
Quasi-uniform and Syntopogenous

Structures on Categories

Minani Iragi

A Thesis Submitted in partial fulfilment of the requirements for

the Degree of Doctor of Philosophy in the Department of Mathematics

and Applied Mathematics, University of the Western Cape.

Supervisor: Professor David B. Holgate

Co-supervisor: Dr Ando Razafindrakoto

July 2019

http://etd.uwc.ac.za/



Dedication

I dedicate this thesis with much appreciation and love to my mom Kaliza mwa Muhabura,

to my late father Iragi Mashema and to all those mathematicians, dead or alive, whose

publications have inspired me and all those who will be inspired by this work to carry out

their own research works.

1
http://etd.uwc.ac.za/



Key words

(E ,M)-factorization system

Categorical closure operator

Categorical interior operator

Categorical neighbourhood operator

Categorical topogenous structure

Quasi-uniform structure

Syntopogenous structure

Initial morphism

Completeness

Continuous functors

2
http://etd.uwc.ac.za/



Abstract

In a category C with a proper (E , M)-factorization system for morphisms, we further in-

vestigate categorical topogenous structures and demonstrate their prominent role played

in providing a unified approach to the theory of closure, interior and neighbourhood opera-

tors. We then introduce and study an abstract notion of Cászár’s syntopogenous structure

which provides a convenient setting to investigate a quasi-uniformity on a category. We

demonstrate that a quasi-uniformity is a family of categorical closure operators. In par-

ticular, it is shown that every idempotent closure operator is a base for a quasi-uniformity.

This leads us to prove that for any idempotent closure operator c (interior i) on C there

is at least a transitive quasi-uniformity U on C compatible with c (i). Various notions of

completeness of objects and precompactness with respect to the quasi-uniformity defined

in a natural way are studied.

The great relationship between quasi-uniformities and closure operators in a category

inspires the investigation of categorical quasi-uniform structures induced by functors. We

introduce the continuity of a C-morphism with respect to two syntopogenous structures

(in particular with respect to two quasi-uniformities) and utilize it to investigate the quasi-

uniformities induced by pointed and copointed endofunctors. Amongst other things, it

is shown that every quasi-uniformity on a reflective subcategory of C can be lifted to a

coarsest quasi-uniformity on C for which every reflection morphism is continuous. The

notion of continuity of functors between categories endowed with fixed quasi-uniform

structures is also introduced and used to describe the quasi-uniform structures induced

by an M-fibration and a functor having a right adjoint.
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Introduction

Among the various asymmetric topological structures, one finds the notion of quasi-

uniform structure. First introduced by Nachbin ([Nac48]) under the name of semi-uniform

structure, the term quasi-uniform structure was proposed by A.Császár in [Csá63] when

he introduced a general concept of syntopogenous structure which aimed to provide a sin-

gle setting study of topological, proximity and (quasi) uniform structures. Quasi-uniform

structures have been a subject of intensive research (see e.g.[FL82] with references therein

and the survey papers [Kün95, Kün01, Kün02]). Császár ([Csá63]) and Pervin ([Per62])

proved that every topological space has a compatible quasi-uniformity, a result which

only holds for uniform spaces if the topological space is completely regular. Thus the

study of quasi-uniform spaces provides in some sense an alternative approach to the

study of topological spaces. Categorical methods have played an important role in the

study of this great relationship between quasi-uniform and topological spaces (see e.g

[Brü99, Kün92]). In these papers, the authors essentially studied functors from the cat-

egory of To-topological spaces and continuous maps to the category of To-quasi-uniform

spaces which endow the To-topological spaces with compatible quasi-uniformities and

make continuous maps become quasi-uniformly continuous, the so-called functorial quasi-

uniformities first pointed out by Brümmer in [Brü69]. Other categorical study of this

relationship between topological and quasi-uniform spaces includes [DK00] and [DK18].

The study of topological structures on abstract categories was initiated by D. Dikranjan

and Giuli [DG87] who introduced the notion of categorical closure operator. The develop-

ment of the categorical closure operator led to a beautiful theory (see e.g.[DT95, Cas03])

which constitutes up-to-date an important part of categorical topology. This way of

thinking eventually motivated other authors to take a similar approach and introduce

the categorical interior ([Vor00]) and neighbourhood ([HŠ11]) operators. The recently in-
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troduced notion of topogenous structures on categories ([HIR16]) has provided a unified

approach to the categorical closure, interior and neighbourhood operators and has shed a

light on the study of a concept of quasi-uniformity on an abstract category.

Our thesis aims to study a quasi-uniformity ([FL82]) on an arbitrary category using an

abstract notion of syntopogenous structure ([Csá63]). Classical notions and results on

quasi-uniform spaces are expressed in a more general categorical setting. This leads to new

results that are applied to specific examples in Topology and Algebra. Departing from

a category C with a proper (E , M)-factorization system for morphisms, we first focus

on providing further development of the categorical topogenous structures. A number

of new results that complete our previous study in ([HIR16, Ira16]) and partly lay a

basis for the development of the thesis are proved. We then proceed by introducing the

notions of quasi-uniformity and syntopogenous structure on a category. Although the

categorical syntopogenous structure appears as an appropriate family of order relations

on the subobject lattice, subX, for any object X of the category, a categorical quasi-

uniformity is thought of as a suitably axiomatized family of endomaps on subX for any

object X of the category. The definitions obtained include the fact that every morphism

in a category must be continuous with respect to the structure. It is shown that there is a

subconglomerate of the conglomerate of all syntopogenous structures which is isomorphic

to the conglomerate of all quasi-uniform structures. This leads to the observation that a

quasi-uniformity is a family of closure operators. In particular, every idempotent closure

operator is a quasi-uniformity. Moreover, we prove that given an idempotent closure

operator c (interior i) on C, there is at least a transitive quasi-uniformity compatible with

c (i).

Diverse notions of completeness and precompactness of objects of C relative to the quasi-

uniformity obtained are studied. Our attention will then be turned to the study of conti-

nuity of a C-morphism with respect to two syntopogenous structures on C which enables

us to describe the quasi-uniformity induced by a pointed (resp. copointed) endofunctor.

Thinking of categories supplied with quasi-uniformities as large “spaces”, we generalize

the continuity of C-morphisms (with respect to a quasi-uniformity) to functors. We prove

that for an M-fibration or a functor having a right adjoint, one can concretely describe

the coarsest quasi-uniformity for which the functor is continuous. Our thesis is organised

as below.
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The Chapter 1 is devoted to factorization structures for morphisms as well as the notion

of subobject, images and pre-images of subobjects. We also recall a number of definitions

and results on closure, interior and neighbourhood operators that will be used throughout

our thesis.

In Chapter 2, we define, analogous to the <-strict morphism already studied in [HIR16],

the <-co-strict morphism and show that it generalizes both the c-open and i-closed mor-

phisms. The notions of <-initial and <-final morphisms, introduced in [Ira16], are shown

to capture their counterparts in the settings of closure, interior and neighbourhood opera-

tors. The pullback behaviour of the four types of morphisms is also studied. Our <-initial

morphism leads to the definition of a hereditary topogenous order which enables us to

study hereditary closure and interior operators in one setting.

Special topogenous orders that correspond to the additive (respectively grounded) interior

and closure operators are identified. We then turn our attention to the lifting of a topoge-

nous order along an M-fibration. This not only contains the lifting of a closure operator

([DT95]) as a particular case but also provides a way of lifting an interior operator along

an M-fibration. The continuity of a morphism with respect to two topogenous orders

is introduced and used to investigate the topogenous order induced by a pointed (resp.

copointed) endofunctor.

Chapter 3 introduces the theory of categorical quasi-uniform and syntopogenous struc-

tures. We demonstrate the equivalence between quasi-uniform and co-perfect syntopoge-

nous structures, which together with Proposition 2.1.5, leads to the description of a

quasi-uniormity as a family of categorical closure operators. Since, every interpolative

topogenous order is shown to be a syntopogenous structure and the class of these orders

is known (see Corallary 2.1.6(i)) to be essentially equivalent to the conglomerate of all

idempotent closure operators, it will be proved that every idempotent closure operator

is a quasi-uniformity on C. This allows to prove a one to one correspondence between

idempotent closure operators and the so-called saturated quasi-uniform structures, and

obtain a categorical generalization of the Császár-Pervin ([Csá63, Per62]) quasi-uniformity

that we characterize as the coarsest transitive quasi-uniform structure compatible with

a given idempotent interior operator on C. The initial morphism with respect to a syn-

topogenous structure is defined and shown to capture its counterparts in the settings of

quasi-uniformity and (idempotent) closure operator. We also study the Hausdorff separa-
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tion axiom relative to a syntopogenous structure (in particular relative to a quasi-uniform

structure).

Chapter 4 studies complete objects of a category with respect to a syntopogenous (in

particular a quasi-uniform) structure. For a quasi-uniform structure, distinct notions of

Cauchy filters are defined. Consequently, variant notions of completeness of objects in

the category are studied. Categorical proofs of classical theorems of completeness are

provided.

In Chapter 5, we investigate the continuity of a C-morphism with respect to two syn-

topogenous structures (in particular with respect to two quasi-uniformities). It is shown

that for a syntopogenous structure S on C and an E-pointed endofunctor (F, η), there is

coarsest syntopogenous structure SF,η on C for which every ηX : X −→ FX is (SF,η,S)-

continuous. Since a categorical quasi-uniformity is equivalent to a co-perfect syntopoge-

nous structure and simple co-perfect syntopogenous structures are equivalent to idem-

potent closure operators, SF,η allows us to construct the quasi-uniform structure and

the closure operator induced by a pointed endofunctor. In particular, we demonstrate

that every quasi-uniformity on a reflective subcategory of C can be lifted to a coarsest

quasi-uniformity UF,η on C for which every reflection morphism is (UF,η,U)-continuous.

When applied to spaces, UF,η turns out to describe initial structures induced by reflection

maps. Dually forM-copointed endofunctor and syntopogenous structure S on C, there is

a finest syntopogenous structure SG,ε on C for which every εX : GX −→ X is (S,SG,ε)-

continuous. If F : A −→ C is a functor and U and V are quasi-uniformities on A and C

respectively, we define the (U ,V)-continuity of F and show that if F is an M-fibration

or has a right adjoint, then there is a coarsest quasi-uniformity VF on A for which F

is (VF ,V)-continuous. Investigating the lattice of all quasi-uniform structures on C, we

demonstrate that for a functor F : A −→ C with a right adjoint G, there is a Galois

connection between the conglomerate of all quasi-uniformities on C and the conglomerate

of all those on A.

Some of the main results of this thesis have been discussed in

(1) D. Holgate, M. Iragi, Quasi-uniform and syntopogenous structures on categories,

Topology and its Applications, 263:16-25, 2019.

(2) D. Holgate and M. Iragi. Quasi-uniform structures and functors.
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Quaestiones Mathematicae (under review), 2019.

(3) D. Holgate and M. Iragi. More on categorical topogenous structures

(In preparation).

(4) D. Holgate and M. Iragi. Quasi-uniform structures determined by closure

and interior operators (In preparation).

The reader of this thesis is assumed to have a basic knowledge of general topology, cate-

gory theory with little more presupposed from algebra, order and lattices ([Fuc73, DP02,

Eng89]) and of course familiarity with the topological structures considered in the thesis

especially quasi-uniform and syntopogenous spaces. However, we have recalled a number

of basics that can help the reader to go through the work without much difficulty. The

structure of our thesis is simple, chapters are numbered according to their order of ap-

pearance in the text. The same rule holds for sections in chapters and for propositions,

lemmas, and definitions in sections. We also assume a pecking order of sets, classes and

conglomerates (as in [AHS06]), that is each set is a class and each class is a conglomerate.

The symbol ⊆ will be used for set theoretical inclusion.
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Chapter 1

Preliminaries

This chapter is mainly an overview of terminologies and elementary results that will be

used throughout the thesis, the aim being to make the work as self-contained as possible.

We depart from a fixed category C. Then discuss factorization structures for morphisms

of C that enable us to efficiently deal with images and inverse images of subobjects.

We end the chapter by stating a few definitions on closure, interior and neighbourhood

operators that we will frequently use in the subsequent chapters. For the meaning of

categorical concepts and notations used without definition in this work, we refer the

reader to ([AHS06, HST14]). However, we note some variations from the notations of

these two books: f ∈ C (resp. X ∈ C) shall be used when f is a morphism (resp. X is an

object) of C.

1.1 Factorization structures for morphisms

Factorization systems play an important role in this work, in fact from section 2 of this

chapter our basic working environment will always be a category C endowed with an

(E ,M)-factorization system for morphisms. Here, we recall its definition and a few results

that we shall need throughout. For more details on the topic, the interested reader is

referred to ([AHS06], chapter 14).

Definition 1.1.1. [HST14] A pair of distinguished classes (E ,M) of morphisms of C is

factorization system provided:

(1) E andM are closed under composition with isomophisms from the left and the right
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respectively i.e if e ∈ E, g ∈ Iso(C) and g ◦ e makes sense, then g ◦ e ∈ E, and if

m ∈M, g ∈ Iso(C) and m ◦ g makes sense, then m ◦ g ∈M.

(2) Every morphism f ∈ C factors as an E-morphism and an M-morphism

i.e f = m ◦ e with e ∈ E and m ∈M,

(3) C has the unique (E ,M)-diagonalization property: for every commutative diagram

.
e //

u

��

.
v

��

w

~~. m
// .

with e ∈ E and m ∈M, there is a uniquely determined morphism w with w ◦ e = u

and m ◦w = v. In this case we say that every E-morphism e is orthogonal to every

M-morphism m and write e⊥m.

The system is called proper if E ⊆ Epi(C) and M⊆Mono(C).

For the rest of this work, by a factorization structure, we will always mean

a proper one.

Some usefull stability properties of the classesM and E are considered in the next propo-

sition.

Proposition 1.1.2. [AHS06] Let (E ,M) be a factorization system in C.

(1) E
⋂
M = Iso(C);

(2) If g ◦ f ∈M, then f ∈M;

(3) If g ◦ f ∈ E, then g ∈ E;

(4) E and M are closed under composition;

(5) M is stable under pullbacks;

(6) M is stable under intersections.

Proof. (1) If f ∈ Iso(C) and f = m ◦ e with e ∈ E and m ∈ E , then e,m ∈ Iso(C) by the

diagonalization property and hence f ∈ M
⋂
E . On the other hand if f ∈ M

⋂
E , the

diagonalization property implies the existance of w which makes

.
f //

id

��

.

id

��

w

~~.
f
// .
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commute. Thus f ∈ Iso(C). (2) and (3) follows from properness of (E ,M).

(4) Let n, m ∈ M and n ◦m = m′ ◦ e′ with m′ ∈ M and e′ ∈ E . Then there is w which

makes

. e′ //

m

��

.

m′

��

w

~~. n
// .

commute. By Proposition 1.1.2(2), e′ ∈ E
⋂
M = Iso(C) and so n ◦m ∈ M. A similar

argument holds for E .

(5) [AHS06] Consider the pullback diagram

.
m′ //

f ′

��

.
f

��. m
// .

with m ∈ M and let m′ = m′′ ◦ e with m′′ ∈ M and e ∈ E . Then by the diagonalization

property, there is w such that

. e //

f ′

��

.
f◦m′′

��

w

~~. m
// .

commutes. This gives the following pullback diagram

.

w

��

m′′

!!

g

  .
f ′

��

m′ // .

f
��. m
// .

So m′ ◦ g = m′′ and f ′ ◦ g = w, which implies that m′ ◦ (g ◦ e) = m′ and f ′ ◦ (g ◦ e) = f ′

and thus g ◦ e = id. Now e is an epimoprhism and a section, e ∈ Iso(C) and m′ ∈M.

An analoguous reasonning to the previous proves (6).

Our next proposition is a consequence of the unique diagonalization property.

Proposition 1.1.3. [AHS06]

(1) The (E ,M)-factorizations of a morphism of C are unique, up to isomorphism.

(2) In an (E ,M)-factorization system, the classes E and M determines each other i.e

E = {e ∈ C | ∀ m ∈M | e⊥m}

M = {m ∈ C | ∀ e ∈ E | e⊥m}.
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Proof. (1) Let f = m ◦ e = m′ ◦ e′ with e′, e ∈ E and m,m′ ∈ M. Then by the

diagonalization, there is w for which

.
e //

e′

��

.
m

��

w

~~.
m′
// .

commutes. By Properness of (E ,M), w ∈ E
⋂
M = Iso(C). Thus m ∼= m′ and e ∼= e′.

(2) If f ∈ E , then for all m ∈ M, f⊥m by diagonalization property. On the other hand

if f⊥m for all m ∈M and f = m′ ◦ e with e ∈ E and m′ ∈M, there is w such that

.
f //

e

��

.

id

��

w

~~.
m′
// .

commutes i.e m′ ◦w = id and w ◦ f = e. Thus m′ ∈ Iso(C) and we obtain f = m′ ◦ e ∈ E .

1.2 M-subobjects, Images and Inverse images

Throughout this section we assume that the category C is endowed with (E ,M)-factorization

system for morphisms. In accordance with [DT95], the class subX of all M-morphisms

with codomain X, for every object X in C, will be called the subobjects of X. Subobjects

represent an appropriate categorical treatement of the notion of sub-structures. SubX is

preordered as follows : if m ≤ n in subX if and only if there exists j such that n ◦ j = m

M
j //

m
  

N

n
~~

X

The morphisms n and m are isomorphic (m ∼= n) if it holds that m ≤ n and n ≤ m. Cleary

∼= is an equivalence relation. The collection of equivalence classes {[m] | m ∈ subX} can

be preordered as [m] ⊆ [n] ⇔ m ≤ n. Thus, instead of working with these equivalnce

classes, we use their representatives. We think of isomorphic subobjects as being the same

and for the rest of the thesis, we shall simply write n = m for m ∼= n.
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Definition 1.2.1. [DT95] We will say that C has M-pullbacks, if for every morphism

f : X −→ Y and every n ∈ subY a pullback diagram

D

g

��

p

##

q

  
M

m
��

h // N

n

��
X

f
// Y

exists in C with m ∈ subX.

The morphism m is uniquely determined up to isomorphism, it is called the inverse image

of n under f and denoted by f−1(n) : f−1(N) −→ X.

Definition 1.2.2. [CGT04] For a morphism f : X −→ Y in C and m : M −→ X, one

defines f(m) : (M) −→ Y to be the M-part of the (E ,M)-factorization of the composite

f ◦m.

M //

m

��

f(M)

f(m)
��

X
f

// Y

Proposition 1.2.3. [DT95] For every morphism f : X −→ Y in C, f(−) and f−1(−)

are adjoint to each other with f(−) being the left adjoint.

Proof. We need to show that, f(m) ≤ n⇔ m ≤ f−1(n) for all m ∈ subX and n ∈ subY .

Assume that f(m) ≤ n, then there is j : f(M) −→ N such that the diagram below

commutes.

M
e //

m

��

f(M)

f(m)
��

j // N

n

��
X

f
// Y

1Y
// Y

This implies that f ◦m = n ◦ j ◦ e and we have the commutative diagram below

X

j◦e

��

m

&&

j1

##
f−1(N)

g

��

f−1(n)
// X

f

��
N n

// Y

17
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The arrow j1 exists by the pullback property of the diagram. So m = f−1(n) ◦ j1 and

j ◦ e = g ◦ j1. Hence m ≤ f−1(n).

On the other hand if m ≤ f−1(n), then there is k : M −→ f−1(N) such that m =

f−1(n) ◦ k. Now consider the diagram below

M
k //

m
##

f−1(N)

f−1(n)
��

t // N

n

��
X

f
// Y

We get that f(m) ◦ e = f ◦m = f ◦ f−1(n) ◦ k = n ◦ t ◦ k.

By the diagonalization property, there is w which makes

.
e //

t◦k
��

.
f(m)

��

w

~~. n
// .

commute i.e f(m) = n ◦ h and t ◦ k = h ◦ e. So f(m) ≤ n and

thus m ≤ f−1(n)⇔ f(m) ≤ n.

It follows from adjointness that:

(1) f(−) and f−1(−) are monotone maps

(2) m ≤ f−1(f(m)) and f(f−1(n)) ≤ n;

(3) f(
∨
i∈I mi) ∼=

∨
i∈I f(mi);

(4) f−1(
∧
i∈I ni)

∼=
∧
i∈I f

−1(ni).

Lemma 1.2.4. Let

.
f ′ //

p′

��

.
p

��.
f
// .

be a commutative diagram. Then for any suitable subobjects n and m,

(1) [DT95] p′(f ′−1(n)) ≤ f−1(p(n)).

(2) f ′(p′−1(m)) ≤ p−1(f(m)).
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Proof.

(1) f ′(f ′−1(n)) ≤ n⇒ p(f ′(f ′−1(n))) ≤ p(n)

⇒ f(p′(f ′−1(n))) ≤ p(n) commutativity of the diagram

⇔ p′(f ′−1(n)) ≤ f−1(p(n)) adjointness.

Likewise,

(3) p′(p′−1(n)) ≤ m⇒ f(p′(p′−1(m))) ≤ f(m)

⇒ p(f ′(p′−1(m))) ≤ f(m) commutativity of the diagram

⇒ f ′(p′−1(m)) ≤ p−1(f(m)) adjointness.

Definition 1.2.5. The commutative diagram

.
f ′ //

p′

��

.
p

��.
f
// .

is said to satisfy Beck-Chevalley’s Property (BCP) if f ′(p′−1(m)) = p−1(f(m)). Equiva-

lently if p′(f ′−1(n)) = f−1(p(n)) for appropriate subobjects n and m.

If C hasM-pullbacks, then the preordered class subX has binary meets for all X ∈ C. In

fact, for m : M −→ X and n : N −→ X subobjects of X the binary meet is given by the

diagonal of the following pullback diagram

M ∧N //

��

N

n
��

M m
// X

This means that m ∧ n = m ◦m−1(n) = n ◦ n−1(m).

We are interested in the existence of arbitrary meets in subX as we need subX to be a

complete lattice for each X ∈ C.
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Definition 1.2.6. [DT95] We shall say that C has M-intersections if for every family

(mi)i∈I in subX (I may be infinite class or empty), if a multiple pullback diagram

M
γi //

m
  

Mi

mi~~
X

exists in C with m ∈ subX.

This also implies the existence of the join
∨

of subobjects and in particular the least

subobject oX : 0X −→ X exists for every X ∈ C.

Definition 1.2.7. We shall say that C is M-complete if it has M-pullbacks and M-

intersections.

It is now clear from Definition 1.2.6 that if C has M-intersections, then the preordered

class subX is a complete lattice for every object of C. The largest element of subX always

exist, it is the identity morphism 1X : X −→ X on X.

The next proposition provides sufficient conditions for the image and inverse image of

subobjects to be partially inverse to each other.

Proposition 1.2.8. [DT95] Let f : X −→ Y be a morphism in C.

(1) If f ∈M, then f−1(f(m)) = m for all m ∈ subX.

(2) If f ∈ E and E is stable under pullback then f(f−1(n)) = n for all n ∈ subY

(3) f ∈ E if and only if f(1X) = 1Y

Proof. (1) Consider the diagram

M e //

m

��

f(M)

f(m)
��

X
f

// Y

Since f ∈ M by taking e = 1M , the diagram becomes a pullback. This implies by

Definition 1.2.1 that m is the inverse image of f(m) under f . Thus, f−1(f(m)) = m.

(2) Consider the diagram

f−1(N)
f ′ //

f−1(n)
��

f(X)

n

��
X

f
// Y

20
http://etd.uwc.ac.za/



with f ∈ E and E is stable under pullback. Then f ′ ∈ E . This implies by Definition 1.2.2

that n is the image of f−1(n) under f . Hence f(f−1(n)) = n.

(3) Consider the following commutative diagram

X
e //

f
��

f(X)

f(1X)
��

Y
1Y

// Y

Since f ∈ E and f(1X) ∈ M, by the diagonalization property of (E ,M) factorizations,

there is a morphism t : Y −→ f(X) such that f(1X) ◦ t = 1Y , that is 1Y ≤ f(1X).

Conversely if 1Y = f(1X), then the commutativity of the above diagram gives f =

f(1X) ◦ e = 1Y ◦ e = e. Hence, f ∈ E

Proposition 1.2.9. [DT95] Let f : X −→ Y be a morphism in C. For any morphism

g : Y −→ Z in C, one has that (g ◦ f)(−) = g(f(−)) and (g ◦ f)−1(−) = f−1(g−1(−)).

Proof. One uses Definition 1.2.2 and Proposition 1.1.3(1) to prove (g ◦ f)(−) = g(f(−))

while (g ◦ f)−1(−) = f−1(g−1(−)) follows from Definition 1.2.1 and the uniqueness of

pullbacks.

Definition 1.2.10. A C-morphism f : X −→ Y reflects o if f−1(oY ) = oX (equivalently

f(m) = oY ⇔ m = oX).

Besides the image pre-image adjunction studied in Proposition 1.2.3, we shall often find

it important to assume that for any C-morphism f : X −→ Y , the inverse image

f−1 commutes with the joins of subobjects so that it has a right adjoint f∗ given by

f∗(m) =
∨
{n ∈ subY | f−1(n) ≤ m}. Thus f−1(n) ≤ m ⇔ n ≤ f∗(m), f−1(f∗(m)) ≤

m (with f−1(f∗(m)) = m if f ∈ M) and n ≤ f∗(f
−1(n)) (with f∗(f

−1(n)) = n if f ∈

E and E stable under pullback).

Lemma 1.2.11. Assume that for any morphism f ∈ C, the inverse image f−1 commutes

with the joins of subobjects and

.
f ′ //

p′

��

.
p

��.
f
// .

be a commutative diagram. Then for suitable subobjects n and m,
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(1) p−1(f∗(n)) ≤ f ′∗(p
′−1(n));

(2) f−1(p∗(m)) ≤ p′∗(f
′−1(m)).

Proof. Let l be an appropriate subjobject. Since

(1) f−1(l) ≤ n⇒ p′−1(f−1(l)) ≤ p′−1(n)⇒ f ′−1(p−1(l)) ≤ p′−1(n);

we have that {p−1(l) | f−1(l) ≤ n} ⊆ {l | f ′−1(l) ≤ p′−1(n)} ⇒

p−1(f∗(n)) =
∨
{p−1(l) | f−1(l) ≤ n} ≤

∨
{l | f ′−1(l) ≤ p′−1(n)} = f ′∗(p

′−1(n)).

Similarly for some suitable t,

(2) p−1(t) ≤ m⇒ f ′−1(p−1(t)) ≤ f ′−1(n)⇒ p′−1(f−1(t)) ≤ f−1(n)

gives that {f−1(n) | p−1(t) ≤ n} ⊆ {f−1(p′−1(l) ≤ n} ⇒

f−1(p∗(n)) =
∨
{f−1(n) | p−1(t) ≤ n} ≤

∨
{f−1(p′−1(l) ≤ n} = p′∗(f

−1(n)).

Corollary 1.2.12. If for any morphism f ∈ C, the inverse image f−1 commutes with

the joins of subobjects, then the diagram in the definition above satisfies Beck-Chevalley

Property (BCP) if f−1(p∗(n)) = p′∗(f
′−1(n)). Equivalently p−1(f∗(n)) = f ′∗(p

′−1(n)) for

appropriate subobjects m and n.

Lemma 1.2.13. If f−1 commutes with the join of subobjects for any f ∈ C, then subX

is a distributive lattice for every X ∈ C

Proof. For all X ∈ C and m,n, p ∈ subX, then m∧(n∨p) = m◦m−1(n∨p) = m(m−1(n)∨

m−1(p))) = m(m−1(n))∨m(m−1(p)) = (m◦m−1(n))∨(m◦m−1(p)) = (m∧n)∨(m∧p).

1.3 Closure, Interior and Neighbourhood operators

In the sequel, we shall assume that the category C is endowed with an (E ,M)-factorization

system for morphisms and that it is M-complete.

Definition 1.3.1. [DG87] A closure operator c on C with respect to M is given by a

family of maps

{cX : subX −→ subX | X ∈ C} such that:

(C1) m ≤ cX(m) for all m ∈ subX;
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(C2) m ≤ n⇒ cX(m) ≤ cX(n) for all m,n ∈ subX;

(C3) every morphism f : X −→ Y is c-continuous, that is: f(cX(m)) ≤ cY (f(m)) for all

m ∈ subX.

We denote by CL(C,M) the conglomerate of all closure operators on C with respect to

M ordered as follows: c ≤ c′ if cX(m) ≤ c′X(m) for all m ∈ subX and X ∈ C.

According to [DT95], a closure operator c on C is :

(1) grounded if cX(0X) = 0X for all X ∈ C,

(2) additive if cX(m ∨ n) = cX(m) ∨ cX(n) for all m,n ∈ subX and X ∈ C,

(3) idempotent if cX(cX(m)) = cX(m) for all m ∈ subX and X ∈ C,

(4) hereditary if cM(p) = m−1(cX(m(p))) for all p ∈ subM .

The ordered conglomerate of all grounded (resp. additive, idempotent) closure operators

will be denoted by gCL(C,M) (resp. aCL(C,M), iCL(C,M)).

Definition 1.3.2. [Vor00] An interior operator i on C with respect to M is given by a

family of maps

{iX : subX −→ subX | X ∈ C} such that

(I1) iX(m) ≤ m for every m ∈ subX and X ∈ C;

(I2) m ≤ n⇒ iX(m) ≤ iX(n) for every m,n ∈ subX,X ∈ C;

(I3) every morphism f : X −→ Y in C is i-continuous, f−1(iY (n)) ≤ iX(f−1(n)) for

each n ∈ subY .

