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ABSTRACT 

The invasion by Striga in most cereal crop fields in Africa has posed an acute threat to food security 

and socioeconomic integrity. Consequently, numerous technological and research developments 

have been made to minimize and even control the Striga impacts on crop production. So far, efforts 

to control Striga have primarily focused on the manipulation of the genetics of the host crops, as 

well as understanding the phenological and physiological traits, along with the chemical 

composition of the weed. These initiatives have immensely contributed to the management of 

Striga across the continents. However, on-farm Striga control technologies require spatial explicit 

locational information on farms experiencing Striga occurrence and potential risk. This 

information affords precise and accurate intervention mechanisms and allows for the prescription 

of site-specific and befitting control approaches. Unfortunately, the requisite baseline information 

on Striga occurrence, spatial configuration, infestation extent, and intensity remain rudimentary in 

sub-Saharan Africa. This study, therefore, aimed to examine Striga occurrence and the potential 

farming areas at risk within different agroecological regions and varying climatic scenarios in 

Kenya and Zimbabwe. To achieve this aim, the relatively new generation remotely sensed data 

coupled with biophysical variables, Striga occurrence, and cropping systems data were used. 

Specifically, the study sought to establish operational spatial methodologies that can help 

understand and empirically determine the prospective risk posed by two of the most economically 

detrimental Striga species in Africa (i.e. Striga hermonthica and S. asiatica) in agroecological 

farming systems. In addition, the likely impacts of climate change on Striga distribution and future 

spread by integrating climatic and cropland data were also examined. Further, different machine 

learning algorithms were used for data analysis at different mapping scales. Results from this study 

demonstrated that Striga's occurrence within agroecological systems can be characterized at 

reasonable accuracy, using relatively new generation sensor datasets across various scales of 

monitoring i.e. plot, field, and landscape. Comparatively, in-situ hyperspectral measurements and 

Sentinel-2 satellite data coupled with machine learning and subpixel classification approaches 

surpassed the traditional broadband sensor data in the detection and understanding of the spatial 

dispersion of the two Striga weed species across different agroecological farming systems. Further, 

the Striga flowering period was established as the most optimal period for its detection and 

monitoring. It was also observed that as the climatic conditions continue to change i.e. the 
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atmospheric CO2 and the temperature increase, the suitable area for Striga propagation will also 

increase, making more farming areas to be susceptible to a higher risk of invasion. In particular, 

the use of the projected climate change scenarios showed that by the year 2050, the Striga suitable 

area propagation will increase and spread into new areas by approximately 0.73%. Also, it was 

established that the ecological niche and habitat suitability assessments using multi-source 

remotely sensed data are fundamental in characterizing and monitoring S. asiatica occurrence and 

risk areas. Therefore, immediate mitigation and adaptive actions such as awareness and advocacy 

for the adoption of Striga control methods in the current and the future risk areas is critical to 

contain and manage the spread and intensity of Striga under changing climatic conditions. Overall, 

the findings of this study underscore the relevance of using multi-source data and machine learning 

algorithms for Striga weed detection and monitoring across different agroecological farming 

systems.   

 

Keywords: climate variability; food security; integrated modeling; invasive weeds; mapping 

scale; precision agriculture; remote sensing  
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PREFACE 

The present study was undertaken to determine and assess Striga weed (i.e. Striga hermonthica 

and S. asiatica) occurrence and potential risk imposed on the agroecological farming systems. 

Further, the study investigated the likely impacts that climate change will have on Striga 

distribution and future spread by integrating spatial explicit data with climatic data. The approach 

used in this study was a succession of independent but related research papers that form different 

chapters of the thesis. The thesis comprises six chapters in total, with four chapters conceptualized 

as stand-alone research articles that address each of the objectives listed in section 1.5. 

Four articles making up chapters 2 to 5 have already been published as research articles or as a 

conference paper i.e. chapter 2 (International Journal of Applied Earth Observation and 

Geoinformation); chapter 3 (ISPRS - International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences); chapter 4 (Science of the Total Environment) and 

chapter 5 (GIScience and Remote sensing). Each chapter can be read independently from the rest 

of the thesis but draws conclusions linked and relevant to the work as a whole. Although the 

document generally conforms to the University of the Western Cape style, some degree of 

repetition has been inevitable, given the shared thread of the papers. 

 Chapter 1 is the general introduction and contextualization of the study. 

 Chapter 2 examines the potential use of in-situ hyperspectral data at plot-scale in 

detecting S. hermonthica under field conditions. The hyperspectral data were also 

resampled to the Sentinel-2 band configurations to test the applicability of the 

multispectral Sentinel-2 sensor data in detecting and characterizing Striga. 

 Chapter 3 follows up the work demonstrated in chapter 2 by upscaling the mapping 

scale to field level by comparing and evaluating the strength of using a single image of 

the Sentinel-2 multispectral sensor (10 m pixel size) and PlanetScope nanosatellite (3 

m pixel size) to characterize S. hermonthica.  

 Chapter 4, determines if using subpixel analysis i.e. multiple endmember spectral 

mixture analysis (MESMA) in an exclusive cropland class within a Sentinel-2 satellite 
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image, improves the detection and estimation of the level of infestation of S. 

hermonthica at both field and landscape scales. The chapter also tests the utility of the 

Google Earth Engine (GEE) in cropland mapping using Sentinel-2 derived bands, red-

edge bands in integration with their respective vegetation indices and red-edge derived 

indices. 

 Chapter 5 tests a wider landscape-scale i.e. country-level mapping of the S. asiatica 

using an integrated machine learning and ecological niche modeling approach using 

multi-source remotely sensed data (i.e. cropping system, edaphic, land surface 

temperature, and terrain) under current and future climate scenarios. 

 Chapter 6 provides a synthesis of the research work. 
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1.1 Agriculture in the African context 

Most African households live in rural areas (~ 645 million people) and depend on agricultural 

produce for their food and source of income (Worldbank, 2018). Cereal crops mainly sorghum, 

wheat, millet, rice, and primarily maize constitute some of the most important staple food crops 

on the African continent that secure nutrients need to about 1.2 billion people (~ 13% of the global 

population)  (Prăvălie et al., 2019). Of particular concern is the cereal crop productivity, which has 

been on the decline, increasing the undernourished population from 44 million to reach 218 million 

in the last decade in sub-Saharan Africa (OECD/FAO, 2016). Hunger is thus, on the rise in almost 

all African countries, making it one of the regions with the highest prevalence of 

undernourishment, at almost 20%, underscoring the immense challenge of achieving the Zero 

Hunger target by 2030 (FAO, IFAD, UNICEF, WFP, WHO, 2019). Several agroecological 

farming systems aimed at improving food production have been adopted and used extensively in 

Africa such as organic farming, diversified crop rotations, biological pest control, extensive agro-

pastoral systems, and agroforestry, among others, with limited success (FAO, IFAD, UNICEF, 

WFP, WHO, 2018). This is greatly attributed to the diverse climatic conditions experienced in 

Africa, which are largely defined by the variations in rainfall patterns, altitude, temperatures, soil 

characteristics, emerging crop pests, and diseases that impede crop production and adaptability 

across different agroecological systems (FAO, IFAD, UNICEF, WFP, WHO, 2017). It is therefore 

prudent to identify tailor-made and across-the-board techniques that can increase crop production 

in sub-Saharan Africa and help to advance economic growth, combat poverty, and halt 

environmental degradation despite the various crop production and socioeconomic restraints 

(Khan et al., 2014).  

1.2 Cereal crop production restraints in sub-Saharan Africa  

Recent agricultural statistics point towards a steady improvement in total cereal production in sub-

Saharan Africa, since 2005 (AGRA, 2017). However, the study conducted by FAO in the year 

2019 shows that between the years 2017 and 2019, sub-Saharan Africa experienced approximately 

5.3% decline in total cereal production, while Kenya and Zimbabwe went down by 20.4% and 

52.7%, respectively. These changes have been attributed to climate change and variability induced 

droughts, emerging invasive pests, and diseases such as stem borers, fall armyworm, maize lethal 

necrosis, and invasive weeds like Striga (FAO, IFAD, UNICEF, WFP, WHO, 2018; Khan et al., 
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2014). While the impacts of climate change and variability on food production are manifest across 

the various continents, they are irregularly distributed geographically and the magnitude of the 

impacts varies from place to place (Nhamo et al., 2019). So far, research conducted on the impacts 

of drought, climate change, and variability on the agricultural sector showed a general decline in 

crop productivity (Abegunde et al., 2019; Moore et al., 2017; Nhamo et al., 2019; Sultan et al., 

2019).  However, to this point, very few studies have widely considered these inherent variations 

that are largely influenced by weed occurrence and spread, in particular, the most economically 

important Striga weed species.  

Striga weeds, which are obligate parasites that attach themselves to the roots of the cereal crops, 

after germination, out-compete their hosts for space, nutrients, water, and cause devastation in the 

agroecological farming systems, together with insects, birds, and plant diseases (Atera et al., 2013; 

Scholes and Press, 2008). The genus Striga (Orobanchaceae) is composed of more than 20 species 

of parasitic weeds of global economic importance, causing yearly socioeconomic losses of over 

US$ 1 billion in Africa (Ejeta and Gressel, 2007; Spallek et al., 2013). In some areas in Africa, the 

scourge of Striga has reached epidemic magnitudes, affecting mainly poor small-scale farmers 

who comprise ~ 80% of all the farmers in sub-Saharan Africa (Makurira, 2010).  

Specifically, Striga hermonthica and S. asiatica are the most prevalent among the Striga species 

predating on all the major and most economically important cereal crops (Khan et al., 2014).  

Approximately, 80% of all Striga species are endemic to Africa (Rodenburg et al., 2010). In total, 

about 50 African countries are reported to have at least one species of Striga, with S. hermonthica 

being found in at least 32 countries and S. asiatica occurring in at least 44 of the 50 countries 

(Rodenburg et al., 2016). Consequently, these two species successfully thrive in climatic 

conditions, which are also favorable to most of the economically important cereal crops, prompting 

the need to understand their distribution, infestation, severity, and more importantly possible areas 

at risk (Ejeta and Gressel, 2007). To reverse these trends, there is a need for targeted investments 

in research that warrant support to small-holder farmers in Africa to battle the scourge of Striga 

with the necessary capacity, effective, sustainable, and affordable solutions. 

1.3 Striga detection and control mechanisms 

Several methods to control crop losses caused by Striga have been developed with partial or limited 
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success (Oswald, 2005). The majority of such methods mainly targeted manipulating the physical, 

biological, genetic, chemical, ecological, and phenological characteristics of the weed (Badu-

Apraku et al., 2015; Ejeta & Butler, 1993). The most commonly used control strategies include 

practices such as fuming ethylene to initiate ‘suicide germination’ (Samejima et al., 2016), hand 

weeding, crop rotations (Oswald & Ransom, 2001). Planting Striga resistant cultivars (Ransom et 

al., 2012), trap cropping, improving soil fertility and the use of Desmodium species and Napier 

grass in the ‘push-pull technology’ has also been widely adopted (Khan et al., 2008). For the ‘push-

pull’ strategy, specifically chosen companion plants are grown in between and around the main 

crop e.g. maize. These companion plants (Desmodium species and Napier grass) release semio-

chemicals that (i) repel insect pests from the main crop, using an intercrop which is the ‘push’ 

component; and (ii) attract insect pests away from the main crop using a trap crop, which is the 

‘pull’ component (Khan et al., 2008).  However, most of these efforts and methods have been 

hindered by socioeconomic or environmental mismatches and improper prioritization of 

intervention areas.  

Striga infestation is irregular in both space and time, making field assessments and surveys 

inadequate to systematically and explicitly understand the impacts caused by the weed at a 

landscape or regional scale.  Spatial explicit information on inter- and intra-field variability of 

Striga weeds within the agroecological systems is imperative in developing site-specific adaptive 

management, precise resource allocation, labor efficiency for Striga control, and drafting of 

management decisions (Houborg and McCabe, 2018a).  There is, therefore, a need to develop 

innovative spatial explicit methodologies that complement the established methodological 

advancements in Striga control mechanisms and its impact on crop production.  

Remote sensing provides an invaluable toolset and operational framework for timely monitoring 

and modeling of crop weeds occurrence and spread (Phalke and Özdoğan, 2018). Thus, it presents 

unique opportunities that could aid in precision intervention and determining areas to further 

advance meaningful and localized Striga control interventions. The recent technological 

advancements in sensor design and sensing characteristics, as well as the recent trends in remote 

sensing and data analytics, provide new avenues and opportunities for continuous and near-real-

time assessment of crop health, crop phenological development, and weed predictions in the face 

of climate change and variability (Mutanga et al., 2017). This is necessitated by relatively new 
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sensors that provide data at near-real-time temporal resolutions, with high-to-medium spatial 

resolutions and with new and strategically positioned bands (Shoko and Mutanga, 2017). This, 

therefore, permits for the plot-, farm- or landscape-scale detection and assessment of crop weeds 

such as Striga (Mandanici and Bitelli, 2016; Shoko and Mutanga, 2017). 

1.4 Climate change impacts, Striga adaptation, and mitigation capacity 

The risk inflicted by the Striga weed is likely to be worsened by climate change and the inadequate 

adaptive or mitigation capacity across Africa, in addition to the limited impact documentation 

leading to inadequate preparedness (Nhamo et al., 2019; Niang et al., 2014). The impacts of climate 

change on the agricultural sector and the spread of Striga weeds in sub-Saharan Africa can be 

catastrophic. This is because agriculture provides approximately 17% of regional gross domestic 

product (GDP) and contributes 13% of the total export value (AGRA, 2017).  Additionally, about 

60% of the region’s population depends on agriculture for their livelihood (FAO, IFAD, UNICEF, 

WFP, WHO, 2019). Therefore, understanding the climate change dynamics and their impacts on 

this climate-sensitive sector is critical for the sustenance of the region’s livelihoods.  

Thus, identifying cost-effective tools that can help to monitor and control these invasive Striga 

weeds before they spread to new environments is imperative. Spatial characterization of Striga 

weeds, using remote sensing and geospatial methods at multiple mapping scales is likely to 

enhance localized early warning systems, national preparedness, development of informed and 

scientifically sound policies, and adaptive management strategies. This, in turn, will enhance 

strides toward reducing the impact and spread of Striga, thus, ultimately achieving food security 

in Africa on a long-lasting and sustainable basis. 

1.5 Aim and objectives  

To determine and assess Striga weed (i.e. S. hermonthica and S. asiatica) occurrence and potential 

farming areas at risk of invasion across different agroecological farming systems and varying 

climatic scenarios in Kenya and Zimbabwe.  

1.5.1 Specific Objectives 

The specific objectives of this study were to:  
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1. Assess the potential of in-situ spectroscopy in detecting Striga weed at plot level 

using various machine learning algorithms, 

2. Compare the potential of PlanetScope and Sentinel-2 spaceborne sensors in 

detecting and characterizing Striga weed at the field level,  

3.  Evaluate field- and landscape-scales Striga detection using Sentinel-2 data coupled 

with hierarchical cropland classification and a subpixel technique, and 

4. Evaluate the utility of multi-source data, and integrative ecological niche modeling 

approach to detect Striga weed at a landscape scale and under different climatic 

scenarios. 

1.6 Scope of the study 

This study examined multiple-scale, multi-resolution data coupled with robust, cross-cutting, and 

efficient remote sensing techniques and machine learning modeling routines to detect, predict, and 

monitor Striga weed infestation in cereal crop fields. The study targets to detect and predict key 

Striga infestation and susceptible areas in Kenya and Zimbabwe for the most economically 

important Striga species S. hermonthica and S. asiatica, respectively using in-situ spectroscopic 

measurements and satellite-based imagery. This study demonstrated the potential of using the 

handheld spectral device to detect Striga infestation; and the utility of satellite-based data, at both 

ground and satellite levels using advanced machine learning algorithms.  These algorithms were 

further used to compare the efficacy of a high spatial resolution image (PlanetScope) to a medium 

resolution image (Sentinel-2) as proxies for Striga determination and mapping at a landscape scale. 

