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Abstract

Upcoming and ongoing 21cm surveys, such as the Square Kilometre Array (SKA), Hydrogen

Epoch of Reionization Array (HERA) and Low Frequency Array (LOFAR), will enable imaging

of the neutral hydrogen distribution on cosmological scales in the early Universe. These

experiments are expected to generate huge imaging datasets that will encode more information

than the power spectrum. This provides an alternative unique way to constrain the astrophysical

and cosmological parameters, whichmight break the degeneracies in the power spectral analysis.

The global history of reionization remains fairly unconstrained. In this thesis, we explore

the viability of directly using the 21cm images to reconstruct and constrain the reionization

history. Using Convolutional Neural Networks (CNN), we create a fast estimator of the global

ionization fraction from the 21cm images as produced by our Large Semi-numerical Simulation

(SimFast21). Our estimator is able to efficiently recover the ionization fraction (xHII) at several

redshifts, z = 7, 8, 9, 10with an accuracy of 99% as quantified by the coefficient of determination

R2 without being given any additional information about the 21cm maps. This approach,

contrary to estimations based on the power spectrum, is model independent. When adding the

thermal noise and instrumental effects from these 21cm arrays, the results are sensitive to the

foreground removal level, affecting the recovery of high neutral fractions. We also observe

similar trend when combining all redshifts but with an improved accuracy. Our analysis can

be easily extended to place additional constraints on other astrophysical parameters such as the

photon escape fraction. This work represents a step forward to extract the astrophysical and

cosmological information from upcoming 21cm surveys.
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1

1 Introduction

The big bang model is the commonly accepted theory that explains the origin and evolution of

our universe. According to this theory, the universe began as a very hot and dense state about

13.7 billion years ago (see e.g., Hawking and Ellis, 1968). There is significant evidence that

supports this theory. One is Hubble’s law which is based on observed galaxies receding away

from each other with a velocity that is proportional to their distance from each other, implying

the expansion of the universe (Hubble, 1929). The other is the observation of the Cosmic

Microwave Background (CMB), discovered by Arno Penzias and Robert Wilson (Penzias and

Wilson, 1965) indicating that the universe was initially very hot and in equilibrium. The abun-

dance of Hydrogen and Helium found in the observable universe also supports the Big Bang

model.

In the big bang model, the Universe evolution can be classified in stages. After the cosmic in-

flation stage where rapid expansion of space took place marking the nucleosynthesis era where

the universe was full of highly ionized plasma made up of protons, electrons and neutrons

(Wagoner, 1973). As the universe continues to cool down, the recombination era follows where

the electrons and protons recombine to start forming neutral atoms such as Hydrogen(H) and

Helium(He) (Peebles, 1968). With more neutral atoms being formed, the universe became

neutral and opaque, marking the beginning of cosmic dark ages. The hydrogen created in re-

combination played a role in the formation of the first objects such as galaxies and stars, marking

the beginning of the epoch of reionization (EoR) which is the region of interest in this work.

However, the how and when the first objects were formed is still one of the big questions under

intensive investigation.

https://etd.uwc.ac.za/



2 Chapter 1. Introduction

1.1 Epoch of Reionization

In the history of the universe, the period at which the predominantly neutral intergalactic medium

is ionized by the first luminous sources is known as the epoch of reionization (Loeb and Barkana,

2001). This epoch marks the birth of first generation of luminous sources such as stars and active

galactic nuclei (AGN) formed from cooled hydrogen gas cloud at redshift∼ 10−30. Intergalactic

medium (IGM) is the space around the galaxies filled with a pervasive medium of ionized gas,

mostly being ionized hydrogen.

Figure 1.1: The timeline of the history of the Universe focusing on showing the reionization epoch
timeline indicated by the yellow line. The lower axis shows time in redshift(1 + z) and the upper axis
shows time in years. The neutral part of the Universe is shown by the blue color and the ionized part is
shown by the black color. Credit:CARINA CHENG, 2020

Figure 1.1 shows the timeline of the history of the Universe. The stages of the evolution of

the Universe are explained in the previous paragraph. The Epoch of reionization region is

represented by the yellow line. The process of ionization is well understood and can be easily

explained from a quantummechanics perspective. The following equation gives us the ionization

energy/ionization potential:

E = − Z2e2

×2a0n2 = −
Z213.6eV

n2,
, (1.1)

where Z is the number of protons in the nucleus, n is the energy level, and a0 is the Bohr

https://etd.uwc.ac.za/



1.1. Epoch of Reionization 3

radius. The photon which will be able to eject the electron from neutral hydrogen must have

at least E = −13.6eV (Lima and Wehry, 1986). The first stars and galaxies formed in the high

density region started to emit the ionizing radiation that ionized the neutral hydrogen around

them. However, there are still disputes over how and when the reionization has taken place and

objects responsible for it. Dwarf galaxies remain the primary source of ionizing photons during

the epoch of reionization, and the contribution from quasars is still uncertain. Active Galactic

Nuclei (AGN) and Lyman break galaxies are found to be one of the contributors (Kashikawa

et al., 2006). Observations of Lya absorption which is simply a reduced intensity arising from

the Lyman-alpha electron transition of the neutral hydrogen atom in the spectra of distant quasars

suggest that reionization ended around z ∼ 6 (Fan, Carilli, and Keating, 2006). At z < 2.5, the

UV ionizing background is dominated by quasars and AGN while at z > 3, the density of lumi-

nous quasars decreases faster than that of star-forming galaxies, and an increased contribution

from stars in the ionizing background is observed.

The phases of reionization includes the pre-overlap phase where there is a propagation of

ionized regions of the individual sources through the neutral IGM. At this stage, the first

galaxies which are formed in the most massive halos located in the highest-density regions

ionize their surroundings with the degree of ionization being very inhomogeneous and the

intensity is determined by the distance from the nearest source and by the ionizing luminosity

of this source. These higher-density regions are characterized by a high recombination rate and

small mean free path of the ionizing photons. There is a clear separation of ionized regions with

neutral regions. The second phase is called an overlap phase where there is an overlap of the

ionized regions and a subsequent ionization of the entire IGM except at higher density regions.

The occurrence of this stage is predicted to be rapid, and the mean free path of UV photons

increases dramatically, and eventually, the universe becomes transparent to UV radiation. The

ionizing intensity increase rapidly, and it is also much more homogeneous. Since there is neutral

gas remnants in the high-density regions, and as galaxy formation proceeds to cause a gradual

ionization of the neutral gas around these high-density regions, the mean ionizing intensity

grows. This gradual ionization of neutral higher density regions marks the beginning of the final

https://etd.uwc.ac.za/



4 Chapter 1. Introduction

phase known as post-overlap. On this final phase there is a propagation of ionization fronts into

neutral higher density regions, it occurs continuously and those high density regions become

gradually ionized (e.g see Loeb and Barkana, 2001; Cooray, Komatsu, and Melchiorri, 2015).

1.2 Constraints

The Epoch of Reionization is a poorly constrained phase in the evolution of the Universe. There

are a couple of indirect observational constraints. These constraints can serve as the foundation

in building up the understanding of the cosmic reionization. The observational evidence for the

EoR provide weak and model-dependent constraints on reionization. With no particular order,

the first constraint is from the observation of higher redshift quasars. The neutral hydrogen

fraction and the Gunn-Peterson (GP) optical depth (τ) depends on the local density of the IGM.

The study of ionization state around the mean IGM using Lyα absorption become inconclusive

because Lyα absorption can only be used to probe volume-averaged neutral fractions that are

smaller than 10−3 owing to the large cross-section of the Lyα resonance (Morales and Wyithe,

2010). The evolution of the UV ionizing background and neutral fraction of the IGM can be

traced by studying how the effective optical depth evolve. The appearance of the forest of Lyα

absorption lines in quasars spectrum serves as an evidence of the presence of neutral hydrogen in

the IGM at high redshift regions (Gunn and Peterson, 1965). The general idea behind GP test is

that, when the background objects emit radiation, there will be a suppression of electromagnetic

emission from quasars at wavelengths less than Lyα at the redshift of the emitted light causing a

trough known as Gunn-Peterson trough. Lyα photons absorption increase more in highly neutral

IGM at higher redshift.

The GP trough was first observed by Becker et al. (2001) from Sloan Digital Sky Survey (SDSS)

data of high redshift quasars spectrum (Figure 1.2) at higher redshift and plays a major role

in constraining the cosmic reionization. Further investigation was done by Fan, Carilli, and

Keating (2006) with 19 luminous quasars spectrum also from SDSS data.

Figure 1.3 shows the measured evolution of GP optical depths along the line of sight of the

https://etd.uwc.ac.za/



1.2. Constraints 5

Figure 1.2: Optical spectra for four high-redshift quasars. All four spectrum show a trough which is
only observed at higher redshift, evidence of cosmic reionization. The insert on the left is the name and
redshift at which those four quasars are found. Figure adapted from Becker et al. (2001).

nineteen z > 5.7 quasars from the SDSS data. On the y-axis we have GP optical depth, τgp and

absolute redshift (zabs) is on the x-axis. The large open symbols with error bars are the average

and standard deviation of optical depth at each redshift. The sample variance also increases

rapidly with redshift. With this information, Fan, Carilli, and Keating (2006) have found that

the evolution of optical depth accelerates at zabs > 5.5 and a rapid increase in the variation of

optical depth (τ) along different lines of sight is also observed. If τ is averaged over a scale of

∼ 60 comoving Mpc, the variation of τ is given by σ(τ)/τ and increases from ∼ 15% at z ∼ 5

to > 30% at z > 6. At z > 6 the optical depth τ is >> 1 indicating a rapid increase in the

neutral fraction. Their work introduces an upper limit on the IGM neutral fraction, which is

from ∼ 10−4 to ∼ 10−3 at z ∼ 5 − 6 reflecting an evidence of cosmic reionization.

https://etd.uwc.ac.za/



6 Chapter 1. Introduction

Figure 1.3: Evolution of optical depth with combined Lyα and Lyβ results. The dash line is for a
redshift evolution of τgp. Adapted from Fan et al.(2006b)

The second most important constraint comes from observation of temperature and polariza-

tion anisotropies in the cosmic microwave background (CMB). The anisotropies on the angular

scales which are below the horizon at re-scattering epoch are suppressed by the photons scat-

tering damping factor given by e−τel where τel is the optical depth of CMB photons due to

Thomson scattering with free electrons. According to Hinshaw et al. (2013) and its companion

paper Bennett et al. (2013) the reionization optical depth of τ = 0.088±0.013 was obtained from

the Wilkinson Microwave Anisotropy Probe (WMAP) based on its polarization, supporting the

early reionization by redshift of z ∼ 10 (Dunkley et al., 2009). This optical depth gives us a mea-

sure of the line-of-sight free-electron opacity to CMB radiation. The Planck mission mapped

https://etd.uwc.ac.za/



1.2. Constraints 7

the anisotropies of the cosmic microwave background at microwave and infra-red frequencies,

with high sensitivity and small angular resolution. Planck’s data constrained optical depth to

be τ = 0.066 ± 0.016 with instantaneous reionization redshift of z ∼ 8. The range of values of

τ observed by Planck 2015 favours a τ which is roughly 1σ lower than that of WMAP9 (Ade

et al., 2016).

