a single node.

As presented in [92, 93], LIBP is the proposed protocol which has LIBA as its underlying algorithm.
while the C'TP and TOB algorithms may lead to uneven power consumption, the LIBA has been
proposed as a routing algorithm that uses simplicity to enable scalability of USN. It uses a beaconing
process that supports load balancing to improve energy efficiency. Although the LIBA, outperforms the
CTP and TOB, its correctness has not yet been formally assessed and it does not consider the length of
the path that data need to travel.

On the other hand, weighted centroid-localization-in-Zigbee-based Sensor Networks has been computed
in [94]. In order to assist moving agents,-a model for decentralized centroid estimation for multi-agent
systems in the absence of any common reference frame, has been proposed in [95]. To the best of
the authors knowledge, there is no centroid model which considers a ground sensor network and all the
possible paths of UAVs moving from base stations.

In this chapter, firstly a model is proposed for determining an optimal centroid taking care of both the
ground sensor network and all the possible paths -UAVs may take to each sensor, from base stations.
Considering the centroid to the sink of the complex network, the LIBA issues are pointed out and
addressed. In addition the LISPA (Least Interference and Shortest Path Algorithm) is proposed, which
extends the revised LIBA to also minimise the delay in data delivery. The proposed routing algorithm
is formally specified and verified using Z notation. Using simulations, the performance of the proposed
algorithm is analysed.

The remainder of this chapter is organised as follows. In Section 4.2.3, the problem is defined and the
existing best solution is described, pointing out its issues. The proposed solution is presented in Section
3.3. In Section 3.5, the experimental results are provided and Section 3.6 concludes the chapter.
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3.2 Observables and problem definition

We use Figure 5.4 to show the considered system. The figure shows a system consisting of a sensor
network and three UAVs (U1, U2,U3) and their base stations. It is assumed that a UAV moves from a
base station, where it collects data, and moves to a centre where it delivers the data. Each UAV can
reach each sensor node using only a specific path.

Figure 3.1: The system visualisation.

The problem is defined in two steps.

1. Gateway finding: Find a central sensor node which minimizes the average distance to each
sensor node and which is best reachable by UAVs: It is necessary to consider the variable Ad;
which expresses the cost based score for the-node i in-relation to the sensor network. This could
be for instance the total /average shortest path from each node to the node i, the total/average
delay of data from each node to i or many more. It is also necessary to consider the variable Ap;
to express the UAVs visitation cost. It could be the total/average length of the path from each
base station to node i, the total/average delay or rush-of UAVs. The centroid problem consists of
finding the node ¢ that will minimize the following .cost function.

where, the parameter o ( with 0 < av < 1) expresses the variable weights.

This chapter/thesis considers a case where both the variables Ad; and Ap; are computable. This
is why this problem can be solved in polynomial time by computing the score Z; for each node the
centroid corresponds to and finding the sensor node with smallest score.

2. Routing to the gateway. 1. This entails periodically finding the shortest route (in terms of the
number of hops and the link lengths) which minimises the interference on the nodes. Here the
interference refers to the signal modification in a disruptive manner, as it travels along a channel
between its source and receiver. In this thesis, the interference is measure in terms the total
number of transferred messages and this is equal to the total number of children a node has been
assigned to, in the routing tree.

Here, the routing is done periodically for changing paths so as to share the interference risks. The
interference is expressed by considering the number of children in the routing tree, that a node has
been supporting , in terms of transmitting the readings to the gateway. This is a dynamic problem
which is going to be addressed in the rest of the chapter.

3.2.1 Problem modelling . Firstly, the observable leading to the specification of the assumed network
structure, are described using Z notation (see Section 1.4).
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Node address

The set of all node identifiers (i.e. addresses) is denoted by IP. The set IP is extended to

IP. =IPU{-}

«

where, “—" stands for a non-existing or undefined address.

Routing table R

This is a table where a sensor stores information about the network. A routing table of a node contains
information about the current path to the sink including the node parent pip, its current set of children
cip, its sequence number sn, and the length of its path to the sink hip . The number sn is chosen to
be a positive integer showing when last the routing table was last updated, and the number hip is a
positive real number showing the lengths of the available paths to the sink. If hip is not yet known for
a given node, it takes the value hip = —. Hence hip € RT where, R* = RT U {-}

R
pip : IP_
cip : PIP_
sn: N
hip : Rt

pip & cip

Note that the notation pip : IP_ expresses the fact that a parent of a node does not necessarily exist.

Updating routing tables: Once a routing tree is changed, each node need to update the information
of the routing tree (the routing table).

The ways to update a routing table are ‘as follows:

e Updating the children lists: A list of children is updated by making it empty or adding a child
to the existing list of children.

e Updating the sequence number: The sequence number of a routing table is changed to a new
one by replacing an existing number with a new one.

e Replacing the node’s height chh: The height of a node is the number of fewest hops from that
node to the sink of the network. The replacement of a node's height is expressed by Schema chh
which shows that all other routing table entries are not changed and the height of the previous
routing table 7?7 is changed to the updated one h?.

—_chh|R]
rt?,r! . R
h? : R
rl.hip = h

rt?.pip = rl.pip
rt?.cip = rl.cip
rt?.sn = rl.sn
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Node N

This is described by its routing table ¢, its address up, its weight wip and its x, y and 2z coordinates.
The weight of a node wip is a natural number which represents the latest number of children of a node.

__N[IP,R]
rt: R
wp : I[P
wip : N
z,y,2: R

ip & {rt.pip} U rt.cip

Network NT

This is determined by its nodes, links and sink. Note here that the weight distribution in the network can
be obtained from the nodes distribution, since the descriptors of a node include its weight. A network is
described using the following schema:

— NT|N]
nodes : PN
links : N < N
nbr: N - PN
s: N
d: N? >Rt

links € nodes <> nodes
ran(link*) = nodes
links™ = links
il podes N linkd = &
nbr(n) = links(| n |
s € nodes
S.pip = —
YV ny, ng : nodes ® ny.ip % no.ip
d(n1,n2) = /(n.x — ng.)? + (n1.y — ma.y)2 + (1.2 — ng.2)?
dom(d) = links

As shown in the schema NT, a network of type NT is defined as a connected and bi-directed graph
with no self-link. The neighbourhood nbr of a node n consists of nodes connected to n. The sink s is
one of the nodes in the network at distance equal to zero. Any two nodes of the network have different
identifiers, and the distance between two connected nodes is the Euclidean length of the link connecting
the them.

3.2.2 Problem statement. Assume a network G of type NT (see Schema NT'), where, periodically,
a message is to be sent from or arrive to the network sink G.s.

Define L; to be the length of the path from node 7 to the sink on a spanning tree T of G.

The problem consists of periodically, finding the shortest and least interfering path with the fewest
number of hops, from each node to the sink. That is, find a spanning tree T" of the network G which
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minimises the following objective function.

min Z; = AL; + (1 — A)(w; + #nbr(i)), Vi € G.nodes, (3.2.2)

subject to L; = ¢.1t.hip

where, L; defines the Euclidean length of the path joining node ¢ and the sink s, on T', and i.rt.hip
denotes the current height of the node .

3.2.3 Existing solution and motivation. To the best of the authors, one of the current best ap-
proaches for the solution of the problem stated in Section 4.2.3, is the distributed algorithm called Least
Interference Beaconing Algorithm (LIBA). Periodically, it computes the best routing tree from a sink
of a network, to minimise interference in the network. Simulations in [93] show that the algorithm
outperforms TOB [91] and CTP [90] in terms of energy efficiency. These two algorithms are already
implemented in various settings. The LIBA basic protocol is explained using Figure 3.2, which shows a
single round.

Figure 3.2: Routing with LIBA.

a) Initial network. .
(a) Initial nctwor (b) Beaconing starts. (c) Acknowledgement and relaying.

(d) Acknowledgement and relaying. (e) Resulting tree.

0\ - a ]
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Consider the initial network in Figure 3.2.a, where node s is the sink. As shown in Figure 3.2.b, the sink
starts by broadcasting the beaconing messages in the network.

Figure 3.2.c shows that the neighbours of the sink receive the beacon and relay it in the network, as well
as acknowledging the chosen parent in the route from the receiver to the sink. Figure 3.2.d shows that
the processes of relaying and acknowledging continue to the remaining nodes with no node acknowledging
or relaying a message more than once.

Important note: Each parent receives one acknowledgement message from each of its children if
selected by selectors as the minimum weighted parents. The number of received acknowledgement
messages becomes the weight of each node. In this example the weight was initialized to zero for all
nodes. After the run of one step of LIBA, node a has received one acknowledgement message and hence
has a weight equal to 1, whereas node b has weight 0. Since both nodes are connected to node ¢, in the
next LIBA run, node ¢ will choose node b whose weight is least, and the weight of node a will become
zero because it will not receive any acknowledgement message, during the routing round.
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3.2.4 Data gathering related issues. In this subsection, two major issues for efficient data gathering
are discussed.

Node weights update issues

Figures 3.3a, 3.3b and 3.3c are used to present the issues (counter examples).

(a) Initial network for the second
LIBA run. (b) Beaconing starts. (c) Acknowledgement and relaying.

Figure 3.3:-Node weights update.issues.

Consider the family of three dimensional graphs that are presented in Figure 3.3a, where the set P =
{1,2,...,k} consists of nodes which are all connected to the nodes a, b and ¢. The non zero natural
number £ is chosen to be big for clarifying how effective the solution is, and we assume that the node
s is assumed to be the sink of the network. Finally it is assumed that all nodes have initial weight zero
(this can be generalized to the case where all nodes have equal weights).

Figure 3.3a shows a case where the sink.sends a beacon and, as a result, all nodes in the set P choose
the node b and this results in a and ¢ having the weights zero.

In the next LIBA run, the nodes in P have to choose a or ¢ because they have lower weights than b
(they both have weight zero). Figure 3.3b shows that only one node from the set P has chosen node q,
and all others have chosen node c. At this stage node b has not been chosen and as a result it has the
weight zero. Notice that these kinds of choices are possible because in this particular case two candidate
nodes have the same weight, and therefore the choice is random.

The problem appears in the third run of LIBA (Figure 3.3c): As node b has a weight less than that of
a and c, all nodes in P have to choose node b and its weight becomes & again, whereas nodes a and ¢
update their weights to zero. Notice that the weight redistribution in the third run of LIBA 3.3c is the
same as that in the first run (see Figure 3.3a).

Since node a, b and ¢ forward the beacons to the same nodes (in P U {s}), the loads to nodes in P
could tend to be balanced if the nodes a, b and ¢ are chosen by around £ /3 nodes which is the average
number of choosers (nodes in P).

Considering the case where initially, all nodes in P chose node b. The weight succession of a, b and ¢,
for many runs is as follows:

e node a: 0, wy, 0, wy, 0, ws, ... (the weight of a is either 0 or w; > 0)

e node 0: £, 0, k, 0, k, 0, ... (the weight of b is either k or 0)
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e node c: 0, k — wy, 0, k — wy, 0,k — ws, ... (the weight of ¢ is either 0 or k£ — w;).

The weight cycling is shown on node a and this shows that the node a is most used at each round with
a very high difference, compared with others, in terms of how much it is used. As a result, there is no
run at which the load will be balanced differently.

Data transport delay

Figure 3.4 is used to explain this issue. The figure represents a part of a network of type NT where a
beaconing message arrives at node s, and it is to be relayed so that node d may use it to choose either
node b or c as its parent in the next routing tree.

2

~ 10
2 30—O—__ o
tfé ) (d\'

Figure 3.4: data delay issue.

Since both nodes b and ¢ have the same weight (interference), the parent choice for node d is random.
However, the choice of node b shows that-the data-from-node d will be transported on a distance of
30+10=40, whereas with the choice of node ¢, the distance is 72. This clearly shows that the node ¢

would delay the message from d and hence, in this case, node b is the best choice for moving data from
d.

3.3 Proposed solution

The first case under consideration is shown in Figure 3.3a. To ensure efficient load balancing, node a
would be prioritised because it has a lower weight (compared with'b and ¢), whereas node b would not
be preferred less because it has a greater weight in comparison with other potential parents (a and ¢).
However, since the current algorithm does not prioritise the node a in any way, it is possible to get a
case where load balancing fails.

The problem discussed in Section 3.2.4 stems from the fact that the weight computation does not depend
on all previously computed weights.

Therefore it is necessary to define a function which takes all previously calculated weights into consider-
ation and returns the weight to a node which prioritises that node node which has supported the least
number of children so far. The weight will represent, in this case, the history of the usage of a node and
hence its energy consumption.

Consider a case where, a node has to support wj children at the k" run of LIBA. The following
prioritisation function is suggested:

k
W (wy, wa, ..., wy) = Zwi (3.3.1)
i=1

To prioritise a less busy node, we choose to define the function w(wl, w2, ...) is defined considering
Figure 3.2.4 it can be seen that at the third run the node a would have a lower total weight (which is
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1) and hence a will be the one to be chosen and hence this clearly improves the resource sharing which
was the main aim of LIBA.

On the other hand considering the delay issue (as mentioned with Figure 3.4) and to fix it, a node is
to be chosen if it is the one corresponding to the shortest path to the sink. The shortest path from the
chooser depends on the height of potential parent and also the distance between the chooser and the
potential parent.

In this case if a node i is chosen, the length L, of the path of from chooser n to the sink is

Ly = h(i) + d(i, n) (3.3.2)

Combining Equations 3.3.1 and 3.3.2, it emerges that on the k* run, the choice of a node i to be the
parent of node n depends on

Z = AL+ (1 = A)w(wy, wy, .., w) = A(h(i) + d(i,n)) + (1= A) > w; (3.3.3)

where, 0 < A < 1 represents the preference constant.

