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Abstract

Mathematical modeling of TB disease dynamics in a crowded

population.

Sibaliwe Maku Vyambwera

PhD Dissertation, Department of Mathematics and Applied Mathematics, Faculty of Nat-

ural Sciences, University of the Western Cape.

Tuberculosis is a bacterial infection which is a major cause of death worldwide. TB is a

curable disease, however the bacterium can become resistant to the first line treatment

against the disease. This leads to a disease called drug resistant TB that is difficult

and expensive to treat. It is well-known that TB disease thrives in communities in over-

crowded environments with poor ventilation, weak nutrition, inadequate or inaccessible

medical care, etc, such as in some prisons or some refugee camps. In particular, the World

Health Organization discovered that a number of prisoners come from socio-economic dis-

advantaged population where the burden of TB disease may be already high and access

to medical care may be limited. In this dissertation we propose compartmental models of

systems of differential equations to describe the population dynamics of TB disease under

conditions of crowding. Such models can be used to make quantitative projections of TB

prevalence and to measure the effect of interventions. Indeed we apply these models to

specific regions and for specific purposes. The models are more widely applicable, however

in this dissertation we calibrate and apply the models to prison populations.

ii

http://etd.uwc.ac.za/ 



The basic model in this dissertation is a minor modification of the model in the paper

[Buonomo, B and Lacitignola, D. Analysis of a tuberculosis model with a case study in

Uganda, Biological Dynamics 4, (2010) 571− 593]. The models are more widely applica-

ble, however in this dissertation we calibrate and apply the models to prison populations.

Our models allow for the inflow of susceptible, exposed and TB-infectives into the popu-

lation. Removal of individuals out of the prison population can be either by death or by

being released from prison, as compared to a general population in which removal is only

by death. The first of our original contributions in this thesis is a new deterministic model

for TB dynamics in a prison. Secondly we impose stochastic perturbations on the same

model. We prove existence and uniqueness of positive solutions of a stochastic model.

We introduce an invariant generalizing the basic reproduction number and we analyse the

stability of the disease free equilibrium. Our main theorem in this regard implies that the

stochastic perturbation enhances stability of the disease free equilibrium of the underlying

deterministic model.

Thirdly, we consider a two-group TB model, to cover the case of the prison population

consisting of two sub-populations which are sentenced detainees and the awaiting-trial

(remand) inmates. Like in the previous cases we study the global stability of the disease

free equilibrium by using a Lyapunov function and present some simulation results. The

two-group gives better accuracy when relevant, compared to the original model.

Multi-drug resistant tuberculosis is caused by individuals who are unable to adhere to

the treatment or incorrect use of treatment or incomplete treatment. As a fourth contri-

bution we present a multi-strain TB model to understand the transmission dynamics of

drug sensitive TB in a crowded environment such as prison. This model and all of the

aforegoing models are calibrated to a South African prison population.

As our final contribution we apply optimal control on the first model, in order to deter-

iii

http://etd.uwc.ac.za/ 



mine a mathematically optimal rollout of screening and treatment in the fight against

TB. In particular, we illustrate the results by way of application to a prison system in

DRC. Throughout our study we pay special attention to the possibilities for extinction of

the disease, which mathematically means stability of the DFE. Also we supply numerical

simulations and illustrations.

Keywords: Prison TB model, inflow of infecteds, removal rate, stochastic TB model,

almost sure exponential stability, two-group model, sentenced convict, remand, awaiting

trial, multi-drug resistant TB, Basic reproduction number.
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Chapter 1

Introduction

Infectious diseases have been a great concern of human being for ages. Millions of people

die every year from tuberculosis, AIDS, malaria, etc, and millions of others are infected.

Infectious disease is an illness which arises through transmission of an harmful pathogen

from an infected individual or vector to a new host. The transmission can either be direct

(transfer of an infectious agent from the infected individual directly to the new host i.e.

sexual intercourse, biting etc.) or indirect (transfer of an infectious agent through a vector

or by contaminated objects such as water, food, air etc.) [75]. Our research will focus on

one infectious disease, which is tuberculosis. Tuberculosis (TB) is an infectious disease

caused by bacillus Mycobacterium tuberculosis (MTB) that most often affects the lungs

(pulmonary TB) and can affect other parts as well such as brain, kidneys, spine etc, which

is called (extra-pulmonary TB). Infectious droplet nuclei spreads through air when people

who are infected with pulmonary TB cough, sneeze or spit. The tiny particle can remain

suspended in the air for several hours in the darkness, but direct sunlight rapidly destroys

the infectious droplet nuclei. Allowing air and sunshine into the rooms where tuberculosis

patients live can reduce the risk of infection for those who are living in contact with them.

People who are at very high risk of inhaling infectious particles are those who are living

or sleeping near a patient with TB disease.
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Tuberculosis is still claimed to be the second leading cause of death worldwide after the

human immunodeficiency virus (HIV). It has been reported that for instance in 2015

10.4 million people fell ill with TB and 1.8 million died from TB disease [76]. Among

these deaths, it has been stated that 95 percent of TB deaths occur in low and middle

income countries [75]. Researchers have found that TB is the leading killer of HIV-positive

individuals. In 2015 about 400 000 individuals died of HIV associated TB and there were

an estimated 1.1 million new cases of TB amongst individuals who were HIV-positive.

It has been found that between 2000 and 2015 an estimated 49 million people infected

with TB have been saved [75]. Furthermore, about 80 percent of TB cases occurred in 22

countries and some of these countries were experiencing a major decline while the other

countries were improving in there numbers during 2015 [76]. According to the World

Health Organization, 480 000 individuals developed MDR-TB in the world in 2015 and

more than half of these cases were from India, China and the Russian Federation [76].

1.1 Tuberculosis background

Tuberculosis is an ancient disease that has killed millions of people in different parts of

the world. There were many names given to this disease that killed so many people. It

was known as white plague or consumption, as it consumed and left people weak and

emaciated. It was also believed that tuberculosis is an inherited disease. There was no

cure for this dreaded disease and scientific evidence on how TB was transmitted was

also lacking. Robert Koch became interested in the research on TB during his time as

the government advisor of the imperial Department of Health in Berlin in 1880. Koch

was convinced that the disease was caused by a bacterium and was infections and tested

his four assumptions using guinea pigs. In 1882 after a long search, Robert Koch the

German physician and microbiologist discovered the pathogen that causes consumption,

Mycobacterium tuberculosis [22]. Koch’s investigations made the bacillus visible. Later,

he succeeded in growing the bacteria in pure culture. Following this he inoculated the

bacteria in animal which became infected and reproduce the disease. The discovery of the

2
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Mycobacterium that causes tuberculosis and the proof that it was an infectious disease

has lead to massive medical TB campaigns and advertisements on how to prevent TB.

Unfortunately, TB disease has created fear and stigma. Those who were infected with TB

suffered and were treated as outcast. Till today there are still some remnant of fear and

shame when TB is spoken about in our communities. It is important to educate people

about TB.

1.2 Tuberculosis Biology

The disease TB is caused by Mycobacterium Tuberculosis. Once a person has inhaled

these droplet nuclei containing tubercle bacilli, they will travel down through the trachea

and enter the lungs and then penetrate into the alveoli sacs. Once in the alveoli sacs

the tubercle bacilli begins to multiply in the alveoli. The immune system of the body

starts working and microphages begin to surround the tubercle bacilli. The cells form a

barrier shell called granuloma that keeps the bacilli contained and under control. The TB

tubercle remains in the lungs but the body is protected from the disease by the granuloma.

In eight to ten weeks the person is most likely to be tested positive for latent TB infection.

If the immune system is unable to keep the tubercle under control the shell breaks down

and tubercle bacilli escape and multiply. The person becomes sick with TB disease and

maybe infectious. The process can occur in different areas in the body such as lungs

kidneys, brain or bone which will be called Extra Pulmonary Tuberculosis. When the

TB escapes from the granuloma and begins destroying the lungs, it is called Pulmonary

Tuberculosis.

1.3 Stages of Tuberculosis

The progression of TB can be separated into two categories namely, Latent Tuberculo-

sis Infection (LTBI) and Tuberculosis disease (Infectious stage). We will describe the

dissimilarities of these two stages of TB.
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1.3.1 Latent Tuberculosis Infection (LTBI)

Individuals with LTBI have Mycobacterium tuberculosis in their bodies but do not have

TB disease and are unable to spread the infection to other people. This stage is usually

called early infection. It occurs when the first host comes into contact with TB bacteria

and if the immune system is strong enough it will fight off the TB bacteria. If the immune

system is unable to reject the TB bacteria, the individuals will now fall under latent stage.

The individuals at this stage may remain asymptomatic for months or over their entire

lives. By identifying such individuals with LTBI will help to accomplish the goal of TB

control and can also prevent infected people from developing TB diseases.

1.3.2 TB disease (Infectious Stage)

This is the stage when TB bacteria overcomes the defences of the immune system and be-

gin to multiply, resulting in the progression from latent TB infection to TB disease. Some

individuals develop TB disease soon after infection while others develop TB disease later

when the immune system becomes weak. Individuals with TB disease are considered to

be infectious and can spread TB bacteria to others. The general symptoms of TB disease

are weight loss, loss of appetite, night sweats, fever, fatigue and chills. Tuberculosis at

this stage can also travel from the lungs to the other parts of the body by passing through

the bloodstream. However, only those with Pulmonary (lung) disease can be infectious.

If TB disease is suspected, persons should be referred for a complete medical evaluation.

If the results are positive then the patient will immediately be under treatment, if left

untreated during this stage, the patient might die.

1.4 Symptoms and Diagnosis

Most common symptoms of active lung TB are coughs with sputum or blood at times,

chest pains, fatigue, unintentional weight loss, fever and night sweats which may last three

or more weeks. Several countries still depend on a long used method called sputum smear

4

http://etd.uwc.ac.za/ 



microscopy to diagnose TB. This is where trained laboratory technicians gaze at sputum

samples under a microscope to see if TB bacteria exist in the sputum. Unfortunately,

the microscope can only identify half the number of TB cases and is unable to identify

multi-drug resistant TB. A positive TB skin test and TB blood test can only inform

us that a person has been infected with TB bacteria. It is unable to tell us whether a

person has LTBI or has progressed to TB disease. Tests like chest X-ray and sample

of sputum are able to identify the TB disease. In 2010, the World Health Organization

(WHO) permitted the X-pert MTB/RIF for use in TB endemic countries [77]. The use

of this machine has expanded significantly as it can detect simultaneously active TB and

resistance to rifampicin, the most important TB medicine. The diagnosis is fast and

efficient as compared to the microscope test. Diagnosis can be made within two hours

and the test is now recommended by WHO as the initial diagnostic test in all individuals

with signs and symptoms of TB.

1.5 Treatment of Tuberculosis

Tuberculosis is a treatable and curable disease. It is very important to treat people who

are infected with tuberculosis. If left untreated such a person may become sick and this

may lead to life threatening situations. Tuberculosis may develop resistance if treatment

is not administered properly. In fact, if patients stop taking the treatment before time,

they may become sick again and in worst scenarios the TB bacteria that is still alive may

become resistant to the treatment, which is referred to as multi-drug resistant tuberculosis

(MDR-TB). Multi-Drug resistant is a form of TB caused by bacteria that is unable respond

to ioniazid, rifampicin, ethambutol and pyrazinamide which are the four most powerful

first-line anti-TB drug. Multi-Drug resistant TB is difficult to treat especially in the old

age. A two strain mathematical model has been investigated by Castillo-Chavez and Feng

[18], where treatment of multi-drug resistant individuals has been omitted as it is difficult

to treat. Once again HIV/AIDS individuals are at great risk of developing multi-drug

resistant TB. World Health Organization has reported about 450 000 incident cases of
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MDR-TB and 170 000 deaths in the world in 2015 [76]. We also have another disease that

comes after MDR-TB which is called Extensively drug resistant (XDR-TB). XDR-TB

occurs when resistance to second line drugs develops on top of MDR-TB.

1.6 Other factors that cause TB transmission

There are several factors that cause TB transmission. So for example, people who are in

close contact with infectious individuals are at high risk of being infected. These may be

family or friends with infectious TB disease. TB infection may be caused by immigrations

i.e., people from parts of the world may have high rates of TB. Concentration camps

arise mostly from displacement of people due to political conflicts in developing countries

and are at high risk of becoming infected with tuberculosis due to close contact with

infectious individuals. People with weak immune system such as babies, young children,

HIV infected individuals, etc, are at great risk of getting infected with TB. People who

work or reside in facilities or institutions that house people who are at high risk for TB

such as hospitals, homeless shelters, correctional facilities, nursing homes, and residential

homes for those with HIV.

1.7 Problem Identification

In this dissertation, our main focus is to formulate mathematical TB models that would

assist in analysing the dynamics of TB in a crowded environment such as prisons, mines

and concentration camps. Mathematical models can assist in projecting how infectious

diseases progress over time and will assist to inform public health interventions. We want

to do this by introducing the notion of compartmental models under certain assumption

representing health status such as susceptible, exposed, infectious and treated. These

mathematical models will use some assumptions and will also be used to find parameter

values for various crowded environments. We will use the parameters to compute the

effects of possible interventions, like treatment.
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1.8 Outline of the thesis

The thesis has been organised in the following manner:

Chapter 1 of this study provides us with the biological background of tuberculosis and

the objective of this study. A literature review on different tuberculosis models has been

discussed in Chapter 2. The modelling of TB depends on specific special consideration

such as living conditions, treatment, co-infection with other diseases, MDR-TB, XDR-

TB, vaccination and so on. Similar models have been proposed in the papers [54], [1],

[11], [8] and [52]. In [54], the authors presented a number of models which are modified

to capture different type of tuberculosis infection such as different treatment strategies,

drug resistance and co-infection of TB with other diseases. In Chapter 3, we present the

relevant mathematical tools that will be applied in Chapter 4, 5, 6 and 7.

In Chapter 4, we propose a compartmental model that considers the dynamics of TB

disease in a prison system. The model will allow the inflow of susceptible, exposed and

the infectious individuals into the prison population. This model is a minor modification

of the model in [14], and forms the kernel around which the other models are formulated.

The essence of Chapter 4 is in how the model is calibrated for the South African prison

system. In Chapter 5, we further impose a stochastic perturbation into the deterministic

model in Chapter 4 and further analyse further the dynamics of tuberculosis. We present

the analytical results by means of simulations.

A two-group TB model that considers the dynamics of TB in the sentenced and remand

population has been presented in Chapter 6. A two strain TB model to understand the

transmission dynamics of drug sensitive TB and multi-drug resistant TB in a crowded

environment such as a prison has been studied in Chapter 7.
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In Chapter 8, we follow up a model in Chapter 4 by considering an optimal intervention

strategies on TB epidemiology in a dense population. We perform this in a Congo prison

system where control measures are not stable. Our aim is to minimize the proportion

of active TB disease individuals while minimizing the cost. All simulations presented in

this thesis were performed using MATLAB. This work will contribute in informing public

health policy. It can help the authorities to get a better understanding of the dynamic

transmission of active TB. It will allow them to provide a new policies to reduce the risk

of transmission.
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Chapter 2

Literature review

Tuberculosis is one of the world’s deadliest diseases as one quarter of the world’s popu-

lation has latent TB. Most people are infected by a TB bacteria but do not suffer TB

disease and are unable to transmit the disease. In 2018, 10 million people worldwide

were infected with TB disease and 1.5 million died due to TB related disease including

251000 among people with HIV. Mathematical models are very useful in understanding

the behaviour and impact of infections disease and to make future predictions about the

spread of the disease. There are three steps that need to be taken into consideration

when dealing with mathematical modelling of biological systems. The first step is to

formulate a mathematical model that represents accurately the biological process that is

being investigated. Secondly, one must apply the mathematical techniques as to be able

to understand the behaviour of the model. Lastly, the proper interpretation of the results

of the model to determine whether the biological results are obtained is also important.

Differential equations have been applied to many types of biological systems ranging

through population, epidemics and physiological systems [4]. Our research will focus on

epidemic models which describes the process subsequent to occurrence of a disease which

infects an often substantial proportion of a population, possible causing many deaths over

a short period of time before vanishing. The word endemic refers to a state of the disease

that persist within the population for a sustained and possibly indefinite period of time,
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usually only infecting a relatively small proportion of the population [2]. However, when

an epidemic occurs on a scale which crosses international boundaries, this usually affects

a large number of people, and is referred to as a pandemic. Kermack and McKendrick

revealed that if the density of susceptible individuals exceeds a critical threshold then an

epidemic is likely to occur. Nonetheless an epidemic is unable to be activated if below

the critical threshold. Kermack and McKendrick [36] established in 1927 an ”SIR” math-

ematical model that considers the transmission of infectious diseases. A model in which

the exposed class is omitted is usually called the Susceptible-Infective-Recovered (SIR).

This kind of a mathematical model has been applied in the paper of Kermack and McK-

endrick [36]. However, if the disease has an exposed class, such a model is refereed to as

an Susceptible-Exposed-Infective-Recovered (SEIR), such a model has been presented in

Ozcaglar et al. [54] for instance. The models are based on different mathematical systems

such as system of ordinary differential equations, simulation models and Markov Chain

Monte Carlo methods. The study in [54] provides a review of an earlier study on modeling

of different aspects of tuberculosis dynamics. Various authors have incorporated different

infection aspects such as age dependency, treatment, drug resistance, control strategies,

HIV/TB co-infection, reinfection, public health campaigns e.t.c., [57, 18, 14, 8, 52, 51].

TB treatment saved 58 million lives globally between 2000 and 2018, with a drop of 38%

in TB deaths [77]. The formulation of the model clarifies assumptions, variables and pa-

rameters. These models provide conceptual results such as thresholds, basic reproduction

numbers, contact numbers, and replacement numbers. Similar work has been done in the

paper of Moualeu et al. [51], where a deterministic model for the transmission dynamics

of TB in Sub-Saharan Africa has been presented. The main objective of the model is to

determine the role of TB diagnosis, treatment, lack of information about the epidemio-

logical status of some people, and the role of traditional medicine and natural recovery on

the dynamics of TB. It was observed in [51] that parameters representing the proportion

of individuals having access to medical facilities have a large impact on the dynamics of

the disease. An increase in these parameter value over time can significantly reduce the
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disease burden in the population.

World Health Organization has declared that tuberculosis is the leading killer of HIV

positive people, i.e., patience who are infected with HIV are at risk of developing active

TB. It was also reported in 2018 that there were 477000 cases of TB among people living

with HIV [77]. A six compartmental model with interaction between HIV and TB epi-

demics has been investigated in [8]. The authors proposed and analysed sensitivity of the

steady states with respect to changes in parameter values. Most of the control measures

studied had an obvious positive impact in controlling the HIV or TB epidemics, i.e, in

the case for condom use, increased TB detection and providing treatment. The situation

for antiretroviral (ART) is more complicated, although the future for the prevalence of

HIV is uncertain, it seems that a generalized access to ART would lead to a significant

decrease of the TB notification rate. It is difficult to guess if the observations drawn from

the model with parameters adapted to the particular South African township are still

valid for less crowded areas with high HIV prevalence [8]. Nonetheless, reliable data on

both HIV and TB are still rare.

In 2018, World Health Organization has declared an estimate of 1.1 million children who

become ill with TB and 251000 children died of TB including children with HIV associated

TB [77]. There was an increase of 100000 children as compared to 2017 results and also

19000 increase of children who died of HIV associated with TB. Nyabadza and Winkler

[52] considered a compartmental model of TB that is age dependent and whose parameters

are set as a function of age. The authors emphasized that the TB dynamics in adults is

different from the one that is in children and are largely dependent on age. Nyabadza and

Winkler [52] collected data from the City of Cape town in health department and applied

a simple reliable TB model. The model was then fitted to the TB incident data from City

of Cape town. It was surprising for the authors to find that in Cape town metropole, the

higher the incident rate of TB disease are an indicative of co-infection with HIV and has

lead to higher sexual active population. All the age groups projections reflect a significant

11

http://etd.uwc.ac.za/ 



increase in active TB disease incidence. However, the projected incidence rates for indi-

viduals in the 0−4 year, 25−34 year, 35−44 year and 45−54 year age groups reflect the

most prominent increases in incidence rates over time. The authors identified that it is

important to note that the incidence increases as age decreases [52]. They also found that

there was a direct relationship between mortality as a results of TB and infection rate

i.e. the higher the transmission of TB the higher the number of disease-induced deaths.

The authors concluded that HIV individuals are at high risk of getting infected with TB

disease and the authors will focus on the extra-pulmonary TB cases that are linked to HIV.

It is also important to note that TB is easily transmitted to children whose immune sys-

tems are weak. A study from China [70] has further developed the role of age structure

on the transmission of TB. An SEIR epidemic model with age groupings involving three

categories which are children, the middle aged, and senior has been proposed to investi-

gate the role of age on the transmission of Tuberculosis. By means of the Least Square

method, the authors [70] evaluated the parameters and simulated the model, the model

approved well with the annual reported TB data in China. The results confirmed that

considering the age grouping was sensible to describe the transmission and to improve the

control strategies of targeting therapy for TB in China.

A mathematical TB model that takes into account of undiagnosed and lost sight infectious

with the aim of controlling TB propagation through these classes has been presented in

[51]. The authors introduced an optimal time dependent prevention policies that considers

the execution cost. Furthermore, educational diagnosis campaign and chemoprophylaxis

of latently infected individuals has been introduced using Stop TB strategy. The authors

have also taken into account the actual data on TB in Cameroon and the rate of success of

treatment. Their results showed that the application of education and diagnose campaign

with chemoprophylaxis reduce the TB burden.

An epidemiological model of TB with infectivity in latent period and imperfect treatment
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has been introduced in [61]. Wang et al. introduced a new model of TB where indi-

viduals in the latent period has a weaker infection. They further assume that both the

latent and infective period can receive a successful and unsuccessful treatment. The au-

thors introduced an extension of the ordinary differential equations (ODE’s) model where

the infective stage is classified as age-since infection (i.e. the time spent in the infective

stage). They finalized their research by proving that the disease free equilibrium is glob-

ally asymptotic stable if R0 < 1 and the endemic equilibrium is locally asymptotically

stable if the basic reproduction number R0 is greater than one. Numerical simulation

were presented to show the results.

It was observed that the spread of the disease will flourish in overcrowded places such

as camps, mine and prisons. Our research will focus on the dynamics of TB disease in

crowded environment specifically prisons. In Robertson et al. [31], a mathematical model

was developed to explore the interactions between incarceration conditions and TB con-

trol measures. It was noted that according to the regulations of South Africa, an inmate

is supposed to have a space of 3, 34m2 in a communal cell but due to overcrowding they

only have 1, 4m2 for 23 hours a day [31]. The transmission probability within a prison

cell has been estimated by using Wells-Riley equation and probability analysis. It was

observed that the levels of overcrowding in a communal cell and poor TB case finding will

result in a higher TB transmission risk. Overcrowding conditions for the awaiting trial

prisoners are highly favourable for the spread of TB diseases. Finally, the authors [31]

concluded that by improving passive case finding, modest ventilation increase or decrease

lock-up time would lower the impact of the disease transmission.