The study further demonstrated a two-step classification method using Sentinel-2 multi-temporal 

data in Google Earth Engine (GEE) to characterize croplands in conjunction with the multiple 

endmember spectral mixture analysis (MESMA) algorithm at field and landscape levels. The study 

further highlighted the potential and strength of ecological niche and machine learning models in 

integrating ancillary data from multiple sources such as bioclimatic, cropping system, edaphic and 

phenological characteristics in predicting and characterizing the potential risk invasion of S. 

asiatica within heterogenous maize fields at a landscape scale under different climate scenarios. 

Accordingly, all the mapping approaches were designed to enable the inter-annual and inter-region 

transfer of classification methods across all countries in sub-Saharan Africa. 
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1.7 Study area 

The study was conducted in two separate countries (Kenya and Zimbabwe) known to be hubs of 

the two most economically important Striga species i.e. S. hermonthica and S. asiatica. These two 

species significantly vary in their morphological structure, hence demanded different remote 

sensing approaches, mapping scale, and study sites where they occur in abundance viz. Kenya for 

the S. hermonthica and S. asiatica in Zimbabwe. The investigations for the occurrence, 

distribution, and detection of the S. hermonthica were conducted in Rongo sub-county in Kenya 

while the study to understand the potential S. asiatica modeling and mapping approach at 

landscape scale was conducted in Zimbabwe. Rongo sub-county covers an area of 213 km2 and 

lies within the Migori county in western Kenya, while Zimbabwe is a landlocked country in 

southern Africa covering a land area of ~ 390 753 km2 (Figure 1.1). A detailed description of each 

of the study sites relative to the specific chapter objective is given in each chapter. 

 
Figure 1.1: a) Location of (b) Kenya and (c) Zimbabwe in Africa. The background image is a December 2018 and 

250 m moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI).
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Chapter 2  
 

Plot-scale Striga infestation detection using in-situ hyperspectral data 
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Abstract 

The invasion by Striga in most cereal crop fields in Africa has posed a significant threat to 

food security and has caused substantial socioeconomic losses. Hyperspectral remote sensing 

is an effective means to discriminate plant species, providing possibilities to track such weed 

invasions and improve precision agriculture. However, essential baseline information using 

remotely sensed data is missing, specifically for the Striga weed in Africa. In this chapter, 

the spectral uniqueness of Striga compared to other co-occurring maize crops and weeds was 

investigated. In-situ FieldSpec® Handheld 2™ analytical spectral device (ASD), 

hyperspectral data and their respective narrow-waveband indices in the visible and near-

infrared (VNIR) region of the electromagnetic spectrum (EMS) and four machine learning 

discriminant algorithms (i.e. random forest: RF, linear discriminant analysis: LDA, gradient 

boosting: GB and support vector machines: SVM) were used to discriminate among different 

levels of Striga (Striga hermonthica) infestations in maize fields in western Kenya. The 

Sentinel-2 waveband configurations were examined in their ability to map and discriminate 

Striga infestation in heterogeneous cereal crop fields. The in-situ hyperspectral reflectance 

data were resampled to the spectral waveband configurations of Sentinel-2 using published 

spectral response functions. Seven Striga infestation classes were sampled and detected 

based on three flowering Striga classes (low, moderate, and high) against two background 

endmembers (soil and a mixture of maize and other co-occurring weeds). A guided 

regularized random forest (GRRF) algorithm was used to select the most relevant 

hyperspectral wavebands and vegetation indices (VIs) as well as for the resampled Sentinel-

2 multispectral wavebands for Striga infestation discrimination. The performance of the four 

discriminant algorithms was compared using classification accuracy assessment metrics. 

Striga from the two background endmembers i.e. soil and co-occurring vegetation (maize 

and co-occurring weeds) based on the few GRRF selected hyperspectral vegetation indices 

and the GRRF selected resampled Sentinel-2 multispectral bands was positively 

discriminated. RF outperformed all the other discriminant methods and produced the highest 

overall accuracy of 91% and 85%, using the hyperspectral and resampled Sentinel-2 

multispectral wavebands, respectively, across the four different discriminant models tested 

in this chapter. The class with the highest detection accuracy across all the four discriminant 

algorithms was the “exclusively maize and other co-occurring weeds” (>70%). The GRRF 

reduced the dimensionality of the hyperspectral data and selected only 9 most relevant 

wavebands out of 750 wavebands, 6 VIs out of 15, and 6 out of 10 resampled Sentinel-2 
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multispectral wavebands for discriminating among the Striga and co-occurring classes. 

Resampled Sentinel-2 multispectral wavebands 3 (green) and 4 (red) were the most crucial 

for Striga detection. The use of the most relevant hyperspectral features (i.e. wavebands and 

VIs) significantly (p ≤ 0.05) increased the overall classification accuracy and Kappa scores 

(±5% and ±0.2, respectively) in all the machine learning discriminant models. The results 

show the potential of hyperspectral, resampled Sentinel-2 multispectral datasets, and 

machine learning discriminant algorithms as a tool to accurately discern Striga in 

heterogeneous maize agroecological systems. 

 

Keywords: invasive weeds; detection; maize; in-situ hyperspectral data; machine learning; 

resampled Sentinel-2. 
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2.1 Introduction 

In Africa, food and nutrition insecurity due to crop losses is a chronic problem caused by insect 

pests, diseases, weeds, poor agronomic, and soil management practices (Sasson, 2012). This food 

insecurity is likely to be worsened by frequent unfavorable climatic conditions like droughts, 

climate change, and variability, among others (Rakotoarisoa et al., 2012). The most important 

staple crops on the African continent that secure food and nutrient to about 1.2 billion people are 

maize, sorghum, wheat, millet, and rice (Prăvălie et al., 2019). Among these economically 

important crops, maize plays a major role in the livelihood of people in sub-Saharan Africa. 

However, the productivity of maize has been on the decline in the last decade in sub-Saharan 

Africa, mainly due to the emerging of invasive pests and diseases such as stem borers, fall 

armyworm, maize lethal necrosis, and invasive weeds like Striga (FAO, IFAD, UNICEF, WFP, 

WHO, 2018).  

Striga commonly referred to as the “witchweed” is considered to be the most economically 

important parasitic weed globally (Unachukwu et al., 2017). This parasitic weed attaches to the 

roots of the host plants after germination and causes considerable photosynthetic and productivity 

interference (Khan et al., 2002). Of the 23 Striga species predominant in Africa, Striga 

hermonthica is the most destructive, affecting a wide range of crops including maize, sorghum, 

millet, rice, and sugarcane (Ejeta and Gressel, 2007). Striga can reduce cereal production as much 

as 20–100% to more than 40 million households every year across Africa (Atera et al., 2013; 

Scholes and Press, 2008). Although these socioeconomic losses are difficult to quantify, it is 

estimated that in Africa alone, over US$ 1 billion is lost every year due to Striga infestation (De 

Groote, 2007; Spallek et al., 2013). Smallholder farmers are the most affected since they cannot 

afford the expensive Striga control mechanisms currently available on the market. These farmers 

often resort to inefficient hand weeding aimed at reducing the Striga seed bank within the soil, 

which is unsustainable. This problem is aggravated by the viability of Striga seeds in the soil for 

up to 20 years and their complex potential to spread via both mechanical and cultural processes 

(Khan et al., 2002).  

Due to the destructive nature of Striga, numerous technological and research developments have 

been made to help control or minimize Striga's impacts on crop production. So far, efforts to 

control Striga have focused on the manipulation of genetics, chemical ecology, and phenology of 
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the weed (Midega et al., 2017; Oswald, 2005; Rispail et al., 2007; Samejima et al., 2016). 

However, on-farm Striga control technologies require spatiotemporal information on the weed to 

precisely prioritize sites for intervention and applications of such technologies. Usually, ground-

based surveys and inspection methods are used to detect Striga-infested farms. This approach is 

often expensive, has a long-time lag, is laborious, and provides incomplete information on Striga 

hotspots. In contrast, remote sensing provides efficient, timely, synoptic, and inexpensive data that 

could effectively capture weeds spectral phenological responses at different spatiotemporal scales 

(Mutanga et al., 2017).  

Studies have shown that weeds distribution and abundance can be estimated using diverse types 

of sensors and instruments such as field-based automated sensors (Smith and Blackshaw, 2003), 

unmanned aerial vehicles (de Castro et al., 2018; Peña et al., 2013), airborne multispectral and 

hyperspectral remote sensing (Mirik et al., 2013) among others. Yet, essential baseline information 

for the usage of such remote sensing information is absent for many high-impact invasive parasitic 

weeds like Striga (Große-Stoltenberg et al., 2016). In this chapter, the potential of using in-situ 

hyperspectral remotely sensed data at the plot level, to monitor Striga infestation in maize crops 

grown in an agroecological landscape in Kenya was explored. The candidate essentially tested 

whether canopy level in-situ hyperspectral data could discriminate among different Striga 

infestation levels and their co-occurring maize crop and other weeds. The potential capability of 

the Sentinel-2 multispectral band settings to detect and predict Striga infestation intensity was 

further tested, at the plot level, in heterogenous cereal crop fields.  

Hyperspectral instruments acquire data in numerous quasi-contiguous spectral wavebands, 

allowing detection of the spectral features of plant biochemical and physical characteristics like 

pigments, nutrients, and water which are often masked when using the broadband multispectral 

data (Abdel-Rahman et al., 2013b; Landmann et al., 2015). Hence, hyperspectral data are efficient 

in discriminating weed species from their co-occurring crops based on their biochemical and 

physical characteristics providing the vast potential to precision farming for weed management 

(Große-Stoltenberg et al., 2016; Mureriwa et al., 2016). Additionally, in-situ hyperspectral data 

capture subtle spectral differences that are spectrally less distinct in airborne and spaceborne data 

(Sibanda et al., 2015b). Thus, in-situ hyperspectral platforms enable quick spectral measurements 

of targets on the ground and offer the opportunity for band-specific indices that breakdown 
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complexes concealed in biochemical and physical characteristics of plants (Huang et al., 2015). 

These in-situ hyperspectral data are also operated under chosen appropriate atmospheric conditions 

unlike when operating satellite sensors (Chen et al., 2009). This enables the quality detection of 

unmixed energy captured from target objects without the influence of the bidirectional and diffuse 

scattering effects from other non-target features and the atmosphere (Jia et al., 2011). Also, the in-

situ hyperspectral platforms can acquire spectral data at finer spatial resolution (up to a sub-meter), 

capturing the spectral vegetation signals at levels of a plant or an assemblage of plants. Such fine-

scale remotely sensed data offer a deeper understanding of the interaction between parasitic weeds 

like Striga and the electromagnetic radiation at ground level before upscaling to airborne or 

spaceborne platforms such as Sentinel-2 (Kumar et al., 2001).  

The relatively new generation of multispectral spaceborne sensors such as Sentinel-2 have 

assumed the use of relatively narrower wavebands (e.g. 15 nm spectral width), including those in 

the red-edge region of the electromagnetic spectrum (EMS), centered at 705, 740, and 783 nm that 

were not present in previous broadband sensors like Landsat 7, 8 and the advanced spaceborne 

thermal emission and reflection (ASTER: (Chemura et al., 2017a). Therefore, there has been a 

growing interest to test the Sentinel-2 data, regarding its potential to advance precision agriculture 

and other operational uses, particularly in low-income regions (Dhau et al., 2018; Mudereri et al., 

2019b). This is mainly because Sentinel-2 data are freely available, with a relatively higher spatial 

resolution (10 m) and possess strategically placed bands at the red-edge region of the EMS, which 

makes the sensor versatile for many applications (Ochungo et al., 2019). Therefore, citing these 

positive characteristics, Sentinel-2 is hypothesized to be capable of providing timely data for the 

generation of critical products for Striga monitoring.  

Despite the previously mentioned advantages posed by both hyperspectral and Sentinel-2 

multispectral datasets, these datasets alone might not be adequate for detecting Striga infestation 

in complex and heterogeneous croplands. Merging the magnitude of the detail provided by 

hyperspectral data and the strength and capabilities of machine learning algorithms provides 

opportunities to reveal these complex structural and biophysical characteristics of weeds. 

However, one of the prominent problems in hyperspectral data processing and analysis is the 

dimensionality and multicollinearity inherent in the data (Adam et al., 2017). Multicollinearity is 
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associated with the limited number of training samples (n) in contrast to the abundance of 

hyperspectral wavebands (p), that often hinder the performance of the predictive models when 

they are validated using independent test dataset (i.e. overfitting) (Adam et al., 2017; Mureriwa et 

al., 2016). Studies have utilized robust machine learning classification algorithms like support 

vector machines (SVM, Vapnik, 1979), linear discriminant analysis (LDA, Fisher, 1936), gradient 

boosting (GB, Friedman, 1999) and random forest (RF, (Breiman, 2001) to deal with both the 

dimensionality and multicollinearity problems in the hyperspectral data.  

All these mentioned machine learning classifiers are assumption-free methods that do not 

encounter variable overfitting challenges and yield a variable importance by-product which 

enables the selection of fewer, yet relevant input predictors (i.e. Striga weed). Specifically, GRRF 

and RF have shown to be successful methods in reducing the dimensionality of the hyperspectral 

data and simultaneously handle the multicollinearity in the data (Adam et al., 2017; Deng and 

Runger, 2013; Mureriwa et al., 2016). Nevertheless, previous studies demonstrated no consensus 

on the best machine learning classification algorithm and the best dimension reduction technique 

for invasive weeds discrimination (Große-Stoltenberg et al., 2016; Maxwell et al., 2018).  

In this chapter, the innovation hinges on the hypothesis that flowering Striga is conspicuous from 

the rest of the photosynthetically green vegetation through their unique anthocyanins purple 

pigment in the flowers. To the best of the candidate’s knowledge, the use of hyperspectral data 

and multivariate machine learning predictive models to separate different levels of Striga 

infestation using specifically the floral signal have not been examined. The present chapter was 

conducted with the following objectives:  

a) To investigate the spectral uniqueness and behavior of flowering and non-flowering 

Striga owing to varying levels of infestation and co-occurring vegetation (i.e. maize 

crop and other chlorophyll-active materials), and  

b) To discriminate among different levels of Striga infestations in maize crop using the 

most relevant hyperspectral and resampled Sentinel-2 multispectral features and 

machine learning classification algorithms 
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2.2 Methods 

2.2.1 Study site 

The study was conducted in the Rongo sub-county which lies within the Migori county in western 

Kenya. The study area is bound by the coordinates 00 39’12” S; 340 35’.40” E and 00 59’16” S; 

340 37’21” E (Figure 2.1) at an altitude of 1 470 m above sea level. The climate in the study area 

is tropical and characterized by a yearly bimodal rainfall model with an average annual rainfall of 

1 600 mm across the two rainy seasons i.e. during the “long rains” season occurring between March 

and June and a “short rains” season spanning November to January. The annual average 

temperature is 20.60 C and the relative humidity ranges between 50% and 70% while the soil type 

is loam, sandy, and clay.  

The agro-natural ecosystem in the study area is dominated by scattered savanna grasslands in 

combination with deciduous and exotic forest vegetation, while the agricultural activities are 

mainly subsistence and small-scale farming. The crops grown in the Rongo sub-county include 

sugarcane as the main cash crop, maize, bean, groundnut, green gram, cassava, and some 

horticultural crops such as mango, banana, avocado, pawpaw, and indigenous vegetables. Maize 

in the Rongo sub-county area is grown as a mixed cropping system, with an average field size of 

0.1 ha. The production of the crop in the study area is constrained mainly by rainfall variability 

and the invasive Striga weed. The yearly peak flowering period for Striga occurs between 

December and January during the short rains and again between May and June during the long 

rains season. 
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Figure 2.1: Location of Rongo sub-county in Migori county, Kenya, and the distribution of the sampled maize fields 

(n = 14). The image in the background is a PlanetScope image acquired on the 16th of December 2017 and displayed 

in RGB: red (band3), green (band2), and blue (band1). 
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2.2.2. Field sampling design 

In total, 70 quadrats were sampled within all representative fields for Striga infestations. A total 

of 14 fields were purposively sampled during the period 12–16 December 2017 which coincided 

with the peak Striga flowering window in the study area. The purposive sampling procedure was 

guided by the presence and intensity of Striga infestation within each sampled maize field. In each 

sample maize field, a plot of 30 m x 30 m was selected, and within each plot, five quadrats 

measuring 1 m x 1 m each, were laid out along two crossing diagonal transects. Specifically, two 

quadrats were laid out across each of the two diagonal transects and 10 m away from the plot edges 

while one quadrat was laid in the center of the sample plot (Figure 2.2). In each quadrat, flowering 

and emerged Striga plants were counted. Infestation levels were categorized into three main 

classes; namely low (0–29 plants m−2), moderate (30–90 plants m−2), and high (> 90 plants m−2) 

Striga infestation classes. Specifically, the Striga infestation classes were characterized according 

to the average Striga population in each quadrat and the damage it causes to the maize crop; 

following the procedure described in Ekeleme et al. (2014).  