Figure 1.4: The optical depth τ to reionization from different data release from WMAP and Planck for
different years. The larger values imply an earlier onset of reionization. The weighted average of
WMAP and Planck data points is represented by the gray line, i.e at τ = 0.0648. Credit:NASA
LAMBDA Archive Team, 2006

Figure 1.4 shows the optical depth, τ to Thomson scattering obtained from data of different

surveys. We have WMAP first data release which helped to constrain τ. Ever since the 1st

constraint of τ by the WMAP data, there has been a more significant effort of observations and

improvement of the τ value. This can be seen in Figure 1.4. The error bars of the measurement

decreases with time, and constraints are now tighter than past estimates.
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8 Chapter 1. Introduction

Apart from the above mentioned indirect constraints, research is being done on other ways

of constraining the EoR, this includes Ionizing photon escape fraction, metal abundance and

evolution, IGM thermal history, Luminosity function of high-redshift quasars and galaxies,

Mean free path of ionizing photons, and photoionization rate. The constraints mentioned above

are reviewed by (Meiksin and Madau, 1993; Barkana and Loeb, 2001; Barkana and Loeb, 2001;

Songaila, 2004; Ciardi and Ferrara, 2005; Bolton and Haehnelt, 2007; Prochaska, Worseck,

and O’Meara, 2009) . These measurements provide constraints at different levels and different

stages of reionization. However, much tighter constraints are expected from the 21cm signal.

1.3 21 cm signal

The 21cm line of neutral hydrogen presents a unique probe of the evolution of the neutral IGM

and cosmic reionization. The observation of the 21cm wavelength line maps the neutral hydro-

gen in the universe (Beiser and Beiser, 1969). At 1420 MHz, the hydrogen radiation penetrates

the dust clouds and allow us to obtain a complete map of the hydrogen more than that of the

galaxies or stars themselves since their visible light won’t penetrate the dust clouds.

The physics behind 21cm line is that the radiation comes from the transition between two levels

of the hydrogen 1s ground state, from the interaction between the electron spin and the nuclear

spin which create a slight split known as hyperfine structure. Due to the quantum properties of

radiation, hydrogen in its lower energy state will absorb 1420 MHz, and the observation of 1420

MHz in emission implies a prior excitation to the upper state (Beiser and Beiser, 1969). In other

words, the hydrogen can absorb or emit 21 cm wavelength photons due to hyperfine transition.

This can be illustrated in Figure 1.5.

In 1944, the Dutch astronomer by the name H. C. van de Hulst predicted that the 21cm line

should be observable in emission (“Smithsonian Astrophysical Observatory (SAO)”). The 21cm

hydrogen line was then first observed in 1951 by Harold Ewen and EdwardM. Purcell at Harvard

marking the birth of spectral line radio astronomy.
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Figure 1.5: The hyperfine transition in neutral hydrogen illustration and 21cm
wavelength photon being emitted or absorbed depending on the state to which it’s
transitioning. Credit : CASPER, 2015

There are advantages of using 21 cm signal to probe reionization, firstly, the 21 cm line does not

saturate, and the IGM remains semi-transparent at large neutral fractions and secondly, the HI

line provides full three dimensional (3D) information on the evolution of cosmic structure, and

the technique involves imaging the neutral IGM directly (Fan, Carilli, and Keating, 2006).

The theoretical calculation of the 21cm transition drives the observational effort and plays a

crucial role in understanding the underlying physics of the early universe.

The observed brightness temperature in the Rayleigh-Jeans limit (longer wavelength regime)

due to the HI 21cm line at a frequency ν = ν21
(1+z) is given by :

TB ≈
TS − TCMB

1 + z
ν ≈ 7(1 + δ)xHI(1 −

TCMB

TS
)(1 + z)1/2mK, (1.2)

where TCMB is the temperature of the CMB background radiation, TS is the spin temperature

which can be referred to as the temperature that accounts for the observed ratio of parallel to

antiparallel spins of HI, δ is the mass density contrast which is the a parameter that indicates

where there are local intensification in matter density, and xHI is the neutral fraction. In most of
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the 21-cm experiments, the aim is to measure brightness temperature fluctuations given by the

Equation (1.2). This equation shows that when TS >> TCMB then the brightness temperature

becomes independent of spin temperature and the IGM is observed in emission. This is the

condition which must hold during the later stages of the reionization era (z < 9, and for

collisionally coupled gas in collapsed objects after the completion of reionization. Lastly, when

TS << TCMB, the strong negative signal (i.e absorption) against the CMB is expected. The

tomography of the redshifted 21cm emission line will give us an opportunity to measure the

ionization state of the IGM as a function of time and space to further advance our knowledge

of reionization and the first galaxies. For more information please refer to these comprehensive

reviews Loeb and Barkana (2001), Santos et al. (2007), and Morales and Wyithe (2010).

1.4 Interferometry

The angular resolution of a single dish telescope depends on the diameter of the dish and is

given by the following equation:

θ ≈ λ

D
, (1.3)

where λ is the wavelength of the signal, and D is the diameter of the telescope. Restricted by

the physical limitations of building larger single dish telescopes, the concept of interferometry

is used, where two of more telescopes forming an array are built to synthesise a much larger

telescope. Rather than using the diameter size of each telescope, the resolution of an interfer-

ometer is defined by the distance between the array elements called a baseline (B). A baseline is

a vector connecting any pair of array elements (e.g. dishes or antennas).

Figure 1.6 illustrates the concept of interferometry with two radio antennas separated by a

baseline vector of length B. This set is used to measure the interference pattern produced by

the angular brightness distribution of a very distant source at a given frequency. On this figure,

the arrows at the angle θ representing the radiation from the distant source arrives at antenna 1

with the geometry time delay τg. The V1 and V2 represent electric signals induced at the output

of each antenna. This signals can be from a radio source with brightness distribution, Iv. The

https://etd.uwc.ac.za/
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Figure 1.6: Demonstration of interferometer with two antennas

signal outputs of a complex correlator is the power received per unit bandwidth, dυ, from an

element of the radio source ds:

r12 = A(®s)Iυ(®s)ei2πυτ, (1.4)

where υ is the observing frequency. The total response is obtained by integrating over the solid

angle subtended by the source. The coordinates system is defined by u, v,w, specifying the

baseline vector and l,m, n on the sky. We define a plane with orthogonal coordinates l,m which

are angles in the directions of u and v. On the baseline vector (u, v,w), w is chosen to be in the

direction of the source direction (known as the phase centre), normal to the u,v plane. The u-v

plane is perpendicular to the source direction. The l-m plane is the projection of the celestial

sphere onto the u-v plane. Assuming the flat sky approximation, we can define what is called a

visibility:

V(u, v) =
∬

A(l,m)I(l,m)e−2πi(ul+vm) dl dm (1.5)

where the term Av(l,m) inside the integral is the antenna primary beam response as a function

of the sky direction (l,m) if the antenna patterns are the same, otherwise it is the product of the

antennas voltage patterns. In order to compensate for the gaps in an interferometer array, the

uv-plane is sampled at various baselines. The Fourier inverse of this equation leads to:

I(l,m) =
∬

V(u, v)e−2πi(ul+vm) du dv (1.6)

Hence, by measuring the visibility function V(u, v) we can, through a Fourier transform, derive
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the brightness distribution I(l,m). Therefore, the more u,v samples we measure the more com-

plete our knowledge of the source structure. Each point in the u-v plane samples one component

of the Fourier transform of the brightness distribution. The points at small u,v record large scale

structure and vice-versa.

The concept of interferometry remains one of the widely used approaches for the current and

upcoming radio telescopes. In the next section we discuss the radio telescopes aimed to probe

the reionization epoch. We cover their locations, frequency range at which they observe, their

longest baseline, dish diameter, and the number of antennas.

1.5 Instruments for 21 cm Observations

There are a number of radio telescopes designed to study the EoR region by detecting the 21

cm signal statistically. This generation of radio telescopes plan to capture the lower redshift

part of the universe. We will briefly discuss each one of the following instruments. The Giant

Metrewave Radio Telescope (GMRT; Paciga et al., 2011), Precision Array to Probe Epoch of

Reionization (PAPER; Parsons et al., 2010), Low-Frequency Array (LOFAR; Haarlem et al.,

2013), Murchison Widefield Array (MWA; Bowman et al., 2013). Lastly, we will discuss the

future 21cm instruments, i.e. SKA-Low and HERA.

Figure 1.7: The image showing the GMRT interferometer. Tata Institute of
Fundamental Research, 2001

https://etd.uwc.ac.za/



1.5. Instruments for 21 cm Observations 13

Figure 1.7 shows the GMRT which is 30 dishes of 45-m diameter interferometer situated in the

Pune region of India, at about 120 km east of Mumbai. It is a very versatile instrument for

investigating a variety of radio astrophysical problems ranging from nearby Solar system to the

edge of the observable universe. Out of 30 dishes, the central 14 of which are within a 1-km

region are of particular use for EoR PS observations. Its longest baseline is about 25km.

Figure 1.8: The image of PAPAER in South
Africa. PAPER Team, 2012

Figure 1.9: The image of PAPER in United States.
PAPER Team, 2012

Figure 1.8 and 1.9 shows PAPER which is a low-frequency radio interferometer designed to

detect the ignition of the first stars and galaxies formed in the early universe. It was situated in

the Karoo reserve in South Africa where 128-antenna array has been deployed and at NRAO

site near Green Bank, WV where 32-antenna array is in place.

PAPER uses intensity mapping of 21cm emission of HI at high values of z = 7 − 12 to measure

the distribution of power into frequency components known as "power spectrum" of fluctuations

in the IGM in the universe. Intensity mapping refers to an observational technique that is used

to study the large-scale structure of the universe by the integrated radio emission lines from

unresolved objects. PAPER has collected data for five years, intending to establish how strongly

the signal from the Epoch of Reionisation (EoR) can be detected using the pioneering approach

planned for HERA (Parsons et al., 2010).

https://etd.uwc.ac.za/
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Figure 1.10: The image showing(LOFAR) the part of the core of the extended
telescope located near Exloo, Netherlands. ASTRON, 2010

Figure 1.10 shows LOFAR, which is a large radio telescope located mainly in the Netherlands.

It is an interferometric array of radio telescopes using about 20 000 antennas concentrated in

at least 48 stations. Forty stations are distributed across the Netherlands and were funded by

ASTRON. Five stations are located in Germany, and one each in Great Britain, France and

Sweden, were funded by these countries. The total effective collecting area is approximately

300,000 square meters, depending on the frequency and antenna configuration. It has a longest

baseline of about 100km.