Buonomo and Lacitignola [14], proposed a model that dealt with the TB population dy-

namics in concentration camps with a case study in Uganda. The case study has been

taken from a paper of Ssematimba et al. [57] which is about internally displaced people’s

camps in Uganda. In the study, population density on the dynamics of tuberculosis has

been investigated as it determines the level of respiratory contact in a community and
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this level directly determines the infection rate of airborne diseases like tuberculosis. It

was also noticed that displaced individuals are at a greater risk of becoming infected with

TB disease due to close contact with the infectious individuals.

Some models focus only on the patient groups and infection types and eliminate the im-

migration and emigration. These models will assume that the population is closed and

no immigrants are accommodated. Such models will not be able capture the physical

dynamics of tuberculosis in open populations with high density of immigrants. A model

by Jia et al. accounted for the impact of immigration by SEIR models for both immigrant

and local sub-population, and establish that immigrants have an important influence on

the internal dynamics of tuberculosis in a population [30]. The model with Canadian

born and foreign born sub-populations by Zhou et al. shows that increasing the mixing

of two sub-populations increases the TB infection rate of Canadian born individuals [69].

More models have to include immigration in the population-level studies to capture the

real dynamics of tuberculosis.

A delayed differential equation model with influence of temporary migration on the trans-

mission of infectious disease in a migrant’s home village has been studied in the paper

of Wang and Wang [62]. In general, temporary migrant workers were considered as the

major driving force for the rising incidence of infectious disease in cities. Hence, it was not

discovered that temporary migration may have a huge impact on the spread of disease in

migrants home villages. In [62], it assumed that a proportion of these returning workers

acquire infection when they were away from their home village. Furthermore, these tem-

porary infectious migrant were assumed that they are unable to migrate but stay at home

for treatment. As a results of economic pressure or not knowing their status some of these

infectious individuals were still migrating to urban areas, this has led to re-emerging of

disease that were under control in the urban areas. It was noticed that a single control

strategy which is to reduce the migration time period has a little effect on reducing the

disease endemic level. This reduction will also have a huge effect in the economy of China.
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The authors established that the local government should encourage returning migrant

workers to undertake medical examination and offer help for quarantine process. In fact,

it has come to our attention that a similar trend is also transpire ring in prison system

and our research will focus in this regard.

An individual may develop multi-drug resistant tuberculosis (MDR-TB) due to incom-

plete treatment or by acquiring infection from a person with MDR-TB. In 2018, 484000

individuals developed TB that was resistant to rifampicin (RR-TB), the first-line drug.

There were 187000 MDR/RR-TB cases that were detected and 156000 of these started

treatment with a second-line regimen [77]. A mathematical model of tuberculosis with

drug resistance effect has been studied in Ronoh et al. [56]. An ordinary SEIRS model

has been extended as to include MDR-TB.

Controlling infectious disease has been a progressing difficult matter in recent years. Vac-

cination is an important strategy for eliminating infectious diseases as it enables the

vaccinated individuals to acquire a permanent or temporary immunity. Individuals who

are temporary immune may loose their immunity over a period of time [71]. The asymp-

totic behavior of a stochastic SIS epidemic model with vaccination has been analysed in

[71]. A susceptible-exposed-infectious-quarantine-recovered-susceptible with vaccination

compartment model(SEIQRS-V) that considers the spread of tuberculosis disease in hu-

man population for both pulmonary and drug resistant has been established. In [47], two

new classes which are vaccination class and quarantine class have been introduced into

the model, where the quarantine class is a class for multi-drug resistant patients and the

vaccination class is the class that deals with vaccinating the infants which is assumed as

a susceptible population. By using Runge-Kutta method of order 4 with real parametric

values, the figures have shown stability towards the disease free equilibrium. The results

of Mishra and Srivastava [47] have shown that by separating the multi-drug resistant TB

patients fast recovery has been archived and it almost tend to end the spread of infection.

Finally by vaccinating the population in a group immunizes them towards the infection.
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A mathematical study of a TB model with treatment interruption and two latent periods

has been studied in the paper of Liu and Wang [43]. Individuals in active TB cases are

treated and once the treatment is interrupted there is no further treatment. However,

if treatment interruptions occurs frequently, this may lead to MDR-TB cases. The nu-

merical results claim that the treatment of active cases reduces the progression of TB

epidemic cases and helps to control the spread of TB while treatment interruptions may

have negative, positive or no effect on combating TB epidemic. A continuous model that

considers the optimal control strategy for the transmission dynamics of TB has been for-

mulated. The optimal control has shown a great reduction of active TB individuals by

controlling exogenous reinfection using chemoprophylaxis.

The models mentioned so far are deterministic and they do not consider the stochastic

disturbance of environment which in fact exist. One of the greatest significant differences

between the deterministic and stochastic epidemic models is their asymptotic dynam-

ics. It is noticed that stochastic solutions converge to the disease-free equilibrium even

though the equivalent deterministic solution converges to endemic equilibrium [5]. In [44],

the authors showed that the deterministic model admits a unique endemic equilibrium

which is globally asymptotically stable if its basic reproduction number is greater than

one. An SIRS epidemic model with media coverage and environmental fluctuations to

describe disease transmission has been proposed in [60]. The spread of infectious disease

is influenced by the level of environmental fluctuations. Wang et al. [60] concluded by il-

lustrating simulations that if the magnitude of the intensity of noise is large the extinction

of disease in the stochastic model occurs whether the basic reproduction number greater

or less than one. On the other hand if the magnitude of the intensity of noise is small the

results showed that the disease may persist if the basic reproduction number is greater

than one. Similar work has been done in [44, 65, 41, 17]

An SEIRS epidemic model with stochastic perturbation on transmission from susceptible

class to the latent and infectious has been considered in the paper of Witbooi [65]. It was
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proved that the system permits a disease free equilibrium which is almost surely expo-

nentially stable whenever the basic reproduction number of the underlying deterministic

model is below unity and even slightly beyond under given conditions. It was observed

that under higher perturbation the infectious trajectories for the deterministic model does

not seem to converge while that of the stochastic model converges to zero. Finally, the

results were clearly shown by means of simulations and observing the behaviour of the

infections class trajectories.

An analysis of the deterministic and stochastic SIRS epidermic models with non-linear

incidence has been modelled in the paper of Liu and Chen [41]. The authors started off by

considering first the deterministic SIRS model and established criteria for the existence,

uniqueness and global asymptotic stability of a disease free equilibrium and an endemic

equilibrium by means of Lyapunov functions. Furthermore, perturbations of white noise

was introduced into the deterministic model. The authors proved the global positivity

of solutions and conditions are found for extinction of the disease by large white noise.

Similar focus is also found in the following papers [42, 66, 65]. It was noticed that the

results were totally different from the deterministic model in which the disease persisted.

The dynamics of an SIRS epidemic model with a ratio-dependent incidence rate has been

studied in [17] using the theory of stochastic differential equations. The study presents

some relevant properties of the deterministic model, including boundedness, dissipation,

persistence, and the stability of disease-free and endemic points. It also proves the ex-

istence of global solutions, stochastic boundedness, permanence for the stochastic models.

In the paper of Lahrouz et al. [38] they have formulated an SIRS epidemic model with

saturated incidence rate and disease-inflicted mortality. In the same paper, the authors

have further looked at the stochastic version. The global existence and positivity of the

solution of the stochastic system has been established. Under suitable conditions on the

intensity of the white noise perturbation, the global stability in probability and pth mo-
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ment of the system has also been proved. A Stochastic model of infections disease for

heterogeneous populations has been proposed in [49]. The authors considered the dynam-

ics of infectious disease in heterogeneous populations from temporal-spatial surveillance

data. The model is evaluated using both simulated data and the real data from the 2009

H1N1 epidemic in Hong Kong and achieves acceptable prediction accuracy.
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Chapter 3

Mathematical tools

In this chapter, we introduce some mathematical tools that will be used in the rest of

the dissertation. There are important phases that needs to be followed in order to study

biological system, such as formulation, analysis and interpretation. In order to apply a

mathematical model, the underlying mathematical theory, tools, and techniques must be

carefully applied and understood thoroughly. We use differential equations as they are

applied when there is a continuous change in the states such as continuous reproduction

and death.

3.1 Basics on ODE’s in epidemic model

It is necessary to know whether or not we have a unique solution to a first order differential

equation (ODE) initial value problem such as,

.
x (t) = F (x, t), x(0) = x0,

where F (x) is bounded in a neighborhood of the point x0.

Definition 3.1.1. (see Birkhoff and Rota [12]) A vector-valued function X(x, t)

satisfies the Lipschitz condition in a region U of (x, t)-space if and only if, for some
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constant L,

|X(x, t)−X(y, t)| ≤ L |x− y| if (x, t) and (y, t) ∈ U.

Theorem 3.1.2. Let E be an open subset containing x0 and assume that F ⊆ C1(E).

Then, there exist an a > 0 such that the initial value problem

.
x= f(x); x(0) = x0

has a unique solution x(t) on the interval [−a, a] [12].

3.2 Invariant Region

A set M is an invariant set with respect to a system of ordinary differential equation

.
x= f(x)

if x(0) ∈M ⇒ x(t) ∈M, for all t ∈ R.

A set M is a positively invariant set with respect to
.
x= f(x) if x(0) ∈ M ⇒ x(t) ∈

M, for all t ≥ 0.

3.3 Equilibria and Linearization

Definition 3.3.1. Given a system of differential equation

.
x= f(t),

an equilibrium or steady stable x∗ of this system is a point in the state space for which

X(t) = x∗

is a solution for f(t) = 0, for all t. For more detail see Allen [4].

Definition 3.3.2. (see Allen [4]).
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(a) An equilibrium solution x of
.

X= F (X) is said to be locally stable if for each ϵ > 0

there exist a δ > 0 with the property that every solution X(t) of
.

X= F (X) with

initial condition X(t0) = X0 and

∥X0 − x∥ 2 < δ,

satisfies the condition that

∥Xt − x∥2 < ϵ

for all t ≥ t0. If the equilibrium is not locally stable it is said to be unstable.

(b) An equilibrium solution x is said to be locally asymptotically stable if it is locally

stable and if there exist γ > 0 such that

∥X0 − x∥2 < γ implies limt→∞ ∥X(t)− x∥2 = 0.

Let (U∗, V ∗) be a steady state of

.

U= f(U, V ),
.

V= g(U, V ), (3.1)

so that f(U∗, V ∗) = g(U∗, V ∗) = 0. Let u = U − U∗ and v = V − V ∗. We assume that

we may neglect higher order terms if u and v are sufficiently small, and we obtain the

approximate (linearized) equations

.
u= fu(U

∗, V ∗)u+ fv(U
∗, V ∗)v, (3.2)

.
v= gu(U

∗, V ∗)u+ gv(U
∗, V ∗)v, (3.3)

or, defining the Jacobian matrix J(U, V ) in the usual way,

.
w= J∗w, (3.4)

where w is the column vector (u, v), and a star denotes the evaluation at the steady

state. The behavior of the system near (U∗, V ∗) depends on the eigenvalues of the matrix

J∗ = J(U∗, V ∗). It can be shown that the neglect of higher order terms is valid, and the
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non-linear system behaves like a linear system near the steady state, as long as neither of

the eigenvalues of J∗ has zero real part.

Making the definitions β = trJ∗, γ = detJ∗, δ = discJ∗, where trJ∗ is the trace of the

Jacobian matrix J∗, detJ∗ is the determinant of the Jacobian matrix J∗ and discJ∗ is the

discriminant of the Jacobian matrix J∗. The eigenvalue equation is λ2 − βλ+ γ = 0, and

we may determine the character of the steady state from the signs of these, see Britton

[13]. We quote the theorem.

Theorem 3.3.3. (Steady states and eigenvalues) see Britton [13],

• If γ < 0, the (trivial) steady state of the second order system is at (3.4) is a saddle

point. Both eigenvalues are real one positive and one negative.

• If γ > 0, δ > 0, β < 0, it is a stable node. Both eigenvalues are real and negative.

• If γ > 0, δ > 0, β > 0, it is an unstable node. Both eigenvalues are real and positive.

• If γ > 0, δ < 0, β < 0, it is a stable focus. The eigenvalues are complex conjugate,

with negative real part.

• If γ > 0, δ < 0, β > 0, it is an unstable focus. The eigenvalues are complex

conjugates, with positive real part.

• If γ > 0, δ < 0, β = 0, it is a center. The eigenvalues are complex conjugates, and

purely imaginary.

Theorem 3.3.4. Linearization Theorem [13]. Let us suppose that the non-linear system

.
y= Y (y) (3.5)

has a simple fixed point at y = 0. Then, in a neighborhood of the origin, the phase

portraits of the system and its linearization are qualitatively equivalent provided the lin-

earized system is not at center.
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Let Fi(x) be the rate of appearance of new infections in compartment i, V +
i (x) be the

rate of transfer of individuals into compartment i and V −
i (x) be the rate of transfer of

individuals out of compartment i.

Lemma 3.3.5. see Van Den Driessche and Watmough [59]. Suppose that x0 is a

disease free equilibrium of a system

.
xi= fi(x) = Fi(x)− Vi(x), i = 1, . . . , n,

where Vi = V −
i − V +

i and fi(x) satisfy the following conditions from (B1)-(B5):

(B1) if x ≥ 0, then Fi(x), V
+
i (x), V −

i (x) ≥ 0 for i = 1, . . . , n, since each of these functions

describe the transition of individuals between compartments.

(B2) If xi = 0, then V −
i (x) = 0. In particular, if x ∈ Xs then V

−
i = 0 for i = 1, . . . ,m. If

the number of individuals in each compartment is equal to zero then there is no transfer

of individuals out of the compartment.

(B3) Fi = 0 if i > m. This means that the rate of appearance of new infections into

the disease free state is zero.

(B4) If x ∈ Xs then Fi(x) = 0 and V +
i (x) = 0 for i = 1, . . . ,m, this indicates that

if the number of individual x is the set of disease free state there will be no transfer out

to infected compartment. In this case we will say that the disease free state is invariant

because if the population is free of disease then the population will remain free of disease.

(B5) If F (x) = 0, then all eigenvalues have negative real parts.

Thus the derivatives DF (x0) and of DV (x0) are partitioned as
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DF (x0) =


F 0

0 0

, DV (x0) =


V 0

J3 J4

,

where F and V are the m×m matrices defined by

F =
(

∂Fi

∂xj
(x0)

)
, and V =

(
∂Vi
∂xj

(x0)
)
with 1 ≤ i, j ≤ m.

Further, F is non-negative, then V is a nonsingular M-matrix and all eigenvalues of J4

have positive real part.

3.4 Background of Epidemiology of Tuberculosis

In this section, we will now give a brief introduction to epidemiological modelling of

tuberculosis.

3.4.1 Compartmental Classes

Epidemiological models are presented in the form of compartments i.e., the stages of TB

determine groupes of individual the given disease status. In population biology, they

mostly use the following common abbreviations:

S: Susceptible, individuals who are not infected.

E: Exposed, individuals who are infected but unable to transmit the disease.

I: Infected, individuals who are infected and infectious.

R: Recovery, individuals who are successfully treated.

Various models use different approaches in constructing the epidemiological models, some

compartments may be included or excluded. Some models have more compartments, ac-

cording to the hypothesis of the model.

We now consider an SIR model that has been studied by Kermack and McKendrik (1927)

24

http://etd.uwc.ac.za/ 



[36, 4]. The total population size is assume to be constant, N and is subdivided into three

groups such as susceptible (S), infected (I) and immune or removed (R) individuals at

time t. The probability of a birth equals the probability of death which is given by the

parameter b. The parameter β is the contact number i.e., the average number of successful

contacts made by one infected individual during his or her infectious time. Hence, βS is

the proportion of contacts made by one infected individual that results in an infection of

a susceptible individual and βSI is the total number of contacts made by infected class

that results in infection. The probability of recovery is represented by γ1 and the ratio

1
γ1

is the average length of the infectious period when there are no deaths. The length of

infections period may reduce due to death and is represented by 1
µ1+γ1

. We now present

the SIR epidemic model as follows:

.

S = bK − βSI − µ1S,

.

I = βSI − (µ1 + γ1)I,

.

R = γ1I − µ1R. (3.6)

Since the probability of birth is the same as death we therefore have b = µ1. The initial

condition S(0) + I(0) +R(0) = N where S(0), I(0), R(0) > 0.

3.4.2 Equilibria

One of the variable R in system (3.4) is extraneous and can be eliminated and obtain

the equilibria by setting the time derivatives in the equations to be equal to zero. The

equilibrium point at S = N and I = 0 represents a disease free equilibrium. The endemic

equilibrium point simplifies to:

S∗ =
(µ1 + γ1)

β
, I∗ =

µ1

[
βK − (µ1 + γ1)

]
β(µ1 + γ1)

.
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3.4.3 The basic reproduction number

The basic reproduction number is sometimes referred to as a ratio. It is one of the most

useful threshold parameters or invariants, which characterize mathematical properties

concerning infectious disease models [14], [59]. The basic reproduction number is widely

used in mathematical epidemiology models. The analysis of the model includes finding

equilibrium points (steady states) of the model, finding the basic reproduction number R0

and investigating the stability of the equilibrium points (disease free equilibrium (DFE)

and endemic equilibrium point (EEP)) which will be characterized using the invariant

R0. The stability of these equilibria change at the bifurcation point which occurs when

R0 = 1, which will be discussed later. Consequently, the point R0 = 1 describes an

important threshold for understanding the transmission dynamics of infectious diseases.

The basic reproduction number has a biological interpretation.

Definition 3.4.3.1 The Basic Reproduction Number or Basic Reproduction Ratio is de-

fined as the average number of secondary infections that are produced when one infected

individual is introduced into a group of susceptible individuals. For more information see

Allen [4, 6, 59].

It is implicitly assumed that the infected outsider is in the host population for the en-

tire infectious period and mixes with the host population in exactly the same way that

a population native would mix. The basic reproduction number R0 turns out to be the

threshold quantity that determines whether a disease can invade a population. If R0 < 1,

then on average an infected individual produces less than one new infected individual over

the course of its infectious period, and the infection is unable grow. Conversely, if R0 > 1

then each infected individual produces, on average, more than one new infection, and the

disease can invade the population [4]. Therefore, it is important that all heath control

measures or strategies of a disease should lower R0 to less than unity.
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We notice that since the model has one infected compartment, then we can obtain R0 by

following the definition, the rate of transmission multiply by the infection period. The

parameter β is the rate of transmission and the infectious period is

1

µ1 + γ1
.

Therefore, the basic reproduction number is given by

R0 =
βK

µ1 + γ1
.

However, for more complicated models with several infected compartments the definition

of R0 is insufficient to calculate R0. The basic reproduction number R0 can be determined

using the method of next-generation matrix as presented in Van den Driessche and Wat-

mough [59]. In cases where we have more than one infected compartment we will then

use the next generation matrix to find the basic reproduction number.

3.4.4 The next generation matrix

The next generation method introduced by Van den Driessche and Watmough [59], is a

general method of findingR0 in a case where we have more than one infected compartment.

Suppose we have n disease compartments and m non-disease compartments, and let x ∈

Rn and y ∈ Rm be sub-populations in each of these compartments. We denote the rate of

secondary infection increase of the ith disease compartment by Fi and Vi the rate disease

progression, death and recovery decrease the ith compartment. Thus we have the following

compartmental model:

dxi
dt

= Fi(x, y)− Vi(x, y), i = 1, ..., n,

dyi
dt

= gj(x, y), j = 1, ...,m.

The calculation of the basic reproduction number is based on linearization of the ordinary

differential equation (ODE) model about a disease free equilibrium, while the following

assumption ensure the existence of the equilibrium and well-posedness of the model.
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• Assume Fi(0, y) = 0 and Vi(0, y) = 0 for all y ≥ 0 and i = 1, ..., n. All new

infections are secondary infections arising from infected host, there is no immigration

of individuals into the disease compartments.

• Assume Fi(0, y) ≥ 0 for all non-negative x and y and i = 1, ..., n. The function F

represents new infections and can not be negative.

• Assume Vi(0, y) ≤ 0 whenever xi = 0, i = 1, ..., n. Each component, Vi represents a

net outflow from compartment i and must be negative (inflow only) whenever the

compartment is empty.

• Assume
∑n

i=1 Vi(x, y) ≥ 0 for all non-negative x and y. This sum represents the total

outflow from all infected compartments. Terms in the model leading to increase in∑n
i=1 xi are assumed to represent secondary infections and therefore belong in F.

• Assume the disease free system dy
dt

= g(0, y) has a unique equilibrium that is asymp-

totically stable. That is, all solution with initial conditions of the form (0, y) ap-

proach a point (0, y0) as t → ∞. This point is referred to as the disease free equi-

librium.

Now assuming that Fi and Vi meet the above conditions, we can form the next generation

matrix FV −1 from matrices of partial derivatives of Fi and Vi. Now we have

F =
[∂Fi(x0)

∂xj

]
and

V =
[∂Vi(x0)

∂xj

]
,

where i, j = 1, ...,m and where x0 is the disease free equilibrium. The entries of FV −1

give the rate at which infected individuals in xj produce new infections in xi, times the

average length of time an individual spends in a single visit to compartment j. R0 is given

by the spectral radius (dominant eigenvalue) of the matrix FV −1.
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If the basic reproduction number is less than unity i.e., R0 < 1 then the disease-free equi-

librium is locally asymptotically stable, which implies that the disease will die out in the

population. On the other hand, if the reproduction number is greater than unity, then the

endemic equilibrium is locally asymptotically stable. The technique used to determine

the stability of the equilibrium points for complex models will be shown in the following

Chapters.

3.5 Lyapunov function and stability

It is important to investigate the global behaviour of epidemiological dynamics of math-

ematical models for a multidimensional differential equation system. Lyapunov method

and LaSalle’s Invariance Principle are the most successful methods for proving the global

stability of a model. There is no unique method to construct or find a Lyapunov function

which proves the stability of an equilibrium. A suitable Lyapunov function needs to be

constructed so that its derivative along solutions of the system is negative definite [40].

Let

Rn
+ = {x = (x1, x2, ..., xn) : xi > 0, i = 1, 2, ..., n}

is often feasible and positively invariant. We now construct a Lypunov function as follows:

V =
n∑
i=1

ai

(
xi − x∗i − x∗i ln

xi
x∗i

)
, (3.7)

where ai > 0 (i = 1, 2, ..., n) is positive definite in Rn
+. We now choose the suitable coef-

ficients of ai in (3.7) and anaylse the derivative
.

V such that the derivative is a negative

definite. This method may work well for simple epidemic models as it is relatively easy

to get the constants ai.

Lemma 3.5.1. (see Guanrong [26]) Lyapunov barrier.

Let V : N → R, be continuously differentiable, where N ⊂ Rm, is a non-empty open
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and bounded set, with
.

V (x)≤ 0 for all x ∈ N , and let m = minx∈δNV (x). Then, for any

u0 ∈ N such that V (u0) < m, the set C(u0) = {u ∈ N : V (u) ≤ V (u0)} has the property

that Γ+(u0) ⊆ C ⊆ N.

Definition 3.5.2. ([26] (Sign) Definite functions)

A function F : N → R is positive definite at u∗ ∈ N if

(i)F (u∗) = 0,

(ii)F (u) > 0 for all u ∈ N with u ̸= u∗. F is negative definite if −F is positive definite.