The ordered conglomerate of all interior operators on C with respect toM is denoted by

INT (C,M). We also note from [HŠ18] that an interior operator i on C is :

(1) grounded if iX(1X) = 1X for all X ∈ C,

(2) additive if iX(m ∧ n) = iX(m) ∧ iX(n) for all m,n ∈ subX and X ∈ C,

(3) idempotent if iX(iX(m)) = iX(m) for all m ∈ subX and X ∈ C,

(4) ([AH19]) hereditary if iM(p) = m−1(iX(m∗(p))) for all m : M −→ X and p ∈ subM.

The symbols gINT (C,M), aINT (C,M) and iINT (C,M)) will denote the ordered con-

glomerate of all grounded, additive and idempotent interior operators respectively.
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Definition 1.3.3. [HŠ11] A neighbourhood operator ν on C with respect toM is a family

of maps {νX : subX −→ P (subX) | X ∈ C} such that

(N1) n ∈ νX(m)⇒ m ≤ n for every m ∈ subX and X ∈ C;

(N2) m ≤ n⇒ νX(n) ⊆ νX(m) for every m,n ∈ subX and X ∈ C;

(N3) p ∈ νX(m) and p ≤ q then q ∈ νX(m) for every m, p, q ∈ subX and X ∈ C;

(N4) every morphism f : X −→ Y in C is ν-continuous, n ∈ νY (f(m)) ⇒ f−1(n) ∈

νX(m) for every m ∈ subX and n ∈ subY .

The congolomerate of all neighbourhood operators on C with respect toM is denoted by

NBH(C,M)
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Chapter 2

More on topogenous structures

This chapter aims to continue the investigating categorical topogenous structures and

demonstrate their prominent role played in providing a unified approach to the theory

of closure, interior and neighbourhood operators. The notions of strict, co-strict, initial

and final morphisms with respect to a topogenous order are systematically studied. Be-

sides showing that they allow simultanous study of four classes of morphisms obtained

separately with respect to closure, interior and neighbourhood operators, the initial and

final morphisms lead us to the study of topogenous structures induced by pointed and co-

pointed endofunctors. Hereditariness, additivity and groundedness for topogenous struc-

tures are defined. We also lift a topogenous order along an M-fibration. This permits

to obtain the lifting of interior and neighbourhood operators along an M-fibration and

includes the lifting of closure operators found in the literature. A number of examples

presented at the end of the chapter demonstrate our results.

2.1 The Basic Results

This section covers fundamental definitions and results on topogenous structures. Some

of them are already known from ([HIR16]) or ([Ira16]) while others appear here for the

first time.

Definition 2.1.1. A topogenous order < on C is a family <= {<X | X ∈ C} of relations,

each <X on subX, such that:

(T1) m <X n⇒ m ≤ n for every m,n ∈ subX,
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(T2) m ≤ n <X p ≤ q ⇒ m <X q for every m,n, p, q ∈ subX, and

(T3) every morphism f : X −→ Y in C is <-continuous, f(m) <Y n ⇒ m <X f−1(n)

for all n ∈ subY , m ∈ subX.

Given two topogenous orders < and <′ on C, <⊆<′⇔ (m <X n ⇒ m <′X n) for all

m,n ∈ subX and X ∈ C. The resulting ordered congolomerate of all topogenous orders

on C is denoted by TORD(C,M).

Proposition 2.1.2. TORD(C,M) and NBH(C,M) are order isomorphic with the in-

verse assignments <−→ ν< and ν −→<ν given by

ν<X(m) = {n | m <X n} and m <ν
X n⇔ n ∈ νX(m) for all X ∈ C

Proof. (N1) follows from (T1) while (N2) and (N3) follows from (T2). For (N4), let

f : X −→ Y be a C morphism and p ∈ ν<Y (f(m)) ⇒ f(m) <Y p ⇒ m <X f−1(p) ⇔

f−1(p) ∈ ν<X(m). Similarly (T1) and (T2) follows from (N1) and (N3) respectively. Let

f : X −→ Y be a C-morphism. Then f(m) <ν
Y n ⇔ n ∈ νY (f(m)) ⇒ f−1(n) ∈

νX(m) ⇔ m <X f−1(n). The assignments clearly preserve order and they are inverse to

each other.

Particular topogenous orders will be of importance.

Definition 2.1.3. A topogenous order < is said to be

(1)
∨

-preserving if (∀i ∈ I : mi <X n)⇒
∨
mi <X n,

(2)
∧

-preserving if (∀i ∈ I : m <X ni)⇒ m <X

∧
ni, and

(3) interpolative m <X n⇒ ∃ p | m <X p <X n for all X ∈ C.

The ordered conglomerate of all
∨

-preserving,
∧

-preserving and interpolative topoge-

nous orders is denoted by
∨
−TORD(C,M),

∧
−TORD(C,M) and INTORD(C,M)

respectively.

Our interest in the above classes is due to the fact that the first two are the equivalent

to the conglomerate of interior and closure operators respectively while the last one when

considered in
∧
−TORD(C,M) and

∨
−TORD(C,M) corresponds to the conglomerate

of idempotent closure and interior operators respectively.
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Proposition 2.1.4.
∨
−TORD(C,M) is order isomorphic to INT (C,M) with the in-

verse assignments given by

i<X(m) =
∨
{p | p <X m} and m <i

X n⇔ m ≤ iX(n) for all X ∈ C

Proof. We use (T1) and (T2) to see that (I1) and (I2) are respectively satisfied. Let

f : X −→Y be a C-morphism. Since <∈
∨
−TORD, i<Y (m) =

∨
{p | p <Y m} and

so by (T3), f−1(i<Y (m)) ∈ {q | q <X f−1(m)} ⇒ f−1(i<Y (m)) ≤
∨
{q | q <X f−1(m)}.

Hence f−1(i<Y (m)) ≤ i<X(f−1(m)). On the other hand (I1) and (I2) follows from (T1) and

(T2) respectively. Let f : X −→ Y be any C-morphism and m <i
Y n with m,n ∈ subY .

Then m ≤ iY (n) ⇒ f−1(m) ≤ f−1(iY (n)) ≤ iY (f−1(m)) ⇒ f−1(m) ≤ iX(f−1(n)) ⇔

f−1(m) <i
X f−1(m).

In similar way to the above we obtain the following:

Proposition 2.1.5.
∧
−TORD(C,M) is order isomorphic to CL(C,M) with the inverse

assignments given by

c<X(m) =
∧
{p | m <X p} and m <c

X n⇔ cX(m) ≤ n for all X ∈ C

If we denote by
∨
−INTORD(C,M) and

∧
−INTORD(C,M) the conglomerate of all

interpolative topogenous orders in
∨
−TORD(C,M) and

∧
−TORD(C,M) respectively,

then

Corollary 2.1.6. (i)
∧
−INTORD(C,M) ∼= iCL(C,M).

(ii)
∨
−INTORD(C,M) ∼= iINT (C,M).

Proof. (i) If c is idempotent, then m <c n ⇔ cX(cX(m)) = cX(m) ≤ n ⇔ m <c

cX(m) <c n. Conversely if <∈
∧
−INTORD then c<X(c<X(m) ≤ c<(m).

(ii) Similar reasonning to the above.

Definition 2.1.7. Let <, <′∈ TORD(C,M). < ◦ <′ is the topogenous order defined by

m <X ◦ <′X n⇔ ∃ p ∈ subX | m <X p <′X n

for all m, n ∈ subX and X ∈ C and called the composition of < and <′.

It is clear from the above definition that < is interopolative if < ◦ <=<.
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Proposition 2.1.8. (1) If <, <′∈
∧
−TORD(C,M), then m <X ◦ <′X n⇔ c<

′

X (c<(m)) ≤

n

(2) If <, <′∈
∨
−TORD(C,M), then m <X ◦ <′X n⇔ m ≤ i<X(i<

′

X (n))

Proof. (1) Assume that <, <′∈
∧
−TORD(C,M) and m <X ◦ v′X n. Then there

is p ∈ subX | m <X p <′X n and by Proposition 2.1.5 c<X(m) ≤ p and c<
′

X (p) ≤ n.

Thus c<
′

X (c<(m)) ≤ n. On the other hand if c<
′

X (c<(m)) ≤ n, put p = c<(m) to get

m <X c<(m) <′X n⇔ m <X ◦ <′X n.

(2) If <, <′∈
∨
−TORD(C,M), then by Proposition 2.1.4 m <X ◦ <′X n ⇔ m ≤ i<X(p)

and p ≤ i<
′

X (n)⇔ m ≤ i<X(i<
′

X (n)).

2.2 Family of Morphisms

Investigating different ways of expressing the continuity condition of a C-morphism with

respect to categorical closure, interior and neighbourhood operators led to the study of

particular classes of morphisms with respect to each of the operators (see e.g [GT00,

Raz12, CGT01]). We show that this approach when applied to a topogenous order pro-

duces special classes of morphisms that provide a common generalization of those obtained

previously with respect to each of the three operators.

Proposition 2.2.1. Assume that for every C-morphism f : X −→ Y , f−1 has a right

adjoint. Let <∈ TORD. The following are equivalent to the <-continuity. For suitable

subobjects m, n and p,

(1) m <Y n⇒ f−1(m) <X f−1(n);

(2) m <Y f∗(n)⇒ f−1(m) <X n;

(3) f(m) <Y f∗(n)⇒ m <X n.

Proof. If (T3) holds, then m <X n ⇒ f(f−1(m)) ≤ m <X n ⇒ f(f−1(m)) <X n ⇒

f−1(m) <X f−1(n).

Assume (1) holds, then m <Y f∗(n)⇒ f−1(m) <X f−1(f∗(n)) ≤ n⇒ f−1(m) <X n.

If (2) holds then f(m) <Y f∗(n)⇒ m ≤ f−1(f(m)) <X n⇒ m <X n.
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If (3) holds, then f(m) <Y p ⇒ f(m) <X p ≤ f∗(f
−1(p)) ⇒ f(m) <Y f∗(f

−1(p)) ⇒

m <X f−1(p).

The point in the proposition above that each equivalent description of (T3) fullfils one

implication leads to the natural definition of morphisms that satisfy the other implication.

Definition 2.2.2.

Given a topogenous order <, we say that a C-morphism f : X −→ Y is

(1) ([HIR16]) <-strict if f(m) <Y p⇔ m <X f−1(p) for all m ∈ subX and p ∈ subY ;

(2) <-final if m <Y n⇔ f−1(m) <X f−1(n) for all n, m ∈ subY ;

(3) <-co-strict if m <Y f∗(n)⇔ f−1(m) <X n for all m ∈ subY and n ∈ subX,

(4) <-initial if f(m) <Y f∗(n)⇔ m <X n for all m, n ∈ subX.

We note that in a category where f−1 does not have a right adjoint the definition of

<-initial and <-co-strict morphisms can be written as follows. A morphism f : X −→ Y

is :

(i) <-initial if m <X n ⇒ ∃ p ∈ subY | f(m) <Y p and f−1(p) ≤ n for all m, n ∈

subX.

(ii) <-co-strict if f−1(m) <X n ⇒ ∃ p ∈ subY | m <Y p and f−1(p) ≤ n for all

m ∈ subY, n ∈ subX.

It follows immediately from Proposition 2.1.2 that our classes correspond to those obtained

in [Raz12] with respect to a neighbourhood operator as this can be seen in the next

proposition.

Proposition 2.2.3. Let f : X −→ Y be a C-morphism, m ∈ subX and n ∈ subY .

(1) f is <-strict if and only if ν<Y (f(m)) = f(ν<X(m)).

(2) f is <-co-strict if and only if ν<X(f−1(n)) = f−1(ν<Y (n)).

(3) f is <-final if and only if f(ν<X(f−1(n))) = ν<Y (n).

(4) f is <-initial if and only if f−1(ν<Y (f(m))) = ν<X(m).

The behaviour of our morphisms can be summarized in the following proposition.
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Proposition 2.2.4. (1) Each of the classes is closed under composition, contains all

isomorphisms of C.

(2) <-initial morphisms are left-cancelable, while <-co-strict, <-strict and <-final mor-

phisms are left cancellable with respect to M.

(3) <-final morphisms are right cancelable, while <-initial, <-co-strict and <-strict

morphisms are right cancellable with respect to E provided E is pullback stable.

Proof. (1) First note that if f : X −→ Y is an isomorphism then f∗(m) = f(m). Now, let

g : Y −→ X be the inverse of f , then f−1(n) <X n ⇒ m = g−1(f−1(m)) <Y g−1(m) =

f(m) = f∗(m). If f : X −→ Y and g : Y −→ Z are <-strict, then m <X (g ◦ f)−1(n) =

f−1(g−1(n)⇔ f(m) <Y g
−1(n)⇔ (g ◦ f)(m) = g(f(m)) <Z n. A similar argument holds

for <-initial and <-final.

(2) If f : X −→ Y and g : Y −→ Z are <-initial, then f−1(g−1(m)) < n ⇒ g−1(m) vY
f∗(n)⇒ m <Z g∗(f∗(n)). If g ◦f is <-strict and g : Y −→ Z is inM, then g−1(g(n)) = n.

Now m <X f−1(n) = f−1(g−1(g(n))) = (g◦f)−1(g(n))⇒ g(f(m)) = (g◦f)(m) < g(n)⇒

f(m) <Y g
−1(g(n))⇒ f(m) <Y n. A similar argument holds for <-co-strict and <-final.

(3) If g◦f is <-final, then g−1(m) <Y g
−1(n)⇒ f−1(g−1(m)) <Y f

−1(g−1(n))⇒ m <Z n.

Assume that g◦f is <-strict, E is stable under pullbacks and f ∈ E , then f(f−1(m)) = m.

Hence m <Y g
−1(n)⇒ f−1(m) <X f−1(g−1(n) = (g ◦f)−1(n)⇒ (g ◦f)(f−1(m)) <Z n⇒

g(m) <Z n.

A similar reasonning works for <-initial, <-co-strict.

The following is an observation concerning the relationship between the types of mor-

phisms.

Proposition 2.2.5. (1) Every <-co-strict morphism in M is <-initial.

(2) Every <-initial morphism in E is <-co-strict provided E is pullback stable.

(3) Any <-strict morphism in M is <-initial.

(4) Every <-strict in E is <-final provided E is pullback stable.

(5) If g ◦ f = 1 in C then f is a <-initial morphism and g is a <-final morphism in E.

(6) Any <-final morphism in M is <-strict.
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(7) Every <-co-strict morphism in E is <-final provided E is pullback stable.

Proof. Let f : X −→ Y be a C-morphism and consider suitable subobjects m and n in

each case. (1) If f is <-co-strict, then m <X n⇔ f−1(f(m)) <X n⇒ f(m) <X f∗(n).

(2) If f is <-initial in E with E pullback stable, then f−1(m) <X n⇒ m = f(f−1(m)) <X

f∗(n).

(3) If f is <-strict in M, then m <X n⇔ m <X f−1(f∗(n))⇒ f−1(m) <X f∗(n).

(4) If f is <-strict in E with E pullback stable, then f−1(m) <Y f−1(n) ⇔ m =

f(f−1(m)) <Y f(f−1(n)) = n.

(5) Follows from Proposition 2.2.4.

(6) If f is <-final in M, then f−1(m) <X n⇔ f−1(m) <X f−1(f(n))⇒ m <Y f(n) .

(7) If f is <-co-strict in E , then f−1(m) <X f−1(n)⇔ m <Y f∗(f
−1(m)) = n.

Propositions 2.2.4 and 2.2.5 were already obtained in [Ira16] without use of the fact that

f−1[−] has both left and right adjoint. This condition plays an important role in the study

of the relationship between these classes and those obtained for the interior operators.

Definition 2.2.6. ([Ira16]) A subobject m of an object X ∈ C is <-strict if m <X m.

Proposition 2.2.7. Let f : X −→ Y be a C-morphism.

(1) If f is <-final then a subobject n of Y is <-strict iff f−1(n) is <-strict in X.

(2) If <∈ INTORD and f is <-initial then for every <-strict subobject m of X, there

is p ∈ subY such that m = f−1(p).

Proof. (1) is clear. For (2), assume <∈ INTORD, f is <-initial and m ∈ subX is <-

strict. Then m <X m ⇒ f(m) <X f∗(m) ⇒ ∃ p ∈ subX such that f(m) <X p vX
f∗(m)⇒ m <X f−1(p) <X f−1(f∗(m)) ≤ m⇒ m ≤ f−1(p) ≤ m⇒ m = f−1(p).

We are interested in the pullback behaviour of the morphisms. We show that each of the

classes ascends along <-initial morphisms and descends along <-final morphisms

Proposition 2.2.8. Let

P
f ′ //

p′

��

Q

p

��
X

f
// Y
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be a pullback diagram satisfying Beck Chevalley Property (BCP). Then the following state-

ments are true.

(i) If p′ is <-initial, then f ′ is <-initial (resp. <-strict, <-co-strict, <-final) provided

f is <-initial (resp. <-strict, <-co-strict, <-final).

(i) If p is <-final, then f is <-final (resp. <-strict, <-co-strict, <-initial) provided f ′

is <-final (resp. <-strict, <-co-strict, <-initial).

Proof. (i) Let p′ be <-initial. If f is <-initial, then f ′ is < by Proposition 2.2.4.

Assume f is <-strict, then

m <P n⇒ p′(m) <X p′∗(n) initiality of p′

⇒ f(p′(m)) <Y f(p′∗(n)) strictness of f

⇒ p(f ′(m)) <Y f(p′∗(n)) commutativity of the diagram

⇒ f ′(m) <Q p
−1(f(p′∗(n))) <-continuity of p

⇒ f ′(m) <Q f
′(p′−1(p′∗(n))) ≤ f ′(n) BCP

⇒ f ′(m) <Q f
′(n)

If f is <-co-strict, then

f ′−1(m) <P n⇒ p′(f ′−1(m)) <X p′∗(n) initiality of p′

⇒ f−1(p(m)) <X p′∗(n) BCP

⇒ p(m) <Y f∗(p
′
∗(n)) co-strictness of f

⇒ m <Q p
−1(f∗(p

′
∗(n))) <-continuity of p

⇒ m <Q f
′
∗(p
′−1((p′∗(n))) ≤ f ′∗(n) BCP

⇒ m <Q f
′
∗(n)
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Suppose f is <-final, then

f ′−1(m) <P f
′−1(n)⇒ p′(f ′−1(m)) <X p′∗(f

′−1(n)) initiality of p′

⇒ f−1(p(m)) <X f−1(p∗(n)) BCP

⇒ p(m) <Y p∗(n) finality of f

⇒ m <Y n continuity of p

(ii) Let p be final. If f ′ is <-final then f is <-final by Proposition 3.2.24.

Assume f ′ is <-strict, then

m vX n⇒ p′−1(m) <P p
′−1(n) <-continuity of p′

⇒ f ′(p′−1(m)) <Q f
′(p′−1(n)) <-strictness of f ′

⇒ p−1(f(m)) <Q p
−1(f(n)) BCP

⇒ f(m) <Y f(n) finality of p

Suppose f ′ is v-co-strict, then

f−1(m) vX n⇒ p′−1(f−1(m) <P p
′−1(n) <-continuity of p′

⇒ f ′−1(p−1(m)) <P p
′−1(n) BCP

⇒ p−1(m) <Q f
′
∗(p
−1(n)) co-strictness of f ′

⇒ p−1(m) <Q p
−1(f∗(n)) BCP

⇒ m <Y f∗(n) finality of p

If f ′ is <-initial, then

m <X n⇒ p′−1(m) <P p
′−1(m) v-continuity of p′

⇒ f ′(p′−1(m)) <Q f
′
∗(p
′−1(n)) initiality of f ′

⇒ p−1(f(m)) <Q p
−1(f∗(n)) BCP

⇒ f(m) <Y f∗(n) finality of p
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Definition 2.2.9.

([DT95, GT00, CGT01])Let f : X −→ Y be a C and c ∈ CL(C,M). Then f is

(1) c-closed if f(cX(m)) = cY (f(m)) for all m ∈ subX.

(2) c-open if f−1(cY (n)) = cX(f−1(n)) for all n ∈ subY .

(3) c-initial if cX(m) = f−1(cY (f(m))) for all m ∈ subX.

(4) c-final if cY (n) = f(cX(f−1(n))) for all n ∈ subY .

Our next proposition shows that when <∈
∧
−TORD(C,M), then the <-strict mor-

phism (resp. <-co-strict, <-initial, <-final) correspond the c<-closed (resp. c<-open,

c<-initial and c-final) morphisms.

Proposition 2.2.10. Let <∈
∧
−TORD(C,M), and let for any morphism f ∈ C, the

inverse image f−1 commutes with the join of subobjects. Then f : X −→ Y is <-initial

(resp. <-co-strict, <-final, <-strict ) if and only if it is c<-initial (resp c<-open, c<-final,

c<-closed ).

Proof. (1) Let f be a c<-initial and <∈
∧
−TORD(C,M). Then f(m) <Y f∗(n) ⇔

c<Y (f(m)) ≤ f∗(n) ⇔ f−1(c<Y (f(m))) ≤ n ⇔ c<X(m) ≤ n ⇔ m <X n. Conversely if

f is <-initial, then f−1(c<Y (f(m)) ≤ n ⇔ c<Y (f(m)) ≤ f∗(n) ⇔ f(m) <Y f∗(n) ⇔

m <X n⇔ c<X(m) ≤ n.

(2) Assume f is c<-open, then m <Y f∗(n) ⇔ c<Y (m) ≤ f∗(n) ⇔ f−1(c<Y (m) ≤ n ⇔

c<X(f−1(m)) ≤ n ⇔ f−1(m) <X n. Conversely if f <-co-strict then c<(f−1(m)) ≤

n⇔ f−1(m) <X n⇔ m <Y (n)⇔ c<Y (m) ≤ f∗(n)⇔ f−1(c<Y (m)) ≤ n.

(3) If f is c<-final, then f−1(m) <X f−1(n)⇔ c<(f−1(m)) ≤ f−1(n)⇔ f(c<(f−1(m)) ≤

n⇔ cY (m) ≤ n⇔ m <Y n. On the other hand if f is <-final, then f(c<(f−1(m)) ≤

n⇔ c<X(f−1(m)) ≤ f−1(n)⇔ f−1(m) <X f−1(n)⇔ m <Y n⇔ c<Y (m) ≤ n.

(4) ([HIR16]) If f is <-strict, then f(c<X(m)) ≤ n ⇔ c<X(m) ≤ f−1(n) ⇔ m <X

f−1(n) ⇔ f(m) <Y n ⇔ c<Y (f(m)) ≤ n. Conversely if f(c<X(m)) = c<Y (f(m)) then,

m vX f−1(n) ⇔ c<X(m) ≤ f−1(n) ⇔ f(c<X(m)) ≤ n ⇔ c<Y (f(m)) ≤ n ⇔ f(m) <Y

n.
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Open morphism with respect to an interior operator was studied in ([Cas15]). Assuming

the pre-image commutes with the join of subobjects, i-initial and i-final morphisms were

introduced in [Raz12]. Recently in ([AH19]), the i-closed morphism has been defined and

a systematic study of the four classes of morphisms with respect to an interior operator

is provided. In the next proposition we prove that if <∈
∨
−TORD(C,M), then the

<-strict morphism (resp. <-co-strict, <-initial, <-final) correspond to the i-open (resp.

i-closed, i-initial and i-final) morphisms. As introduced in ([AH19]),

Definition 2.2.11. Assume that for every C-morphism f : X −→ Y , f−1 has a right

adjoint f∗ and i ∈ INT (C,M). Then f is

(1) i-closed if f∗(iX(m)) = iY (f∗(m)) for all m ∈ subX.

(2) i-open if iX(f−1(n)) = f−1(iY (n)) for all n ∈ subY .

(3) i-initial if iX(m) = f−1(iY (f∗(m))) for all m ∈ subX.

(4) i-final if iY (n) = f∗(iX(f−1(n))) for all n ∈ subY .

Proposition 2.2.12. Let <∈
∨
−TORD(C,M), and let for any morphism f ∈ C, the

inverse image f−1 commutes with the join of subobjects. Then f : X −→ Y is <-initial

(resp. <-co-strict, <-final, <-strict) if and only if it is i-initial (resp. i-closed, i-final,

i-open ).

Proof. (1) If f is i-initial and <∈
∨
−TORD(C,M), then f(m) <Y f∗(n) ⇔ f(m) ≤

i<Y (f∗(n)) ⇔ m ≤ f−1(i<Y (f∗(n)) ⇔ m ≤ i<X(n) ⇔ m <X n. Conversely if f is <-

initial then m ≤ f−1(iY (f∗(n))) ⇔ f(m) ≤ iY (f∗(n)) ⇔ f(m) <Y f∗(n) ⇔ m <X

n⇔ m ≤ iX(n).

(2) Let f be i-closed, then f−1(m) <X n⇔ f−1(m) ≤ iX(n)⇔ m ≤ f∗(i
<
X(n))⇔ m ≤

i<Y (f∗(n)) ⇔ m <Y f∗(n). Conversely if f is <-co-strict, m ≤ i<Y (f∗(n)) ⇔ m <

f∗(n)⇔ f−1(m) <X n⇔ f−1(m) ≤ i<X(n)⇔ m ≤ f∗(i
<(n)).

(3) If f is i-final, then f−1(m) <X f−1(n)⇔ f−1(m) ≤ i<X(f−1(n))⇔ m ≤ f∗(i
<
X(f−1(n))⇔

m ≤ i<Y (n) ⇔ m <Y n. Conversely if f is <-final then m ≤ f∗(iX(f−1(n))) ⇔

f−1(m) ≤ iX(f−1(n))⇔ f−1(m) <X f−1(n)⇔ m <Y n⇔ m ≤ iY (n).

(4) ([HIR16]) Let f be <-strict, m ≤ f−1(iY (n)) ⇔ f(m) ≤ iY (n) ⇔ f(m) <Y n ⇔

m <X f−1(n) ⇔ m ≤ iX(f−1(n)). On the other hand if f−1(i<Y (m)) = i<X(f−1(m))

then, m <X f−1(n) ⇔ m ≤ i<X(f−1(n)) ⇔ m ≤ f−1(i<Y (n) ⇔ f(m) ≤ i<Y (n)) ⇔
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f(m) <Y n.

Apart from the four classes of morphisms studied in above, a weaker notion of <-final

morphism will be usefull.

Definition 2.2.13. Let <∈ TORD. A C-morphism f : X −→ Y is said to be weakly

<-final if for any m,n ∈ subY such that m ≤ n, m <Y n⇔ f−1(m) <X f−1(n).

We note that if f ∈ E , then f is weakly <-final if and only if it is <-final.

Proposition 2.2.14. Let <∈ TORD and f : X −→ Y be a C-morphism.

(1) If <∈
∧
−TORD, then f is weakly <-final if and only if c<Y (m) = m∨f(c<X(f−1(m))).

(2) If <∈
∨
−TORD, then f is weakly <-final if and only if i<Y (m) = m∧f∗(i<X(f−1(m))).

Proof. (1) Let <∈
∧
−TORD and f be weakly <-final and m ∈ subY . For any

n ∈ subY such that m ≤ n, c<Y (m) ≤ n ⇔ m <Y n ⇔ f−1(m) <Y f−1(n) ⇔

f(c<Y (f−1(m)) ≤ n⇔ m ∨ f(c<X(f−1(m))) ≤ n.

On the other hand if c<Y (p) = p ∨ f(c<X(f−1(p))) for any p ∈ subY , then for all

m,n ∈ subY such that m ≤ n, m <Y n⇔ c<Y (m) ≤ n⇔ m∨ f(c<X(f−1(m))) ≤ n⇔

f(c<X(f−1(m))) ≤ n⇔ c<X(f−1(m)) ≤ f−1(n)⇔ f−1(m) <X f−1(n).

(2) Assume that <∈
∨
−TORD, f is weakly <-final and m ∈ subY . Then for any

n ∈ subY such that m ≤ n, m ≤ i<Y (n) ⇔ m <Y n ⇔ f−1(n) <X f−1(m) ⇔

f−1(m) ≤ i<X(f−1(n))⇔ m ≤ f∗(i
<
X(f−1(n)))⇔ m ≤ n ∧ f∗(i<X(f−1(n))).

Conversely if i<Y (p) = p∧ f∗(i<X(f−1(p))) for any p ∈ subY , then for all m,n ∈ subY

such that m ≤ n, m <Y n ⇔ m ≤ i<Y (n) ⇔ m ≤ n ∧ f∗(i<X(f−1(n))) ⇔ m ≤

f∗(i
<
X(f−1(n)))⇔ f−1(m) ≤ i<X(f−1(n))⇔ f−1(m) <X f−1(n).

2.3 Some Properties of Topogenous orders

Having observed that a topogenous order provides a unified approach to closure and

interior operators, it is natural to think of properties of topogenous orders that would
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specialize into known ones for these two operators. This is the point we wish to make in

this section.

Definition 2.3.1. A topogenous order < is hereditary if n <M p ⇔ m(n) <X m∗(p) for

any M : M −→ X, p, n ∈ subM and X ∈ C.

It is seen from Definition 2.2.2(4) that our definition for hereditariness is equivalent to

the fact that every morphism in M is <-initial.

We shall now show that the definition above corresponds to the hereditary closure operator

if <∈
∧
−TORD(C,M) and to the hereditary interior operator if <∈

∨
−TORD(C,M).

Proposition 2.3.2. Let <∈
∧
−TORD(C,M). Then < is hereditary if and only if

n−1(c<X(n(p))) = c<N(p) for any p ∈ subN .

Proof. If < is hereditary, then c<N(p) ≤ j ⇔ p <N j ⇔ n(p) <X n∗(j) ⇔ c<X(n(p)) ≤

n∗(j)⇔ n−1(c<X(n(p))) ≤ j. Conversely if n−1(c<X(n(p))) = cN(p) then p <N j ⇔ c<N(p) ≤

j ⇔ n−1(c<X(n(p)) ≤ j ⇔ c<X(n(p)) ≤ n∗(j)⇔ n(p) <X n∗(j).