3.3.1 Formalisation of LISPA. LIBA is chosen and prioritisation is applied as shown in Section 3.3 to
formalise a more efficient and correct algorithm-called the LISPA. . To identify the possible observables
(used data structure) for the algorithms, it is necessary to refer-to the structure of a network, the way
messages are sent in the network and the way nodes keep information while the algorithm is processing.
Their structures are defined using Z schemas which are translated and explained.

Beacons BC

This is a message broadcasted periodically:from-a sink; -and-relayed in a network to enable all nodes of
the network to select their (best) parents. A beacon contains the address of its sender sip, the sequence
number of the beacon bsn (a natural.number which identifies a'beacon), the height of the sender sh
which helps to determine the nodes ready to be parents (nodes at minimum distances from the sink), the
weight sw of the sender, the height of the sender sh, and the z,y and z coordinates of the the sender.
fr and the channel used ch. In this particular case the last two variables can be ignored. The set of all
beacons is denoted by BC'. The schema describing a beacon is as follows:

Acknowledgement message AC
This message sent by a node to only its newly selected parent to confirm the selection. It contains its

sender's address sip and the destination dip of the message. The set of all acknowledgement messages
is denoted by AC. The following is a schema for an acknowledgement message.

BC[IP]

sip : IP
bsn, sw : N
hip : Rt
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__ACIIP]
sip, dip : IP

sip # dip

The sender of the acknowledgement message is different from the destination of the message (sip # dip).

Message MSG

In all PLIBP processes, a message is either a beacon or an acknowledgement. Hence the set of all
messages MSG are described by the following schema.

_ MSG
be : PBC
ac : PAC

#ac < F#bc

Since a beacon is broadcast and an acknowledgement message is unicast, the number of received
beacons is always at least the number of received acknowledgements (#ac < #bc). This condition is
also an agreement with the protocol requirement that-upon reception of beacons from different potential
parents, a node selects only one parent by sending an acknowledgement message to that parent.

Beaconing

In this thesis, the word beaconing refers to/LIBA routing mechanisms. The beaconing process starts
from the sink and goes to all nodes in‘the same network as the sink. The beaconing processes is described
using three Z-classes namely, Stater, Transmitter and LISPA. In this section the classes are studied.
This leads to an example showing how the classes cooperate for routing.

Class Starter

This consists of a sink node as its object and the operation Initiate as its method. The sink sink of the
network is considered to be constant and it is the same as that in the network nt on which the operation
Initiate is used.

The operation consists of initiating the beaconing message bc!, and the routing table 7t of the sink.
In an initiated beaconing message, the sender bc!.sip is the sink’s address sink.ip, the number of hops
bc!.hop is set to zero and the beacon’s weight bcl.sw is the weight sink.wip available in the routing
table of the sink. The height is set to zero and the z, y and z coordinate of the sender get copied in
the beaconing message.

The set sink.rt.cip of children in the sink’s routing table is emptied and the sequence number in the
routing table is incremented by one.

The initiated beacon has the same sequence number as in the routing table sink.rt.sn'.

nt: NT
sink : N

‘ sink = nt.s



Section 3.3. Proposed solution Page 49

__Initiate
A(sink.rt.cip, sink.rt.sn)
be! - BC

be!.sip = sink.ip

be!.hop =0

be!.sw = sink.wip

sink.rt.cip’ = &

sink.rt.sn’ = sink.rt.sn + 1 = bc!l.bsn
sink.rt.hip =0

sink.x = sink.y = sink.z =0

Class Transmitter

This consists of one object Node and two operations (methods) namely bcHandle and ReceiveAck as
presented in the following schema:
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_ Transmitter™

__Node
nt: NT
n:N

n € nt.nodes

__bcHandle™
A(n.rt)
be? : PBC
be! : BC
ac! : AC

YV bey, bey = be? @ bey.bsn = beg.bsn # n.rt.sn

Jx: be? @ z.sw =TM{A * (be.sh + nt.d(be.sip,n)) + (1 — A) * be.wip | be € be?}
An.rt.h = bel.sh = x.sh + nt.d(x.sip, n)
A(bcl.z, bely, bel.z) = (n.x, ny, n.z)
Nac!.dip = x.sip
An.rt.pip’ = pch(z, x.sip)
Abc!.hip = x.hip + nt.d(z.sip, n)
An.rt.sn’ = x.sn

acl.sip = bel.sip = n.ip

be!.sw = n.wip

n.rt.cip’ = &

(be?sip, n.ip) € nt.liks

_ ReceiveAck™
A(n.wip,n.rt.cip)
ac? : AC

n.ip = ac?.dip

n.wip’ = n.wip + 1

n.rt.cip’ = n.rt.cip U {ac?isip}
(ac?.sip, ac?.dip) € nt.liks

Node: This is the node n of type N in the network nt of type NT'.

Operation bcHandle™: This operation takes a set of beaconing messages bc?, makes changes to the
routing table rt of the receiver of the beacon bc? and outputs the new transformed beacon bc! sends an
acknowledgement message ac! and then updates the routing table of the receiver.

To handle the set of beacons requires them to have the same sequence number, and the receiver
n handles them if it has a different sequence number. This guarantees the fact that the handled
beacons are new.

The node n chooses a beacon x of smallest price z (as calculated in Equation 3.3.3 ) and uses
it to update its routing table and to form the acknowledgement message ac! and the new beacon
be!.

A destination in acknowledgement message ac! is a sender of the beacon z and hence the parent
n.rt.pip of node n. The height of the beacon bc! is obtained by taking that of the beacon z and
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adding the distance between the sender and receiver, while the sequence number n.rt.sn of the
node becomes a copy of that of the beacon z.

The sender of the beacon bc! and the acknowledgement message ac! is the node n and the weight
in the beacon bc! is the same as the weight n.wip of node n.

The routing table of node n also changes in a way that the set of children n.cip becomes empty.

Note that the above changes apply to the node n if the sender of the beacon is connected to it.

Operation ReceiveAck™: is an operation which takes the acknowledgement message ac? and changes
the state of its receiver n, provided that the receiver's address n.ip is the same as the destination address
ac?.dip specified in ac!.

The weight n.wip of n is incremented by one and the sender of ac? becomes one of the children of n.
Note here that all this happens if the sender and the destination of the acknowledgement message are
connected i.e. (ac?.sip, ac?.dip) € nt.liks.

Class LISPA

This class consists of processors named start and transmitters as its objects. The starter start is the
sink in the network and the transmitters are-those nodes-in_the network which handle the beaconing
messages or acknowledgement messages.

—LISPA

__processors
start : Starter
transmitters : P Transmitter™

Generate = start. Initiate; > [prStarter.sink-nbr] ® p.bcHandle™*
Trans = [> p : transmitters) ® p.bcHandle™*[]p. Receive Ack™

The operation Generate consists of initiating the beacon which is followed by handling the initiated
message by the neighbours of the sink. The operation Trans consists of sequentially handling beacons
or acknowledgement messages by all concerned nodes in the network.

3.4 Example

The formalism in Section 3.3 is illustrated by an example. The example starts by explaining the notations
and colours used and then the LISPA idea is represented using the interpreted graphs.

3.4.1 Notation. In this example, key contents of the schemas are written in tuples for simplicity.

A beacon is represented by bc(sip, bsn, sw, hip) which expresses the beacon bc from the sender sip of
sequence number bsn where the sender is at the distance hip from the sink and its weight is sw.

An acknowledgement message is expressed as ac(sip, dip) where sip and dip are the sender and desti-
nation of the acknowledgement message respectively.
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A routing table looks like (pip, cip, sn, hip) where the node having such routing table has the parent
pip, the set of children cip. The last handled beaconing message had the sequence number sn and its
sender is at hip units of lengths from the sink.

3.4.2 Colouring logic. In this example the effect of messages is clarified by showing the consequences
in the same colours as their causes (messages). After considering an initial network as shown in Figure
3.5a, LIBA™ processes are shown by the following colours:

e Red: The red arrows show the traces of beaconing messages. The changes in routing tables caused
by the beacon, are also shown in Red.

° : The green bent arrows show the traces of acknowledgement messages, where the green
undirected links show the established routes, and the changes in routing tables or weights caused
by the corresponding messages are also shown in Green.

Here are two runs of the algorithm, to show all thedetails.

3.4.3 Steps of a first run of LISPA. Suppose it is necessary to find a path from each node to the
sink @ in the network shown by Figure 3.5a, where all nodes are assumed to have zero weight.

As shown by Figure 3.5b, the sink a starts by initiating its routing table and broadcasts the beacon
be(a,1,0,0). Its neighbours b, ¢ and d receive it and all update their routing tables. Since each node
updates only the beacon from its selected parent (sender-whose cost (see Equation 3.3.3) is minimum)
and relays it in the network, the beacon from-node-b-is-be(h,1.0;7), as an example.

It is known that a routing table of a node is-updated by a beacon from its selected parent. This is why
the only difference in the routing tables for nodes b, ¢, d is the calculated height: they have selected
the same parent a. Each node receives a new beacon, sends back an acknowledgement message (green
bent arrows) to the selected parent, and relays the beacon from its selected parent.

Figure 3.5¢ shows the nodes relaying the beacons and acknowledging their selected parents. If a node
receives an acknowledgement, it increments its, weight byione and then the height of each receivers
height is adjusted by adding the incoming messages height and the distance between the receiver and
the sender. This is why the weight of node @ has been 3 since it received three acknowledgements
messages, whereas the height of node b becomes 7 = 0 + 7. Note that the node a has rejected the
beacons from all its neighbours since they were not new, that is, the sequence number was the same as
in its routing table.



Section 3.4. Example Page 53

. 7
(8- {}1.0) /
/ \ & OS2 (1
™~ \
\ / ?\\\._d 73

(a-.{} 1.
(c) Acknowledgement and relay-
(a) Initial network. (b) Beaconing starts. ing.
(33{91]1?) _ (ab{}‘i 9) (33{9}1?) ab{ }19) (a.a.{e}1.7) (a.b.{gl1.9)
b e EE— \ —,

S 7 3 ~/ 3 N 10 e o
N ~ @-{} 9‘ / > N @
a2t edean 62 @ _ 622 SRS
® 3'"\\\ T “ 3 a,a.{}1 62 (@; &fa.a.{}1.62 @ Q}\
@ - \1 _{_‘x \? \ /\? \1 4 ; 3 @
Al a—wf 7 Ve 3 .

@ _° 7
(@.a {117 (a, d, {}, 1. 10) (@ a {f} 1,7 (a d {} 1, 10) @a{f}1,7) (a.d.{}. 1.10)

(d) Acknowledgement and relaying. (e) Acknowledgement and relaying. (f) Resulting network.
/:'tj:i:- é\
(a \ ) © @
\“-f_fi_‘ f

(g) Resulting tree.
Figure 3.5: First iteration of LISPA.

Figure 3.5d shows a continuation of the process in Figure 3.5¢ and figure 3.5f shows that the nodes which
did not receive any acknowledgement message keep their previous weight (in this case their weights remain
zero).

Since each node knows its parent or all its children, the corresponding tree can be extracted as shown
by Figure 3.5g by using the trace of the acknowledgement messages.

3.4.4 Steps of a second run of LISPA on the same network. This second run starts with a weighted
network with routing tables and the node weights as in Figure 3.5f. The sink a starts the process by
initialising its routing table and the new beacon.

As shown by Figure 3.6a the initiated routing table of the sink is 7(—, {},2,0) and consists of no parent,
an empty list of children and a new sequence number 2 which is the same as the sequence number of
the new beacon originating from the sink a. Thus the beacon from a is bc(a,2,3,0). Note that the
number 2 is obtained by incrementing the previous sequence number by one.

The routing tables are updated by the beacon, by empting the existing list of children and by replacing
the existing parents by a non existing element, and its sequence number becomes a copy of that of the
incoming beacon (see 3.6a). This is why, for instance the routing table of node b, after acknowledging
the beacon from its parent a, is (—, {},2).

Figure 3.6b shows the action of relaying and acknowledging the messages, and the weight of the sink
becomes 6 because it has received three new acknowledgement messages. Notice that the height of
node e changes to 9.2 which does not depends on the previous height but corresponds to the newly
established route. Figure 3.6c shows that nodes e and f make a better choice and choose the node ¢ to
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be their parent since it has the minimum weight (in comparison with nodes b or d which had also been
ready to be parents).
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Figure 3.6: Second iteration of LISPA.

Figure 3.6e shows that the nodes keep their weight if they do not receive any acknowledgement message.
Based on the new parent selection done so'far andithe new weight distribution, the resulting tree is
shown in Figure 3.6f.

3.4.5 Verification. We use Computation Tree Logic (CTL) is used to express properties and hence
verify them.

3.4.6 Theorem. Parent choice

Suppose a beacon is broadcast k rounds by the sink of a network of type NT (see Schema NT in
Subsection 3.2.1 ). At each round, each node that is not the sink keeps on choosing its parent to be its
neighbour satisfying the following properties:

e Being closest node to the sink, i.e. a node at fewest hops from the sink.

e Having the minimum weight which means a node of minimal interference.

To express this in C'T'L syntax, the following predicates must be defined first:

e beacon(s, k): holds whenever the sink s of the network of type NT(see Section 3.2.1) initiates
and broadcasts a beacon of type Initiate.bc! (see Schema Initiate), for the k™ round. That is

beacon(s, k) < I bc : Starter.Initiate.bc! o be.sip = s A be.bsn = k.