Definition 3.5.3. ([26] Lyapunov function).

A continuous differentiable function V : N→R, where N⊆Rm , is a Lyapunov function

for
.
u= f(u) at u∗∈N if

(i) V (u) is positive definite at u∗, and

(ii)
.

V (u)≤ 0 for all u ∈ N. If in addition,
.

V (u) is negative definite at u∗, then V is a

strict Lyapunov function.

Theorem 3.5.4. ([26] Lyapunov first stability theorem (Lyapunov stability

condition))

Suppose that u∗ is a fixed point of
.
u= f(x). Suppose for some open set N ⊆ Rm, con-

taining u∗ there exist V : N → R, such that V is a Lyapunov at u∗. Then u∗ is Lyapunov

stable.

Theorem 3.5.5. ([26], Lyapunov’s second stability theorem (Lyapunov asymp-

totic stability condition)).

Suppose there exist a Lyapunov function and let u∗ be a fixed point of
.
u= f(u) and

suppose that for some open set N⊂Rm, containing u∗, there exists V : N→R, such that

V is strict Lyapunov at u∗. Then u∗ is asymptotically stable.

Then the zero solution is asymptotically stable and such function V is called a strong
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Lyapunov function for the system. In this dissertation we will use the Lyapunov function

to investigate the existence and uniqueness of global positive solutions of stochastic mod-

els. The method of Lyapunov functions is commonly used to establish global stability

results for biological models, see [60, 30, 42] for instance.

3.6 Optimal control method

Optimal control theory has been used as a very powerful mathematical tool to make

decisions involving complex biological situations and it has been derived from the calculus

of variations. Optimal control techniques are of great use in developing optimal strategies

to control various kinds of diseases. For more information, consult the book of Lenhart and

Workman [39]. It has been used, for instance, in finding the percentage of the population

that should be vaccinated as time evolves in a given epidemic model to minimize the

number of infected and the cost of implementing the vaccination strategy.

The behavior of a dynamic system is described by the state variable(s). We assume that

there is a way to control the state variable(s) x, by acting upon it with a suitable control.

We noticed that the dynamic system (state x) depends on the control u. The goal is

to adjust the control u in order to minimize or maximize a given objective functional,

J(u(t), x(t), t), that attains the desired goal, and the required costs to achieving it. The

optimal control is obtained when the desired goal is achieved with the least cost. The

functional depends on the control and the state variables. There are a number of different

methods for calculating the optimal control for a specific model. Pontryagin Maximum

Principle for example allows the calculation of the optimal control for an ordinary dif-

ferential equations model system with given constraints. See the book of Lenhart and

Workman [39].

The following are characteristics that an optimal control problem may exhibit

• Controllability: ability to use controls to steer a system from one position to another.
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• Observability: deducing system information from control input and observe output.

• Stabilization: implementing controls to force stability.

The principal technique for the optimal control problem is to solve a set of necessary

conditions, that an optimal control and corresponding state must satisfy. It is important

to understand the logical difference between necessary conditions and the sufficient con-

ditions of solution sets.

Let us consider the optimal control problem of the form below.

Determine

min
u

{
ϕ(tf , x(tf )) +

∫ tf

0

g0(t, x(t), u(t))dt

}
where

f(x(t)) = [x1(t), x2(t), ..., xns(t)]
T ∈ Rn

is the state vector and

u(t) = [u1(t), u2(t), u3(t), ..., unc(t)]
T ∈ Rm

is the control vector.

The state and the control variables are governed by the dynamics described by a set of

first order differential equations:

dx

dt
= f(t, x(t), u(t)) x0 = x(0), 0 ≤ t ≤ tf . (3.8)

The functions:

f(h0) : T × Rn × Rm → Rn

f(g0) : T × Rn × Rm → Rn

are continuously differentiable with respect to each component of x and u, and piecewise

continuous with respect to t.
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3.7 Pontryagin’s Maximum Principle

The Pontryagin’s Maximum Principle converts the maximization or minimization of the

objective functional J , coupled with the state variable into pointwise maximizing or min-

imizing of the Hamiltonian with respect to the control. The Hamiltonian H(t, x, u, λ) is

a function of four variables. Time t is the underlying variable for each of x, u and λ is a

function of t, called the adjoint variable.

Theorem 3.7.1. [39] If u∗(t) and x∗(t) are optimal for problem (3.8), then there exists

a piecewise differential adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t))≤H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t))

and

λ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(tf ) = 0.

Necessary conditions: If u∗(t) and x∗(t) are optimal, then the following conditions

hold:

λ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
, (3.9)

λ(tf ) = 0, (3.10)

∂H(t, x∗(t), u∗(t), λ(t))

∂u
= 0. (3.11)

Sufficient conditions: If u∗(t), x∗(t) and λ(tf ) satisfy conditions (3.9), (3.10), and

(3.11), then u∗(t) and x∗(t) are optimal.
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3.8 Stochastic process

A stochastic process is a collection of random variables indexed by time t or known as

a probability distribution over a space of paths. The concept of stochastic process is

very important in both mathematical theory and its applications in science, engineering

economics, etc. It is used to model large numbers of various phenomena where the quan-

tity of interest varies discretely or continuously through time in a non-predictable fashion.

Definition 3.8.1. Let T be a subset of [0,∞). A family of random variable {Xt}t∈T is

said to be a discrete-time variable process, and when T = [0,∞), it is called a continuous-

time process.

Definition 3.8.2. Let Ω be a non-empty set. Let T be a fixed positive number, and

assume that for each t∈[0, T ] there is a σ-algebra Ft. Assume further that Fs ⊂ Ft and

F =
∪
t≤0 Ft for all 0 ≤ s < t < ∞. Then the collection of {Ft} of σ-algebras a filtration

and the (Ω,F ,P,Ft) is called a filtered probability space.

We consider Ft as the set of information available at time t or {Ft}t>0 which is describing

the flow of information over time, where we suppose that we do not lose information as

time passes.

Definition 3.8.3. A real-valued stochastic process is an indexed family of real-valued

functions, {Xt}t≥0 . We say that {Xt}t≥0 is adapted to the filtration {Ft)}t≥0 if Xs is Ft-

measurable for each t ≤ s, see [23, p29] for more information.

A probability triple (Ω,F ,P), where Ω is some set called the sample space, F is a collection

of subsets of Ω, and P is the probability of each event A ∈ F . The collection F is a σ-

field, that is, Ω ∈ F and F is closed under the operations of countable union and taking

complements. The probability P must satisfy the usual axiom of probability [23, p29].
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• 0 ≤ P[A] ≤ 1, for all A ∈ F ,

• P[Ω] = 1,

• P[A ∪B] = P[A] + P[B] for any disjoint A,B ∈ F ,

• If An ∈ F for all n ∈ N and A1 ⊆ A2 ⊆ ..., then P[An] ↑ P[
∪
nAn] as n ↑ ∞.

3.8.1 Markov Chain

Markov Chain is the stochastic process whose effect of the past on the future is summarized

only by the current state, rather than the whole history.

Definition 3.8.1.1. The stochastic process {Xn}n≥0 with its natural filtration, {Fn}n≥0

is a discrete time Markov process if

P [Xn+1 ∈ B|Fn] = P [Xn+1 ∈ B|Xn] , (3.12)

for all B ∈ F . This means that the probability that Xn+1 ∈ B given that we know the

whole history of the process up to time n is the same as the probability that Xn+1 ∈ B

given only the value of Xn [23].

3.8.2 Martingale

A martingale is known to be a model of a fair game. It is a stochastic process in which

the conditional expectation of the next value at time T , given the current and preceding

values at time t, is the current value at time t.

Definition 3.8.2.1. A stochastic process {Xn}n≥0 is called a martingale with respect to

filtration {F}n if

• For each n,Xn is an Fn-measurable variable with E [|Xn|] <∞.

• If m < n, then

E [Xn|Fm] = Xm. (3.13)
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Definition 3.8.2.2. A (P, {F}t≥0)-martingale {Mt}t≥0 is said to be square-integrable if

E
[
|Mt|2

]
<∞,

for each t > 0.

The theorem states that a random variable that is measurable with respect to the filtra-

tion generated by Brownian motion can be written in terms of an Ito integral with respect

to its Brownian motion. Mathematically this can be expressed as follows:

Theorem 3.8.2.3. (Martingale representation theorem) Let {Ft}t≥0 denote the

natural filtration of the P-Brownian motion {Wt}t≥0. Let {Mt}t≥0 be a square-integrable

(P, {F}t≥0)-martingale. Then there exist an {F}t≥0-predictable process {θ}t≥0 such that

with P-probability one,

Mt =M0 +

∫ t

0

θsdWs. (3.14)

3.8.3 Stopping time

A random variable τ is a stopping time for a stochastic process if it is a rule for stopping

this process such that the decision to stop at, say time t can be taken only on the basis

of the information available at time t. Mathematically we say:

Definition 3.8.3.1. A random variable τ : Ω [0,∞] (it may take the value ∞) is called an

Ft-stopping time (or stopping time) if {ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0. The stopping

time is said to be finite if P(τ=∞) = 0.

Remark 3.8.3.2. If τ(Ω) = k (constant), then τ is a stopping time. If τ is a stopping time

with respect to filtration (Ft)t∈R+ generated by the stochastic process (Xt)t∈R+ , t ∈ R+,

then τ is called a stopping time of the process.
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Definition 3.8.3.3. (see Etheridge [23]). Suppose that X is an F−measurable

random variable with E [|X|] <∞. Suppose that G ⊆ F is a σ-field, then the conditional

expectation of X is given by G, written as E [X|G] , is a G-measurable random variable

with the property that for any A ∈ G,

E [[X|G] ;A] ∆
=

∫
A

E [X|G] dP =

∫
A

XdP ∆
= E [X;A] .

The conditional expectation exists, but is only unique up to the addition of a random

variable that is zero with probability one a.s.

3.8.4 Brownian motion

Brownian motion refers to the ceaseless, irregular random motion of small particles im-

mersed in a liquid or gas, as observed by R. Brown in 1827. The phenomenon can be

explained by the perpetual collisions of the particles with the molecules of the surrounding

medium. SupposeW (t) is the displacement from the origin at a time t of a small particle.

The displacement of particle over the time interval t1 to t2 is long compared to the time

between impacts. The central limit theorem can be applied to the sum of a large number

of these disturbances so that it can be assumed W (t2)−W (t1) has a normal density. The

density of the particle’s displacement depends on the length of the time interval and not

on the time of observation. Therefore, the probability density of the displacement from

time t1 to t2 is the same as from time t1 + t to time t2 + t [5].

The stochastic process associated with the Brownian motion is called the Brownian pro-

cess or the Wiener process. The concept has found application in a wide range of fields.

So for instance, Brownian motion has become one of the fundamental building blocks of

modern quantitative finance. Indeed, the basic continuous time model for financial asset

prices assumes that the log-return of a given financial asset follow a Brownian motion

with drift. There are also interesting applications of Brownian motion to epidemiology.

For more information the reader may consult Mao and Etheridge, [46, 23].

37

http://etd.uwc.ac.za/ 



Definition 3.8.4.1. (see Allen [5]). A stochastic process {W (t) : t ∈ [0,∞)} is a

P−Brownian motion or a P-Wiener process if W (t) depends continuously on t, W (t) ∈

(−∞,∞), and the following three conditions hold:

(i) For 0 ≤ t1 < t2 <∞, W (t2) − W (t1) is normally distributed with mean zero and

variance t2 − t1, that is, W (t2)−W (t1)∼N(0, t2 − t1).

(ii) For 0 ≤ t0 < t1 < t2 <∞, the increments W (t1) − W (t0) and W (t2) − W (t1) are

independent.

(iii) Prob{W (0) = 0} = 1.

Note that the conditions in Definition 3.8.4.1 implies that the Wiener process has sta-

tionary and independent increments. For intervals 0 ≤ t0 < t1 < t2 < ... < tn−1 < tn, the

n random variable W (t1)−W (t0),W (t2)−W (t1), ...,W (tn)−W (tn−1) are independent.

Also, the incrementsW (t1+∆t)−W (t1) andW (t2+∆t)−W (t2) are stationary, meaning

that they have the same normal density, N(0,∆t), for any t1, t2 ∈ [0,∞) and ∆t > 0. To

simplify notation, define ∆ti = ti+1 − ti and ∆W (ti) = W (ti+1)−W (ti).

Theorem 3.8.4.2. [5] (Strong law of large numbers)

Let X1, X2, ..., Xn, ..., be a sequence of independent and identically distributed (i.i.d.)

random variables with finite mean, |µ| <∞, and positive standard deviation, 0 < σ <∞.

Then the mean X̄ ≡ X̄(n) satisfies

lim
n→∞

E(
∣∣X̄(n)− µ

∣∣2) = 0 (3.15)

and

Prob
{
lim
n→∞

∣∣X̄(n)− µ
∣∣ = 0

}
= 1. (3.16)

The convergence in (3.16) is known as mean square convergence and the convergence in

(3.17) is known as convergence with probability one or as convergence almost surely (a.s.).

The probability in (3.17) is often expressed as

lim
n→∞

X̄(n) = µ (3.17)
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with probability one. Notice that the mean square convergence for the random sample

X̄(n) is equivalent to convergence of the variance to zero,

E(
∣∣X̄(n)− µ

∣∣2) = V ar(X̄(n)) =
σ2
n

→ 0 (3.18)

as n→ ∞.

Theorem 3.8.4.3. [5] (Quadratic variation) For a partition Π = {t0, t1, ..., tj} of an

interval [0, T ], let |Π| = maxi(ti+1 − ti). A Brownian motion Wt satisfies the following

equation with probability 1:

lim
|Π→0|

∑
(Wti+1

−Wti)
2 = T.

3.9 Stochastic Integration

There are a variety of ways to define a stochastic integral. The two most well-known

definitions of a stochastic integral are Itô and Stratonovich. The name Itô refers to the

Japanese mathematician Kiyoshi Itô (1915-2008) who developed much of the basic theory

and Ruslan Stratonovish defined the alternative Itô stochastic integral. In our disserta-

tion we shall use the Itô definition which is most frequently used in biological examples.

The following Theorem shows that the expectation on an Itô stochastic integral is zero

and the expectation of the square of the integral is the integral of the expectation of the

integrand squared.

Theorem 3.9.1. Suppose f(t) is a random function satisfying∫ b

a

E(f 2(t))dt <∞.

Then

(i) E
[∫ b

a
f(t)dW (t)

]
= 0 and
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(ii) E
[(∫ b

a
f(t)dW (t)

)2
]
=

∫ b
a
E(f 2(t))dt.

Property (ii) in Theorem 3.9.1 is known as Itô isometry property [5]. Properties (i) and

(ii) are straight forward to verify for constant function f(t) = c :

E
[∫ b

a

cdW (t)

]
= cE[W (b)−W (a)] = 0

because W (b)−W (a)∼N(0, b− a).

E

[(∫ b

a

cdW (t)

)2
]
= c2E[(W (b)−W (a))2] = c2(b− a)

because E[(W (b)−W (a))2] = Var(W (b)−W (a)) = b− a.

Definition 3.9.2. [5] An Itô process or stochastic integral is a stochastic process on

(Ω,F ,P) adopted to Ft which can be written in the form:

Xt = X0 +

∫ t

0

a(Xt, t)ds+

∫ t

0

b(Xt)dBs, (3.19)

where a(Xt, t) is a drift form, b(Xt, t) is the diffusion for and Bs is a standard Wiener

process.

A short notation can be written as follows:

dXt = a(Xt, t)dt+ b(Xt, t)dBt. (3.20)

We will now introduce the most important Lemma called the Itô Lemma.

Lemma 3.9.3. (Itô Lemma) Suppose F (Xt, t) is a twice differentiable on t and also

that Xt follows the Itô process

dXt = α(Xt, t)dt+ σ(Xt, t)dBt, t ≥ 0
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where Bt is a Wiener process and α and σ are functions of Xt and t respectively. The

variable Xt has a drift rate of α and a variance rate of σ2. Then Itô Lemma follows the

process

dFt =

(
∂F

∂Xt

α +
∂F

∂t
+

1

2

∂2F

∂X2
t

σ2
t

)
dt+

∂F

∂Xt

σdBt.

Thus, we see that the space of Itô processes is closed under twice-continuously differen-

tiable transformations.

3.10 The multi-dimensional Itô’s formula

Let x(t) be a d-dimensional Itô’s process on t ≥ 0 with the stochastic differential [46], i.e.,

a stochastic process of the form

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Then any V (x(t), t) is again an Ito’s process

with the stochastic differential given by

dV (x(t), t) =

[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace(gT (t)Vxx(x(t), t)g(t))

]
+ Vx(x(t), t)g(t)dB(t). a.s.

Note that

dtdt = 0, dB(ti)dt = 0, dBidBi = dt, dBidBj = 0 if i ̸= j. (3.21)

3.11 Stability in probability theory

Consider the general n-dimensional stochastic system

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t) (3.22)

on t ≥ 0 with initial value x(0) = x0. The solution is denoted by x(t, x0). Assume that

f(t, 0) = g(t, 0) = 0 for all t ≥ 0, so the origin point is an equilibrium of (2.8) The

equilibrium x = 0 of the system (2.8) is said to be:
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(i) Stable in probability if for all ϵ > 0,

lim
x0→0

P

(
sup
t≥0

|x(t, x0)| ≥ ϵ

)
= 0;

(iv) Almost surely exponentially stable if for all x0 ∈ Rn

lim
x0→0

sup
1

t
ln |x(t, x0)| < 0 a.s.;

We refer the reader to a paper of Lahrouz et al., [38].

3.12 Differential Operator

We define the differential operator L associated with the following equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) t ≥ t0,

by

L =
∂f(x(t), t)

∂t
+

d∑
i=1

f(x, t)
∂

∂xi
+

1

2

d∑
i,j=1

[
g(x, t)gT (x, t)

]
i,j

∂2

∂xi∂xj
.

If L acts on a function of V ∈ C2,1(Sh × R+;R+), then

LV = Vt(x, t) + Vx(x, t) +
1

2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
,

where Vt =
∂V
∂t
, Vx =

(
∂V
∂x1
, ..., ∂V

∂xd

)
, Vxx =

(
∂2V
∂xi∂xj

)
d×d

. For more information the reader

may consult the book of Mao, [46].
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Chapter 4

A model of population dynamics of

TB in a prison system and

application to South Africa

A modification of the material in this chapter has been published in [1a].

Authors: Peter Witbooi and Sibaliwe Maku Vyambwera.

4.1 Abstract

Background: Tuberculosis continues to spread in South African prisons in particular, as

prisons are over-capacitated and have poor ventilation. The awaiting trial detainees are

not screened on admission and are at high risk of getting infected with TB.

Results: We propose a compartmental model to describe the population dynamics of

TB disease in prisons. Our model considers the inflow of susceptible, exposed and TB

infectives into the prison population. Removal of individuals out of the prison population

can be either by death or by being released from prison, as compared to a general pop-

ulation in which removal is only by death. We describe conditions, including non-inflow

of infectives into the prison, which will ensure that TB can be eradicated from the prison

43

http://etd.uwc.ac.za/ 



population. The model is calibrated for the South African prison system by using data in

existing literature. The model can be used to make quantitative projections of TB preva-

lence and to measure the effect of interventions. Illustrative simulations in this regard are

presented. The model can be used for other prison populations too, if data is available to

calculate the model parameters.

Conclusion: Various simulations generated with our model serve to illustrate how it

can be utilized in making future projections of the levels of prevalence of TB, and to

quantify the effect of interventions such as screening, treatment or reduction of trans-

mission parameter values through improved living conditions for inmates. This makes it

particularly useful as there are various targets set by the World Health Organization and

by governments, for reduction of TB prevalence and ultimately its eradication. Towards

eradication of TB from a prison system, the theorem on global stability of the disease-free

state is a useful indicator.

Keywords: Prison TB model, Inflow of infecteds, Removal rate.

[1a] P.J. Witbooi and S. Maku Vyambwera. A model of population dynamics of TB in a

prison system and application to South Africa. BMC Res Notes 10:643, (2017) 1− 8.

4.2 Introduction

The World Health Organization (WHO) has recently launched the End TB Strategy

program with the aim to reduce the number of deaths due to tuberculosis and the TB

incidence rate by 95% and 90% in 2030, respectively. Their focus will be the most vulnera-

ble who are infected by TB such as the poor, refugees, HIV-infected people and prisoners.

The three main pillars of the program are: integrated patient centered TB care and pre-

vention, bold policies and supportive systems and intensified research and innovation [75].

Prisons have been recognized internationally as institutions with very high tuberculosis
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burden as compared to a general population [74]. South African prisons are well known

as being overcrowded. In 2015, 61 of the 90 centres in South Africa were inspected and

it was found that their occupancy were more than 100% [86, p52]. The National Strate-

gic Plan 2012 − 2016 [91, 92] of the Department of Health is aimed at reduction of TB

infection. It has prioritized TB screening in prison and mines in view of overcrowding

in these premises. The pipeline report for 2013 [92] points out factors that aggravates

TB transmission. The transmission of TB in a prison is driven by the amount of air

shared between inmates, the number of inmates per cell, the length of the lock-up time,

how much fresh airflow is used and the presence of infectious inmates in the same enclo-

sure with susceptible inmates. Awaiting trial inmates are being kept in a very intensely

crowded environment. So for instance, one could have as many as 86 inmates in a facility

which was designed for 20, sharing a single toilet [93]. The Department of Correctional

Services admits that overcrowding is a major problem in prisons. In Robertson et al.

[31] a mathematical model is developed to explore the incarceration conditions and TB

control measures. In this paper we model the population dynamics of the TB disease

in a prison population with special emphasis on the South African prison system. The

focus in [31] is on the effective contact rate, which in this Chapter is denoted by c1. In

this work we quantify the broader effect of c1 on the prevalence of the TB infection. In

the literature already, the paper [50] considers a mathematical model for assessing the

population dynamics of HIV and HCV coexistence within correctional facilities.

The current Chapter presents a deterministic compartmental model ordinary differential

equations. A prison model must consider the inflow of infected people into the system.

The removal rate in the case of a prison population is completely different from the case of

a general population. For a prison population, individuals are removed not only through

death, but also by being released. We give detail on the general method of calculating

the removal rates from the system. We make specific calculations in the South African

context, and we determine other parameters and input data for the model. Our Theorem

4.4.1. determines threshold conditions that will ensure the eradication of TB disease from
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the prison. Finally, we illustrate the utility of the model and of the theorem through

simulations.

4.3 The model

We introduce a deterministic compartmental model which is based on the papers of

Buonomo and Lacitignola [14] and Ssematimba et al. [57], the latter two papers being

on tuberculosis in concentration camps. This type of very dense population necessarily

has a very high contact rate between the individuals, in particular healthy susceptible

people are in very close and frequent contact with people having infectious active TB.

Due to the similarities between concentration camps and prisons such as overcrowding,

the amount of air shared between the individuals etc., we consider this model, modified

to accommodate inflow of infected, to be applicable to prison populations.