Proposition 2.3.3. Let <∈
∨
−TORD(C,M). Then < is hereditary if and only if

n−1(i<X(n∗(j))) = c<N(j) for any n ∈ subX and j ∈ subN .

Proof. If n−1(i<X(n∗(j))) = c<N(j), then p <N j ⇔ p ≤ i<N(j) ⇔ p ≤ n−1(i<X(n∗(j))) ⇔

n(p) ≤ i<X(n∗(j))⇔ n(p) <X n∗(j). Conversely if < is hereditary, p ≤ i<N(j)⇔ p <N j ⇔

n(p) <X n∗(j)⇔ n(p) ≤ i<X(n∗(j))⇔ p ≤ n−1(iX(n∗(j))).

Since being a hereditary topogenous order means that every morphism inM is <-initial,

the above two propostions can be obtained by specializing Propositions 2.2.10(1) and

2.2.12(2) to morphisms in M.

Proposition 2.3.4. Consider the following pullback diagram.

f−1(N)
f ′ //

n′

��

N

n

��
X

f
// Y

and let < be a hereditary topogenous order. Then the restriction f ′ is <-final (resp.

<-strict, <-initial, <-co-strict) provided that f is <-final (resp. <-strict, <-initial, <-

co-strict).

Proof. Similar to the one of Proposition 2.2.8(i)
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Proposition 2.3.5. Assume that every morphism in E is <-final. Let p be an E-morphism

in the following pullback diagram.

.
f ′ //

p′

��

.
p

��.
f
// .

Then f is <-final (resp. <-strict, <-initial, <-co-strict) provided that f ′ is <-final (resp.

<-strict, <-initial, <-co-strict).

Proof. Similar to the one of Proposition 2.2.8(ii)

We next prove that there are particular topogenous orders that correspond to the additive

and grounded closure and interior operators.

Let us now consider the following classes of topogenous orders.

Definition 2.3.6.

(1)
∧
−aTORD(C,M) : the class of all topogenous orders in

∧
−TORD(C,M)

statisfying (T4): m <X n and p <X q ⇒ m ∨ n <X p ∨ q, for all m, n ∈ subX.

(2)
∨
−aTORD(C,M) : the class of all topogenous orders in

∨
−TORD(C,M)

statisfying (T5): m <X n and p <X q ⇒ m ∧ n <X p ∧ q,

(3)
∧
−gTORD(C,M) : the class of all topogenous orders in

∧
−TORD(C,M)

statisfying (T6): 0X <X 0X ,

(4)
∨
−gTORD(C,M) : the class of all topogenous orders in

∨
−TORD(C,M)

statisfying (T7): 1X <X 1X .

(5)
∧
−a′TORD(C,M) : the class of all topogenous orders in

∧
−TORD(C,M)

statisfying (T4′): ∀i ∈ I, mi <X ni ⇒
∨
i∈I mi <X

∨
i∈I ni for mi, ni ∈ subX.

Proposition 2.3.7. The following statements hold true.

(1)
∧
−aTORD(C,M) ∼= aCL(C,M).

(2)
∨
−aTORD(C,M) ∼= aINT (C,M).

(3)
∧
−gTORD(C,M) ∼= gCL(C,M).

(4)
∨
−gTORD(C,M) ∼= gINT (C,M).
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(5)
∧
−a′TORD(C,M) ∼= a′CL(C,M).

Proof. (1) Assume < satisfies (T4). Obviously, c<X(m) ∨ c<X(p) ≤ c<X(m ∨ p). Let

a ≤ c<X(m ∨ p). Then a ≤
∧
{q | m ∨ p < q}. Since m < c<(m) and p < c<(p),

by (T4) m ∨ p < c<(m) ∨ c<(p). Thus a ≤ c(m) ∨ c(p). Conversely, if c is

additive and m <c n, p <c q. Then cX(m) ≤ n and cX(p) ≤ q. This implies that

cX(m ∨ n) = cX(m) ∨ cX(n) ≤ p ∨ q. Thus m ∨ n <c p ∨ q.

(2) Assume that (T5) holds. Clearly i<X(m∧ p) ≤ i<(m)∧ i<(p). Let a ≤ i<(m)∧ i<(p)

then a ≤ i<(m) =
∨
{q | p < q}. This means that there are n and q such that

a ≤ n, a ≤ q with m < n and n < q. By assumption, m ∧ p < n ∧ q and

a ≤ n ∧ q = l. Thus a ≤
∨
{l | m ∧ p < l} = i<(m ∧ p) and i<(m) ∧ i<(p) ≤

iv(m ∧ n). Conversely, if i is additive and m vi n, p vi n then m ≤ iX(m) and

p ≤ iX(q)⇒ m ∧ p ≤ iX(n) ∧ iX(q) = iX(m ∧ q). Thus m ∧ n <i n ∧ q.

(3) and (4) are clear.

(5) Assume that < satisfies (T4′). Clearly,
∨
i∈I c

<
X(mi) ≤ c<X(

∨
i∈I mi). Let n ≤

c<X(
∨
i∈I mi) =

∧
{p |

∨
i∈I mi <X p}. Since mi <X c<(mi) for each i ∈ I, by

(T4′),
∨
i∈I mi) <i

∨
i∈I c

<
X(mi). Thus n ≤

∨
i∈I c

<
X(mi).

On the other hand if c is fully additive and m <c
X ni for all i ∈ I, then cX(mi) ≤

ni ⇒
∨
i∈I cX(mi) = cX(

∨
i∈I mi) ≤

∨
i∈I ni ⇔

∨
i∈I mi <X

∨
i∈I ni.

Proposition 2.3.8.

Let <, <′∈ TORD(C,M). If < and <′ satisfy (T4), (T5). Then so does < ◦ <′.

Proof. Assume that < and <′ satisfy (T4). If m <X ◦ <′X n and m′ <X ◦ <′X n′, then

m <X p <′X n and m′ <X p′ <′X n′ for some p, p′ ∈ subX. Thus m ∨m′ <X p ∨ p′ <′X
n∨ n′, that is m∨m′ <X ◦ <′X n∨ n′. A similar argument holds for the case of (T5).

Proposition 2.3.9. Let {<i
X | i ∈ I} ⊆ TORD(C,M) for all X ∈ C and consider the

topogenous orders <∗X=
⋃
{<i

X | i ∈ I} and <�X=
⋂
{<i

X | i ∈ I} for all X ∈ C. Then

(1) <∗X is hereditary if and only if there is i ∈ I such that <i
X is hereditary.

(2) <�X is hereditary if and only if <i
X is hereditary for each i ∈ I.
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(3) <∗X satisfies (T4) to (T7) if and only if there is i ∈ I such that <i
X satisfies (T4)

to (T7).

(4) <�X satisfies (T4) to (T7) if and only if <i
X satisfies for each i ∈ I (T4) to (T7).

2.4 Lifting a Topogenous order along an M-fibration

Considering categories supplied with fixed closure operators with respect to classes of

subobjects, D. Dikranjan and W. Tholen [DT95] generalized the notion of c-continuity

of morphisms to functors and defined the least and largest closure operators for which

the functor is continuous. A concrete description of this largest closure operator was

obtained in the case of an M-fibration. In this section we wish to define a topogenous

order induced by an M-fibration which, includes D. Dikranjan and W. Tholen’s closure

as a paricular case and allows also to lift an interior operator along this functor.

Let us start by recalling from [DT95] that for an M-fibration F : A −→ C, (EF ,MF )

where EF = F−1E = {e ∈ A | Fe ∈ E} andMF = F−1M
⋂
IniF , with IniF the class of

F -initial morphisms, is a factorization system in A and M-subobject properties in C are

inherited by MF -subobjects in A. In particular,

(1) A has MF -pullbacks if C has M-pullbacks.

(2) A is MF -complete if C is M-complete.

(3) the MF -images and MF -inverse images are obtained by initially lifting M-images

and M-inverse images. Consequently Ff−1(n) = (Ff)−1(Fn) and (Ff)(Fm) =

Ff(m) for any f ∈ A and suitable subobjects n and m.

Lemma 2.4.1. [DT95] Let F : A −→ C be a faithful M-fibration.

(1) For any X ∈ A, subX and subFX are order equivalent with the inverse assignments,

γX : subX −→ subFX and δX : subFX −→ subX, given by γX(m) = Fm and

δX(n) = p with Fp = n and p ∈ IniF .

(2) For any f : X −→ Y ∈ A and suitable subobjects n,m, n′ and m′.

(1) γY (f(m)) = (Ff)(γX(m)).

(2) f(δX(n)) = δY (Ff)(n).
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(3) f−1(δY (m′)) = δX((Ff)−1(m′)).

(4) γX(f−1(n′)) = (Ff)−1(γY (n′)).

Proof. (1) is clear and (2) follows from the fact that F preserves images and inverse images

of subobjects.

Proposition 2.4.2. Let F : A −→ C be a faithful M-fibration and < be a topogenous

order on C with respect to M. Defines < by m <F
X n⇔ Fm <FX γX(n).

(1) <F is a topogenous order on A with respect to MF .

(2) <F is interpolative and satisfies (T4) provided < has the same properties.

Proof. (1) (T1) m <F
X n ⇔ Fm <FX γX(n) ⇒ Fm ≤ γX(n) ⇒ m = δX(Fm) ≤

δX(γX(n)) = n. (T2) is clear.

For (T3), let f : X −→ Y be anA-morphism and f(m) <F
Y n. Then Ff(m) <FY γY (n)⇒

(Ff)(Fm) vFY γY (n)⇒ Fm <FX (Ff)−1(γY (n)) = γX(f−1(n))⇔ m <F
X f−1(n).

(2) If <F is interpolative, then m <F
X n ⇔ Fm <FX γX(n) ⇒ ∃ p ∈ subFX | Fm <FX

p <FX γX(n) ⇒ Fm <FX γX(δX(p)) and F (δX(p)) <FX γX(n), since FδX(p) = p and

γX(δX(p)) = p. Thus m <F
X δX(p) <F

X n.

If <F satisfies (T4), then m <F
X n and m′ <F

X n′. This implies that Fm <FX γX(n) and

Fm′ <FX (γX(n). Thus Fm∧Fm′ <FX γX(n)∧ γX(n′)⇒ F (m∧m′) <FX γX(n∧n′)⇔

m ∧m′ <FX
X n ∧ n′.

In the light of Propositions 2.1.4 and 2.1.5, we can prove the following.

Proposition 2.4.3. (1) If <∈
∧
−TORD, then m <F

X n⇔ δX(c<FX(Fm)) ≤ n.

(2) If <∈
∨
−TORD, then m <F

X n⇔ m ≤ δX(i<FX(γX(n)).

Proof. (1) If <∈
∧
−TORD, then m <F

X n ⇔ Fm <FX γX(n) ⇔ cFX(Fm) ≤ γX ⇔

δX(c<FX(Fm)) ≤ δX(γX(n))⇔ δX(c<FX(Fm)) ≤ n.

(2) If <∈
∨
−TORD, then m <F

X n ⇔ Fm <FX γX(n) ⇔ Fm ≤ i<FX(γX(n)) ⇔

δX(Fm) ≤ δX(i<FX(γX(n)))⇔ m ≤ δX(i<FX(γX(n))).
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2.5 Topogenous orders induced by (co)pointed end-

ofunctors

We define the continuity of a C-morphism with respect to two topogenous orders on C

and use it to construct new topogenous orders from old. It is shown that for a pointed

endofunctor (F, η) of C and a topogenous order on C, there is a coarsest topogenous

order <F,η on C for which every ηX : X −→ FX is (<F,η,<)-continuous and dually for a

copointed endofunctor of C, there is a finest topogenous order <G,ε on C for which every

εX : GX −→ X is (<,<G,ε)-continuous. In particular, for meet preserving topogenous

order, <F,η and <G,ε correspond to the closure operators obtained by Dikranjan and W.

Tholen in ([DT95]) while join preserving <F,η and <G,ε allow us to construct the interior

operators induced by F and G respectively.

Definition 2.5.1. Let <,<′∈ TORD(C,M). A C-morphism f : X −→ Y is (<, <′)-

continuous if f(m) <′Y n ⇒ m <X f−1(n) or equivalently p <′Y n ⇒ f−1(p) <X f−1(n)

for all n, p ∈ subY and m ∈ subX.

It is clear from the definition that every C-morphism f : X −→ Y is (<, <)-continuous

and (<′, <′)-continuous, it is (<, <′)-continuous if <′⊆< .

Proposition 2.5.2. Let f : X −→ Y be a C-morphism.

(1) If <,<′∈
∧
−TORD(C,M), then f : X −→ Y is (<, <′)-continuous

if and only if f(c<X(m)) ≤ c<
′

Y (f(m)).

(2) If <,<′∈
∨
−TORD(C,M), then f : X −→ Y is (<, <′)-continuous

if and only if f−1(i<
′

Y (n)) ≤ i<X(f−1(n)).

Proof. (1) If <,<′∈
∧
−TORD(C,M) and f : X −→ Y is (<, <′)-continuous,

{f−1(n) | f(m) <′Y n} ⊆ {p | m <X p} ⇒ c<X(m) =
∧
{p | m vX p} ≤

∧
{f−1(n) | f(m) <′Y

n} = f−1(c<
′

Y (f(m)). On the other hand, if f(c<X(m)) ≤ c<
′

Y (f(m)), then f(m) <′Y n ⇔

cv
′

Y (f(m)) ≤ n⇒ f(c<X(m)) ≤ n⇔ c<X(m) ≤ f−1(n)⇔ m <X f−1(n).

(2) If <,<′∈
∨
−TORD(C,M) and f : X −→ Y is (<, <′)-continuous, then f−1(i<

′

Y (n)) ∈

{q | q <X f−1(n)} ⇒ f−1(i<
′

Y (n)) ≤
∨
{q | q <X f−1(n)} = i<Y (f−1(n)). Conversely if

f−1(i<
′

Y (n)) ≤ i<X(f−1(n)), then p ≤ f−1(i<
′

Y (n)) ⇔ f(p) <′Y n ⇒ p <X f−1(n) ⇔ p ≤

i<X(f−1(n)).
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Morphisms in C satisfying condition (1) ( resp. (2)) in Proposition 2.5.2 will be refered

to as (c<, c<
′
)-continuous (resp. (i<, i<

′
)-continuous.

Definition 2.5.3. A pointed endofunctor of C is a pair (F, η) consisting of a functor

F : C −→ C and a natural transformation η : 1C −→ F .

For any C-morphism f : X −→ Y , (F, η) induces the commutative diagram below.

X
ηX //

f
��

FX

Ff
��

Y ηY
// FY

The dual notion is the copointed endofunctor, that is a pair (G, ε) consisting of a functor

G : C −→ C and a natural transformation ε : G −→ 1C. (G, ε) induces the commutative

diagram

GX
εX //

Gf
��

X

f
��

GY εY
// Y

for any f : X −→ Y in C. If ηX ∈ E for any X ∈ C, then (F, η) is said to be E-pointed.

Dually if εX ∈M for any X ∈ C, then (G, ε) is M-copointed.

For a pointed endofunctor (F, η) of C and a topogenous order < on C, we wish to construct

the coarsest topogenous order <′ on C for which every morphism in F = {ηX : X ∈ C} is

(<′,<)-continuous and the dual case. This method was developped for categorical closure

operators in ([DT95]) and it is used in chapter 5 in the case of categorical syntopogenous

structures (in particular quasi-uniform structures).

Theorem 2.5.4. Let (F, η) be an E-pointed endofunctor of C and < be a topogenous

order on C. Then for all m,n ∈ subX, m <
F,η
X n ⇔ ηX(m) <FX p and η−1

X (p) ≤ n is a

topogenous order on C. It is the least topogenous order for which every ηX : X −→ FX

is (<F,η,<)-continuous. Moreover, <F,η is interpolative provided < interpolates.
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Proof. (1) (T1) is easily seen to be satisfied.

For (T2),m′ ≤ m <
F,η
X n ≤ n′ ⇔ ∃ p ∈ subFX | ηX(m) <FX p and r−1

X (p) ≤ n.

⇒ ηX(m′) ≤ ηX(m) <FX p and η−1
X (p) ≤ n ≤ n′

⇒ ηX(m′) <FX p and η−1
X (p) ≤ n′

⇔ m <
F , η
X n

To check (T3), let X −→ Y be a C morphism and f(m) <F,η
Y n. Then there is p ∈ subFY

such that ηY (m) <FY p and η−1
Y (p) ≤ n. By Definition 2.5.3, Ff ◦ ηX = ηY ◦ f . So

(Ff)(ηX(m)) <FY p and η−1
Y (p) ≤ n⇒ (Ff)(ηX(m)) <FX p and f−1(η−1

Y (p)) ≤ f−1(n)

⇒ ηX(m) <X (Ff)−1(p) and η−1
X ((Ff)−1(p)) ≤ f−1(n)

⇒ ηX(m) <FX l and η−1
X (l) ≤ f−1(n)(with l = g−1(p))

⇔ m <
F,η
X f−1(n)

Since ηX(m) <FX n ⇒ ηX(m) <FX n ≤ ηX(η−1
X (n)) ⇒ ηX(m) <FX ηX(η−1

X (n)) ⇔

m <
F,η
X η−1

X (n), F is (<F,η, <)-continuous. If <′ is another topogenous order on C such

that F is (<′,<)-continuous, then m <
F,η
X n ⇔ ηX(m) <FX p and η−1

X (p) ≤ n ⇒ m <X

η−1
X (p) ≤ n⇒ m <′X n.

Lastly, if < is interpolative and ηX ∈ E for all X ∈ C, then m <
F,η
X n ⇔ ηX(m) <FX p

and η−1
X (p) ≤ n for some p ∈ subFX. This implies that there is l ∈ subFX such that

ηX(m) <FX l <FX p. Thus ηX(m) <FX ηX(η−1
X (l)) <FX p, that is m <

F,η
X η−1

X (l) <
F,η
X

n.

Definition 2.5.5. [AHS06] A full subcategory A of C is reflective if for every X ∈ C,

there is an object FX ∈ A and a C-morphism ηX : X −→ FX (called the reflection

morphism) with the property that for any C-morphism f : X −→ Y with Y ∈ A, there is

a unique A-morphism g : FX −→ Y such that f = g ◦ ηX .

If ηX ∈ E for anyX ∈ C, thenA is E-reflective. Viewing a reflector as pointed endofunctor,

one obtains the following proposition that will turn out to be useful in the examples.

Proposition 2.5.6. Let A be an E-reflective subcategory of C and < be a topogenous order

on A. Then for all X ∈ C and m,n subX, m <A n⇔ ηX(m) <FX p and η−1
X (p) ≤ n is a
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topogenous order on C. It is the least one for which every reflection morphism ηX : X −→

FX is (<F,η,<)-continuous. Moreover, <F,η is interpolative provided < interpolates.

Proposition 2.5.7. Let (F, η) be a pointed endofunctor of C and <∈
∧
−TORD. Then

c<
F,η

(m) = η−1
X (c<FX(ηX(m))) is the largest closure operator on C for which every ηX :

X −→ FX is (c<
F,η
, c<)-continuous. Moreover, if < is interpolative, then c<

F,η
is idem-

potent.

Proof. (C1) follows from the fact that, ηX(m) ≤
∧
{p | ηX(m) <FX p} ⇔ m ≤

η−1
X (

∧
{p | ηX(m) <FX p}) = η−1

X (c<FX(ηX(m))). (C2) is clear. For (C3), Let f : X −→ Y

be a C-morphism and m ∈ subX.

Then f(c<
F,η

(m)) =f(η−1
X (c<FX(ηX(m)))

≤ η−1
Y ((Ff)(c<FX(ηX(m)))) Lemma 1.2.4

≤ η−1
Y (c<FX((Ff)(ηX(m))) c<-continuity

≤ η−1
Y (c<FY (ηY (f(m))) Definition 2.5.3

≤ c<
F,η

(f(m))

Since ηX(c<
F,η

(m)) ≤ c<FX(ηX(m)), F is (c<
F,η
, c<)-continuous. If c′ is another closure

operator such that F is (c′, c<)-continuous, then ηX(c′(m)) ≤ c<(ηX(m)) ⇔ c′(m) ≤

η−1
X (c<X(ηX(m)) = c<

F,η
(m). For < is interpolative,

c<
F,η

(c<
F,η

(m))) = c<
F,η

(η−1
X (c<FX(ηX(m))))

= η−1
X (c<FX(ηX(η−1

X (c<FX(ηX(m)))))

≤ η−1
X (c<FX(c<FX(ηX(m))))

= η−1
X (c<FX(ηX(m))), <∈

∧
−INTORD

= c<
F,η

(m).

Proposition 2.5.8. Let A be a reflective subcategory of C and <∈
∧
−TORD. Then

cA(m) = η−1
X (c<FX(ηX(m))) is the largest closure operator on C for which every reflection

morphism ηX : X −→ FX is (cA, c<)-continuous. Moreover, if < is interpolative, then

cA is idempotent.

45
http://etd.uwc.ac.za/



The closure operator in Proposition 2.5.8 was studied on the category of topological spaces

and continuous maps by L. Stramaccia ([Str88]), on topological categories by D. Dikranjan

([Dik92]) and later on an arbitrary category by Dikranjan and Tholen ([DT95]). It is a

special case of the pullback closure studied by D. Holgate in [Hol96, Hol95].

Proposition 2.5.9. Let (F, η) be a pointed endofunctor of C and v∈
∨
−TORD. Then

i<
F,η

X (m) = η−1
X (i<FX(ηX)∗(m))) is the least interior operator on C for which every ηX :

X −→ FX is (i<, i<
F,η

)-continuous. iF,η is idempotent provided < is interpolative and

each ηX ∈ E.

Proof. Since i<FX(ηX)∗(m)) =
∨
{n | n vFX (ηX)∗(m)} ≤ (ηX)∗(m), i<

F,η

X (m) ≤ m. (I2)

is clearly satisfied. For (I3), let f : X −→ Y be a C-morphism and m ∈ subY ,

f−1(i<
F,η

Y (m)) = f−1(η−1
X (i<FX(ηX)∗(m)))

= η−1
X (Ff)−1(i<FY (ηY )∗(m)) Definition 2.5.3

≤ η−1
X (i<FX((Ff)−1(ηY )∗(m)) c<-continuity

≤ η−1
X (i<FX(ηX)∗(f

−1(m)) Lemma 1.2.11

= i<
F,η

Y (f−1(m))

Since η−1
X (i<FX(n)) ≤ η−1

X (i<FX(ηX)∗(ηX(n))) = i<
F,η

X (η−1
X (n))), ηX is (i<

F,η
, i<)-continuous

for any X ∈ C and n ∈ subX. If i′ is another interior operator C such that ηX is (i′, i<)-

continuous, then i<
F,η

X (m) = η−1
X (i<FX((ηX)∗(m))) ≤ i′X(η−1

X (ηX)∗(n)) ≤ i′X(n).

If <∈
∨
−TORD and ηX ∈ E for allX ∈ C, then i<

F,η
(i<

F,η
(m)) = i<

F,η
(η−1
X (i<FX(ηX)∗(m)))

= η−1
X (i<FX(ηX)∗(η

−1
X (i<FX(ηX)∗(m)))) = η−1

X (i<FX(i<FX(ηX)∗(m))) = η−1
X (i<FX(ηX)∗(m)).

While the topogenous order induced by a pointed endofunctor was obtained with the help

of <-initial morphism, the notion of <-weakly final morphism is used in the next theorem

to obtain the topogenous order induced by a co-pointed endofunctor.

Theorem 2.5.10. Let (G, ε) be a co-pointed endofunctor of C and < a topogenous order

on C, then for all m ∈ subX and n ≥ m, m <G,ε n⇔ ε−1
X (n) <GX ε−1

X (n) is a topogenous

order on C. It is the largest one for which every εX : GX −→ X is (<,<G,ε)-continuous.

Proof. (T1) and (T2) are easily seen to be satisfied. For (T3), let f : X −→ Y be a

C-morphism. Then for all m ∈ subX and n ∈ subY such that f(m) ≤ n, f(m) <G,ε
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n⇔ ε−1
Y (f(m)) <GY ε

−1
Y (n)⇒ (Gf)(ε−1

X (m)) <GY ε
−1
Y (n)⇒ ε−1

X (m) <GX ε−1
X (f−1(n))⇒

m <
G,ε
X f−1(n). Now, εX : GX −→ X is trivially (<,<G,ε)-continuous and if <′ is

another topogenous order on C such that εX is (<,<′)-continuous, then m <′X n ⇒

εX(ε−1
X (m)) <′X n⇒ ε−1

X (m) <X ε−1
X (n)⇔ m vG,εX n for all n ≥ m.

Definition 2.5.11. A full subcategory A of C is coreflective if for every X ∈ C, there

is an object GX ∈ A and a morphism εX : GX −→ X (called coreflection morphism)

with the property that for any C-morphism f : Y −→ X (with Y ∈ A), there is a unique

morphism A-morphism f ′ : Y −→ GX such that εX ◦ f ′ = f.

Viewing a coreflector as a co-pointed endofunctor, we get the next proposition.

Proposition 2.5.12. Let A be a coreflective subcategory of C and < a topogenous order

on A, then for all m ∈ subX and n ≥ m, m <A n⇔ ε−1
X (n) <GX ε−1

X (n) is a topogenous

order on C. It is the largest one for which every coreflection morphism εX : GX −→ X

is (<,<A)-continuous.

Proposition 2.5.13. Let (G, ε) be a co-pointed endofunctor of C and <∈
∧
−TORD,

then for all m ∈ subX, c<
G,ε

(m) = m ∨ εX(c<(ε−1
X (m))) is a closure operator on C. It is

the least closure operator for which every εX : GX −→ X is (c, cG,ε)-continuous.

Proof. (C1) and (C2) are easily seen to be satisfied. To check (C3), let f : X −→ Y be

a C-morphism, and m ∈ subX,

f(c<
G,ε

(m)) =f(m ∨ εX(c<(ε−1
X (m))))

=f(m) ∨ f(εX(c<(ε−1
X (m))))

=f(m) ∨ εY (Gf)(c<(ε−1
X (m)))) Definition 2.5.3

≤f(m) ∨ εY (c<(Gf)(ε−1
X (m)))) c<-continuity

≤f(m) ∨ εY (c<(ε−1
Y f((m)))) Corollary 1.2.4

=c<
G,ε

f(m))

For anyX ∈ C, εX is (c<, c<
G,ε

)-continuous since εX(c<(ε−1
X (m)) ≤ c<

G,ε
(m)⇔ c<(ε−1

X (m))

≤ η−1
X (c<

G,ε
(m)). If c′ is another topogenous order on C such that εX is (c, c′)-continuous,

then c<(ε−1
X (m)) ≤ ε−1

X (c′(m)) ⇔ εX(c<(ε−1
X (m)) ≤ c′(m) ⇒ m ∨ εX(c<X(m)) ≤ c′(m) ⇒

c<
G,ε

(m)) ≤ c′(m).
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Proposition 2.5.14. Let A be a coreflective subcategory of C and <∈
∧
−TORD, then

for all m ∈ subX, cA(m) = m ∨ εX(c<(ε−1
X (m))) is a closure oparator on C. It is the

least closure operator for which every coreflection morphism εX : GX −→ X is (c, cA)-

continuous.

Proposition 2.5.15. Assume that for any morphism f ∈ C, the inverse image f−1

commutes with the joins of subobjects. Let (G, ε) be a copointed endofunctor of C and

<∈
∨
−TORD, then for all m ∈ subX, i<

(G,ε)
(m) = m ∧ (εX)∗(i

<(ε−1
X (m))) is a interior

oparator on C. It is the largest interior operator for which every εX : GX −→ X is

(i, iG,ε)-continuous.

Proof. (I1) and (I2) are clearly seen to be satisfied.

For (I3), let f : X −→ Y be a C-morphism, then

f−1(i<
G,ε

Y (m))) = f−1(m ∧ (εY )∗(i
<(ε−1

Y (m))))

= f−1(m) ∧ f−1((εY )∗(i
<
GY (ε−1

Y (m))))

≤ f−1(m) ∧ (εX)∗(Gf)−1(i<GY (ε−1
Y (m)))) Lemma 1.2.11

≤ f−1(m) ∧ (εX)∗(i
<
GX(Gf)−1((ε−1

Y (m)))) c<-continuity

≤ f−1(m) ∧ (εX)∗(i
<
GX(ε−1

X (f−1(m)))) Definition 2.5.3

= i<
G,ε

X (f−1(m)))

Since ε−1
X (i<

G,ε
(m)) = ε−1

X (m)∧ ε−1
X ((εX)∗(i

<
GX(ε−1

X (m))) ≤ i<GX(ε−1
X (m)), εX is (i<, i<

G,ε
)-

continuous.

If i′ is another interior operator on C such that εX is (i<, i′)-continuous, then ε−1
X (i′(m)) ≤

i<(ε−1
GX(n))⇔ i′(m) ≤ (εX)∗(i

<
GX(ε−1

X (n))⇒ i′(n) ≤ n ∧ (εX)∗(i
<
GX(ε−1

X (n)).

2.6 Examples

1. In the category Top of topological spaces and continuous maps with its (surjections,

emdeddings)-factorization structure, consider the following two topogenous orders:

A <X B ⇔ A ⊆ B and A <′X B ⇔ A ⊆ Bo for all X ∈ Top and A, B ⊆ X.
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Propositions 2.2.10 and 2.2.12 provide equivalent ways of characterizing open and closed

continuous maps as well as well as a continuous map whose domain carries the coarsest

topology for which the map is continuous. Equivalent ways of describing hereditary

quotient maps are provided. It is clear that f∗(A) = Y \ f(X \ A) for any A ⊆ X.