LOFAR makes observations in the 10 MHz to 250 MHz frequency range with two types of

antennas: Low Band Antenna (LBA) and High Band Antenna (HBA), optimized for 10-80 MHz

and 120-240 MHz respectively. LOFAR’s EoR observations will use the high- band 110–250

MHz antennas in the central 2 km of the array. This high-band is expected to be sensitive enough

in measuring the redshifted 21 cm radiation coming from the neutral IGM within the redshift

range of z = 11.4 (115 MHz) to z = 6 (203 MHz), with a resolution of 3–4 arcmin and a typical

field of view of ∼ 120 square degrees (with 5 beams) and a sensitivity on the order of 80 mK

per resolution element for a 1MHz frequency bandwidth (Zaroubi, 2013).
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Figure 1.11: The image showing an individual MWA-32T tile. Curtin Institute
of Radio Astronomy (CIRA), 2009

The MWA is a radio interferometer located at Western Australia at the radio-quiet Murchison

Radio Observatory shown in Figure 1.11 TheMWAhas 512 antennas arranged in a very compact

1.5-km semi-random distribution designed to maximize the quality of the point spread function

(PSF) and features full cross-correlation of all antennas (130,000 baselines in 4 polarization and

3,000 frequency channels) and real-time holographic calibration. One of the main scientific

goals of the MWA is to detect neutral atomic Hydrogen emission from the cosmological Epoch

of Reionization (EoR), and MWA antennas are optimized for a slightly higher frequency (140

MHz) compared to the LOFAR, and correspondingly have a slightly larger ∼ 30O beam. Its

longest baseline is about 5km.

The performance of the above-mentioned instruments is adequate, and scientists are still us-

ing the instruments to understand the EoR. However, the future observational possibilities of

probing this region are promising to give us the ability to build more understanding and more

comprehensive insight on EoR. In this section, we discuss the two future probes, namely HERA

and SKA-Low.

The Hydrogen Epoch of Reionization Array (HERA; DeBoer et al., 2017) shown in Figure 1.12

https://etd.uwc.ac.za/
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Figure 1.12: HERA 19 dishes up in 2016 deployed in South Africa. SKA South
Africa, 2016

is a staged experiment to measure 21 cm emission from the primordial IGM throughout cos-

mic reionization (z = 6 - 12), and to explore earlier epochs of our Cosmic Dawn at redshift

approximately 30. It is located in the South African Karoo Astronomy Reserve, with a nominal

array centre of approximately 30oS and 21oE. Each of HERA’s 331 antennas will be 14 meters

in diameter. Its longest baseline is 1km. One of the key role of HERA is to characterize the

evolution of the 21 cm power spectrum to be able to constrain the morphology of reionization,

the properties of the first galaxies, the evolution of large-scale structure, and the early sources of

heating. All these goals will be achieved by observing radio waves in the low-frequency range

of 100–200 MHz. Each antenna measures dual-polarization. 1

Square Kilometre Array (SKA, Koopmans et al., 2015) is the large multi radio telescope aimed

to be built at Australia, South Africa and New Zealand. SKA will be built in phase. Phase I

representing about 10% of the capability of the whole telescope. It will operate on the frequency

ranging from 50 MHz to 14 GHz. The SKA will comprise separate sub-arrays of different types

of antenna elements that will make up the SKA-low and SKA-mid. SKA-low array is a phased

array of simple dipole antennas to cover the frequency range from 50 to 350 MHz. Its longest

baseline will be about 35km.
1For more information we refer the reader to https://reionization.org/

https://etd.uwc.ac.za/
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1.6 21 cm constraints

Currently, there are already measured upper limits on the 21cm power spectrum from reion-

ization. First upper limits were placed by PAPER (Parsons et al., 2014), in which they report:

2σ upper limit of (41 mK)2 for k = 0.27 h Mpc−1 at z = 7.7. More recently, LOFAR (Gehlot

et al., 2019) achieved a 2σ upper limit on the 21-cm power spectrum of ∆2
21 < (14561 mK)2 at

k v 0.038h cMpc−1 and ∆2
21 < (14886 mK)2 at k v 0.038h cMpc−1. These upper limits are

about 2-3 order of magnitudes more than the current theoretical predictions. Future 21cm sur-

veys with the SKA will be able to place more stringent constraints on the 21cm power spectrum

at these epochs. As regards with the theoretical preparation for the 21cm detection, the main

focus has been on using the power spectrum to constrain the neutral fraction.

Figure 1.13: 21-cm power spectrum predicted at z=7.25, 7.5, 7.75,8, 9, 10, 12
generated from fiducial SimFast21. This figure is adopted from (Hassan et al.,
2016).

Figure 1.13 shows an example of the 21cm power spectrum at different redshifts and various

values of neutral fraction (xHI). The following reviews and papers show how the power spectrum
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can be useful to study the early universe. Furlanetto, Zaldarriaga, and Hernquist (2004) show

how to construct the power spectrum of fluctuations in the neutral hydrogen field using the

numerical simulation model, and how these fluctuations can be observed in the next-generation

observations.

From the fact that the 21cm signal is expected to be highly non-Gaussian, the images retain the

non-Gaussianity unlike the power spectrum where there is a loss of information since the power

spectrum is insensitive to non-Gaussian information and this becomes more useful during the

training of the machine learning model as the network will have more information to make a

decision on. Hence, we expect to achieve tighter neutral fraction constraints by using the images

directly. Methods have been established to recover parameters in order to constrain the EoR

using 21cm data. Fisher analysis is one of the successful methods used as the first step to predict

how well the experiment will be able to constrain the model parameters, before either doing the

experiment or simulating the experiment in any details.

The forecast for the EoR parameters by using Fisher forecast applied to the 21cm power spec-

trum was demonstrated by liu2016constraining.; Pober et al. (2014), Kubota et al. (2016),

and Shimabukuro et al. (2016) They have found out that 0.1km2 of collecting area of the next

generation of 21-cm experiments is enough to ensure a very high significance (& 30σ) de-

tection of the reionization power spectrum in even the most pessimistic scenarios. They also

added that this sensitivity should allow for meaningful constraints on the reionization history

and astrophysical parameters, especially if foreground subtraction techniques can be improved

and successfully implemented. We learn that Bayesian parameter inference such as the Markov

Chain Monte Carlo (MCMC) approach from the 21cm power spectrum was also applied by

Greig and Mesinger (2015) who used three combination of data at z =8, 9 and 10 of the 21 cm

power spectrum with a conservative noise estimate and uniform model priors. They have found

that interferometers with specifications like the LOFAR/HERA/SKA1 can constrain common

reionization parameters which are the ionizing efficiency (or similarly the escape fraction), the

mean free path of ionizing photons and the log of theminimum virial temperature of star-forming
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haloes to within 45.3/22.0/16.7, 33.5/18.4/17.8 and 6.3/3.3/2.4 per cent, ∼ 1σ fractional uncer-

tainty, respectively. Bernardi et al. (2016) also showed that the Gaussian model of the 21-cm

emission from the Cosmic Dawn epoch (15 . z . 30), parameterized by an amplitude AHI ,

a frequency peak νHI and a width σHI , can be extracted even in the presence of a structured

foreground frequency spectrum (parameterized as a 7th-order polynomial), provided sufficient

signal-to-noise. Apart from the above-mentioned methods, we have a machine learning ap-

proach which we follow in our work. The widely used Convolutional Neural Network(CNN)

has proven to be one of the best to be used when working on images.

There is already a successful demonstration of the parameter recovery using CNN from 21cm

images. Gillet et al. (2018) was able to use CNN to recover astrophysical parameters which

describe the first galaxies. The four parameters being, the virial temperature(Tvir), ionizing

efficiency (ζ), the typical soft-band X-ray luminosity to star formation rate (LX/SFR), and the

minimum X-ray energy capable of escaping the galaxy into the IGM (E0). They were success-

fully recovered with < 1% uncertainty for Tvir and LX/SFR and 10% uncertainty for ζ and E0.

Hassan et al. (2018) shows how to identify the ionization sources from 21cm maps with CNN.

The network was able to efficiently distinguish between 21 cm maps that are produced by AGN

versus star-forming galaxies scenarios with an accuracy of 92–100 per cent. We see that also

La Plante and Ntampaka (2018) show that they were able to recover the duration of reionization

4z to within 10% using CNNs. Machine learning is an approach where the machine learns

from the input data set and predict the desired output. Machine learning approach which is

model-independent (not bound to a specific model) Motivated by a large amount of data set to

be supplied by the upcoming surveys, and also the successful application of machine learning in

different fields including astronomy, we use machine learning techniques to build our ionization

fraction estimator.

One of the primary challenges faced by all discussed observational instruments is the removal

of contamination from the bright astrophysical foregrounds, which interacts with instrumental

effects. The radio emissions includes, synchrotron and free-free emission from the Milky Way
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(Shaver et al., 1999), low-frequency radio point sources (Di Matteo et al., 2002), and extra-

galactic free-free emission (Oh, 1999; Cooray and Furlanetto, 2004;Santos, Cooray, and Knox,

2005). The study shows that astrophysical foregrounds are at least 4–5 orders of magnitude

brighter than the EoR signal. Effort has been put in trying to deal with foreground contamina-

tion andwork suggests that in order to separate EoR signal from the astrophysical foregrounds we

may use the principle which suggests that the foregrounds have smooth spectra. This is so since

the foregrounds are intrinsically smooth because of the physical processes that generate them

(such as synchrotron). Hence, it should be concentrated in the first few line-of-sight Fourier

modes (k‖), while the EoR signal would extend up to much higher k‖ modes (Morales and

Hewitt, 2004; Zaldarriaga, Furlanetto, and Hernquist, 2004; Wang, 2006; Harker et al., 2009).

Studies were also done on identifying the sources of foreground contamination (e.g Di Matteo

et al., 2002; Peng Oh and Mack, 2003; Gnedin and Shaver, 2004; Santos, Cooray, and Knox,

2005; McQuinn et al., 2007).

There are works investigating the so-called "mode-mixing effects" which provide an insightful

understanding on how foreground contamination propagate through the instrument and analysis.

Datta, Bowman, and Carilli (2010) identified a distinctive wedge shape in k space using the pre-

cision mode-mixing simulations where this mode mixing where predominantly below k‖ ∝ k⊥

line. Trott, Wayth, and Tingay (2012), Vedantham, Shankar, and Subrahmanyan (2012), and

Parsons et al. (2012) have shown through the investigation of the response of single baselines

to flat-spectrum foregrounds that the wedge shape is the characteristic of smooth spectrum

astrophysical sources interacting with the chromatic response of the baselines. The longer base-

line change length more quickly than shorter baselines which results into wedge shape. These

authors also identified a region called the "EoR window" at low k⊥ and high k‖ that should

be relatively free of this kind of contamination. The study of foreground contamination con-

tinues to be one of themost important and challenging effect in the study of epoch of reionization.
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1.7 Overview

The duration and the shape of the reionization history can be understood by studying the

evolution of the ionization fraction with redshifts. Using deep learning techniques, we aim to

reconstruct the ionization history focusing on redshifts 7 to 10. Chapter 2 aims to describe

how the dataset was obtained and how the noise was injected into our "simulated dataset".

Chapter 3 introduces the tools used and how the network was build including the preparation

of the data and the training methods. We then present our results in chapter 4 and followed

by the conclusion. Throughout this work, we adopt a ΛCDM cosmology in which ΩM = 0.3,

ΩΛ = 0.7, h ≡ H0/(100km/s/Mpc) = 0.7.
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2 Simulations

Cosmic reionization is a complex process that involves several astrophysical and cosmological

effects on various scales. A proper model of reionization is required to have a high resolution

(sub-kpc scale) in order to accurately follow the ionizing photons from sources, and to have a

large cosmological dynamic range in order to capture the ionized bubble growth on the Inter-

galactic medium (IGM) scales over cosmic time. This is also combined with the ability to

produce several reionization observables as discussed in the previous chapter, with a minimal

computational expense. To date, no model can simultaneously address all these challenges to

properly model reionization.