The prison population consists of sentenced prisoners together with awaiting trial de-

tainees, and the size of the population at time t is denoted by N(t). We divide the

population into four compartments namely, susceptible individuals S(t), individuals with

active TB who are not infectious, E(t), individuals infected with active TB who are in-

fectious I(t), and the class of individuals under treatment T (t) (and often these variables

will be written without stressing the dependence on the time variable (t)). Due to the

classes used, the model is referred to as being of SEIT type. We modify the model of

Buonomo and Lacitignola [14] by allowing for the inflow of exposed individuals and in-

fectious individuals into the prison population.

It is important to note that in general populations, removal of individuals out of the sys-

tem is only by death. In this model, removal is by death or by discharge from prison, and

the discharge is the dominant factor. This rate of removal is denoted by µ. In the classes

S, E and T the probability of an individual being removed from the class is denoted by µ,

and will be referred to as the removal rate. For the class I, mortality due to TB-disease
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amplifies the removal rate by an additional increment d, which will be referred to as the

disease-induced mortality rate. The total inflow into the population is assumed to be at

a rate A0. We find it useful to express A0 in the form A0 = µA for some constant positive

number A and with µ being the removal rate. The number A will be seen to be the upper

limit of N(t). We assume that there are non-negative numbers fS, fE and fI such that

the inflow into the classes of (respectively) susceptible, exposed and infectious happen at

the rates fSµA, fEµA and fIµA, respectively.

Susceptible individuals get infected with active TB at a rate c1SI, where c1 is the effective

contact rate between the infectious and susceptible individuals. Individuals in the exposed

class E(t) become infectious at a rate c3EI and progress to the infectious class I(t) at rate

kE , where c3 is the effective contact rate between the exposed and infectious individuals.

Successfully treated individuals who were infectious move to exposed class at a rate c2TI.

Exposed and infectious individuals move into treatment class T (t) at a rate r1E and r2I

respectively.

.

S = fSµA− c1SI − µS,

.

E = fEµA+ c1SI + c2TI − c3EI − (µ+ r1 + k)E,

.

I = fIµA+ kE − (µ+ r2 + d)I + c3EI,

.

T = r1E + r2I − c2TI − µT. (4.1)

If fE + fI + fS = 1, then our model system (4.1) does not have a disease free equilibrium

due to the fact that there is an inflow of infectives into the prison population. Thus

it is clear that TB in prison cannot be eliminated as long as the wider population has

individuals with active TB that go to prison.

Proposition 4.3.1 Suppose that we have a solution

X(t) = (S(t), E(t), I(t), T (t))

of model system (4.1) over an interval t ∈ [0, τ) with S(0) +E(0) + I(0) + T (0) < A and
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that X(t) ∈ R4
++ for all 0 ≤ t ≤ τ, a.s., then, S(t) + E(t) + I(t) + T (t) ≤ A.

Proof. Given any solution in X(t) satisfying the conditions of Proposition 4.3.1, then

we have the total population in system (4.1) obeying the following Ordinary differential

equation:

d(N − A)

dt
= −µ(N − A)− dI

≤ −µ(N − A) a.s.

Therefore, similarly as in [65], for instance, N(0) < A implies that N(t) < A for all

t ∈ [0, τ). �

We first study the model without the inflow of infectives. If fE = 0 and fI = 0 then the

model given by the system (4.1) has a unique feasible disease free equilibrium given by

P0 = (S0, E0, I0, T0) = (A, 0, 0, 0).

For a specific prison facility in a larger system, the conditions fE = 0 and fI = 0, can

be achieved by admitting only susceptible inmates, while those carrying active TB are

housed in facilities elsewhere. More generally, the condition is met if the ambient popu-

lation is infection-free.

The basic reproduction number, denoted by R0, of a disease in a population is defined as

the average number of secondary infections that are produced when one infected individual

is introduced into a group of susceptible individuals. For more information see the books

[6] of Anderson and May or [4] of Allen. For the model of [14], R0 is given by the formula:

R0 =
kc1A

µ1µ2

,

with µ1 = µ+ r1 + k and µ2 = µ+ r2 + d.

The basic reproduction number is a good indicator as to whether or not a disease will stay

endemic in a population. If R0 > 1 then each infectious individual produces, on average,
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more than one new infection, and the disease will persist in the population. If R0 < 1,

then on average an infected individual produces less than one new infected individual over

the course of its infectious period, and it is more difficult for the infection to grow. In

order to ensure that such a disease vanishes from the population, it may be necessary to

impose conditions stronger than R0 < 1. This problem is addressed in Theorem 4.4.1.

below.

4.4 Global stability for disease equilibrium

If the disease free equilibrium is globally asymptotically stable, it means that starting from

any given state, in the long run the disease will vanish from the population. We now

investigate the global stability of the disease free equilibrium of system (4.1) (subject to

no inflow of infected) by using the Lyapunov function approach and we introduce the

following invariant. Let

c∗ = max
{
c1, c2, c3

(µ1

k
− 1

)}
,

and let

R∗ =
kc∗A

µ1µ2

.

Theorem 4.4.1. In model (4.1) let us consider the special case, fE = 0 = fI . If R∗ < 1,

then the disease free equilibrium P0 is globally asymptotically stable.

Proof. Starting with the condition R∗ < 1 we can choose numbers ϵ1 such that the

following conditions are satisfied:(
k

µ1

+ ϵ1

)
c∗A− µ2 < 0, (4.2)

and let a3 =
k
µ1

+ ϵ1. Now choose a2 > 0 such as to satisfy the following two inequalities:

a3c∗A− µ2 + a2r2 < 0 and a2r1 − ϵ1µ1 < 0. (4.3)
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Next we choose a1 sufficiently small such that

a1c1A+ a3c∗A− µ2 + a2r2 < 0.

We now define a function V (S,E, I, T ) as follows,

V = a1(A− S) + a2T + a3E + I (4.4)

Then it can routinely be shown that the function V (S,E, I, T ) is Lyapunov at the disease-

free equilibrium point P0, and therefore P0 is globally asymptotically stable. �

Thus, if the system does not satisfy the condition R∗ < 1 for global stability, then as far

as possible the authorities must intervene and make changes that will alter the values of

the parameters so as to achieve this condition.

4.5 Calibrating the model

As can be seen from the disease-free equilibrium, the number A turns out to be the

maximum value of the varying population size N(t). For the case of the South African

prison system, from the report [86] we deduce the value

A = 160 000.

In a disease model on general populations, the removal rate is calculated as the inverse

of the life expectancy [8, 18, 51]. In 2015, life expectancy in South Africa was given as 67

years (y), [89], so the mortality rate for the general population would be 1
67
y−1. In a prison

model however, removal of individuals from the prison population entails both removal

through death and removal by release from prison (assuming that the rate of escaping

from prison is negligible). We proceed with determining this parameter. Henceforth, we

assume time to be measured in years, y.

50

http://etd.uwc.ac.za/ 



4.5.1 Numerical values for the removal rates.

The removal rate µ and the additional removal rate d due to TB are calculated as below.

Firstly we note that since we are working with probabilities, we can express µ as follows:

µ = µp + µm − µmµp,

where µp is the rate of release from prison and µm is the mortality rate in the prison, ex-

cluding death specifically as a result of TB. In this prison model we assume that µp > µm

as the release rate is the dominant factor. Deaths due to TB constitute a separate pa-

rameter.

Release from prison: For calculating µp we used data from the public health paper [33].

The time served by prisoners is given in a frequency table which is convenient for calculat-

ing the average time served by inmates. We consider the awaiting trial detainees to stay

for a nominal average period of 6 weeks, and the sentenced prisoners to serve on average

75% of their sentence time. The value µp calculated in this way is

µp = 0.1789391 (year−1).

Mortality: In the classes S, E and T the probability of an individual being removed from

the class due to death (except death as a result of TB) is denoted by µm. For the class

I, mortality due to TB-disease amplifies the removal rate by an additional increment d,

which will be referred to as the disease-induced mortality rate. An estimate of µm can be

obtained as follows. Consider a period of length τ , over which the average value of the

sum of the class sizes S, E, and T is denoted by Q. If the total number of deaths in these

three classes during this period is D, then a value for µm can be estimated by the formula

µm =
D

τQ
.

The constant d can be estimated as follows. Consider a period of length τ1. If the total

number of mortalities in the I-class during this period is D1, then we estimate a value for
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d by the formula

µm + d =
D1

τ1I
, i.e., d =

D1

τ1I
− µm .

For the years 2012− 2015 the mortality rate is estimated using results from:

(i) [86, Figure 7 on p42] for the numbers of inmates in total in S.A. prisons,

(ii) [86, Figure 16 on p85] for the number of unnatural deaths,

(iii) [86, Figure 20 on p91] for the number of natural deaths, and

(iv) [90], the latter being particularly helpful in establishing an upper limit (20% of A)

for the value of S(t).

The report [86] does not give the details of deaths in prison due to TB. In [86, Table

22 p71] TB comes up as the most prominent cause of natural death in prisons. Let us

denote the rate of deaths due to TB by µTB. According to the report in [88] we can take

µTB = 11
80
µm so that we can calculate d = µTB(1− µ).

Our calculations yield the following values:

µm = 0.003628, µTB = 0.02292, and µ = 0.18192 (year−1).

Now note that d is the additional rate of removal due to TB. Thus

d = µTB(1− µ) = 0.01876 (year−1).

4.5.2 The parameters ci

The formula [14, formula (17)] in the paper of Buonomo and Lacitignola stresses the fact

that the force of infection is proportional to the population density. This means that

when moving from a free population to a concentration camp, the force of infection will

multiply by a significant factor, and in a prison population it will be another factor higher.

Using data for the year 2015 obtained from [90] and life expectancy from [89], a simple
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calculation shows that a lower bound for the effective contact rate (let us denote it by c0)

for TB in South Africa (the entire population) yields (a lower bound)

c0 =
(55− 44) million

67× 390000× (44 million)
= 1.5308× 10−7year−1.

When applying this to a sub-population, this parameter should be scaled up, inversely

to the change in population size. Furthermore, in the prison system we expect a value a

few factors higher. In order not to present a situation worse than reality, for the prison

system we use a figure c1 = 1.5c0 × P
A
where P is the population size of South Africa in

the year 2015. Thus we obtain a value

c1 = 0.00007893 year−1.

For the coefficient c3 in comparison with the coefficient k (evaluated in ”Other parameters”

section 4.5.3.), since c3 is multiplied by E we allow a nominal value

c3 = k/(2A).

The treatment time is usually 6 months, see [24] for instance. This means that the rate

of departure from the T -class per year is 2T . In the model the flow out of the T -class

into the E-class is assumed to be proportional to TI. For this reason we choose a value

of c2 at

c2 = 2(10/A),

such that when I reaches a reasonably high value such as around I = 0.1A, then the

average time spent in class T is approximately 6 months.

4.5.3 Other parameters

The progression rate from the exposed and infectious classes to treatment class are, r1 =

0.30 and r2 = 0.5 respectively [14]. Using data for the year 2015 obtained from [90], for

the transfer rate k in South Africa (the entire population) from E to I we obtain a value

450 000/[0.8(55 million)]. The value used in [14] (i.e., 0.1) is a factor 10 times higher than
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this rough calculation. For our purpose we use the value

k = 0.05 .

In a prison system where high quality screening is performed, the parameters fS, fE, and fI

can be determined fairly accurately. In the absence of such facilities, the best estimates

for these parameters are derived from the proportions, in the bigger population, of sus-

ceptible, latent and infectious. Thus we have the following:

fS = 0.2, fE = 0.74, and fI = 0.06.

4.5.4 Initial conditions for simulation

We require initial conditions in order to run simulations that can be useful for projection of

numbers in the future. According to the annual report of the Department of Correctional

Services [72] we know the numbers of infectious TB patients and those under treatment.

Thus we know I(t15) and T (t15), t15 denoting the time 31 March 2015. We also have a

value for N(t15) = 159 563. In order to find a reasonable split of the number

N(t15)− [I(t15) + T (t15)]

between S(t15) and E(t15), since S+E+I+T = N, we recall from [90] that approximately

only 20% of the South African population are susceptible, i.e., has never been infected

with the TB bacterium. These observations lead to the following initial condition:

S(t15) = 32000, E(t15) = 107000, I(t15) = 3500, T (t15) = 17100 .

4.6 Simulations

Through simulations we utilize the model to investigate the effect of interventions, by

making future projections of the levels of TB prevalence in a prison system. We test the

various scenarios, including the case of no inflow of infected individuals. Model system

(4.1) has been evaluated for global stability in Theorem 4.4.1., which has assured us that
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if the condition of the theorem is satisfied, then starting from any point in our model

system (4.1), the disease will ultimately vanish from the prison population. We will also

illustrate this result by means of simulation.

4.7 Results and discussion

We presented and motivated a model for the population dynamics of TB in a prison

system. Parameter values for the South African prison population have been calculated

from data in the open literature and these are summarized in Table 4.1 and Table 4.2.

Theorem 4.4.1., guarantees the ultimate eradication of TB for a prison system. Sample

simulations have been run, to be discussed below.

4.7.1 No inflow of infectives

We first provide an analysis of our model system without the inflow of the infectives,

i.e., when fE = 0 and fI = 0. In this case we use the parameters from Table 4.1, while

varying the values of the parameters ci not listed in Table 4.1. The reason for varying

these parameters is to be able to obtain different values of R∗ to illustrate Theorem 4.4.1.

Figure 4.1 (Case 1) shows the trend of all classes over 15 years with c1 = 0.00008 and

we compute R∗ = 1.72 . The graphs indicate that the disease will persist in the prison

population.

Figure 4.2 (Case 2) shows variation of susceptible, exposed, infected and treated classes

over 15 years, with c1 = 0.00004 and in this case we obtain R∗ = 0.86 . Under these

conditions, the theorem assures us that the TB disease will vanish.

In Figure 4.3, we show the infectious classes I of both Case 1 and Case 2 for comparison,

and we stretch the time horizon to 60 years. For Case 2 the graph gives an indication

of how fast the infectious class falls to zero. In order to make it vanish faster, further

intervention is necessary to reduce the value of R∗.
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Table 4.1: Model parameters and initial conditions

Parameter Numerical value Source

µ 0.18192 [33], [86]

d 0.01876 [88], [86]

r1 0.30 [14]

r2 0.50 [14]

k 0.05 [90], [14]

A 1600000 [86]

St15 32000 [86]

Et15 107000 [86]

It15 3500 [86]

Tt15 17100 [86]

Table 4.2: Inflow and contact rates

Parameter Numerical value Source

c1 0.00007893 [90]

c2 20/A [24]

c3 k/(2A) Estimated

fS, fE, fI 0.2, 0.74, 0.06, respectively [86]
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Figure 4.1: Prison population in different

classes without the inflow of infectives and

R∗ = 1.72.
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Figure 4.2: Infective class without the inflow

of infectives for two cases R∗ = 1.72, R∗ =

0.86.
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Figure 4.3: The prison population in different

classes without the inflow of infectives and

R∗ = 0.86.

57

http://etd.uwc.ac.za/ 



0 2 4 6 8 10 12 14 16
0

5

10

15

time in years

po
pu

la
tio

n 
in

 u
ni

ts
 1

04

 

 
S(t)
E(t)
I(t)
T(t)

Figure 4.4: The different classes with the in-

flow of infectives at fE = 0.74 and fI = 0.06

(Case A).
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Figure 4.5: The different classes with reduced

inflow of infectives fE = 0.77, fI = 0.03 (Case

B).

4.7.2 General case

In this section, we will consider the general case, i.e., the model with the inflow of the

infective into the prison population. We use the parameters from Table 4.1 and Table

4.2. We consider two scenarios for comparison. We first consider the case (call it case A)

with fE = 0.64 and fI = 0.06. The curves are depicted in Figure 4.4 In Figure 4.5 (Case

B) we use the inflow parameters at the values fE = 0.77 and fI = 0.03. The comparison

shows the effect of reduction of inflow of infectious individuals. In order to better compare

visually, the I-classes of Case A and Case B are drawn on the same system of axes in Fig-

ure 4.6. We see a remarkable drop in the I numbers when the inflow of infecteds is halved.

These graphs demonstrate the extent to which this model can be utilized when planning

to roll out an intervention strategy.
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Figure 4.6: Comparison of Infective classes

with fI = 0.06 (Case A) and fI = 0.03 (Case

B).

4.8 Conclusion

We started by applying an existing population model of TB to a specific crowded envi-

ronment (concentration camps). This model was adjusted to apply to prisons or prison

systems. In this compartmental model we allowed for inflow of infectives into classes other

than just the susceptible class. In fact, such inflow has to be accommodated in the model

if there is TB infection in the ambient population. On the removal side it is important to

note that release from prison is the main component, complemented by removal through

death. We have described conditions (for mathematical stability of the disease free state

of the system) that will cause the TB infection to vanish from the prison population. It

was observed that if there is no inflow of infected individuals in a specific prison site or

system then the disease will vanish from the prison provided that the numerical value of

the invariant R∗ is below unity.

For the case of the South African prison system, most of the crucial parameters of the

model were calculated using data from public domain prison data. Other parameters, in-

cluding initial conditions for computations, were obtained from data in various published

literature, together with interpolation methods. As illustrated in the previous section,
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the model can be utilized in making future projections of the levels of prevalence of TB,

and to quantify the effect of interventions such as screening, treatment or reduction of

transmission parameter values through improved living conditions for the inmates.
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Chapter 5

A Stochastic TB Model for a

Crowded Environment

A modification of the material in this chapter has been published in [1b].

Authors: Sibaliwe Maku Vyambwera and Peter Witbooi.

5.1 Abstract

We propose a stochastic compartmental model for the population dynamics of tuberculo-

sis. The model is applicable to crowded environments such as for people in high density

camps or in prisons. We start off with a known ordinary differential equation model, and

we impose stochastic perturbation. We prove the existence and uniqueness of positive

solutions of the stochastic model. We introduce an invariant generalizing the basic repro-

duction number and prove the stability of the disease free equilibrium when it is below

unity or slightly higher than unity and the perturbation is small. Our main theorem

implies that the stochastic perturbation enhances stability of the disease free equilibrium

of the underlying deterministic model. Finally, we perform some simulations to illustrate

the analytical findings and the utility of the model.
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[1b] S. Maku Vyambwera and P. Witbooi, A stochastic TB model on a crowded environ-

ment, Journal of Applied Mathematics, 2018, 1-8 pages.

5.2 Introduction

Tuberculosis (TB) continues to be a major global health problem that is responsible for

1.5 millions deaths worldwide each year [76]. TB is most prevalent in communities with

socio-economical problems but are not confined to such. The authors in [14, 57] associate

TB infection with poverty and underdevelopment of some countries. It has been observed

globally that one of the major factors driving TB infection is overcrowding. TB mostly

occurs in poorest countries that are not developed and particularly where a population

is overcrowded and in countries that are influenced by war. Conflict is the most common

cause of large population displacement, which often results in relocation to temporary

settlements such as camps. Factors including malnutrition and overcrowding in camp

settings further increase the exposure to TB infection in these populations. Following up

on a paper of Ssematimba et al. [57] regarding internally displaced people’s camps in

Uganda, Buonomo and Lacitignola [14] proposed a model that considers the dynamics of

TB in concentration camps with a case study in Uganda. Another type of crowded envi-

ronment which provides favourable conditions for TB to flourish, is prisons and more so if

the prison is full beyond its capacity. There are more than 10 million inmates in prisons

all over the world. The United States of America is in the top rank with about 2.2 million

inmates while South Africa is in rank 11 [73]. South African prisons has approximately

160000 inmates in custody, of which 120000 are sentenced individuals while the rest are

awaiting trial. This means that a large number of inmates are kept in remand population

and some of them might not be found guilty at the end of the process, after having been

exposed to high risk of TB infection.

Mathematical models have been used to model TB by considering the size of the area

and how size and density affects the extent to which TB can invade a certain population
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[18, 57, 7, 14, 8]. Quite obviously, considering the manner in which TB is aerially trans-

mitted from one person to another, the prison situation provides favourable conditions for

TB to flourish. TB is an infectious disease caused by bacillus Mycobacterium tuberculosis

that most often affects the lungs (pulmonary TB) and can affect other parts as well such

as brain, kidneys and spine (extrapulmonary TB) [75, 25]. The TB infection can take

place when an infected individual releases some droplet nuclei which can remain airborne

in any indoor area for up to four hours. The tubercle bacillus can persist in a dark area for

several hours but it is exceptionally sensitive to sunshine. The risk of infection increases

as the length of prison stay increases and the sentenced offenders are more likely to get

TB infection as compared to the awaiting trial inmates.

Against this background Chapter 4 offers a model for the population dynamics of TB in

a prison or prison system. In particular, it computes the parameters relevant to South

Africa for the given model, using publicly available data. The current Chapter considers

a stochastic form of the model in Chapter 4. It is well understood that stochastic dif-

ferential equations (sde) attempts to reflect the effect of random disturbances in or on a

system. A second reason for studying sde models is that it is good to know that a given

model carries some resilience against small disturbances. In this case we consider the

transmission parameters to be stochastically perturbed, similarly as in [65]. Stochastic

perturbation has been studied by Yang and Mao [66], they considered a multi-group SEIR

epidemic model. In most cases, it has been observed in [64, 66] that by introducing a

stochastic perturbation into an unstable disease-free equilibrium model system of ordi-

nary differential equation may lead to a system being stable in sde. Stochastic differential

equation models for various diseases have been studied and similar work has been done

in [65, 63, 66, 42, 38].

Our dissertation focuses on the analysis of TB in prisons as prisons have been recognized

as institutions with very high TB burden as compared to a general population [74]. For a

deterministic model of similar type, in Chapter 4, we computed parameter values pertain-
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ing to South Africa. For the stochastic model in this Chapter the focus is on mathematical

analysis. In Section 5.3, the model is introduced, based on the paper of Buonomo and

Lacitignola [14]. The existence and uniqueness of the solution to the stochastic models is

investigated by using the Lyapunov method in Section 5.4. Stability of the disease free

equilibrium for stochastic models is shown in Section 5.5. We show our results by means

of numerical simulations and conclude in Section 5.6.

5.3 The model

We introduce a stochastic compartmental model which is based on the deterministic model

in the paper of Buonomo and Lacitignola [14]. We divide the population, which is of size

N(t) at time t, into four compartments namely, the class S(t) of susceptible individuals

S(t), the class E(t) of individuals infected with TB but who are not infectious, the class

I(t) of individuals infected with active TB who are infectious and the class T (t) of indi-

viduals under treatment.

It is important to note that in general populations, removal of individuals out of the

system is only by death. In this model, as in Chapter 4, the removal is by death or by

discharge from prison, and the discharge is the dominant factor. This rate of removal

is denoted by µ. The disease induced mortality rate is denoted by δ. Individuals are

recruited into the susceptible class S(t) at a constant rate µA. Susceptible individuals

get infected with active TB at a rate c1SI, where c1 is the effective contact rate between

the infectious and susceptible individuals. Individuals leave the exposed class E(t) for

infectious class I(t) at rate kE. Exposed individuals who are infectious, move to the

infectious class I(t) at a rate c3EI, where c3 is the effective contact rate between the

exposed and infectious individuals. Successfully treated individuals who were infectious

move to exposed class at a rate c2TI, where c2 which is the effective contact rate between

the treated and infectious individuals. Exposed and infectious individuals moves into

class T (t) at the rate r1 and r2, respectively.
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Let us assume (Ω,F , {Ft}t≥t0 ,P) to be a complete probability space with a filtration

{Ft}t≥t0 which is right continuous. Let Wi(t) (i = 1, 2) be two mutually independent

Brownian motions. Let σ ≥ 0 be the intensity of the perturbation, which shall serve as

the intensity of the perturbation. We also fix two other positive numbers p and q with

p+ q = 1, that will balance the perturbation. The stochastic perturbations are similar to

those in the model of [65].