To test the influence of confounding features on the Striga spectral signal, spectral samples from 

soil background, and a combination of maize and other weeds in the sampling quadrat were also 

collected. This was necessary to test the influence of background spectral endmembers on the 

sensitivity of the Striga floral spectral signal. A total of seven classes of Striga infestation levels 

were assembled based on Striga floral signal sensitivity strength (number of Striga flowers per 

m−2) and other EM abundances in the quadrat. These seven classes were derived from Striga 

infestation levels and corresponding combination background materials (soil or other non-Striga 

photosynthetically active vegetation) in the sample quadrats. Firstly, three flowering Striga 

infestation classes (i.e. low: LW, moderate: MW, and high: HW) with other green vegetation 

(maize and other weeds) were categorized. The second category comprised pre-flowering (PF) 

Striga infestation in combination with green vegetation. The third category included exclusively 

the green vegetation (GV) class (maize and other weeds) with no Striga infestation. Again, data 

for exclusively Striga within soil background (SB) with no green vegetation were enumerated, and 

finally bare soil (SO). The spectra of Striga classes that occurred with a soil background (SB and 

SO) were collected by manually removing all non-Striga photosynthetically active materials (for 

SB) and removing all vegetative material (for SO) from the sampling quadrat.  
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Figure 2.2: Example structure of the distribution of quadrats within a 30 m × 30 m maize plot used for Striga sampling 

data collection. 

2.2.3. In-situ hyperspectral data acquisition 

Canopy-level in-situ hyperspectral data were collected within the sample quadrats using the 

FieldSpec® Handheld 2™ spectroradiometer (HH2: ASD, 2010) under clear skies and stable wind 

conditions at between 10:00 hrs. and 14:00 hrs. local time (Greenwich Mean Time: GTM+3) as 

recommended by Sibanda et al., (2015b). The field spectroradiometer used for the spectral data 

collection captures reflected radiation in 325–1075 nm of the EMS with a built-in 2 nm sampling 

resolution (ASD, 2010). The device then resamples the spectral data to 1 nm spectral range. The 

hyperspectral measurements were collected from 1 m above the maize crop canopy using the bare 

optical input at the nadir field of view. This covers an area of ∼0.5 m in diameter on the target, 

which was enough for capturing the spectral signal of a group of maize and Striga plants. It is a 

rule of thumb that the diameter of a spot of light that is covered by the HH2 when it is 

perpendicularly positioned to a target is approximately half the distance of the instrument to any 

specific target area (FieldSpec, 2017).  

The instrument was held at arm's length (∼0.9 m) from the observer to avoid scattered light from 
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surrounding objects including the instrument and the operator (Kumar et al., 2013). The 

spectroradiometer was set to internally and automatically collect and average 20 spectral readings 

for each sample spectrum. In each of the 70 quadrats, five spectra after optimizing and calibrating 

the measured radiance were measured using a Spectralon white reference of ∼100% reflectance. 

The optimization and calibration were done before a first measurement and after collecting the 

spectra of each sampling unit (i.e. quadrat), or when the instrument saturated because of changing 

ambient weather conditions like sun irradiance (FieldSpec, 2017). The final total of averaged 

spectra for each respective class that was used in this chapter are summarized in Table 2.1 

Table 2.1: Striga infestation level classes, with their respective class descriptions, class codes, sample sizes, training 

and testing samples used for employing the classification machine learning algorithms 

Class description Class 
code 

Sampled 
spectra 

Train Test 

Maize and other weeds (green vegetation) with no Striga infestation GV 32 22 10 

High Striga infestation level with other green vegetation HW 101 70 31 
Moderate Striga infestation level with other green vegetation MW 71 50 21 

Low Striga infestation level with other green vegetation LW 56 40 16 

Pre-flowering Striga with other green vegetation PF 20 15 5 

Exclusive Striga within a soil background with no other green 
vegetation 

SB 21 15 6 

Bare soil devoid of any photosynthetic material SO 20 15 5 

The spectral measurements acquired using the ASD were filtered using the “noiseFiltering” 

function and smoothened using the “Savitzky–Golay” filter in the “hsdar” package (Lukas et al., 

2018) in R software (R Core Team, 2019). These filtered spectra were resampled to the spectral 

configuration of Sentinel-2 using the spectral response function, i.e. “SpectralResampling” of 

Sentinel-2 present in the “hsdar” package (Figure 2.3). The Sentinel-2 multispectral wavebands 

description, waveband centers, and their respective spectral wave ranges are shown in  
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Table 2.2: The wavebands, waveband centers, and their respective spectral width of the Sentinel-2 multispectral 

sensor. The wavebands that correspond to the in-situ hyperspectral data used in this chapter are shown in bold 

Waveband Waveband description Waveband 

center (nm) 

Wave range (nm) 

1 Coastal aerosol 443 433–453 

2 Blue 490 458–523 

3 Green 560 543–578 

4 Red 665 650–680 

5 Red-edge 1 705 698–713 

6 Red-edge 2 740 733–748 

7 Red-edge 3 783 773–793 

8 Near-Infrared (NIR) 842 785–900 

8a Near-Infrared narrow (NIRn) 865 855–875 

9 Water vapor 945 935–955 

10 Shortwave Infrared (cirrus) 1380 1360–1390 

11 Shortwave Infrared 1 (SWIR1) 1610 1565–1655 

12 Shortwave Infrared 2(SWIR2) 2190 2100–2280 

 

 

Figure 2.3: Mean canopy-level spectra of (a) in-situ hyperspectral reflectance and (b) resampled Sentinel-2 

multispectral reflectance of the seven studied classes: maize and other weeds (green vegetation) with no Striga 

infestation (GV); high Striga infestation level with other green vegetation (HW); moderate Striga infestation level 

with other green vegetation (MW); low Striga infestation level with other green vegetation (LW); pre-flowering Striga 

with other green vegetation (PF); exclusive Striga stands within a soil background with no other green vegetation 

(SB); bare soil devoid of any photosynthetic material (SO) measured using Hand Held FieldSpec®2 (HH2) 

spectroradiometer in the 325–1075 nm wave range of the electromagnetic spectrum 
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2.2.4. Calculation of the narrow-waveband vegetation indices 

In addition to the 750 wavebands, fifteen narrow-waveband vegetation indices (VIs) (Table 2.3) 

were calculated using the “hsdar” package (Lukas et al., 2018) in R software (R Core Team, 2019) 

and were used as predictor variables to discriminate among the seven Striga infestation classes. 

These indices were selected based on their relatedness to specific plant biophysical parameters 

(e.g. floral signal strength, plant health condition, plant pigments, and plant water content) and the 

availability of the narrow-wavebands used in their formulae in the hyperspectral data that ranged 

between 325 nm and 1075 nm. 

Table 2.3: Hyperspectral narrow-waveband vegetation indices used in this chapter. 

Vegetation index Related to: **Equation Reference 

Fluorescence ratio Blue/Red (SR7) Fluorescence R440/R690 (Große-Stoltenberg et al., 2016) 
Water band index (WBI) Water R900/R970 (Ho, 2009) 
Simple ratio pigment index (SRPI) Pigments R430/R680 (Große-Stoltenberg et al., 2016) 
Double peak index (DPI) Vegetation stress (R688 x R710)/R2

697 (Große-Stoltenberg et al., 2016) 
Anthocyanin reflectance index (ARI) Anthocyanin (1/R500) – (1/R700) (Ho, 2009) 

Anthocyanin reflectance index2 (ARI2) Anthocyanin (1/R550) – (1/R700) (Ho, 2009) 
Datt4 Pigments R672/ (R550 x R708) (Große-Stoltenberg et al., 2016) 
Plant Senescing reflectance index (PSRI) Leaf senescence (R678 – R500) / R750 (Große-Stoltenberg et al., 2016) 
Double difference index (DDN) Chlorophyll 2 X (R710 – R660 – R760) (Große-Stoltenberg et al., 2016) 
Modified Simple ratio (mSR) Chlorophyll (R800-R445)/ (R680 – R445) (Sims and Gamon, 2002) 
Structure insensitive pigment index (SIPI) Pigments (R800 – R445)/ (R800 – R680) (Ho, 2009) 
Photochemical reflectance index (PRI) Carotenoid (R531 – R570)/ (R531 + R570) (Sims and Gamon, 2002) 
Photochemical Reflection Index x 
Chlorophyll content (PRI.CI2) 

Carotenoid (R531 – R570)/ (R531 + R570) 
X (R760/R700 – 1) 

(Große-Stoltenberg et al., 2016) 

Transformed Chlorophyll Absorption 

Ratio Index (TCARI2) 

Chlorophyll 3 x ((R750-R705) – 0.2 (R750-

R550) (R750/R705) 
(Große-Stoltenberg et al., 2016) 

Enhanced Vegetation Index (EVI) Biomass/LAI 2.5 x ((R800 - R670)/ (R800 - 
(6 x R670) - (7.5 x R475) + 1) 

(Ho, 2009) 

** R is reflectance at the respective hyperspectral narrow-waveband  

2.2.5. Predictor variables’ selection using guided regularized random forest (GRRF) 

algorithm 

GRRF was used to select fewer, yet the most relevant narrow-wavebands, VIs, and resampled 

Sentinel-2 multispectral wavebands to discriminate the seven Striga infestation classes. The 

package “RRF” in R software (Deng, 2013; R Core Team, 2019) was used. The regularized 

framework considerably reduces the training time by building a single model (Deng and Runger, 

2013). The GRRF uses the same concept of the RF model but uses the importance scores generated 

from RF to guide the variable selection process (Mudereri et al., 2019a; Mureriwa et al., 2016). 

The importance score of a variable in RF is obtained through the “Gini index” of all nodes across 

all RF decision trees obtained, and the variable is used to measure the purity of the feature at every 
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node to facilitate the voting process of RF trees (Breiman, 2002). Compared to the variable 

importance feature in the ordinary RF, GRRF provides the precise variables that are most suitable 

for predicting the feature from the multiple features dataset (Deng, 2013).  

GRRF uses a gamma value to penalize the selection of new features over features already selected 

that possess similar gain (importance). The gamma value occurs between 0 and 1 with values 

closer to 1 executing higher penalties, hence selecting fewer relevant variables within GRRF. 

Comparatively, the values closer and equal to 0 increase the number of potentially relevant features 

selected, while the value of 0 yields similar variables to those produced when using an ordinary 

regularized random forest (RRF) (Deng and Runger, 2013).  

In this chapter, a gamma (γ) value of 0.8 to limit the variables (i.e. narrow-wavebands or VIs) 

selection was used. The choice of γ = 0.8 was conservative as the highest gamma value of 1, 

extremely reduced the variables to too few (n = 3). The raw importance scores obtained from RF 

are normalized for each feature using Equations 2.1 to 2.3 to get the score used for variable 

selection in GRRF. For a detailed explanation of the theoretical and mathematical background of 

GRRF and how it functions, the readers are referred to Deng and Runger, (2013). 

gainG (Xi)=λi gain (Xi)     (2.1) 

where: gain (Xi) denote the Gini information gain of using a feature Xi to split a tree node. And λi 

is calculated as: 

λi = 1−γ+γ (Impi / Imp∗)     (2.2) 

where: Impi is the importance score of Xi from RF and Imp∗ is the maximum importance score, 

Therefore: 

gainG (Xi) = (Impi / Imp∗) X gain (Xi)    (2.3) 

2.2.6. Machine learning discriminant algorithms 

Four machine learning discriminant models namely; GB, LDA, RF, and SVM were used to 

discriminate the seven Striga infestation classes. The performance of these four models in 

discriminating the seven Striga infestation classes was compared using the in-situ hyperspectral 

data under the following five predictor variable criteria: (1) the clipped range (400–1075 nm) of 
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the collected narrow-wavebands (n = 676); (2) all the calculated narrow-waveband VIs are shown 

in Table 2.3 (n = 15); (3) The GRRF selected narrow-wavebands (n = 9); (4) The GRFF selected 

narrow-waveband VIs (n = 6), and (5) a combination of both GRRF selected narrow-wavebands 

and narrow-waveband VIs (n = 15).  

Similarly, using the mentioned four machine learning discriminant models, the performance of (a) 

all the resampled Sentinel-2 multispectral wavebands (n = 10) and (b) the GRRF selected 

resampled Sentinel-2 multispectral wavebands (n = 6) were further compared. GB, LDA, RF, and 

SVM algorithms were selected because they have been widely used in classifying vegetation-

related classes with reasonably high classification accuracies when hyperspectral datasets were 

utilized (Abdel-Rahman et al., 2014a; Dube and Mutanga, 2015; Ramoelo et al., 2015). Further, 

these four classification algorithms do not require the traditional regression assumptions which 

makes them useful in many cases (Holloway and Mengersen, 2018). They possess advantages such 

as: (1) easily identifying and adapting to inherent patterns and trends in data, (2) little to no human 

intervention in the running process, (3) versatile in handling ad-hoc multi-dimensional and 

multivariate types of data, and (4) mapping classes with complex characteristics (Maxwell et al., 

2018). 

The “Caret” package (Kuhn et al., 2018) in R software was used to run and validate all the four 

machine learning, discriminant models. The “Caret” package provides a standard syntax to execute 

a variety of machine learning discriminant approaches, thus simplifying the procedure of 

systematically comparing different algorithms and approaches (Maxwell et al., 2018). For 

consistency, the tune length parameter was set to 10, so that 10 values for each parameter were 

assessed. Also, all the variables were centered and rescaled for consistency before classification. 

Table 2.4 summarizes the “Caret” packages used to execute the four algorithms: RF, SVM, LDA, 

and GB. Again, for consistency purposes, the comparison of the performance of the four machine 

learning discriminant algorithms, were evaluated using the same dataset for all the models, split 

into a training set (70%) for model training and a test set (30%) for validation of the models (Dube 

and Mutanga, 2015; Qiao et al., 2017). 

Model performance was presented using boxplots of overall accuracy and Kappa within the five 

different predictor variable criteria mentioned for the hyperspectral data and two-variable grouping 
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criteria of the resampled Sentinel-2 multispectral wavebands. The inter-class prediction 

performances of the different models were further assessed using confusion matrices derived from 

the best performance predictor variables category for each algorithm. The McNemar test for paired 

categorical data represented in contingency tables was performed at a 95% confidence interval 

(CI) to compare the performance among the four models in their ability to predict Striga severity 

classes using the GRRF selected variables. 

Table 2.4: R software packages used by “Caret” that were used in this chapter and their respective caret syntax code. 

Algorithm Caret code Package Reference 

Random forest “rf” Ranger (Liaw et al., 2002) 

Support vector machines “svmRadial” Kernlab (Karatzoglou et al., 2004) 

Linear discriminant analysis “lda” Mass (Venables and Ripley, 2002) 
Stochastic gradient boosting “gbm” gbm and plyr (Greenwell et al., 2019) 

2.3 Results 

2.3.1. Spectral behavior of flowering and non-flowering Striga 

Figure 2.4 demonstrates the variation in spectral responses of the different classes according to 

flowering compaction and color. The near-infrared (NIR: 750–1075 nm) revealed multiple 

scattering within the leaf structure, emanating from the different compositions of the classes. 

Nonetheless, the NIR displayed significant differences in magnitude with green vegetation 

producing a plateau of high reflectance compared to all other classes where pigments no longer 

absorb the radiation. The patterns of Striga infestation levels low, moderate, and high in the whole 

spectrum were similar but differed in the magnitude (> 5% difference between high and low). This 

is emphasized in Figure 2.4b in which the pattern for the classes is the same, but the magnitude of 

the reflectance differs as influenced by the Striga floral compaction and color. The higher the 

number of flowers in a plot, the more the reflectance magnitude increased within the region 500–

700 nm. However, when compared to the other non-Striga classes, much variation was observed 

in the red section (620–680 nm).  