Currently, there are several approaches to simulate cosmic reionization. First, simulations based

on semi-analytical models, (e.g. Mitra, 2011) are fast and powerful tools to constrain the global

reionization properties such as the reionization and thermal history, but they cannot model the

21cm fluctuations. Second, full radiative transfer hydrodynamics simulations (e.g. Finlator,

2009) are the most fundamental approach to simulate reionization and to reproduce several

reionization and galaxy formation constraints. However, these simulations are usually limited

to small volumes (∼ 20 Mpc), due to the computational expense, which prevent them from

modelling our key observable 21cm line. Third, post-processing radiative transfer simulations

(e.g. Mellema et al., 2006) can evolve reionization on large volume with high computational

expense but they lack the self-consistent treatment for various feedback effects, and they are

slow compared to simulations based on semi-numerical models. The limitation in these different

models motivates the use of semi-numerical models of reionization.

Semi-numerical models are the most effective and promising method to simulate reionization on

large cosmological scales with an extremely low computational cost (Zahn et al., 2007; Mesinger
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and Furlanetto, 2007; Santos et al., 2010). These models apply several approximations to

generate the density and ionization fields with somewhat lower resolution, but they are consistent

with predictions from radiative transfer simulations (e.g. Majumdar et al., 2014; Molaro et al.,

2019). In this work, we aim to use a simulation code based on semi-numerical model that is

capable of quickly generating an end-to-end simulation of the 21 cm signal from low to high

redshifts when the effect of the spin temperature is non-negligible. This allows us to efficiently

generate large amounts of different 21cm realizations in order to form our training dataset, as

will be explained in the following sections.

2.1 SIMFAST21

SimFast21 is a fast semi-numerical code used to generate the 21 cm signal at various redshift

on large scales. We briefly review the main ingredients of SimFast21 and defer to Santos

et al. (2010) for a detailed description of the model. The initial step of the simulation is

to generate the density field from a Gaussian distribution. This generated density field is

then dynamically evolved from the linear to non-linear regime by applying the Zel’dovich

approximation at high redshifts. Zel’dovich approximation describes the non-linear stage of

gravitational evolution where the initial matter distribution is considered to be homogeneous

and collisionless (Zel’dovich, 1970). Next, dark matter halos are generated using the well-

known excursion-set formalism (Bond et al., 1991). The excursion-set formalism aims to

describe the statistics of halos, and this is done by considering the statistical properties of

the average overdensity (δ̄(R)) within some spherical window of characteristic radius R, as a

function of R. This will set the rules for assigning mass elements to virialized (a stable system

of gravitational interacting particles) objects of various sizes. The ionized regions are identified

using a similar form of the excursion-set formalism, in which ionized regions are allowed to

overlap. The ionization condition for a region to be ionized is based on comparing the ionization

rate Rion (amount of ionzing photons per second) with the recombination rate Rrec (amount of

recombining neutral atoms per second). A region is identified as ionized if

fesc Rion ≥ Rrec , (2.1)

https://etd.uwc.ac.za/



2.2. Large scale 21cm maps 25

where fesc is the photon escape fraction. The ionization and recombination rates are modelled

using derived parameterizations from a high resolution small volume radiative transfer simu-

lation (Finlator et al., 2015) and a larger hydrodynamic simulation (Davé et al., 2013). These

parameterizations are written as:

Rion
Mh
= Aion(1 + z)Dion(Mn/Bion)Cionexp(−Bion/Mh)3.0,

where the best parameters obtained from minimization are Aion = 1.08 × 1040M−1s−1, Bion =

9.5 × 107M, Cion = 0.41 and Dion = 2.28, and

Rrec
V
= Arec(1 + z)Drec

[
(4/Brec)Crec

1 + (4/Brec)Crec

]4

where Arec = 9.85 × 10−24cm−3s−1, Brec = 1.76 , Crec = 0.82 and Drec = 5.07.

The parameters Cion and Dion, represent ionizing emissivity dependence on halo mass and

redshift evolution index. The ionization rate (Rion) is determined for each gas particle and it

depends on mass while for recombination rate, it is strongly dependant on the density field. The

full details of how these parameterizations are extracted from these hydrodynamic simulations

are in Hassan et al. (2016). The ionization and density fields are the main components needed

to generate the 21cm brightness temperature fluctuations.

2.2 Large scale 21cm maps

Figure 2.1 shows randomly selected 21cm images from different reionization realizations that

are generated to form our training datasets from a box size of 70 Mpc and N = 1403 with a cell

size of ∼ 0.5 Mpc. We see each 21 cm image displays different ionized bubble sizes depending

on the astrophysical and cosmological parameters used. We quote their corresponding ionization

fraction (xHII) on the subtitles.
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Figure 2.1: Randomly selected 21cm images at z = 8 from different simulations with their
corresponding ionization fraction(xHII). Ionized and neutral regions are represented by the
blue and red colors on the colorbar respectively. The images with higher ionization fraction
from the left going across the right with a decrease in ionization fraction for each row are
presented.
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2.2.1 21cm Noise simulations

We follow closely the recipe presented in Hassan et al. (2018), which we briefly review here,

to account for various instrumental effects in order to create our mock 21cm images based on

a SKA1-Low instrumental configuration. These instrumental effects involve accounting for the

finite angular resolution of the experiment, the foreground cleaning and the thermal noise. The

pipeline consist of three parts:

uv-sampling

The baseline distribution of a given 21cm array controls its angular resolution to observe specific

modes in the direction perpendicular to the observation line of sight. The comovingwavenumber

in the directions perpendicular to our line of sight is defined as:

k⊥ =
2πu⊥

Dc
, (2.2)

where Dc is the comoving distance to the observation redshift z and u⊥ is expressed in terms

of u − v baseline length units in the u − v plane. Figure 2.2 shows the UV coverage which is a

representation of the total number of baseline to observe a given pixel in uv plane (uv plan is

described in the introduction section). We only focus on SKA1-Low array at z = 8 (ν = 157.8

MHz) and is computed using the 21CMSENSE (Pober et al., 2013,2014)1, for the SKA1-Low

antennae distribution as summarized in Table 2.1 which then represents the total number of the

baselines that observe a given uv pixel. The blue part representing zero pixel shows the signal

modes that lie beyond the experiment uv-sampling.

We follow the steps below to adjust the 21cm brightness temperature boxes in order to account

for an instrument’s angular resolution:

• Using the antenna distribution of a 21cm experiment at a given frequency (redshift), we

compute its UV coverage.

1a package for calculating the expected sensitivities of 21cm experiments
(https://github.com/jpober/21cmSense).

https://etd.uwc.ac.za/



28 Chapter 2. Simulations

Figure 2.2: The uv coverage for SKA1-Low array at z = 8 obtained from
21CMSENSE. The blue colour represent the zero coverage which correspond to
non-measured signal modes which are beyond the experiment layout angular
resolution.

• The u and v coordinates are then converted into their corresponding kx and ky modes

which are then used to calculate k⊥ using the equation : k⊥ =
√

k2
x + k2

y .

• We Fourier transform the 21cm signal simulation box and set to zero the signal for k⊥

modes that correspond to zero uv-coverage (which are outside the SKA1-Low angular

scales).

• We finally inverse Fourier back to the real space to obtain the angular limited 21cm

simulation boxes.
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Foreground cleaning

There are several ways to deal with foreground contamination, and in our work, we use a fore-

ground avoidance approach.

To deal with foregrounds in our simulated 21cm images, we simply zero out all Fourier modes

that are contaminated by foregrounds. These modes fall within the so-called foreground wedge

in the k‖-k⊥ plane, with a slope defined as:

m =
DH0E(z) sin θ

c(1 + z) , (2.3)

where E(z) =
√
Ωm(1 + z)3 +ΩΛ which is the field of view, H0 is the Hubble parameter, c is

the speed of light, and θ is the beam angle. The foreground wedge essentially comes from

the fact that foregrounds have an anisotropic footprint between the line-of-sight and transverse

directions. We quote all the wedge slope values for SKA1-Low at each redshift of interest on

Table 2.1. Larger values of the slope m contaminate the signal strongly, since a greater amount

of the signal is removed due to foregrounds.

Thermal Noise

Taking into account the thermal noise of the instrument into our data is the final step to complete

our process of making the 21cm maps more realistic. We define the flux error by the following

equation:

√
〈|N |2〉 =

2kBTsys

A
√
∆νtint

, (2.4)

where tint here is the integration time to observe a single visibility at a frequency resolution

∆ν, and kB is the Boltzmann constant. The total system temperature Tsys and other parameters

are summarized in Table 2.1. This parameters are for an SKA1-Low1 like system although the

numbers are not completely fixed yet. Having generated the thermal noise in 2D grid using the
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Array design 866 compact core
Station diameter, D [m] 35

Station area, A [m2] 962
(

110
ν[MHz]

)2

system temperature [K] (= Tsky + Trcvr) 1.1 Tsky + 40
Total observation time tint [h] 3500
Frequency resolution ∆ν [kHz] 50
Redshift 10, 9, 8 ,7
Frequency [MHz] 129 , 142, 158, 178
Resolution [arcmin] 1.37, 1.24, 1.12, 0.99
Field of view θ2 [deg2] 14.30, 11.81, 9.57, 7.56
Default wedge slope m, Equation (2.3) 0.27, 0.23, 0.19, 0.15

Table 2.1: Summary of our assumed SKA1-Low design.

above equation in the Fourier space, we further suppress the noise by the amount of the uv-

coverage Nuv. We finally inverse Fourier transform the noise grid and add it to the uv-sampled

and foreground filtered 21cm signal map to form our mock 21cm map.

For a more detailed description and application of the method mentioned above, we refer the

reader to Hassan et al. (2018). As an example (Figure 2.3), we show a summary of the above

21cm noise simulations at z = 8 for the future SKA1-Low-like observations.

Figure 2.3 shows the images before and after implementation of the steps used to account for

instrumental effects of the SKA1-Low as described above. The 1st column shows the original

signal (also see Figure 2.1), we notice that the bubbles are clearly visible, which gives us the

impression that the network will be able to extract the ionization fraction without any difficulties.

After accounting for the angular resolution where the resultant slices shown in the 2nd column,

we observe that the prominent structures are still visible, this indicates the higher sensitivity

of the SKA1-Low. As already discussed under the noise pipeline description, we clarify that

we account for angular resolution directly to the slices that are from the 21cm boxes already

foreground treated with m = 0.19 (wedge slope value at z = 8, see Table 2.1). We then observe

the effect of the thermal noise on the slice treated with angular resolution and foreground avoid-

ance. We add these slices with thermal noise of the SKA1-Low to produce our mock images.