Model system 5.1:

dS = [fSµA− c1SI − µS] dt− σ(pESdW1(t) + qISdW2(t)),

dE = [fEµA+ c1SI + c2TI − c3EI − (µ+ r1 + k)E] dt+ σpESdW1(t),

dI = [fIµA+ kE − (µ+ r2 + δ)I + c3EI] dt+ σqISdW2(t),

dT = [r1E + r2I − c2TI − µT ] dt. (5.1)

It is noticed that if fE + fI + fS = 1 then system (5.1) does not have a disease free

equilibrium. We will first investigate the model without the inflow of infected individuals,

i.e., when fE = fI = 0. In this case the disease free state

E0 = (S0, E0, I0, T0) = (A, 0, 0, 0)

is an equilibrium point. The underlying deterministic model of (5.1) is the model given

by the same system of equations in the special case σ = 0, i.e., without stochastic per-

turbation as in (4.1). The underlying deterministic model coincides with the model of

Buonomo and Lacitignola [14]. The basic reproduction number of the underlying deter-

ministic model has already been computed in paper [14], and is given by the following

formula:

R0 =
kc1A

µ1µ2

, (5.2)

where µ1 = µ+ r1 + k and µ2 = µ+ r2 + δ.
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We now present the following set:

∆A =
{
x ∈ R4 : x1, x2, x3, x4 > 0 x1 + x2 + x3 + x4 ≤ A

}
. (5.3)

Remark 5.3.1 For the rest of this Chapter we will assume that the sample paths are

restricted to Ω0, which is defined as follows:

Ω0 = {w ∈ Ω| (S(t, w(t)), E(t, w(t)), I(t, w(t)), T (t, w(t))) ∈ ∆A for all t ≥ 0} .

Lemma 5.3.2 [64] For k ∈ N, let X(t) = (X1(t), X2(t), ..., Xk(t)) be a bounded Rk-valued

function and let (t0,n) be any increasing unbounded sequence of positive real numbers.

Then there is family of sequences (tl,n) such that for each l ∈ 1, 2, ..., k, (tl,n) is a sub-

sequence of (tl−1,n) and the sequence Xl(tl,n) converges to a chosen limit point of the

sequence Xl(tl−1,n).

5.4 Existence and uniqueness of positive global solu-

tions

Proposition 5.4.1 Suppose that we have a solution

X(t) = (S(t), E(t), I(t), T (t))

of the system (5.1) over an interval t ∈ [0, τ) with S(0) + E(0) + I(0) + T (0) < A and

with X(t) ∈ R4
++ for all 0 ≤ t ≤ τ, a.s., then S(t) + E(t) + I(t) + T (t) ≤ A.

Proof. Given any solution X(t) satisfying the conditions of Proposition 5.4.1, then

we have the total population in system (5.1) obeying the following ordinary differential

equation:

d(N − A)

dt
= −µ(N − A)− δI

≤ −µ(N − A) a.s.
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Therefore, similarly as in [65] for instance, N(0) < A implies that N(t) < A for all

t ∈ [0, τ). �

In this section, we investigate the existence and uniqueness of global positive solutions of

stochastic models by using the Lyapunov method. This method is popularly applied for

such problems, see [60, 30] for instance.

Theorem 5.4.2. There is a unique solution (S(t), E(t), I(t), T (t)) ∈ R4
+ to the system

(5.1) on t ≥ 0 for any given initial value (S(0), E(0), I(0), T (0)) ∈ R4
+, and the solution

will remain in R4
+ with probability one, namely (S(t), E(t), I(t), T (t)) ∈ R4

+ for all t ≥ 0

almost surely.

Sketch of proof. Since the coefficients in (5.1) satisfy the Lipschitz condition locally, for

any given initial value (S(0), E(0), I(0), T (0)), there is a unique local solution (S(t), E(t),

I(t), T (t)) on t ∈ [0, τen), where τen is the explosion time. Our aim is to show that this

solution is global and positive almost surely, i.e., τen = ∞ a.s.

Let r0 > 0 such that S(0), E(0), I(0), T (0) > r0. For each integer r ≤ r0, we define the

stopping times

τr = inf {t ∈ [0, τen] : S(t) ≤ r or E(t) ≤ r or I(t) ≤ r or T (t) ≤ r} .

Let

τ = lim
r→0

τr = inf {t ∈ [0, τen) : S(t) ≤ 0 or E(t) ≤ 0 or I(t) ≤ 0 or T (t) ≤ 0} .

For this purpose we introduce a function V as follows:

V = ln
A

S
+ ln

A

E
+ ln

A

I
+ ln

A

T
. (5.4)

We note that by Proposition 5.4.1, each of the terms
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ln
A

S
, ln

A

E
, ln

A

I
, ln

A

T

are positive, and

lim
u→0+

A

u
= +∞.

By Itô’s formula, for all t ≥ 0, s ∈ [0, t ∧ τr], we have

dV (X(s)) = − 1

S(s)

(
fSµA− c1S(s)I(s)− µS(s) +

(σpE(s))2

2
+

(σqI(s))2

2

)
ds

− 1

E(s)

(
fEµA+ c1S(s)I(s) + c2T (s)I(s)− c3E(s)I(s)− (µ+ r1 + k)E(s)

+
(σpS(s))2

2

)
ds

− 1

I(s)

(
fIµA+ kE(s)− (µ+ r2 + δ)I(s) + c3E(s)I(s) +

(σqS(s))2

2

)
ds

− 1

T (s)

(
r1E(s) + r2I(s)− c2T (s)I(s)− µT (s))

)
ds

+ σp(E(s)− S(s))dW1(s) + σq(I(s)− S(s))dW2(s).

After eliminating some negative terms we have the following inequality:

dV (X(s))≤M1ds+ dM2(s), (5.5)

where

M1 = 4µ+ r1 + r2 + k + d+ I(c1 + c2) + c3(E + I) +
σ2

2
(p2E2 + q2I2) +

1

2
(σ(p+ q)S)2

and

dM2(s) = σp(E − S)dW1(s) + σq(I − S)dW2(s).

Taking the integral in (5.5) from 0 to t ∧ τr0, we have:∫ t∧τr

0

dV (X(s)) ≤
∫ t∧τr

0

M1ds+

∫ t∧τr

0

dM2(s).
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By taking expectations, the latter inequality yields:

E[V (S(t ∧ τr), E(t ∧ τr), I(t ∧ τr), T (t ∧ τr))] ≤ V (X(0)) +M1t. (5.6)

Now we note that

EV [S(t ∧ τr), E(t ∧ τr), I(t ∧ τr), T (t ∧ τr)] = E[Ψ(τr≤t)V (S(t ∧ τr), E(t ∧ τr), I(t ∧ τr), T (t ∧ τr))]

+ E[Ψ(τr>t)V (S(t ∧ τr), E(t ∧ τr), I(t ∧ τr), T (t ∧ τr))]

≥ E[Ψ(τr≤t)V (S(τr), E(τr), I(τr), T (τr))],

where Ψ(.) is the indicator function. If τr < ∞, then there are some components of

S(τr), E(τr), I(τr), T (τr) equal to r, therefore (S(τr), E(τr), I(τr), T (τr)) ≥ ln(A
r
).

Thus we have

E[V (S(t ∧ τr), E(t ∧ τr), I(t ∧ τr), T (t ∧ τr))] ≥ ln
(A
r

)
P(τr ≤ t).

Combining (5.5) and (5.6) gives, for all t ≥ 0,

P(τ ≤ t) ≤ V (X(0)) +M1t

ln
(
A
r

)
Letting r → 0, we obtain, for all t ≥ 0, P(τ ≤ t) = 0. Hence P(τ = ∞) = 1. As

τen = τ = ∞ a.s. Therefore, the solution of model (5.1) will not explode at a finite time

with probability one. This completes the proof. �

5.5 Stability of disease free equilibrium

Let us choose a positive number a3 and two non-negative numbers a1 and a2. Specific

values will be assigned to these numbers in different analyses.

Let us assume that

a3 ≥
k

µ1

. (5.7)

Now we define a stochastic process Z(X(t))
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Z(X(t)) = a1(A− S(t)) + a2T (t) + a3E(t) + I(t) (5.8)

and a process

V (X(t)) = lnZ(X(t)). (5.9)

For w ∈ Ω0, we note that Z(X(t)) > 0 and therefore V (X(t)) is defined for all w ∈ Ω0.

For convenience, we introduce the variables:

QZ =
A− S

Z
, TZ =

T

Z
, EZ =

E

Z
, IZ =

I

Z

and for a stochastic process x(t) we shall write

⟨x⟩s =
1

s

∫ s

0

x(u)du.

5.5.1 On the Lypunov exponent of Z

The Lyapunov exponent of a quantity q(t), t ≥ 0 is defined as

lim sup
t→∞

1

t
ln q(t).

The infinitesimal generator L of the system (5.1) (see Øksendal [53]) will play an important

role in the sequel. Now we can calculate LV and express it as a function of X(t). From

Lemma 5.3.2 it follows that for each w ∈ Ω0 there is an increasing sequence (twn ) with the

following properties (but we shall suppress the w and write (tn)):

For every w ∈ Ω,

lim
n→∞

⟨LV (X)⟩tn = lim sup
t→∞

⟨LV (X)⟩t (5.10)

and the limits below, which shall be denoted by q, τ, j, i and define below do exist:

q = lim
n→∞

⟨QZ⟩tn , τ = lim
n→∞

⟨TZ⟩tn , j = lim
n→∞

⟨EZ⟩tn , i = lim
n→∞

⟨IZ⟩tn . (5.11)

We write

Λ = lim sup
t→∞

⟨LV (X)⟩t
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Let

c∗ = max
{
c1, c2, c3

(µ
k
− 1

)}
.

We can write ∫ t

0

dV =

∫ t

0

LV dt+M(t) (5.12)

where

M(t) =

∫ t

0

1

Z
σp(E − S)dW1 +

∫ t

0

1

Z
σq(I − S)dW2

and we note that by the strong law of large numbers [38],

lim
n→∞

1

t
M(t) = 0 a.s.

Therefore

lim sup
t→∞

1

t
V (X(t)) = lim sup

t→∞

1

t

∫ t

0

LV (X(s))ds a.s.

= lim
n→∞

1

tn

∫ tn

0

LV (X(s))ds a.s. (5.13)

Now we expand LV :

LV =
−a1
Z

[µA− c1SI − µS]− a21σ
2

2Z2
(p2E2S2 + q2I2S2) +

a2
Z
[r1E + r2I − c2TI − µT ]

+
a3
Z
[c1SI + c2TI − c3EI − (µ+ r1 + k)E]− a23

2Z2
σ2(p2E2S2)

+
1

Z
[kE − (µ+ r2 + δ)I + c3EI]−

1

2Z2
(σ2q2I2S2)− a1a3(σpES)

2 − a1(σqIS)
2.

With regard to the calculation of LV we note the following:

a3IZ {c1S + c2T − c3E}+ c3IZE = a3IZ

{
c1S + c2T + c3(

1

a3
− 1)E

}
≤ a3IZc∗(S + T + E)

≤ a3IZc∗A.

Therefore,

LV ≤ a3IZc∗A− IZ(µ2 − a2r2) + EZ(a2r1 − a3µ1 + k)− a2µTZ

+ IZ(a1c1S − a2c2T )− a1µQ+B,
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where

B = − (a1σ)
2

2

[
(pEZS)

2 + (qIZS)
2
]
− a23

2

[
(σpEZS)

2
]

− 1

2

[
(σqIZS)

2
]
− a1a3(σpEZS)

2 − a1(σqIZS)
2.

This yields the inequality:

LV≤IZ((a1c1+a3c∗)A−µ2+a2r2)+EZ(k−a3µ1+a2r1)−a2µ2TZ −a1µQZ +B. (5.14)

In the expression for B, if we ignore the multiples of a1 (they are negative), then we obtain

an inequality:

B ≤ − (σS)2

2

{
(pa3EZ)

2 + (qIZ)
2
}
.

5.5.2 Stability theorems

We now introduce another invariant Rσ, which enables us to formulate stability theorems

for the stochastic model (5.1). As a corollary of the main theorem we can deduce a global

stability theorem for disease free equilibrium. Let

Rσ =
kc∗A

µ1µ2

.

In the model of Buonomo and Lacitignola [14], we have backward bifurcation at R0 =

1. Therefore, the condition R0 < 1 does not imply global stability of the underlying

deterministic model. As a corollary to the main theorem, Theorem 5.5.2.2, will follow

that for the model in [14] the disease free equilibrium is globally asymptotically stable

when Rσ < 1. In preparation for our main theorem we introduce a function h(x) as

follows:

h(x) =
p2(1− x)2 + q2x2

x
; x > 0.

Then

lim
x→∞

h(x) = ∞ and if q ̸= 0, then lim
x→0+

h(x) = ∞. (5.15)

72

http://etd.uwc.ac.za/ 



Also we note that:

h
′
(x) =

1

x2
[−p2 + x2].

Therefore h
′
(x) = 0 ⇔ x = p and we know that p ≤ 1. Since h has only one

critical value on the interval (0,∞), in view of (5.15) it follows that the critical point is

an absolute minimum of h on the interval (0,∞).

Therefore the minimum value hmin of h over [0, 1] is:

hmin =
p2(1− p) + q2p

p

= p(1− p) + (1− p2)

= (1− p)(p+ 1 + p)

= (1− p)(1 + 2p).

Proposition 5.5.2.1. If

Rσ −
(σA)2hmin

2µ2

< 1, (5.16)

then (I, E) converges exponentially to zero almost surely.

Proof. We introduce the function V of equation (5.9), with a1 = a2 = 0. Now note that

(5.16) is equivalent to
kc∗A

µ1

− (σA)2hmin

2
− µ2 < 0. (5.17)

We choose a number ϵ > 0 sufficiently small such that

k + ϵ

µ1

c∗A− µ2 −
(σA)2

2
hmin < 0.

Now we choose

a3 =
k + ϵ

µ1

.

From the inequality (5.14) it follows that

LV ≤ [a3c∗A− µ2]IZ + [k − a3µ1]EZ −B1,
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where

B1 =
(σA)2

2

{
p2(a3EZ)

2 + (qIZ)
2
}
.

Note that we can express B1 as follows:

B1 =
(σA)2

2

{
p2(1− IZ)

2 + (qIZ)
2
}
=

(σA)2

2
IZh(IZ). (5.18)

Therefore, we have

B1 ≥
(σA)2

2
IZhmin,

and consequently,

LV ≤ [a3c∗A− µ2 −
(σA)2

2
hmin]IZ + [k − a3µ1]EZ .

Therefore

Λ ≤ [a3c∗A− µ2 −
(σA)2

2
hmin]i+ ϵj

where i and j are defined in (5.11). Since i and j cannot both be zero, it follows that

Λ < 0.

This completes the proof. �

Theorem 5.5.2.2. (a) If (E(t), I(t)) almost surely converges exponentially to 0, then:

lim
t→∞

S(t) = A (a.s.) and lim
t→∞

T (t) = 0 (a.s.).

(b) If

Rσ −
(σA)2hmin

2µ2

< 1,

then disease free equilibrium is almost surely exponential stable.

Proof. (a) Suppose on the contrary that we have :

lim
t→∞

(A− S(t)) + T (t) > 0 (a.s.).
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Let Z be the same as in (5.8), with a1 = a2 = a3 = 1. Since (E(t), I(t)) almost surely

converges exponentially to 0 while

lim
t→∞

(A− S(t)) + T (t) > 0 (a.s.),

it follows that j = 0 and i = 0 (a.s.). Thus from the inequality (5.14) it follows that

Λ≤− µ2TZ − µQZ (a.s.).

Therefore Λ < 0. This implies that Z converges to 0, and thus

lim
t→∞

(A− S(t)) + T (t) = 0 (a.s.),

which is a contradiction. This completes the proof of (a).

(b) This follows from Proposition 5.5.2.1. and Theorem 5.5.2.2.(a). �

5.6 Numerical Simulation

The simulations presented here illustrate the analytical results of our model in (5.1). The

parameter values have already been calculated in the paper Chapter 4, by using real data,

mostly from [86, 88, 90]. We will now use those parameter values, listed in Table 4.1 and

Table 4.2 in Chapter 4, and vary the value of c1 and σ in order for us to be able to find

different values of R0 and Rσ. We first consider a model without the inflow of infective

cases and then with the inflow of infective cases.

We give some numerical simulations to show different dynamic outcomes of the determin-

istic model and its stochastic version. We illustrate by means of simulations, the possible

disease eradication in the absence of the inflow of infectives. This will be shown in Figure

4.1, 4.2 and 4.3. Over these three cases we vary the value of c1 and σ so as to obtain

different values of R0 and Rσ.
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In Figure 5.1, we present a case in which we take c1 = 0.000065, σ = 0.04 and then we

obtain R0 = 1.3917 and Rσ = 1.1653. This situation does not satisfy the conditions of

Theorem 5.5.2.2.(a), and indeed the I-class does not appear to converge to zero. This

means that the disease will persist in our prison population.

In Figure 5.2, we notice that when the perturbation is sufficiently big, then the disease

will possibly be eliminated for a stochastic model even if for the deterministic model it

does not seem be the case. We have chosen c1 = 0.000062, σ = 0.05 and then we calculate

R0 = 1.3275 and Rσ = 0.9737.

Figure 5.1: R0 = 1.3917, Rσ = 1.1653, and

c1 = 0.000065, σ = 0.04.
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Figure 5.2: R0 = 1.3275, Rσ = 0.9737, and

c1 = 0.000062, σ = 0.05.
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In Figure 5.3, a choice of c1 = 0.000054 and σ = 0.04, yields R0 = 1.1562, and

Rσ = 0.9298. This choice of parameters satisfies the conditions in Theorem 5.5.2.2.(a),

and surely the infectious class seem to converge to zero.

We now study model (5.1) with the inflow of infectives and present a sample computation.

We choose c1 = 0.00007893 as in Table 1 and σ = 0.04. Then the values of R0 and Rσ can

be calculated as R0 = 1.6900, Rσ = 1.4635. In Figure 5.4, it is observed that when the

basic reproduction number for the underlying deterministic model is above unity, then

the disease will persist into our prison system. It is also seen that the inflow of infectives
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Figure 5.3: R0 = 1.1562, Rσ =

0.9298, and c1 = 0.000054, σ =

0.04.
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Figure 5.4: R0 = 1.6900, Rσ = 1.4635, and

c1 = 0.00007893, σ = 0.04 with fS =

0.2, fE = 0.74, fI = 0.06.
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cases play a part in influencing the number of TB infected cases in the prison system.

5.7 Conclusion

A stochastic SEIT model was presented and analysed to assess the impact of active TB

on a crowded environment, specifically in prisons. We started off by verifying that there

is a unique global positive solution for the system of stochastic differential equation in

(5.1). It was noted that whenever the basic reproduction number is significantly greater

than unity then the disease will persist in the prison population through our simulations

in Figure 5.1 and Figure 5.2. It has also been observed for a stochastic model that when

the perturbation is sufficiently big then the disease tends to vanish and this can be seen

in Figure 5.2. It is more important to study smaller perturbation. It has been observed

that whenever Rσ < 1, then I and E almost surely converge exponentially to zero in step

with Theorem 5.5.2.2.(a), in the absence of the inflow of infective. These results can also

be seen in Figure 5.3. By introducing the inflow of infectives cases into the prison system,

TB remains endemic, as can be seen in Figure 5.4. By screening the inflow on admission

and providing for them a separate accommodation, TB infection in a prison system can

be greatly reduced.
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Chapter 6

A two-group model for population

dynamics of TB in a crowded

environment

6.1 Abstract

We introduce a two-group epidemic model of tuberculosis that considers the dynamics of

TB in a prison system. The total population of inmates are considered as consisting of

two-groups: the sentenced inmates and those inmates who are awaiting trial and does not

serve a sentence as yet. The two threshold parameters for local stability are computed

and analysed. We also discuss the global stability of the disease free equilibrium by using

a Lyapunov function. We apply the model to South African reported data on tuberculosis

and observe a good agreement between the model prediction and the data. Numerical

results are presented to illustrate analytical results. The two-group model gives better

accuracy than the model in Chapter 4.

Keywords: Two-group TB model, Inflow of infecteds, Removal rate, Sentenced inmates,

Remand inmates, Cross-effect.
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6.2 Introduction

Infectious diseases contribute substantially to the global burden of disease and are major

public health issues worldwide. Overcrowding still continues to be a major problem in

South African correctional centres which provides ideal conditions for the rapid spread

of contagious diseases such as TB in particular. Following up on the annual report of

the Judicial Inspectorate for Correctional Services and Chapter 4 and 5 (regarding the

increase of inmates), on 31 March 2018, correctional services had about 164 000 inmates

in 243 correctional facilities [94]. The prison population has drastically increased during

the 2017/2018 financial year as compared to the previous 10 year period, regardless of the

effort of the criminal justice sector to reduce the population to manageable levels. The

remand detainees consisted of about 46000 and the sentenced offenders had 118 000 out

of 118 723 bed capacity including simple foam mattresses and not raised beds.

According to the Department of Correctional Services (DCS) report, the region with the

highest number of remand detainees were Western Cape followed by Gauteng. These

overcapacitated correctional centres create difficulties for South Africa to guarantee con-

ditions of detention that are consisted with human dignity. Overcrowding compromises

the inmates access to physical exercise, accommodation, nutrition, educational programs

and medical treatment [87, 82]. Moreover, correctional centres vary from unit to unit and

this depends on the sentenced and remand population. For example, the remand sections

were found to have terrible health conditions and broken infrastructure as compared to

those occupied by sentenced offenders [81, 82]. Sentenced inmates are aware that they

will spend time in these units and they take more care when using the facilities. Health

conditions for sentenced offenders and remand detainees housed in a single cell were found

to be much better as compared to a communal cell. Following from Chapter 4, regard-

ing the dynamics of TB in crowded environments such as South African prison, it has

been discovered that the spread of TB tends to flourish in crowded places such as prison.

The compartmental model in Chapter 4 considers the inflow of susceptible, exposed and
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TB infectives into the prison system. As compared to a general population in which the

removal is only by death, the model (4.1) has considered two ways of removal which is

by death or by discharge from prison, and the discharge is the dominant factor. The

model computes the parameters relevant to South African data. Other papers that have

contributed to this line of work are [14, 57, 7]. In-particular, Buonomo and Lacitignola

considered the dynamics of TB in concentration camps with a case study in Uganda.