\
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e n # s: This is satisfied if and only if the node n in the network is different from the sink s of the
same network.

e parent(p,n,k): holds whenever node n makes a choice of parent p (its neighbour of minimum
weight and nearest to the sink of the network) for its £ round. Note that the number of rounds
equals the sequence number of a newest beacon.

Assuming that the predicate beacon(s, k) holds, we proceeding by induction, it can be shown that the
CTL formula AG(n # s = parent(p,n,k)) holds too.

Consider the predicate bchandle(n, 1) which holds if the node n handles the new incoming beacons by
the operation Transmitter™.bchandle, for the first round.

From Schema LIBA (see operation LIBA.Generate and LIBA. Trans), it follows that,

Vz : nt.nodes ® bchandle(z,1).

On the other hand, bchandle(z,1) = (z # s = parent(x,1)), as shown by SchemaS LIBA and
Bchandle.

Hence,

beacon(s,1) = AG(n # s = parent(n,1)).
Assume that V7 < k e beacon(s, r) "= AG(n-+# s—==—parent(n,r)) .
li can be verified that beacon(s,r + 1)-=AG(n % s = parent(p,n,r + 1)).

At each node, the ™" computed weights can be used to compute the new ones as shown by Transmitters. ReceiveAc
in Schema Transmitters.

In all 7 beaconing rounds, no operation changes the structure of the network, this is why
beacon (s, + 1) = Vz : nt.nodes o bchandle(x, 7+ 1).
It should be noted that the sink is the only ‘node which. does not satisfy the condition

Y by, bey - be? @ bey.bsn = beg.bsn # n.rt.sn in Schema Transmitters, operation Bchandle. Which is
why it is the only node in the network which does not choose a parent.

Hence,
AG(n # s = parent(p,n,r +1)).

3.4.7 Theorem (Correctness of LISPA). Consider the network nt : NT whose sink is the node s.
After each run of LIBA on nt, the path from each node of the network to s is shortest and consists of
the nodes of minimum interference (weight).

The sequence of adjacent nodes and their chosen parents where each node is the parent of the previous
one is referred to as path.

To express this theorem in C'TL, the following predicates must be defined.

e shortest(path(n,s)): The path path(n,s) from node n to the sink s consists of a minimum
number of nodes.

o cheapest(path(n, s)): The path path(n,s) consists of a minimum total weight (sum of its nodes
weights).
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The correctness theorem is then expressed as the following C'T'L expression:

AG(shortest(path(n, s)) A cheapest(path(n, s))).

Proof

Suppose 3m : N such that at the m™ run, the chosen path to the sink is not
shortest or cheapest.

Then there exists a node in that path which has a parent not cheapest or closest
to the sink. This contradicts theorem 3.4.6.

3.5 Experimental comparison of LIBA and LISPA

In this section, while we study the tendencies of LISPA, we compare it with LIBA using the following
performance parameters:

1. Load balance: this is measured-using standard deviation_of the recorded interference as the
algorithm runs. It is used to identify which algorithm is better in terms of load balancing in a
network. The smaller the standard deviation, the more balanced is the interference in the network.

2. Average delay: Since it is assumed that the delay depends on the length of the path taken to
deliver messages, it is necessary to study how the delay varies with the runs of LISPA. For every
run the average length (on the resulting tree) from each node to the sink is recorded.

3. Highest cost: two independent highest costs are evaluated.

(a) The highest interference: each time the-algorithm is run, the highest interfering node is
recorded. Since this value increases with more runs of the algorithm, it reflect the life time
of the network (the time the highest interference is still less than a threshold).

(b) Longest path length: the longest path for every run is recorded. This indicates how
harmful delays can be, to the underlying network.

3.5.1 The test network. The network under consideration consists of Cape police stations. The
network has been extracted from the map as done in Chapter 2, Section 2.5. Figure 2.9 and 2.10b show
the map and the corresponding extracted network.

Base station setting

Three base stations have been selected to be in Bellville, Nyanga and Kuilsrivier police stations (nodes
O, 1 and 10).
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The sink optimisation

The optimal sink has been identified as a solution to the problem defined in Section 4.2.3, and Equation
3.2.1, with o = 8 = 1, has been exploited in the following three steps.

e Best sink of the ground sensor network: Here a gateway which is closest to all other nodes
in the network has been chosen. This has been done by comparing the single source shortest path
to all nodes in the network.

e Best UAV center: Given position of UAVs (base stations) the node which is closest to all the
base stations has been chosen.

e Joint best gateway Considering the two centroids calculated above, the node which is closes to
the two has been computed to be node 26, corresponding to Belhar police station.

3.5.2 Standard deviation: load balance. The load balancing property for the two algorithms (LIBA
and LISPA) is studied by evaluating the standard deviation of node interference as the run is repeated
3000 times (to address the simulation credibility issues [96]). Since the algorithm periodically sends
messages and those messages are the ones which stimulate the increase of interference at each node,
the interference standard deviation is plotted against the time which corresponds to the number of runs.
Using Python the two algorithms are run by fixing the-parameter A (see Equation 3.3.3). The effect of
A taking the following values [0, 0.1,0:2,0.3,0-4,0.5,0.6,0.7,0.8,0.9, 1] is also studied. Notice that in
the case A = 0, Equation 3.3.3 shows that only the Waiting issue as stated in Subsection 3.2.4, and if
A =1, we study only the effect of the distance is being looked at, as indicated in Subsection 3.2.4.

3.5.3 Standard deviation evolution. Figure 3.7 considers the load balancing as well as the effect of
the preference parameter A. The figure also shows that the load balance is best (smallest interference
standard deviation), when a focus is"put on-the waiting (see Subsection 3.2.4). For the LISPA, the
figure shows that in the first runs, LIBA is better. However the figure shows that as the number of
runs increases the LISPA gets better than LIBA and tends to be ‘at'the best point (the point where the
interference is 100% preferred, that,is-when A =,0). The. figure shows that as the preference in the
interference minimisation decreases, the point where the LISPA outperforms LIBA increases (shifts to
the right), but in the case where the interference is ignored (A = 1), LIBA remains dominant to LISPA.

3.5.4 Delay handling. The delay resolution is observed as the preference parameter is changed. Since
it is assumed that the delay depends on the distance traveled by a message to arrive at the sink, the
distance is used to approximate the tendency of the delay.
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Figure 3.7: Load balancing.
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Figure 3.9 and 3.10 reveal how the delay is improved as LISPA is used and the preference adjust. The
figure shows that if the distance is not taken into consideration (A=0), the difference between the delay
of LISPA and LIBA is not predictable. This is explains the fluctuation observed in the figures. From
Figure 3.9 up to Figure 3.10, it is shown that as the preference in handling the delay issue increases, the
fluctuation and hence the delay decreases. The figure also shows that the delay improvement is best in
the first few runs and gets worse as more runs of the algorithm are performed. However, it can be seen
that the worst case for LISPA is still better than the case for LIBA.

3.5.5 The highest cost. In this section, 200 runs (iterations) are performed for both LISPA and
LIBA on the network shown in Section 3.5.1, to avoid the simulation based credibility issues [96]. The
interference is plotted against the names of the algorithms to compare them in terms of the expected
highest interference and delay. LIBA and LISPA are compared while the preference parameter is varied.
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Algorithm

LIBA LISPA(A= 0) LISPA(A= 0.1) LISPA(A= 0.5) LISPA(A= 1)
Algorithm

(a) Maximum interference. (b) Maximum height.

Figure 3.11: Highest cost variation.

Figure 3.11a shows that LIBA has the highest interference.” With 'LISPA, when A = 0, the interference
minimisation is 100% which results in, lowest .interference. As the preference on the interference (1-A)is

reduced for the LISPA, the figure reveals an increase in the interference level towards the corresponding
value of LIBA.

Figure 3.11b shows the expected maximum height (length of the path from a node to the sink). The
figure reveals that LIBA corresponds to the greatest height and hence the most delaying. This histograms
show that as the preference in the delay reduction is increased for LISPA, the maximum height decreases.

3.5.6 Effect of centroid parameter o on the total used energy. The effect of changing the
parameter (see « in Equation 3.2.1) changes on the total routing and transport energy is looked at.
Figure 3.12a compares the cost corresponding to the optimally chosen centroid, with the average cost
when each nodes is elected to be the centroid Figure 3.12b is a zoom in of part of Figure 3.12a to make
clear the difference between the two scenarios.
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Figure 3.12: Effect of the parameter a.

As shown in Figures 3.12b and 3.12a the total energy for data routing and transport is linearly dependent
on the value of «, and it is negatively correlated with the parameter. The graph also reveals that that
the optimal centroid (the one corresponding with the lowest cost) always exists.

3.5.7 Impact of o on the centroid-choice . If the value-of a-is changes, it is interesting to see the
resultant changes in the centroid election.

41 -

40

Total cost

28

T T
0.0 0.2 0.4 0.6 0.8 1.0
Value of alpha

Figure 3.13: Centroid variation.

Figure 3.13 shows that when 0 < o < 0.48, then centroid is constantly 41. When 0.48 < « < 5 the
optimal centroid is 40 and the rest of interval up to 1 the optimal centroid is 28. Note here that nodes
40 and 41 are the most elected to be centroid.
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3.6 Conclusion

In this chapter, the UAVs-aware data gathering model was presented. It is a two steps model, with
steps summarized as follows: at the first stage, a UAV sensor aware gateway is optimally selected;
while at the second stage the Least Interference and Shortest Path Algorithm was proposed to minimise
the interference and the delay experienced by messages in the network. Z notation has been used to
formalise the problem and propose the algorithm. The proposed algorithm was verified and proven to be
correct. The performance analysis has been done using Python simulations and obtained results show
that the LISPA outperforms the List Interference Beaconing Algorithm (LIBA), in terms of delay and
load balancing in the network.



4. Cooperative Model for one Target
Visitation

This chapter considers a case where a team of Unmanned Aerial Vehicles (UAVs) is to successively
and persistently fly over a given area of interest, coming from different locations with the mission of
collecting sensor readings from these locations and delivering/muling these readings to a fixed location,
where a relevant data infrastructure is available for processing the readings, and the related information
is provided and/or shared as a service to the community. A scenario is considered where data delivery
guarantee, at the processing location for a period of time called revisit deadline, is a key feature upon
which a successful mission depends. The problem of satisfying the revisit constraints for successive
delivery is mathematically formulated and justified to be intractable. Furthermore, the collision issues
are addressed. Three heuristics to solve the problem are suggested and compared through numerical
simulations. Lastly, the effectiveness of both heuristics is analysed and verified.

4.1 Introduction

Wireless sensor networks have been extensively used as the rough material of the emerging Internet-
of- Things (loT) for developing large scale-monitoring applications in harsh environments. In some
situations, where sensors need be deployed over-large-areas, it can be very constraining to provide a
continuous network connection to a sink node for-each sensor-node. The reasons for this are numerous
and varied. First, for the sake of cost reduction,| there is no need to deploy sensors in the entire area
of the network. Second, the geographical characteristics of some area (rivers, mountainous area) could
make the deployment of physical sensors impossible. Third, in the case where sensors are attached to
mobile/nomadic entities, the deployment-of physical relays-and sink nodes everywhere could become
tedious. Fourth, if a natural disaster should occur, the network could suddenly be transformed into a set
of isolated islands of nodes that would not be able to provide the:communication to relay urgent data
or to summon the required immediate assistance.

Faced with the deployment constraints described above, the use of unmanned aircraft vehicles, also often
referred to as drones, could become an alternative solution, replacing fixed sink nodes and reducing the
number of sensors that need to be deployed. In this context, one can imagine an Internet-of-Things in
motion scenario where a group of ground sensors deployed in different geographic locations are being
successively and persistently visited by a team of UAVs to collect their sensor readings and transport /ferry
these readings to a given target location such as a data centre with relevant capabilities for processing
data and sharing the resulting information as a service to the community. Such a target has to be
revisited after a given period of time referred to as the revisit deadline. When two UAVs are close to
each other, communication between them should prevent a possible collision.

Many emerging application scenarios are revealing the relevance and benefits of using UAVs/drones in
“Internet-of-Things in Motion" settings for public safety in the developing world. Furthermore, when
deployed in environments with ground-based sensors and flexible gateways [97], an loT-in-Motion network
has the potential to replace long distance sensor deployments [98] as they can play the role of mobile
sinks in regions where a mesh deployment is not an option, such as in hilly or mountainous regions where
wireless communication is an issue.

4.1.1 Related Work. Scheduling the UAV visitation has initiated several avenues of research. Motivated
by the scenario of persistent visitation with fuel constraints in [99], a model for persistent visitation under

63
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revisit deadline constraints has been proposed in [100]. In this case, a single moving agent is to visit
several targets optimally, each of which has the revisit deadline. The models from these two pieces
of research have been considered in [34] to suggest a cooperative model to visit many targets using a
team of UAVs, for surveillance and pursuit purposes. In this study the UAVs do not communicate with
each other. They rather rely on the information from the ground sensors optimally placed as suggested
in [35], to know their future actions. The problem for multiple UAVs to visit a single target has been
addressed in [11], where the target (area) is optimally partitioned using straight lines, and the visitation
assignment is done using an auction mechanism. This approach would benefits the target which requires
the simultaneous visitation of UAVs.