The hyperspectral reflectance values for the “high”, “moderate” and “low” Striga infestation, all 

peak around 550 nm and 670 nm which corresponded to the resampled Sentinel-2 wavebands 2 

and 4, respectively. However, there is a slight depression in the reflectance values around 680 nm 

proceeding to increase again in the red-edge and NIR waveband regions. When Striga-infested 

plots were compared to GV, they all have peaks at 550 nm but there is a marked difference at 680 

nm where there is a huge depression for the GV class. Similarly, within the blue region (400–500 
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nm), Striga infestation classes show higher values compared to the GV class. Furthermore, a 

similar trend is observed between flowering Striga and PF class (Figure 2.4c). Although visually 

the red-edge (680–750 nm) does not show any considerable variations in the spectra, green 

vegetation had the steepest gradient. The red-edge remains crucial in calculating vegetation indices 

as the gradient of the graphs reveals biochemical and ecophysiological vegetation parameters. 

 

Figure 2.4: Comparison of spectral behavior for:(a) bare soil (SO), green vegetation (GV), high Striga infestation 

(HW) and pre-flowering (PF)Striga  within  the  full  spectral  range(325–1075 nm); (b) high (HW), moderate(MW) 

and low (LW) Striga infestation levels within the visible range (500–700 nm); (c)green vegetation (GV), high Striga 

infestation(HW) and pre-flowering (PF) Striga within the visible range (500–700 nm); (d) all the seven classes used 

in this chapter within the red-edge spectral range (680–750 nm) 

2.3.2. Predictor variables selection 

The GRRF was able to determine only 6 narrow-waveband VIs, 9 narrow-wavebands, and 6 

resampled Sentinel-2 multispectral wavebands to be of utmost relevance for discriminating the 

seven Striga infestation classes (Figure 2.5). The VIs that were selected by GRRF as the most 

relevant predictor variables were mainly related to pigments (Datt4, ARI, ARI2, and PRI.CI2). 

The most important narrow-wavebands are well distributed across the VNIR electromagnetic 

spectrum.  
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Many of the most relevant narrow-wavebands and resampled Sentinel-2 multispectral wavebands 

for discriminating among the infestation levels occurred within the green (band 3) and the red 

(band 4) regions of the EMS. Although most of these GRRF selected narrow-wavebands occurred 

within the visible range, the one with the highest variable importance value among them was 

identified within the red-edge region of the EMS (at 677 nm). The GRRF algorithm was able to 

determine uncorrelated variables for the VIs, however, most of the narrow-wavebands selected 

were correlated (Figure 2.6). The most correlated (> 80%) among the narrow-wavebands were 

those in the green region of the EMS, while Datt4 and DDN were also negatively correlated to 

most of the green, red, and NIR wavebands of the EMS. 

 

Figure 2.5: Predictor variables relevance for (a) both hyperspectral narrow-waveband vegetation indices and narrow-
wavebands selected using the variable selection measure of the guided regularized random forest (GRRF) algorithm  

(b)  Resampled  Sentinel-2 multispectral wavebands selected using the variable selection measure of the GRRF 

algorithm. See Table 2.2 for the descriptions of Sentinel-2 multispectral wavebands 
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Figure 2.6: Correlation matrix for the guided regularized random forest (GRRF) selected hyperspectral wavebands 

and indices. Darker shades of blue and red colors indicate high variable correlation, while light shades indicate a low 

correlation between variables 

2.3.3. Striga infestation levels discrimination using the four machine learning GB, LDA, 

RF, and SVM models 

The results showed that the RF algorithm outperformed (overall accuracy of 91% and Kappa of 

0.84, Figure 2.7) all the other three machine learning discriminant algorithms in discriminating 

among the seven Striga infestation classes using the hyperspectral data; and the resampled 

Sentinel-2 multispectral wavebands (overall accuracy 85% and Kappa of 0.80: Figure 2.8). This 

performance was followed by GB, LDA, and SVM, respectively. The use of only the selected VIs 

for the hyperspectral data and the GRRF selected wavebands for the resampled Sentinel-2, resulted 

in more accurate Striga infestation discrimination results compared with the use of other predictor 

variables across the machine learning discriminant algorithms, except for LDA (Figures 2.7 and 

2.8).  
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Figure 2.7: Striga infestation discrimination models performance as evaluated by overall accuracy and Kappa 

statistics using the clipped range (400–1075 nm) of spectral narrow-wavebands(*fullspec), narrow-waveband 

vegetation indices (*indices), all indices, and all narrow-wavebands (*combined), selected narrow-waveband indices 

(*selected indices) and selected narrow-wavebands (*selected bands). RF, GB, LDA, and SVM are random forest, 
stochastic gradient boosting, linear discriminant analysis, and support vector machines, respectively 

 

Figure 2.8: Striga infestation discrimination models performance as evaluated by overall accuracy and Kappa 
statistics using all the resampled Sentinel-2 multispectral wavebands or only the 6 guided regularized random forest 

(GRRF) selected re-sampled Sentinel-2 multispectral wavebands. RF, GB, LDA, and SVM are random forest, 

stochastic gradient boosting, linear discriminant analysis, and support vector machines, respectively 
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Although RF results showed superiority over all the other algorithms, the overlaps of the boxplots 

tests showed that there was no significant difference (p ≥ 0.05) with the performance of the GB 

algorithm. The LDA and SVM algorithms achieved the least accurate Striga discrimination results 

to predict Striga infestation, using all the predictor variable criteria. Also, the Kappa statistic 

revealed that LDA and SVM models performed not significantly different (p ≥ 0.05) from the 

model performance at random, whereas both the RF and the GB models produced high Kappa 

statistic values (Kappa > 0.75) for discriminating the seven classes. Considering the inter-class 

prediction accuracies (i.e. individual producer’s accuracy (PA) and user’s accuracy (UA) metrics), 

the RF model was superior over all the other models in predicting each of the seven classes using 

both the hyperspectral data or the resampled Sentinel-2 multispectral data (Table 2.5 and 2.6). 

Although all the four machine learning discriminant models were able to predict HW with a PA 

of at least 70%, MW and LW were not consistent among the models. On the contrary, all the 

machine learning discriminant models were relatively reliable in predicting GV, SO, and SB. 

Generally, the PA and UA metrics for LDA and SVM were relatively poor compared to the 

nonlinear decision tree-based algorithms (RF and GB) as shown in Table 2.5 and  

Table 2.6. 

Table 2.5: Summarized confusion matrices and classification accuracies, overall accuracy (OA), producer’s accuracy 

(PA) and user’s accuracy (UA) of the random forest (RF), stochastic gradient boosting (GB), linear discriminant 

analysis (LDA) and support vector machines (SVM) discriminant models using the guided regularized random forest 

(GRRF) selected narrow-band indices 

        Machine learning algorithm     

 RF GB SVM LDA 

Class: Infestation level  

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) UA (%) 

PA 

(%) UA (%) 

High (HW) 94 92 93 78 82 100 72 58 

Moderate (MW) 85 92 78 84 100 10 41 44 

Low (LW) 88 83 74 78 36 83 44 44 

Green vegetation (GV) 100 100 70 100 100 100 100 100 

Soil (SO) 100 100 100 100 0 0 100 100 

Soil Background (SB) 100 100 86 100 0 0 71 83 

Pre-flowering (PF) 100 100 75 100 33 33 30 67 

OA (%) 91 83 60 55 
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Table 2.6: Summarized confusion matrices and classification accuracies, overall accuracy (OA), producer’s accuracy 

(PA) and user’s accuracy (UA) of the random forest (RF), stochastic gradient boosting (GB), linear discriminant 

analysis (LDA) and support vector machines (SVM) discriminant models using the guided regularized random forest 

(GRRF) selected resampled Sentinel-2 multispectral wavebands 

        Machine learning algorithm     

 RF GB SVM LDA 

Class: Infestation level  PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

High (HW) 89 94 90 72 75 90 69 86 

Moderate (MW) 87 76 70 85 50 10 76 37 

Low (LW) 79 80 69 71 46 89 69 71 

Green vegetation (GV) 92 100 80 90 50 100 40 33 

Soil (SO) 100 100 100 100 100 100 100 100 

Soil Background (SB) 95 100 94 100 100 30 83 100 

Pre-flowering (PF) 75 75 78 80 0 0 40 67 

OA (%) 85 81 65 55 

2.3.4. Pairwise model performance comparison using the McNemar test 

The performances of the four machine learning discriminant models in predicting Striga infestation 

were significantly different (p ≤ 0.05) from each other, except the comparison between LDA and 

SVM (hyperspectral wavebands) and GB and SVM (resampled Sentinel-2 multispectral 

wavebands) when using the pairwise McNemar test (Table 2.7). This further confirms the 

superiority of RF in the prediction of Striga infestation when compared to GB, LDA, and SVM. 

Table 2.7: McNemar test for comparing the performance of the four machine learning discriminant models in 

predicting the seven studied Striga infestation classes using the hyperspectral wavebands and the resampled Sentinel-

2 multispectral wavebands. RF, GB, LDA, and SVM are random forest, stochastic gradient boosting, linear 

discriminant analysis, and support vector machines models, respectively 

 

Hyperspectral  

wavebands 

Resampled Sentinel-2 

multispectral wavebands 

Comparison Chi-square p-value Chi-square p-value 

RF vs GB 4.93 0.02* 5.14 0.02* 

RF vs LDA 31.03 <0.001** 15.75 <0.001** 

RF vs SVM 22.42 <0.001** 5.79 0.02* 

GB vs LDA 19.86 <0.001** 7.84 <0.001** 

GB vs SVM 10.26 0.001** 0.36 0.55 

LDA vs SVM 0.21 0.64 6.05 0.01* 

 * Significant at 95% confidence interval (CI); ** Significant at 99% CI   

2.4. Discussion 

Several studies have demonstrated the importance of managing and controlling Striga infestation 
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and spatial spread (Atera et al., 2013; Khan et al., 2007; Spallek et al., 2013). This chapter 

examined the potential to use canopy-level in-situ hyperspectral data and resampled Sentinel-2 

multispectral wavebands in distinguishing Striga from other co-occurring vegetated and non-

vegetated materials within maize fields and to differentiate among different Striga infestation 

levels. Results from this current chapter show that Striga can accurately be discriminated from 

other vegetation and soil classes in maize fields using hyperspectral wavebands, narrow-band 

indices, resampled Sentinel-2 multispectral wavebands, and machine learning discrimination 

algorithms. 

2.4.1. Spectral behavior of flowering and non-flowering Striga infestation classes and their 

co-occurring vegetation and soil. 

In this chapter, the results showed that the spectral behavior of flowering Striga, non-flowering 

Striga, and other green vegetation differ. This can be attributed to the diversity of plant pigments 

occurring at different levels within the different co-occurring flora. Plant pigments are inherently 

associated with the biological function of leaves. Chlorophylls absorb light energy and allocate it 

to the photosynthetic system while, yellow pigments (carotenoids) also contribute energy to the 

photosynthetic apparatus and assist in resistance to environmental stress (Blackburn, 2007). 

Additionally, anthocyanins (red, pink, and purple pigments) may also serve as scavengers of 

reactive oxygen intermediates or as antifungal compounds (Litchenthaler and Buschmann, 2001; 

Sims and Gamon, 2002).  

In light of the importance of pigments for leaf and petal function, dynamics in pigment quantities 

may provide details regarding their physiological state (Thenkabail et al., 2013). For instance, 

chlorophylls tend to decline more rapidly than carotenoids when plants are under stress or during 

leaf senescence (Sims and Gamon, 2002). Similarly, the reflectance response to incident radiation 

is influenced by the quantity and the interplay between the ratios of these pigments (Blackburn, 

2007). These could have led to the differences observed among the flowering Striga, non-flowering 

Striga, and other vegetation classes. It was established that although the 530–570 nm are the 

portions that are mainly inclined to the green reflectance peak, all the plants had the highest peak 

at 550 nm within the visible region of the EMS, however, they differed significantly in the range 

550–680 nm. This information is thus masked out when using spaceborne sensors such as Sentinel-

2 that group these multiple narrow-wavebands into single broadbands i.e. in this case, into 
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wavebands 3 and 4.  

Using the hyperspectral data revealed that the reflectance of the Striga classes within the 550–680 

nm region of the EMS remained high, whilst the other green vegetation classes reflectance dropped 

considerably. This could be attributed to the presence and concentrations of anthocyanins within 

the petals of the Striga plants when flowering because chlorophylls and carotenoids absorbance 

increases whereas reflectance by anthocyanins increases significantly in this region of the EMS 

(Huang et al., 2015; Sims and Gamon, 2002). This concurs with the results of Blackburn (2007) 

who observed that an increase in reflectance in the red region of the EMS was linked with an 

increase in anthocyanins. In addition, in the analysis among the three Striga infestation levels (HW, 

MW, and LW), the magnitude of this reflectance increased with an increase in flower compaction 

(number of flowering Striga m−2) which confirmed the importance of this region for discriminating 

Striga from other photosynthetic-active plants.  

Leveraging on the presence of the purple color pigment in the flowers proved crucial in the 

separation of Striga occurring with other similarly co-occurring weeds and crops. S. hermonthica 

flowers are purple (Ejeta and Gressel, 2007; Khan et al., 2002; Spallek et al., 2013), hence the 

violet section of the EMS is very decisive to distinguish flowering Striga from green plants’ 

material. However, the downside to the violet section is the short wavelength characteristic which 

is easily scattered by the atmosphere through Rayleigh scattering, thus most space-based satellites 

including Sentinel-2 do not consider wavebands within the violet section of the EMS (Campbell 

and Wynne, 2007).  

Similarly, the spectral region between 413–420 nm region in the vegetation spectra are influenced 

by chlorophyll ‘a’ absorption, whereas the band 600 nm is influenced by chlorophyll ‘b’ absorption 

peak (Kumar et al., 2001; Thenkabail et al., 2013). There was a very sharp decline in the reflectance 

of green vegetation in these regions compared to the Striga classes. This decline is attributed to 

the absorption of chlorophyll by chlorophyll active plants. On the other hand, the region also 

demonstrates the low chlorophyll presence and the high influence of the pigments in the flowers 

(Litchenthaler and Buschmann, 2001).  

The spectral differences observed in this chapter between flowers and green materials were 

anticipated in the hypothesis to positively produce reliable spectral differences between Striga and 
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co-occurring plants during the Striga flowering period (Ge et al., 2006). From other studies, it is 

known that the waveband 650 nm is the EMS region of vegetation pre-maxima spectral absorption, 

and 670 nm is sensitive to biomass and leaf canopy (Kumar et al., 2001; Sims and Gamon, 2002; 

Thenkabail et al., 2013). This was also observed in this chapter; however, for Striga detection, the 

significance of spectral absorption at these wavebands was not substantial enough to be useful.  

Although there was multiple scattering within the NIR caused by water sensitive wavebands, the 

enormous variation in the magnitude of the reflectance is key in the separation of the classes used 

in this chapter. GV had the highest reflectance compared to all the other classes in the NIR spectral 

range. Apart from chemical composition, vegetation structure can also affect spectral features and 

influence spectral sensitivity and reflectance (He et al., 2011; Huang et al., 2015). The ability to 

separate among the studied classes could also be attributed to flower structure that influences the 

spectral features associated with the angle and arrangement of the petals. The flower structure 

coupled with lower water content could have similarly aided in the differences revealed in the 

prediction of the infestation classes as compared to the pre-flowering Striga which exhibited no 

difference with GV plots (Ge et al., 2006).  

Therefore, the best period to predict Striga's presence within crop fields is during the peak Striga 

flowering period. These results concur with Best et al., (1981), who concluded that the best period 

to discriminate among eight plant species that they were studying was during the flowering and 

early seed development stages. It is critical to note that using spectral signatures for detecting 

weeds should be used with caution since different phenological stages of plants show significant 

variations in their spectral reflectance depending on the flowering stage of the species (Schmidt 

and Skidmore, 2003). Carvalho et al., (2013) suggested that further studies might be necessary to 

analyze what could cause such leaf and flower predictive spectral differences.  

Additionally, although the results are valid at the plot scale, future studies using Sentinel-2 data, 

airborne, or UAV could be used for seamless wall-to-wall Striga mapping and upscaling from plot 

scale to field and landscape scales during the peak Striga flowering season. 