The department of correctional services continues to provide health care services such as

nutrition, hygiene, pharmaceutical services and primary health care in the prison pop-

ulation. In 2013, 4675 inmates out of 6233 were treated and 1709 inmates out of 2057

were treated in 2014 [80]. The support from Department of Health and partners such as

National Strategic Plan improved the reduction of infecteds. It was clearly observed that

there has been a significant decrease of inmates infected with TB from 2013 to 2016. In

2015 the department of correctional services managed to treat 1239 out of 1485 inmates

infected with TB, and 1034 inmates of 1250 in 2016 [82]. The offenders who were re-

leased before completing their treatment were also under supervision which was provided

by DCS. Moualeu et al. [51] produced a paper of modeling of TB and they put a huge

effect on parameter identification based on the data in Cameroon. It was observed that

an increase in the proportion of individuals having access to medical facilities has a large

impact of reducing the disease burden over time.

According to legislation for Correctional Service, inmates on admission must all be med-

ically assessed before collaborating with the prison population, but due to shortage of

medical staff especially after hours, this was not always possible. The inmates usually

spend their first night in a communal cell and will be ordered to consult the nurse within

24 hours after admission. TB is a chronic disease caused by the bacillus Mycobacterium

tuberculosis and spreads from person to person through air [75]. A paper of Jia et. al

[29] considered the impact of immigration on the epidemiology of tuberculosis by using

mathematical models. The authors present a theoretical framework to investigate how
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infectious individual among immigrants can lead to outbreaks of TB in host areas. They

performed a qualitative investigation of the long term transmission dynamic behaviour

of TB in host with large number of immigrants. Quite obviously, it was noticed that

the disease cannot be eradicated even though the basic reproduction number is less than

unity due to the immigrants.

In this Chapter, we propose a two-group deterministic compartmental model TB model

that considers the dynamics of TB in a prison system. Our model divides the prison

population into two-groups which are sentenced individuals and remand individuals. Both

models allow the inflow of infectives. This division of the prison system will enable us to

more accurately monitor the dynamics of the TB disease of each group. In our model we

assume that there is interaction between susceptible individuals and infectious individuals.

The infectious individuals do not migrate from one sub-population to the other due to

medical reasons. We will compute the parameters of the model by using South African

data as in Chapter 4. Because it is a two-group system we split the parameters accordingly.

Furthermore, we use mathematical analysis such as Lyapunov function combined with

simulations to investigate the behaviour of the model.

6.3 The model

In order for us to investigate the dynamics of TB in a prison population, we divide the

total prison population (N) into sentenced sub-population (Ns) and the awaiting (re-

mand) sub-population (Na). We further subdivide the sentenced sub-population into

compartments such as susceptible class (S), exposed class (E), infectious class (I), treat-

ment class (T ) and the awaiting sub-population as susceptible class (U), exposed class

(L), infectious class (J) and treatment class (H). Susceptible individuals are recruited

into the sentenced and awaiting sub-population at a constant rate ρA and µB, respec-

tively. We assume that there is inflow of susceptible, exposed and infected individu-

als will appear into the susceptible class, exposed class and the infected class at a rate
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fSρA, fEρA, fIρA and fUµB, fLµB, fJµB, respectively into the sentenced and the remand

sub-population. We assume that fS+fE+fI = 1 and fU +fL+fJ = 1. People under TB

treatment are considered to be unfit to commit crime. We assume that there is no inflow

of infectives into the treatment class for any of the sub-population groups. The model is

described by eight ordinary differential equation as follows:

.

S = fSρA− αS(I + φJ)− ρS,

.

E = fEρA+ αS(I + φJ)− ζE(I + φJ)− (ρ+ k)E + gT,

.

I = fIρA+ ζE(I + φJ) + kE − (ρ+ δ + p)I,

.

T = pI − (ρ+ g)T,

.

U = fUµB − βU(J + ψI)− µU,

.

L = fLµB + βU(J + ψI)− ξL(J + ψI)− (µ+ ι)L+ hH,

.

J = fJµB + ξL(J + ψI) + ιL− (µ+ γ + q)J,

.

H = qJ − (µ+ h)H. (6.1)

It is important to note that in general populations, removal of individuals out of the

system is only by death. In this model, as in model (4.1), removal is by death or by

discharge from prison. These rates of removal are denoted by ρ and µ, respectively.

The rate at which individuals die due to TB disease is denoted by δ and γ in each sub-

population, respectively. Susceptible individuals who are in the sentenced and awaiting

sub-population acquire TB infection at a rate αS(I + φJ) and βU(J + ψI) and move

into the exposed classes E and L, respectively. Parameters α and β are the transmission

coefficients from susceptible classes to the exposed class, respectively. The cross-effect

between the sentenced and awaiting individuals is represented by φ and ψ, respectively.

Exposed individuals leave the exposed class (E) and (L) for infectious class (I) and (J)

at a rate kE and ιJ , respectively. Exposed individuals who become infectious in the

sentenced and awaiting sub-population move to the infectious class at a rate ζE(I + φJ)

and ξL(J + ψI), where ζ and ξ represent the transmission coefficient from exposed class

to the infectious class, respectively. Infectious individuals receive treatment and move to
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the treatment class at a rate pI and qJ , where p and q are treatment rates, respectively.

Successfully treated individuals move to exposed class at a rate gT and hH, respectively.

The total population for sentenced and awaiting sub-population is given by

Ns(t) = S(t) + E(t) + I(t) + T (t)

and

Na(t) = U(t) + L(t) + J(t) +H(t),

respectively.

It is important to prove that all the state variables of system (6.1) are non-negative for

all time. From model system (6.1), we get

dNs

dt
= ρ(A−Ns)− δI, (6.2)

dNa

dt
= µ(B −Na)− γJ, (6.3)

respectively. Thus we have dNs

dt
< 0 for Ns > A and dNa

dt
< 0 for Na > B. We consider all

solutions of system (6.1) in the following positively invariant subset Λ ∈ R8:

Λ = Λs + Λa,

where

Λs = {(S,E, I, T ) | S,E, I, T ∈ [0,∞), S + E + I + T ≤ A} ,

Λa = {(U,L, J,H) | U,L, J,H ∈ [0,∞), U + L+ J +H ≤ B} .

We first analyse the model without the inflow of infecteds, i.e., when

fE = fI = fL = fJ = 0, and fS = fU = 1,

and a disease free equilibrium does exist. Model system (6.1) has a disease free equilibrium

P ∗
0 = (S0, E0, I0, T0, U0, L0, J0, H0)

= (P ∗
s0, P

∗
a0),
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where P ∗
s0 = (A, 0, 0, 0) and P ∗

a0 = (B, 0, 0, 0). Convergence to P ∗
0 means that the disease

will die out in the prison system. Similary with the convergence to P ∗
s0 which is the sen-

tenced subgroup and P ∗
a0 the awaiting trial individuals.

The basic reproduction number, R0 of model system (6.1), is computed by using the

next generation matrix approach which has been developed by Van den Driessche and

Watmough [59]. By using the notation in [59], the matrices F and V , for new infection

term and the remaining transfer terms, respectively, are given by:

F=



0 α1A 0 0 α1φA 0

0 0 0 0 0 0

0 0 0 0 0 0

0 β1ψB 0 β1B 0 0

0 0 0 0 0 0

0 0 0 0 0 0


and
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V=



ρ+ k 0 −g 0 0 0

−k ρ+ δ + p 0 0 0 0

0 −p ρ+ g 0 0 0

0 0 0 µ+ ι 0 −h

0 0 0 −ι µ+ γ + q 0

0 0 0 0 −q µ+ h



.

Thus we have:

FV −1=



kαA(ρ+g)
gk(ρ+δ)+ρρ0ρ1

αA(ρ+g)(ρ+k)
gk(ρ+δ)+ρρ0ρ1

kαgA
gk(ρ+δ)+ρρ0ρ1

αιψA(µ+h)
hι(µ+γ)+µµ0µ1

αψA(µ+h)(µ+ι)
hι(µ+γ)+µµ0µ1

αιψhA(ρ+g)
hι(µ+γ)+µµ0µ1

0 0 0 0 0 0

0 0 0 0 0 0

βψkB(ρ+g)
gk(ρ+δ)+ρρ0ρ1

βψB(ρ+g)(ρ+k)
gk(ρ+δ)+ρρ0ρ1

βψgkB
gk(ρ+δ)+ρρ0ρ1

βιB(µ+h)
hι(µ+γ)+µµ0µ1

βB(µ+h)(µ+ι)
hι(µ+γ)+µµ0µ1

βιhB
hι(µ+γ)+µµ0µ1

0 0 0 0 0 0

0 0 0 0 0 0



,

where ρ0 = (ρ+ δ + p), ρ1 = (ρ+ k + g), µ0 = (µ+ γ + q) and µ1 = (µ+ ι+ h).

The basic reproduction number, R0, is defined as the spectral radius of the next gen-
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eration matrix [4, 6]. In this case R0 has two positive eigenvalues corresponding to the

reproduction numbers for each subpopulation. Therefore, the basic reproduction number

for system (6.1) is the maximum of the two and in this case is given by:

R0 = max {Rs0, Ra0} , (6.4)

where

Rs0 =
kαA(ρ+ g)

ρρ0ρ1 + gk(ρ+ δ)
, (6.5)

and

Ra0 =
βιB(µ+ h)

µµ0µ1 + hι(µ+ γ)
. (6.6)

The parameter gives a threshold condition, that the disease will eradicate in our prison

system if R0 ≤ 1 and if R0 > 1 then the disease will persist into the prison system.

The parameters, Rs0 and Ra0 represent the basic reproduction numbers of the sentenced

sub-population and the remand sub-population, respectively. The numbers Rs0 and Ra0

are also defined as the average number of secondary infections that are produced when

one infectious individual is introduced into a group of susceptible individuals. For more

information see the book of Anderson and May [6] or Allen [4].

6.4 Global stability of disease free equilibrium

We now investigate the global stability of a disease free equilibrium of system (6.1) by

using the Lyapunov function approach. To conduct the analytical analysis of global

stability of disease free equilibrium, we assume that there is no inflow of infecteds i.e.,

fE = fI = fL = fJ = 0. We introduce the following invariants of model (6.1), which will

serve to describe global asymptotic stability of P ∗
0 .

Let

α0 = max
{
α,
ρζ

k

}
and β0 = max

{
β,
µξ

ι

}
. (6.7)
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We introduce the following two numbers:

Rg1 =
k(ρ+ g)(α0A+ β0ψB)

ρ(ρ+ δ + p)(ρ+ k + g) + gk(ρ+ δ)
,

and

Rg2 =
ι(µ+ h)(φα0A+ β0B)

µ(µ+ γ + q)(µ+ ι+ h) + hι(µ+ γ)
.

Note that

ρ0(ρ+ k)(ρ+ g)− pkg = ρρ0ρ1 + gk(ρ+ δ),

µ0(µ+ ι)(µ+ h)− qιh = µµ0µ1 + hι(µ+ γ).

Theorem 6.4.1. Consider the case when there is no inflow of infected cases in system

(6.1), i.e., fE = fI = 0 = fL = fJ . Suppose that Rg1 < 1, and Rg2 < 1. Then the disease

free equilibrium is globally asymptotically stable.

Proof. The condition Rg1 < 1 implies that:

k(ρ+ g)(α0A+ β0ψB)− gk(ρ+ δ)− ρρ0ρ1 < 0

k(ρ+ g)(α0A+ β0ψB) + pkg − ρ0(ρ+ k)(ρ+ g) < 0

It is possible to find, consecutively, a0 > 0, ϵ1 > and ϵ2 > 0 such that:

[a0 + k(ρ+ g)][α0A+ β0ψB] + p(kg + ϵ1)− ρ0[(ρ+ k)(ρ+ g)− ϵ2] < 0. (6.8)

Let a0 be as above, and let

a1 = k(ρ+ g),

a2 = (ρ+ k)(ρ+ g)− ϵ2 > 0,

a3 = kg + ϵ1.

Likewise, the condition Rg2 < 1 implies that:

ι(µ+ h)(φα0A+ β0B)− hι(µ+ γ)− µµ0µ1 < 0,

ι(µ+ h)(φα0A+ β0B) + qιh− µ0(µ+ ι)(µ+ h) < 0.
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It is also possible to find, consecutively, b0 > 0, ϵ3 > and ϵ4 > 0 such that:

[b0 + ι(µ+ h)][φα0A+ β0B] + q(ιh+ ϵ3 − µ0[(µ+ ι)(µ+ h)− ϵ4] < 0. (6.9)

Let b0 be as above. Now we introduce numbers bi as follows:

b1 = ι(µ+ h),

b2 = (µ+ ι)(µ+ h)− ϵ4 > 0,

b3 = ιh+ ϵ3.

We define the following function V, which we shall prove to be a Lyapunov function to

guarantee the global asymptotically stable:

V = a0(A− S) + a1E + a2I + a3T + b0(B − U) + b1L+ b2J + b3H.

We calculate the time derivative:

.

V = −a0[ρ(A− S) + αS(I + φJ)]

+a1[αS(I + φJ)− ζE(I + φJ)− (ρ+ k)E + gT ]

+a2[ζE(I + φJ) + kE − ρ0I] + a3[ρA+ pI − (ρ+ g)T ]

−b0[µ(B − U) + βU(J + ψI)]

+b1[βU(J + ψI)− ξL(J + ψI)− (µ+ ι)L+ hH]

+b2[ξL(J + ψI) + ιL− (µ+ γ + q)J ] + b3[µB + qJ − (µ+ h)H],

= −a0ρ(A− S) + E[a2k − a1(ρ+ k)]

+I[αS(a0 + a1) + ζE(a2 − a1) + βψU(b0 + b1) + ξψL(b2 − b1)

+a3p− a2ρ0] + T [a1g − a3(ρ+ g)]

−b0µ(B − U) + L[b2ι− b1(µ+ ι)]

+J [βU(b0 + b1) + ξL(b2 − b1) + αφS(a0 + a1) + ζφE(a2 − a1)

+b3q − b2µ0] +H[b1h− b3(µ+ h)]. (6.10)

Therefore, we now have the following inequality from (6.11):

.

V ≤ −a0ρ(A− S) + E[a2k − a1(ρ+ k)]
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+I[α0A(a0 + a1) + β0ψB(b0 + b1) + a3p− a2ρ0]

+T [a1g − a3(ρ+ g)]− b0µ(B − U) + L[b2ι− b1(µ+ ι)]

+J [β0B(b0 + b1) + α0φA(a0 + a1) + b3q − b2µ0] +H[b1h− b3(µ+ h)].

We obtain
.

V as

.

V ≤ −a0ρ(A− S) + pEE + pII + pTT + pLL+ pJJ + pHH, (6.11)

where the coefficients are

pE = a2k − a1(ρ+ k),

pI = α0A(a0 − a1) + β0ψB(b0 + b1) + a3p− a2ρ0,

pT = a1g − a3(ρ+ g),

pL = b2ι− b1(µ+ ι),

pJ = β0B(b0 + b1) + α0φA(a0 + a1) + b3q − b2µ0

pH = b1h− b3(µ+ h).

We now check that these coefficients are negative,

pE = a2k − a1(ρ+ k) = k(ρ+ k)(ρ+ g)− ϵ2k − k(ρ+ k)(ρ+ g) = −ϵ2k,

Likewise,

pL = −ϵ4ι < 0.

We now have

pT = a1g − a3(ρ+ g) = kg(ρ+ g)− (kg + ϵ1)(ρ+ g) = −ϵ1(ρ+ g) < 0,

and similarly,

pH = −ϵ3(µ+ h) < 0. (6.12)

We now check

pI = α0A(a0 − a1) + β0ψB(b0 + b1) + a3p− a2ρ0,

= α0A[a0 − k(ρ+ g)] + β0ψB[b0 + ι(µ+ h)] + p(kg + ϵ1)− ρ0(ρ+ k)(ρ+ g)− ϵ2ρ0.
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Therefore, by condition (6.9), pI < 0.

Likewise,

pJ = β0B[b0 + ι(µ+ h)] + α0φA[a0 + k(ρ+ g)] + q(ιh+ ϵ3)− µ0(µ+ ι)(µ+ h)ϵ4µ0

≤ 0.

This proves that V (A − S,E, I, T, U, L, J,H) < 0, is negative definite and therefore, P ∗
0

is globally asymptotically stable. �

Theorem 6.4.1 asserts that TB can be eradicated in a prison system of the type of this

model if there is no inflow of infected individuals, and

Rg = min{Rga, Rgs}

can be kept below unity.

6.5 Numerical values

We assume that the average period spent by remand individuals in custody is six weeks

and that gives us a value of µp as

µp =
1

6
week−1 =

52

6
year−1 = 8.6667 year−1.

Similarly as in Chapter 4, we calculate an estimate for the removal rates µ and ρ using

Table 1. We further assume that on average, a sentenced inmate completes 75% of

sentenced time. Then we obtain the release rate

ρp = 0.1249 year−1.

In Chapter 4, we calculated a value for the general mortality rate excluding deaths due

to TB. This numerical value will be taken as the common value of µm and ρm. Thus we

can calculate the values of µ and ρ as:

µ = µp + µm − µmµp = 8.6389 year−1

ρ = ρp + ρm − ρmρp = 0.1281 year−1
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Since the remand inmates do not stay in prison long, we can estimate the disease mortal-

ity for this group as being the same as in the outside population. We assume the value

γ = 0.3 as in the reference [11].

For sentenced inmates the disease induced mortality rate is assumed to be such as to yield

the same expected number of deaths due to TB as in the model of Chapter 4. Thus we

take

δ = 0.01876× N

Ns

= 0.02616 year−1.

The rest of the parameters are evaluated along the same lines as in Chapter 4.

6.5.1 Effective Contact rates

The contact rates for sentenced and awaiting individuals are computed by using a lower

bound for the effective rates c0 as in Chapter 4, given by:

α = 7.1351×10−5 year−1

and

β = 1.8303×10−4 year−1,

respectively. The transmission coefficients between the exposed class and the infectious

class are given by

ζ =
k

2Ns

and ξ =
ι

2Na

,

respectively, as in Chapter 4.

6.5.2 Other parameters

For sentenced individuals the progression rate from the exposed class to the infectious

class is the same as in Chapter 4, which is k = 0.05. As for remand inmates, we assume ι
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to be the same as the general population ι = 0.1 [14].

Sentenced inmates receive treatment at the rate p = 0.5 and the remand inmates at

q = 0.3, from Chapter 4. Sentenced inmates recover and progress to the exposed class af-

ter a successful treatment at a rate of g = 2(10/Ns) and remand inmates at h = 2(10/Na),

as in Chapter 4.

The inflow of infectives are computed by splitting the parameter values obtained in Chap-

ter 4:

fS = 0.14, fU = 0.06, fE = 0.53, fL = 0.21, fI = 0.04, and fJ = 0.02.

The initial values are obtained by splitting the values of the initial values of the one-

group model in Chapter 4. The remand population constitutes a fraction 2
7
of the prison

population and splitting these parameters would lead to:

S = 23500, E = 78800, I = 2300, T = 13000,

U = 9300, L = 31000, J = 900, and H = 5200.
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Table 6.1: Model parameters

Parameter Estimated value Source

µ 8.6389 year−1 Estimated from Chapter 4, data from [86, 33]

ρ 0.1249 year−1 Estimated from Chapter 4, data from [86, 33]

γ 0.3 year−1 Estimated from Chapter 4

δ 0.02616 year−1 Estimated from Chapter 4, data from [88, 86]

p 0.50 year−1 [14]

q 0.30 year−1 [14]

k 0.05 year−1 [14, 90]

ι 0.1 year−1 [14]

h 20/Ns [14, 90]

g 20/Na [14, 90]

ζ k/2Ns Estimated from Chapter 4

ξ ι/2Na Estimated from Chapter 4

6.6 Numerical Simulations

A two-group model system (6.1) is simulated by using South African real data and these

parameter values are presented in Table 6.1, Table 6.2 and Table 6.3.

6.6.1 Simulations without the inflow of infective

We proceed by using parameters in Table 6.1 and Table 6.3 to analyse the simulation

results in the absence of the inflow of infectives. The trajectory plot of the two-group

model system (6.1) are presented in Figure 6.1 when Rg1 < 1 and Rg2 < 1. In order for

us to obtain different values of Rg1 and Rg2, we vary the values of α = 0.0000142 and

β = 0.00002260. We observed that the trajectories of the two-group model (6.1) converges

to disease free equilibrium. Therefore the disease will disappear in both sub-population

groups as Theorem 6.4.1 says. A slight increase in the contact rate α and β leads to
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Table 6.2: Contact rates parameters and inflow of infectives

Parameter Estimated value Source

α 0.000071351 year−1 Estimated from Chapter 4, see also [90]

β 0.00018303 year−1 Estimated from Chapter 4, see also [90]

fS, fE, fI 0.14, 0.53, 0.04 [86]

fU , fL, fJ 0.06, 0.21, 0.02 [86]

convergence of disease free equilibrium in the sentenced sub-population while the remand

population is experiencing endemicity. This is due to inmates that are not screened for

TB immediately on admission in the remand population while inmates in the sentenced

population are screened and put under treatment. The simulation results can be seen in

Figure 6.2 with Rg1 = 0.997 and Rg2 = 1.11.

In the absence of treatment i.e., when p = q = 0, Figure 6.3 reveals that the disease will

persist in both sub-population with Rg1 = 3.27 and Rg2 = 1.71. Therefore, the sentenced

sub-population will be at high risk of disease infection as they spend more time in prison

than the remand population. It is noticed that the conditions will aggravate if there is

increase in contact rates in Figure 6.4.

In the absence of cross-effect between the two sub-populations and an increase in the

contact rates, the disease in the prison system will be eradicated due to the treatment that

is administered. This can be seen in Figure 6.5 with Rg1 = 0.920 and Rg2 = 0.968. Quite

obviously, in the absence of treatment and cross-effect the disease becomes persistent and

the inmates will be at high risk of getting infected. TB transmission is driven exclusively

by the systematic and prolonged exposure of susceptible to infectious individuals and this

can be seen in Figure 6.6 with Rg1 = 3.12 and Rg2 = 1.66. Hence, sentenced inmates are

considered to be in an active sub-population and are at risk of TB infection due to close
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Table 6.3: Initial conditions

Parameter Estimated value Source

N 164000 [94]

Ns 118000 [94]

Na 46000 [94]

S 23500 Estimated from Chapter 4, data from [94]

E 78800 Estimated from Chapter 4, data from [94]

I 2300 Estimated from Chapter 4, data from [94]

T 13000 Estimated from Chapter 4, data from [94]

U 9300 Estimated from Chapter 4, data from [94]

L 31000 Estimated from Chapter 4, data from [94]

J 900 Estimated from Chapter 4, data from [94]

H 5200 Estimated from Chapter 4, data from [94]

and frequent contacts with infectious inmates.
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Figure 6.1: α = 0.0000142, β = 0.00002260

and Rg1 = 0.963, Rg2 = 0.997.
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Figure 6.2: α = 0.0000146, β = 0.0000255,

and Rg1 = 0.997, Rg2 = 1.11.
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Figure 6.3: α = 0.0000142, β = 0.00002260,

q = 0, p = 0 and Rg1 = 3.27, Rg2 = 1.71.
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Figure 6.4: α = 0.0000146, β = 0.0000255,

q = 0, p = 0 and Rg1 = 3.39, Rg2 = 1.91.
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6.6.2 Simulations with the inflow of infective

We now introduce the inflow of infectives in Figure 6.7 and use the contact rates in Table

6.2. The results show that the two-group model system (6.1) always has an endemic

equilibrium and is globally asymptotically stable, which indicates that the disease will

persist in the presence of the inflow of infectives. A further simulation that illustrates

the dynamics of the infections classes I and J when there is an inflow of infectives and a

reduction in contact rates has been presented in Figure 6.7.