In [101], sweeping and monitoring a changing environment using multiple robots has been addressed.
The presented model assumes that the robots cannot communicate with each other, and that each UAV
is assigned the pre-computed task to be performed with a controlled speed. In [102], each point of the
area is visited on a maximal frequency basis. The uniform frequency is maximised. This is achieved
by introducing the spanning tree patrolling approach, which consists of finding the Hamiltonian paths
to be used by robots. Based on the paths, task assignment follows and satisfies the time optimality.
Frequency-based multi-robot patrolling has been addressed in [103], where the visitation frequency was
optimised. On a cooperation basis, robots are assumed to have uncertain velocities, and move back
and forth along a polygon such that the assigned areas of movement overlap. In this case, robots visit
different areas which do not have fixed revisit deadlines.

Frequency-based patrolling has been applied in waste-cleaning and monitoring (see [104, 105]). Contin-
uous sweeping based on robots cooperation-has-been addressed-in.[106], where the sweeping frequency
was not necessarily uniform. The main focus here has been to-achieve the adaptive area partitioning of
a dynamic environment for assigning tasks to-robots. In [107], many targets are visited by many robots
with the goal of maximising uniform frequency (each target is covered in the same optimal frequency).

In [108], a UAVs coalition model has been suggested for a single target search and prosecute mission. The
model intends to minimise the target search time which is not feasible for assistance related visitations,
where the visitation (assistance) time needs to be maximised.

More transportation problems have been addressed in [109], but none of them has addressed the one
suggested here in this thesis, i.e, a periodic.visit of one site with a|fixed deadline.

4.1.2 Contribution and Outline. This chapter presents a persistent scheduling model to enable a
team of UAVs to visit a target, optimising a multi-objective UAV team’s mission. Two objectives are
considered: a) maximization of total time taken by all UAVs to arrive at the target and b) minimization
of the overdue time to visit the target subject to the revisit deadline and environmental constraints.

The contributions are two-fold. First, the problem of finding the optimal schedule to send different UAVs
(which have different properties) to visit one location in the network is mathematically formalised. Such
a schedule aims to minimize the missing of deadlines and to maximize the time between the first and
last visit (here, we need to use the team of UAVs to assist the target and this needs to be done as long
as possible). Second, the author is able to prove that the problem is NP hard, and hence it can be
addressed by proposing three heuristic solutions, which are compared using simulation. The effectiveness
of all three heuristics is proven to ensure the UAVs persistent and efficient visitations.

The remaining part of this chapter is organized as follows. Section 4.2 presents the cooperative data
muling model by sketching a deployment scenario, formalizing the problem and describing its parameters.
In Section 4.3, heuristic solutions to the problem are presented and explained. In Section 4.5, a simulation
is conducted to compare the heuristics, and an analysis is conducted to prove the persistent effectiveness
of these heuristics. Section 4.8 concludes the chapter.
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4.2 The Cooperative Data Muling Model

In this section, first a deployment scenario is presented and thereafter the visitation problem is described
together with its corresponding parameters. Finally, the problem is mathematically formulated as an
optimisation problem.

Figure 4.1: Visualisation of UAVs on action.

4.2.1 Deployment Scenario. Figure 4.1 depicts an application scenario in which the use of UAVs can be
synonymous to mobile sink nodes or to mobile resources-carriers. In such a scenario, a number of public
health persons carrying wearable body sensors-aretaskedto collect health, environmental, chemical, and
biological data in a region affected by epidemics such as-Ebola or Malaria. In the case where sensitive
data are discovered by the staff, their delivery to the control centre should be done urgently. Moreover,
an immediate physical assistance (e.g. physical rescuing) might be required in emergency situations. As
the number of UAVs and their available resources (such as battery energy) to assist at the destination
are assumed to be limited, the visiting (assistance) time has to be-maximized, under the constraint to
periodically arrive at the destination by the deadline. However, given the UAVs placement (with respect
to the target), the trajectories and the states of  UAVs, it might be'impossible to satisfy this condition.
This is why an optimal visitation schedule should be designed, to .minimize the overdue time to visit the
target and to maximize the duration of the assistance.

It is assumed that the UAVs are able to cope with the environment by adjusting their speed to keep their
flight time unchanged.

4.2.2 Problem Formulation. While moving, each UAV, say i, is assumed to travel at a speed v; in a
three dimensional space. There is a single place to be visited and each UAV i comes from its position
(i, yi, 2;) and travels in its own three dimensional trajectory expressed as R'(t) = (R;(t), Ri(t), Ri(t)),
where Ri(t), Ri(t) and RL(t) respectively represent the x, y, z position of the UAV i at time ¢.

UAVs may handle the collision avoidance themselves by changing their flying routes to different altitudes.
This is only done when they are on a collision course and are close enough to communicate with each
other.

We first use Z notation to specify the type of UAVs, target, visitation process, and the initial conditions.

The type U of UAVs.

The state of each UAV is denoted by Schema U and is determined by the position function of time R,
the time period t of its flight, its source s, its destination d and its precision factor alpha which expresses
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the environmental and physical properties of the UAV (it is assumed that each UAV knows about its
path and its own properties, otherwise o would be computed using machine learning techniques).

_ U
R:RT — R3
t: Rt
s,d :{(0,0,0),R(0)}
a: [0, 1]
s#d
t=0=d=1(0,0,0) As="R(0)

The source and the destination are always different, and initially (t=0), the destination is the origin
(assumed position of the target) and the source is the initial position of the UAV.

The type T of the target.

The target T is determined by its position p and its revisit deadline = (r is the time window between
any two visit).

T
p:R3
r:Rt - R
p =(0,0,0)
VieR"er(t) <r(0)

As shown in Schema T and without loss of generality, the position. of the target is the origin in R3, and
the maximum revisit deadline is the one at time t=0.

The visitation Visit.

The target visitation is done by one UAV at a time. Once the UAV reaches the destination, the revisit
deadline is reset to its initial value (maximal value). Keeping the same speed, the UAV reuses its former
trajectory to go back to its source. This is formally expressed by the Schema Visit.

—Visit[T]
AT.r
ul,u? U

ult > u?.t
ul.s =u?.d
ul.d =u?.s
ul/ R =u?R
T.r" = r(0)

Initial condition

Each UAV starts at its station (which is different from the target), and the revisit deadline is set to its
maximal value.
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—_Init[U,T]
w:PU
T7: T

Vue€ pou.d=(0,0,00Auv=0
r.r: {0} - R

The UAVs and their paths have different physical properties and hence have different values of a (here
« satisfies the condition 0 < a; <1 and expresses the precision depending on the environment and the
physical conditions of underlying UAV ).

Time modelling

Let t¢ be the departure time of the UAV i to the target and let ¢? be its arrival time. In this case, the
time ¢; taken by the UAV ¢ to arrive at the target is

t = t0 — ¢ (4.2.1)

The arrival time of the next UAV say j abides by the deadline r rule. This is done by allowing j to arrive
after r units of time after the UAV i has arrived. That is

i =1t + oy, (4.2.2)

It follows from Equations 4.2.1 and 4.2.2, that the departure time of the next UAV j is computed as
follows.
tjd =+ tl.d el G bl (4.2.3)

d

The equation 4.2.3 is only valid if o;jr 4- t; > t; and otherwise tjd =t since t{ is considered to be the

initial time for the UAV j.

Notice that given that an UAV U is to travel before U, at time t}l. The departure time of U, can be
deduced from ¢ but for this work the flight time of the next UAV is computed using the first order
Markov process. That is, the next travel time only depends on the previous one.

4.2.3 The Optimisation Problem. We assume a team U of UAVs and let I be the set of the first
# U indices. The problem consists of, for each UAV n, finding the departure time to the destination to
minimise the missing of the revisit deadline and to maximise the time between the first and last visit.
This consists of finding the bijection b : U + I to minimize the cost

#U
3 tr—aoqr 4+ D> [tE —to | — apr|u(tt —to |, — an,r)
Cy(T) = vie n=2 70 , (4.2.4)
RN

where, u is the unit step function, which is equal to one in the case where the arrival of the next UAV
is stale. That is

The numerator represents the total overdue time corresponding to the bijection (schedule), whereas the
denominator represents the corresponding total time to visit the target. The fraction % > 0 represents
the optimisation preference. That is
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< 1: Emphasis is placed on the total used time maximisation

[
R 2>

> 1: Emphasis is placed on minimising the missing of the deadline.

We aim to reduce the problem 4.2.3 to the Dynamic Assignment Problem (see Section 1.3.2), which is
an NP-hard problem (see [47]). Consider the list U of UAVs to be the resources, and the set I (with
#1 = #U) set of ordered indices which is considered to be the set of tasks. In this case given that the
UAV U; is assigned to the index k € I it will be the k* to depart to the destination.

Observe that the cost of making the (k + 1)™ depends on the (k)™ assignment (see Equations 4.2.3
and 4.2.4). The dynamism of the assignment cost qualifies the problem to be a case of the Dynamic

Assignment Problem, and the reduction is clearly linear. This makes us conclude that the problem 4.2.3
is NP-hard.

4.3 Heuristic solutions

In this section, three heuristic solutions are presented in the form of algorithms.

4.3.1 The First Deployment algorithm (FD). This algorithm consists of iteratively finding the next
best UAV to depart. The best UAV to depart is the-one which minimises the slack and overdue time to
arrive at the destination. Note here that-the overdue time:is-the-positive difference between the waiting
time of the destination and the revisit deadline, whereas the slack time has a negative value.

Selection of the first UAV to go
Input:

< A hash table whose list of keys'is U and contains the UAVs labels, where its list of values is T
and consists of the corresponding time to the target: (destination).

< The revisit deadline for the destination 7.

— The list a containing each UAV's accuracy.
Output:

< The UAV to go first.

Algorithm 4: First(U, T, r, «).
D:{TZ‘—T"OQ" T; € T}
if D, >0 Vie U then
‘ return 4, T; and a;, with D; = min{D}
end
else
| return i, T; and o, with D; = maz{z | z € D Az < 0}
end
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The algorithm starts by calculating the set D of the overdue (positive values) and slack (negative values)
times corresponding to the deadline 7. As shown in Algorithm 4 the first to go is obtained by selecting
the UAV which is closest to the revisit deadline.

Note that Line 2 shows that the time complexity for the the algorithm is is O(U), where U represent
the size of the set U.

The next deployments computing

Input:
U, T and r as explained in Algorithm 4
Output:

A set U; of UAVs and their departure time set 7).

Algorithm 5: Departurel(U, T',r).

u < First(U, T, r).i

ay < First(U, T, r).o;

ty < First(U, T, r).T;

The departure time of the first UAV t{ < 0

List of UAVs ordered in terms of departure time.--Ug <+ {u]
Initial departure time Ty < [t,]

Schema Init

U+ U\{u}

a+ U\ {a}

T+ T\{t}

while U # @ do
Ts«{|Ti—t,|, VT, € T}
u < First(U, Ts, r).1
ay < First(U, T, r).c
ty < First(U, T, r).T;
U<+ U\{u}
a+— U\{a,}
T« T\ {t.}
Append u in Uy
if r-a,+1t —t, >0 then
| =t +roant+t—t,
end
Append t{ in Ty
to=t,

end

Return Uy, Ty

The algorithm first computes the first UAV to travel, i.e. its identity u, its accuracy, a and its corre-
sponding time to the destination ¢, and its departure time is set to 0. U, and T are then updated by
appending u and t, respectively. At Line 6, Schema Init is used to initialise the system. The chosen UAV
is then removed from U, the corresponding accuracy gets removed from the list o and the corresponding
time is removed from T (Lines 7- 9). A set T of time differences to ¢, is computed. The update of U,
T, Uy and Ty is done until U gets empty. In each update case, if the deadline is not overdue, the flight
time is set to the time closest to the revisit deadline. Otherwise, the departure time of the current UAV
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is set to the preceding one (Lines 16 and 17). Furthermore, since the time complexity executing Lines
like Lines 13 or 14 is O(U) and this is computed on a loop of whose longest size is U, it is clear that
the time complexity of this algorithm is O(U?).

Algorithm 6: Departure2(U, T,r, «).

Make a dictionary D sorted with respect to the time each UAV takes to arrive at the destination
Let V' and K be the values and the keys for the dictionary, respectively.
Initialise the departure time of the first UAV at ¢} =0
Ddg, = 0.
for i € {1,2,3,...,| K |} do
if T'O('Ki—f-DKz_l _DK,; ZOthen
| Ddg, = Ddg,_, +7-a-K;+ Dk,_, — D,
end
else
\ Ddy, = Ddk,_,
end
end
Return Dd

4.3.2 The first to arrive, the first to go algorithm (FAFG). As shown in Algorithm 6, the flight
time of the first UAV is initialised to zero. The departure time-for each UAV is computed with respect
to its preceding UAV in the sorted dictionary D). Lines 6-and 7 show that in the case where waiting
can not cause the UAV to be late to arrive to the destination, it-has to wait for a maximum time. On
the other hand Line 9 shows that in the case where the waiting would cause the violation of the revisit
deadline policy, it has to depart at the same time as the preceding UAV. Note that the complexity of the
Algorithm 6 is O(U) since the size of k is the same as the total number of UAVs.

4.3.3 The closest to the expected arrival time of UAVs, the first to go (CFG). This algorithm
differs from Algorithm 6 only at Line 1. The order is done with/ respect to the difference between the
arrival time for each UAV and the average arrival time.
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4.4 Collision recovery

In this section, collision issues are addressed. It is assumed that collision points are known and that the
time for each corresponding UAV to arrive at that point is known.
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(b) A collision region.
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(a) Paths visualisations.