We expect the network to be still able to extract the ionization fraction but not as efficiently as

with dataset before adding noise. The prominent features are still visible hence we are confident
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Figure 2.3: The 1st column represents slices of 21cm signal from the 21cm box, on the 2nd
column we show slices which are angular resolution adjusted taken from a foreground treated
3D boxes, 3rd column shows the thermal noise, and the last column shows the addition of the
2nd column slices with the 3rd column slices. Note that all slices are for z = 8 respectively.
The colorbar measurement units is Mpc.

that the network should still be able to recover the neutral fraction. This is an optimistic noise

realization for future SKA1-Low observations, and we here attempt to show a proof-of-concept

for using the 21cm maps to constrain the neutral fractions as an alternative approach to using the

power spectrum. Our analysis can be easily refined when future 21cm dataset become available

in the next decade.
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3 Machine Learning

3.1 Overview

The use of statistical techniques to give a computer the ability to learn from data without being

explicitly programmed is titled as Machine learning defined by Arthur Samuel in 1959. The

idea of machine learning is widely applicable in different fields including astrophysics, finances,

biology, and more.

Figure 3.1: Relationship between Artificial Intelligence, Machine Learning and Deep Learning(Rachit
Kumar Agrawal at Udacity India)

The figure above demonstrates the relationship between Artificial Intelligence (AI), Machine

learning (ML) and Deep learning (DL). According to the diagram, AI is the primary field having

machine learning as its large sub-field. In 1955 John McCarthy defined AI as “the science and

engineering of making intelligent machines that have the ability to achieve goals as humans do”.

Within ML sub-field, we have an area called neural networks widely known as artificial neural
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networks (ANN) which is regarded as the brain-inspired computation. A neuron is regarded as

one of the vital element of our brain, so the network of neurons connected forms the basis of all

the decisions made based on the various information gathered and this is precisely how ANN

works. DL is an area which falls under the domain of neural networks, and it can be constructed

from neural networks by designing a neural network that has more than three layers.

Unlike other traditional ML methods widely used, Neural Networks do not require explicitly

constructing features from the input data but can easily and directly learn patterns from the raw

input signal by using a complex combination of neurons organized in nested layers that can

learn a non-linear function of the input data (Herbel et al., 2018). When a neural network is

having more than three layers (input layer, at least more than one hidden layer and output layer)

is then called Deep Neural Network. Unlike standard machine learning algorithms that break

problems down into parts and solve them individually, deep learning solves the problem from

end to end, and it draws its power of best performance in dealing with images by taking advan-

tage of the spatial structure of the inputs (for a comprehensive review see Rawat andWang 2017).

In the following sections we broadly introduce machine learning covering its key concepts,

overview of the types of neural networks, introduction to classical neural network and con-

volutional neural network (CNN), the architecture of the network used in this work together

with the components used to build the network. We also discuss how the training of dataset

was generated, data preparation and other data manipulation methods applied with the aim to

improve the results.

3.2 Introduction to Machine Learning

A computer program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with experience E

(Mitchell, 1997). Machine learning is a data-driven technological tool that is widely used to turn

information into knowledge. The algorithms learn from data (experience E) in order to perform

https://etd.uwc.ac.za/



3.2. Introduction to Machine Learning 35

a specific job (task T) and the more it learns how to perform a job, it will do better (performance

measure P). We give the overview of the two classes of machine learning, i.e supervised and

unsupervised learning. Each class has differing approaches while following the same underlying

process and theory. We closed this section by highlighting some of the common challenges when

using machine learning algorithms.

3.2.1 Supervised vs. Unsupervised

Supervised learning is based on training the model to be able to map input (x) data into output

(Y) which can be applied to the new data with unknown outputs. The model is provided with

the labelled data for training purposes and be given the new unlabelled data to predict its cor-

responding labels. The aim of machine learning model is to generalize from the training data

to any data on the same domain as the training. Generalization refers to how well the concepts

learned by a model apply to data not seen by the model during training. The two common types

of supervised learning are classification and regression. In classification, the output variable

can be nominal, categorical, or numerical. There are 2 types of classification, i.e binary and

multi-classification. In binary classification, there are only two possible outcomes while in

multi-classification there are more outcomes. In regression, the output variable is a real value,

or continuous variables. The commonly used algorithms in supervised learning are nearest

Neighbor, Naive Bayes, Decision Trees, Linear Regression, Support Vector Machines (SVM),

andNeuralNetworks. In ourworkwe useCNNwhich falls under neural networks (Møller, 1993).

In unsupervised learning, the model is provided with unlabelled input data leaving it to the

algorithm to determine the data patterns (e.g similarities and differences) on its own. The two

common types of unsupervised learning are clustering and association. In clustering, the model

divides the data into groups with different characteristics. In association, the model attempts

to discover the new set of association rules that describe the data. This can provide some

interesting relationships between variables in our dataset. This type of learning can provide an

insight into the data by restructuring the data and extract new features. The commonly used
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algorithms in unsupervised learning are Hierarchical clustering, K-means clustering, K-NN (k

nearest neighbors), Principal Component Analysis, Singular Value Decomposition, Independent

Component Analysis (Coates, Ng, and Lee, 2011).

A feature is an independent or depend measurable property or characteristic observed from a

phenomenon. Features are used to train machine learning models. It is common to start with

feature extraction before training the model. Feature extraction is a process of dimensionality

reduction whereby a set of raw data is reduced to many manageable groups for processing.

Most of supervised algorithms require features for the training purposes, while neural networks

perform the feature extraction and utilization of features automatically during training. This

makes CNNmore convenient and powerful. Unsupervised algorithms do not require any features

for the training purposes.

3.2.2 Overfitting and Imbalance

The most common challenges faced when using machine learning algorithms are over-fitting

and data imbalance. Overfitting refers to when the model learns the desired details and noise of

dataset too well and generalize based on both of them. This will impact the performance of the

model negatively when is applied on different dataset. This leads us to also discuss underfitting

which is when the model neither model training data nor generalize to new data. The above

mentioned challenges can be solved as follows, k-fold cross validation where the model is trained

and tested k-times using different subset of training data, and also holding back the validation

dataset to evaluate the model at the end when the training is completely done.

The concept of data imbalance which often happens in classification where there are dispro-

portionate ratio in each class, plays an important role on the performance of the model. We

can deal with data imbalance by a) resampling techniques called, oversampling where one adds

copies of existing data which helps when the data is not enough and undersampling where one

removes some of the data from majority classes, this helps when there is more data, b) generate

synthetic samples where data augmentation is used to generate more unrealistic data. Data
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augmentation is a process of increasing data by transforming the existing data using rotation,

cropping, padding, and horizontal flipping (Krawczyk, 2016).

3.3 Neural Networks

There are different types of Neural Networks available. For example:

• Feedforward Neural Network – Artificial Neuron: is used to approximate a given function

by a flow of information taking place in the forward direction (Svozil, Kvasnicka, and

Pospichal, 1997).

• Radial basis function Neural Network (RBFNs): are universal approximators and a spe-

cial type of feed-forward neural networks with radial basis functions used as activation

functions (Chen, Cowan, and Grant, 1991).

• Kohonen Self Organizing Neural Network: is a dimensionality reduction type of artificial

neural network that is trained using unsupervised learning to produce a low-dimensional,

discretized representation of the input space of the training samples, called a map (Koho-

nen, 1990).

• Recurrent Neural Network (RNN): is a class of artificial neural network where connections

between nodes form a directed graph along a temporal sequence (Pineda, 1987).

• Convolutional Neural Network (CNN): is a class of deep learning that captures local

features from the input raw data through learnable kernels (LeCun and Bengio, 1995).

The above mentioned neural networks work differently and can be chosen depending on the

type of problem one is trying to solve. The successful application of CNN in solving different

problems encourages andmotivates us to further apply CNN in solving our problem of extraction

of ionization fraction from 21cm maps. The widely known deep convolutional neural network

known as Visual Geometry Group Network (VGGNet) showed case a significant capability

of CNN. The VGGNet was developed and trained by Oxford VGG which focused on object

recognition and image classification where the network achieved outstanding performance on
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the ImageNet dataset (Simonyan and Zisserman, 2014).

We further note its successful application into astronomy. The estimation of cosmological pa-

rameters demonstrated by Ravanbakhsh et al. (2016) and Gillet et al. (2018) reflect the capability

and the reliability of CNN in astronomy. We also see the classification of sources responsible

for reionization of the early universe presented by Hassan et al. (2018) and classification of

supernova which plays a crucial role in obtaining cosmological constraints (e.g Lochner et al.,

2016) being an excellent tool to classification of astronomical data. This is also driven by the big

data concept arose because of the availability of large astronomical data and how relevant and

helpful the classification can be in order to understand the universe. He, Wang, and Yan (2018)

also demonstrates the prediction of structure formation of the universe. With more example of

the successful application of machine learning into astronomy which can be found in Ntampaka

et al. (2019), we confidently consider using CNN to build our ionization fraction estimator.

However, the work of Shimabukuro and Semelin (2017) on the extraction of EoR parameters

(i.e. the ionizing efficiency, the minimum viral temperature of halos producing ionizing photons,

and the mean free path of ionizing photons through the IGM) from the 21cm power spectrum

showed the capability of ANN. We then decide to attempt building our parameter estimator

using classical neural networks famously referred to as ANN.

In this section we cover the overview of classical neural network, convolutional neural network,

activation function used, and batch normalization technique.

3.3.1 Classical Neural Network

Classical neural network became our starting point in this work. It consists of fully connected

layers where each layer is made up of a set of neurons. The term ‘fully-connected’ taken from

the idea that each neuron in one layer is connected fully to all neurons in the previous layer.

Figure 3.2 shows an artificial neuron, it is a unit with inputs and output. Each neuron accepts the

input x and computes the output y. The neuron performs a linear combination of the components

x with weights and biases and passes the information to a non-linear function called activation
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Figure 3.2: An example of a neuron.

function. The weights are calculated using the backpropagation method. This can be expressed

mathematically by the following equation:

y j = g(
N∑
i

w
j
i xi + bi)

where y j is the j th output, N is the number of inputs in each layer, w j
i is the j th weighting of

the ith input xi, b j is the j th bias and ’g’ represent the activation function. There are many

available activation functions to choose from, and in our work, we use Rectified Linear Unit

(ReLU) activation function which will be discussed in the next section. To demonstrate the use

of the above equation we consider Figure 3.2 where the output will be as follows:

Y = g(x1w1 + x2w2 + x3w3)

Figure 3.3 shows ANN architecture made up of input layer, hidden layer and output layer. The

output from one neuron become the input for next one or several other neurons. The advantage

of classical neural networks is that they require less computational power compared to other

neural networks. A significant challenge in using classical neural networks is that the deeper

networks contain large number of parameters, which might lead to overfitting.
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Figure 3.3: An example of an a simple architecture of ANN

The fully connected layers accept a vector as an input. The neurons are fully connected to the

activation from the previous layer, and the training from these layers is performed through forward

and backpropagation. In forward propagation, the training happens in a forward direction and

compare the results obtained with the real values in order to get an error through loss function

which will be covered in the next sections. During the backpropagation, the error gradient is

backwards propagated to update the weight parameters. Ultimately the error is minimized as

much as possible by differentiating the loss function with respect to the weights using gradient

descent. This process continues until the set of weights and biases that make the error small are

found.