2.4.2. Most relevant wavebands and indices using the GRRF approach 

This chapter employed the robust GRRF for the resampled Sentinel-2 multispectral wavebands, 
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hyperspectral wavebands, and their derived VIs variable selection for multiclass classification. The 

traditional RF positively provides the variable importance parameters to lead the GRRF variable 

selection procedure (Deng and Runger, 2013). Because of the expected very high autocorrelation 

among the quasi-contiguous hyperspectral wavebands (1-nm interval), the variable importance 

values were also very similar among the different wavebands. Hence, some of the selected narrow-

wavebands for detecting Striga were still autocorrelated. However, the GRRF algorithm decreased 

the multidimensionality of narrow-wavebands (9 out of 750 were selected) and their derived VIs 

(6 out of 15 were selected) as well as for the resampled Sentinel-2 multispectral wavebands (6 out 

of 10) without compromising key information relevant to the Striga and co-occurring vegetation 

classes. This was following the findings of Adam et al., (2017); Deng (2013), and Mureriwa et al. 

(2016)  who reported a considerably reduced hyperspectral narrow-waveband dimensionality as a 

result of using the GRRF algorithm.  

Specifically, the selected narrow-wavebands and VIs concurred and vindicated the importance of 

the already identified important EMS regions for separating the seven Striga infestation classes. 

Previously used variable selection methods like “varSelRF” and “Boruta” in R (R Core Team, 

2019) are computationally expensive and may yield inexplicit variable importance outputs 

compared to GRRF (Mureriwa et al., 2016). In other words, the variable importance by-product of 

such RF-based variable importance procedures could remain dimensionally huge and redundant 

without identifying a few non-correlated and the most relevant variables.  

Furthermore, several plant characteristics such as biochemistry, canopy structure, and soil 

parameters are combined within the canopy spectrum (Große-Stoltenberg et al., 2016). Thus, using 

the canopy-level spectrum rather than leaf-level data is key for further contrast with airborne or 

satellite remote sensing data such as Sentinel-2 used in the present chapter. Therefore, in this 

chapter, the candidate targeted to use VIs that incorporate these characteristics and could easily be 

upscaled to space-based satellite data.  

Pigment indices cater to the problem of overlapping absorption characteristics of the different 

pigments rendering them more informative than the raw wavebands alone. The fact, this chapter 

showed that the most relevant VIs were related to pigments (chlorophylls, carotenoids, and 

anthocyanins) and water content, is attributable to the sampling season which was during the peak 
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Striga flowering and maize crop vegetative growth stage. In addition, the higher chlorophyll 

content detecting VIs (DDN and Datt4) that were selected among the relevant VIs for Striga 

detection, are known features that correlated to plant health, leaf area index (LAI), and light use 

efficiency.  

The differences in chlorophylls, carotenoids, and anthocyanins among the seven Striga classes are 

vital to the physiological responses and resilience of plants to natural episodic events or seasonal 

fluctuations (Blackburn, 2007). These dynamics are captured very well in the indices calculated at 

the canopy level. Several studies offer credit to the two-band VIs, which correspond to the flanks 

of the main chlorophyll absorption feature in the red (530–630 nm) and the waveband located at 

700 nm (which resembles waveband 5 of the Sentinel-2 sensor) to be the most sensitive to pigment 

concentration over the normal range (Kumar et al., 2001). 

2.4.3. Performance of the machine learning classifiers for discriminating among the Striga 

infestation classes 

In general, the determination of the best classifier for a particular application case when remotely 

sensed data are utilized depends on the accuracy measure selected and the intended objective of 

the analysis (Maxwell et al., 2018). For the case of this chapter, the RF and GB were identified as 

the best classifiers for Striga detection according to their overall accuracies. The resampled 

Sentinel-2 multispectral wavebands showed good potential to detect and map Striga at acceptable 

accuracies using the RF and GB algorithm with overall accuracies of 85% and 81%, respectively. 

However, the RF and GB classifiers experienced challenges by having some false positive cases 

when attempting to separate the Striga severity classes. These false-positive instances are 

important as detecting a damaging parasitic weed at the early stages of invasion is also fundamental 

for a real-time intervention (Große-Stoltenberg et al., 2016).  

In both cases (i.e. using hyperspectral data or resampled Sentinel- 2 multispectral wavebands), it 

is expected the SVM to have performed better than its obtained results in this chapter since other 

studies have shown the high performance of SVM for detecting weed infestation using remotely 

sensed data (Brereton and Lloyd, 2010; Große-Stoltenberg et al., 2016; Pal and Mather, 2005). 

However, the relatively small sample size in some of the classes could have hindered the 

performance of the SVM algorithm as it is quite sensitive to imbalanced and small sample sizes 
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(Maxwell et al., 2018). One other reason for a relatively low SVM performance could be due to 

the use of a default linear hyperplane and SVM parameters; viz. gamma (γ) and sigma (C). Studies 

have shown that the optimization of these two SVM parameters would counter for the expected 

nonlinear relationship among the classes, hence enhancing the performance of the classifier 

(Abdel-Rahman et al., 2014b; Maxwell et al., 2018).  

The performance of RF, GB, and SVM in this chapter is in agreement with some recent studies 

that have utilized leaf-level or canopy-level hyperspectral data and one of these classifiers to detect 

a plant trait (Große-Stoltenberg et al., 2016; Litchenthaler and Buschmann, 2001; Thenkabail et 

al., 2013). Specifically, the two non-linear classification algorithms (i.e. GB and RF) attained the 

best performance results when using the GRRF selected variables for both selected hyperspectral 

wavebands or when the selected resampled Sentinel-2 multispectral wavebands were used.  

These results concur with Mureriwa et al. (2016) who used GRRF and RF to detect Prosopis using 

field spectral measurement data and found that reducing the number of redundant spectral variables 

increased the accuracy of the detection. In all cases, the RF classifier proved to be a very robust 

and reliable model for predicting subtle differences between classes and non-linear effects from 

spectral scattering between plant components. This is because RF is robust, yet can still accomplish 

high prediction accuracies even when the observation data are low or when the variables are highly 

correlated (Khadka and James, 2017; Thamaga and Dube, 2018). However, GRRF outperforms 

standard RF in relevant variable selection. It can, therefore, be concluded from the results that, if 

accurate detection of Striga infestation is to be conducted, combining the RF model and GRRF 

would provide the best model of choice regardless of the dimensions offered by the prediction 

variables and observations or the mapping scale. 

2.5. Conclusions 

In this chapter, the possibilities of using canopy-level in-situ hyperspectral data for predicting the 

presence and level of Striga infestation using their flowering characteristics are demonstrated. 

Prediction of seven classes of Striga infestation is possible with satisfactory overall accuracies (up 

to 94% overall accuracy), specifically during the peak flowering period including at Sentinel-2 

spatial and spectral scales. However, due to the reliance on the flowering, it remains a challenge 

to pre-detect Striga before the damage is done. For more precise results on a global scale, remote 
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sensing could, therefore, be used to detect and model the condition of the infested maize rather 

than targeting Striga itself.  

The GRRF model provided an easy and accurate variable selection platform that selects fewer and 

uncorrelated hyperspectral features relevant to the features of interest like Striga infestation. 

Specifically, this chapter shows that the selected narrow-waveband VIs; WBI, ARI, ARI2, Datt4, 

DDN, and PRI.CI2, narrow-wavebands (415 nm, 548 nm, 551 nm, 556 nm, 568 nm, 578 nm, 657 

nm, 677 nm, and 1 060 nm) and Sentinel-2 multispectral wavebands (band 3, band 4, band 9, band 

1, band 5 and band 2 in order of importance), are very relevant for Striga infestation prediction in 

maize fields in semi-arid agro-ecosystem.  

The machine learning RF classification algorithm emerged as a very robust and reliable model for 

predicting differences among Striga occurring and other weeds and crop classes. However, there 

is a need to investigate the temporal and spatial variability of the flowering signal of Striga during 

the peak flowering season to explore upscaling options for the monitoring of the floral cycle using 

high spatial resolution multispectral data. Sentinel-2 data coupled with MESMA which separates 

spectra within image pixels by identifying the percentage contribution of each class with more 

than one endmember could also be explored to detect Striga infestation when large scale image 

data are utilized. This would bring an immense benefit to the landscape assessment of the floral 

cycle and infestation.  

Findings from this chapter will be of utmost importance in understanding Striga infestation in 

heterogenous crop fields in sub-Saharan Africa. Although the use of the field hyperspectral data 

in vegetation studies is no longer new, the results indicate the capabilities and application of such 

remotely sensed data, as a tool for excellent detection of Striga infestation and other vegetation 

classes. These results provide opportunities to researchers, to apply a similar approach in precision 

agriculture using airborne or UAV data and platforms to detect the hotspots of Striga infestation 

at localized scales.  
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Chapter 3  
 

Field-scale Striga characterization using multi-resolution satellite-based 

multispectral data and machine learning algorithms 
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Abstract 

Weeds are one of the major restrictions to sustaining crop productivity. Weeds often out-

compete crops for nutrients, soil moisture, solar radiation, space and provide platforms for 

the breeding of pests and diseases. The ever-growing global food insecurity triggers the need 

for spatially explicit innovative geospatial technologies that can deliver timely detection of 

weeds within agroecological systems. This, in turn, will aid to pinpoint maize fields that have 

to be prioritized for weed control. Satellite remote sensing offers incomparable opportunities 

for precision agriculture, ecological applications, and vegetation characterization, with vast 

socioeconomic benefits. This chapter compares and evaluates the strength of Sentinel-2 

satellite with the constellation of Dove nanosatellites i.e. PlanetScope data in detecting and 

mapping Striga (Striga hermonthica) weed within intercropped maize fields in Rongo sub-

county in western Kenya. The Sentinel-2 and PlanetScope derived spectral data and 

vegetation indices were applied for mapping the Striga occurrence. Data analysis was 

implemented, using the guided regularized random forest (GRRF) classifier. Comparatively, 

Sentinel-2 demonstrated slightly lower Striga detection capacity than PlanetScope, with an 

overall accuracy of 88% and 92%, respectively. The results further showed that the VNIR 

(blue, green, red, and NIR) and the ARVI were the most fundamental variables in detecting 

and mapping the Striga presence in maize fields. Findings from this work demonstrate that 

Sentinel-2 data can provide spatial explicit near real-time field-level Striga detection, a 

previously daunting task with broadband multispectral sensors. 

Keywords: feature selection; food security; high spatial-temporal resolution; nanosatellites; new 

generation sensors; precision agriculture; weed detection; sub-Saharan Africa  

http://etd.uwc.ac.za/ 
 



 

41 

 

Graphic abstract 

 

 

 

 

 

  

http://etd.uwc.ac.za/ 
 



 

42 

 

3.1 Introduction 

3.1.1 Background 

Timely and repeatable spatial explicit information on inter- and intra-field variability of 

agroecological systems is key to devise adaptive and informed management decisions regarding 

crop productivity, resource allocation, and labor efficiency (Houborg and McCabe, 2018a). 

Advancements in remote sensing technologies, data analytics, research, and monitoring initiatives 

of invasive pests and weeds provide tremendous benefits to the continuous and near-real-time 

observations of crop health and crop phenological development (Mutanga et al., 2017). However, 

there is an inevitable unbalanced trade-off between the spatial resolution and frequency of 

observations that can be derived from the conventional satellites. Generally, most conventional 

satellites providing very frequent observations (daily and near-daily revisit time) lack high spatial 

resolution, such as the moderate-resolution imaging spectrometer (MODIS) (Masocha et al., 

2018). High frequency of observation coupled with high spatial resolutions facilitates the rapid 

detection evolving from crop dynamics at spatial scales, high enough for timely interventions, and 

effective resource management (Houborg and McCabe, 2018a). 

The advent of the CubeSat (~ 10 kg) in particular, data from Planet Labs Inc, provides satellite 

images collected by a constellation of nanosatellites (Doves) at very high spatial resolutions 

(VHSR) (Baloloy et al., 2018). Constellations of these 175 CubeSats are proving to be an 

innovative source of data, with vast potential to overcome the spatial-temporal limitations of 

conventional single-sensor satellite missions (Houborg and McCabe, 2018b). 

These nanosatellites are equipped with unique multispectral sensors VNIR (420–900 nm) at 3 m 

spatial resolution and provide daily global data equivalent to a daily collection capacity of 350 

million km²/day (Planet, 2018). However, since the first launch of the first flock of Doves on the 

22nd of June 2016, research on the possible benefits afforded by PlanetScope data for landscape 

species characterization is still limited (Cooley et al., 2017). This could be attributed to the newness 

of CubeSats, the cost of imagery, concerns over cross-sensor calibration, location accuracy, image 

quality, data availability, and accessibility (Cooley et al., 2017). However, these nanosatellites can 

essentially improve spatial analysis methods for weed identification, detection, and mapping 

within agroecological systems by providing consistent information showing in-field variability in 
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weeds configuration and growth patterns (Yue et al., 2018). 

Although the CubeSats are superior in their spatiotemporal resolution, the radiometric coverage is 

inferior to the conventional satellites such as Sentinel-2. This chapter evaluates and intercompares 

the capabilities and potential scientific utilities of Sentinel-2 data with the very high spatial 

resolution nanosatellite data of PlanetScope to detect and map Striga (Striga hermonthica) in 

intercropped African farm fields. Sentinel-2 is a combination of two sensors (2A-2B) developed 

by the European space agency (ESA) (Chemura et al., 2018). These sensors provide images at 10, 

20 and 60 m spatial resolution and a spectral range of 440 to 2 280 nm at a combined global average 

revisit time of 5 days (Immitzer et al., 2016). Although several capabilities of Sentinel-2 have been 

successfully tested, such as evaluating rangeland quality (Ramoelo et al., 2015; Shoko and 

Mutanga, 2017), above biomass estimation (Sibanda et al., 2015a) water hyacinth mapping 

(Thamaga and Dube, 2018) and understanding crop behavior (Veloso et al., 2017; Vrieling et al., 

2018) its utility in detecting and mapping Striga occurrence is not documented. The use of 

Sentinel-2 imagery is advantageous because of its spatiotemporal coverage, the presence of the 

strategically positioned red-edge bands, 13 multispectral bands, its global footprint, and free-

availability. 

Striga is one of the severe biological crop pests reducing food production in sub-Saharan Africa 

resulting in more than US$1 billion in losses every year (Atera et al., 2013; Scholes and Press, 

2008). Striga is a parasitic weed whose existence relies on the availability of cereal crops in 

particular maize and sorghum (Khan et al., 2002; Midega et al., 2017). Since most optical remote 

sensing instruments capture the top of canopy reflection, the use of spaceborne sensors in mapping 

Striga occurrence poses huge mapping challenges as the weeds mostly occur underneath cereal 

plants. Crop health condition and phenology metrics entrenched within vegetation indices are, 

therefore, crucial to predict and inform on the existence of the understory weed. 

In this chapter, the strength and usability of Sentinel-2 compared to the PlanetScope data in 

detecting and mapping Striga occurrence within maize fields in western Kenya were evaluated 

using the guided regularized random forest (GRRF) classification ensemble. GRRF algorithm is 

superior in its ability to identify key variables and robust in data processing capabilities (Mureriwa 

et al., 2016). GRRF is regarded as one of the most robust and effective classification methods for 
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agroecological systems, using very high spatial resolution satellites like PlanetScope, particularly 

within heterogeneous landscapes (Adam et al., 2017; Kyalo et al., 2017). 

3.2 Materials and methods 

3.2.1 Study area 

The study was conducted in the Rongo sub-county, Migori county of Western Kenya. Rongo is 

administratively divided into four wards namely; North, East, Central, and South Kamagambo 

(Figure 3.1). The town is located at latitude -0.75786S and longitude 34.60901E at an altitude of 

1 470 m. The study area is bound by the coordinates 00 39’12” S; 340 35’.40” E and 00 59’16” S; 

340 37’21” E. It receives an average annual rainfall of 1 600 mm, with a bimodal yearly seasonal 

pattern. The average annual temperature is around 220 C, and humidity ranges between 50% and 

70%. 

The agroecological system is characterized by loam, sandy, and clay soils, with most of the 

agricultural activities being subsistence and small-scale agriculture. Crops grown in Rongo include 

maize, beans, groundnuts, green grams, cassava, and some horticultural crops such as mangoes, 

banana, avocado, pawpaw, and indigenous vegetables with sugarcane being the main cash crop in 

the area. The crop fields vary (±30 m2) in dimension. Due to the limited farmlands allocated to 

individual farmers, intercropping of maize with either beans, cowpea, or groundnuts is the main 

farming practice in the area. 
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Figure 3.1: Domain and geographic location of the Rongo subcounty in Kenya and Migori county. The background 

is a true color RGB (3, 2, 1) Sentinel-2 image of the 13th of December 2017. 