Figure 4.2: Collision.visualisation.

Figure 4.2a shows a view of the UAVs paths where possible collisions are indicated by circles. Figure
4.2b shows a zoom in of the collision region where, the time taken for travelling along sub-paths AO,
OB, CO and OD is the same as e.

Algorithm 7: Is_ Colliding(A,B).

I < all intersections of drone A and drone B
for i € I do
Compute Aty and Atg
if AtA + At — AtB 4+ B.t < e then
‘ Return True
end
end

Return False

Algorithm 7 is used to check whether two UAVs A and B can collide. It checks whether the time difference
to arrive at the collision point is less than or equal € and returns True in this case and False if otherwise.
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Section 4.4. Collision recovery

Algorithm 8: Collision aware Departurel(U, T,r).

u < First(U, T, r).i
ay < First(U, T, r).o;
ty < First(U, T, r).T;

The departure time of the first UAV ¢ + 0
List of UAVs ordered in terms of departure time. Uy < [u]

Initial departure time Ty < [t,]

List D of all UAVs delays which is initially consists of zero for each drone Schema Init

U<+ U\ {u}

a+ U\{a}

T+ T\{t}

while U # @ do

Found < True

while Found do

F « First(U, T, r).i
u<— F.i

for v € U; do

Found + False

break
end
end
end
a, — F.o
U<+ U\{u}
a<+ U\{a,}
T+ T\A{t.,}
Append u in Uy

end
Append t! in T}
tl — tu

end
Return Uy, Ty

if is_colliding(u,v) then

Du.index — Du.indem + €
Tu.indez — Tu.mdea: + €

if r- Ay, + tl — tu + Du.indez > 0 then
‘ tll:t11+r'au+t1_tu+pu.inde:c
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Algorithm 8 addresses the collision issue, by extending Algorithm 5. This algorithm is chosen to improve
collision prevention, since the discussed results shows that it outperforms other scheduling schemes.

The collision possibility is handled from Line 16 to 23 where, Algorithm 7 is called to check whether, for
a next UAV to depart, there is a possible collision. In the case where a collision is possible, the UAV gets
delayed for € units of time.

Note that it follows from the time complexity of Algorithm 1 and Lines 13 and 17 (whose time complexity
is O(U) each) that the time complexity of Algorithm 8 is O(U?).

4.5 Simulation and Analysis

In this section the three heuristics are compared using simulation which also reveals the accuracy effect.
Finally, the persistent efficiency is formally proven. In each simulation, 100 UAVs are considered where
the revisit deadline is set to 60 min (one hour). The time to be taken by each UAV to arrive at the
destination is randomly chosen in the interval [1,100], however for the collision handling based experiences
¢ = 100 min (delaying time for a colliding UAV). A case is considered where the violation of the revisit
deadline and the maximization of the visiting time have the same importance (that is 5 = ) The
simulation tool is Python. The three algorithms have been implemented, and run on an i5 computer
which runs on a 64 bits and processes at 3.30 GHZ.

4.5.1 Perfect system. In this subsection, a perfect systemis assumed where the accuracy of all UAVs
is 100% (a = 1). For each assignment the waiting time of the target being visited is recorded.

The three algorithms are evaluated and compared using the time elapsed when the destination is waiting
to be visited. The waiting time is plotted against its corresponding " deployment (i € Z), where the
best algorithm is the one whose corresponding curve is closest to the horizontal line passing through the
revisit deadline (y = 60).
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Figure 4.3: Algorithms comparison for perfect system.

Figure 4.3 compares the three algorithms. Firstly comparing CFG and FAFG, the graph shows that there
is a big gap between the two plots and the line y = 60; both algorithms have long overdue times but
the FAFG over due time is longer. For many of the deployments, the graphs are close to y = 0 which
shows that each of the UAVs does not wait long enough to meet the revisit deadline. The similarity of
the two graphs can be observed from the 66" deployment up to the last deployment.

Figure 4.3 shows that for the FD algorithm, there are only five cases where the deadline has been missed.
The maximum overdue time for FD is over 15 minutes whereas the total overdue time is 40 min. The
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curve is the closest to the line y = 60 compared to the two other algorithms and this shows a best
performance of the algorithm. This is because the choice in FD takes care of the revisit deadline whereas
the other algorithms do not.

4.5.2 Effect of the UAV’s accuracy («). The accuracy percentage of UAVs is assumed to be normally
distributed in the 100 UAVs, with mean m and standard deviation std. That is,

a - 100 ~ N (m, std).
Three cases are presented:

1. a-100 ~ N(60,5): this is a reference case where the accuracy is medium.

2. a-100 ~ N(90,5): this is the case where the average is increased while keeping the standard
deviation the same. Here, the accuracy of all UAVs is likely to be increased while the average of
their difference in accuracy remains unchanged.

3. a-100 ~ N(90,2): in this case, only the standard deviation changes. This corresponds to the
case where, the difference in accuracy is small whereas the expected accuracy for all is constantly

90%.

The three cases are presented in Figures 44, 4.5"and-4.6,-respectively.
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Figure 4.4: Comparison for the case where « - 100 ~ AN/ (60, 5).

In this case the accuracy is expected to be 60%, with a standard deviation of 5, Figure 4.4, shows that
the expected total waiting time per round for F'D is 40 min whereas for the other algorithms, it is close

to 3.
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Figure 4.5: Comparison for the case where - 100 ~» A/ (90, 5).

Figure 4.5 shows that the increase of the accuracy to 90% brings the results found in Figure 4.4 closer
(from below) to the best result, keeping the same order as before (see Figure 4.4). This is why the
number of deadline misses increases for all the algorithms.
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Figure 4.6: Comparison for the case where - 100 ~» A/ (90, 2).

Figure 4.6 shows that reducing the difference in UAVs accuracy (standard deviation) increases the chance
of having the waiting time less but close to 60 minutes, for all the three algorithms. For all the algorithms,
the number of deadline misses decreases because the majority of the cases correspond to stale visits, and
a reduction in standard deviation reduces the difference in waiting time range.

4.5.3 Analysis: persistence handling. The previous result is based on a single round (k" visitation
for each UAV). In this subsection, the persistent effectiveness of the three heuristics is proved.

The next visitation

The case where all UAVs need to visit a single destination using an optimal schedule has already been
considered. Given one round X;, the next round (X;. ) schedule can be determined by the last visitation
in X;, and the UAVs which have completed the return flight (the available ones), are the ones ready for
the next round assignment.
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4.5.4 Proposition. Conservation of the assignment order. Given a set UAVs ordered in terms of
ascending departure time, if the ordering is the output of one of the three algorithms, then for each
round, the optimal assignment order is conserved.

Proof IV-C.

Consider the set U = {uy, ug, ... ug, Ugy1, Ukt2, ..., Uy } of UAVs aligned on a timeline depending on the
time t; needed for flying to the target. Figure 4.7 shows this alignment and the letter r symbolises the
required target revisit deadline.

Target
| PN N — o
U1 uz - Uk T Uka Uk = Tyun

Figure 4.7: Ordered UAVs on a timeline.
There are the following three cases.

1. When the applied algorithm is FAFG. In this case the UAVs depart in the same order as shown
on the timeline (see Figure 4.7). Since for any two UAVs, the first to go is the one using the
smallest time to arrive at the destination,-the first-to return back and arrive at its initial position
will be the first to have left.

2. When the applied algorithm is FD. In this case the UAVs are ordered as in the list

Ul= {Wdt, 120 1, e, |@k29 1), un}-

It is necessary to show that, forany two UAVs u,; and u; in"the list U, the first to depart is always
the first to return to its initial position, and hence be available for the next round assignment Let
t;, < tj

o If t; < r, then u; is to fly'before u;. In"this case u, will arrive at the target after spending
the time ¢ > r after the visitation of ;. Since ¢; < r, it follows that ¢; < ¢ and hence u;
arrives at the target after the arrival of u; at its initial position, and thus w; is the first to be
available for the next round assignment.

e If t;, > r or t; > r, then v, is the first to depart. Since ¢; < ¢;, u; will be the one to
arrive back at its initial position first and hence the first to be available for the next round
assignment.

3. When the applied algorithm is CFG. The proposition can be proved in exactly the same way
where the time 7 (see Figure 4.7) is replaced by the average arrival time of all UAVs. That is

1 &

NOTE: Since the assignment order is conserved (see Proposition 4.5.4), and the flying time of all UAVs
is constant, the system can be monitored using a central unit. The total time spent by all UAVs in one
round 7' is considered to be the period of each UAV departure. So, in this case, the UAVs do not need to
organise themselves ignoring communication (given that either collision is not possible or that otherwise
the wireless communication is used for UAVs collision avoidance). The system only requires the initial
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set up, where each UAV, say 7 has its own trajectory, and knows its first flight time tZ. Its flight time in
the k™ round is inductively t? + (k — 1) T. Here, given the departure time of the first UAV to be ¢, the
flight time of the last UAV to be t? and the time spent by the last flight to be 2, ( the return time),
the total time is

T =t —t!+2t,.

4.6 Effect of the revisit deadline (r)

The distribution of the UAVs times to arrive distributed as is shown in Figure 4.8.
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Figure 4.8: UAVs arriving time.

Here the effect on the revisit deadline on waiting time is considered and the average delay corresponding to
deadlines is deduced. This has been done by changing the deadline values and recording the corresponding
delay. This course of action has been motivated by the fact that the deadline which corresponds to the
lowest delay could be computed.
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Figure 4.9: Waiting time and average delay.

Figure 4.9a shows the waiting time for every UAV deployment, for different values of the deadline. The
figure shows that the lower the deadline, the more missing deadlines happen. The figure shows that
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with a revisit deadline of 80 min, there is absolutely no deadline missing. This case corresponds to a
case where the first UAV to visit the target takes exactly 80 min to arrive, and the remaining UAVs take
different (from 80) or the same number of minutes to arrive at the target. With higher deadlines, the
figure shows only one missing deadline case. This corresponds to the case where the first UAVs time to
travel to the target is different from the value of the deadline and all remaining UAVs can take a shorter
(than the deadline) time to travel to the target.

Figure 4.9b shows the average delay of all UAVs per round. Here an n' round is completed when every
UAV has visited the target for the n' time. The figure shows that for deadlines less than 80min, the
delay is stochastically and quickly decreasing. For higher deadlines, the average delay increases slowly.
This is because for higher deadlines, the first UAVs will miss the deadline and the corresponding average
delay will be affected accordingly.

4.7 Delay comparison

In this section a general case is assumed where UAVs may nearly or precisely collide at a finite number
of points. It is assumed that these point can be computed and hence the probability of collision for
each UAV can be computed and is approximately same for all UAVs. The times distribution as shown in
Figure 4.8 is used here. For various probabilities, the average delay has been computed for the collision
aware algorithm (See Algorithm 8) and the collision free one (See Algorithm 5) (the one assuming that
the collision does not happen).

Figure 4.10 shows how the two versions of algorithms relate as the collision probability changes. Figure
4.10a shows that when the probability of colliding is small, the delay for both algorithms is almost
the same for every deadline. The next figures show that as the collision probability is increased, the
expected delays gets bigger for the collision aware algorithm. Figure 4.10i shows that with a high
collision probability, the difference in the delay for both algorithms is.not very big. On the other hand the
figures show that the collision aware algorithm is stochastically and expectedly higher than the collision
free algorithm.
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Figure 4:10: Load balancing.
4.8 Conclusion

In this chapter, a team of UAVs is monitored to persistently visit one fixed target taking into consideration
of the revisit deadline constraint. The problem has been mathematically expressed as a dynamic assign-
ment problem and hence proved to be intractable. Heuristics to solve the problem have been proposed
to minimize the cost corresponding to maximization of the total visiting time and minimizing the chance
of not meeting the deadline. Using simulation, the three heuristics have been compared. The persistent
effectiveness of the heuristics has been proven. The focus of this chapter has been on the management
of an airborne network of UAVs for public safety deployment scenarios. When endowed with sensor or
gateway devices, such a network of UAVs can be used as an airborne sensor network tasked to collect
environmental data and sensor readings from a ground-based sensor network. The management of the
resulting heterogeneous network of drones and ground-based sensor devices is a complex task that can
benefit from the redesign of the traffic engineering techniques proposed in [110, 111] for QoS support.



5. Multiple Target Coverage

Data muling using UAVs/drones is currently emerging as an alternative to the traditional traffic engi-
neering techniques used in wireless sensor networks, when wireless communication is not an option or
the least cost-efficient solution. This chapter revisits the issue of traffic engineering in Internet-of-Things
(loT) settings, to assess the relevance of using UAVs for the persistent collection of sensor readings
from the sensor nodes, which are located in a restricted environment and their delivery to base stations
where further processing is performed. Under consideration here is a persistent path planning and UAV
allocation model, where a team of UAVs coming from various base stations are used to collect data
from ground sensors and deliver the collected information to their closest base stations. This problem is
mathematically formalised and proven to be NP-hard. A heuristic solution for the problem is proposed
and its relative efficiency is evaluated through simulation.

5.1 Introduction

Unnamed Aerial Vehicles (UAVs) are emerging as a flexible and cheap alternative to traffic engineering
techniques which have been traditionally used in loT settings, to transport sensor readings from their
points of collection to their processing places. However, the joint path finding and resource allocation for
a team when tasked to achieve collaborative data muling-is:still an issue that require further investigations.
Furthermore, while accurate solutions to-data muling problems-are still scarce, especially when considering
the limited flying autonomy of the battery-powered-UAVs, issues related to the efficient task allocation
to a team of UAVs under stringent data collection requirements still need to be addressed.