Proposition 2.6.1. The following are equivalent for a continuous map f : X −→ Y .

(1) f is open ;

(2) f−1(A) ⊆ B ⇒ A ⊆ Y \ f(X \B);

(3) B ⊆ (f−1(A))o ⇒ f(B) ⊆ Ao.

Proof. (1) ⇒ (2) then f−1(A) ⊆ B ⇔ f−1(A) ⊆ B ⇔ X \ B ⊆ X \ f−1(A) ⇔ X \ B ⊆

f−1(Y \ A)⇔ f(X \B) ⊆ Y \ A⇔ A ⊆ Y \ f(X \B).

(2) ⇒ (3) B ⊆ (f−1(A)]o ⇔ X \ f−1(A) ⊆ X \ B ⇔ f−1(Y \ A) ⊆ X \ B ⇔ Y \ A ⊆

Y \ f(B)⇔ f(B) ⊆ Y \ Y \ A⇔ f(B) ⊆ Ao.

(3)⇒ (1) B ⊆ (f−1(A))o ⇔ f(B) ⊆ Ao ⇔ B ⊆ f−1(Ao).

A similar reasoning proves the following.

Proposition 2.6.2. The following are equivalent for a continuous map f : X −→ Y .

(1) f is closed;

(2) B ⊆ f−1(A)⇔ f(B) ⊆ A;

(3) f−1(A) ⊆ Bo ⇔ A ⊆ [Y \ f(X \B)]o.

For a continuous map f : X −→ Y , X carries the initial topology induced by f if, A ⊆ X

is open iff there is an open B ⊆ Y such that A = f−1(B) or equivalentely A = f−1(f(A))

for each A ⊆ X (see e.g [GT00, Eng89]). Such morphism corresponds to the <-initial.

In fact, if f is <-initial, then f−1(f(A)) ⊆ B ⇔ X \ B ⊆ X \ f−1(f(A)) ⇔ X \ B ⊆

f−1(Y \ f(A)) ⇔ f(X \ B) ⊆ Y \ f(A) ⇔ f(A) ⊆ Y \ f(X \ B) ⇔ f(A) <Y f∗(B) ⇔

A < B ⇔ A ⊆ B. Conversely if X carries the coarsest topology for which f is continuous,

A vX B ⇔ A ⊆ B ⇔ f−1(f(A)) ⊆ B ⇔ X \ B ⊆ X \ f−1(Y \ f(A)) ⇔ f(X \ B) ⊆

Y \ f(A)⇔ f(A) ⊆ Y \ f(X \B)⇔ f(A) <Y f∗(B) for any A,B ⊆ X.

An analogous reasoning shows that X carries the coarsest topology for which f is contin-

uous iff

f(A) ⊆ [Y \ f(X \B)]o ⇔ A ⊆ Bo
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According to ([Eng89], Exercise 2F ), f is hereditary quotient if it is surjective with the

property that every restriction f ′ : f−1(A) −→ A is quotient for any A ⊆ Y or equiva-

lently f surjective with the property that f(f−1(B)) ⊆ Y is closed for every B ⊆ Y . We

clearly see that f is <-final iff it is <′-final iff it is hereditary quotient.

(T4) (resp. (T5)) are satisfied by < (resp. <′). However, (T4′) fails for v since the

Kuratowski closure is not fully additive.

2. In the category Grp of groups and group homomorphisms with the (epi, mono)-

factorization structure, let v be the topogenous structure defined by

A <G B ⇔ A ≤ N ≤ B with N �G and A,B ≤ G.

A group homomorphism is <-strict iff it preserves normal subgroups.

Proposition 2.6.3. A group homomorphism f : G −→ H is <-final if and only if it is

surjective.

Proof. Assume f is <-final. SinceH�H, f−1(H)�G. Thus f−1(H) <G G ≤ f−1(f(G))⇒

H <H f(G)⇒ H ≤ f(G)⇒ H = f(G), that is f is surjective. Conversely if f is surjec-

tive then it preserves normal subgroups and by Proposition 2.2.5(4), f is <-final.

Proposition 2.2.5(3) allows to say that every injective group homomorphism that pre-

serves normal subgroups is <-initial. It is also clear that < satisfies (T4′), (T6) and (T7).

3. Let Prox be the category of proximity spaces and proximal maps with (surjective,

embedding)-factorization. For any (X, δ) ∈ Prox and A, B ⊆ X,

A <(X, δ) B ⇔ Aδ(X \B)

is an interpolative topogenous order on Prox which satisfies (T5).

4. Consider TopGrp, the category of topological groups and continuous group homomor-

phisms. The forgetfull functor

F : TopGrp −→ Grp.
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is a mono-fibration since every subgroup of a topological group is a topological group with

the subspace topology (see [DT95]). Thus by Proposition 2.4.2, every topogenous order

on Grp can be initially lifted to a topogenous order on TopGrp.

5. Let Top be the category of topological spaces and continuous maps with its (sur-

jections, emdeddings)-factorization structure. It is well known that Topo, the category of

To-topological spaces and continuous maps is a epi-reflective subcategory of Top. Define

SX = {<Xo | Xo ∈ Topo} by A <Xo B ⇔ A ⊆ B for any Xo ⊆ Topo, A,B ⊆ Xo. Let

(F, η) be the reflector into Top. For any X ∈ Top, ηX : X −→ X/ ∼ takes each x ∈ X

to its equivalence class [x] = {y ∈ X | {x} = {y}}. Thus SX = {<F,η
X | X ∈ Top} with

A <
F,η
X B ⇔ η−1

X (ηX(A)) ⊆ B A,B ⊆ X.

6. The category sTop of sequentially closed topological spaces (those spaces in which every

sequentially closed set is closed) is M-coreflective in Top. Consider < on sTop defined

by A < B ⇔ A ⊆ C ⊆ B for any X ∈ sTop and some closed subset C of X. Let (G, ε)

be the coreflector into sTop. For any (X, T ) ∈ Top, ε(X,T ) : (X, T ′) −→ (X, T ), identity

map on X, where T ′ = {A ⊆ X | X \ A is sequentially closed } is an sTop-coreflection

for any (X, T ). It is clear that (G, ε)

A <X B ⇔ A ⊆ C ⊆ B

for some closed subset C of X.
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Chapter 3

The syntopogenous structures

In this chapter, we introduce the categorical notions of quasi-uniform and syntopogenous

structures that are fundamental to our study. The relationship between the two structures

that is established leads to the description of a quasi-uniformity as a family of categorical

closure operators. We show that for an idempotent closure operator c (interior i) on C,

there is at least a quasi-uniformity U on C compatible with c (i). This allows to find a

condition under which a topogenous order is compatible with a transitive quasi-uniformity.

We then investigate the initial morphism and Hausdorff separation axiom with respect to

a syntopogenous strucure (in particular, a quasi-uniformity). This initial morphism will

play an important role in the study of completeness of objects. The chapter ends with a

list of examples that illustrate the developped theory.

3.1 The definitions

Definition 2.1.1 enables us to axiomatize the notion of syntopogenous structure in a very

natural way.

Definition 3.1.1. A syntopogenous structure on C with respect to M is a family

S = {SX | X ∈ C} such that each SX is a family of relations on subX satisfying:

(S1) Each <X∈ SX satisfies (T1) and (T2).

(S2) SX is a directed set with respect to inclusion.

(S3) <X=
⋃
SX is an interpolative topogenous order.
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We can extend the ordering of topogenous orders to syntopogenous structures in the

following way: S ≤ S ′ if for all X ∈ C and <X∈ SX , there is <′X∈ S ′X such that

<X⊆<′X . The resulting conglomerate will be denoted by SY NT .

(S3) includes the fact that for any C-morphism f : X −→ Y and <Y∈ SY , there is

<X∈ SX such f(m) <Y n ⇒ m <X f−1(n) for all m ∈ subX and n ∈ subY . This

will be referred to as the continuity condition of syntopogenous structure or simply the

S-continuity. Its equivalent descriptions are provided in the next proposition.

Proposition 3.1.2. Let f : X −→ Y be a C-morphism such that f−1 commutes with the

joins of subobjects and S ∈ SY NT . The following are equivalent to the S-continuity.

(1) For any <Y∈ SY , there is <X∈ SX | m <Y n ⇒ f−1(m) <X f−1(n) for all

n,m ∈ subY ,

(2) For any <Y∈ SY , there is <X∈ SX | m <Y f∗(n)⇒ f−1(m) <X n for all m ∈ subY

and m ∈ subY ;

(3) For any <Y∈ SY , there is <X∈ SX | f(m) <Y f∗(n)⇒ m <X n for all n,m ∈ subY .

We are interested in particular classes of syntopogenous structures as these will play an

important role in what follows.

Definition 3.1.3. We shall say that S ∈ SY NT (C,M) is:

(1) co-perfect if every <X∈ SX is
∧

-preserving for all X ∈ C.

(2) simple if SX = {<X} for any X ∈ C.

(3) interpolative if every <X∈ SX interpolates for all X ∈ C.

The ordered conglomerate of all co-perfect (resp. interpolative) syntopogenous structures

will be denoted by CSY NT (C,M) (resp. INSY NT (C,M)). A topogenous order must

interpolate to be a syntopogenous structure.

Thus INTORD(C,M) is just the class of simple syntopogenous structures. In addition,

we have the following,

Proposition 3.1.4. INTORD(C,M) is coreflective in SY NT (C,M)

Proof. We just need to observe that the inclusion <X 7−→ S<X
X = {<X | X ∈ C} has a

right adjoint S 7−→<
SX
X =

⋃
{<X∈ SX} for all X ∈ C.

Corollary 3.1.5.
∧
−INTORD(C,M) is coreflective in CSY NT (C,M).
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For the rest of this section we assume that for any C-morphism f : X −→ Y , f−1

commutes with the joins of subobjects. Proposition 3.1.2 allows us to define an S-initial

morphism.

Definition 3.1.6. Let f : X −→ Y be a C-morphism and S be a syntopogenous structure

on C. Then f is S-initial if for every <X∈ SX there is <Y∈ SY such that m <X n ⇒

f(m) <Y f∗(n) for all m, n ∈ subX.

The S-initial morphism can also be expressed without use of right adjoint f−1. In this

case f : X −→ Y is S-initial if for any <X∈ SX there is <Y∈ SY such that m <X n

implies there is p ∈ subY such that f(m) <Y p and f−1(p) ≤ n. This definition becomes

equivalent to the previous in any category where the preimage commutes with the join of

subobjects.

Definition 3.1.7. A source (fi : X −→ Xi)i∈I is S-initial if for any <X∈ SX there is

i ∈ I and <Xi∈ SXi such that m <X n⇒ f(m) <Xi (fi)∗(n).

3.2 Quasi-uniform structure or co-perfect syntopoge-

nous structure

Analogous to a uniformity, T. G. Gantner and R. C. Steinlage ([GS72]) proved that a

quasi-uniformity on a set X can be descrided in terms of subsets of X × X containing

the diagonal 4X = {(x, x) : x ∈ X}, called the ”entourages” or equivalently in terms of

covers of X or in terms of quasi-pseudometrics . The observation that this (entourage)

quasi-uniformity on X can be equivalently expressed as a family of maps f : X −→ P(X)

which can easily be extended to a family of maps f : P(X) −→ P(X), motivates the

point in our defintion that a quasi-uniformity on C will be given as a family of endomaps

on subX for each X ∈ C.

Let X ∈ C, subX being a complete lattice can be seen as a category, monotone maps

f [−], g[−] from subX to subX are the functors and there is a natural transformation

α : f [−] ⇒ g[−] exactly when f(m) ≤ g(m) for all m ∈ subX. It turns out that

F(subX), the endofunctor category on subX is ordered by ≤ “pointwise”.

Definition 3.2.1. A quasi-uniformity on C with respect toM is a family U = {UX | X ∈

C} with UX a full subcategory of F(subX) for each X such that:
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(U1) For any U ∈ UX , 1X ≤ U ,

(U2) For any U ∈ UX , there is U ′ ∈ UX sucth that U ′ ◦ U ′ ≤ U .

(U3) For any U ∈ UX and U ≤ U ′, U ′ ∈ UX .

(U4) For any U,U ′ ∈ UX , U ∧ U ′ ∈ UX .

(U5) For any C-morphism f : X −→ Y and U ∈ UY , there is U ′ ∈ UX such that

f(−) ◦ U ′ ≤ U ◦ f(−).

We shall denote by QUNIF (C,M) the conglomerate of all quasi-uniform structures on

C. It is ordered as follows: U ≤ V if for all X ∈ C and U ∈ UX , there is V ∈ VX such that

V ≤ U . We shall refer to (U5) as the continuity condition of quasi-uniformities or simply

the U -continuity. Its equivalent expression is provided by the next proposition.

Proposition 3.2.2. A morphism f : Y −→ Y is U-continuous if and only if for any

U ′ ∈ UY , there is U ′ ∈ UX such that U ′(f−1(n)) ≤ f−1(U(n)) for any n ∈ subY .

Proof. If f is U -continuous and U ∈ UY , then there is U ∈ UX such that for any n ∈

subY and m = f−1(n), f(U ′(f−1(m)) ≤ U(f(f−1(n))) ≤ U(n) ⇒ f(U ′(f−1(n))) ≤

U(n) ⇔ U ′(f−1(n)) ≤ f−1(U(n)). Conversely if the condition in the proposition is

satisfied then for any U ∈ UY , there is U ′ ∈ UX such that for anym ∈ subX and n = f(m),

U ′(f−1(f(m))) ≤ f−1(U(f(m)))⇒ U ′(m) ≤ f−1(U(f(m)))⇔ f(U ′(m)) ≤ U(f(m)).

From the image pre-image adjunction we get the following other two equivalent

expressions of the U -continuity of a C-morphism f : X −→ Y .

(1) For any U ∈ UY , there is U ′ ∈ UX such that f(U ′(f−1(n))) ≤ U(n), n ∈ subY .

(2) For any U ∈ UY , there is U ′ ∈ UX such that U ′(m) ≤ f−1(U(f(m))), m ∈ subX.

The next proposition immediately follows from (U5) and Proposition 3.2.2.

Proposition 3.2.3.

Let f : X −→ Y be a C-morphism, U ∈ QUNIF (C, M), m ∈ subX and n ∈ subY .

(1) If f(m) ≤ n then for all V ∈ UY , there is U ∈ UX such that f(U(m)) ≤ V (n).

(2) If m ≤ f−1(n) then for any V ∈ UY , there is U ∈ UX such that U(m) ≤ f−1(V (m)).

We shall often describe a quasi-uniformity by defining a base for it.
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Definition 3.2.4. A base for a quasi-uniformity U on C is a family B = {BX | X ∈ C}

with each BX a full subcategory of F(subX) for all X ∈ C satisfying all the axioms in

Definition 3.2.1 except (U3).

Lemma 3.2.5. Let U ∈ QUNIF (C,M). Then {BX | X ∈ C} is a base for U if and only

if for any U ∈ UX , there is V ∈ BX such that V ≤ U .

Definition 3.2.6. A base for quasi-uniformity on C is transitive if for all X ∈ C and

U ∈ BX , U ◦ U = U . A quasi-uniformity with a transitive base is called transitive quasi-

uniformity.

The ordered class of all transitive quasi-uniformities on C will be denoted by TQUNIF .

Proposition 3.2.7. Let U be a quasi-uniformity on C.

U∗ = {U∗X | X ∈ C} where U∗X = {U∗ | U ∈ UX} with U∗(m) =
∨
{n | m ≤ U(n)} is a

base of a quasi-uniformity on C called the conjugate quasi-uniformity of U .

Proof. (U1) is easily seen to be satisfied. For (U2), let U∗ ∈ U∗. Then U ∈ UX ⇒ ∃V ∈

UX such that V (V (m)) ≤ U(m). Thus V ∗(V ∗(m)) =
∨
{n | m ≤ V (V (m))} ≤

∨
{n | m ≤

U(n)} = U∗(m). Since (U ∧ V )(m) = U(m)∧ V (m), (U ∧ V )∗(m) = U∗(m)∧ V ∗(m) and

U∗(m) ∧ V ∗(m) ∈ U∗X . Thus (U4) is satisfied. Let f : X −→ Y be a C-morphism and

U ∈ UY . By (U5), there is U ′ ∈ UX such that f(U ′(m)) ≤ U(f(m)). Hence f(U ′∗(m)) =

f(
∨
{n | m ≤ U ′(n)} =

∨
{f(n) | m ≤ U ′(n)} ≤

∨
{p | f(m) ≤ U ′(p)} = U∗(f(m)).

Definition 3.2.8. A quasi-uniformity U on C is said to be a uniformity provided for

every U ∈ UX and X ∈ C, there is V ∈ U such that m ≤ U(n) ⇔ n ≤ V (m) for any

m, n ∈ subX.

Proposition 3.2.9. A quasi-uniformity U on C is uniformity if and only if U∗X = UX for

every X ∈ C.

Proof. Let U be a uniformity on U . We must show that for any X ∈ C, UX ≤ U∗X and

U∗X ≤ UX . So for any U ∈ UX , there is V ∈ U such that n ≤ U(m) ⇔ m ≤ V (n) so

that n ≤ U∗(m)⇒ n ≤ V (U∗(m))⇔ U∗(m) ≤ V (n)⇒ m ≤ V (n)⇔ n ≤ U(m) and for

any U∗ ∈ U∗X , U(m) ≤ U∗(m). Conversely if U∗ = U , then for any U ∈ UX and X ∈ C,

m ≤ U(n)⇔ m ≤ U∗(n)⇔ n ≤ U(m).

We have seen that QUNIF (C,M), the conglomerate of all quasi-uniform structures on

C is ordered as follows: U ≤ V if for all U ∈ UX there is V ∈ VX such that V (m) ≤ U(m)
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for any m ∈ subX. We next prove that this order confers to QUNIF (C,M) the structure

of a complete lattice.

Theorem 3.2.10. Let A = {U i | i ∈ I} ⊆ QUNIF (C,M). Then B = {BX | X ∈ C}

with BX = {U1 ∧ ... ∧ Un | for every 1 ≤ i ≤ n, U i ∈ U iX for some U i ∈ A and n ∈ N}

is a base for the supremum U =
∨
A of A. If each U i is a uniformity (resp transitive

quasi-uniformity) on C then U is also a uniformity (resp. transitive quasi-uniformity).

Proof. (U1) and (U4) are clearly satisfied. For (U2), let U = U1 ∧ ... ∧ Un ∈ BX , for

any 1 ≤ i ≤ n, U i ∈ U iX for some U i ∈ A. Then there are V 1, ..., V n such that

V 1 ◦ V 1 ≤ U1, ..., V n ◦ V n ≤ Un. Now, V = V 1 ∧ ... ∧ V n ∈ BX and V ◦ V ≤ (V 1 ◦ V 1) ∧

... ∧ (V n ◦ V n) ≤ U . Let f : X −→ Y be a C-morphism and U = U1 ∧ ... ∧ Un ∈ BY .

Then there are V 1, ..., V n such that f(U1(m)) ≤ V 1(f(m)), ..., f(Un(m)) ≤ V n(f(m)).

Thus f(U(m)) = f(U1(m)∧ ...∧Un(m)) ≤ f(U1(m))∧ ...∧ f(Un(m)) ≤ V 1(f(m))∧ ...∧

V n(f(m)) ≤ (V 1∧ ...∧V n)(f(m)) = V (f(m)). It is clear that U is finer than each U i and

if V is another quasi-uniformity on C that is finer than each U i, then U is coarser than V .

Let each U i be a uniformity and p ≤ U(m) for any U ∈ BX with p, m ∈ subX. Then

p ≤ (U1 ∧ ... ∧ Un)(m) for any 1 ≤ i ≤ n, U i ∈ U i, for some U i ∈ A and n ∈ N and there

are V 1, ..., V n with m ≤ U1(p), ...,m ≤ Un(p). Hence m ≤ (V 1 ∧ ... ∧ V n)(p) = V (p).

Assume that for each i, U i ∈ TQUNIF (C,M) and U ∈ BX . Then U = U1 ∧ ... ∧ Un

for any 1 ≤ i ≤ n, U i ∈ U iX for some U i ∈ A. Since U(U(m)) ≤ U1, ..., U(U(m)) ≤

Un, U(U(m)) ≤ (U1 ∧ ... ∧ V n)(m) = U(m).

Corollary 3.2.11. QUNIF (C,M) is complete lattice.

Proof. The least element is UX = {1X} for any X ∈ C while the greatest is the quasi-

uniformity UX consisting of all U ∈ F(subX) satisfying (U1). For any A = {U i | i ∈ I} ⊆

QUNIF (C,M), U =
∨
A ofA is constructed as in Theorem 4.1.17. Thus QUNIF (C,M)

is a complete lattice since the meet can be constructed as the join of all upper bounds of

A.

Corollary 3.2.12. UNIF (C,M) and TQUNIF (C,M) are complete sublattices of

QUNIF (C,M).

Theorem 3.2.13. The conglomerates UNIF (C,M) and TQUNIF (C,M) are coreflec-

tive in QUNIF (C,M).
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While our intention is to study a quasi-uniformity on a category, we have found it more

fruitfulful to express many of our proofs in terms of a syntopogenous structure. The next

two theorems that describe the clear relationship between the two structures shall lead

us to the achievement of this goal. Let S ∈ SY NT (C,M), BS will denote the base for

a quasi-uniformity induced by S. If B is a base for a quasi-uniformity, SB denotes the

syntopogenous structure induced by B.

Theorem 3.2.14.

The assignments U 7−→ SU and S 7−→ US given by

SBX = {<U
X | U ∈ BX} where m <U

X n⇔ U(m) ≤ n, and

BSX = {U< | <X∈ SX} where U<(m) =
∧
{n | m <X n}

for all X ∈ C and m, n ∈ subX define an adjunction between QUNIF (C,M) and

SY NT (C,M) with S 7−→ US being the right adjoint.

Proof. For all X ∈ C and B a base of a quasi-uniformity, we first show that SB is a

syntopogenous structure on C. (S1) follows from (U1) and the fact that each U ∈

BX is a monotone map while (S2) follows from (U3). For (S3), Let m <U
X n for

U ∈ BX and m, n ∈ subX. Then U(m) ≤ n. By (U2), there is U ′ ∈ UX such

that U ′(U ′(m)) ≤ U(m) ≤ n ⇒ U ′(m) ≤ U(U ′(m)) ≤ n ⇔ m <U ′ U ′(m) <U ′ n. If

f : X −→ Y is a C-morphism and U ∈ BY , then by (U4) there is U ′ ∈ BX such that

f(U ′(m)) ≤ U(f(m)) ≤ n. Now f(m) <U
Y n ⇔ U(f(m)) ≤ n ⇒ f(U ′(m)) ≤ U(f(m)) ≤

n⇒ f(U ′(m)) ≤ n⇒ U ′(m) ≤ f−1(n)⇔ m <U ′
X f−1(n).

On the other hand, one uses (S1) and (S2) to see that BS satisfies (U1) and (U3) respec-

tively. For (BU2), let U< ∈ BSX for <∈ SX . Then by (S3) there is <X∈ SX such that

<X⊂<X ◦ <X . This implies that U< ◦ U< ≤ U<. Let f : X −→ Y be a C-morphism

and U<
Y ∈ BSY . Then by (S3), there is <Y such that f(m) <Y n ⇒ m <X f−1(n).

Thus U<X (m) =
∧
{n | m <X n} ≤

∧
{f−1(p) | f(m) <Y p} = f−1(U<X (f(m)) ≤

f−1(U<Y (f(m)))⇒ U<X (m) ≤ f−1(U<Y (f(m)))⇔ f(U<X (m))) ≤ U<Y (f(m)).

Assume BX ≤ B′X for all X ∈ C and <U∈ SB for some U ∈ UX . By assumption, there is

V ∈ B′X such that V ≤ U ⇒<U⊆<V . Thus SBX ≤ SB
′

X .

Furthermore, if SX ≤ S ′X and U< ∈ BSX for all <X∈ SX , there is <′X∈ S ′X such that
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<X⊆<′X⇒ U<′

X ≤ U<
X . Hence BS ≤ BS′X .

Lastly B ≤ BSB and SBS ≤ S. For any U ∈ BX and v∈ SX , m <U<

X n⇔ U<(m) ≤ n⇔∧
{p | m <X p} ≤ n⇒ m <X p and BSB = B since U<U (m) =

∧
{n | U(m) ≤ n} = U(m).

The fact that U 7−→ SU has a right inverse leads us to a condition on the syntopogenous

structure under which the other inverse exists, that is a subconglomerate of SY NT (C,M)

which is order isomorphic to QUNIF (C,M).

Theorem 3.2.15. QUNIF (C,M) is order isomorphic to CSY NT (C,M)

Proof. B = BSB by Theorem 3.2.15, we only need to show that SBS = S. It suffices to

prove that for any <X∈ SX , <U<X

X =<X . So for m <U<X

X n⇔ U<(m) ≤ n⇔
∧
{p |m <X

p} ≤ n⇔ m <X n for all X ∈ C.

Since SX ⊆
∧
−TORD(C,M) for each S ∈ CSY NT (C,M), it follows from Theorem

3.2.15 that a quasi-uniformity on C is a collection of families of closure operators.

By Corallary 2.1.6,
∧
−INTORD(C,M) is isomorphic to the conglomerate of idempotent

closure operators and from Theorem 3.2.15, CSY NT (C,M) ∼= QUNIF (C,M). Thus by

Corollary 3.1.5 every idempotent closure operator on C is a base for a quasi-uniformity.

From Propositions 2.1.4, 2.1.2 and Theorem 3.2.15, we obtain the interior and neighbour-

hood operators associated to a quasi-uniformity as one can see in the following proposition.

Proposition 3.2.16. Let U be a quasi-uniformity on C and X ∈ C.

(i) If for any C-morphism f : X −→ Y , f−1 commutes with the joins of subobjects,

then iU(m) =
∨
{p ∈ subX | U(p) ≤ m for some U ∈ UX} is an interior operator

on C.

(ii) νU(m) = {n ∈ subX | U(m) ≤ n for some U ∈ UX} is a neighbourhood operator on

C.

Proof. (i) (I1) and (I2) are easily seen to be satisfied. To check (I3), we let f :

X −→ Y be a C-morphism and U ∈ UY , then by Proposition 3.2.2 there is U ′ ∈

UX such that U ′(f−1(m)) ≤ f−1(U(m)) for any m ∈ subY . Thus f−1(iUY (m)) =

f−1(
∨
{p | U(p) ≤ m}) =

∨
{f−1(p) | U(p) ≤ m} ≤

∨
{l | U ′(f−1(p)) ≤ m} =

iU
′

Y (f−1(m)).
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(ii) (N1) to (N3) are clear. For (N4), let f : X −→ Y be a C-morphism and n ∈

νU(f(m)). Then U(f(m)) ≤ n for some U ∈ UY . By (U5) there is U ′ ∈ UX such

that f(U ′(m)) ≤ U(f(m)) ≤ n⇔ U ′(m) ≤ f−1(n)⇔ f−1(n) ∈ νU(m).

Let us denote by INTCSY NT (C,M) the conglomerate of all interpolative co-perfect

syntopogenous structures on C. We next prove that interpolative co-perfect syntopogenous

structures are exactly the transitive quasi-uniformities.

Proposition 3.2.17. INTCSY NT (C,M) is order isomorphic to TQUNIF (C,M)

Proof. Let B be a transitive base and m <U
X n for any U ∈ BX and X ∈ C, then U(m) =

U(U(m)) <U
X U(m) ≤ n, hence m <U

X U(m) <U
X n. Conversely if S ∈ INTCSY NT and

<X∈ SX ,m <X n ⇒ (∃ p) | m <X p <X n ⇒ U<X (m) ≤ p <X n ⇒ U<X (m) ≤ n. This

implies that
∧
{l | U<X (m) <X l} ≤

∧
{q | m < q} that is U<X (U<X (m)) ≤ U<X (m) and

U<X (m) ≤ U<X (U<X (m)) follows from (U1) so that U<X (m) = U<X (U<X (m)).

Theorem 3.2.15 provides a bridge from quasi-uniformity to syntopogenous structure and

back. This allows us to always compare the results we obtain for the two structures and

work at the side where the proofs are easier to manipulate.

Proposition 3.2.18. Let f : X −→ Y be a C-morphism and S ∈ CSY NT (C,M). Then

f is S-initial if and only if for every U ∈ BX there is U ′ ∈ BY such that f−1(U ′(f(m))) ≤

U(m) for all m ∈ subX.

Proof. Assume that for any U ∈ BX there is U ′ ∈ BY such that f−1(U ′(f(m))) ≤ U(m)

for all m ∈ subX and m <X n for some <X∈ SX and m, n ∈ subX. Then there is

U ∈ BX such that <U=<X and there is U ′ ∈ BY such that f−1(U ′(f(m)) ≤ U(m) ⇒

f−1(U ′(f(m)) ≤ U(m) ≤ n ⇒ f−1(U ′(f(m)) ≤ n ⇔ U ′(f(m)) ≤ f∗(n) ⇔ f(m) <U
Y

f∗(n). Conversely if S ∈ CSY NT (C,M) and f is S-initial, then for all U ∈ BX and

m, n subX, U(m) ≤ n ⇔ (∃ <X∈ SX) | m <X n ⇔ (∃ <Y∈ SY ) | f(m) <Y f∗(n) ⇔

(∃ U ′ ∈ BY ) | U ′(f(m)) ≤ f∗(n) ⇔ f−1(U ′(f(m))) ≤ n. Thus f−1(U ′(f(m))) ≤ U(m).