3.2.2 Data collection 

Field surveys were conducted between the 12th and the 16th of December 2017. This period 

coincided with the peak Striga flowering phase and maize reproductive stages R1-R6. Reference 

data were gathered within croplands. In the study area, the cropland system was mainly mono and 

mixed maize cropping. A stratified random sampling approach, using the administrative ward 

boundaries as strata was followed to determine areas with Striga the presence or absence reference 

data. A handheld global positioning system (GPS) instrument with an accuracy margin of ±3 m 

was used to locate the reference data. The ‘presence’ or ‘absence’ Striga occurrence data at the 

center of the field were collected to avoid the influence of the edge effect. Each plot in the sampled 

fields was geo-tagged using photographs taken from the center and the four cardinal directions for 

supplementary analysis of the cropping systems and crop age. The other landcover components in 

the study area i.e. built-up area, bare patches, water, and natural vegetation reference data were 

collected by digitizing regions of interest (ROI) using visual interpretations of very high spatial 

resolution imagery within Google earth® as described by Chemura et al., (2017b) and summarized 
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in Table 3.1. 

Table 3.1: Landcover classes used in the classification analysis for both PlanetScope and Sentinel-2 images 

Class Class ID Description 

Bare patches 1 Surfaces without vegetation 

Built-up 2 Human-made constructions 
Natural vegetation 3 Wood vegetation and grasslands 

Non-Striga fields 4 Crop fields without Striga 

Striga infested fields 5 Crop fields infested with Striga 

Water 6 Water bodies 

3.2.3 Image acquisition and pre-processing 

Images of PlanetScope (16th December 2017) and Sentinel-2 (13th December 2017) were used in 

the analysis. PlanetScope was provided by Planet Labs Inc. https://www.planet.com and delivered 

as an analytic 4-band product of the visible and near-infrared (VNIR) (Planet, 2018). The data was 

received as an orthoscene product (level 3B), which relates to top of atmosphere (TOA) radiance 

suitable for an analytic and visual application. The scenes were provided already orthorectified to 

< 10 m root mean square error (RMSE) position accuracy and projected to UTM/WGS84 

cartographic projection. The scaled radiance was converted to TOA reflectance using a Planet Labs 

python guide (https://developers.planet.com/tutorials/convert-planetscope-imagery-from-

radiance-to-reflectance/) and the corresponding reflectance calibration coefficients associated with 

each band from the metadata.xml files.  

The scenes were mosaiced to cover the entire study area. Similarly, Sentinel-2 data, processing 

level 1C was freely downloaded from the Copernicus data download platform 

https://scihub.copernicus.eu/dhus/#/home within the granule T36MXE. Level 1C data from 

Sentinels are provided as TOA reflectance, already orthorectified in cartographic geometry in tiles 

of 100 km2, UTM/WGS84 projection. These were converted to atmospherically corrected, surface 

reflectance level 2A using the SEN2COR in SNAP v6.0 software run using the default parameter 

settings. The choice of images was informed by the alignment with the same period the field 

reference data was collected, the availability from the sensor’s archive, and the corresponding 

cloud cover. All the images were acquired on days of low cloud cover (< 5%) and during the period 

when vegetation was in full vigor. 
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3.2.4 Broadband vegetation indices 

Seven vegetation indices were computed from PlanetScope and Sentinel-2 images (Table 3.2). 

Visible and near-infrared (VNIR) bands were used to derive vegetation indices. The indices were 

computed, using the freely available SNAP v6.0 software. These indices were chosen founded on 

(1) their ability to reduce soil background effects, (2) their strength to separate between flowering 

and nonflowering plants, and (3) capability to enhance vegetation greenness (Xue and Su, 2017). 

The normalized difference vegetation index (NDVI) has been successfully used to estimate 

biomass and crop yields (Chemura et al., 2017c; Dube et al., 2015). Also, the usage of NDVI, as 

opposed to the classification of raw bands, is recommended for discrimination of vegetation from 

other non-photosynthetic classes (Bannari et al., 1995; Matongera et al., 2017). Ratio vegetation 

index (RVI) is based on the principle that leaves absorb red more than near infrared (NIR) (Bannari 

et al., 1995; Xue and Su, 2017).  

Two indices that correct for the influence of the soil background were used namely; modified 

secondary soil adjusted vegetation index 2 (MSAVI2) and soil adjusted vegetation index (SAVI). 

MSAVI2 does not rely on the soil line to eliminate the soil influence but introduces a function 

rather than a constant ‘L’ value, which is the modification of SAVI and MSAVI. SAVI minimizes 

the influence of soil brightness by introducing the soil condition ‘L’. The value of L ranges 

between 0 to 1, where values of L are close to zero, SAVI equals NDVI (Royimani et al., 2019). 

In this chapter, L = 0.5 was used since this is common practice for a wide range of environmental 

conditions (Xue and Su, 2017).  

The atmospheric resistant vegetation index (ARVI) is based on the correction of the atmospheric 

influences through the elimination of the effects of atmospheric aerosols using the difference 

between the blue and red bands. The difference vegetation index (DVI), which subtracts the red 

band from the near-infrared band, has been useful for vegetation monitoring, however, it is very 

sensitive to changes in the soil background (Bannari et al., 1995). The infrared percentage 

vegetation index (IPVI) is recommended for vegetation mapping as it is sensitive to vegetation 

cover and vegetation biomass (Royimani et al., 2019). 
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Table 3.2: Selected vegetation indices for the discrimination of Striga infested crop fields from other land cover 

classes: where RB in the atmospheric resistance vegetation index is the difference between the red band and blue band 

Vegetation index Equation Reference 

Normalized difference vegetation index 
(NDVI) 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

(Abdel-Rahman et al., 
2016) 

 

Infrared percentage vegetation index 
(IPVI) 

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅
 

(Royimani et al., 2019) 
 

 

Simple ratio/ ratio vegetation index (RVI) 𝑁𝐼𝑅

𝑅
 

 

(Evangelista et al., 2009) 

Soil adjusted vegetation index (SAVI) 

 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿 
 (1 + 𝐿) 

 

(Hadjimitsis et al., 2010) 

Modified secondary soil adjusted 
vegetation index (MSAVI2) 

 

 

0.5 X [2 NIR + 1 –  
 

√2(𝑁𝐼𝑅 + 1)2 − 8 (𝑁𝐼𝑅 − 𝑅)] 

(Xue and Su, 2017) 

Atmospheric resistant vegetation index 
(ARVI) 

 

𝑁𝐼𝑅 − 𝑅𝐵

𝑁𝐼𝑅 + 𝑅𝐵
 

 

(Xue and Su, 2017) 

Difference vegetation index (DVI) 𝑁𝐼𝑅 − 𝑅 
 

(Dube et al., 2015) 

3.2.5 Guided regularized random forest 

GRRF was used to select the most important bands and indices for the prediction of the six land 

cover classes (Table 3.1). Many researchers have used the random forest (RF) as a dimensionality 

reduction tool to reduce data redundancy within explanatory variables (Dube et al., 2014; Han et 

al., 2017). However, research has shown disadvantages for the use of the random forest as a tool 

to measure variable importance, as well as a variable selection method (Mureriwa et al., 2016). 

The package ‘RRF’ in R software was used to perform the variable importance analysis and 

classification (Deng, 2013; R Core Team, 2019). A gamma value of 0.6 was used in the ‘CoefReg’ 

function to determine the limit used to restrain the explanatory variables to the minimum without 

compromising on the capacity of the algorithm to predict accurately. Compared to the standard 

algorithms, the regularized framework significantly reduces the training time by building a single 

model (Deng and Runger, 2013). The GRRF uses a similar concept of the RF model but uses the 

importance scores generated from RF to guide the variable selection process (Adam et al., 2017; 

Mureriwa et al., 2016).  
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The importance value of a variable in RF is attained through the “Gini index” over all nodes, across 

all trees generated and the feature is used to split measure the pureness of the feature at every node 

to facilitate the voting process (Breiman, 2002). Hence, GRRF provides the precise variables that 

are most suitable for predicting the feature, out of the multiple features (Deng, 2013). Like the 

standard algorithm of the random forest for classification, the regularized random forest algorithm 

is an ensemble machine learning approach, which combines a large set of decision trees (Breiman, 

2001).  

The approach provides randomness by the bagging operation to fit numerous decision trees on 

random subsamples (Abdel-Rahman et al., 2013a; Adam et al., 2017). The multiple classification 

trees then vote by plurality on the correct classification (Royimani et al., 2019). Most studies rely 

on the out of bag (OOB) accuracy for the model evaluation, however, the current chapter used a 

10 x 10-fold repeated cross-validation technique, set to train and validate the performance of the 

models (Immitzer et al., 2016). The three parameters, mtry and ntree = 500, flagReg = 1, were used 

as default using the tune length of 3. According to (Abdel-Rahman et al., 2013b) increasing ntree 

beyond 500 does not show a pronounced effect on RMSE. 

3.2.6 Accuracy assessment 

Data generated from the digitized training areas were split into two datasets 70% and 30%, which 

is ‘training’ and ‘testing’ respectively, as per the standard machine learning evaluation criteria 

(Dube et al., 2014; Kyalo et al., 2017). Model testing data was used in the construction of the 

confusion matrices for the validation of the performance of the GRRF model. The overall accuracy 

(OA), user's accuracy (UA), and the producer's accuracy (PA) were used together with Kappa 

statistics to evaluate the performance of the classifier and the sensors. 

3.3 Results and discussion 

3.3.1 Variable selection using guided regularized random forest 

Results from both PlanetScope and Sentinel-2 imagery show that the visible bands (blue, green, 

and red) were critical for separating the two Striga classes (Striga and non-Striga infested fields) 

from the four land cover classes (bare patches, built-up, natural vegetation, and water). The GRRF 

was able to determine only six key variables from Sentinel-2 and five variables for prediction using 
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PlanetScope. Amongst the vegetation indices, only ARVI and NDVI for Sentinel-2 were selected 

by the GRRF whilst ARVI and IPVI were selected for the PlanetScope (Figure 3.2).  

These results prove the strength and importance of the raw bands of these two sensors in 

discriminating vegetation from manmade features. However, the indices were also crucial for 

highlighting plant inherent properties associated with leaf properties, such as chlorophyll content 

and vigor. Vegetation indices have specific expressions and ratios, which can represent green 

vegetation properties better than using individual bands (Baloloy et al., 2018). NDVI has been 

tested in various related research and has proven a valuable index correlated to biophysical plant 

characteristics such as chlorophyll content and LAI (Baugh and Groeneveld, 2006). Similarly, 

ARVI is a modified version of NDVI that overcomes the influence of the atmosphere. 

 

Figure 3.2: Variable importance percentage for both Sentinel-2 and PlanetScope derived metrics using the GRRF 

variable selection measure 
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3.3.2 Mapping accuracy assessment 

The use of Sentinel-2 selected variables (red, green, blue, near-infrared, and ARVI) produced an 

overall accuracy of 87% and Kappa of 0.82 in detecting Striga occurrence in maize fields (Figure 

3.3). The results were slightly lower (-5% deviation) compared to those obtained using 

PlanetScope. The results show that PlanetScope selected variables (red, green, blue, ARVI, and 

IPVI) produced the slightly higher land use/land cover (LULC) mapping results (92%) and Kappa 

of 0.89. The use of a few systematically selected number of effective bands has shown that it is 

possible to attain and exceed the classification accuracy of the entire waveband dataset (Cao et al., 

2018). This also reduces the redundancy produced by correlated variables. The GRRF process 

decreases the multidimensionality of the variable data without compromising key information 

relevant to the features (Adam et al., 2017; Deng, 2013; Mureriwa et al., 2016) 

 

Figure 3.3: Model prediction performances using accuracy and Kappa for bands only variables (*.bands), combined 

indices and bands(*.combined) and guided regularized random forest (GRRF) selected variables (*.selected) using 

PlanetScope (PS) and Sentinel-2 (S2) imagery. 

Although Sentinel-2 and PlanetScope both performed very well in predicting other classes, the 

accuracy results for Striga and non-Striga fields were low 66% and 72% respectively (Table 3.3). 

Based on the accuracy produced by the single scene of PlanetScope, these results demonstrate the 

±175 CubeSats constellation is a relevant source of spatial data capable of consistently monitoring 

the presence of Striga and other land cover classes. However, due to the limiting costs of 

acquisition of the PlanetScope imagery, Sentinel-2 produced acceptable accuracies, which are 
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essential for monitoring Striga occurrence. 

These classification errors are related to the split of cropland classes into Striga and non-Striga 

crop fields, which have similar spectral responses. The split was necessary to differentiate maize 

fields infested with Striga and non-infested fields. The classification error margins could also be 

attributed to the complexity produced by the miniature (< 30 m2) heterogeneous fields mainly with 

intercropped plants that characterize the study area. Since other non-cropland classes could be 

classified with very high accuracy these results could potentially be improved by masking other 

classes except cropland and predicting Striga within the cropland class. 

Table 3.3: Summarized confusion matrices and classification accuracies, overall accuracy (OA), producer’s accuracy 

(PA), user’s accuracy (UA) and Kappa statistics using the guided regularized random forest image classification of 

PlanetScope and Sentinel-2  comparing combined variables (all bands and all indices) and GRRF selected variables 

(fewer optimum bands and indices selected with the GRRF algorithm. 

 

Class 

PlanetScope Sentinel-2 

Combine variables GRRF selected 

variables 

Combine variables GRRF selected 

variables 

PA UA PA UA PA UA PA UA 

Bare 92 95 93 96 88 92 88 91 

Built-up 93 87 93 88 92 85 90 85 

Natural Vegetation 98 99 98 99 96 95 94 96 

Non-Striga Fields 70 70 67 70 51 52 53 56 

Striga Fields 65 72 67 68 53 66 54 52 

Water 89 94 91 91 100 97 93 93 

OA 92% 92% 88% 87% 

Kappa 0.89 0.89 0.83 0.82 

3.3.3 Striga mapping 

The final thematic maps produced via the GRRF algorithm are shown in Figure 3.4. Both images 

show that much of the Striga infestation is in the north and north-west of Rongo whilst low on the 

south. The south is mainly characterized by sugarcane farms, which are less susceptible to Striga 

infestation whereas the north and northwest regions are predominantly maize fields. There are 

patches of Striga infested fields within the built-up area surrounding Rongo town. Most of the 

urban dwellers practice urban agriculture, hence the presence of Striga within the vicinity of the 

central business district. 

Both images ably predicted for the built-up, water, natural vegetation, and bare areas. The ability 

of these two sensors and the capability of the GRRF model to separate these classes is 

commendable. Interestingly, there were able to classify the river quite distinctively from the rest 
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of all the surrounding classes. Apart from the capacity to map Striga these results confirm the 

potential of Sentinel-2 to monitor LCLU changes over large landscape scales. 

 

 

Figure 3.4: Land use and land cover map of Rongo showing the distribution of Striga infested fields from the GRRF 

classification of PlanetScope and Sentinel-2. 

3.4 Conclusions 

From the results of this chapter, it is concluded that: 

• The Sentinel-2 sensor detected Striga infested maize fields with high accuracy, almost like those 

derived using PlanetScope metrics. 