Potential applications of the proposed model|include (i) city surveillance in order to evaluate risks and
respond with appropriate actions by having a team of UAVs persistently /permanently visiting locations
of interest in a smart city for public safety, (i) parking spots lfocalization [112] (iii) pollution monitoring
[113] ; (iv) drought mitigation to support-small,scale farming in rural areas[114, 115] by using a team of
UAVs to collect farmland image collection and processing these images to achieve situation recognition
for precision irrigation; (v) periodic surveillance of buildingsiand cities’ infrastructures for structural health
monitoring and maintenance; and (vi) the extension of the reach of community mesh networks in rural
settings for healthcare [116, 117] by using a team of UAVs (such as drones) as wireless access points.

Sensors visitation under the fuel consumption constraints has been addressed in [99], and the visitation
under the revisit deadline constraint has been proposed in [100]. Both studies assume a single moving
agent (UAV) which optimally visits various targets. [34] proposes a cooperative UAVs model where
many targets are visited by a team of UAVs for persistent surveillance and pursuit. In this study,
the UAVs do not communicate with each other but rather rely on the information from the static
underground sensors, which are optimally placed as proposed in [35]. However, none of these models
consider the persistent data delivery and heterogeneity of UAVs which might have different fabrics and
characteristics. Furthermore, neither the energy/battery consumption while the UAVs are waiting for the
updated information from the terrestrial sensor network, nor the penalty associated with stale information
due to late visitation by the UAV to the sensor nodes, have been accounted for. While models have been
proposed in [118, 119, 120, 121] for the periodic and persistent UAVs visitation of a single target from
different positions, the models do not consider the path planning issues, and this is required necessary
for restricted environments.

This chapter proposes a persistent path planning and task allocation model where, a team of UAVs coming
from various base stations are used to collect sensor readings from ground sensors and deliver the collected
information to their closest base stations. The underlying data muling problem is i) mathematically

80
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formalised as a constrained optimisation problem, ii) proven to be intractable and iii) solved using a
heuristic solution, whose relative efficiency is proven through simulation modelling.

The rest of this chapter is organised as follows. The cooperative data muling model is presented in
Section 5.2.2 and its algorithmic solution provided in the same section. Simulated results are provided
and discussed in Section 5.3 while the conclusion is drawn in Section 5.4.

5.2 The Cooperative Data Muling Model

In this chapter, an Internet-of-Things in Motion model depicted by Figure 5.1 is considered. It is assumed
that UAVs are assisted by special ground-based sensors which locally collect data from other sensors.
That is, sensors are grouped into separated clusters, each with its own sink node (the cluster head),
where the information is to be collected from other sensor nodes (cluster members) and relayed to UAVs
which deliver the sensor readings to base stations. Note that only cluster heads can communicate with
UAVs, and the optimal clustering scheme is not covered in this chapter. Furthermore, the inner cluster
communication technology is not covered here (it has been discussed in [81]).

5.2.1 System view. The system is shown in Figure 5.1.

(g
X

Base station

Figure 5.1: Cooperative Data Muling.

The cooperative data muling model considered in this chapter is illustrated by Figure 5.1, which reveals
three base stations (B;, By and Bs) from which UAVs take off to collect data from sinks located in
a region of interest. In this illustrative scenario, all possible collection paths which can be taken by
each UAV from the base stations to access data collected by sink nodes (1, 2, 3 and 4) and deliver the
collected data to the closest base stations, are represented by thick (orange) lines. Here, it is assumed
that UAVs are assisted by special nodes (cluster heads/sinks) to collect information to reduce the loss due
to UAVs constraints (fuelling, timing, etc.). Furthermore, it is assumed that the UAVs paths topology
is known (this means that all possible paths between nodes are known). The total energy required for
data collection at a node, say i, is a function F(r;,e;) of its revisit deadline r; (the time for which
the node has to be revisited) and the energy e; required to transfer data from node i to a UAV. The
travel cost from a base station B; to a sink i is translated in an energy metric denoted by Ej;, and the
transportation cost between two sinks 7 and % is also translated into an energy metric denoted by e;;.

5.2.2 The Data Muling Problem. In this subsection, the problem is modelled as a constrained
optimisation problem. Firstly all cost related terms are defined and later, these are combined to form a
cost function.
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UAVs waiting time on sink nodes

Let ¢; be actual time spent by an UAV to arrive at the sink 7 from a base station and r; be the expected
time for the UAV to arrive at the sink 7. This is also referred to as revisit time at collection point 4.
The sink visit assumptions may be expressed in terms of penalties/costs for early/late visits to the sink
nodes, the collection of information and a risk associated with the autonomy of the UAVs. These costs
are described as follows

e Early visit penalty: An early visit penalty will be assigned to an UAV if #; < r; to express the
case where the visiting UAV arrives earlier than expected. In this case, the UAV will wait for a
period of time w; = 7; — t; needed by the sink node to capture information from the field and
transmit it to the waiting UAV.

e Late visit penalty: A late visit penalty will be applied to the UAV if ¢; > r; to express the fact
that the visiting UAV is late by a period of time [; = t; — r; that has been wasted by the UAV
to arriving late at a collection point where data was ready for collection.This penalty can also be
expressed using a piece-wise function.

e Data collection cost: A data collection cost will be applied to any UAV to account for the fact
that the UAV has to use the energy e; to collect information from the visited node i. Note that
while the costs w; and [; depend on how the terrestrial and airborne sink networks have been
traffic engineered, the data collection cost e;-may-depend on different engineering parameters and
functions which may be bound to the communication interfaces of the equipment used by both
the ground sink nodes and the UAVs and-the protocol used for such communication.

For each UAV, the total cost F'(r,e;) of visiting the sink i, without taking into account the travelling

cost is expressed by
F(r,e) = awu(w;) + Bliu(ly) + e, (5.2.1)

where u(w;) and u(l;) are the values of a.unit step function applied to w; and [;respectively. The
coefficients «, 3, and ~ are associated with the importance/weighting allocated to the early and late
arrival penalties and the data transfer penalty respectively.

The assumed network

Under consideration here is a hybrid sensor network represented by a bidirected graph G = (S, N, L, B, P),
where S is the set of all sensor nodes, N/ C S is the set of all sinks, £ is the set of wireless communica-
tion links between the sensor nodes, B is the set of UAV base stations while P is the set links showing
possible moves of UAVs. Here, a move expresses one of two kinds of connection:

e Base station-sink : These are bidirectional paths connecting sink and base stations. The cost of
moving from a base station b to a sink 7 is denoted by Fj; and its opposite is Ej,, with E;, = Fy;

e sink-sink : These are the paths connecting sinks and the cost to move from one sink 4 to j is
denoted by ¢e;;, with ¢;; = e
Initial condition

e Each UAV is assumed to start its journey from a base station, where it can make the first visit
without colliding with another UAV at the same sink node.
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e The waiting times at the base stations are assumed to be zero. Thatis [, = w; = 0,Vi,5 € §

Here, it is assumed that the maximum number of UAVs at each base station is equal to the de-
gree/capacity of the base station.

The data muling modelling

The data muling is performed in two steps

e Data collection. During data collection, an UAV is to move from a Base station a to collect data
from k sinks labelled by a set of indices p* = [1,2,..., k] . In this case, t the path used for data
collection is represented by p = [a, 1,2, ..., k] . The energy required for this step is expressed by

Clp)=Ea+ Y Flrie)+ Y e (5.2.2)

iep” 1,jEP*Nj=i+1

e Data delivery. During data delivery, an UAV may pass by some already visited sink to deliver
information to its closest base station b. In this case, the corresponding energy is expressed as

E(p).

Therefore, the total energy required for data collection and delivery is given by the equation

Clp)+E(p)=Bu+ Yy Fre)+ [ S (ey)+ Ep) (5.2.3)

Ep* LyEP*Nj=1+1

The data muling problem consists of finding an optimal path for ‘each UAV so that the total energy
expended by all the UAVs to collect and. deliver the sensor. readings/data without colliding is minimized.
Mathematically, the set of UAVs is represented by U = {1,2,3,...m}, where each UAV say u departing
from base station a, will follow pathp, to collect data.at locations of interest and another path (maybe
different from p, ) to deliver the data to its closet base station. Considering 1,, the first sink to be visited
by the UAV u. The data muling problem is formulated as follows.
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min 7 = Z(Eaulu + Z F(r,e)+ Z (e;) + E(pu)>, (5.2.4)
u=1

1Epy 1,JEDy
j=it1
Subject to,

Vv,we U,p,Np, =2 =d(p;) Nd(p,) (5.2.4a)
Up=5 (5.2.4b)
uelU

€, €y, E(p)a T, Eaulu > O,Vi,j,p, Qs 1u (524C)

The first constraint (Equation 5.2.4a) states that any two collection or delivery paths have no sink in
common. This guarantees collision avoidance for the UAVs. On the other hand, the second constraint
(Equation 5.2.4b) expresses the fact that all sinks are to be visited. The last constraint (Equation 5.2.4c)
shows that all variables are positively valued.

5.2.3 Constrained visitation. Consider Equation 5.2.1. In given scenarios, the variables have got very
strict conditions and instead of being part of the cost function, they need to be part of the problem
constraint. Table 5.1 shows all possible models. Here-a.” 1" shows the case where a corresponding
variable is restricted (part of the constraints)-and-a." 0" shows where it is not.

Table 5.1: Data collection scenarios.

Waiting penalty (w;) Late penalty (I;) Explanation
0 0 None of the two variables is bounded
0 I Only-the late penalty is bounded
1 0 Only. the waiting penalty is bounded
1 1 Both variables are bounded

The optimisation problem becomes changed by its constraints so as to become as follows.

min 7 = Z(Eaulu + Z F(r,e)+ Z (e;) + E(pu)), (5.2.5)
u=1

1€p 1,j€EP.
Jj=i+1
Subject to,

Vo,we U,p, Np, =@ =d(p;) N d(p,) (5.2.5a)
Up=5 (5.2.5b)
uelU

€5 Cijs E(p)a T, Eau,lu > 07Vi».j7p7 Ay ]-u (525(:)
0<w < W, (5.2.5d)
0<l <L (5.2.5¢)

where W; and L; are the predetermined thresholds which may take any non negative value.
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5.2.4 Related problems and solutions. The data muling problem considered in this chapter is closely
related to the file recovery problem in [122] (NP-hard problem) solved by curving techniques, including
those using the Parallel Unique Path (PUP) algorithm. This problem considers a case of many fragmented
files which need to be reassembled, starting from their headers, which are assumed to be known initially.
The PUP algorithm is a variation of Dijkstra's routing algorithm[52] where starting from the headers,
clusters are successively added based on their best matches.

This is done with the aim of building paths from headers having a cluster added to an existing path if and
only if the link to it has the least weight. On the other hand the Vehicle Routing Problem (VRP)[49, 54]
consistis of finding the optimal road from a depot, to be taken for delivering resources to customers and
coming back to the depot. Exact and heuristic algorithms for its solution have been surveyed in[49]. In
the survey, all stated algorithms assume a single distance matrix (the cost matrix) and hence could fail
to be a good fit for the current persistent visitation scenario since in this case the weighting of nodes
matters and does not take a fixed value. Furthermore, for the VRP, vehicles end their trips at the depots
where they started from. This would limit the number of topologies where the data muling problem is
solvable and also could impose a data muling scheme which is not necessarily optimal. Note that in the
current case, it is important that late and stale visitations are taken care of, and this depends on the
dynamic position of UAVs (see the Equation 5.2.1). Furthermore, UAVs deliver the collected information
to optimal base stations (which are not necessarily their starting points).

5.2.5 The data muling problem intractability. To prove its intractability, a polynomial reduction of
one-depot VRP is provided (which is known to be an-NP-hard problem), into a special case of the data
muling problem: the case where each.sinks-weight is zero.-The-transformation consists of a two-step
process which transforms the graph G as follows:

a. Group all Base stations in S in one cluster/group and consider this cluster/group as a special node
for the graph, this gives the VRP's topology G’ = (S, N, L, B, P), where #5' = 1.

b. For every link of G’, make the link-weight in the new graph (found in a.) the inverse of the weight
in the Graph G'.

This will reduce the VRP's into the data muling problem’s solution.

Clearly, the time complexity of the transformation process is polynomial since Step a has a complexity
O(#S) and Step b has complexity O(#R). The time complexity for the whole graph transforma-
tion/reduction process is therefore O(# R) + O(#S), which is polynomial. This shows that the problem
of interest in this chapter is NP-hard an hence a heuristic solution is important.

5.2.6 The Data Muling Algorithm. In this chapter, Dijkstras algorithm is adapted, in the same way as
it is done in [122], to solve the data muling problem. While many rounds are considered by this authors
algorithm, only the case where each node is visited only once per round is considered. It is assumed that
each UAV is capable of collecting and delivering data to a base station where it can be recharged, before
going for another data collection round.

Algorithm 5.2.10 has two major steps: the first step consists of using Equation 5.2.2 to select the best
node to visit for every UAV (Step 6-7); the second step consists of adjusting the UAV's paths by choosing
the cheapest UAV for every best node (Step 8-23). Once the visitation is done, the collection paths are
captured in Cpaths and the two steps are repeated to select the nearest base station for every UAV data
delivery following the delivery paths recorded by Dpaths.

5.2.7 Proposition (Polynomial termination). Algorithm 5.2.10 terminates in polynomial time, when
all sink nodes have been visited.
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Algorithm 9: Cooperative algorithm.