Proposition 3.2.19. Let f : X −→ Y be a C-morphism, S ∈ CSY NT (C,M) and S is

simple. Then f is S-initial if and only if f−1(c<Y (f(m))) ≤ c<X(m) for all m ∈ subX.
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Proof. The proof follows from Proposition 2.1.5 and the fact that S ∈ CSY NT (C,M)

and S is simple means that S = {<} ∈
∧
−INTORD for all X ∈ C.

Proposition 3.2.20. Assume that for any C-morphism f : X −→ Y , f−1 commutes with

the join of subobjects and S ∈ CSY NT . If f is US-initial, then

(1) f is νU
S
-initial;

(2) f is iU
S
-initial.

Proof. If f is US-initial and U ∈ BSX , then there is V ∈ BSY such that f−1(V (f(m))) ≤

U(m) for all m ∈ subX. Thus,

(1) f∗(ν
US
X (m)) = {f∗(n) | U(m) ≤ n} ⊆ {p | V (f(m)) ≤ p} = νU

S
(f(m)) ⇒ νU

S
(m) ⊆

f−1(νU
S
(f(m)) that is f is νU

S
-initial.

(2) n ∈ {n | U(n) ≤ m} ⇒ f(n) ∈ {p | V (p) ≤ f∗(m)} ⇒ n ∈ {f−1(p) | V (p) ≤

f∗(m)} ⇒ {n | U(n) ≤ m} ⊆ {f−1(p) | V (p) ≤ f∗(m)} ⇒ iU
S
(m) =

∨
{n | U(n) ≤ m} ≤∨

{f−1(p) | V (p) ≤ f∗(m)} = f−1(iU
S
(f∗(m))) that is f is iU

S
-initial.

Proposition 3.2.21. Let (f : X −→ Xi)i∈I be a source in C and S ∈ CSY NT (C,M).

Then fi is S-initial if and only if for any U ∈ BSX there is i ∈ I and U ∈ BSXi such that

(fi)
−1(U ′(fi(m))) ≤ U(m) for all m ∈ subX.

Proof. Assume that for any U ∈ BSX there is i ∈ I and U ∈ BSXi such that (fi)
−1(U ′(fi(m))) ≤

U(m) and m <X n for some <X∈ SX . Then there is U ∈ BSX which determines

<X and there is i ∈ I and U ′ ∈ BSXi such that (fi)
−1(U ′(fi(m))) ≤ U(m) ≤ n ⇒

(fi)
−1(U ′(fi(m))) ≤ n⇒ U ′(fi(m))) ≤ (fi)∗(n)⇒ fi(m) <Xi (fi)∗(n). On the other hand

if S ∈ CSY NT (C,M) and fi is S-initial. Then for any U ∈ BSX , U(m) ≤ n ⇔ (∃ <X∈

SX) | m <X n ⇔ (∃ <Xi∈ SXi) | fi(m) <Xi (fi)∗(n) ⇔ (∃ U ′ ∈ BSXi) | U
′(fi(m)) ≤

(fi)∗(n)⇔ (fi)
−1(U ′(fi(m)) ≤ n.

Corollary 3.2.22. Let X =
∏

i∈I Xi be a product in C and S ∈ CSY NT (C,M). Then

(pi : X −→ Xi)i∈I is S-initial if for any U ∈ BSX there is i ∈ I and U ∈ BSXi such that

(pi)
−1(U ′(pi(m))) ≤ U(m) for all m ∈ subX.

Definition 3.2.23. Let sub+X be the class of all atomic elements of subX for any X ∈ C

and S ∈ SY NT . Then X ∈ C is said to be S-separated if for any pair m, n ∈ sub+X
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such that m∧n = 0X , there are p, q ∈ subX and <X∈ SX such that m <X p and n <X q

with p ∧ q = 0X .

Proposition 3.2.24. Let S ∈ CSY NT and X ∈ C. X is S-separated if and only if for

any n, m ∈ sub+X such that m∧ n = 0X , there is U ∈ BSX such that U(m)∧U(n) = 0X .

Proof. Assume that X is S-T2 and m, n ∈ sub+X such that m ∧ n = 0X . Then there

is <X∈ SX and p, q ∈ subX such that m <X p and n <X q with p ∧ q = 0X . By

Theorem 3.2.15 there is U ∈ BSX such that <U
X=<X . Thus U(m) ≤ p and U(n) ≤ q ⇒

U(m) ∧ U(n) ≤ p ∧ q = 0X ⇒ U(m) ∧ U(n) = 0X . Conversely if for n, m ∈ subX with

m∧n = 0X , there U ∈ BSX such that U(m)∧U(n) = 0X . Then, since S ∈ CSY NT, m <X

U(m), n <X U(n). One puts p = U(m), q = U(n) to complete the proof.

Proposition 3.2.25. If S is simple, then X is S-separate if and only if for any pair

m, n ∈ suboX such that m ∧ n = 0X , there are p, q ∈ subX and <X∈ SX such that

p ∈ νSX(m) and q ∈ νX(m) with p ∧ q = 0X .

Proof. The proof follows from Proposition 2.1.2 and the fact that S ∈ SY NT (C,M) and

S is simple means that S = {<} ∈ INTORD for all X ∈ C.

3.3 Quasi-uniform structures determined by closure

and interior operators

We have already observed in the previous section that every quasi-uniformity in a category

induces an idempotent closure operator (interior). In this section, we first prove a one

to one correspondence between idempotent closure operators and the so-called saturated

quasi-uniformities. We then define what it means for a quasi-uniformity to be compatible

with a closure operator (interior) on C. With the help of categorical topogenous struc-

tures, we show that for any idempotent closure operator c (interior i) on C, there is at

least a transitive quasi-uniformities compatible with c (i). We find a condition under

which a topogenous order is compatible with a transitive quasi-uniformity. This allows

us to characterize a closure operator (interior) that is compatible with a transitive quasi-

uniformity. In particular, when C is the category Top of topological spaces and continuous

maps, the coarsest transitive quasi-uniformity compatible with the Kuratowski interior
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operator corresponds to the Császár-Pervin quasi-uniformity and the one compatibe with

the Kuratowski closure is the inverse of the Császár-Pervin quasi-uniformity while in Grp

it allows to generate a family of idempotent closure operators on Grp determined by the

normal closure.

Definition 3.3.1. Let U ∈ QUNIF (C,M). We shall say that U is compatible with <

(or < admits U) if <X=
⋃
{<U

X : U ∈ UX} for all X ∈ C.

Thinking of a topology as a particular topogenous order, one sees that Definition 3.3.1

carries the idea of a quasi-uniformity compatible with a topology. With this understand-

ing, the classical reality that every topological space admit at least a quasi-uniformity can

now be treated in a categorical setting.

Because of Proposition 2.1.2, we can say that U ∈ QUNIF (C,M) is compatible with a

closure operator c (respectively an interior i) if cX(m) =
∧
{U(m) : U ∈ UX} (respectively

iX(m) =
∨
{n | U(n) ≤ m for some U ∈ UX}) for any m ∈ subX.

Definition 3.3.2. A quasi-uniform structure U on C is said to be saturated if for any

X ∈ C,
∧
{U : U ∈ UX} ∈ UX .

We shall denote by SQUNIF (C,M) the conglomerate of all saturated quasi-uniform

structures on C.

Proposition 3.3.3. Let U ∈ QUNIF (C,M) and X ∈ C. Then U ∈ SQUNIF (C,M) if

and only if there is a unique base B for U such that BX has a single member.

Proof. Sufficiency is clear. Let V (m) =
∧
{U(m) : U ∈ UX} for any m ∈ subX. By

assumption, V ∈ UX . Now, let BX = {V }. We must show that V ◦ V ≤ V and satisfies

(U5). Since V ∈ UX , there is U ∈ UX such that U ◦ U ≤ V . But V ≤ U and so

V (V (m)) ≤ V (U(m)) ≤ U(U(m)) ≤ V (m). Let f : X −→ Y and VY ∈ BY . Then

VY ∈ UY and there is U ′ ∈ UX such that f(U ′(m)) ≤ V (f(m)) for all m ∈ subX. Since

VX ≤ U ′, f(VX(m)) ≤ f(U ′(m)) ≤ V (f(m)). The uniqueness of B is easily seen.

As mentioned earlier, every idempotent closure operator is a base for a quasi-uniform

structure on C. Proposition 3.3.3, allows now to identify those quasi-uniform structures

that are in one to one corespondance with idempotent closure operators.

Theorem 3.3.4. SQUNIF (C,M) is order isomorphic to ICL(C,M). The inverse as-
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seignments of each other U 7−→ cU and c 7−→ U c are given by

U cX = {U ∈ F(subX) : c ≤ U} and

cU =
∧
{U : U ∈ UX}

for all X ∈ C.

Proof. The assignment c 7−→ U c is clearly well defined. For U 7−→ cU , we only need

to show that for any U ∈ SQUNIF (C,M), cU ◦ cU = cU . So for all U ∈ UX , there is

V ∈ UX such that V ◦ V ≤ U . Now, V (cU(m)) ≤ V (V (m)) ≤ U(m). Thus cU(cU(m)) =∧
{V (cU(m)) : V ∈ UX} ≤

∧
{U(m) : U ∈ UX} = cUX(m). Let c ∈ ICL(C,M), cU

c

X (m) =∧
{U(m) : U ∈ U c} = cX(m) and for any U ∈ SQUNIF (C,M), U cU = {U ∈ F(subX) :

cU ≤ U} = U .

Proposition 3.3.5. Let U ∈ SQUNIF (C,M) and f : X −→ Y be a C-morphism. Then

(1) f is U-initial if and only if f−1(cUY (f(m)) ≤ cUX(m) for any m ∈ subY .

(2) f is cU -closed if and only if for any U ∈ UX there is V ∈ UY such that V (f(m)) ≤

f(U(m)) for any m ∈ subY .

Proof. (1) Assume f is U -initial. Then for any U ∈ UX , there is V ∈ UY such that

f−1(V (f(m)) ≤ U(m). Thus f−1(
∧
{V (f(m)) : V ∈ UY } ≤ U(m)⇒ f−1(cUX(f(m)) ≤∧

{U(m) : U ∈ UX} = cUX(m). Conversely if f−1(cUY (f(m)) ≤ cUX(m) and U ∈ UX ,

then f−1(
∧
{V (f(m)) : V ∈ UY } ≤

∧
{U(m) : U ∈ UX} ≤ U(m). Since U ∈

SQUNIF (C,M), V = cUY ∈ UY and f(U ′(f(m)) ≤ U(m).

(2) If f is cU -closed and U ∈ UX , then cUY (f(m)) ≤ f(cUY (m) ≤ f(U(m)). Since U ∈

SQUNIF (C,M), there is V = cUY ∈ UY such that V (f(m)) ≤ f(U(m)). On the

other hand if for any U ∈ UX , there is V ∈ UX such that V (f(m)) ≤ f(U(m)), then

cUY (f(m)) ≤ f(U(m))⇒ cUY (f(m)) ≤ f(
∧
{U(m) : U ∈ UX}) = f(cUX(m)).

Our next theorem was motivated by the observation that a topology on a set is a particular

interpolative topogenous order and the fact that each member of a base for Pervin quasi-

uniformity depends on a finite number of open sets.
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Theorem 3.3.6. Let <∈
∧
−INTORD(C,M). Then there is a coarsest transitive quasi-

uniformity U on C compatible with <.

Proof. Let <∈
∧
−INTORD(C,M). For any X ∈ C, put A< = {m ∈ subX | m is <

- strict}. Then A is a complete sublattice of subX. If F (A<) is the collection of all finite

sublattices of A<, then SX = {<L
X | L ∈ F (A<)} where m <L

X n ⇔ ∃ p ∈ L | m ≤

p ≤ n is an interpolative co-perfect syntopogenous structure. By Theorem 3.2.14, BSX =

{U<L | L ∈ F (A<)} is a base for a transitive quasi-uniformity US on C. Now, let U = US

then m <UX n ⇔ ∃ L ∈ F (A<) | U<L(m) ≤ n ⇔ m <L
X n ⇔ ∃ p ∈ L | m ≤ p <X p ≤

n ⇒ m <X n. On the other hand, m <X n ⇔ cX(m) ≤ n ⇒ m <X cX(m) <X n. Since

cX(m) ∈ A<, put L = {cX(m), 1X} to have that m <L
X n ⇔ U<L(m) ≤ n ⇒ m <UX n.

Thus <U=<. Let U ′ ∈ QUNIF (C,M) such that <=<U
′
. We must show that U ≤ U ′ i.e

if L ∈ F (A<) then there is U ′ ∈ U ′X such that U ′(m) ≤ U<L(m) for any m ∈ subX. For

any m ∈ subX, m <L
X U<L(m)⇒ m <X U<L(m). Since <U

′
=<, there is U ′ ∈ U ′X such

that U ′(m) ≤ U<L(m).

In a similar way to the above, we prove the next Theorem.

Theorem 3.3.7. Let <∈
∨
−INTORD(C,M). Then there is a coarsest transitive quasi-

uniformity U on C compatible with <.

Theorems 3.3.6 and 3.3.7 are very important. On the one hand they allow us to conclude

that for any c ∈ ICL(C,M) (respectively iINT (C,M)), there is a coarsest transitive

quasi-uniformity U on C compatible with c (i). On the other hand they present a cate-

gorical version of the well known Császár-Pervin ([Csá63, Per62]) quasi-uniformity.

Furthermore, the analysis of the proof of Theorem 3.3.6, allows to obtain a categorical gen-

eralization of A. Cászsár’s Theorem (see [Csá00]), which characterizes those topogenous

orders that are compatible with a transitive quasi-uniformity.

Theorem 3.3.8. Let <∈ TORD(C,M). Then < is compatible with U ∈ TQUNIF (C,M)

if and only if <=<A for some complete sublattice A of subX, where m <AX n ⇔ ∃ p ∈

A | m ≤ p ≤ n.

Proof. Assume that U ∈ TQUNIF (C,M) and <=<U . For any X ∈ C, let A = {m ∈

subX | m is < −strict}. If m <X n then there is U ∈ UX such that U(m) ≤ n. By

assumption, U(m)) < U(m) ⇒ U(m) ∈ A so that m <AX n. On the other hand, m <AX
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n ⇒ ∃ p ∈ A such that m ≤ p <X p ≤ n ⇒ m <X n. Conversely let A be a complete

sublattice of subX for any X ∈ C and <=<A. Let F (A) be the collection of all finite

sublattices L of A. Then S ∈
∧
−INCSY NT (C,M) where SX = {<L

X | L ∈ F(A)}.

Now UAX = {U<L | L ∈ F(A)} is a base for a transitive quasi-uniformity on C and

<=<U
A

since m <X n ⇒ ∃ p ∈ A such that m ≤ p ≤ n. Put L = {0X , p, 1X} to have

m <U
A

X n. On the other hand if m <L
X n for some L ∈ F(A), then there is p ∈ L such

that m ≤ p ≤ n⇒ m <AX n. Since <U=
⋃
{<U : U ∈ UX}.

From Theorem 4.2.4 and Proposition 2.1.2, we can characterize the closure (interior)

operators compatible with a transitive quasi-uniformity.

Corollary 3.3.9. Let i ∈ INT (C,M). Then i is compatible with U ∈ TQUNIF (C,M)

if and only if for any X ∈ C and m ∈ subX, iX(m) =
∨
{n | ∃ p ∈ A : n ≤ p ≤ m} for

some complete sublattice of subX.

Corollary 3.3.10. Let c ∈ CL(C,M). Then c is compatible with U ∈ TQUNIF (C,M)

if and only if for any X ∈ C and m ∈ subX, cX(m) =
∧
{n | ∃ p ∈ A : m ≤ p ≤ n} for

some complete sublattice of subX.

Proposition 3.3.11. Let Let <∈ TORD(C,M). If there is U ∈ QUNIF (C,M) such

that U is compatible with <, then A< is a complete sublattice of subX for any X ∈ C.

Proof. Follows from the fact that for any U ∈ QUNIF (C,M), <U∈
∧
−TORD(C,M).

3.4 Examples

By Theorem 3.2.15, which establishes an equivalence between co-perfect syntopogenous

structures and quasi-uniformities on a category, it will be enough to define a co-perfect

syntopogenous structure when exbitting examples of a categorical quasi-uniformity. Al-

ready our first example shows that the classical quasi-uniformity is a particular co-perfect

syntopogenous structure and hence a particular categorical quasi-uniformity.

1. Let X be a (non empty) set. A filter D on X × X is called a quasi-uniformity on

X provided each member of U is a reflexive relation and for each member D ∈ D

there is D′ ∈ D such that D′ ◦D′ ⊆ D. A function f : (X, D) −→ (Y, D′) between

quasi-uniform sapces is continuous if ∀ D′ ∈ D′ ∃ D ∈ D | f 2(D) ⊆ D′ where
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f 2(D) = {(f(x), f(y)) | xDy}. Let C be Qunif , the category of quasi-uniform

spaces and quasi-uniformly continuous maps with the (surjective, quasi-uniform

embeddings)-factorization structure. Every (X, D) ∈ Qunif gives a co-perfect

syntopogenous stucture, S(X,D) = {<D
(X, D) | D ∈ D} on Qunif where A <D

(X, D)

B ⇔ D[A] ⊆ B and A, B ⊆ X. On the other hand, the co-perfect syntopogenous

structure that describes a quasi-uniformity is the one satisfying the property that

Ai < Bi (i ∈ I) ⇒
⋃
i∈I Ai <

⋃
ı∈I Bi for any index set I. This is known as

the biperfect syntopogenous structures (see [Csá63]). A morphism f : (X, D) −→

(Y, D′) is S-initial provided D is the initial quasi-uniformity induced by f on X. Let

B and B′ be bases for D′ and D′ respectively and f∗(B) = Y \ f(X \B). For D ∈ D

and A, B ⊆ X, A <(X, D) B ⇔ D[A] ⊆ B ⇔ ∃ D′ ∈ D | (f × f)−1(D′)[A] ⊆ B ⇔

f−1(D′[f(A)] ⊆ B ⇔ X \B ⊆ X \ f−1(D′[f(A)])⇔ X \B ⊆ f−1(Y \D′[f(A)])⇔

f(X \B) ⊆ Y \D′[f(A)]⇔ D′[f(A)] ⊆ Y \f(X \B)⇔ f(A) <D′

(Y, D′) f∗(B). Sub+X

is the class of single element sets of X, thus being S-separated is equivalent to the

conditions in Proposition 3.2.24.

2. In the category TopGrp of topological groups and continuous group homomor-

phisms, let (E ,M) be the (surjective, injective)-factorization structure. For any

X ∈ TopGrp, let β(e) be the neighbourhood filter of the identity element e.

For all U ∈ β(e), put

Ul = {(x, y) ∈ X ×X : x−1y ∈ U}

Ur = {(x, y) ∈ X ×X : yx−1 ∈ U}

One defines two co-perfect syntopogenous structures on TopGrp;

S lX = {<Ul
X | U ∈ β(e)}

SrX = {<Ur
X | U ∈ β(e)}

where A <
Ul
X B ⇔ U · A ⊆ B and A <Ur

X B ⇔ A · U ⊆ B. Of course, S lX = SrX if X

is abelian.

We have proved that interpolative topogenous orders are equivalent to single syntopoge-

nous structures. Below we present a number of examples derived from idempotent closure

and interior operators. In some cases we derive the categorical quasi-uniform structure

determined by the order.

1. Let C = Grp be the category of groups and group homomorphisms with (surjective,

injective)-factorization system. For any A,B ≤ G, let SG = {<G | G ∈ Grp} with
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A <G B ⇔ A ≤ N ≤ B with N �G is a co-perfect simple syntopogenous structure

(meet preserving topogenous order) on Grp. Then P(A<) = {N ≤ G | N � G}

is a complete lattice so that SX = {<L
X | L ∈ P(A<)} where A <L

X B ⇔ ∃ N ∈

L | A ≤ N ≤ B i.e each U<L(A) =
⋂
{B ≤ G | ∃ N ∈ L : A ≤ N ≤ B} is an

idempotent closure operator on Grp. Now

BSX = {U<L | L ∈ P(A<)}

is a family of idempotent closure operators on Grp with
⋂
{U<L(A) | L ∈ P(A<)} =

NG(A) where N is the normal closure.

2. In the category AbGrp of abelian groups and abelian group homomorphisms, let

M be the class of injective abelian group homomorphisms and E be the class of the

surjectives ones. Then for any G ∈ AbGrp and A, B ≤ G,

SG = {<G | G ∈ AbGrp} where A <G B ⇔ t(A) ≤ B with

t(A) = {a ∈ A : (∃n ∈ Z) n > 0 and na = 0} the torsion part of A is single

co-perfect syntopogenous structures.

3. Let C = Top the category of topological spaces and continuous maps with M the

class of embeddings and (of course) E the class of surjective continous maps. For

A,B ⊆ X,

(a) S(X, T ) = {<(X, T ) | (X, T ) ∈ Top} with A <X B ⇔ A ⊆ O ⊆ B for

some O ∈ T is a single co-perfect syntopogenous structure (meet preserving

topogenous order). Our defintions for S-separated corresponds to the usual

definitions in topology of Hausdorff topological space.

Now, A< = {O ⊆ X | O ∈ TX} is a complete lattice so that SX = {<L
X | L ∈

F (A<)} with A <L
X B ⇔ ∃ O ∈ L | A ⊆ O ⊆ B is an interpolative co-perfect

syntopogenous structure by Theorem 3.3.7, BSX = {U<L | L ∈ F (A<)} is a base

for a transitive quasi-uniformity U on Top. Since SX is biperfect (see [Csá63]),

y ∈ U<L [x] if and only if {x} <L
X X \ {y} is not true. We claim that BS is

equivalent to a base for Császár-Pervin quasi-uniformity P onX. If BP is a base

for P , then BP = {
⋂n
i=1 SOi | Oi ∈ T } where SOi = ((X \Oi)×X)∪ (X ×Oi).
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Let V ∈ BP , then

(x, y) ∈ V ⇔ (x, y) ∈ SOi for each i, 1 ≤ i ≤ n and Oi ∈ T ,

⇔ (x, y) ∈ (X \Oi)×X or (x, y) ∈ X ×Oi,

⇔ x ∈ X \Oi or y ∈ Oi,

⇔ {x} <L
X X \ {y} is not true, L = {Oi | 1 ≤ i ≤ n},

⇔ y ∈ U<L [x],

⇔ (x, y) ∈ U<L .

(b) S(X, T ) = {<(X, T ) | (X, T ) ∈ Top} with A <X B ⇔ A ⊆ C ⊆ B for some

closed C ⊆ X is a single co-perfect syntopogenous structure (meet preserving

topogenous order). A continous map f : (X, TX) −→ (Y, TY ) is S-initial if

and only if TX is the initial topology induced by f on X. Since A< = {C ⊆

X | C is closed in TX} is a complete lattice, SX = {<L
X | L ∈ F (A<)} with

A <L
X B ⇔ ∃ C ∈ L | A ⊆ C ⊆ B is an interpolative biperfect syntopogenous

structure (see [Csá63]) and so

BS = {U<L | L ∈ F (A<}

where (x, y) /∈ U<L ⇔ {x} <L
X X\{y} is a base for a transitive quasi-uniformity

U on Top. Since P−1 is generated by {SC | C is closed in T }, U = P−1.
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Chapter 4

Completeness

We have established in the previous chapter a satisfactory theory of quasi-uniform struc-

tures on a category using syntopogenous structures. Here we wish to study completeness

of objects relative to these structures. This extends to an arbitrary category the usual

theory (see e.g.[Csá63, SP66, FL82]) on the one hand, on the other hand it produces a

much simpler theory of (Cauchy completeness) even when restricted to spaces. Purely

categorical proofs of classical results are obtained, providing a possibility for our theory of

completeness to be directely applied to categories in other branches of mathematics. We

start with the convergence of filters that leads to the S-Cauchy filters. For a co-perfect

syntopogenous structure, various notions of Cauchy filters are defined and the relationship

between them is studied. This shall naturally lead us to the study of different notions of

complete objects.

4.1 The S-Cauchy filters

Since for any X ∈ C, subX is a complete lattice, by a filter on X we shall always

understand a filter on subX.

Lemma 4.1.1. Let X ∈ C and F be a filter on X. Then F is an ultrafilter on X if and

only if m ∧ n > 0X for all n ∈ F implies that m ∈ F .

Proof. Assume F is an ultrafilter on X and m∧n > 0X for all n ∈ F . Then {m∧n | n ∈

F} is a filter base for a filter F ′ on X that is finer than F and contains m. Consequentely
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F = F ′ and thus m ∈ F . Conversely if m ∧ n > 0X for all n ∈ F ⇒ m ∈ F and F ⊆ F ′

with F ′ an filter on X. Then for all p′ ∈ F ′, p′ ∧ p > 0X for any p ∈ F , which implies

that p′ ∈ F . Thus F is an maximal filter on X.

We shall also need the following lemma known as the ultrafilter lemma.

Lemma 4.1.2. For every filter F on X ∈ C, there is an ultrafilter F ′ on X such that

F ⊆ F ′.

In realm of spaces, the above lemma is equivalent to the Axiom of Choice (see e.g.[Her06]).

Let f : X −→ Y be a C-morphism and F a filter on subX then f(F) is the filter defined

by m ∈ f(F) ⇔ f−1(m) ∈ F . If f ∈ E and F is an ultrafilter then f(F) is also an

ultrafilter. If H is an ultrafilter on Y and f reflects 0 then f−1(H) is also an ultrafilter

on X where f−1(H) is the filter defined by m ∈ f−1(H)⇔ f(m) ∈ H.

For any X ∈ C, we shall denote by suboX, the class of all m ∈ subX such that m > 0X

and for all m ∈ suboX, νSX(m) = {n | m <X n for some <X∈ S}. We note that νS(m)

does not form a filter in general unless S is co-perfect.

Definition 4.1.3. Let S ∈ CSY NT , X ∈ C and F a filter on X. We say that F

converges to a subobject m ∈ suboX with respect to S and write F S−→ m if for any

<X∈ SX , m <X n ⇒ n ∈ F for n ∈ subX. F is an S-Cauchy if for any <X∈ SX there

is m ∈ suboX such that m <X n⇒ n ∈ F .

Definition 4.1.4. Let X ∈ C, m ∈ suboX, F a filter on X and S ∈ CSY NT . Then m

is a clustering of F with respect to S if n ∧ p > 0X for any n ∈ νSX(m) and p ∈ F .

The following is an easy observation.

Proposition 4.1.5. Let S ∈ CSY NT , X ∈ C and F a filter on X.

1. F S−→ m and F ⊆ F ′ ⇒ F ′ S−→ m.

2. S ≤ S ′ and F S′−→ m⇒ F S−→ m.

3. For any m ∈ suboX, νSX(m)
S−→ m.

4. F is S-Cauchy and F ⊆ F ′ then so is F ′.

5. Every S-convergent filter on X is S-Cauchy.

Definition 4.1.6. Let S ∈ SY NT and X ∈ C. A filter F on X is said to be S-Cauchy if

it is Cauchy with respect to any S∗ ∈ CSY NT that is coarser than S. It converges with
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respect to S if it converges with respect to any S∗ ∈ CSY NT such that S∗ ≤ S.

One easily sees that Proposition 4.1.5 holds for any S ′, S ∈ SY NT .

For the rest of this chapter, it is assumed that the class E is stable under pullbacks

alongM -morphisms and that any f ∈ C reflects 0.

Proposition 4.1.7. Let f : X −→ Y be a C-morphism, F a filter on X and S ∈ CSY NT .

(a) If F S−→ m then f(F)
S−→ f(m). The converse implication holds if f is S-initial.

(b) If F is S-Cauchy on X then so is f(F) on Y . The converse holds if f is S-initial

and belongs to E.

(c) If m is a clustering of F then f(m) is also a clustering of f(F).

Proof. (a) Assume that F S−→ m with m ∈ suboX. Then f(m) ∈ suboY . Let f(m) <Y

p for any <Y∈ SY and p ∈ subY . Then by (S4) there is <X∈ SX such that

m <X f−1(p) and f−1(p) ∈ F ⇔ p ∈ f(F). Conversely if f(F)
S−→ f(m) and

f(m) ∈ suboY . Then m ∈ suboX. Let m <X n for any <X∈ SX . Then there is

<Y∈ SY such that f(m) <Y f∗(n) and f∗(n) ∈ f(F). Thus f−1(f∗(n)) ∈ F which

implies that n ∈ F .

(b) Let F be S-Cauchy and <Y∈ SY . Then by (S4) there is <X∈ SX such that f(p) <Y

q ⇒ p <X f−1(q) and there is m ∈ suboX such that m <X n ⇒ n ∈ F . Thus

f(m) ∈ suboY and f(m) <Y l ⇒ m <X f−1(l)⇒ f−1(l) ∈ F ⇔ l ∈ F . Conversely

if f(F) is S-Cauchy and <X∈ SX , then there is <Y∈ SY such that m <X n ⇒

f(m) <Y f∗(n) and there is p ∈ suboY such that p <Y q ⇒ q ∈ f(F). Now

f−1(p) ∈ suboX since f ∈ E and f−1(p) <X n ⇒ p = f(f−1(p)) <Y f∗(n) ⇒

f∗(n) ∈ f(F)⇔ f−1(f∗(n)) ∈ F ⇒ n ∈ F .

(c) Let m be a clustering of F . If n ∈ νSY (f(m)) and p ∈ f(F), then f(m) <Y n for some

<Y∈ SY . By assumption, f−1(n)∧f−1(p) > 0X ⇒ 0Y < f(f−1(n)∧f−1(p)) ≤ n∧p.

Thus n ∧ p > 0X and f(m) is a clustering of F .