3.3.2 Convolutional Neural Network

As briefly discussed above, CNNs are a special kind of multi-layer neural networks. They are

designed to be able to recognize directly from pixel images the visual patterns with very minimal

pre-processing. Their ability to successfully capture the spatial and temporal dependencies in

an image through the application of learned filters show their capability of dealing with complex

images. In our data, the network is trained to identify the ionized bubbles and predict the number
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indicating the ionized fraction of that particular image.

Figure 3.4: An example of an a simple architecture of CNN
with 2 convolutional layers, and 3 fully connected layers

Figure 3.4 shows an example of a simple CNN architecture. We will use this figure for

demonstration purpose on how CNN works. Unlike other neural networks, the connection of

neurons in CNN from layer to the next is only to a small region of the next layer. Figure 3.4

shows the image of size 140× 140 as an input image. The first convolutional layer uses multiple

convolution filters or kernels that runs over the input image and compute a dot product. This

is demonstrated in Figure 3.5 where the first image represent the input pixel image. The filter

of size 3 × 3 is used to compute an element wise multiplication between the image pixel values

corresponding to the filter’s size and sum the answers up. This then gives us a single value for

the feature map cell as shown on the right hand side. In this exaple, the convolutional filter

moves two steps each time, this is called stride. This process continues until the feature map cells

are all filled with the values. The resulting feature map takes the size of the filter/kernel. The

output feature map passes through a ReLu activation function (following on the next section) in

order to make it non-linear. From Figure 3.4 we further see that after the convolutional layer,
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max pooling is applied to the feature map which takes maximum value in each window. The

max-pooling will also be covered in section 3.4.

Figure 3.5: A dot product of a filter of 3 × 3 with an image of
5 × 5 and their feature map

Traditionally, when using CNN, the architecture ends with fully connected layers. As a results,

figure 3.3 shows that the result from last convolutional layer feeds into a fully connected neural

network structure that drives the final decision. In summary, the convolutional layers are serving

the purpose of feature extraction and fully connected layers are then used to make a decision

using feature maps received from the convolutional layers.

3.3.3 Activation Function

The following diagram shows the behaviour of our activation function known as a Rectified

Linear Unit (ReLU). This graph is represented by the following function:

g(x) = max(0, x), (3.1)
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Figure 3.6: The graph showing behavior of activation function ReLU, this indicates that the output
ranges from 0 to infinity.

The equation, as shown above, gives an output x if x is positive, otherwise the output will be

0 meaning it zero out all negative inputs since they are considered less significant. ReLU is a

non-linear function in nature, and also maintains the non-linearity even when it combines with

any other functions. It is less computationally expensive than other activation functions like

tanh and sigmoid, and this is because of its simple mathematical operations involved. This point

becomesmore relevant and essential when one is building a deep neural network. It also removes

the less critical features and keeps the more critical prominent features during the training of the

network, which can be more useful in decision making for the output layer.

3.3.4 Batch normalization

During the training of a deep neural network, the input to each layer is affected by parameters

in all the input layers. This means that even a small change to the network is amplified down

through the network which of course will affect the performance of the network. This leads

to change in the input distribution to internal layers of the deep network known as an internal

covariant shift. To address the issue of an internal covariant shift, we use the method known as
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Batch Normalization (BN). The effect of internal covariant shift can be counteracted by setting

lower learning rate and careful parameter initialization. This idea might slow down the training

of the network. Batch normalization provides any layer in a neural network with inputs that are

zero mean/unit variance and allows us to use much higher learning rates and be less careful about

initialization (Ioffe and Szegedy, 2015). Batch normalization normalizes the output of a pre-

vious activation layer by subtracting the batchmean and dividing by the batch standard deviation.

The following equations represent the first algorithm of batchnorm implementation. A detailed

explanation can be found in (Ioffe and Szegedy, 2015).

µβ ←
1
m

m∑
i=1

xi, (3.2)

σ2
β ←

1
m

m∑
i=1
(xi − µβ)2, (3.3)

x̂i ←
xi − µβ√
σ2
β + ε

, (3.4)

yi ← γ x̂i + β ≡ BNγ,β(xi), (3.5)

During the batch normalization algorithm, the input is the values of x over the mini-batch :

β = {x1...m} and the output : {yi = BNγ,β(xi)} where γ and β are free parameters which scale

and shift the normalized value x̂(k) according to the following equation:

y(k) = γ(k) x̂(k) + β(k), (3.6)

Equation (3.2) represents the mini-batch mean (µβ) calculated from values of x in a batch. The

value m represent the number of values in a batch. The mean is then used to calculate the

mini-batch variance (σ2
β) using Eq (3.3). The normalization of values of x is performed by Eq

(3.4) and the output values are obtained by Eq (3.5).
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The normalization is applied to each activation independently. Some of the advantages of

applying BN are as follows:

• allows use of saturating nonlinearities and higher learning rates which will speed up the

learning process.

• reduces internal covariant shift.

• reduces the dependence of gradients on the scale of the parameters or their initial values.

• regularizes the model and reduces the need for dropout, photometric distortions, local

response normalization and other regularization techniques.

Given the above benefits of using BN, we decided to apply it in our network. The sequence of its

application is shown in the next sections on a table which shows the summary of the architecture

of the network.
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4 Building the Neural Network

We explain the procedure that was followed in order to build our network used in this work. It

is important to note that in any basic or complex neural network, the following components,

i.e. activation function, loss function, and optimization algorithm play a vital role in efficiency

and effectiveness of training a model to produce the desired results. Hence we will carefully

consider explaining how and whywe chose the above components of our network. The following

sections outline the building method and the use of our network explicitly. We discuss how the

network architecture was built in Section 3.3.1, and the discussion of the training loop, testing

and evaluation of our model will be in Section 3.3.2.

4.0.1 Architecture

Building the most efficient architecture to assist in processing and extracting the relevant infor-

mation from the given data is one of the challenging steps in machine learning. Architecture

building depends mostly on the type of problem one is trying to solve. Here we describe two

architectures, the one makes use of fully-connected layers that we refer to as “ANN” and the

other is a standard CNN that uses convolutional layers that we refer to as “CNN". Our best

performing ANN has the following architecture.

Classical neural network consists of three types of layers being, input layer which is the first

layer of the network. Setting up the number of neurons/nodes determined by the shape of the

data. On the case of our data, the input shape of our data is 2D (140 × 140) image which is

flattened into a 1D vector array. The second layer type is hidden layers where the number of

neurons varies on each layer. The final layer is the output layer which is always determined by

the chosenmodel configuration. For our work, the network runs in a regression model where this

layer returns a value which must then represent our ionization fraction. The ANN architecture in
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Table 4.1: The summary of ANN architecture used

Layer (type) Number of neurons
Input layer 140 × 140 × 1

Fully connected hidden layer 1 252
relu

dropout
Fully connected hidden layer 2 128

relu
dropout

Fully connected hidden layer 3 64
relu

dropout
Fully connected hidden layer 4 32

relu
dropout

Fully connected hidden layer 5 16
relu

dropout
Fully connected hidden layer 6 8

relu
dropout

Output layer 1

our work consist of input 1 input layer, 7 hidden layers and 1 output layer as indicated in Table 4.1.

We furthermore discuss howwe have built a convolutional neural network which contains convo-

lutional layers making it different from the classical neural network. Convolutional layers extract

different features from the input data by convolving each input image with learned weights of

two-dimensional kernels. Table 4.2 summarizes architecture of our best performing network.

The first column represents the layer type. Our network comprises of 2 convolutional layers,

each convolution layer is followed by the batch normalization plus ReLu as an activation func-

tion which is discussed above. Batch normalization technique also played an essential role in

improving our results.

There are two different types of poolings to can be applied into the neural network, i.e, maximum

and average based pooling (Hijazi, Kumar, and Rowen, 2015). Max-pooling select maximum

pixel values in a batch while average pooling select the average of all pixel values in a batch.
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Table 4.2: The summary of CNN architecture used

Layer (type) kernel/filter size data dimension
Input - 140 × 140 × 1

conv2d-1 5 × 5 140 × 140 × 8
batch-norm + relu

max-pooling 5 × 5 /2 70 × 70 × 8
conv2d-2 5 × 5 70 × 70 × 16

batch-norm + relu
max-pooling 5 × 5 /2 35 × 35 × 16
flattening - 19600

fully connected - 128
batch-norm + relu

dropout
fully connected - 32

batch-norm + relu
dropout
Output - 1

Pooling can be performed between layers. While max-pooling layer extracts essential features

like edges, generally, the pooling layer reduces the resolution of the previous feature maps and

also produces invariance to any small transformation like translation and dilation. Pooling splits

the inputs into disjoint regions with a size of (R × R) to produce one output from each region

(Aldhaheri and Lee, 2017). In our network we apply max-pooling after the convolutional layers

has extracted features from the images and normalization of the output from the convolutional

layers took place. The pooling compresses features to a lower fidelity by taking the maximum

activation in a block which also reduces the size of the image into half. The size of the output

image from the max-pooling layer depends on the filter size and strides. The filter size of 2 and

stride of 2 is applied.

After the second max-pooling layer, we flatten the image and pass it to the dense layers with

batch norm and ReLU as an activation function in each step ending by applying drop out which

simply can be regarded as a temporary deactivation or ignoring of some neurons of the network

depending on how useful their analysis is. This is to avoid what is called “over-fitting” which is

an error that occurs when a network is too closely fit a limited set of input samples. The output

layer gives out one number representing the ionization fractionxHII of each input of 21 cm map.
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4.0.2 Training dataset

We discuss the free parameters used in running the simulations to generate our dataset. We

present in Table 4.3 the main free parameters with their range.

Table 4.3: Parameters range of values used

Parameter Range
fesc 0.01-0.5

log10(Aion) 39.0-40.0
Cion 0.0-1.0

These parameters include:

• fesc - is the amount of ionizing photons that can escape the galaxy or ionizing source.

• Aion - is the ionizing emissivity amplitude, which scales the amount of ionizing emissivity

(Rion) equally across the halo mass range at a given redshift.

• Cion - is ionizing emissivity-halo mass power dependence, which quantifies the Rion −Mh

slope.

It is crucial to consider a range of values of different parameters to make sure that our data is

diverse. Using SimFast21, we run 1000 reionization simulations with a box size of 70 Mpc and

number of cells N=1403, which results in a resolution of 0.5 Mpc. The number of simulation is

motivated by Schmit and Pritchard (2018) where they showed that only 100 model evaluations

are sufficient to learn 3 parameters. In our case we aim to learn one parameter, therefore 1000

simulations should be sufficient to ensure the learning. Each simulation is obtained fromdifferent

realizations of the initial density field fluctuations through a random change of the seed number,

different set of astrophysical parameters, changing the photon escape fraction fesc, Aion, Cion as

indicated on Table 4.3. We also vary Rion-Mh and Rion redshift evolution index Dion=(0-2), and

different set of cosmological parameters, changing the matter density parameter Ωm=(0.2-0.4),

the Hubble constant H0=(60-80), and the matter fluctuation amplitude σ8=(0.7-0.9). The range

considered for the astrophysical parameters is motivated from our previous MCMC estimates to

match the simulation to several reionization observables (Hassan et al., 2017), and those of the

cosmology is inspired by the recent parameters estimates from the Planck Collaboration 2018.
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This ensures that our training sample contains a very different set of 21cm maps that accounts

self-consistently for the cosmic variance.