1 Assume a network G(N,L,B,P) as specified in Section 5.2.2;
2 Choices + all sink to be visited ;

3 Initialise the path to the initial hosting base stations;

4 done < choices U B;

5 while choices # & do

6 for u € U do

7 ‘ Select the next destination of least cost, using Equation 5.2.2 ;
8 end

9 Assign = O,

10 for u € U do

11 Let ¢ be the choice of u;

12 for v € U\ Assign do

13 if u and v selected the same choice ¢ then
14 Include ¢ in the path of a UAV of least cost (5.2.2);
15 Include the UAV in Assign;
16 Include the ¢ in done;

17 Choices <— Choices \ {c};

18 Break;

19 end

20 end

21 if ¢ € Choices then

22 Include ¢ in the path of u;

23 Include the ¢ in done;

24 Choices < Choices \ {c};

25 Include u in Assign;

26 Break;

27 end

28 end

29 if Choices = @ or #done = # U then
30 Choices < B;

31 done <— O;

32 B+ @;

33 if #done # # U then

34 ‘ Cpaths < all UAVs' paths;

35 end

36 end

37 Dpaths < all current UAVs' paths ;
38 Return Cpaths and Dpaths

5.2.8 proof. Note that each time a sink is included in a path of one of the UAVs, it gets excluded
from the list choice (Lines 16 and 21). Since all UAVs paths consist of a connected graph, whenever
choice # &, there is at least one UAV which makes a new selection of a next sink to visit on Line 6. So
all sinks are visited.

Once choice = &, the next destinations become the base stations and the set done = @ (Lines 25
and 26 consecutively). The next step is to make #done = # U true by assigning to every UAV a base
station. In this case the statement at Line 24 is true and the set choice = B which had been updated
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to @. This makes Algorithm 5.2.10 stop.
On the other hand, the time complexity of the algorithm is clearly O((# U)?) which is a polynomial.

Hence the result follows.

5.2.9 Remark (Persistent visitation model). Since each UAV's computed path is ended at a base
station and the UAV paths form a static network, Algorithm 5.2.10 can be used repeatedly to make a
persistent visitation.

5.2.10 Algorithm. In this chapter, Dijkstra's algorithm [52] is adopted, in the same ways as it is done
in [122], to solve the problem described in Subsection 5.2.4 The algorithm runs in rounds. The case
under consideration is where each node is visited only once per round.

1. For each UAV, select the best (cheapest) sensors to visit. Here, the cost to visit one node is the
travelling cost plus the weight of the node.

2. For all selections, choose the cheapest one, make it the current assignment and remove the chosen
sensor from the selectable ones.

3. Repeat Step 2 until no more choice is available (all sensor nodes have been selected).
4. For each UAV position assign the best basestation.. That is the base station to which, the travel

cost/distance is least.

5.2.11 lllustration of the algorithm. The algorithm in Subsection 5.2.10 is illustrated using an exam-
ple. One round of the algorithm is run step by step. In this example, consider the case were the sensor
node's weight is constant. That is, & = 5 = 0 (see the constants in Equation 5.2.1).

Bs: _EISS
®) TN
<N, an 8 1
35
o
4.5
ay

Figure 5.2: Initial step.

Figure 5.2 shows the initial conditions of the system. The system has four sensors, four base stations
and three UAVs positioned at all of them except Base station Bs;. The links and sensors are weighted.
Let uy, u3, and uy be the names of UAVs staying at Base Stations Bsy, Bss, and Bs,, respectively.
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Figure 5.3: The best neighbour choice.

Figure 5.3 reveals how the UAVs make choices for their first moves. The best choice is the one corre-
sponding to the cheapest move, which is evaluated using the weight of the road to be used together
with the delay at the sensor to be visited. This is why UAVs u,, ug and us move to Sensors 4, 1 and 3,
respectively. At this stage, only node 5 is the only-node yet to be visited.

__ Bss
oy

2.5

Bss

Figure 5.4: Delivery.

Figure 5.4 shows the next moves up to the end of the algorithm. It shows that UAV u, moves to Sensor
5, because it is the one corresponding to the cheapest move. On the other hand, the other UAVs do not
have any other choice of sensor to visit. They then need to visit their closest base station. Once UAV
uy arrives at Node 5, it visits the closest base station which is Bs;.

5.3 Experimental results

Python was used to run Algorithm 5.2.10 on two more complex networks (Figure 5.5). The performance
of the algorithm is studied and the behaviours of considered parameters are investigated. The first
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network (5.5a) consists of five base stations: B;, By, Bs, By and Bj, as shown by bigger nodes in Figure
5.5a. In the figure, smaller nodes represent the sinks to be visited and the links in the network show
the possible paths, the UAVs may take to visit the targets. Note here that the sink’s network (network
without base stations) is a complete graph (each UAV is able to move from one sink to any other one
in the network, but not to any base station) where nodes are randomly deployed on a 1km? area.

On the other hand, a real network is considered (Figure 5.5b) consisting of the Cape Town complete
network whose nodes are police stations and their Cartesian coordinates have been extracted from GPS
positions. The names corresponding to each node label are described in Chapter 2 (see Figure 2.9).
Note here that in these experiments the considered UAVs are drones.
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(a) Random network. (b) Real network.

Figure 5.5: Considered networks.

As shown in Figure 5.5a, the considered network' consists of nodes randomly placed in an area of size
1km? and sink are labelled in terms of the energy required to collect information from them. The
coordinates of nodes in both networks are'in ‘metres and could be seen or approximated using Figure 5.5.
Positions (of sinks or base stations) are expressed in terms of X and Y coordinates and hence, they are
presented in the 2D Cartesian coordinate system.
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Figure 5.6: Paths generation when the UAVs have the same speeds.

5.3.1 Impact of speed distribution on path planning. The paths taken by UAVs using Algorithm
5.2.10 are presented in two steps.



Section 5.3. Experimental results Page 90

Stepl. Data collection: it consists of visiting all sinks using the first three steps of Algorithm 5.2.10.
The corresponding path for each UAV is shown in Figures 5.6a, 5.7a and 5.8.

Step2. Data delivery: it consists of visiting a base station using the last step of the same algorithm.
The results are shown in Tables, 5.2, 5.3 and 5.4, where the speed distribution of drones is also
presented.

The cost function parameters are set to a« = 3 =0.5 and v = 1.

Figures 5.6a and 5.23e reveal that UAVs do not visit the same number of sinks. For example in Figure
5.6a, Dronel, Drone2, Drone3 and Drone4 visit 7, 10, 6 and 7 sinks, respectively.

UAV name  Speed(m/min)  Source Returning path UAV name  Speed(m/min)  Source Returning path
Dronel 500 Bl [27, 6, B2] Dronel 500 BI [46,41, B4]
Drone2 500 B2 [29, 12, B4] Drone2 500 B2 [45, 11, B5]
Drone3 500 B3 [28, 7, B1] Drone3 500 B3 [44, B2]
Drone4 500 B4 [23, 8, B1] Drone4 500 B4 [47, 12, B4]

(a) Random network. (b) Real network.

Table 5.2: Data delivery when all drones have the same speed.

Table 5.2 shows that when the speeds are the same, the delivery requires some UAVs to pass by some of
the visited nodes to arrive at the base stations. This is because all sinks do not need to be connected at
a base station. The table also shows that.in-the-case-of-a-random network, Drone3 and Drone4 deliver
the collected data at the same base station (Bi), and for the real network Dronel and Drone4 deliver
the data to B4.
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Figure 5.7: Paths generation when the UAVs have the different speeds.

Figure 5.7a shows that when the speeds are different, some UAVs may change their paths but others
may not. For example Drone4 did not change its path between Figures 5.6a and 5.7a, whereas all the
other drones did. On the other hand Figure 5.7b shows that for the real network, all drones kept their
paths the same.
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UAV name  Speed(m/min)  Source Returning path UAV name  Speed(m/min)  Source Returning path
Dronel 800 B1 [29, 12, B4] Dronel 800 B1 (46,41, B4]
Drone2 700 B2 [28, 7, B1] Drone2 700 B2 [45, 11, B5]
Drone3 600 B3 [27, 6, B2] Drone3 600 B3 [44, B2
Drone4 500 B4 [23, 8, B1] Drone4 500 B4 [47, 12, B4]

(a) Random network. (b) Real network.

Table 5.3: Data delivery when all drones have different speeds.

Table 5.3 shows that when the drone speeds are different, the delivery also requires some UAVs to pass
by some of the already visited nodes, in order to arrive at a closest base stations. Table 5.3a shows that
Drone2 and Drone4 deliver the collected data at the same base station (B;), and Table 5.3b shows that
Dronel and Drone4 deliver the collected data at the same base station (B,).
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Figure 5.8: Paths:generation when speeds distribution is changed.

It is shown in Figure 5.8, that the distribution of the UAVs speeds, have an impact on paths generation.
For example Figure 5.8a shows that Dronel,: Drone2, Drone3 and Drone4 visit 1, 9, 2 and 18 sinks,
respectively. This shows a big difference due to the fact that the choice of target base stations depends
on the current and not the previous visitation costs, together with the change of UAVs speed distribution.

UAV name | speed (m/min) | Source | Returning path UAV name Speed(m/min)  Source Returning path
Dronel 500 BI [8, 6, B2 Dronel 500 B1 [46,41, B4]
Drone2 600 B2 [26, 12, B4] Drone2 600 B2 [43, B3]
Drone3 700 B3 [5, 16, B3] Drone3 700 B3 [45, 11, B5]
Drone4 800 B4 [29, 15, B4] Drone4 800 B4 [47, 12, B4]

(a) Random network. (b) Real network.

Table 5.4: Data delivery when speed distribution changes.

Table 5.4 shows that when the speeds are differently distributed, the paths are changed and thus the
delivery paths also change. Table 5.4a shows that for the random network, Drone2 and Drone4 deliver
the collected data at the same base station (B,); and for the real network, Table 5.4b shows that Dronel
and Drone4 deliver the collected data at the same base station (By)

For the real network, it is clear that paths did not change. This is caused by the fact that nodes are
separated by a long distance and this makes very expensive for UAVs to have alternative options. Since
the path generation for both networks essentially behave in the same way, only the random network is
considered for the next analysis.
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5.3.2 Impact of the speed distribution on the cost (total energy). The impact of the speed on
the overall cost, over many runs of the algorithm is now considered. 20 runs of the Algorithm 5.2.10 are
performed in three cases of speed distribution as shown in the second columns, on Tables 5.2, 5.3 and
54,

Same speed case

Figure 5.9 shows a case where all UAVs have a speed of 500m /min.
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Figure 5.9: Cost at same speed.

Figure 5.9 reveals that the cost for each drone takes three or four of several fixed values. Drone4
takes four values and all the others take three and alternate with each other to take the minimum and
maximum values. The average cost is constant after 3 runs and close to 560.

Different speed case

Figure 5.10 corresponds to the case where UAVs have different speed as shown in Table 5.3.



Section 5.3. Experimental results Page 93

700

600 |-

500 L o EEEESESESSS S S S S S S S EE RS SRS EE RN

=—a Dronel
e—e Drone2
= Drone3
200 Drone4d E

Cost

300+

== Ayerage

100

4] EI: 1ID 1|5 20
Number of runs

Figure 5.10: Cost at different UAVs' speeds.

Figure 5.10 shows that after the first-four runs, all UAVshave constant costs where the average cost is
close to 500.

Effect of speed distribution change
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Figure 5.11: Cost related to a different speed distribution.

Figure 5.11 shows that the change in speed distribution may change the average cost and also the trends
of the cost function. In this case, the amended speed distribution corresponds to the one in Table 5.4,
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and shows that for each UAV, the cost changes periodically and can only take one of a few fixed values.
This is why the average cost also takes one of the fixed values on a periodic basis.

5.3.3 Effect of parameters variation. In this subsection, the effect of four parameters on the cost
variation as the number of runs varies is studied. The four considered parameters are described as follows.

e Speed value: while keeping the speed the same for all UAVs, the impact of the speed of all drones
on the coverage cost is studied.

e Overdue time (a): the impact of overdue time on the cost is looked at. Great attention is placed
on this time by incrementing the corresponding coefficient (penalty) by 0.05, for each new run.

e Delay (/3): While all the other parameters are constant, The parameter corresponding to the delay
penalty is varied in order to study how it changes the value of the coverage cost.

e Data collection rate (7): Data collection rate is incremented by 0.05 for its value v = 1, over
20 runs of the algorithm.
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Figure 5.12: Variation of the cost with respect to the speed.

Figure 5.12 shows a case where the speed has been incremented 20 times for all UAVs. It shows that
from the first run, each UAV periodically changes its cost between two cost values. Drone4 corresponds
to the highest cost while notably Drone3 corresponds exactly to the average cost.
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Figure 5.13: Variation of the cost with respect to the overdue time («).

Figure 5.15 shows the impact of parameter () is:incremented by 0.5, at each of 20 consecutive runs. The
value of the cost corresponding to each-UAV-is stochastic,-and-the average is stochastically decreasing.
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Figure 5.14: Variation of the cost with respect to the delay (3).

The next case to consider is where the latency delay (3 is the one to change as in Figure 5.23c. The
figure shows stochastic values as well but however the average cost is mostly increasing.
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Figure 5.15: Variation of the cost with respect to the data collection rate.