Corollary 4.1.8. Let f : X −→ Y be an E-morphism and F a filter on Y and S ∈

CSY NT . Assume that f is S-initial. Then

1. F S−→ m⇔ f−1(F)
S−→ f−1(m).
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2. F is S-Cauchy if and only if f−1(F) is S-Cauchy.

Proposition 4.1.9. Let X =
∏

i∈I Xi be a product in C and F a filter on X. Assume

(pi : X −→ Xi)i∈I is an S-initial source.

(1) F S−→ m if and only if pi(F)
S−→ pi(m) for each i.

(2) If for each i ∈ I the projections belong to E, then F is S-Cauchy if and only if pi(F)

is S-Cauchy for each i.

Proof. (1) If F S−→ m then pri(F)
S−→ pri(m) for each i by Proposition 4.1.7(a). Let

pi(F)
S−→ pi(m) with pi(m) ∈ suboXi. Then m ∈ suboX for each i ∈ I. Now, if m <X l

for any <X∈ SX . Then there is i ∈ I such that pi(m) <Xi (pi)∗(l) and (pi)∗(l) ∈ pi(F).

So (pi)
−1((pi)∗(l)) ∈ F ⇒ l ∈ F .

(2) If F is S-Cauchy on X, then by Proposition 4.1.7(b), pi(F) is S-Cauchy on Xi for

each i ∈ I. Conversely if pi(F) is S-Cauchy on Xi for each i ∈ I and <X∈ SX , then there

is i ∈ I and <Xi∈ SXi such that m <X n ⇒ pi(m) <Xi (pi)∗(n) and there is l ∈suboXi

such that l <Xi p⇒ p ∈ pi(F). Since pi ∈ E for each i ∈ I, p−1
i (l) ∈ suboX and pi(l) <X

n⇒ l = pi(p
−1
i (l)) <Xi (pi)∗(n)⇒ (pi)∗(n) ∈ pi(F)⇔ p−1

i ((pi)∗(n)) ∈ F ⇒ n ∈ F .

From Proposition 4.1.7 and Definition 4.1.6 we have the following.

Proposition 4.1.10. Let f : X −→ Y be a C-morphism, F a filter on X and S ∈ SY NT .

(1) If F S−→ m then f(F)
S−→ f(m). The converse implication holds if f is S-initial.

(2) F is S-Cauchy on X then so is f(F) on Y . The converse holds if f is S-initial and

belongs to E.

Proof. (1) If F S−→ m then by Definition 4.1.6, F S∗−→ m for any S∗ ∈ CSY NT such

that S∗ ≤ S. By Proposition 4.1.7, f(F)
S∗−→ f(m). Thus f(F)

S−→ f(m). Conversely if

f(F)
S−→ f(m) then f(F)

S∗−→ f(m) for any S∗ ∈ CSY NT such that S∗ ≤ S. Proposition

4.1.7 implies that F S∗−→ m. Hence F S−→ m.

(2) Let F be S-Cauchy on X, then F is S∗-Cauchy for any S ∈ CSY NT such that

S∗ ≤ S∗. By Proposition 4.1.7(b), f(F) is S-Cauchy and so f(F) is S-Cauchy. On the

other hand if f(F) is S-Cauchy, then f(F) is S∗-Cauchy for any S∗ ∈ CSY NT such that

S∗ ≤ S. Proposition 4.1.7(b) implies that F is S∗-Cauchy and thus F is S- Cauchy.
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Analogous to Corollary 4.1.8 we have the Corollary.

Corollary 4.1.11. Let f : X −→ Y be an E-morphism, F a filter on Y and S ∈ SY NT .

Assume that f is S-initial. Then

1. F S−→ m⇔ f−1(F)
S−→ f−1(m).

2. F is S-Cauchy if and only if f−1(F) is S-Cauchy.

Proposition 4.1.12. Let F be a filter on X and m ∈ suboX.

(1) If F S−→ m then m is a clustering of F . The converse holds if F is an ultrafilter.

(2) m is a clustering of F if and only if there is a filter H on X such that F ≤ H and

H S−→ m.

Proof. (1) If If F S−→ m, n ∈ νSX(m) and p ∈ F , then n ∧ p > 0X since F is a filter.

Conversely if F is an ultrafilter, m is a clustering of F and for any <X∈ SX , m <X n,

then n ∈ F .

(2) Assume that m is a clustering of F and put H = νSX(m)
⋂
F . We have that F ≤ H

and if for any <X∈ SX , m <X n ⇒ n ∈ H. Conversely if H is a filter such that

F ≤ H and H S−→ m then for any n ∈ νSX(m) and p ∈ F , there is p′ ∈ H such that

p′ ≤ p. Since H S−→ m, n ∈ H ⇒ n ∧ p′ > 0X ⇒ p ∧ n > 0X .

Theorem 4.1.13. Let S ∈ CSY NT and F be a filter on X. Then X is S-separated if

and only if F S−→ m and F S−→ n implies that m = n for all m, n ∈ sub+X and X ∈ C.

Proof. Assume that X is S-separated, F S−→ m and F S−→ n with m, n ∈ sub+X. If

m <X p and n <X q for some <X∈ SX , then p∧ q > 0X . Thus m∧n > 0X that is m = n.

Conversely if X is not S-T2, then there are m, n ∈ subX with m ∧ n = 0X such that

p ∧ q > 0X for all m <X p, n <X q and <X∈ SX . Now F = {p | m <X p}
⋃
{q | n <X q}

for all <X∈ SX so that F S−→ m and F S−→ n simultanously.

Definition 4.1.14. Let U be a quasi-uniformity on C and F filter on X. We shall say

that F converges to m (m ∈ suboX) with respect to U and write F U−→ m if for any

U ∈ UX , U(m) ∈ F . F is U-cauchy if for each U ∈ UX there is m ∈ suboX such that

U(m) ∈ F .
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Let U and V be quasi-uniform structures on C. For any X ∈ C, if UX ≤ VX then every

V-cauchy filter on X is U -Cauchy. In particular, every U -Cauchy filter is U∗-Cauchy.

Proposition 4.1.15. Let f : X −→ Y be a C-morphism. If F is U-Cauchy filter then so

is f(F). The converse holds if f is U-initial and belongs to E.

Proof. Let F be U -cauchy and U ∈ UY . Then by (U5) there is U ′ ∈ UX such that

f(U ′(n)) ≤ U(f(n)) for all n ∈ subX and there is m ∈ suboX with U ′(m) ∈ F . This

implies that f(U ′(m)) ∈ f(F). Thus f(U ′(m)) ≤ U(f(m)) ⇒ U(f(m)) ∈ f(F) and

f(m) ∈ suboY . Assume that f(F) is U -cauchy and U ∈ UX . Since f is U -initial,

there is U ′ ∈ UY such that f−1(U ′(f(m)) ≤ U(m) and there is n ∈ suboY such that

U ′(n) ∈ f(F) ⇔ f−1(U ′(n)) ∈ F . Since f ∈ E , f−1(n) ∈ suboY and f−1(U ′(n)) =

f−1(U ′(f(f−1(n)))) ≤ U(f−1(n))⇒ U(f−1(n)) ∈ F .

Proposition 4.1.16. Let S ∈ CSY NT and F a filter on X. Then F S−→ m⇔ F US−→ m

Proof. Let m ∈ suboX and F S−→ m. If U ∈ BSX then there is <X∈ SX such that <X=<U
X

and m <X n ⇒ n ∈ F . But m <X

∧
{n | m <X n} = U(m). Thus U(m) ∈ U .

Conversely if F US−→ m and m <X n then U(m) ≤ n for some U ∈ BSX . Hence n ∈ F .

Theorem 4.1.17. Let S ∈ CSY NT and F be a filter on X. Then F is S-Cauchy if and

only if it is US-Cauchy.

Proof. Let F be US-Cauchy and <X∈ SX . Since S ∈ CSY NT , by Theorem 3.2.15 there

is U ∈ BSX that determines <X and there is m ∈ suboX such that U(m) ∈ F . Now, let

m <X n⇔ U(m) ≤ n⇒ n ∈ F . Conversely if F is S-cauchy and U ∈ BSX then there is

<X∈ SX such that <U
X=<X and there is m ∈ suboX such that m <X n ⇒ n ∈ F . Now

m <X U(m) since S ∈ CSY NT and U(m) ∈ F .

Left (resp. right) Cauchy filters in quasi-uniform spaces have been investigated in [Rom96]

and these lead to left (resp. right) complete quasi-uniform spaces which are closely related

to the Smyth complete quasi-uniform spaces ([Sün93]). It seems that our co-perfect

syntopogenous structure provides a simple and natural way of stating these notions in

categorical language and link them to those obtained above. Let us also note that a

categorical approach to convergence has already been studied in the literature (see e.g

[Šla96]).

Definition 4.1.18. Let S ∈ CSY NT . A filter F on an object X ∈ C will be called:
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(1) S-round if for every n ∈ F , there is m ∈ F and <X∈ SX such that m <X n.

(2) weakly S-Cauchy (or simply wS-Cauchy) if for every <X∈ SX and for every n ∈ F ,

there is m ∈ suboX with m ≤ n such that m <X p⇒ p ∈ F for any p ∈ subX.

(3) left S-Cauchy if for all <X∈ SX there is n ∈ F such that m <X p⇒ p ∈ F for any

m ≤ n and m ∈ suboX.

(4) Corson S-filter or simply cS-filter if for all <X∈ SX , there is m ∈ suboX such that

m <X n⇒ n ∧ p > 0X for any p ∈ F .

For any X ∈ C and m ∈ suboX, νSX(m) = {n | for some <X∈ SX , m <X n} is S-round

and an S-Cauchy filter on X. An S-round and wS-Cauchy filter shall simply be called

S-round Cauchy filter.

Proposition 4.1.19. A filter F on X ∈ C is:

(1) is S-round if and only if for every n ∈ F , there is m ∈ F and there is U ∈ BSX such

that U(m) ≤ n.

(2) is wS-Cauchy if and only if for every U ∈ BSX and for every n ∈ F , there is

m ∈ suboX with m ≤ n such that U(m) ∈ F .

(3) is left S-Cauchy if and only if every U ∈ BSX there is n ∈ F such that U(m) ∈ F

for any m ≤ n and m ∈ suboX.

(4) is cS-filter if and only if for every U ∈ BSX , there is m ∈ suboX such that U(m)∧p >

0X for any p ∈ F .

Proof. (1) Assume F is S-round and m ∈ F . Then there are n ∈ F and <X∈ SX such

n <X m. By Theorem 3.2.15 there is U ∈ UX with <U
X=<X . Thus U(n) ∈ F . Conversely

if for any n ∈ F , there m ∈ F and U ∈ BSX such that U(n) ≤ m, then Theorem 3.2.15

implies the existence of <X∈ SX that determines U . Thus n <X m.

A similar argument holds for (2) and (3).

(4) Assume F is a cS-filter and U ∈ BSX . Then there is <X∈ SX and there is m ∈ suboX

such that m <X n ⇒ n ∧ p > 0X for all p ∈ F . Since m <X U(m), we get that

U(m) ∧ p > 0X . On the other hand if for any <X∈ SX , then there is U ∈ BSX such

that U< = U and there is m ∈ subX such that U(m) ∧ p > 0X for any p ∈ F . Now

m <X n⇔ U(m) ≤ n⇒ n ∧ p > 0X .
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We shall sometimes say U -round (resp. left U -Cauchy) filters to mean the equivalent

expressions of Defintion 4.1.18 provided by Proposition 4.1.19.

Definition 4.1.20. A filter F on an object X ∈ C is said to be U-stable if for any

U ∈ UX ,
∧
{U(n) | n ∈ F} ∈ F . F is right U-Cauchy if for any U ∈ UX there is n ∈ F

such that U∗(m) ∈ F for any m ≤ n and m ∈ suboX.

Proposition 4.1.21. Let F be a filter on X ∈ C. Then F is U-stable if and only if for

any U ∈ UX , there is m ∈ F such that m ≤ U(n) for any n ∈ F .

Proof. Assume that F is U -stable and U ∈ UX . Then
∧
{U(n) : n ∈ F} ∈ F . One puts

m =
∧
{U(n) : n ∈ F} ∈ F to have that, m ≤ U(n) for any n ∈ F . Conversely if it

holds that for any U ∈ UX there is m ∈ F such that m ≤ U(n) for any n ∈ F , then

m ≤
∧
{U(n) : n ∈ F} ⇒

∧
{U(n) : n ∈ F} ∈ F .

Proposition 4.1.22. Consider the following for a filter F on X ∈ C.

(1) F is U∗-stable.

(2) F is cS-Cauchy. (5) F is S-Cauchy.

(3) F is left S-Cauchy. (6) F is U-stable.

(4) F is wS-Cauchy. (7) F is right U-Cauchy.

Then (1)⇒ (2), (3)⇒ (4), (3)⇒ (6), (3)⇒ (1) and (5)⇒ (2)

If F is an ultrafilter then (1)⇒ (3), (6)⇒ (7), (5)⇒ (3) and (2)⇒ (5).

Proof. (1)⇒ (2) If F is U∗-stable and U ∈ UX , then there is m ∈ F such that m ≤ U∗(n)

for any n ∈ F . This implies that U(m)∧n > 0X . By Proposition 4.1.19, F is cS-Cauchy.

(3) ⇒ (4) If F is left S-Cauchy, <X∈ SX and n ∈ F then there is l ∈ F such that

m′ <X p ⇒ p ∈ F for any m′ ≤ l and m′ ∈ suboX. Since n, l ∈ F , l ∧ n > 0X and

putting m = l ∧ n, we get that m <X p⇒ p ∈ F , that is F is wS-Cauchy.

(3)⇒ (6) Assume that F is left S-Cauchy and <X∈ SX . Then there is n ∈ F such that

m <X p⇒ p ∈ F for any m ≤ n and m ∈suboX. Thus F is S-Cauchy.

(3)⇒ (1) Let F be left U -Cauchy and U ∈ UX . Then there is m ∈ F such that U(m) ∈ F

for all n ≤ m with n ∈ suboX. If p ∈ F , then m∧ p ≤ U(m)⇒ m ≤ U∗(m∧ p) ≤ U∗(p).

Thus F is U∗-stable.
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(5) ⇒ (2) If F is S-Cauchy and <X∈ S, then there is m ∈ suboX such that m <X n ⇒

n ∈ F , which implies that n ∧ p > o for all p ∈ F .

Let F be an ultrafilter.

(1) ⇒ (3) If F is U∗-stable and U ∈ UX , then there is m ∈ F such that m ≤ U∗(p) for

any p ∈ F . Let n ≤ m and n ∈ suboX. Then n ≤ U∗(p) ⇔ n ∧ U∗(p) > 0X ⇒ n ∈ F

since F is an ultrafilter and thus U(n) ∈ F .

(6) ⇒ (7) If F is U -stable and U ∈ UX then there is m ∈ F such that m ≤ U(p) for all

p ∈ F . If n ≤ m and n ∈ suboX, then n ≤ U(p) ⇒ n ∧ U(p) > 0X ⇒ n ∈ F since F is

an ultrafilter and thus U(n) ∈ F .

(5)⇒ (3) If F is S-Cauchy and U ∈ UX . Then there is m ∈ suboX such that U(m) ∈ F

by Proposition 4.1.19. Now, m ∧ U(m) > 0X ⇒ m ∈ F since F is an ultrafilter. Let

n ≤ m and n ∈ suboX, then U(n) ≤ U(m) and U(n) ∧ U(m) > 0X . Thus U(n) ∈ F .

(2) ⇒ (5) If F is cS-Cauchy and <X∈ SX , then there is m ∈ suboX such that m <X

n⇒ n ∧ p > 0X for any p ∈ F . Since F is an ultrafilter, n ∈ F .

It follows from Propositions 4.1.19 and 4.1.22 that every U -Cauchy filter is cS-Cauchy

with the connverse holding if F is an ultrafilter.

Proposition 4.1.23. Let f : X −→ Y be a C-morphism and F a filter on X. Then if F

is U-stable on X then so is f(F). The converse holds if f is U-initial.

Proof. Let F be U -stable on X and U ∈ UY . Then there is V ∈ UX such that f(V (p)) ≤

U(f(p)) and there is m ∈ F such that m ≤ V (n) for all n ∈ F . This implies that

f(m) ≤ f(V (m)) ≤ U(f(n)), that is f(F) is U -stable. Conversely if f(F) is U -stable

and U ∈ UX , there is U ∈ UY such f−1(U ′(f(p))) ≤ U(p) and there is m ∈ f(F) such

that m ≤ U ′(n) for all n ∈ f(F). In particular m ≤ U ′(f(p)) for all p ∈ F . Thus

f−1(m) ≤ f−1(U ′(f(p)) ≤ U(p), that is F is U -stable.

From the above proposition, we can prove the following.

Proposition 4.1.24. Let X =
∏

i∈I Xi be a product in C and F a filter on X. Assume

that (pi : X −→ Xi)i∈I is a U-initial source. Then F is U-stable if and only if pi(F) is

U-stable for each i.
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4.2 Variant of completeness

Our different notions of Cauchy filters developed in the previous section allows us to define

distinct notions of complete objects.

Definition 4.2.1. Let S ∈ SY NT . A C-object X is said to be strongly S-complete if

every S-cauchy filter on X converges with respect to S.

It can be seen from Definition 4.1.6 that a C object X is strongly S-complete if and only

if it is strongly S∗-complete with S∗ ∈ CSY NT such that S∗ ≤ S. From Proposition

4.1.16 and Theorem 4.1.17 we have that,

Proposition 4.2.2. For S ∈ CSY NT , an object X ∈ C is strongly US-complete if and

only if it strongly S-complete.

Proof. Assume that X is strongly US-complete and let F be an S-Cauchy filter. Then

by Theorem 4.1.17, F is US-Cauchy and by assymption F is US-convergent. Proposition

4.1.16 implies that F is S-convergent. Conversely if X is S-complete and F is a US

Cauchy filter on X, then F is S-Cauchy and S-convergent. By Propoposition 4.1.16, F

is US-convergent.

Proposition 4.2.3. Let f : X −→ Y be a E-morphism that is S-initial. Then X is

strongly S-complete if and only if Y is strongly S-complete.

Proof. If Y is strongly S-complete and F an S-Cauchy filter on X, then by Proposition

4.1.7(b), f(F) is S-Cauchy and by assumption, f(F)
S−→ n for some n ∈ suboY . This

implies that F S−→ f(f−1(n)) since f ∈ E . By Proposition 4.1.7(a) F S−→ f−1(n) and

f−1(n) ∈ suboX. Thus X is strongly S-complete.

On the other hand if X is strongly S-complete and F is S-Cauchy filter on Y , then by

Corollary 4.1.8 f−1(F) is S-Cauchy filter. Since X is strongly S-complete, f−1(F)
S−→

n⇒ f(f−1(F))
S−→ f(n)⇒ F S−→ f(n). Thus Y is strongly S-complete.

Theorem 4.2.4. Let X =
∏

i∈I Xi be a product in C and F a filter on X and S ∈

CSY NT . Assume that (pi : X −→ Xi)i∈I is an S-initial source. Let for each i ∈ I

the projections belong to E. Then X is strongly S-complete if and only if Xi is strongly

S-complete for each i.

In light of Proposition 4.2.2 we get
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Proposition 4.2.5. Let X =
∏

i∈I Xi be a product in C and F a filter on X and S ∈

CSY NT . Assume that (pi : X −→ Xi)i∈I is an S-initial source. Let for each i ∈ I

the projections belong to E. Then X is strongly S-complete if and only if Xi is strongly

US-complete for each i.

One naturally obtains a categorical closure operator from S-convergent filters.

Proposition 4.2.6. Let S ∈ CSY NT . Then cSX(m) =
∨
{n ∈ suboX | ∃ F on X

such that F S−→ n and m ∈ F} is a closure operator on C.

Proof. (C1) and (C2) are easily seen to be satisfied. To check (C3), let f : X −→ Y be a C-

morphism and F be a filter on Y such that F S−→ n and m ∈ F . Then by Proposition 4.1.7

(1), f(F)
S−→ f(n) and f(m) ∈ f(F). Thus f(cSX(m)) =

∨
{f(n) | ∃ F on X such that

F S−→ n and m ∈ F} ≤
∨
{n′ | ∃ F on Y such that F ′ S−→ n′ and f(m) ∈ F ′} =

cSY (f(m)).

We shall say that m is S-closed if m = cSX(m).

Proposition 4.2.7. Let m : M −→ X be S-initial and X strongly S-complete. Then M

is strongly S-complete provided m is S-closed.

Proof. Let F be S-Cauchy filter on M . Then by Proposition 4.1.7 (2), m(F) is S-Cauchy

and m(F) converges to some n ∈ subX because X is strongly S-complete. Since m is

S-closed, n ≤ m⇔ n = moj = m(j) for some j ∈ subM . Thus m(F)
S−→ m(j)⇒ F S−→ j

by Proposition 4.1.7 (1).

Definition 4.2.8. Let S ∈ CSY NT . An object X ∈ C will be said to be:

(1) S-complete if every S-round Cauchy filter on X there is a unique m ∈ suboX such

that F = νSX(m).

(2) left S-complete if every left S-Cauchy filter on X is S-convergent.

(3) cS-complete if every cS-filter on X has a clustering with respect to S

Because of Theorem 3.2.15, Proposition 4.1.19, we equivalently express the above defini-

tion as follows.

Definition 4.2.9. Let S ∈ CSY NT . An object X ∈ C will be said to be:

(1) S-complete if every US-round Cauchy filter on X there is a unique m ∈ suboX such

that F = νU
S

X (m).
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(2) left S-complete if every left US-Cauchy filter on X is US-convergent.

(3) cS-complete if every cUS-filter on X has a clustering with respect to US .

We immediately get from Proposition 4.1.22 that every strongly S-complete object is left

S-complete.

Definition 4.2.10. An object of X ∈ C is U-stable if every Cauchy filter on X is U-

complete.

Our next proposition relates left (right) U -complete objects with U -stable ultrafilters.

Proposition 4.2.11. For X ∈ C, the following hold true.

(1) If X is left U-complete, then every U∗-stable ultrafilter on X is U-convergent.

(2) If X is right U-complete, then every U-stable ultrafilter on X is U-convergent.

Proof. (1) Assume X is left U -complete and F be U∗-stable ultrafilter. By Proposition

4.1.22, F is left U -Cauchy and hence U -convergent.

(2) If Xis right U -complete and F be U -stable ultrafilter on X. By Proposition 4.1.22, F

is right U -Cauchy and thus U -convergent.

Proposition 4.2.12. Let f : X −→ Y be a U-initial C-morphism. Then X is U-stable if

and only if Y is U-stable.

Proof. Assume that X is U -stable and F is a U -Cauchy filter on Y . Then by Proposition

4.1.15, f−1(F) is a U -Cauchy filter and U -stable. Since f ∈ E , Proposition 4.1.23 implies

that F = f(f−1(F) is U -stable. On the other hand if Y is U -stable and F is U -Cauchy

filter on X, then f(F) is U -Cauchy and U -stable. By Proposition 4.1.15, f−1(f(F)) is

U -stable. Since f−1(f(F)) ⊆ F , F is U -stable.

Proposition 4.2.13. Let X =
∏

i∈I Xi be a product in C. Assume that (pi : X −→ Xi)i∈I

is a U-initial source. Then X is U-stable if and only if Xi is U-stable for each i.

Proposition 4.2.14. Let U ∈ SQUNIF (C,M). Then every C-object is Strongly U-

complete.

Proof. Let F be a U - Cauchy filter on X and BX = {U} be a base for U . Since F is U -

Cauchy, there is m ∈ sub0X such that V (m) ∈ F . But V (m) ≤ U(m) for any U ∈ UX .

Thus U(m) ∈ F and F converges to m.
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4.3 Precompactness

With the theory of completeness of objects of C already established, one would expect

precompactness coming next.

Definition 4.3.1. Let X ∈ C and S ∈ CSY NT . X is said to be S-precompact if every

ultrafilter on X is an S-Cauchy filter.

It is immediate from the above definition that every U -precompact object is U∗-precompact.

Proposition 4.3.2. Let X ∈ C and S ∈ CSY NT . X is S-precompact if and only if

every ultrafilter on X is a US-Cauchy filter.

Proof. Assume that X is S-precompact and F be an ultrafilter on X. Let U ∈ BSX .

Then by Theorem 3.2.15, there is <X∈ SX such that U< = U and there is m ∈ suboX

such that m <X n ⇒ n ∈ F . Since m <X U(m), U(m) ∈ F . Conversely if every

ultrafilter on X is US-cauchy, let F be an ultrafilter on X and <X∈ SX . Then there

is U ∈ BSX such that <U
X=<X and there is m ∈ suboX such that U(m) ∈ F . Now

m <X n⇔ U(m) ≤ n⇒ n ∈ F .

Proposition 4.3.3. Let f : X −→ Y be an E-morphism that is S-initial. Then X is

S-precompact if and only if Y is S-precompact.

Proof. Let X be S-precompact and F be an ultrafilter on X. Then f−1(F) is an ultrafilter

on X. By assumption, f−1(F) is an S-Cauchy filter on X. It follows from Proposition

4.1.7 that F = f(f−1(F)) is S-Cauchy filter on Y . Conversely let f be S-initial, belongs

to E and Y is S-precompact. If F is an ultrafilter on X, then f(F) is an ultrafilter on Y .

By assumption, f(F) is S-Cauchy. By Proposition 4.1.7, F is S-Cauchy.

Theorem 4.3.4. Let X =
∏

i∈I Xi be a product in C. Assume (pi : X −→ Xi)i∈I be an

S-initial source. Let pi belong to E for each i, then X is S-precompact if and only if Xi

is S-precompact for each i.

Definition 4.3.5. An object X is said to be hereditarily precompact (resp. U∗-precompact)

if every ultrafilter on X is left U-Cauchy (resp. U∗-Cauchy).

From the observation that a filter on X ∈ C is U∗-Cauchy if and only if it is right U -

Cauchy, we have the following

Proposition 4.3.6. (1) X is U∗-precompact if and only if it is hereditarily U∗-precompact.
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(2) X is right U-complete if and only if it is U∗-complete.

Proposition 4.3.7. If an object X ∈ C is S-precompact and left S-complete then every

ultrafilter on X is S-convergent.

Proof. Let X be S-precompact, left S-complete and F an ultrafilter on X. Then F is an

S-Cauchy filter and by Proposition 4.1.22, F is left S-Cauchy and thus S-convergent.

Proposition 4.3.8. The following hold true for a quasi-uniformity U on C and X ∈ C.

(1) X is U-precompact if every ultrafilter on X is a cS-Cauchy filter.

(2) X is hereditary U-precompact, then every ultrafilter on X is U∗-Cauchy.

Proof. (1) Assume X is U precompact and F be an ultrafilter on X. Then F is U -Cauchy

filter on X. By Proposition 4.1.22 F is a cS-Cauchy.

(2) If X is hereditarily U -precompact and F is an ultrafilter on X, then F is left U -Cauchy

filter. By Proposition 4.1.22, F is U∗-Cauchy.

4.4 The pair completeness

In order to make Cászsár’s theory of completeness of quasi-uniform spaces, expressed

in termes of syntopogenous structures, easily understandable at a level of completeness

of uniform spaces, W. F. Lindgren and P. Fletcher ([LF78]) introduced the concept of

pair completeness. Having studied various complete objects with respect to our quasi-

uniformity, it sounds natural to define pair completeness in these settings and relate it

with those obtained in the second section of this chapter.

Definition 4.4.1. Let X ∈ C and (G,F) be an ordered pair of filters on X. We shall say

that (G,F)
U−→ m (resp. (G,F) is U-stable) if G U∗−→ m and F U−→ m ( resp. G is U∗-stable

and F is U-stable). (G,F) is U-Cauchy if for any U ∈ UX , there are m ∈ G and n ∈ F

such that n ≤ U(m′) for all m′ ≤ m and m′ ∈ suboX.

It is clear from the above Definition that if (G, F) is a U -Cauchy pair then F is U -Cauchy.

Definition 4.4.2. A filter F on X ∈ C is said to be Doitchinov U-Cauchy or simply

dU-Cauchy if there is a filter G on X such that (G,F) is U-Cauchy.

Proposition 4.4.3. If F U−→ m (m ∈ sub+X) then F is dU-Cauchy.
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Proof. Assume F U−→ m and U ∈ UX . Then U(m) ∈ F . Now, let G = {l | m ≤ l}, p ≤ m

and p ∈ suboX, then U(m) ≤ U(p). Thus F is dU -Cauchy.

Proposition 4.4.4. Let U be a quasi-uniformity on C and F a filter on X ∈ C. Then

(1) F U−→ m if and only if (F ,F)
U−→ m.

(2) If U is a quasi-uniformity, then F is U-Cauchy if and only if (F ,F) is U-Cauchy.

Proof. (1) If F U−→ m and U ∈ UX , then U(m) ∈ F . Since, U(m) ≤ U∗(m), U∗(m) ∈ F

and so (F ,F)
U−→ m. On the other hand if (F ,F)

U−→ m and U ∈ UX , then U(m), U∗(m) ∈

F . Thus F U−→ m.

(2) If F is U -Cauchy and U ∈ UX , then there is V ∈ UX such that V ◦V ≤ U and there is

m ∈ suboX such that V (m) ∈ F . Let p ≤ V (m) and p ∈ suboX. Since U is a uniformity,

m ≤ V (p) ⇒ m ≤ V (m) ≤ V (V (p)) ≤ U(p). Thus (F ,F) is U -Cauchy. Conversely if

(F ,F) is U -Cauchy, then there are m, n ∈ F such that m ≤ U(p) for all p ≤ n and

p ∈ suboX. Thus U(p) ∈ F .

Proposition 4.4.5. Let f : X −→ Y be a U-initial C-morphism that reflects 0 and (G,F)

an ordered pair of filters on X. Then

(1) (G,F)
U−→ m if and only if (f(G), f(F))

U−→ f(m).