Table 4.4: Summary of the runs from the code

Number of Simulations 1000
Number of redshift boxes per simulation 41

Number of Slices per box 50
Redshift range 7-10

After running 1000 simulations producing 41 boxes in each simulation at different range from

10 to 7, we then take 50 slices in each box to increase the dataset which is summarized in

Table 4.4. We apply the cutoff of 0.05 < xHII < 0.95 to our dataset in order to address the

problem of imbalanced data. This then explains why the number of datasets per redshift is

slightly different. Before the cutoff, we have noticed that for all redshifts, both edges, i.e. where

the neutral fraction is in range 0.0 to 0.04 and also 0.95 to 1.0 the number of slices is very large,

which considerably affects the performance of the network. The outcome turned to favour our

desire for the excellent performance of the network.

Table 4.5: Dataset splits

redshift (z) 7 8 9 10
Number of training sets 10920 11280 11760 11760
Number of validation sets 1365 1410 1470 1470

Number of test sets 1365 1410 1470 1470

Table 4.5 shows the number of training, validation and testing datasets for each redshift. Deep

neural networks rely on several things for its performance, and the number of datasets is one of the

vital one. This means that the higher the number of training sets, the better the network performs

and generalizes. From experimentation, we have found that the network requires at least 10,000

training dataset to obtain robust results. We noticed that the results remain approximately the

same for datasets including more than 10,000 images, whereas lower accuracy has been found

for smaller datasets. This is observed on a single redshift case only. In the following Section,

we shall outline how the data was loaded and prepared to be used.
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Data Optimization

Understanding of dataset is a crucial step in machine learning. As indicated in the previous

section, our data is in the form of 2D images with a resolution of 0.5 Mpc. We further select

an equal number of boxes in each redshift and take an equal number of slices in each bin of

ionization fraction. Our ten bins range from 0.05 to 0.95, we then select roughly 1000 images

per bin and end up having roughly 10 000 images in the whole range of ionization fraction for

each redshift.

The slices from 21 cm boxes are 2D arrays, and their corresponding labels are the ionization

fraction, which is just a single number ranging between 0 and 1. We shuffle data during training

and split it into training, testing and validation.

Figure 4.1: The histogram showing dataset at each redshift, the x-axis representing ionization fractions
divided into 10 bins and y-axis showing the number of data points.
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Figure 4.1 represents the histogram of ionization fractions at each redshift with the number

of data points available. There is enough data in each bin of ionization fraction. However,

Figure 4.1 also shows that the size of the dataset in each bin is not equal, but sufficient to capture

variations in each neutral fraction bins.

4.0.3 training the network

Here we describe how training for both CNN andANN is performed. The training of the network

is basically finding the set of parameters that minimizes the distance between the predictions

and true labels. It is useful to construct the network which will be fast and robust in solving a

problem, but it is always a challenge to achieve such a goal. However, tuning hyper-parameters

has shown that it is still achievable. Hyper-parameter is a parameter that is set before the learning

process begins. Since the network might have many hyper-parameters, we then apply mini-batch

to allow minimal supervision on some of the hyper-parameters, in this way we can focus on less

number of parameters. As helpful mini-batch can be, we also initialize the hyper-parameters as

shown in the Table 4.6.

Table 4.6: Summary of the hyper-parameters choice for the network

Hyper-parameter Value
Learning rate start = 10−2

Batch-size 50
Number of Epochs 25

Dropout rate 20%
Loss function Huber Loss, Smooth Mean Absolute Error
Optimizer AdamOp

We briefly discuss each hyper-parameter below:

• Learning rate - is the steps of learning that control how quickly or slowly a neural network

model learns a problem.

• Batch-size - refers to the number of training examples in one forward/backward pass.

• Number of Epochs - is the number of times the entire training set pass through the network.
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• Dropout rate - is the rate at which the randomly selected neurons are ignored or switched

off during training.

• Loss function - is a function used to measure or evaluate how well the algorithm models

a given data.

• Optimizer - is an algorithm used to change the network’s attributes (e.g weights, learning

rate, etc) in order to reduce the losses.

The learning rate of 10−2 is used as the starting value and allow it to decay exponentially where

the network finds the best learning rate during the training steps on its own. The mini-batch

technique allows us to use a higher learning rate, which speeds up the learning process. During

the training of the network, we set batch-size to be 50. Batch-size is directly proportional to

the learning rate, through our experimentation which suggests that if the learning rate is high,

then the batch-size must be small. This obviously will depend on the number of training dataset

available. We train our network for a total of 25 epochs. The dropout rate of 20% is also

applied, implying that the network keeps 80% of the output every time the dropout is active.

This method forms part of the regularization process which reduces over-fitting. In our work,

we use the Huber Loss function (Huber (1992)) known as a smooth mean absolute error, and

the following equation gives loss function:

Lδ(y, f (x)) =


1
2 (y − f (x))2, for |y − f (x)| ≤ δ.

δ |y − f (x)| − 1
2δ

2, otherwise.
(4.1)

where y is actual value and f(x) represents estimated values, and δ is a hyper-parameter that can

be tuned. Huber loss is more robust and more sensitive to outliers than many loss functions.

Moreover, it also differentiable at 0. We also note that it approaches Mean Absolute Error

(MAE) when δ is too small and Mean Square Error (MSE) when δ is too large.

Figure 4.2 shows the importance of choosing the value of δ when using Huber loss. The choice

of δ determines what we are willing to consider as an outlier. The different lines represent

different values of δ. As it can be seen on the plot that when δ is higher, we get a smoothed
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Figure 4.2: Plot of Huber Loss (Y-axis) vs. Predictions (X-axis). True value = 0. Rackspace, 2019

parabolic shape which indicates the amount of sensitivity to the outliers. For the case of a green

curve, the Huber loss is sensitive to very few outliers compared to when δ is very low(blue

curve). For our work we used δ = 0.1.

The optimization functions calculate the gradient i.e. the partial derivative of loss function with

respect to weights. The following equation gives an example of the calculation:

W (k+1) = W (k) − ∂L(W)
∂W (k)

(4.2)

Where L(W) is the loss function needed to be minimized. We further use Adam optimization

algorithm (AdamOp; Kingma and Ba, 2014) to minimize our loss function. The weights are

modified in the opposite direction of the calculated gradient, and the cycle repeated until the

minimum loss is reached. In AdamOp, the update rule for individual weights is to scale their

gradients inversely proportional to a (scaled) norm of their individual current and past gradients.

Unlike with Stochastic gradient descent where the learning rate remain the same for all weights

updates and throughout the training process and generally requires more of hyper-parameter
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tuning during the training process, AdamOp’s learning rate is maintained for each network

weight and separately adaptable as learning unfolds.

The above-discussed components of the neural network come to play a role in the training of the

network. Convolutional neural network layers are organized in 3 dimensions. The input layer

accepts the 21cm images, and it passes the image into the hidden convolutional layers where the

feature extraction is done by performing a series of convolution and pooling operation resulting

in the detection of features (e.g. ionizing bubbles). The convolution operation is executed using

a filter/kernel of size 2× 2 which slides over our 21cm image and performs a matrix multiplica-

tion and sums the result onto the feature map. The collection of feature maps from the operation

using different filters is combined and serves as a final output of convolution layer. In order to

avoid the feature map from shrinking, we use what is called padding where a layer of zero-value

pixels is added around the input maps to preserve the size of the maps. We add max-pooling

layer after each convolution layer. Thismax-pooling, as discussed above. We also use strides of 2.

Since a fully connected layers accept a vector as an input, we then flatten our feature maps to pass

it to the end part of our network which is the fully connected part. neurons are fully connected

to the activation from the previous layer, and the training from these layers is performed through

forward and backpropagation. Our output layer has one neuron which is responsible for giving

the final prediction. All of the estimated ionization fraction is stored together with true ionization

fraction.
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5 Results and Discussion

5.1 Quantifying the results

There are other methods which can be used to quantify how well the network is able to recover

the correct answers such as Welch’s t-test (Welch, 1947) and Kolmogorov-Smirnov test (Kol-

mogorov, 1933). We here choose to quantify the results using coefficient of determination R2.

It is represented by the following equation:

R2 =

∑ (Ypred − Y true)2∑ (Ytrue − Y true)2
, (5.1)

where the summation is performed over the entire data set, andYpred ,Ytrue andY true are predicted

values from the network, the true labels and the average of all the true values of the sample.

R2 is the fraction by which the variance of the errors is less than the variance of the dependent

variable. It ranges between 0 and 1, where 1 refers to a perfect inference of parameters.

5.2 Classical vs Convolutional Neural Network

We attempt to solve our problem using a classical neural network and compare the results with

the convolutional neural network. This test was done to check which one can be more efficient

in solving our problem. As described in chapter 4, the architecture of the network plays a role

for the network’s performance. The CNN contains convolutional layers which will require more

time to train compared to fully connected layers, this means that CNN training will then take

longer as compared to ANN training. Since our data is in the form of images, the expectations

might be that we use CNN straight away, but the results show that also ANN is competent and

give robust results in some instances (data without noise). The challenge we are facing is that
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after taking into account the instrumental effects our ANN performs worse in extracting the ion-

ization fraction from the 21cm images. Below we present the results before adding instrumental

effect.

Figure 5.1 shows the plot of true value vs estimated values from the two networks as indicated

above each plot. The results show clearly that ANN also is able to recover the parameter.

However, the CNN show a much better recovery and an increase in accuracy as compared to the

ANN. The results presented are for a single redshift 7, and we observe a similar trend on other

redshifts not included here. ANN fails because it uses one neuron per image pixel as an input.

Our noise images are 140× 140 which makes 19600 pixels with very low resolution, this results

in having unmanageable amount of weights and too many parameters since it is fully connected.

The CNN has the ability to capture 2D information of the local bubbles on the 21cm maps and

given the higher accuracy obtained, we then proceed with the CNN.

Figure 5.1: The plot of true values vs estimated values from ANN and CNN for
z = 7. The blue points represent the ionization fraction of each 21cm map from
the estimator and the true values directly from the ionization fraction boxes. The
number of dataset is equal in both methods, i.e training = 29 000, test dataset =
1500, validation dataset = 1500
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5.3 Best Network results

We now present the results for four different redshifts, i.e. z = 7, 8, 9, 10 obtained from our CNN

and for combined redshifts. We train and test the network with the dataset for each mentioned

redshifts and do the same with combined redshifts dataset. In principle, the ionization fraction

ranges from 0 to 1. We show the results without noise and with noise. Finally, we combine all

the redshifts for data with noise to make final evaluation.

5.3.1 Fitting without Noise

Single redshifts

Figure 5.2: The plot of ionization fraction estimated values vs true values. The estimated values are
from the CNN for different redshifts, i.e z = 7, 8, 9, 10 on the data before accounting for instrumental
effects. Number of training data set is 10920, 11280, 11760, 11760, validation data set is 1365, 1410,
1470, 1470, and test data set is 1365, 1410, 1470, 1470 respectively.
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Figure 5.2 shows the relationship between true ionization fraction of each slice and the estimated

ionization fraction obtained from the network. The scatter plot is perfectly aligned with the fit-

ted line and the points are more concentrated across the line. This is observed in all redshifts.