Figure 5.15 shows the impact of varying the data collection rate y on the variation of the cost over
20 runs. It shows that Drone4 mostly corresponds to the highest cost, and once 7 > 3.8, Drone4
and Drone2 are constantly increasing their respective costs, whereas the costs of the other drones are
periodically increasing and decreasing.

5.3.4 Prioritisation analysis. In this subsection, the effect of the delay and overdue constraints is
discussed. The network used is as shown in Figure 5.5a where the UAVs dronel, drone2 and drone3
are initially positioned at the Base Stations! B1,B2 and B3, respectively; and all the UAVs are assumed
to have the same speed v=800 m/min.

Effect of delay constraints on path design

Figure 5.16 and Table 5.5 represent the case where, each sensor node is visited when the arrival of a
drone is delayed by no more than 30min.

UAV name | speed (m/min) | Source | Returning path
Dronel 800 Bl [12, B4]
Drone2 800 B2 [14, 13, B3]
Drone3 800 B3 [16, B3]

Table 5.5: Data delivery when UAVs may be delayed by no more than 30 min.

Table 5.5 shows that Dronel delivers to Base Station B4 via node 12, Drone2 to Base Station B3 via
node 14 and then 13 and Drone3 to Base station B3 via node 16.
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Figure 5.16: Paths details (waiting=30).

Figure 5.16 shows that 14 sensor nodes could not be visited (see red hexagon shaped nodes). The UAV
drone3 visited most of the nodes, while the other UAVs could visit only 3 sensors each.

Table 5.6 shows the data delivery paths when UAVs.may be delayed by no more than 60 min, and Figure
5.17 shows the data collection path with-this setting:

Table 5.6: Data delivery when UAVs may be late for no more than 60 min.

UAV name

speed (m/min)

Source

Returning path

Dronel
Drone2
Drone3

800
800
800

Bl
B2
B3

[17, B4]
[21, 13, B3]
[22, 19, B5]

By changing the lateness threshold to 60 min, Table 5.6 ‘shows that that the delivery paths changed,
and the delivery is done as the last column of the table shows.
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Figure 5.17: Paths details (waiting=60).
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Comparing with Figure 5.16, Figure 5.17 reveals that drone3 does not change its path, but the other
UAVs extend their paths to two more sensors nodes each. This results in only 10 sensor nodes being
missed.

Table 5.7 and Figure 5.18 show the data delivery and collection paths respectively, when UAVs may be
delayed for a very long time. Comparing this case with the previous two cases, Table 5.7 shows that the

Table 5.7: Data delivery when UAVs may be late indefinitely.

UAV name | speed (m/min) | Source | Returning path
Dronel 800 B1 [28, 7, B1]
Drone2 800 B2 | [26, 12, B4]
Drone3 800 B3 | [29, 15, B4]

delivery paths once again changed.
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Figure'5.18: Paths details (waiting=00).

Figure 5.18 shows that all nodes are visited and the path of each drone have been extended, to cover
more nodes.
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Figure 5.19: Number of unvisited nodes.
Figure 5.19 reveals the changes in the number of missed nodes as a function of the delay threshold. The
figure shows that as the delay threshold increases, the number of unvisited nodes remains constant or

decreases, until it converges to zero. This shows that, allowing a longer delay increases the chance of all
nodes being visited.

Effect of overdue constraints on path design

In this section, the effect of the waiting constraints are studied. Here, sensors can only be visited after
some fixed time, called the waiting threshold.
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Figure 5.20: Visitation constrained by the waiting time.

Figure 5.20 shows how paths corresponding to. different thresholds are generated. Figure 5.20a considers
the case where there is no waiting limitation (waiting time is zero) and clearly all sensors are visited.
When the waiting time is set to 0.3 minutes (18 seconds) Figure 5.20b shows that three nodes are not
visited and the UAV drone3 could not visit any sensor. Setting the waiting threshold to 0.5 min, only
UAV dronel could visit and 5 sensors were missed. Setting the waiting time to 0.7 min, no nodes could
be visited. This is because it takes a specific time for UAVs to travel between sensors which depends on
the distance and speed. If the distance is small and the UAV can arrive earlier than the waiting threshold,
the visitation is impossible.

Table 5.8, shows deliveries corresponding to visitations shown in Figure 5.20. Note that if a UAV does
not visit any sensor, it remains to its initial position.

Figure 5.21 shows the number of missed sensors as the overdue threshold is increased.
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(a) Data delivery when th

(b) Data delivery when the waiting threshold is 0.3
e waiting threshold is 0 min. min.

UAV name | speed (m/min) | Source | Returning path
UAV name | speed (m/min) | Source | Returning path Dronel 800 Bl 29, 12, B4]
Drone2 800 B2 [28, 7, B1]
Dronel 800 B1 [28, 7, B1] D 3 800 B3 B3
Drone2 800 B2 [26, 12, B4] rone (B3]
Drone3 800 B3 [29, 15, B4]

UAV name | speed (m/min) | Source | Returning path UAV name | speed (m/min) | Source | Returning path
Dronel 800 B1 [29, 12, B4] Dronel 800 Bl [BI1]
Drone2 800 B2 [ B2] Drone2 800 B2 [ B2]
Drone3 800 B3 [ B3] Drone3 800 B3 [ B3]

(c) Data delivery when the waiting threshold is 0.5 (d) Data delivery when the waiting threshold is 0.7

min. min.

Table 5.8: Restricted data delivery.
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Figure 5.21: Number of unvisited nodes.

Figure 5.21 reveals that the number of missed nodes increases: as the waiting threshold increases and
converges to the total number of sensors.

Persistent visitation analysis

In this subsection, the trend of paths while UAVs persistently visit sensors is studied. Persistent visitation
is done by re-setting the initial base stations for the next visit, to the destination of the previous visitation.



Section 5.3. Experimental results Page 102

[ dronel [ dronel

I drone2 I drone2

1000 4 1000 4

800 1

800 4

600 600 4

Y axis
Y axis

200 4 200 4

T T T T T T T T T T
400 600 800 1000 0 200 400 600 800 1000

o
N
S 4
o

X axis X axis
(a) First visitation. (b) Second visitation.
[ dronel [ dronel
I drone2 I drone2

mw drone3 mw drone3

1000 4 1000 4

800 - 800 -

600 - 600 -

Y axis
Y axis

200 200

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
X axis X axis

(c) Third visitation. (d) Fourth visitation.

Figure 5.22: Consecutive visitations.

Figure 5.22 shows four consecutive wvisitations and-.deliveries, when the waiting threshold is set to 12
seconds. Figure 5.22a shows that only node 3 has not been visited. Figure 5.22b shows that a new node
(node 15) has not been visited and all visitation paths changes. Figure 5.22c shows that paths keep on
changing and unvisited node remains the same as in the previous visitation.

Note that Figure 5.22d is exactly the same as Figure 5.22c. This shows that all next paths will be the
same as Figure 5.22c and hence paths generation may converge to specific paths. This is a special case
where the initial positions of the UAVs become the same as their optimal destinations.

Constraint free visitations is now considered and the study of the pattern of generated paths is done.
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Figure 5.23: Unconstrained visitations.

Figure 5.23 shows the first 6 consecutive unconstrained visitations. Paths change and from the third
visitation, paths generation becomes periodic: third visitation is the same as the fifth, and the fourth
visitation is the same as the sixth. This shows that after each subsequent pair of visitations the paths
generation remains the same. This shows that from each base station, each UAV has a single optimal
destination.

http://etd.uwc.ac.za/
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5.4 Conclusion

In this chapter, a model for data muling, concentrating on the minimization of revisit costs, for a team
of UAVs, has been provided. A mathematical formulation of the model was presented and the undelying
problem shown to be NP-hard. A heuristic solution to the problem was thus provided and its performance
evaluated through simulation experiments.

Simulation results have revealed a variety of path distribution patterns under different experimental set-
tings and the impact of these settings on path length fairness and related energy costs. Furthermore, these
simulations show how consecutive generations become periodic after a small number of first visitations.
While this chapter has presented the basis of a data muling model aiming at supplementing traditional
traffic engineering techniques used in sink networks, several network and traffic aspects related to the
proposed data muling model still need to be investigated. These include the design of efficient commu-
nication models that consider the outdoor characteristics of drone-to-sink communication as suggested
in [123]. Taking advantage of the emerging white space frequency bands as discussed in [124] to achieve
drone-to-sink and drone-to-drone communication is another direction for further work. Furthermore the
energy efficiency model needs to be studied to allow the prioritization of less used sensors.



6. Conclusion and future work

6.1 Conclusion

In this thesis, models of hybrid (ground/airborne) networks consisting of a team of UAVs and a ground
sensor network have been proposed for the purpose of data muling. This proposed system focuses on
four major perspectives, namely: topology optimization and engineering as it relates to single UAVs
with multiple targets; topology and traffic optimization for multiple UAVs with single target; scheduling
and task allocation for multiple UAVs with single targets and data mulling using multiple UAVs across
multiple targers. Models were formulated and analysed for each component. The inter-play between
each aspect was addresed to build the system.

A clustering scheme that allows data gathering from select ground sensors (gateways) as proposed. This
clustering scheme allowed efficient collection using UAVs as the UAVs only had to visit a small number
of sensors to retrieve data. This clustering problem was mathematically defined and has been solved in
three main steps.

The popular K-means clustering algorithm was reviewed and found to be best suited for uniformly
distributed dense networks. Though a variant exists that optimizes the number of K clusters. These
approaches are however not suitable for general networks as a number of nodes were often left out.
This work therefore proposed a clustering.scheme for-general-networks which ensures connectivity of all
cluster members to corresponding cluster heads. The proposed clustering technique was applied to UAVs
clustering especially in instances where the distance between nodes are consderable large.

A routing scheme was proposed which uses a single gateway to facilitate date gathering while continuously
minimizes the interference on nodes during message transmission. This scheme minimized not only the
interference on nodes but also the distance a message has to travel to the gateway. The routing algorithm
was formalized using Z-notation, and its correctness was verified using simulation-based analysis which
showed that the proposed algorithm outperformed existing 'schemes, in the same category. On the other
hand, considering systems with only one gateway, a UAVs scheduling model was proposed to persistently
and periodically visit the gateway referred to as'a target. "The problem was formulated mathematically
and shown to be an NP-hard problem. Three heuristics were proposed, compared and shown to be
consistently efficient. Simultaneously, the issue of collision was addressed by relaxing the most consistent
of the three heuristics, while also considering the effects collusions had on delay.

Finally, a unifying model was proposed which assumed the existence of a clustered network where data
are gathered at cluster heads; a team of UAVs then collect the data and deliver them to base stations for
further processing. This UAVs paths planning problem was mathematically formulated and also proven
to be NP-hard. A heuristic algorithm was thus proposed and analyzed to solve it. With the effects of
varied speed and delay parameters on UAVs paths selection taken into consideration.

6.2 Future Work

This thesis has been proposed as part of the Internet-of-Things in Motion, a project that targets data
muling/ferrying using a team of UAVs working in a coalesced manner such as in [125, 126], or inde-
pendently based on a competitive model as suggested in [127], or a collaborative model as proposed
by [128, 129].

The project also targets the sensor network engineering to support UAVs in the data transport processes.
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The integration of the proposed networking engineering models will enhance service differentiation in
complex sensor networking scenarios with mixed devices as suggested in [130] by balancing sensor roles
and UAV proximity is an avenue for future work.

This thesis proposed a clustering model which is also currently being integrated into the smart parking
model presented in [131] with service differentiation for ground sensor networks as suggested earlier. The
work proposed here, can also be used in the future to complement the work done in [132] as network
engineering that considers a hierarchical topology as opposed to the flat topology suggested earlier with
the expectation of reducing OPEX and CAPEX. Supporting food security through drought mitigation
as suggested in [114, 115] is another technique that, future research work can benefit from the network
engineering principles proposed in this paper is by using UAVs as airborne cameras and data mules
capable of ferrying agricultural data from fields to processing centres, where machine learning algorithms
are applied to improve precision agriculture. Distance-based relaxation was used in the clustering model
as a way of mitigating issues related to the energy inefficiency and orphan node issues of the heuristic
clustering algorithm. The redistribution of cluster members to achieve a more balanced network is
another relaxation technique that can be applied to the two clustering algorithms studied in this paper
for energy efficiency and the avoidance of orphan nodes. A combination of distance awareness and cluster
members’ redistribution is a third technique that can also be applied to the two clustering algorithms.
The design and implementation of these techniques is another avenue for future research work.

This thesis further proposed a UAV-aware routing model (Chapter 3) where a team of UAVs collects
data from a gateway which have also been optimally-selected for both data gathering and collected. The
routing model assumes the existence of-only-one gateway.-Model-incorporating multi-gateways could be
considered in future works. The future work could-also include the UAVs communication where, once
the data are collected, they will be forwarded to other UAVs for efficient transportation. This will adjust
the transportation energy versus the communication energy spent by UAVs.

Chapter 4 proposed a periodic visitation model by many UAVs. A period r has been assumed in formu-
lating the scheduling model. The model could be extended by integrating the data routing mechanisms
to compute the optimal visitation period 7.

Lastly, this thesis proposed multi-gateway visitation by a team of UAVs where each sensor need to be
visited by one UAV (see Chapter 5). However, the model presentedjin Chapter 3 shows a case where one
gateway need to be visited by multiple UAVs. This could steer up future interests in developing related
deployment models and also the corresponding assignment schemes where each gateway will be visited
by an optimal number of UAVs. On the other hand the volume of data to transport does not translate
to the required energy only. It translate to the capacity of transporters (UAVs). Future research included
the study on how the volume of data for muling affect the proposed model.
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