• The GRRF feature selection shortlisted the red, green, blue, NIR, and ARVI as the most important 

variables for predicting Striga occurrence, with an overall classification accuracy of 87% (-5% 

deviation from PlanetScope selected variable performance. 
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Overall, the findings of this work provide baseline information appropriate to devise adaptive weed 

management strategies in sub-Saharan Africa. However, since the results proved that there were 

errors of commission between Striga and non-Striga fields caused by similarities in the spectral 

behaviors of the crops, this chapter recommends that a hierarchical approach be tested by masking 

out croplands and using subpixel-unmixing technics to improve the detection ability of Striga 

occurrence. Since Striga swiftly invades agroecological landscapes, we also suggest landscape-

scale monitoring of Striga using multi-date Sentinel-2 data. Long-term remote sensing applications 

are effective in defining spatial trends and the evolution of the distribution of invasive weeds over 

time. Furthermore, future studies must consider the presence of several components crops within 

intercropped systems that could potentially impact the satellite signatures obtained within 

croplands. 
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Chapter 4  
 

Landscape-scale hierarchical cropland and subpixel Striga detection  

 

 

 

Photo: courtesy of Bester Tawona Mudereri 2018 
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T., (2020). A two-step approach for detecting Striga in a complex agroecological system 

using Sentinel-2 data. Science of the Total Environment. 
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Abstract  

Information on weed occurrence within croplands is vital but is often unavailable to support 

weeding practices and improve cropland productivity assessments. Until now, few studies 

have been conducted to estimate weed abundances within agroecological systems from 

spaceborne images over wide-area landscapes, particularly for the genus Striga. Therefore, 

this chapter attempts to increase the detection capacity of Striga at subpixel size using 

spaceborne high-resolution imagery. A two-step classification approach was used to detect 

Striga (Striga hermonthica) weed occurrence within croplands in Rongo, Kenya. Firstly, 

multidate and multiyear Sentinel-2 data (2017 to 2018) were utilized to map cropland and 

non-cropland areas using a random forest classification algorithm within the Google Earth 

Engine. The non-cropland class was thereafter masked out from a single date Sentinel-2 

image of the 13th of December 2017. The remaining cropland area was then used in a subpixel 

multiple endmember spectral mixture analysis (MESMA) to detect Striga occurrence and 

infestation using endmembers (EMs) obtained from the in-situ hyperspectral data. The 

gathered in-situ hyperspectral data were resampled to the spectral waveband configurations 

of Sentinel-2 and three representative EMs were inferred, namely: (1) Striga, (2) crop and 

other weeds, and (3) soil. Overall classification accuracies of 88% and 78% for the pixel-

based cropland mapping and subpixel Striga detection were achieved, respectively. 

Furthermore, an F-score (0.84) and a root mean square error (0.0075) showed that the 

MESMA subpixel algorithm provides plausible results for predicting the relative abundance 

of Striga within each Sentinel-2 pixel at a landscape scale. The capability of MESMA 

together with a cropland classification hierarchical approach was thus proven to be well 

suited for Striga detection in a heterogeneous agroecological system. These results can be 

used to guide in the adaptation, mitigation, and remediation of already infested areas, thereby 

avoiding further Striga infestation of new croplands.   

Keywords: endmember selection; Google Earth Engine; spectral mixture modeling; 

invasive weeds; Africa 
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Graphic abstract 
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4.1 Introduction 

There is a great need for precise information on the occurrence of harmful weeds within croplands 

to enhance scaling out of interventions and mitigation of crop production constraints, that may 

impede agricultural products’ supply chains (Mutanga et al., 2017).  Striga is a parasitic weed of 

global economic importance that penetrates the roots of the cereal crops after germination and 

withdraws nutrients and water thereby suffocating and out-competing their cereal crop hosts 

(Hassanali et al., 2008). Consequently, the productivity of economically fundamental host crops 

like maize, sorghum, and rice can deteriorate considerably, causing extensive grain yield 

reductions and unprecedented socioeconomic impacts (Ejeta and Gressel, 2007). Striga weed 

detection using remote sensing techniques such as the in-situ hyperspectral methods (Mudereri et 

al., 2020a) or high-to-medium spatial resolution satellite data (i.e. PlanetScope and Sentinel-2) are 

essential tools to help identify weed distributional patterns and priority areas at plot and/or field 

scales (Mudereri et al., 2019a). Spectral responses in small-scale agroecological systems, typical 

for Africa, exhibit a large intra- and inter-field variability which results in detection errors when 

discriminating between co-occurring crops and weeds (i.e. maize and Striga) (Mudereri et al., 201 

9a). Specifically, the heterogeneity, fragmentation, and complex crop cycles (Xiong et al., 2017a) 

of  African cropping systems hinder the detection of hidden spectral properties of the Striga weed, 

when pixel-based detection approaches are employed.   

On the other hand, the complex structure of remotely sensed spectral information often shadows 

analytical spectral characteristics and obstructs the comprehensive characterization of targeted 

constraints within the croplands (Somers et al., 2011). However, studies have shown that the mixed 

pixels (e.g. crop and Striga) can be decomposed using subpixel classification methods i.e. spectral 

mixture analysis (SMA: Powell et al., 2007).  Numerous variants of SMA to model sub-pixel 

fractions have been used by other studies such as the simple spectral mixture analysis (sSMA: 

Somers et al., 2011), Monte Carlo spectral mixture model (AutoMCU: Asner and Lobell, 2000), 

Bayesian spectral mixture analysis (BSMA: Song, 2005), linear mixture analysis (Heinz and 

Chang, 2001) and multiple endmember spectral mixture analysis (MESMA: Roberts et al., 1998). 

These methods are all set and operationalized by: (1) determining how many pure spectra known 

as endmembers (EMs) are present in an image data, (2) identifying the biophysical nature of each 

of those EMs within a pixel, and (3) estimating the fractional abundances of each EM in a pixel 
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(Somers et al., 2011).  

MESMA is, by far, the most extensively used SMA method that yields a relatively low 

classification error and provides high detection accuracies when compared to the other SMA 

methods (Degerickx et al., 2019). The MESMA approach has been used in a wide range of 

applications including characterization of urban environments (Franke et al., 2009), mapping fire 

(Quintano et al., 2013), plant species mapping (Roberts et al., 1998), mapping of marshes (Li et 

al., 2005; Rosso et al., 2005) and classification of agricultural agroecosystems (Njenga, 2016), 

among others. However, no, or few studies have yet to use MESMA-based fraction images to 

estimate Striga (Striga hermonthica) occurrence or severity. Thus, this study is the first attempt to 

test the efficacy of MESMA in estimating and mapping Striga occurrence and fractions within 

croplands in Africa using a test site in Kenya.  

To effectively perform a subpixel classification method, Degerickx et al. (2019) suggested using 

a-priori classification or segmentation along with SMA approaches to constrain EMs to certain 

segments of the image to ensure a reduction in the spectral confusion. To detect invasive weeds 

like Striga that infest croplands using image data and subpixel SMA, one would need to first 

classify the croplands, before employing any SMA like MESMA. Mapping of croplands using a 

singledate or multidate multispectral images and machine learning classification algorithms is well 

documented in the literature (Belgiu and Csillik, 2018; Gumma et al., 2019). Among the machine 

learning algorithms used in most of these studies, the random forest (RF) performs relatively better 

than the other methods for delineating croplands ( Belgiu and Csillik, 2018; Immitzer et al., 2016).  

In this chapter, the Google Earth Engine (GEE) was used to execute accurate and localized 

cropland mapping. The strength and versatility of the GEE and the subpixel MESMA to 

manipulate Sentinel-2 multitemporal data was exploited to execute a two-step cropland and Striga 

weed classification approach. This approach was necessitated by the need to constrain the 

classification of Striga occurrence within the cropland area to considerably reduce the number of 

EMs. Various studies in agriculture monitoring and management have used the GEE platform to 

add and curate their data while exploiting Google’s cloud resources to undertake all the processing 

procedures (Kelley et al., 2018; Landmann et al., 2019). The objective of this chapter was thus to 

advance the feasibility of Striga weed detection using the subpixel MESMA within croplands 
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derived using the high resolution (10 m) freely available multispectral Sentinel-2 images and their 

respectively derived vegetation indices (VIs) in the small-holder farming system. 

4.2 Study area  

The study was conducted in the Rongo sub-county (coordinates: 00 39`12``S; 340 35`40``E and 00 

59`16``S; 340 37`21``E), covering an area of ~ 213 km2. Rongo is in the Migori county of western 

Kenya, occurring at an altitude of 1 470 m (Figure 4.1). A tropical and subtropical climate 

characterizes the study area with a bimodal rainfall distribution. Average annual rainfall of 1 600 

mm across the two rainy seasons i.e. during ‘short rains’ season spanning November to January 

and ‘long rains’ season occurring between March and June characterizes the study area. The study 

area experiences relative humidity ranges of between 50% and 70% throughout the year, while the 

annual average temperature is 20.60C.  

In Rongo, the savanna grassland biome dominates the natural ecosystems, often flanked with 

deciduous and exotic forest vegetation. On the other hand, the agricultural cropping system in the 

study area is mainly mixed small-scale farms, with an average field size of 0.1 ha. Maize, bean, 

cassava, green gram, groundnut, and fruits such as avocado, banana, pawpaw, mango, and 

indigenous vegetables as food crops are common in Rongo for predominantly subsistence 

purposes. Sugarcane grown mainly in the southern region of the study area is the main cash crop, 

among others. Rainfall variability, insect pests, and the invasive Striga weed are the major crop 

production constraints in the study area.  
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Figure 4.1: The location of Rongo in Kenya. The light green diamonds show the location where the spectral 

endmembers were extracted. The background layer is the Sentinel-2 image of the 13th of December 2017 displayed in 

the true color using the red, green, and blue (RGB) band combination as Sentinel-2 bands 4,3, and 2, respectively. 

4.3 Methods  

4.3.1 Two-step hierarchical classification approach  

The proposed methodology uses a two-step hierarchical approach to detect the occurrence of Striga 

i.e. (1) Sentinel-2 time-series composites to detect and distinguish cropland and non-cropland over 
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a series of agricultural growing seasons using the random forest classifier in a semi-automatic 

approach in GEE and (2) spectral unmixing of the derived cropland using a single-date (13th 

December 2017) Sentinel-2 image and MESMA in R-software to assess the occurrence of Striga. 

The generalized workflow of the classification approach used in this study is shown in Figure 4.2. 

The details of each step are thereafter described in the subsequent sub-sections.  

 

Figure 4.2: The general workflow of the two-step hierarchical approach for detecting Striga weed 

4.3.2 Striga and land use/ cover (LULC) field data collection 

Striga ‘presence’ (n = 52) or ‘absence’ (n = 20), together with cropland data were obtained from 

field surveys conducted between the 12th and 16th of December 2017 which coincided with the 

peak Striga period and the maximum phenological stage of the maize in the study area. A global 

positioning system (GPS) instrument (±3 m accuracy) was used to locate the field Striga reference 

data. Also, reference data on different land use and land cover (LULC) classes i.e. bare land 

(including fallow and abandoned cropland), built-up area, natural vegetation (forests, shrubland, 

and grasslands), and water were collected through digitizing regions of interest (ROI) on Google 
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Earth® (Chemura et al., 2017b) and are summarized in Table 4.1. The administrative ward 

boundaries were used as strata in a stratified random sampling approach, to determine areas of 

Striga ‘presence’ and ‘absence’ and other LULC classes and reduce sampling bias.  

The Striga and LULC classes were arranged into two main classes for classification i.e. cropland 

and non-cropland to create a crop mask. A total of 260 sample polygons consisting of 5 890 pixels 

for the two classes were derived and divided into 77% for image classification training and 23% 

for testing the accuracy of the classification (Table 4.1). To perform a pixel-based classification, 

the sample points at a pixel scale were organized in a Google fusion table and retrieved in the 

GEE, then the corresponding input sample pixel values were extracted at the Sentinel-2 image 

pixel resolution (i.e. 10 m). 

Table 4.1: Striga and Land use/ cover (LULC) classes and samples sizes used in the classification of the cropland and 

Striga in the Rongo study area, Kenya  

Striga/ LULC class Description Cropland class Sample 

polygon 

Train 

pixels 

Test 

pixels 

Striga infested field Crop fields with Striga Cropland 52   

Non-Striga infested fields Crop fields without Striga Cropland 20   

Other crops Other non-maize cropland Cropland 46   

  Total 118 2362 720 

Built-up Human-made constructions Non-cropland 52   

Bare land Surfaces without vegetation Non-cropland 21   

Natural vegetation Woodland and grassland Non-cropland 35   

Water Water bodies Non-cropland 34   

  Total 142 2158 650 

Total   260 4520 1370 

4.3.3 Cropland mask generation in GEE 

The use of the GEE was employed to map cropland and generate a cropland mask to reduce the 

propagation of classification error.  The freely accessible cropland maps are derived over large 

areas at coarse spatial resolution hence have many limitations such as inability to account for 

fragmentation, failure to delineate small farms, and to adequately capture the influence of mixed 

cropping systems which leads to confusion with other land cover types (Oliphant et al., 2019). As 

a result, such cropland maps are inadequate and not useful in areas where crop fields are small (< 

0.1 ha) and within mixed cropping systems such as those in the small-holder farming sector which 

characterize the present study area in Kenya.  
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4.3.3.1 Sentinel-2 data compositing  

Image processing and analysis for generating the non-cropland mask was implemented in the GEE. 

The procedures executed in GEE included image cloud filtering, vegetation indices calculation, 

normalization for illumination effects (i.e. shade), median compositing, machine learning classifier 

parameterization, creating the final cropland classification map, and assessing the accuracies of 

the non-cropland product. A relatively cloud-free layer stack image input was formed by stacking 

the Sentinel-2 image collection within two consecutive years (i.e. between 01st of January 2017 

and 31st of December 2018) and then applying a cloud mask. Pixel-based image compositing is a 

common procedure to condense the number of pixels with redundant and invalid data due to the 

atmospheric interference, shadow, or other noise remaining after pre-processing (Bey et al., 2020).  

The median compositing method has been reported to be computationally and technically less 

demanding and provides the best results when compared to other pixel-based image compositing 

methods such as (i) maximum ratio value, (ii) annual greenness pixel, (iii) best pixel based on the 

distance to the nearest cloud, and (iv) seasonal greenest pixel (Bey et al., 2020). The median values 

were used for each band to capture the variability between seasons since the median value is often 

used instead of the mean to handle outliers and have the most representative pixel value over the 

entire period.  

Five vegetation indices (VIs) namely normalized difference vegetation index (NDVI: Rouse et al., 

1974), modified soil adjusted vegetation index (MSAVI: Qi et al., 1994), enhanced vegetation 

index (EVI: Huete et al., 2002), and two red-edge (RE) vegetation indices i.e. RE-NDVI (Sibanda 

et al., 2019) and RE-EVI were derived from the bands of Sentinel-2 and added to the spectral band 

composite. These indices were selected as they are designed to capture the sensitivity of vegetation 

features while minimizing the influence of the confounding factors such as atmospheric effects 

and soil reflectance (Bannari et al., 1995; Xue and Su, 2017). These indices have also been reported 

by other studies as the best in capturing vegetation variabilities over time (Chemura et al., 2017c; 

Sibanda et al., 2019).  These indices are calculated as shown in Equations 4.1 – 4.5: 

NDVI =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
       (4.1) 
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MSAVI = 
2𝜌𝑁𝐼𝑅+1 − √(2𝜌𝑁𝐼𝑅+1)2− 8 (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑) 

2
   (4.2) 

 

EVI = 2.5 x  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 6 𝑋 𝜌𝑅𝑒𝑑−7.5 𝑋 𝜌𝐵𝑙𝑢𝑒+1 
    (4.3) 

where ρNIR, ρRed ρBlue in Equations (4.1), (4.2) and (4.3) represent the near-infrared red and blue 

reflectance values respectively for a given pixel.  

RE-NDVI =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸2

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸2
     (4.4) 

 

RE-EVI = 2.5 x  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸2

𝜌𝑁𝐼𝑅 + 6 𝑋 𝜌𝑅𝐸2−7.5 𝑋 𝜌𝐵𝑙𝑢𝑒+1 
   (4.5) 

Where ρRE2 in Equations (4.4) and (4.5) represent Sentinel-2   band 6 or red-edge 2 (RE2) 

reflectance values for each given pixel. 

4.3.3.2 Random forest classification 

The RF algorithm (Breiman, 2001) was used to classify the cropland and non-cropland area in 

GEE using Sentinel-2 wavebands and the additional five VIs. RF is an ensemble machine learning 

classifier that has accomplished effective classification and prediction results in many remote 

sensing studies, including cropland mapping (Belgiu and Csillik, 2018; Oliphant et al., 2019). A 

detailed explanation of RF and its efficiency in remote sensing is provided in Abdel-Rahman et al. 