(2) (G,F) is U-stable if and only if (f(G), f(F)) is U-stable.

(3) (G,F) is U-Cauchy if and only if (f(G), f(F)) is U-Cauchy.

Proof. (1) Assume that (G,F)
U−→ m and U ∈ UY . Then by (U5), there is U ′ ∈ UX such

that f(U ′(m)) ≤ U(f(m)), U∗(m) ∈ G and U(m) ∈ F . Now, f(U ′(m)) ∈ f(F) ⇒

U(f(m)) ∈ F and f(U∗(m)) ∈ f(G) ⇒ U∗(f(m)) ∈ f(G). Thus (f(G), f(F))
U−→ f(m)

and f(m) ∈ suboY since f reflects 0.

Conversely, let (f(G), f(F))
U−→ f(m) and U ∈ UX . Then by U -initiality of f , there is

U ′ ∈ UY such that f−1(U ′(f(m))) ≤ U(m), U ′(f(m)) ∈ f(F) and U∗(f(m)) ∈ f(G). So

f−1(U ′(f(m)) ∈ F and f−1(U∗(f(m))) ∈ G which implies that U(m) ∈ F and U∗(m) ∈ G.

Consequentely, (G,F)
U−→ m.

(2) Let (G,F) be U -stable and U ∈ UY . Then there is V ∈ UX such that V (f−1(p)) ≤
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f−1(U(p)) for all p ∈ subY and there is m ∈ F and n ∈ G such that m ≤ V (m′)

and n ≤ V ∗(n′) for all m′ ∈ F and n′ ∈ G. If k ∈ f(F) and l ∈ f(G), then

m ≤ V (f−1(k)) ≤ f−1(U(k)) and n ≤ V ∗(f−1(l)) ≤ f−1(U∗(l)). Thus f(m) ≤ U(k)

and f(n) ≤ U∗(l). Consequentely (f(G), f(F)) is U -stable.

On the other hand if (f(G), f(F)) is U -stable and V ∈ UX , then there is U ∈ UY such

that f−1(U(f(p)) ≤ V (p) for all p ∈ subX and there is m′ ∈ f(G) and m ∈ f(F) such

that m ≤ U(l) and m′ ≤ U∗(k) for all l ∈ f(F) and k ∈ f(G). Let n ∈ F and n′ ∈ G, then

m ≤ U(f(n)) and m′ ≤ U∗(f(n′)). Thus f−1(m) ≤ f−1(U(f(n)) ≤ V (n) and f−1(m′)

and f−1(m′) ≤ f−1(U∗(f(n′)) ≤ V ∗(n′), that is (G,F) is U -stable.

(3) Assume that (G,F) is U -Cauchy and U ∈ UY . Then there is V ∈ UX such that

V (f−1(p)) ≤ f−1(U(p)) for all p ∈ subY and there is m ∈ G and n ∈ F such that

n ≤ V (m′) for all m′ ≤ m and m′ ∈ suboX. Let l ∈ suboY and l ≤ f(m), then f(m)∧ l =

l ⇔ f(m ∧ f−1(l)) = l since f ∈ E . Now l ∈ suboY implies that m ∧ f−1(l) ∈ suboX and

n ≤ V (m ∧ f−1(l)) ≤ V (f−1(l)) ≤ f−1(U(l)) ⇒ n ≤ f−1(U(l)) ⇔ f(n) ≤ U(l). Thus

(f(F), f(G)) is U -Cauchy.

Conversely, let (f(G), f(F)) be U -Cauchy and U ∈ UX . Then by U -initiality of f , there

is V ∈ UY such that f−1(V (f(p))) ≤ U(p) for all p ∈ subX and there is m ∈ f(G)

and n ∈ f(F) such that n ≤ V (m′) for all m′ ≤ m and m′ ∈ suboY . Let l ∈ suboX

and l ≤ f−1(m). Then f(l) ≤ m. Since f(l) ∈ suboY , n ≤ V (f(l)) ⇒ f−1(n) ≤

f−1(V (f(l))) ≤ U(l)⇒ f−1(m) ≤ U(l). Thus (G,F) is U -Cauchy.

Because of Proposition 4.4.5, we have that every dU -Cauchy filter on X is U -Cauchy.

Proposition 4.4.6. Let X =
∏

i∈I Xi be a product in C and (G,F) be an ordered pair of

filters on X. Assume that (pi : X −→ Xi)i∈I is a U-initial source.

(1) (G,F)
U−→ m if and only if (pi(G), pi(F))

U−→ pi(m) for each i.

(2) (G,F) is U-Cauchy if and only if (pi(G), pi(F)) is U-Cauchy for each i.

(3) (G,F) is U-stable if and only if (pi(G), pi(F)) is U-stable for each i.

Proposition 4.4.7. If each filter pair on X is U-stable then X is hereditarily U∗-precompact.

Proof. Assume that each filter on X is U -stable and F is an ultrafilter on X. Then

(F , F) is U -stable and so F is U -stable. Thus F is right U -Cauchy. Consequently X is
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U∗-precompact.

From Propositions 4.4.6 and 4.4.5, we can conclude that:

Proposition 4.4.8. Let f : X −→ Y be a U-initial C-morphism and F a filter on X.

Then F is dU-Cauchy if and only if f(F) is dU-Cauchy.

Proposition 4.4.9. Let X =
∏

i∈I Xi be a product in C and F be filters on X. Assume

that (pi : X −→ Xi)i∈I is a U-initial source. Then F is dU-Cauchy on X if and only if

pi(F) is dU-Cauchy for each i.

Definition 4.4.10. An object X ∈ C is dU-complete if every dU-Cauchy filter on X is

U-convergent. X is U-Cauchy bounded if every ultrafilter is dU-Cauchy.

It is now clear from Propositions 4.4.6 and 4.4.5 that Propositions 4.2.3 and 4.2.4 remain

true for dU -complete objects.

Proposition 4.4.11. (1) Every U-Cauchy bounded object is U-precompact. The con-

verse holds if U is a uniformity.

(2) If every ultrafilter on X is U-convergent then X is U-Cauchy bounded.

(3) If X is dU-complete and U-Cauchy bounded then every ultrafilter on X is U-convergent.

(4) Every strongly U-complete object is dU-complete.

(5) If (G,F) is a U-Cauchy pair then (F ,G) is a U∗-Cauchy pair.

Proof. (1) and (4) follow from the fact that every dU -Cauchy filter is filter is U -Cauchy

while (2) follows from Proposition 4.4.3.

(3) is immediate from the definitions.

(5) Assume that (G, F) is a U -Cauchy pair and U ∈ UX . Then there is m ∈ G and n ∈ F

such that n ≤ U(m′) for all m′ ≤ m and m′ ∈ suboX. If n′ ≤ n and n ∈ suboX, then

n′ ≤ U(m)⇒ m ≤ U∗(n′). Thus (F , G) is a U∗-Cauchy pair on X.

Proposition 4.4.12. Let F be a filter on X ∈ C. Then F is a left U∗-Cauchy filter if

and only if it is a right dU-Cauchy filter.

Proof. Let F be right U -Cauchy and U ∈ UX . Then there is m ∈ F such that U(m) ∈ F

for all m′ ≤ m and m′ ∈ suboX. Now, p ≤ U(m′) then m ≤ U(p). Thus one puts F = G

to see that F is dU∗-Cauchy. Conversely if F is dU∗-Cauchy, then there is a filter G on X

such that (G,F) is U∗-Cauchy. Let U ∈ U , there is m ∈ G, n ∈ F such that n ≤ U(m′)
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for all m′ ≤ m and m′ ∈ suboX. If p ≤ n and p ∈ suboX then p ≤ U(n), thus n ≤ U∗(p)

and U∗(p) ∈ F .

Every left U -Cauchy filter is U∗-Cauchy and U∗-Cauchy filters are dU -Cauchy. Con-

sequently, every dU -complete object is left U -Complete. However, the proposition above

allows one to conclude that an object is dU∗-complete if and only if it is right U -complete.

Proposition 4.4.13. If X is right U-Complete and (G, F) is a filter pair on X, then F

has a clustering with respect to U .

Proof. Assume that (G, F) is a U -Cauchy filter pair on X with X right U -complete. Let

F ′ be an ultrafilter on X that is finer that F . Then (G, F) is a U -Cauchy pair which

implies that F ′ is U∗-Cauchy since U∗ ≤ U . Thus F ′ is right U -Cauchy and so F ′ is

U -convergent. Consequentely F has a clustering with respect to U .

4.5 Examples

1. Consider the syntopogenous structure in Example 3.3(1). For any (X, D) ∈ Qunif ,

let suboX be the class of singleton subsets of X. According to Proposition 4.1.16,

an S-convergent filter on X is the one converging in the topology induced by D.

S-cauchy filters are D-cauchy filters (Theorem 4.1.17). By Proposition 4.1.19, left

(resp. right) S-Cauchy filters become the left K-Cauchy (resp. right) K-Cauchy

filters introduced by Romaguera in ([Rom96]) while wS-Cauchy filters and cS-

Cauchy filters are called weakily hereditarily Cauchy filters ([PPnR99]) and Corson

Cauchy filters ([PPnR99]). Thus, strongly S-complete objects coincide with the

convergent complete quasi-uniform spaces ([FL82]). An S-complete object corre-

sponds to a Smyth complete quasi-uniform space ([Sün93]) and left S (resp. cS)-

complete objects are the left (resp. corson) complete quasi-uniform spaces (see e.g

[Kün02, PPnR99]).

2. Let S be the syntopogenous structure in Example 3.3.5(b). For any (X, T ) ∈ Top,

a filter F on X is S-round if for all A ∈ F , there is B ∈ F such that B ⊆ O ⊆ A

for some O ∈ T , that is F has base of open subsets of X, say B = {O | O ∈ T }.

Now F being S-round and wS-Cauchy shall mean that for all O ∈ B, there is x ∈ O
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such that N (x) ⊆ B which is equivalent to saying that F is a completely prime

open filter where N (x) = {O ∈ T | x ∈ O}. Thus, (X, T ) being wS-complete is

equivalent to the fact that every completely prime filter of open sets of X is the

neighbourhood filter of a unique point of X i.e (X, T ) is a sober space. In [Smy94]

sobriety is established using covers.

3. Let S be the syntopogenous structure in Examples 3.3(2). For any (X, ·) ∈ TorGrp,

a filter F on X converges to x with respect to S if for any U ∈ β(x), U · x ∈ F .

F is S-Cauchy if for any U ∈ β(e), there is x ∈ X such that U · x ∈ F . Thus every

complete group (see e.g [Bou66]) is S-complete.
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Chapter 5

Quasi-uniform structures and

Functors

This chapter aims to describe the quasi-uniformities induced by an E-pointed (respectively

an M)-copointed endofunctor and to investigate the continuity of functors between cat-

egories supplied with fixed quasi-uniformities. We commence by defining the continuity

of a C-morphism with respect to two syntopogenous structures which permits us to study

the syntopogenous structures induced by E-pointed and M-copointed endofunctors of C.

Then apply Theorem 3.2.15 to obtain the corresponding quasi-uniformities. The notion

of continuity of functors between categories endowed with quasi-uniformities is then in-

troduced. The results proved are shown to yield in particular some of those obtained by

D. Diranjan and Tholen in ([DT95]). We conclude the chapter with a few examples that

demonstrate our results.

5.1 Quasi-uniform structures induced by (co)pointed

endofunctors

For a syntopogenous structure S on C and an E-pointed endofunctor (F, η), we show, in

this section, that there is a coarsest syntopogenous structure SF,η on C for which every

ηX : X −→ FX is (SF,η,S)-continuous. This allows us to use Theorem 3.2.15 and obtain

the coarsest quasi-uniformity USF,η on C which makes every ηX : X −→ FX (USF,η ,US)-
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continuous. The dual case of an M-copointed endofunctor is also studied.

Throughout this section, the class E will be assumed to be stable under pullback

alongM -morphisms.

Definition 5.1.1. Let S and S ′ be syntopogenous structures on C. A morphism f : X −→

Y is (S,S ′)-continous if for all <′Y∈ S ′Y , there is <X∈ SX such that f(m) <′Y n⇒ m <X

f−1(n) for all m ∈ subX and n ∈ subY , equivalently m <′Y n ⇒ f−1(m) <X f−1(n) for

all n,m ∈ subY.

Since every C-morphism f is (S, S)-continuous and (S ′,S ′)-continuous, f is (S,S ′)-

continuous if S ′ ≤ S. Because S is simple if SX = {<X} is an interpolative topogenous

order, we obtain the following proposition which is a particular case of Definition 2.5.1

for interpolative topogenous orders.

Proposition 5.1.2. Assume that S and S ′ are simple syntopogenous structures i.e SX =

{<X},S ′X = {<′X} ∈ INTORD(C,M). Then f is (S,S ′)-continuous if and only if

f(m) <′Y n⇒ m <X f−1(n) for all m ∈ subX and n ∈ subY .

Proposition 5.1.3. If S,S ′ ∈ CSY NT (C,M). Then f is (S,S ′)-continuous if and only

if for any V ∈ BS′Y there is U ∈ BSX such that f(U(m)) ≤ V (f(m)) for all m ∈ subX.

Proof. Assume that f : X −→ Y is (S,S ′)-continuous and S,S ′ ∈ CSY NT (C,M).

Then for any V ∈ BS′Y , there is <′Y∈ S ′Y which determines V and there is <X∈ SX
such that f(m) <′Y n ⇒ m <X f−1(n). Now U(m) = U<

X (m) =
∧
{p | m <X p} ≤∧

{f−1(n) | f(m) <′Y n} = f−1(V (f(m))) ⇒ U(m) ≤ f−1(V (f(m)) ⇔ f(U(m)) ≤

V (f(m)). Conversely, assume that for any V ∈ BSY there is U ∈ BSX such that f(U(m)) ≤

V (f(m)). Now, for any <′Y∈ S ′Y , there is, by Theorem 3.2.15, V ∈ BS such that

<Y =<V . Thus f(m) <′Y n ⇔ V (f(m)) ≤ n ⇒ f(U(m)) ≤ n ⇔ U(m) ≤ f−1(n) ⇔

m <U
X f−1(n)⇔ m <X f−1(n).

Propositions 5.1.2 and 2.5.2 allow us to prove the following.

Proposition 5.1.4. Let S and S ′ be simple and co-perfect syntopogenous structures i.e

SX = {<X},S ′X = {<′X} ∈
∧
−INTORD(C,M). Then f is (S,S ′)-continuous if and

only if f(c<X(m)) ≤ c<
′

X (f(m)) for all m ∈ subX.

Theorem 5.1.5. Let (F, η) be an E-pointed endofunctor of C and S a syntopogenous

structure on C with respect to M. Then SF,ηX = {<F,η
X | <FX∈ SFX} with m <

F,η
X
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n ⇔ ηX(m) <FX p and η−1
X (p) ≤ n for some p ∈ subFX is the coarsest syntopogenous

structure on C with respect to M for which every ηX : X −→ FX is (SF,η,S)-continuous.

If S is interpolative and co-perfect, then so is SF,η.

Proof. (S1) follows Theorem 2.5.4 while (S2) is clear. For (S3), let <F,η
X ∈ S

F,η
X and m <

F,η
X

n. Then there is p ∈ subFX and <FX∈ SFX such that ηX(m) <FX p and η−1
X (p) ≤ n and

there is <′FX∈ SFX such that ηX(m) <′FX l <′FX p and η−1
X (p) ≤ n for some l ∈ subFX.

Since each ηX ∈ E , ηX(m) <′FX ηX(η−1
X (l)) <′FX p. Thus m <

′F,η
X r−1

X (l) <′F,ηX p.

Let f : X −→ Y be a C-morphism and f(m) <
F,η
Y n for <

F,η
Y ∈ S

F,η
Y . Then there is

p ∈ subFY and <FY∈ SFY such that ηY (f(m)) <FY p and η−1
Y (p) ≤ n. By Definition

2.5.3, Ff ◦ ηX = ηY ◦ f .

Now, (Ff)(ηX(m)) <FY p and η−1
Y (p) ≤ n ⇒ (Ff)(ηX(m)) <FX p and f−1(η−1

Y (p)) ≤

f−1(n). So ηX(m) <X (Ff)−1(p) and η−1
X ((Ff)−1(p)) ≤ f−1(n) which gives ηX(m) <FX

l and η−1
X (l) ≤ f−1(n)(with l = g−1(p)), that is m <

F,η
X f−1(n).

If S is interpolative and m <
F,η
X n, then ηX(m) <FX p and η−1

X (p) ≤ n for some

p ∈ subFX. This implies that there is l ∈ subFX such that ηX(m) <FX l <FX p.

Thus ηX(m) <FX ηX(η−1
X (l)) <FX p, that is m <

F,η
X η−1

X (l) <F,η
X n.

ηX is (SF,η,S)-continuous, since for all <X∈ SX , ηX(m) <X n⇒ ηX(m) <FX (ηX(η−1
X (n))

⇔ m <
F,η
X η−1

X (n).

Assume S is co-perfect, then for each i ∈ I, m <
F,η
X ni ⇔ ηX(m) <FX pi and η−1

X (pi) ≤ n.

By assumption, ηX(m) <FX

∧
i∈I pi and η−1

X (
∧
i∈I pi) =

∧
i∈I η

−1
X (pi) ≤

∧
i∈I ni. Conse-

quently m <
F,η
X

∧
i∈I ni. If S ′ is another syntopogenous structure on C such that ηX is

(S ′, S)-continuous, then for any <
F,η
X ∈ S

F,η
X , m <

F,η
X n⇔ ηX(m) <FX p and η−1

X (p) ≤ n.

This implies that there is <′X∈ S ′X such that m <′X η−1
X (p) ≤ n ⇒ m <′X n. Thus

SF,η ≤ S ′.

Viewing a reflector as endofunctor of C, one obtains the corollary below.

Proposition 5.1.6. Let A be an E-reflective subcategory of C and S a syntopogenous

structure on A with respect to M. Then SAX = {<AX | <FX∈ SFX} with m <AX n ⇔

ηX(m) <FX p and η−1
X (p) ≤ n for some p ∈ subFX is the coarsest syntopogenous structure

on C with respect to M for which every reflection morphism ηX : X −→ FX is (SA,S)-

continous. If S is interpolative and co-perfect, then so is SA.

It is important to note that if S is a simple syntopogenous structure, then Theorem 5.1.5
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(resp. Proposition 5.1.6) becomes a particular case of Theorem 2.5.4 (resp. Proposition

2.5.6).

Since SF,η is co-perfect provided S is co-perfect, we get the next proposition from Theo-

rems 3.2.14 and 3.2.15.

Proposition 5.1.7. Let (F, η) be a pointed endofunctor of C and S ∈ CSY NT (C,M).

Then

BSF,ηX = {U<F,η | U< ∈ BSFX} with U<F,η(m) = η−1
X (U<(ηX(m)))

is a base for the coarsest quasi-uniformity on C with respect to M for which every

ηX : X −→ FX is (USF,η ,US)-continous. BSF,η is a transitive base provided that S is

interpolative.

Proof. (U1) m ≤ η−1
X (ηX(m)) ≤ η−1

X (U(ηX(m))) = UF,η(m).

For (U2), let U<F,η ∈ BSF,η for <FX∈ SFX . Then, by Theorem 3.2.15, there is <FX∈ SFX
such that V <′ ◦ V <′ ≤ U<.

Hence U<′F,η(U<′F,η(m)) = η−1
X (U<′(ηX(η−1

X (V <′(ηX(m)))

≤ η−1
X (U<′(U<′(ηX(m)))

≤ η−1
X (U<(ηX(m)))

= UF,η(m)

(U4) If U<F,η , U<′F,η ∈ BSF,η for <X ,<
′
X∈ SFX . U<F,η(m)∧U<′F,η(m) = η−1

X (U<(ηX(m)))∧

η−1
X (U<′(ηX(m))) = η−1

X (U<(ηX(m))∧U<′(ηX(m))) = η−1
X (U<∧U<)(ηX(m)) = U (<∧<)F,η(m).

Thus U<F,η ∧ U<′F,η ∈ BSF,η .

(U5) Let f : X −→ Y be a C-morphism and U<F,η ∈ BSF,η for <FY∈ SFY . Then there is

<FX∈ SFX such that f(V <FX (m)) ≤ U<FY (f(m)).

Thus f(V <F,η(m)) = f(η−1
X (V <FX (ηX(m)))

≤ η−1
Y (Ff)(V <FX (ηX(m))) Lemma 1.2.4

≤ η−1
Y (U<FY (Ff)(ηX(m)))

= η−1
Y (U<FX (ηY (f(m))) Definition 2.5.3
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Since, for any <FX∈ SX , U<F,η(m) = η−1
X (U<(ηX(m))) ⇒ ηX(U<F,η(m)) ≤ U<(ηX(m)),

ηX is (USF,η , U)-continous for all X ∈ C. If S is interpolative then

U<F,η(U<F,η(m)) = U<F,η(η−1
X (U<(ηX(m)))

= η−1
X (U<(ηX(η−1

X (U<(ηX(m))))

≤ η−1
X (U<(U<(ηX(m))))

= η−1
X (U<(ηX(m)))

= U<F,η(m).

Let B′ be a base for another quasi-uniformity on C such that ηX is (U ′, US)-continuous,

then for any U< ∈ BSFX , there is U ′ ∈ B′X such that ηX(U(m)) ≤ U<(ηX(m))⇔ U ′(m) ≤

η−1
X (U<(ηX(m))) = U<F,η(m). Thus BSF,η ≤ B′.

One sees from the above proposition that the condition of (F, η) being E-pointed is not

needed when the syntopogenous structure is co-perfect.

Theorem 5.1.8. Let (F, η) be a pointed endofunctor of C and U ∈ QUNIF (C,M). Then

the assignment U 7→ UF,η preserves arbitrary joins and uniformity.

Proof. Let A = {U i | i ∈ I} ⊆ QUNIF (C,M). Theorem 4.1.17, BX = {U1 ∧ ... ∧

Un | for each 1 ≤ i ≤ n, U i ∈ U iX for some U i ∈ QUNIF (C,M)} is a base for
∨
S. We

must show that BηX = {(U1 ∧ ... ∧ Un)η | for each 1 ≤ i ≤ n, U i ∈ U iX for some U i ∈

QUNIF (C,M} = {(U1)η ∧ ... ∧ (Un)η | for each 1 ≤ i ≤ n, U i ∈ U iX for some U i ∈

QUNIF (C,M)}. Now, (U1∧ ...∧Un)η = (η−1
X (U1∧ ...∧Un)(ηX(m)) = η−1

X (U1(ηX(m)))∧

... ∧ η−1
X (Un(ηX(m))) = (U1)η ∧ ... ∧ (Un)η. Assume that U is a uniformity on C. For

any X ∈ C, m,n ∈ subX and U ∈ UFX , n ≤ Uη(m) ⇔ n ≤ η−1
X (U(ηX(m))) ⇔ ηX(n) ≤

U(ηX(m)). This implies that there is V ∈ UFX such that ηX(m) ≤ V (ηX(n)) ⇔ m ≤

η−1
X (V (ηX(n))) = V η(n).

Proposition 5.1.9. Let (F, η) be a pointed endofunctor of C and U ∈ QUNIF (C,M).

Assume that ηX reflects 0 for each X in C.

(1) If F is a Uη-Cauchy filter on X, then ηX(F) is U-Cauchy on FX. The converse

implication holds if (F, η) is E-pointed and E is pullback stable.

(2) F Uη−→ m (m ∈ suboX) if and only if ηX(F)
U−→ ηX(m).
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(3) X is Uη-precompact if and only if FX is U-precompact.

Proof. (1) Assume that F is Uη-Cauchy and U ∈ UFX . Since ηX is (Uη,U)-continuous,

ηX(UηX (n)) ≤ U(ηX(n) for all n ∈ subX and there is m ∈ suboX such that

Uη(m) ∈ F . Thus η−1
X (U(ηX(m)) ∈ F ⇔ U(ηX(m)) ∈ ηX(F), that is ηX(F) is

U -Cauchy. Conversely if ηX(F) is U -Cauchy on FX and Uη ∈ UηX . Then there is

m ∈ suboFX such that U(m) ∈ ηX(F )⇔ η−1
X (U(m)) ∈ F . Since (F, η) is E-pointed

and E is pullback stable, η−1
X (m) ∈ suboX and η−1

X (U(m)) = η−1
X (U(ηX(η−1

X (m)))) =

Uη(η−1
X (m)). Thus Uη(η−1

X (m)) ∈ F .

(2) Let F Uη−→ m (m ∈ suboX) and U ∈ UFX . Since ηX is (Uη,U)-continuous,

ηX(Uη(m)) ≤ U(ηX(m))⇔ Uη(m) ≤ η−1
X (U(ηX(m)). Hence η−1

X (U(ηX(m)) ∈ F ⇔

U(ηX(m)) ∈ ηX(F). Conversely assume that ηX(F)
U−→ ηX(m) (ηX(m) ∈ suboFX)

and Uη ∈ Uη. Then m ∈ suboX and U(ηX(m)) ∈ ηX(F)⇔ η−1
X (U(ηX(m)) ∈ F .

(3) The proof of (3) follows from (1) and (2).

According to [Hol09], if c, c′ ∈ CL(C,M), a C-morphism f : X −→ Y is said be (c, c′)-

preserving if f(cX(m)) = c′Y (f(m)).

Proposition 5.1.10. Let (F, η) be an E-pointed endofunctor of C and U ∈ QUNIF (C,M).

Then for every X ∈ c, ηX is (cU
F,η
, cU)-preseverving.

Proof.

For any X ∈ C, ηX(cU
F,η

X (m)) = ηX(
∧
{η−1

X (U(ηX(m)) : U ∈ UFX}

= ηX(η−1
X (

∧
{U(ηX(m)) : U ∈ UFX}

=
∧
{U(ηX(m)) : U ∈ UFX} = cUFX(ηX(m)).

Proposition 5.1.11. Let A be a reflective subcategory of C and S a co-perfect syntopoge-

nous structure on A. Then

BAX = {U<A | U< ∈ BSFX} with U<A(m) = η−1
X (U<(ηX(m)))
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is a base for the coarsest quasi-uniformity on C with respect toM for which every reflection

morphism ηX : X −→ FX is (USA , US)-continous. BSA is a transitive base provided that

SF,η is interpolative.

While the syntopogenous structure SF,η was obtained with the help of the S-initial mor-

phism, a generalization of the notion of weakly <-final morphism to the case of syntopge-

nous structures gives the syntopogenous structure SG,ε induced by a copointed endofunc-

tor (G, ε) on C.

Theorem 5.1.12. Let (G, ε) be a M-copointed endofunctor of C and S a syntopogenous

structure on C, then SG,εX = {<G,ε
X | <GX∈ SGX} with m <

G,ε
X n ⇔ ε−1

X (n) vGX ε−1
X (n)

for all m ∈ subX and n ≥ m, is the finest syntopogenous structure on C for which every

εX : GX −→ X is (S,SG,ε)-continuous.

Proof. (S1) and (S2) are easily easily seen to be satisfied.

(S3) If <G,ε
X ∈ S

G,ε
X then there is <′GX∈ SGX such that <GX⊆<′GX ◦ <′GX . Now for all

m ≤ n, m <
G,ε
X n ⇔ ε−1

X <GX ε−1
X (n) ⇒ ∃p ∈ subGX | ε−1

X (m) <′GX p <′GX ε−1
X (n) ⇒

ε−1
X (m) <′GX ε−1

X (εX(p)) <′GX ε−1
X (n)⇔ m <

′G,ε
X εX(p) <′G,εX n. Thus <

G,ε
X ⊆<

′G,ε
X ◦ <′G,εX .

Let f : X −→ Y be a C-morphism and <
G,ε
Y ∈ S

G,ε
Y . Then for all m ∈ subX and n ∈ subY

such that f(m) ≤ n, f(m) <
G,ε
Y n ⇔ ε−1

Y (f(m)) <GY ε−1
Y (n) ⇒ (Gf)(ε−1

X (m)) <GY

ε−1
Y (n) ⇒ ∃ <GX∈ SGX | ε−1

X (m) <GX (Gf)−1(ε−1
X (n)) ⇒ ε−1

X (m) <GX ε−1
X (f−1(n)) ⇒

m <
G,ε
X f−1(n).

For all X ∈ C, εX : GX −→ X is (S, SG,ε)-continuous, since for any <
G,ε
X ∈ S

G,ε
X and

m,n ∈ subX with n ≤ m, m <
G,ε
X n⇒ ε−1

X (n) <GX ε−1
X (n).

If S ′ is another syntopogenous structure on C such that εX is (S,S ′)-continuous, then for

any <X∈ S ′X , m <′X n ⇒ εX(ε−1
X (m)) <′X n ⇒ ∃ <GX∈ SGX | ε−1

X (m) <X ε−1
X (n) ⇔

m <
G,ε
X n.

Corollary 5.1.13. Let A be an M-coreflective subcategory of C and S a syntopogenous

structure on A, then SAX = {<AX | <X∈ SX} with m <AX n ⇔ ε−1
X (n) <GX ε−1

X (n) for

all m ∈ subX and n ≥ m, is the finest syntopogenous structure on C for which every

coreflection εX : GX −→ X is (S,SA)-continuous.

Proposition 5.1.14. Assume that f−1 commutes with the join of subobjects for any f ∈ C

and (G, ε) be an M-copointed endofunctor of C and S ∈ CSY NT (C,M). Then

BSG,εX = {V <G,ε | V < ∈ BSGX} with V <F,ε

X (m) = m ∨ εX(V <(ε−1
X (m)))
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is a base for finest quasi-uniformity on C which makes every εX (V ,VG,ε)-continous.

Proof. (U1) is clear.