Figure 6.8, reveals that the disease will still persist in both population groups even though

Rg1 < 1 and Rg2 < 1. In figure 6.9, it is noticed that even though the contact rate has been

reduced, the infectious class of sentenced inmates is increasing drastically in the absence
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Figure 6.5: α = 0.0000146, β =

0.0000255, φ = 0, ψ = 0 and Rg1 = 0.920,

Rg2 = 0.968.
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Figure 6.6: α = 0.0000146, β =

0.0000255, φ = 0, ψ = 0 q = 0, q = 0 and

Rg1 = 3.12, Rg2 = 1.66.
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Figure 6.7: α = 0.000071351, β =

0.00018303 and Rg1 = 4.55, Rg2 = 4.89.
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Figure 6.8: α = 0.0000146, β = 0.000340 and

Rg1 = 0.893, Rg2 = 0.908.
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of treatment with Rg1 = 3.03 and Rg2 = 1.28 in the remand population. The situation

will worsen if we use the contact rates in Table 6.2 with the absence of treatment, this

can be seen in Figure 6.10. The inflow of infectives makes it impossible for the prison

system to converge towards disease free equilibrium.
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Figure 6.9: α = 0.0000146, β = 0.000340,

q = 0, p = 0 and Rg1 = 3.03, Rg2 =

1.28.

time in years
0 2 4 6 8 10 12 14 16 18

po
pu

la
tio

n 
in

 u
ni

ts
 1

04

0

0.5

1

1.5

2

2.5

I(t)
J(t)

Figure 6.10: α = 0.000071351, β =

0.00018303, q = 0, p = 0 and Rg1 =

15.50, Rg2 = 6.89.
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6.7 Conclusion

In this chapter, we introduced a two-group model to monitor the disease in a prison sys-

tem. We divided the total prison population into sentenced population and remand pop-

ulation. The theoretical analysis Theorem 6.4.1 together with simulation results confirm

that subject to certain conditions, the disease free equilibrium is globally asymptotically

stable. Our simulation results have shown that when we have inflow of infecteds, then

the disease cannot be eradicated even though the basic reproduction number R0 is less

than unity. Finally, more consideration should be given to monitor the inflow of infecteds

so as to reduce the number of infectious individuals in order to eradicate the disease in

the prison population. This can be done by screening the inmates on admission and also

by providing a comprehensive curative and preventive services for latent cases and active

cases.
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Chapter 7

Modeling drug-resistant TB

population dynamics in a crowded

environment

7.1 abstract

We present a two strain TB model to understand the transmission dynamics of drug-

sensitive TB and multi-drug resistant TB in a crowded environment such as prison. The

model allows for the inflow of infective into the susceptible class, exposed class for drug-

sensitive, infectious class for drug-sensitive and the exposed class for multi-drug resistant

patients. The basic reproduction R0 which measures the average number of new infec-

tious generated by a distinctive infectious individual in a prison population has been

premeditated. We also prove the global stability of the disease free equilibrium by using

a Lyapunov function. Finally, we present the analytical results by means of simulations.
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7.2 Introduction

Multi-drug resistant TB is a form of TB caused by bacteria that cannot be controlled with

the first-line anti-TB drugs which are Isoniazid and Rifampicin. The World Health Orga-

nization declared that an estimate of 558000 new cases of multi-drug resistant tuberculosis

occurred globally and 230000 people died from the disease in 2017 [76]. Nevertheless, the

number of these multi-drug resistant cases grew in 2017 by 12% as compared to 2016 with

an estimated 490000 people who developed MDR-TB. In addition, 110000 people with

rifampicin-resistant TB were newly eligible for MDR-TB treatment in 2016. Multi-drug

resistant TB remains a public health crisis and health security threat worldwide. However,

MDR-TB is treatable and curable by using the second line drugs and the treatment may

take up to two years. Only 55% of MDR-TB patients were successfully treated worldwide

in 2017.

There were 54 million lives that were saved through diagnosis and treatment between 2000

and 2017 and these individuals were infected with drug-sensitive TB or with multi-drug

resistant TB [77]. MDR-TB may be acquired in different forms such as through incorrect

treatment or through infection by an infectious MDR-TB patient [77]. Yang et al. [71],

studied the global stability of two models with incomplete treatment for tuberculosis. The

authors assumed that treated individuals may progress either to a latent compartment

due to the remnant of Mycobacterium tuberculosis or infectious class due to treatment

failure. It was discovered that increasing the treatment rate has a positive effect on TB

control and also increasing the protection of susceptible individuals with chronic disease

against TB infection is also helpful for controlling the spread of TB. China and India have

been identified with the largest number of MDR-TB cases, and South Africa is in the top

seven of the countries with highest burden of TB disease [75]. A study in mathematical

modelling on pulmonary and multi-drug resistant tuberculosis patients with vaccination

has been proposed in the paper of Mishra and Srivastava [47]. The authors noticed that

there was a speedy recovery and almost tend to end the spread of TB infection as the
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quarantine was used as control over MDR-TB patients. Vaccination has also played a

great role in immunizing the population towards TB infection. A study of mathematical

models with MDR-TB has been proposed, in the papers [55, 18, 28, 58, 11].

Multi-drug resistant TB is difficult to treat and the treatment is expensive as compared

to the normal TB treatment. An optimal control problem for tuberculosis and MDR-TB

transmission has been considered in the paper of Hafidh et al [27]. The model involves

three control variables which are BCG vaccination, treatment with first-line and treat-

ment with second line anti-TB drug. The aim of the problem is to minimize the number

of infected individuals and also to minimize the cost of the control that is given. Pon-

tryagin’s Minimum Principle has been use to derive the optimal control. The authors

observed that the optimal control strategy gives better results in minimizing the total

number of infected individuals.

In South Africa, an estimated 322000 people became ill with TB in 2017 and 78000

people died from TB. Tuberculosis thrives in places where people lack access to proper

TB treatment, live with inadequate ventilation and where there is poor sanitation and

nutrition. In particular, prisons are an excellent example for thriving MDR-TB infection.

In this study we will focus on the transmission dynamics of drug sensitive TB and multi-

drug resistant TB with treatment. Drug sensitive TB and multi-drug resistant TB is a

treatable and curable disease, without treatment adherence the disease might spread, and

improper treatment may give rise to MDR-TB.

7.3 The model

The total prison population N(t) is subdivided into seven classes according to their disease

status which are susceptible individuals (S), individuals exposed to drug-sensitive TB only

(E), infectious individuals with drug-sensitive TB (I), individuals who are treated against

drug-sensitive TB (T ), individuals who are exposed to multi-drug resistant TB and are
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now latently infected (L), infectious individuals with MDR-TB (J) and ultra treated

individuals for MDR-TB patients (U). The model allows the inflow into the classes of

susceptible (S), exposed to drug sensitive TB, infectious individuals with drug-sensitive

TB (I), exposed to multi-drug resistant TB (L), at the rates fSµA, fEµA, fIµA and fLµA.

We assume that fS + fE + fI + fL = 1 and that there is no inflow into the treatment

class (T ) of drug-sensitive, infectious class (J) and ultra treated class (U) with MDR-TB

patients as they are very sick and probably admitted to hospital. Susceptible individuals

recruited into the susceptible class S(t) at a constant rate A. Our compartmental model

is presented as follows:

.

S = fSµA− cβ0SI − cβ1SJ − µS,

.

E = fEµA+ cβ0SI − cβ2EJ − cβ4EI − (µ+ k1 + r1)E + ι1T,

.

I = fIµA+ k1E − (µ+ d1 + r2)I − cβ3IJ + cβ4EI,

.

T = r1E + r2I − (µ+ ι1 + ι2)T,

.

L = fLµA+ ι2T + ι3U − (µ+ k2 + r3)L+ cJ(β1S + β2E + β3I),

.

J = k2L− (µ+ d2 + r4)J,

.

U = r3L+ r4J − (µ+ d3 + ι3)U. (7.1)

Susceptible individuals get infected with tubercle bacillus if they come into contact with

drug sensitive TB and MDR-TB individual, at a rate cβ0SI and cβ1SJ, respectively.

The parameter β0 is the probability that susceptible individuals become infected by one

drug sensitive TB infectious individual and c is the per capita contact rate. Individuals

in E class progress to active TB class I at the rate cβ4EI, where β4 is the probability

that exposed individuals become infected by one drug-sensitive TB infectious individual.

The individuals in the exposed class for drug-sensitive TB and drug resistant TB leave

for infectious class at the rates k1E and k2L, respectively. The individuals in J class

with drug-resistant TB can infect S,E and I individuals at a rate cJ(β1S + β2E + β3I),

where β1, β2 and β3 are the probabilities that S,E and I individuals become infected by
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one drug resistant TB infectious individual, respectively. Individuals in E, I, L and J

classes moves into the treatment class at a rate r1, r2, r3, and r4, respectively. Successfully

treated individuals for drug sensitive TB and MDR-TB move to the E and L class at a

rate ι1T and ι3U , respectively. Individuals who did not complete their treatment develop

MDR-TB and move to the L class at a rate ιT . The parameters d1, d2 and d3 are the

disease-induced death rate coefficients for individuals in I, J and U , respectively and the

individuals in the respective subgroups die naturally at a rate µ.

The model system (7.1) signifies a human population, hence all related parameters and

state variable are assumed to be nonnegative for all t > 0. Let N(t) represent the size of

the prison total population at time t.

Hence,

N(t) = S(t) + E(t) + I(t) + T (t) + L(t) + J(t) + U(t).

By adding the equations in model (7.1), we get

dN

dt
= µ(A−N)− (d1I + d2J + d3U).

It is clear that if N > A and dN
dt

< 0. Therefore, all the solutions of system (7.1) with

non-negative initial values in the space R7
+ exists and are bounded for all t ≥ 0. It can

easily be shown that the set

Γ =
{
(S, I, T, L, J, U) ∈ R7

+ | S≤N≤A
}

is positively invariant and attracts all nonnegative solutions of model system (7.1). Hence,

we will only consider solutions in model (7.1) with initial values in Γ.

In the absence of infection (i.e., E = I = L = J = 0), model system (7.1) possesses the

disease free equilibrium given by

E0 = (S(0), E(0), I(0), T (0), L(0), J(0), U(0)) =
(A
µ
, 0, 0, 0, 0, 0, 0

)
.

The basic reproduction number, R0, is defined as the anticipated number of secondary

cases produced by a single infection in a completely susceptible population. This is a
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threshold quantity that predicts a disease outbreak and helps to evaluate control strate-

gies in a population. Therefore, if R0 < 1, then the infected individual produces less

than one new infected individual over the course of its infections period, and the infection

cannot invade the population. On the other hand if R0 > 1, then the infected individual

produces on average more than one infection, and the disease can invade the population.

Following the next generation matrix method applied in Van Den Driessche [59] to com-

pute R0, we define F and V from system (7.1) as:

F =



cβ0SI − cβ1EJ

−β3IJ + cβ4EI

cJ(β1S + β2E + β3I)

0



and V =



(µ+ k1 + r1)E − ιT

(µ+ d1 + r2)I − k1E

(µ+ k2 + r3)L− ι2T − ι3U

(µ+ d2 + r4)J − k2L



.

We now obtain the partial derivatives of F and V with respect to E, I, T, L, J and U at

the disease free equilibrium point E0

F =



0 cβ0
A
µ

0 0

0 0 0 0

0 0 0 cβ1
A
µ

0 0 0 0



and
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D(V ) =



µ+ k1 + r1 0 0 0

k1 µ+ d1 + r2 0 0

0 0 µ+ k2 + r3 0

0 0 − k2 µ+ d2 + r4



.

The basic reproduction number is given by R0 = ρ(FV −1), where ρ represents the spectral

radius or the dominant eigenvalue of the matrix FV −1 which is given by:

R0 = max{R0s, R0r}, (7.2)

where

R0s =
cβ0k1A

µ(µ+ k1 + r1)(µ+ d1 + r2)
,

R0r =
cβ1k2A

µ(µ+ k2 + r3)(µ+ d2 + r4)
.

Thus, R0s and R0r represent the reproduction numbers for drug-sensitive TB and MDR-

TB, respectively.

7.4 Global Stability

We find it convenient to introduce the following constants:

µ1 = µ+ k1 + r1, µ4 = µ+ k2 + r3,

µ2 = µ+ d1 + r2, µ5 = µ+ d2 + r4,

µ3 = µ+ ι1 + ι2, µ6 = µ+ d3 + ι3.

In the proof of the global stability theorem we shall use a Lyapunov function V . Towards

constructing this function we shall require several constraints. We proceed now by iden-
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tifying these numbers, and this is based on inspection of the time derivative of V.

Let

a1 =
r2k1µ1 + r1µµ1µ2

r2k1 + r1µ2

, a2 =
k1µ1µ2(1− µ)

r2k1 + r1µ2

,

z0 =
1

ι2
(a2µ3 − ι1k1), z1 =

1

µ5µ6

(ι3r4z0 + µµ4µ5µ6),

b2 =
z0ι3
µ6

. (7.3)

Now we introduce two positive constants βs and βr on the assumption that z0 ̸= 0

βs = max
{
β0, (

a1
k1

− 1)β4

}
,

βr = max
{
β1, (1−

k1
z0
)β2, (1−

a1
z0
β3)

}
.

We specify two invariants that describe a threshold for global asymptotic stability of E∗
0 ,

the disease-free equilibrium,

Rgs =
cβsk1A

µµ1µ2

, Rgr =
cβrk2A

µµ4µ5

.

The following condition will be necessary in the global stability theorem

a2µ3 > ι1k1. (7.4)

The condition (7.4) implies that z0 > 0 and in particular that a2 > 0.

Theorem 7.4.1 Suppose that condition (7.4) hold. If Rgs < 1 and Rgr < 1, then the

disease-free equilibrium is globally asymptotically stable.

Proof. Let

ϵ = min{1−Rgr

2µ5

, z1,
µ4z0
k2

}
.

By condition (7.4) we have z0 > 0. Since also we assume 1−Rgr > 0, it follows that ϵ > 0.

Now we choose b1 = z1 − ϵ and b0 = z0 − k2ϵ
2µ4
. Then b0 and b1 are positive numbers.
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The condition Rgs < 1 implies an inequality

cβsk1A− µµ1µ2 < 0.

Then there exists α > 0, and we can insist on

α < min
{ι2ϵ
ι1
,
k2ϵ

2µ4

}
,

such that

cβs(2α + k1)A− µµ1µ2 < 0

We now proceed to define a function V (x), which we shall prove as being a Lyapunov

function. The function is as follows:

V = α(A− S) + a0E + a1I + a2T + b0L+ b1J + b2U,

where α, a1, a3, b0, b1 and b3 are as above and a0 = α + k1. We note that

α + b0 ≤ z0.

Now

.

V = −α[µ(A− S) + cβ0SI + cβ1SJ ] + a0[cβ0SI − cβ2EJ − cβ4EI − µ1E + ι1T ]

+a1[k1E − µ2I − cβ3IJ + cβ4EI] + a2[r1E + r2I − µ3T ]

+b0[ι2T + ι3U − µ4L+ cJ(β1S + β2E + β3I)]

+b1[k2L− µ5J ] + b2[r3L+ r4J − µ6U ]

= −αµ(A− S) + E[a1k1 + a2r1 − a0µ1]

+I[αcβ0S + cβE(a1 − a0) + a2r2 − a1µ2 + a0cβ0S]

+T [b0ι2 + a0ι1 − a2µ3] + L[b1k2 + b2r3 − b0µ4]

+J [cβ1S(α + b0) + b0cβ2E − a0cβ2E + cβ3I(b0 − a1) + b2r4 − b1µ5]

+U [b0ι3 − b2µ6].
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Now

.

V ≤ −αµ(A− S) + CEE + CII + CTT + CLL+ CJJ + CUU,

where the coefficients Ci, i = E, T, L, U, I, J respectively, are as follows:

CE = a1k1 + a2r1 − a0µ1,

CT = b0ι2 + a0ι1 − a2µ3,

CL = b1k2 + b2r3 − b0µ4,

CU = b0ι3 − b2µ6,

CI = cβsA(α + a0) + a2r2 − a1µ2,

CJ = cβrA(α + b0) + b2r4 − b1µ5.

We check that these coefficients are negative. A routine calculation gives

a2r2 − a1µ2 = µµ1µ2 and b2r4 − b1µ5 = µµ4µ5.

Therefore,

CI = cβsA(α + a0) + a2r2 − a1µ2

= cβsA(2α + k1)− µµ1µ2. (7.5)

Since Rgs < 1, we have CI < 0. Similarly CJ < 0, for

CJ = cβrA(α+ b0) + b2r4 − b1µ5

= cβrA(α+ b0)− µµ4µ5. (7.6)

Thus
.

V < 0. This concludes that proof. �

Therefore, in the absence of inflow of the infected individuals and with

Rg = min{Rgs, Rgr}

less than unity, Theorem (7.4.1) affirms that TB in crowded environments can be elimi-

nated.
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7.5 Numerical value

We consider a certain area in South Africa that is experiencing high prevalence MDR-TB

with a population size of

A = 160000.

Removal rate in a general population is only by death and this parameter is excluding

deaths due to TB. In 2019, the life expectancy in South Africa has decreased to 63 years

[84]. Therefore, the natural mortality rate µ in a case of general population is simply

calculated by taking the inverse of life expectancy,

µ =
1

63
year−1.

7.5.1 Disease induced death rate and recovery rate

According to World Health Organization [77], 56% of MDR cases were treated successfully.

If we take treatment duration on the average as 9 months then

d3 =
0.44

0.75
year−1.

After successful treatment the individuals recover and move the latency class L at a rate

ι3 =
0.56

0.75
year−1.

As for d2, it must be bigger than d3. We propose to have:

d2 = 1.5 d3.

Due to some individuals defaulting on treatment or interruption of TB treatment, the

individuals in class T will then progress to latent class L at a rate ι2. The parameter ι2

depends on the region. From [100] we are led to have a default rate of 18%, so we pick:

ι2 =
0.18

0.5
year−1.
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The disease induced death rate for drug sensitive TB is given by d1 = 0.02256 (from

Chapter 4) and we assume that individuals recover faster, at ι1 = 0.99.

We will use the contact rate calculated in Chapter 4 for South African which is given by

c = 7.893×10−5 year−1.

We assume that the transmission parameters are

β2 = β3 = β4 = 0.00004,

from Chapter 4 and the parameter values for are estimated,

β0 = β1 = 0.0000014.

7.5.2 Progression rate and treatment rate

The progression rate for drug sensitive from E class to I class for a general population has

already been computed in Chapter 4 by using South African data. We will also assume

that the same progression rate for drug-resistant from L class to J class which are

k1 = k2 = 0.1 year−1,

respectively.

Progression rate from E and I class to the treatment class T for drug sensitive TB are

given by

r1 = 0.3 year−1 and r2 = 0.5 year−1,

respectively. By taking 9 months as treatment duration [101], we adopt the same pa-

rameter values for drug sensitive TB patients in the latency class (L) and infectious class

(J)

r3 = 0.3 year−1 and r4 = 0.5 year−1,

respectively.
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7.5.3 Initial conditions and inflow of infectives

From Chapter 4, 20% of the South African population are susceptible. The paper of Cox

et al. [21], reported 21% of patients infected with MDR-TB and 48% were on treatment.

By using the initial conditions in Chapter 4 and these explanations, we are led to the

following initial conditions:

S = 20000, E = 44095, I = 1731, T = 5720, L = 22715, J = 459, U = 5280.

The inflow of infective are split as in Chapter 6 as follows:

fS = 0.2, fE = 0.53, fI = 0.06, fL = 0.21.

7.6 Simulations

We now present our analytical results by means of simulations. We start off by considering

model system (7.1) without the inflow of infectives i.e., when fE = fI = fL = 0. We then

examine a situation where the inflow of infectives occur.

7.6.1 No inflow of infectives

We use the parameter values listed in Table 7.1. and we vary the value of the parameter

c which is not listed in Table 7.1. Figure 7.1 shows a variation between exposed class

E and L, infectious class I and J of the drug sensitive TB and drug resistant TB. We

now show the dissimilarity between the exposed classes and infectious classes of drug

sensitive TB and drug resistant TB. Figure 7.1 admits for an endemic population i.e., the

disease will persevere in the population as Rgs = 1.58 and Rgr = 1.3 when c = 0.00004

and β1 = 0.000003. In Figure 7.2, it is noticed that Rgs = 0.985 and Rgr = 0.38 when

c = 0.000025 which means that the disease will not persist in the population and Theorem

7.4.1 is satisfied.
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Table 7.1: Model parameters and initial conditions

Parameter Numerical value Source

µ 0.01587 [84]

β0 0.0000014 Estimated

β1 0.0000014 Estimated

β2 = β3 = β4 0.000042 Estimated

d1 0.02616 Estimated in Chapter 4, data from [88, 86]

d2 0.8800 Estimated

d3 0.5887 [77]

ι1 0.89 Estimated from Chapter 4

ι2 0.3600 [100]

ι3 0.7467 [77]

r1 = r3 0.30 [14]

r2 = r4 0.50 [14]

k1 = k2 0.05 to 0.1 Estimated in Chapter 4

A 100000 Estimated

S 20000 [90]

E 44095 [86, 21]

I 1731 [86, 21]

T 5720 [86, 21]

L 22715 [86, 21]

J 459 [86, 21]

U 5280 [86, 21]
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Table 7.2: Inflow and contact rates

Parameter Numerical value Source

c 0.00007893 [90]

fS, fE, fI , fL 0.2, 0.53, 0.06, 0.21, respectively [86]

Figure 7.1: c = 0.00004, β1 = 0.000003 and

Rgs = 1.58, Rgr = 1.3.
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Figure 7.2: c = 0.000025 and Rgs =

0.985, Rgr = 0.38.
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By extracting the infectious classes and increase the time to 40 years, it is seen clearly that

the infectious classes I and J converges to disease free equilibrium and this can be seen

in Figure 7.3. with Rgs = 0.985 and Rgr = 0.814 when c = 0.000025 and β1 = 0.000003.

Therefore, in the long run the disease will be eradicated. Figure 7.4. shows the infectious

class for drug sensitive TB with endemicity while the infectious class for drug resistant

TB shows disease free equilibrium with Rgs = 1.58 and Rgr = 0.61 when c = 0.000022.