We further calculate R2 values for all redshifts presented in Table 5.1. All R2 values indicate

good accuracy which shows successful recovery of our parameter in all redshifts. Our results

suggest that, CNN approach is a good way to recover ionization fraction from 21cm images. The

ability to recover this parameter gives us an exciting start on building sophisticated methods of

analyzing upcoming 21cm dataset. This means we can develop model-independent techniques

to extract EoR parameters like the ionization fraction from future 21cm experiments.

It is always imperative to think of error quantification and checking whether the network is learn-

ing something during its training steps or not. There are several different methods to evaluate

how well our network model the data. The loss function can be used to make these evaluations.

It calculates the deviation of true value and predicted value, and if the deviation is too much, then

it will output a large number. The optimization functions help the loss to learn to reduce this error.

Figure 5.3 shows the loss function for the training set. An epoch is defined as each iteration

over the whole training sample. We train our network for 25 epochs, and it starts converging

at around 400 iteration as can be seen on the Fig 5.3. The different redshifts are represented

by different colour. The behaviour of the loss for each redshift is generally similar since it

decays exponentially and converges at nearly the same epoch. The performance of the network

is generally good for all redshits. This observation is in agreement with the calculated R2 value

in Table 5.1 where we observe that they all have R2 > 0.99.

Combined redshifts

Considering the fact that the universe evolves with redshift we then investigate the ability of our

estimator to extract the ionization fraction from the 21cm images of different redshifts passed at

once. Figure 5.4 shows the result of all redshifts combined, plotting the estimated values vs the
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Figure 5.3: The plot of the loss function of training set for four different redshifts as indicated on the
upper right end.

true values. The estimator is able to extract the parameter very well even after mixing up the

data of different redshifts. This is impressive since the data from different redshifts is entirely

different. We first examine our best performing CNN ability to recover the ionized fraction in

noiseless data set. We also quote the value of R2 calculated from this result, and it reflects a

good accuracy of our result.

5.3.2 Fitting with Noise

Single redshifts

Our second set of results are from the data which takes experimental effects into account. Fig-

ure 5.5 is a plot of true values of ionization fraction against the estimated ionization fraction

from the CNN. The plot as compared to Figure 5.2 reflects how noise can affect the performance
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Figure 5.4: The plot of ionization fraction estimated values vs true values. The estimated values are
from the CNN for different redshifts combined, i.e z = 7 − 10 on the data before accounting for
instrumental effects. Number of training data set is 45720, validation data set is 5715, and test data set is
5715 respectively.

of our network. The uv-sampled data accounts for Foreground avoidance and instrumental

noise. We quote the value of R2 in Table 5.1, which indicates a decrease in accuracy when we

go to higher redshift. Nevertheless, this is expected since when we go higher in redshift the

level of foreground contamination increase since the wedge slope (m) is higher, allowing more

background sources to be picked up.

Fundamentally, the network focuses on the structures of the image to calculate the percentage

of ionized regions on that particular image, and in our case, these structures are the ionization

bubbles. If the features of bubbles are destroyed or no longer clear which is probably what

happens when we account for instrumental effects, then the performance of the network will be

affected negatively.
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A significant change is observed when accounting for foreground contamination avoidance. The

wedge slope presented previously plays a significant role in the level of foreground contami-

nation. The wedge increases with increasing redshift (see Equation (2.3), and Table 2.1), and

we properly remove the wedge according to the redshift of the 21cm map. This means that our

data set contains different levels of foreground removal, presenting a more challenge to ionized

fraction recovery by the neural net.

Figure 5.5: The plot of ionization fraction estimated values vs true values. The estimated values are
from the CNN for different redshifts, i.e z = 7, 8, 9, 10 on the data after accounting for instrumental
effects. Number of training data set is 10920, 11280, 11760, 11760, validation data set is 1365, 1410,
1470, 1470, and test data set is 1365, 1410, 1470, 1470 respectively.

Despite the effect of noise into our data, our estimator still shows a good recovery of the ionization

fraction from our 21cm images with R2 > 0.92. The scatter plot is aligned with the model line

but not tightly concentrated across the line. This indicates the decrease in accuracy compared

to the results before adding noise. We notice a good recovery in highly ionized regions than in

less ionized regions at low redshifts (e.g z = 7, 8). This is because noise is less at highly ionized
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regions. When the bubbles are small, the noise contaminate them easily, hence we get a more

scattered points at less ionized regions.

Combined redshifts

We further continue to explore the capability of our network by accounting for instrumental

effect, but this time around, we then combine our dataset for all redshifts, train and test the

network. The role of accounting for instrumental effects become more vital when we combine

the dataset from different redshifts since the level of noise is different from different redshifts.

Figure 5.6: The plot of ionization fraction estimated values vs true values. The estimated values are
from the CNN for different redshifts combined, i.e z = 7 − 10 on the data after accounting for
instrumental effects with m = 0.15, 0.19, 0.23, 0.27 for each respective reshift. Number of training data
set is 45720, validation data set is 5715, and test data set is 5715 respectively.

From Figure 5.6, we observe that our network was able to recover the ionization fraction from

the 21cm images which were randomly taken from different redshifts(z = 7 − 10). We select an
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equal number of images from different redshifts to form part of the training, validation and test-

ing data set. The accuracy of the result fluctuates at around 95% to 88% for single redshift and

for combined redshifts we observe an increase in accuracy at 98%. This observation might be

because of the higher number of training set for the combined dataset since the network is trained

with 13239 images, this is 2000more compared to other training sets presented in Table 4.5. The

encoded redshift information in the maps also plays a role since adding more information essen-

tially will help in making a good fitting. This is in agreement with the expectation when working

with neural networks, more training dataset will basically improve the accuracy of the newtwork.

Table 5.1 shows the calculated R2 values for each redshift, and it is clear to see that the network

performed good at all redshifts before adding noise to the data. Generally, all four redshifts were

learned well and provided good results. It is interesting to see that CNN is still competitive and

give good accuracy even after accounting for instrumental effects.

Table 5.1: The accuracy measure(coefficient of determination)

redshift(z) R2 Before Noise R2 After Noise
7 0.9975 0.964
8 0.9983 0.941
9 0.9980 0.927
10 0.9978 0.925

5.3.3 Wedge slope effect

Another test was done in trying to investigate the effect of wedge slope during foreground

avoidance technique on our images. We use a single redshift to demonstrate how the wedge

slope affects the performance of our network.

From Figure 5.7 we observe that the scatter increases and the accuracy decreases at higher

wedge slope values, where more modes are assumed to be foreground contaminated. The results

show the significance of the value of m on the performance of the network. Nevertheless, this

observation is expected and can be studied further in order to understand more about foreground

contamination. The presented result is for z = 8, and we eliminate the results for other redshifts
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Figure 5.7: The plot of ionization fraction estimated values vs. true values for
z = 8 after accounting for instrumental effects. The first plot is for m = 0.15,
second one is for m = 0.19, third plot is for m = 0.23, and the fourth plot is for
m = 0.27 as indicated inside each plot.

since we observe similar trend where the accuracy decreases when we go to higher values of m.

This work already has proven to be a useful indication for developing more sophisticated and

improved foreground techniques. This can be helpful for us to test our network in the future when

such foreground tools are available. This work also shows the effectiveness of the application of

deep learning techniques into cosmology. Not limited to parameter recovering, there are a vast

of number of work done recently to prove the ability of the application of machine learning in

astronomy. Provided that the upcoming 21cm experiments will provide us with a tremendous

amount of data, the automated systems can come to our rescue in order to assist us in analyzing

this vast amount of data.
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Response of Convolution

Lastly we discuss our understanding on how CNN is able to create the link between the input

(21cm-image) and the output (ionization fraction). This is done by looking at the responds from

the first convolutional layer. We only pull out the output from this layer at the final training step.

Figure 5.8 shows the convolution of random 21cm image to a set of 8 weights from the first

layer.

Figure 5.8: The response of convolving a randomly selected 21cm map with the trained set of 8 weights
of the first convolutional layer before the application of the Relu. The weights activate the input map
differently, particularly, the neutral region. The ionized bubble activation appears to be approximately
similar, albeit fainter with some weights. These variations are used in the network to estimate the
neutral fraction out of the 21cm map.

We find that the activation of the ionized bubbles is relatively similar, although the bubbles

edges are somewhat fainter with some weights. However, these trained weights do activate the

ionized regions of the 21cm image very differently as shown by the red color, indicating that

the network is using these variations to estimate the ionization fraction out of the input 21cm

map. We have decided to restrict the visualization to the first convolutional layer since with

other deeper layers more features are no longer visible making it difficult to can see what the
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network might be using in order to decide on what could be a corresponding ionization fraction

of a given 21cm image.
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6 Conclusion

In this work we have shown that machine learning methods can be used to recover ionization

fraction directly from 21cm maps of the early universe. We put our focus on the ionization

fraction mainly because is one of the parameters which can help us to understand the evolution

of the early universe. Upcoming instruments like SKA and HERA will probe this region on

large scales. Therefore, we take advantage of these observational possibilities and study the

21cm signal to build a better understanding of the expected signal from the above mentioned

instruments. We use a deep learning approach known as convolutional neural network to build

an estimator which inputs 21cm images and outputs the corresponding ionization fraction. Our

estimator can extract the ionization fraction from 21cm images without being given any external

information about the signal. The previous approaches to extract the ionisation fraction rely on

the power spectrum and require the assumption of a given model for reionisation. Our technique

can be more robust to the assumptions in reionisation models by including multiple simulations

in the training set. The results show an excellent reconstruction at different redshifts(z = 7−10).

The results are quantified using coefficient of determination R2. We obtain R2 of 0.99 ≡ 99%

before and also up to 0.93 ≡ 93% after taking into account the instrumental effects. The results

also show a decrease in accuracy at higher redshift. This could be because of the high level of

foreground contamination at higher redshifts. We combine the data from different redshifts and

test the network. This also shows that the network performance is robust to redshift changes.

To study the early universe using images can be a challenge since the foreground contamination

worsens at higher redshift. Figure 5.7 in chapter 4 shows the impact of foreground contamination

to the 21cm signal. As we increase the wedge slope m we observe a decrease in accuracy and

it becomes worse at higher redshifts. This suggests that good foreground cleaning methods are

needed. The results can be improved by methods like averaging of images which will increase

the signal to noise ratio. We leave this for future work. We further explore the possibilities
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of improving the accuracy by combining the data from z = 7 − 10 and Figure 5.6 shows an

improvement of accuracy compared to single redshifts. The CNN strongly depends on the

amount of training data and we conclude that the averaging technique can help us in improving

the results when enough data is available, so this will be further tested when more data is

available. While we only focused on the SKA design, our analysis can be easily extended to

include other experiments such as HERA and LOFAR, although the large noise and/or low

resolution might create extra challenges. We leave it for future work to present a detailed

comparison between the ability of different 21cm arrays to constrain the reionization history.
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