(U2) Let V <G,ε ∈ BSG,εX , then there is <′GX∈ SGX such that <⊆<′ ◦ <′.

Now, V <′G,ε(V <′G,ε(m)) = V <′G,ε(m ∨ εX(V <′(ε−1
X (m))

= m ∨ εX(V <′(ε−1
X (m ∨ εX(V <′(ε−1

X (m))))

= m ∨ εX(V <′(ε−1
X (m) ∨ ε−1

X (εX(V <′(ε−1
X (m))))

= m ∨ εX(V <′(ε−1
X (m) ∨ V <′(ε−1

X (m)))

= m ∨ εX(V <′(V <′(ε−1
X (m)))

≤ m ∨ εX(V <(ε−1
X (m)))

= V <G,ε(m)

(U4) If V <G,ε , V <′G,ε ∈ BSG,εX , then

V v
G,ε ∧ V <′G,ε = [m ∨ εX(V v(ε−1

X (m))] ∧ [m ∨ εX(V <′(ε−1
X (m))]

= m ∨ (εX(V <(ε−1
X (m)) ∧ εX(V <′(ε−1

X (m))) Lemma 1.2.13

= m ∨ (εX(V <(ε−1
X (m)) ∧ V <′(ε−1

X (m)))

= m ∨ (εX((V < ∧ V <′)(ε−1
X (m))))

= V (<∧<′)G,ε(m)

Since V <∧<′ ∈ BSX , V <G,ε ∧ V v′G,ε ∈ BSG,εX .

(U5) Let f : X −→ Y be a C-morphism and V <G,ε ∈ BSG,εY . Then, there is <Y∈ SY such
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that f(V <X (m)) ≤ V <Y (f(m)) for all m ∈ subX.

Now, f(V <
G,ε
X (m)) = f(m ∨ εX(V <(ε−1

X (m))))

= f(m) ∨ f(εX(V <(ε−1
X (m))))

= f(m) ∨ εY (Gf)(V <(ε−1
X (m)))) Definition 2.5.3

≤ f(m) ∨ εY V <(Gf)(ε−1
X (m))) U -continuity

≤ f(m) ∨ εY (V <(ε−1
Y (fm)) Lemma 1.2.4

= V <
G,ε
Y (f(m)).

Since εX(V <(ε−1
X (m))) ≤ V <G,ε(m) ⇔ V <(ε−1

X (m)) ≤ ε−1
X (V <G,ε(m)), εX is (V ,VSG,ε)-

continuous.

Let B′ be base for another quasi-uniformity V ′ on C such that εX is (V ,V ′)-continuous.

Then for all V ′ ∈ V ′X , there is V ∈ VSGX such V (ε−1
X (m)) ≤ ε−1

X (V ′(m))⇔ εX(V (ε−1
X (m))) ≤

V ′(m)⇒ m ∨ εX(V (ε−1
X (m))) ≤ V ′(m)⇔ V <G,ε(m) ≤ V ′(m). Thus B′ ≤ BG,ε.

Proposition 5.1.15. Assume that f−1 commutes with the join of subobjects for any

f ∈ C, A be an M-coreflective subcategory of C and S a syntopogenous on A. Then

BAX = {V <A | V < ∈ BSGX} with V <A(m) = m ∨ εX(V <(ε−1
X (m))

is a base for finest quasi-uniformity on C which makes every coreflection morphism εX

(V ,VA)-continous.

5.2 The (U ,V)-continuity of functors

Let A be a category endowed with an (E ′,M′)-factorization system for morphisms and

A be M′-complete.

Definition 5.2.1. [DT95] A functor F : A −→ C is said to preserve subobjects provided

that Fm is an M-subobject for every M′-subobject m.

If F preserves subobjects, then for every X ∈ A, F induces a monotone map

subX −→ subFX. Assuming the preservation of subobjects by F allows us to prove the

Lemma below.

Lemma 5.2.2. [DT95] Let f : X −→ Y be an A-morphism. Then
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(1) Ff−1(n) ≤ (Ff)−1(Fn) for all n ∈subY .

(2) (Ff)(Fm) ≤ F (f(m)) for all m ∈subX.

Proof. (1) By Defintion 1.2.1, Ff ◦ (Ff)−1(n) = Fn◦f ′′ and f ◦f−1(n) = n◦f ′ so that

Ff ◦ Ff−1(n) = F (f ◦ f−1(n)) = F (n ◦ f ′) = Fn ◦ Ff ′. Thus there is a morphism

j which makes the diagram

.

Ff−1(n)

��

Ff ′

!!

j

  .

t

��

f ′′ // .

Fn
��.

Ff
// .

commute with t = (Ff)−1(Fn). Now (Ff)−1(Fn) ◦ j = Ff−1(n), that is

Ff−1(n) ≤ (Ff)−1(Fn).

(2) From Definition 1.2.2, f ◦m = f(m) ◦ e1 for e1 ∈ E ′, and Ff ◦ Fm = (Ff)(Fm) ◦

e2 with e2 ∈ E . So Ff ◦ Fm = F (f ◦ m) = F (f(m) ◦ e1) = Ff(m) ◦ Fe1 .

The diagonalization property implies the existence of a morhism j making the the

diagram below commute.

.
e2 //

Fe1

��

.
(Ff)(Fm)

��

j

~~.
Ff(m)

// .

Ff ◦ j = (Ff)(Fm), that is (Ff)(Fm) ≤ Ff(m).

It is clear from the proof of the above Lemma that Ff−1(n) = (Ff)−1(Fn) if F preserves

pullbacks along M-morphisms. In this case we say that F preserves inverse images.

Similarly, (Ff)(Fm) = Ff(m) if Fe ∈ E . In this case, we say that F preserves images.

Definition 5.2.3. Let F : A −→ C be a functor that preseves subobjects, U ∈ QUNIF (A,M′)

and V ∈ QUNIF (C,M). Then F is (U , V)-continuous if for all V ∈ VFX , there is

U ∈ UX such that FU(m) ≤ V (Fm) for all m ∈ subX, X ∈ A.

It can be easily seen that our definition for (U , V)-continuity of F is a generalization

of U -continuity of morphisms to functors. Using Theorem 3.2.14, we can formulate an

equivalent definition of the (U , V)-continuity of F in terms of co-perfect syntopogenous
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structures so that F is (S,S ′)-continuous will mean that F is continuous with respect to

the quasi-uniform structures associated with S and S ′.

Definition 5.2.4. Let F : A −→ C be a functor that preseves subobjects, S ∈ CSY NT (A,M′)

and S ∈ CSY NT (C,M). Then F is (S, S ′)-continuous if for all <′FX∈ S ′FX , there is

<X∈ SX such that FU<(m) ≤ U<′(Fm) for all m ∈ subX, X ∈ A.

Continuity of a functor between categories supplied with fixed closure operators has been

studied in [DT95]. We next use the above proposition together with Corollary 2.1.6 and

the fact that
∧
−INTORD(C,M) is equivalent to the simple co-perfect syntopogenous

structures to produce the (U , V)-continuity of F in terms of idempotent closure operators.

Proposition 5.2.5. Let F : A −→ C be a functor that preseves subobjects, S ∈ CSY NT (A,M′)

and S ∈ CSY NT (C,M) with S and S ′ being simple i.e SX = {<X} and S ′FX = {<′FX}.

Then F is (S, S ′)-continuous if and only if for all Fc<X(m) ≤ c<
′

FX(Fm) for all m ∈ subX,

X ∈ A.

We next prove some properties for the (U , V)-continuity of F that will be useful in what

follows.

Proposition 5.2.6. (1) For any U ∈ QUNIF (A, M′), IdA is (U , U)-continous.

(2) If F is (U , V)-continuous and G : C −→ D a (V , W)-continuous functor that

preserves subobjects where W is a quasi-uniformity on D with respect to a class L

of mononomorphisms of D, then GF is (U , W)-continuous.

(3) Let U ≤ U ′ in QUNIF (A, M′) and V ′ ≤ V in QUNIF (C, M). Then F is

(U , V)-continuous implies that it is (U ′, V ′)-continuous.

Proof. (1) is obvious.

(2) Let W ∈ WGFX for X ∈ A. By (V , W)-continuity of G, there is V ∈ VFX such that

GV (n) ≤ W (Gn) for all n ∈ subFX. Since F is (U , V)-continous, there is U ∈ UX such

that FU(m) ≤ V (Fm) for all m ∈ subX. Thus GFU(m) ≤ GV (Fm) ≤ W (GFm), that

is GF is (U , W)-continuous.

(3) Assume F is (U , V)-continuous and V ′ ∈ V ′FX . Since V ′ ≤ V , there is V ∈ VFX such

that V ≤ V ′ and there is U ∈ UX such FU(m) ≤ V (Fm) ≤ V ′(Fm) for all m ∈ subX.

From U ≤ U ′, we get U ′ ∈ UX such that U ′ ≤ U and FU ′(m) ≤ FU(m) ≤ V (Fm) ≤

V ′(Fm). Thus F is (U ′, V ′)-continuous.
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5.3 Lifting a quasi-uniformity along an M-fibration

We prove, in this section, that if F : A −→ C is anM-fibration and B is a base for a quasi-

uniformity on C, there is a coarsest quasi-uniformity UF on A such that F is (UF ,U)-

continuous. We then use the syntopogenous structure to deduce the lifted idempotent

closure operator, which turns out to be the largest one for which F is (c<
F
, c<)-continuous.

Proposition 5.3.1. Let F : A −→ C be a faithful M-fibration and S be a syntopogenous

structure on C with respect to M. Then

SFX = {<F
X | <FX∈ SFX} where m <F

X n⇔ Fm <FX γX(n)

is a syntopogenous structure on A with respect to MF which is interpolative, co-perfect

provided S has the same property. Moreover, an A-morphism is SF -initial provided Ff

is S-initial.

Proof. (S1) follows Proposition 2.4.2. For (S2),we let <F ,<′F∈ SF for <FX ,<
′
FX∈ SFX .

Then there is <′′FX such that <FX⊆<′′FX and <′FX⊆<′′FX . Thus <F
X⊆<′′FX and <′FX⊆<′′FX .

(S3) Let m <F
X n for <FX∈ SFX and m, n ∈ subX. Then there is p ∈ subFX and

<′FX∈ SFX such that Fm <′FX p <′FX γX(n) ⇔ Fm <′FX FδX(p) <′FX Fn ⇔ m <′FX

δX(p) <′F n. Let f : X −→ Y and <F
Y∈ SFY . Then f(m) <F

Y n⇔ F (f(m)) <FY γY (n)⇔

(Ff)(Fm) <FY γY (n)⇔ Fm <FX (Ff)−1(γY (n) = γX(f−1(n))⇔ m <F f−1(n).

If S is co-perfect, then for all i ∈ I,m <F
X ni ⇔ Fm <FX γX(ni) ⇒ Fm <FX∧

i∈I γX(ni)⇔ Fm <FX γ(δX(
∧
i∈I γX(ni)) = γX(

∧
i∈I δX(γX(ni))) = γX(

∧
i∈I ni).

Interpolation of SF follows from Proposition 2.4.2

Assume that Ff is S-initial and <F
X∈ SX . Then for all m, n ∈ subX, m <F

X n ⇔

Fm <FX Fn. This implies that there is <FY∈ SFY such that (Ff)(Fm) <FY p and

(Ff)−1(p) ≤ Fn. Since F preserves images, Ff(m) <FY p and δX(Ff)−1(p) ≤ n. Now,

F preserves preimages, Ff(m) <FY F (δY (p)) and f−1(δY (p)) ≤ n. Thus f(m) <F
Y δY (p)

and f−1(δY (p)) ≤ n, that is f is SF -initial.

Althought our next proposition can be obtained from Theorem 3.2.15 and Proposition

5.3.1, we provide a direct proof (without use of syntopogenous structures) as we want to
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describe UF .

Theorem 5.3.2. Let F : A −→ C be a faithful M-fibration and B be a base for a quasi-

uniform structure on C with respect to M. Then

(i) BFX = {UF | U ∈ UFX} where UF (m) = δX(U(Fm)) is a base for a quasi-

uniformity on A with respect to MF .

(ii) BF is transitive provided B is a transitive base.

(iii) BF is a base for the coarsest quasi-uniformity for which F is (UF ,U)-continuous.

(iv) An A-morphism f is UF -initial provided Ff is S-initial.

Proof. (i) (U1) m ≤ γX(U(Fm)) since m = γX(Fm) ≤ γX(U(Fm)).

(U2) If UF
X ∈ BFX for U ∈ UFX , then there is V ∈ BFX such V ◦ V ≤ U .

Now V F (V F (m)) = V F (δX(V (Fm)))

= δX(V (F (δXV (Fm))))

= δX(V (V (Fm))

≤ δX(U(Fm))

= UF (m).

(U4) If UF , V F ∈ BFX for U, V ∈ BFX , then U ∧ V ∈ BFX . So UF (m) ∧ V F (m) =

δX(U(Fm)) ∧ δX(V (Fm)) = δX(U(Fm) ∧ V (Fm)) = δX((U ∧ V )(Fm)).

Thus UF ∧ V F ∈ BFX .

(U5) Let f : X −→ Y be a A-morphism and UF ∈ BFY for U ∈ BFY .

Thus f(UF (m)) = f(δX(U(Fm))

= δY ((Ff)(U(Fm)))

≤ δY (V (Ff)(Fm)) for some V ∈ BFX

= δY (V (Ff(m)))

= V F (f(m))
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(ii) If B is a transitive base, then for all U ∈ BFX

UF (UF (m)) = UF (δX(U(Fm))

= δX(U(F (δX(U(Fm)))

= δX(U(U(Fm)))

= δX(U(Fm))

= UF (m)

(iii) F is (UF ,U)-continuous, since for any U ∈ BFX , UF (m) = δX(U(Fm))

⇔ γX(UF (m)) = U(Fm)⇔ F (UF (m)) = U(Fm).

If B′ is a base for another quasi-uniformity U ′ on A such that F is (U ′,U)-continuous,

then for all UF ∈ BFX , there is U ′ ∈ B′ such that FU ′(m) ≤ U(Fm) = FUF (m). Thus

U ′(m) = δX(FU ′(m)) ≤ δX(FUF (m)) = UF (m), that is BF ≤ B′.

(iv) If Ff is U -initial and UF ∈ UFX , there is U ′ ∈ UFY such that (Ff)−1(U ′(Ff)(p)) ≤

U(p) for all p ∈ subFX. Now f−1(δY (U ′(Ff(m)))) = δX((Ff)−1(U ′(Ff(m)))) =

δX((Ff)−1(U ′((Ff)(Fm)))) ≤ δX(U(Fm)) = UF (m) for all m ∈ subX.

Corollary 5.3.3. Under the assumptions of Theorem 5.3.2 and F is essentially surjective

on objects, B is the base of the finest quasi-uniformity on C for which F is (UF ,U)-

continuous.

Proof. By essential surjectivity of F on objects, we have that for all Y ∈ C, Y ∼= FX

for some X ∈ A. Thus if B′ is another quasi-uniformity on C such that F is (UF ,U ′)-

continuous, then for all Y ∈ C and U ′ ∈ U ′Y , there is X ∈ A and UF ∈ BF such that

Y = FX and FUF (m) ≤ U ′(Fm) ⇔ U(Fm) = FδX(U(Fm)) ≤ U ′(Fm) = U ′(Fm).

Thus B′ ≤ B.

Proposition 5.3.4. Let F : A −→ C be faithful M-fibration and S be a simple co-perfect

syntopogenous structure on C with respect to M i.e S = {<X} ∈
∧
−INTORD . Then

c<
F

(m) = δX(c<(Fm)) is an idempotent closure operator on A with respect to MF . It is

the largest closure operator on A for which F is (c<
F
, c<)-continuous.

Proof. (C1) and (C2) are easily seen to be satisfied. For (C3), let f : X −→ Y be an A

-morphism and m ∈ subY .
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Then f(c<
F

X (m)) = f(δX(c<FX(Fm)

= δY (Ff)(c<FX(Fm))

≤ δY (c<FY (Ff(m))

= δY (c<FY (Ff(m))

= c<
F

Y (f(m)))

F is (c<
F
, c<)-continuous since, γX(c<

F
(m)) = c<(Fm)⇔ Fc<

F
(m) = c<(Fm).

Now, c<
F

(c<
F

(m)) = c<
F

(δX(c<FX(Fm)))

= δX(c<FX(FδX(c<(Fm))))

= δX(c<FX(c<FX(Fm)))

= δX(c<FX(Fm)) = c<
F

(m)

If c′ is another closure operator on A such that F is (c, c<)-continuous, then FcX(m) ≤

c<(Fm). Thus c′X(m) = δX(F (cX(m))) ≤ δX(c<FX(Fm)) = c<
F

X (m).

5.4 Quasi-uniform structures and adjoint functors

We start by recalling the definition of adjoint functors.

Let A and C be categories. An adjunction from A to C consists of functors F : A −→ C,

G : C −→ A and a natural transformation η : 1A −→ GF such that for all X ∈ A,

<FX, ηX> is a G-universal arrow with domain X i.e for any Y ∈ C and f : X −→ GY ∈

A, there is a unique f : FX −→ Y such that the following diagram commutes.

X
ηX //

f !!

GFX

Gfzz
GY

Thus the correspondance
X −→ GY

FX −→ Y
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is inverse to the map φX, Y : C(FX, Y ) −→ A(X,GY ) given by g 7−→ Gf ◦ ηX and

the existence of a G-universal arrow for X therefore gives a natural isomorphism φX, − :

C(FX,−) −→ A(X,G−) so that A(X,G−) : A −→ Set is a representable functor.

Conversely, the representability of A(X,G−) gives a G-universal arrow for X with FX

the representing object and with an isomorphism as above, ηX = φX, FX(1FX).

F is called the left adjoint, G the right adjoint and for the rest of the paper we shall

simply write F a G : C −→ A.

Lemma 5.4.1. [DT95] Let F a G : C −→ A be adjoint functors. Then GM ⊆ M′ if

and only if FE ′ ⊆ E.

Theorem 5.4.2. Let F a G : A −→ C be adjoint functors and B be a base for a quasi-

uniformity U ∈ QUNIF (A,M′). Assume that G and F preserves subobjects. Then

BηX = {Uη | U ∈ BFX} with Uη(m) = η−1
X (GU(Fm)) for any X ∈ C is a base for

quasi-uniformity on C. Bη is a base for the coarsest quasi-uniformity for which F is

(Uη,U)-continuous.

Proof. Let us first note that for any U ∈ UFX , we have the diagram below.

M
ηM //

k

##
m

��

GFM
j

xx
GFm

��

Uη(M)
g //

Uη(m){{

GU(FM)

GU(Fm) &&
X ηX

// GFX

By adjointness, g : Uη(M) −→ GU(FM) corresponds to a morphism g : FUη(M) −→

U(Fm) such that the following diagram commutes.

FUηM
g //

FUη(m) $$

U(FM)

U(Fm)zz
FX

So U(Fm) ◦ g = FUη(m)⇔ FUη(m) ≤ U(Fm). (U1) follows from the diagram

below. For (U2), let Uη ∈ UηX , then Uη(m) = η−1
X (GU(Fm)) for some U ∈ BFX and

there is V ∈ UFX such that V ◦ V ≤ U . Since, FV η(m) ≤ V (Fm); V (FV η(m)) ≤

V (V (Fm)) ≤ U(Fm) ⇒ V (FV η(m)) ≤ U(Fm)) ⇒ G(V (FV η(m))) ≤ G(U(Fm)) ⇒

η−1
X (GV (FV η(m))) ≤ η−1

X (U(Fm))⇔ V η(V η(m)) ≤ Uη(m).
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(U3) Let Uη, V η ∈ Uη and m ∈subX. Since, G preserves inverse images,

Uη(m) ∧ V η(m) = η−1
X (GU(Fm)) ∧ η−1

X (GV (Fm))

= η−1
X (GU(Fm) ∧GV (Fm))

= η−1
X (G(U(Fm) ∧ V (Fm)))

= η−1
X (G(U ∧ V )(Fm)).

Since, U ∧ V ∈ UX , Uη ∧ V η ∈ Uη.

(U5) Let X −→ Y be a C-morphism and Uη ∈ Uη for any U ∈ UY . Then there is V ∈ UX
such that f(V (m)) ≤ U(f(m)).

Thus f(V η(m)) = f(η−1
X (GV (Fm)))

≤ η−1
Y (GFf)(GV (Fm)) Lemma 1.2.4

≤ η−1
X (G(Ff)(V (Fm)))

≤ η−1
Y (GU((Ff)(Fm))) U -continuity of Ff

= η−1
Y (GU(Ff(m))) Lemma 5.4.1

= Uη(f(m)).

F is (Uη,U)-continuous, since for any U ∈ UFX , FUη(m) ≤ U(Fm) for any X ∈ C. Let

B′ be a base for another quasi-uniformity U on C such that F is (U ′,U)-continuous. Then

for any Uη ∈ BηX , there is U ′ ∈ B′X such that FU ′(m) ≤ U(Fm). Thus ηX(U ′(m)) ≤

GFU ′(m) ≤ GU(Fm) ⇒ ηX(U ′(m)) ≤ GU(Fm)) ⇔ U ′(m) ≤ η−1
X (GU(Fm)) = Uη(m),

that is Uη ≤ U ′.

Theorem 5.4.3. Let F a G : C −→ A be adjoint functors and B be a base for U ∈

QUNIF (C,M). Then the assignment U 7→ Uη preserves all joins and transitivity. More-

over,

QUNIF(A,M′) ⊥
(−)η

// QUNIF(C,M)
(−)ηoo

with V(η) =
∨
{U ∈ QUNIF (C,M) : Uη ≤ V}. In particular, F is (Uη,U) and (V ,Uη)-

continuous for all U ∈ QUNIF (C,M) and V ∈ QUNIF (A,M′).
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Proof. One proceedes as in the proof of Theorem 5.1.8 to show that U 7→ Uη preserves

all joins. Assume that U is transitive. Since FUη(m) ≤ U(Fm) for any U ∈ BFX ,

Uη(Uη(m)) = η−1
X (GU(FUη(m)) ≤ η−1

X (GU(U(Fm))) = η−1
X (GU(Fm)) = Uη(m). F is

clearly (Uη,U)-continuous. Now, let V ∈ QUNIF (A,M′) and U ∈ QUNIF (C,M) such

that Uη ≤ V . Then F is (V ,U)-continuous and so by Lemmma 5.2.6(3), F is (V ,Vη)-

continuous since U ≤ Vη.

Proposition 5.4.4. Let F a G : A −→ C be adjoint functors and S ∈ CSY NT (A,M′).

Assume that G and F preserve subobjects.

Then Sη = {<η
X | <FX∈ SFX} with m <

η
X n ⇔ η−1

X (GU<(Fm)) ≤ n is a co-perfect

syntopogenous structure. It is the coarsest syntopogenous structure for which F is (Sη,S)-

continuous.

Proposition 5.4.5. Under the assumptions of Proposition above, if S ∈ CSY NT (A,M′)

and simple i.e S = {<X} ∈
∧
−INTORD(A,M′) ∼= ICL(A,M′). Then c<

η

X (m) =

η−1
X (Gc<FX(Fm)) is an idempotent closure operator. It is the largest closure operator c for

which F is (c, c<)-continuous.

One obtains quasi-uniform structures induced by pointed and copointed endofunctors

(F, η) and (G, ε) as follows. UF,ηX = {UF,η | U ∈ UFX} where U
F,η

(m) = η−1
X (U(Fm)) and

UG,εX = {UG,ε | U ∈ UFX} with U
G,ε

(m) = m ∨ εX(U(Gm)) for any X ∈ C. It is not hard

to see that UF,η and UG,ε are quasi-uniform structures on C. Moreover,

Proposition 5.4.6. The following holds true.

(1) UF,η ≤ UF,η;

(2) UG,ε ≤ UG,ε;

(3) If ηX ∈ E, then UF,η = UF,η.

Proof. (1) Since for any X ∈ C, the diagram commutes

.
e //

η

��

.
ηX(m)

��.
Fm
// .

by the diagonalization property of the (E ,M)-factorization, there is t such that Fm ◦ t =

ηX ◦ e, that is, ηX(m) ≤ Fm. Thus for any U
F,η ∈ UF,ηX , there is UF,η ∈ UF,ηX such that
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UF,η(m) ≤ U
F,η

(m).

(2) The pullback

.

Gm

��

ε

##

l

"".

ε−1
X (m)
��

// .
m
��

X εX
// Y

commutes so that ε−1
X (m) ◦ l = Gm⇔ Gm ≤ ε−1

X (m). Thus for any UG,ε ∈ UG,εX , there is

U
G,ε ∈ UG,εX such that U

G,ε
(m) ≤ UG,ε(m).

It is well known that a full subcategory of C is reflective if and only if the inclusion functor

I : A ↪→ C has a left adjoint F , called a reflector. Since the reflector can also be viewed

as a pointed endofunctor of C, we have the following.

Proposition 5.4.7. Let A be a reflective subcategory of C and B be a base of a quasi-

uniformity on C. Then

(1) For any X ∈ C, BAX ≤ B
η
X .

(2) If A is E-reflective, then BAX = BηX .

5.5 Examples

1. Let QUnifo be the category of To quasi-uniform spaces and quasi-uniformly con-

tinuous maps with (surjective, embeddings)-factorization system. It is known that

bQUnifo (see e.g [Brü99]), the category of bicomplete quasi-uniform spaces and

quasi-uniformly continuous maps is an epi-reflective subcategory of QUnifo. Let

(F, η) be the bicompletion reflector into QUnifo. For any (X,U) ∈ QUnifo,

ηX : (X,U) −→ (X̃, Ũ) takes each x ∈ X to its neighbourhood filter in the topology

induced by the join of U and its inverse. It is known that ηX is a quasi-uniform

embedding. Details about this can be found in [? ]. Now, BF,η = {UF,η | Ũ ∈ ŨX̃}

where UF,η = {(x, y) ∈ X × X | (ηX(x), ηX(y)) ∈ Ũ} is a base of for the quasi-

uniform structure UF,η on X. Since ηX is quasi-uniform embedding, UX is the initial
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quasi-uniformity for which ηX is quasi-uniformly continuous. Thus UF,ηX = UX .

2. The category Unif of uniform spaces and quasi-uniformly continuous maps is core-

flective in Qunif . Let (G, ε) be the coreflector into Unif . For any (X,U) ∈ QUnif ,

εX : (X,U
∨
U−1) −→ (X,U) is an identity map. Since U

∨
U−1 is the finest quasi-

uniformity on X for which εX is quasi-uniformly continous, UG,εX = U
∨
U−1

3. Consider TopGrp2 the category of Hausdorff topological groups and continuous

group homomorphisms with the (surjective, injective)-factorization structure. We

know from [Bou66] that the category cTopGrp2 of complete Hausdorff topological

groups (those topological groups which are complete with respect to the two-sided

uniformity) is coreflective in TopGrp2. Let (F, η) be the completion reflector into

TopGrp2 and for any X ∈ cTopGrp, let β(e) be the neighbourhood filter of the

identity element e. For all U ∈ β(e), put Uc = {(x, y) ∈ X ×X : y ∈ xU ∩ Ux} so

that BcX = {U c | U ∈ β(e)} is a base for the two-sided uniformity U c on X. Since

ηX is again an embedding of X ∈ TopGrp2 into its completion X̃, we have that

UF,η = Uc.

4. The forgetful functor

F : TopGrp −→ Grp

is a mono-fibration. Thus by Proposition 5.3.1, every syntopogenous structure on

Grp can be initially lifted to a syntopogenous structure on TopGrp.

5. Consider the functors G : Qunif −→ Top which sends every quasi-uniform space

(X,U) to the topological space (X,G(U)) with G(U), the topology induced by U ,

obtained by taking as base of neighbourhoods at a point x the filter {U [x] | U ∈ U}

where U [x] = {y ∈ X : (x, y) ∈ U} and F : Top −→ Qunif which sends every

topological space (X, T ) to the finest quasi-uniformity U on X with G(U) = T . It is

known (see e.g [DK00]) that F is left adjoint to G. For any (X, T ) ∈ Top, the unit

ηX : (X, T ) −→ (X,GF (T )) is a continuous map where (X,GF (T )) is the set X

endowed with the topology of the finest quasi-uniformity (X,F (T )). Now S(X,U) =

{<U
X | U ∈ U} where A <U B ⇔ U(A) ⊆ B for any A,B ⊆ X is a co-perfect

syntopogenous structure on Qunif for any (X,U) ∈ Qunif . Let (X, T ) ∈ Top,

A <
η
X B ⇔ η−1

X (GU(FA)) ⊆ B for any U ∈ UX . But η−1
X (GU(FA)) = η−1

X (GU(A)),

η−1
X (GU(A)) is a neighbourhood of A in T . Thus SX = {<η

X | X ∈ Top} with
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A <
η
X B ⇔ V ⊆ B where V a is neighbourhood of A in T so that A <

η
X B ⇔ A ⊆

O ⊆ B for some O ∈ T .

6. Let Top be the category of topological spaces and continuous maps with its (surjec-

tions, emdeddings)-factorization structure. It is well known that Topo, the category

of To-topological spaces and continuous maps is a epi-reflective subcategory of Top.

Define SX = {<Xo | Xo ∈ Topo} by A <Xo B ⇔ A ⊆ B for any Xo ⊆ Topo,

A,B ⊆ Xo. Let (F, η) be the reflector into Topo. For any X ∈ Top, ηX : X −→

X/ ∼ takes each x ∈ X to its equivalence class [x] = {y ∈ X | {x} = {y}}. Thus

SX = {<F,η
X | X ∈ Top} with A <

F,η
X B ⇔ η−1

X (ηX(A)) ⊆ B A,B ⊆ X.
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