We further notice that if there are no individuals who default in treatment then the drug

resistant class J converges faster to the disease free equilibrium while drug sensitive TB

class I remain endemic. This can be seen in Figure 7.5 with Rgs = 0.985, Rgr = 0.814

when c = 0.000025, β1 = 0.000003. When there is an increase in the default rate ι2 = 0.6,

we notice in Figure 7.6 a faster convergence in I class while J class becomes slow.
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Figure 7.3: c = 0.000025, β1 = 0.000003 and

Rgs = 0.985, Rgr = 0.814.
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Figure 7.4: c = 0.00004 and Rgs =

1.58, Rgr = 0.61.
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Figure 7.5: c = 0.000025, ι2 = 0 and Rgs =

0.985, Rgr = 0.38.
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Figure 7.6: c = 0.000025, ι2 = 0.6 and Rgs =

0.985, Rgr = 0.38.
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7.6.2 Inflow of infectives

We now study model system (7.1) by introducing the inflow of infectives i.e., when fE+fI+

fL > 0 and use the parameter values presented in Table 7.2. Figure 7.7. presents a scenario

of model system (7.1) with the inflow of infective i.e., when fE = 0.53, fI = 0.06, fL = 0.21.

The results show that the disease will persist in the population due to the inflow of

infectives. Thus we have Rgs = 1.58 and Rgr = 1.3 when c = 0.00004 and β1 = 0.000003.

The infectious class J of Figure 7.7 converges as there is no inflow of infectives into that

class. We also note that even though the basic reproduction number is less than unity

(Rgs = 0.985, Rgr = 0.38) in Figure 7.8, the disease will still persist due to the inflow of

infectives.
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Figure 7.7: c = 0.00004, β1 = 0.000003 and

Rgs = 1.58, Rgr = 1.3.
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Figure 7.8: c = 0.000025 and Rgs =

0.985, Rgr = 0.38.
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We extract the infectious classes I and J from Figure 7.8 and the population remains en-

demic even though the reproduction numbers are less the unity. In Figure 7.11 and Figure

Figure 7.9: c = 0.00004, β1 = 0.000003 and

Rgs = 1.58, Rgr = 1.4.
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Figure 7.10: c = 0.000025 and Rgs =

0.985, Rgr = 0.38.
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7.12 the disease persist with Rgs = 3.11 and Rgr = 1.2 when c = 0.00007893. It is also

noticed that even after 40 years the disease will still persist in the population, especially

with the infectious class I due to the inflow of infected individuals. In our simulations it

is crystal clear that the inflow of infectives make it impossible for a population to stay

endemic, unless proper controls such as treatment, screening, quarantine for MDR-TB

patients, etc., are in use.

In Figure 7.13, the I class remains endemic in the absence of treatment defaulters with

Rgs = 1.97, Rgr = 0.76 while the J class converges to disease free equilibrium. Both
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Figure 7.11: c = 0.00007893 and Rgs =

3.11, Rgr = 1.2.
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Figure 7.12: c = 0.00007893 and Rgs =

3.11, Rgr = 1.2.
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Figure 7.13: c = 0.00005, ι2 = 0 and Rgs =

1.97, Rgr = 0.76.
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Figure 7.14: c = 0.00007893, ι2 = 0.6 and

Rgs = 3.11, Rgr = 1.2.
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strains in Figure 7.14 remain endemic in the presence of treatment defaulters ι2 = 0.6.

7.7 Conclusion

Default on TB treatment is well documented, and defaulters comprise a significant pro-

portion of those on treatment. So for instance studies have observed a default rate of 7%

in the Free State province of RSA [37] and 14% in Karachi, Pakistan [20]. Statistics such

as these are the motivation for the study in this chapter. The consequences of defaulting

on TB treatment in a prison are just so much more serious (since those at risk are in

prison not of their own choice).
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We introduced a (new) multi-strain model that considers the dynamics of drug sensitive

TB and drug resistant TB in a crowded environment. The model allows for the inflow of

infectives not only into the susceptible class, but also into the exposed class and infectious

classes for drug sensitive TB, and into the latent class of drug-resistant TB sub-population.

The global stability of the disease free equilibrium has been proved by using a Lyapunov

function and Figure 7.2 confirmed the outcome of Theorem 7.4.1. We noticed that if there

is no default in treatment, then the J class converges faster to the disease free equilibrium

while the I class becomes endemic. MDR-TB is mostly controlled by treatment and

quarantine, as can be seen in Figures 7.8, 7.11 and 7.13 as the inflow of the infectives in

the J class were not considered. The model is very useful in making future projections

and for testing the effects of interventions. Future work in this regard could consider

optimal intervention strategies, especially for eradicating MDR-TB from prisons or other

crowded populations.
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Chapter 8

Optimal intervention strategies on

TB epidemiology in a dense

population

8.1 Abstract

Following up on the model system in Chapter 4, prison system in South Africa are well

controlled in terms of managing TB disease. This can be seen from the department of

correctional service annual report from the year 2015 to 2017 [80, 83] as the number

of infected inmates are reducing. International agencies recomends a minimum space

of 5.4 m2 of floor space per prisoner while South African prisons stipulated a minimum

allocation of 3.34 m2 floor area in a communal cell [31]. The Democratic Republic of

the Congo (DRC) assigned a floor space of 0.22 m2 per prisoner in a communal cell [35].

We now study model system (4.1) and consider a crowded environment where control

measures are mostly inactive or sometimes distracted. We use optimal control problem so

as to minimise infectious active TB individuals while the cost of treatment is minimized.

We further calibrate the model by using Democratic republic of the Congo prison data.

Finally, we present our results numerically.
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8.2 Introduction

In 2017, 2.5 million people fell ill with tuberculosis in the African region, accounting for a

quarter of new tuberculosis cases worldwide [78]. An estimated 417000 people died from

TB disease in the African region with 1.3 million deaths globally. Democratic Republic

of the Congo (DRC) situated in Central Africa has an estimated population of 86.79 mil-

lion people and a high burden country for tuberculosis, TB/HIV and multi-drug resistant

TB. World Health Organization reported an estimate 262000 new cases of TB in Congo

and 56500 TB related deaths that occurred in 2017 [79]. Overcrowding is still the main

factor that flourishes tuberculosis in prison system. The Makala Central prison which

was build to house a maximum of 1500 inmates has now detained over 8000 prisoners,

which has crossed worrisome to the inmates as the minimum size is 5.4 m2 per prisoner

internationally [31, 16, 95]. Overcrowding in prisons has caused serious threat to life and

health conditions of the prisoners such as malnutrition, lack of sunshine, inadequate ac-

cess to care, etc., worldwide. The department of human rights reported about inadequate

supplies of food, little access to water and poor ventilation which results in extreme heat.

Limited access to high quality TB diagnosis can cause poor TB screening, inaccuracy

of diagnosis. In 2014 X-pert MTB/RIF were introduced in Kasai Oriental Province for

the use in Mbuji-Mayi Central Prison. This has caused an improvement in the fight

against TB and MDR-TB, especially for the Mbuji-Mayi Central prison as they provided

results of active TB cases for the first time in the prisons records in Congo DRC [35]. By

the end of 2014 laboratory confirmed TB in 31 out of 57 sputum specimen from prisoners

with convincing symptoms of TB.

8.3 Model

In Chapter 4, a model that describes the dynamics of Tuberculosis in South African prisons

has been studied. We now continue in this Chapter by using the same model for crowded
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prison situations in the DRC. Our model is applicable in any crowded environment. We

add to the original model system (4.1) in Chapter 4 two control function, r3(t) and r4(t).

The control r3 represents a fraction of distinctive TB exposed individuals that is identified

and the treatment begins to be implemented so as to reduce individuals that maybe

infectious. The control r4 represents a fraction of distinctive TB Infectious individuals

that is identified and treated so as to reduce infectious individuals.

.

S = fSµA− c1SI − µS,

.

E = fEµA+ c1SI + c2TI − c3EI − (µ+ r3(t) + k)E,

.

I = fIµA+ kE − (µ+ r4(t) + d)I + c3EI,

.

T = r3(t)E + r4(t)I − c2TI − µT. (8.1)

Optimal control is a powerful tool in mathematics which can be used to assist in mak-

ing decisions in this current situation. In some countries economic situations, political

conflicts which creates displacement of people makes it difficult to implement TB control

measures. In such environments, especially due to economic situations the main notion

is to minimise the active infected individuals with the lowest cost possible. Our objective

function to be minimized is given by:

J(r3, r4) =

∫ T

0

[I(t) + g1(W1r
2
3(t) +W2r

2
4(t))]dt (8.2)

where we want to minimise the infectious active TB individuals while the cost of treatment

is kept minimised as well. The weight factors (positive constants) W1 and W2 represent a

patients level of acceptance of treatment. The constant g1 is the measure of the relative

cost of the intervention related to the controls r3 and r4. We pursue to find an optimal

control pair r∗3 and r∗4 such that

J(r∗3, r
∗
4) = min

Ω
J(r3, r4) (8.3)

where

Ω = {(r3, r4) ∈ L1(0, T )|0 ≤ ri ≤ 1, i = 3, 4}. (8.4)
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An optimal pair must satisfy necessary conditions that comes from Pontryagin’s Princi-

ple. The principle takes (8.1), (8.2) and (8.3) into a problem of minimizing pointwise a

Hamiltonian H which is given by:

H = H(S(t), E(t), I(t), T (t), λ(t), r3(t), r4(t))

= I(t) + g1(W1r
2
3(t) +W2r

2
4) + λ1(fSµA− c1SI − µS)

+λ2(fEµA+ c1SI + c2TI − c3EI − (µ+ r3(t) + k)E)

+λ3(fIµA+ kE − (µ+ r4(t) + d)I + c3EI)

+λ4(r3(t)E + r4(t)I − c2TI − µT ), (8.5)

where λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)) is the adjoint vector. According to the Pon-

tryagin’s Maximum Principle defined in the mathematical tools, if (r∗3, r
∗
4) ∈ Ω is

optimal for the problem in (8.1), (8.3) with initial S(0), E(0), I(0), T (0) and fixed fi-

nal time T , then there exist a non-trivial absolutely continuous mapping λ : [0, T ] →

R5, λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)), such that

.

S=
∂H

∂λ1
,

.

E=
∂H

∂λ2
,

.

I=
∂H

∂λ3
,

.

T=
∂H

∂λ4

and

.

λ1= −∂H
∂S

,
.

λ2= −∂H
∂E

,
.

λ3= −∂H
∂I

,
.

λ4= −∂H
∂T

.

The minimization condition

H(S∗(t), E∗(t), I∗(t), T ∗(t), λ∗(t), r∗5(t), r
∗
6(t))

= min
0≤r5,r6≤1

H(S∗(t), E∗(t), I∗(t), T ∗(t), λ∗(t), r3(t), r4(t)) (8.6)

holds almost everywhere on 0, T . Furthermore, the transversality conditions λi(T ) =

0, i = 1, 2, ..., 5 hold.

Theorem 8.1. There exists an optimal control pair r∗3, r
∗
4 and corresponding, S∗, E∗, I∗, and T ∗,

that minimizes J(u1, u2) over Ω.Moreover, there exists adjoint functions (λ∗1(t), λ
∗
2(t), λ

∗
3(t), λ

∗
4(t)),
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such that

.

λ1 = λ1(c1I + µ)− λ2c1I
.

λ2 = λ2[c3I + (µ+ r3(t) + k)]− λ3(k + c3I)− λ4r3(t)
.

λ3 = λ1c1S − 1− λ2(c1S + c2T − c3E) + λ3(µ+ r4(t) + d− c3E)

−λ4(r4(t)− c2T )
.

λ4 = −λ2c2I + λ4(c2I + µ)

(8.7)

with transversality conditions

λi(T ) = 0, i = 1, ..., 4 (8.8)

and

N = S∗ + E∗ + I∗ + T ∗

The following characterization holds

r∗3(t) = min
{
max

{
0 ,

(λ∗2 − λ∗4)E
∗

2g1W1

}
, 1

}
(8.9)

and

r∗4(t) = min
{
max

{
0 ,

(λ∗3 − λ∗4)I
∗

2g1W1

}
, 1

}
(8.10)

Proof. We now apply the Pontryagin Maximum Principle and get

dλ1
dt

= −∂H
∂S

, λ1(T ) = 0,
dλ2
dt

= −∂H
∂E

, λ2(T ) = 0,

(8.11)

dλ3
dt

= −∂H
∂I

, λ3(T ) = 0,
dλ4
dt

= −∂H
∂T

, λ4(T ) = 0,
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evaluated at the optimal control pair and corresponding states, which results in the stated

adjoint system (8.7) and (8.8).

Furthermore, we now consider the optimality conditions,

∂H

∂r3
= 0,

∂H

∂r4
= 0 (8.12)

and solve for r∗3, r
∗
4, subject to the constraints, the characterization (8.9) and (8.10) can

be derived.

The characterization of r∗3 can be shown as follows:

∂H

∂r3
= 2g1W1r3 + (λ4 − λ2)E = 0 (8.13)

at r∗3 on the set {t|0 < r∗3(t) < 0}

From the set r∗3 can be obtained as follows:

r∗3(t) =
(λ∗2 − λ∗4)E

∗

2g1W1

.

Therefore, taking into account the bounds on r∗3 leads us to obtain the characterization

of r∗3 in (8.9) and (8.10). �

8.4 Numerical values

The total prison population of the Democratic Republic of the Congo including the remand

population is given by

A = 20550,

with 5550 sentenced inmates and 15000 remand inmates in 120 institutions [96].
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8.4.1 Numerical Value for disease induced death rate

In order for us to compute the disease induced death rate in Congo DRC prison system.

Let µTB be denoted by the rate of deaths due to TB as in Chapter 4. In [97, 99], 103

deaths due to lack of appropriate care out of 223 were reported during visits to holding

cells and prisons in Congo DRC. The article does not specify the number of deaths due

to TB, it only reports that TB aggravated the already overcrowded prison system leading

to 20% increase in deaths in the previous year. More than 95% of deaths are caused by

TB in low and middle income countries [34]. In Africa, TB flourishes especially in prison

systems and Congo DRC is one of the countries most affected as the annual incidence

reached 325 cases per 100000 population with 116894 new TB cases [34]. Therefore, our

calculation will be as follows:

µTB =
98

223
µm = 0.16422,

where µm = 0.003628 as in Chapter 4. Hence,

d = µTB(1− µ) = 0.13434,

where µ = 0.18192 year−1 as in Chapter 4.

8.4.2 Initial conditions for simulation

We now calculate the initial condition so as to predict the future conditions our our model

system (8.1). In Kayomo et al. [35], it was reported that among 918 inmates in the prison

population 29 TB cases were already taking treatment. An additional of 475 were likely

TB case patients and TB infection was confirmed positive in 170 of the inmates. This

will lead us to estimate the infection TB inmates in this way

I = 0.19 A = 3905.

It also follows that the number of inmates who are under treatment in prison population

is estimated as

T = 0.032 A = 658.

124

http://etd.uwc.ac.za/ 



According to World Health Organization, Congo DRC shares 80% of the worldwide TB

burden [3]. Thus

S = 4110 and E = 11877.

8.4.3 Parameters of ci

Using data acquired in [98, 79] to calculate the effective contact rate for TB in Congo

DRC (the entire population) as in Chapter 4 denoted by c4

c4 =
(84− 64) million

62 × 262000 × 64 million
= 3.9534×10−7 year−1.

As in Chapter 4 we now calculate c1, c2 and c3 in this way

c1 = c0 × P1

A
= 0.001616 year−1, c3 =

k

2A
, c2 = 2(10/A),

where P1 is the 2018 population size of Congo DRC. The rest of the parameters will be

adopted from Chapter 4 and are presented in Table 8.1 and 8.2.

8.5 Simulations

We first study our model without the inflow of infectives so as to examine for possible

eradication of the disease. Figure 8.1 reveals that the prison system is unable to eradicate

the disease due to high contact rate which is c1 = 0.0008 and leads to R∗ = 1.89. In Figure

8.1, we notice that when c1 = 0.0004 leads to R∗ = 0.947. We also notice that when it is

6.5 years the number of Exposed and susceptible individuals becomes equal and leading

to a higher increase in number of susceptible inmates. Following up on Chapter 4 in

Figure 4.2, we notice that there is a faster convergence in the exposed class as compared

to Figure 8.2.

We now analyze model system (8.1) by using the parameter values in Table 8.1 and vary

the parameter value of c = 0.0003. We notice that in Figure 8.4, the numerical results
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Table 8.1: Model parameters and initial conditions

Parameter Numerical value Source

µ 0.18192 [33], [86]

d 0.13434 [97, 99, 34], [86]

r1 0.30 [14]

r2 0.50 [14]

k 0.05 [90], [14]

A 20550 [96]

St15 4110 [35]

Et15 11877 [35]

It15 3905 [35]

Tt15 658 [35]

Table 8.2: Inflow and contact rates

Parameter Numerical value Source

c1 0.001616 [98, 79]

c2 20/A [24]

c3 k/(2A) Estimated

fS, fE, fI 0.2, 0.74, 0.06, respectively [86]
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shows the number susceptible individuals decreasing due the absence of control and this

leads to higher number of infected individuals. Figure 8.5, represents the population of

infected individuals with out optimal control treatment and it is noticed that the popu-

lation is sharply increasing which means that the disease will persist and the population

will become endemic.

Figure 8.1: Prison population in different

classes without the inflow of infectives and

R∗ = 1.89.
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Figure 8.2: Prison population in different

classes without the inflow of infectives and

R∗ = 0.947.
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The infectious classes of Figures 8.1 and 8.2 are presented in Figure 8.3 and a faster

convergence over a period of 60 years is seen when R∗ = 0.947.

In Figure 8.6, it is noticed that the infected individuals converges to a disease free equilib-

rium due to the optimal control treatment. This means that the disease will not persist

in the Congo DRC prison population. The treated population in Figure 8.7 decreases due

the absence of optimal control treatment. Therefore, the population will not experience

any endemicity.

We also notice in Figure 8.8 that in the absence of optimal control treatment, the prison

system of Congo DRC becomes endemic when c1 = 0.001616 from Table 8.2 this is also due

to the inflow of the infectives. By reducing the contact rate to c1 = 0.0000001 in Figure

8.9, the susceptible individuals increases drastically even if there is inflow of infectives

and this will lead to a decrease in the infectious class.
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Figure 8.3: Infective class without the inflow of

infectives for two cases R∗ = 1.89, R∗ = 0.947.

Figure 8.4: Susceptible population without

control.
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Figure 8.5: Exposed population without con-

trol.
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8.6 Conclusion

In this Chapter, we applied optimal control theory by considering its applicability to

real life situations such as crowded environment for instance. We considered a prison

population in Congo DRC where control programs are not always adhered. The parameter

values that align with Congo DRC prisons have been calculated and further simulated in

the above Figures. Numerical results indicate in the absence of control strategies the is

population experiencing edemicity while in the presence of control eradication of disease

is noticed. The greatness of intervention can be peaceful along the time, in other models

this is not the case. Control programs that follow these strategies can effectively reduce

128

http://etd.uwc.ac.za/ 



Figure 8.6: Infectious population with con-

trol.
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Figure 8.7: Treated population with con-

trol.
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Figure 8.8: Infectious population with con-

trol.
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Figure 8.9: Susceptible population with con-

trol.
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the number of infectious TB cases as seen in Figure 8.6. while minimizing treatment cost.
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Chapter 9

Conclusion

The main objective of this thesis was to develop a model that can be applied in a crowded

environment. We chose a prison system as one of the crowded environment in South

Africa. We noticed that a prison population has its own population within the general

population. A disease models in a general population the removal rate is calculated as

the inverse of the life expectancy. The life expectancy has decreased from 67 years in

the year 2015 to 63 years in 2019 and this is due to infectious diseases and chronic dis-

eases [89, 84, 68]. Therefore, the mortality rate of a general population fluctuate over time.

The model in Chapter 4 has been taken from a paper of Buonomo and in this Lacitignola

[14] and Ssematimba et al. [57], these two papers considered tuberculosis in a crowded

environment. This model was adjusted to apply to prison systems and the compartmental

model allowed for inflow of infectives into classes other than just the susceptible class. We

noticed that the removal rate in a prison system is not the same as in general population

is by death only. Removal rate is by being released from prison and by death, these

parameters were calibrated accordingly. It was observed that if at a specific prison site

or system there is no inflow of infected individuals, then the disease will vanish from the

prison provided that the numerical value of the invariant R∗ is below unity. For the case

of the South African prison system, most of the crucial parameters of the model were

calculated using data from public domain prison data. Other parameters, including ini-
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tial conditions for computations, were obtained from data in various published literature,

together with interpolation methods.

In chapter 5, we introduced stochastic perturbation into the model in chapter 4 and further

apply it into a prison system. We proved that there is a unique global positive solution

for the system of stochastic differential equation in (5.1). It was noted that whenever

the basic reproduction number is significantly greater than unity then the disease will

persist in the prison population through our simulations in Chapter 5. It has also been

observed for a stochastic model that when the perturbation is sufficiently big then the

disease tends to vanish and this can be seen in Figure 4.2. It is more important to study

smaller perturbation. It has been observed that whenever Rσ < 1, then I and E almost

surely converge exponentially to zero in step with Theorem 4.2.2.(a), in the absence of

the inflow of infective.

A two-group model that considers the sentenced and remand population has been studied

in Chapter 6. This has assisted us in monitoring the dynamics of TB disease between

the two sub-populations. The model also allows the inflow of infectives into the inflow

of susceptible, exposed and infected individuals will appear into the susceptible class, ex-

posed class and the infected class. Hence, we assume that there is no inflows of infectives

into the treatment class for both sub-population groups, they are unfit to commit crime

as they are under treatment. The threshold parameter have been analysed by using the

next generation matrix. We also prove the behaviour of global stability of the disease free

equilibrium by using the Lyapunov function.

A two strain model that considers the dynamics of drug sensitive TB and drug resistant

TB in a crowded environment has been proposed in Chapter 5. The model allowed the

inflow of infectives into the susceptible class, exposed class, infectious class of drug sen-

sitive respectively, and into the latent class of drug resistant class. The global stability

of the disease free equilibrium by using the Lyapunov function has been proved and the
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outcome Theorem 7.4.1 has been confirmed through simulations. The model is very useful

in making future projections. We noticed that if there is no default in treatment, the J

class converges faster to the disease free equilibrium while the I class becomes endemic.

MDR-TB is mostly controlled by treatment and quarantine, as the inflow of the infectives

in the J class were not proposed.

Following up from Chapter 4, we used model 4.1 in the Congo DRC prison where control

measures are not always implemented. Optimal control theory is a powerful mathemat-

ical tool that can be used to reduce active infectious individuals while controlling the

cost of the treatment. We notice in Chapter 8 that by implementing the optimal control

treatment the disease can be eradicated.

By introducing the inflow of infectives cases into the prison system, TB remains endemic,

as can be seen in the above Chapters. By screening the inflow on admission and provid-

ing for them a separate accommodation, TB infection in a prison system can be greatly

reduced. South Africa prison are using these control and we have seen the results from

the annual report for correctional services. The fight against the spread of TB diseases in

DCS facilities has improved significantly. In 2014, the number of inmates who were cured

were 4675 out of 6233 and in the year of 2018, 636 out of 728 inmates were successfully

treated [80, 83].

Inmates have the right to receive health care, including preventive measures, equivalent

to the care available in South African communities. Inmates with pulmonary TB must

be admitted in the health facility and isolated for two weeks and hospitalisation must be

considered for severe extra pulmonary disease.
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