(2014). RF builds compound decision trees (ntree) in a machine learning ensemble algorithm 

approach for classification and regression (Breiman, 2001). For each of the decision trees, a 

bootstrap sample (2/3 of the original data referred to as “in bag” data) is grown. These randomly 

sampled subsets are used to split several nodes of these decision trees using random subsets of 

variables for classification (mtry) with the default mtry value calculated as the square root of the 

total number of variables (Abdel-Rahman et al., 2014a). The class with the majority votes from all 

the generated trees is then provided as the final class prediction (e.g. cropland or non-cropland) 

(Mudereri et al., 2019b). In this chapter, the default ntree and mtry settings, viz. 500 trees and 3 

mtry were used to perform the pixel-based RF classification for cropland mapping. On the other 

hand, the algorithm was trained using the independent 70%-pixel samples (4 520) as shown in 

Table 4.1. The non-cropland class was masked out from the Sentinel-2 image of the 13th of 
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December 2017 and the remaining cropland class was then used to perform MESMA as described 

in section 4.3.3. 

4.3.3 Endmember selection and collection 

The most vital step to a successful and valid SMA encompasses determining the number, type, and 

matching spectral signatures of EMs (Song, 2005; Somers et al., 2011). These spectral signatures 

of the EMs are obtainable either directly from the satellite image data reference spectra or spectral 

libraries, and portable spectroradiometers (Landmann, 2003; Somers et al., 2011).  

Three EM spectra within the cropland class were identified and used in the MESMA namely: (1) 

flowering Striga (2) crop and other weeds, and (3) soil. These three EMs were collected using 

canopy-level in-situ hyperspectral data collected with the ASD FieldSpec® Handheld 2™ 

spectroradiometer (HH2: ASD, 2010) using a 1 m x 1 m quadrat. A full description of how these 

in-situ hyperspectral data were collected is provided in Mudereri et al. (2020a).   

The ASD used for the EM data collection acquires reflected radiation in 325–1075 nm of the 

electromagnetic spectrum with a built-in 2 nm sampling resolution (ASD, 2010). The collected 

spectra are automatically resampled to a 1 nm spectral range. A bare optical input at a nadir full 

conical angle field of view (25o) was employed at 1 m above the maize crop to collect the data. 

This setting allows the instrument to capture spectra in an area of ∼0.5 m in diameter on the target 

(FieldSpec, 2017). This target area unit was enough for capturing the spectral signal of the three 

EMs i.e. Striga, crops with other weeds, and soil.  

The captured spectra were then filtered using the ‘noiseFiltering’ function and smoothened using 

the ‘Savitzky–Golay’ filter in R software (R Core Team, 2020) using the ‘hsdar’ package (Lukas 

et al., 2018). The spectral resampling to the configuration of Sentinel-2 was then conducted using 

the spectral response function, i.e. ‘SpectralResampling’ in the ‘hsdar’ package. The values 

corresponding to each band were used as the input to the EM values for running the MESMA in 

R software (R Core Team, 2020).  

4.3.4 Striga detection using multiple endmember spectral mixture analysis (MESMA) 

The cropland area of the Sentinel-2 image of the 13th of December 2017 that was used in the 
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MESMA was preprocessed in the GEE as described in section 4.3.3.1 of this chapter. The choice 

of the image sensing date was influenced by the coincidence with the period of field reference data 

collection. The MESMA models the spectral data as linear combinations of pure spectra, called 

EMs while allowing the types and number of EMs to vary on a per-pixel basis (Roberts et al., 

1998). Thus, each class is characterized by unique sets of EMs and their fractions. For each pixel, 

MESMA iteratively runs several candidate models (Franke et al., 2009) and the best model is 

assessed based on pixel fractions identified, their residuals, and having the smallest root mean 

square error (RMSE) when compared to the spectral curve of the pixel (Degerickx et al., 2019). 

The models are thus applied to the entire image on a per-pixel basis. In this study, the MESMA 

algorithm within the ‘RStoolbox’ package (Leutner et al., 2019) in R-software (R Core Team, 

2020) was used. The ‘RStoolbox’ package for MESMA uses the non-negative least squares 

(NNLS) regression through a sequential coordinate-wise algorithm. The MESMA was executed 

using the default settings as follows: method NNLS, 400 iterations, and tolerance of 1 x 10-9. The 

outputs from the MESMA algorithm are individual bands representing the estimated pixel fraction 

and probability of occurrence of each of the tested EMs per pixel (0–1) and RMSE. The base 

equations of MESMA and RMSE are given by equations 4.6 – 4.8 below: 

Liλ =  ∑ 𝐶 ∗  𝐿𝑘λ + ∈𝑖λ
𝑁
𝑘=1 )         (4.6) 

and    ∑ 𝑓𝑘𝑖  𝑁
𝐾=1 = 1       (4.7) 

   RMSE = [∑
(∈𝑖λ)2

𝑍

𝑍
𝐾=1 ]

2

     (4.8) 

where a mixed pixel Liλ from location i is modeled as the sum of N EMs, 𝐿𝑘λ, each covering a 

fraction 𝑓𝑘𝑖  of the pixel. The residual term ∈𝑖λ describes the unmodeled portion of the radiance, 

and the chosen model for each pixel is the one that minimizes the RMSE over the included number 

of bands used in unmixing the Z. 

4.3.5 Accuracy assessment 

Accuracy assessment and validation are a key component of any thematic map production, 

particularly when using remotely sensed data (Dube et al., 2019). The process demands randomly 

sampled high-quality reference data sets enumerated at suitable spatial and temporal scales. The 
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classification results of each of the hierarchical steps i.e. cropland and Striga maps were compared 

to random samples of validation pixels to assess the classification accuracy. Due to the 

unavailability of percentage coverage reference observations for Striga, soil, and other crops and 

weeds classes to compare with the predicted class fractional coverage, the accuracy of MESMA 

results was validated using the standard and traditional classification confusion matrix method. A 

pixel in the MESMA map was classified as the material (i.e. Striga, soil, or crops with other weeds) 

with the highest fractional coverage. The soil and crops with other weeds classes were then 

combined as non-Striga. 

Specifically, the performance of the RF classifier used in cropland mapping and MESMA were 

validated using the accuracy assessment metrics, derived from the respective confusion matrices 

(i.e. overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and the F-score) and 

RMSE. The F-score evaluates the accuracy of a class using the precision (positively classified 

values) and recall (the number of relevant instances that were actually classified, also called 

sensitivity) (Graesser and Ramankutty, 2017; Kyalo et al., 2017), while RMSE measures the 

spread of residuals around the regression line (line of best fit). For each of the mapping approaches 

(i.e. cropland mapping in GEE and Striga occurrence mapping using MESMA), the error matrices 

that provided all the four metrics i.e. OA, UA, PA, and F-score were established.  

4.4 Results 

4.4.1 Cropland mapping  

Approximately 54% (114.3 km2) of the Rongo area was classified as cropland while the remaining 

area of 98.7 km2 (46%) was non-cropland. Remarkably, the forest areas, roads, bare land, built-up 

areas, and their boundaries were accurately detected. The results indicate that the croplands in 

Rongo are diverse and irregular in shape, direction, and sizes (Figure 4.3). Due to the inter-annual 

variability, some of the croplands were fallow or probably abandoned as shown from the Google 

high-resolution imagery. However, the classified image managed to capture the inter-seasonal 

variability.  
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Figure 4.3: Visual comparison of the 10 m cropland map extents derived using Sentinel-2 data and random forest 

classifier in GEE a) Rongo sub-county, b) a subset cropland extent shows crop fields in light green color overlaid on 

a Google Earth image, and c) a reference Google Earth image zoomed-out from the red rectangle in a). 

Table 4.2 shows that the overall cropland classification accuracy was comparatively high (88%) 

with F-scores closer to 1 (0.87 and 0.89 for the cropland and non-cropland classes, respectively). 

Table 4.2 also shows that the error of omission for the cropland class was 4% (PA = 96%) and the 

error of commission was 21% (UA = 79%), while for non-cropland the error of omission was 17% 

(PA = 83%) and error of commission omission was 3% (UA = 97%). 
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Table 4.2: Classification confusion matrix for the cropland and non-cropland classes mapped in the Rongo sub-county 

using Sentinel-2 data and random forest classifier in GEE. 

 

Reference data 

 

 
Map data 

 Cropland Non-cropland Total UA (%)  

Cropland 527 143 670 79 
Non-cropland 24 676 700 97 

Total 551 819 1370  

 PA (%) 

F-score 

96 

0.87 

83 

0.89 

 

 

 

OA 

88% 

  

4.4.2 Endmembers used in Striga detection using MESMA 

Figure 4.4 demonstrates the variation in spectral responses of the three selected EMs within the 8 

resampled Sentinel-2 bands that correspond with the wavelength range of the ASD instrument 

used. The RE2, RE3, NIR, and NIRn revealed spectrally distinguishable differences (± 0.3) 

emanating from the different compositions of the classes. However, there is no substantial 

difference in the EM values within the same class (e.g. Striga EM) across the four stated bands 

(i.e. RE2, RE3, NIR, and NIRn). On the other hand, the visible bands (blue, green, and red) and 

the RE1 did not show substantial differences for both within classes and across the three EMs 

(Figure 4.4).  

The Striga EM demonstrated the influence of the Striga flower compaction and color by having 

the highest EM value in the red and higher than the crops and other weeds EM in RE1. In contrast, 

the soil EM shows higher reflectance values in the blue and red spectral bands. The crops and other 

weeds EM dominated the other 5 bands (i.e. green, RE2, NIR, and NIRn).  
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Figure 4.4: Three endmembers and their respective values derived from the resampled eight Sentinel-2 spectral bands 

used in the multiple endmember spectral mixture analysis (MESMA) for Striga detection. The eight bands correspond 

to the blue, green, red, RE1, RE2, RE3, NIR, and NIRn waveband areas. 

4.4.3 Frequency of pixel fractions of the three endmembers 

Figure 4.5 shows the distribution and frequency of pixel fractions across the three EMs tested in 

this study. The crops and other weeds EM dominated most of the pixels compared to those of 

Striga and soil EMs in the study area. Although many of the pixels and the larger pixel fractions 

were occupied by crops and other weeds, results show fewer pixels that had crop and other weeds 

fractions that are > 0.6. The huge density of Striga pixels was between 0.1– 0.4 pixel fractions with 

> 250 000 pixels having zero fractions of Striga. On the contrary, there were very few pixels that 

exhibited close to zero value of the crops and other weeds fractions in the entire study area. The 

proportion of soil EM, when compared to the other two EMs, was very low as shown by the few 

pixels representing the soil fraction and very low soil fractions within those few available soil 

representative pixels. Most of the pixels had a low RMSE (< 0.01) and a maximum RMSE of 0.024 

across all the pixels was obtained. Remarkably, this RMSE value represents almost 100% of the 

whole study area. The average RMSE (0.0075) revealed that there were generally low EM 

prediction errors using MESMA for the entire study area. 
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Figure 4.5: Frequency of the pixel fractions of the probability of occurrence values within the endmember fraction 

images of a) Striga, b) soil, c) crops and other weeds, and d) root mean square error (RMSE) 

MESMA generated four fraction images for the three EMs and their corresponding RMSE. Figure 

4.6 shows the classification results from the MESMA of the fraction images of the three EMs. The 

results showed that the RMSE was generally low across the entire study area, except for the central 

areas of Rongo. Striga occurrence was high in the north and northwestern sides of Rongo as 

visually shown by the red sub-pixels in Figure 4.6.  
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Figure 4.6: Classification results from the MESMA showing the fraction images of the three endmembers from the 

lowest 0 (green) to the highest proportion of 1 (red) and the root mean square error (RMSE) from lowest 0 (green) to 

the highest 0.03 (red). The images in the four columns represent from left to right: Striga (extreme left column), crops 

and other weeds, soil, and the respective RMSE (extreme right column). The zoomed-out images show example 

regions of high Striga proportions (second row from the top) and very low Striga proportions (third row from the top) 

4.4.4 Striga infestation in Rongo sub-country 

The false-color image of the three EMs predicting the pixel fraction using MESMA predicted that 

high proportions of Striga occur in the northwestern region of Rongo (Figure 4.7b), while in the 

southern region it is generally low (Figure 4.7c). Interestingly, Figure 4.7 shows that some fields 

were completely free of Striga infestation while in some other fields the entire field (~ 30 m x 30 

m) was completely occupied by Striga. 
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Figure 4.7: A graphical representation of the fractions of the three endmembers i.e. Striga, soil and crops, and other 

weeds that were derived from MESMA with a) showing the entire study area, b) zoomed section of the study area 

with the top red box, and c) zoomed-out section of the study area with the bottom red box 

4.4.5 Accuracy assessment of Striga detection using MESMA  

The Striga classification accuracy assessment focused primarily on two classes of interest i.e. 

Striga infested and non-infested crop fields. The predicted occurrence of Striga was in good 

agreement with the occurrence reference points with an OA of 78%, PA of 79% (error of omission 

of 21%), and UA of 89% (error of commission of 11%) as shown in Table 4.3. An F-score of 0.84 

for mapping the Striga infestation showed that the MESMA algorithm successfully predicted the 

occurrence of Striga and its relative abundance within each pixel (Table 4.3). The PA and UA for 

the non-Striga fields were lower than those obtained for the Striga-infested fields. 
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Table 4.3: Classification confusion matrix for the Striga and non-Striga classes detected in the Rongo sub-county 

using Sentinel-2 data and MESMA 

 

Reference data 

 

 
Map data 

 Cropland Non-Striga Total UA 

(%)  
Striga 41 5 46 89 

Non-Striga 11 15 26 58 

Total 52 20 71  

 PA (%) 

F-score 

79 

0.84 

75 

0.65 

  

OA (%) = 78   

4.5 Discussion 

This chapter leveraged the strength and versatility of RF and the robust spatiotemporal resolution 

of Sentinel-2 imagery in the cloud-based GEE for cropland mapping. Five spectral indices i.e. 

NDVI, EVI, MSAVI, the red-edge NDVI, the red-edge EVI, and vegetation red-edge bands (bands 

5, 6, 7, and 8a) were used for the cropland mapping. Thus, adding the indices, red-edge bands and 

the spatial resolution of the Sentinel-2 sensor permitted the successful delineation of croplands 

with high precision, including where the agricultural landscapes are very heterogeneous, 

fragmented and the fields are small (< 0.1 ha). The use of these indices ensured stable and 

meaningful comparisons of seasonal and inter-annual changes in vegetation growth and activity 

thus achieving satisfactory classification results (Belgiu and Csillik, 2018). Other studies have also 

reported the added-value of the improved Sentinel-2 spectral and spatial resolution for estimating 

leaf area index (Sibanda et al., 2019), mapping LULC (Forkuor et al., 2018), Striga weed 

(Mudereri et al., 2019a), and in cropland mapping (Xiong et al., 2017b).   

Many recent studies have reported very high accuracies in cropland mapping using Sentinel-2 

imagery (Forkuor et al., 2018; Noi and Kappas, 2018). Belgiu and Csillik, (2018) reported a 

96.19% OA, using Sentinel-2 in cropland mapping, while Sibanda et al., (2015) confirmed high 

agreements in quantifying above-ground biomass, using Sentinel-2 data. The differences between 

the cropland mapping accuracies observed in the present study and those obtained from other 

studies could have emanated from the heterogeneous nature of the cropping system and differences 

in the weeding regimes by the diverse small-holder farmers. This heterogeneity results in multiple 

spectra and texture captured by the sensors. Additionally, most of the farmers in Rongo practice 

mixed cropping within small field plots (< 0.1 ha) resulting in the diversity of field sizes, 
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orientation, and shapes. These factors could have caused the 12% error margin realized in the 

MESMA classification approach used in this study.  

Thus, the UA (commission errors) were significantly lower than the PA (omission errors) for 

cropland mapping. This was mainly because when training the RF algorithm, we aimed to capture 

many croplands, thus ensuring low omission errors for the cropland class. Thus, some non-

croplands were included as croplands, resulting in higher commission errors for the cropland class. 

In principle, an algorithm must balance PA and UA (Belgiu and Csillik, 2018; Oliphant et al., 

2019). This method is similar to the approach used by Oliphant et al., (2019) who also championed 

reduction of the error of commission by optimizing the RF algorithm, intending to capture as much 

cropland area as possible. Similarly, this study aimed to collectively capture all croplands 

including fallow croplands to holistically test the occurrence of the devastating Striga weed. The 

target to reduce the propagation of the error to the MESMA process was achieved, thus the 4% 

cropland omission error is plausible given the damage caused by Striga.  

The results produced from the accuracy assessment of the MESMA were assuring, considering 

that the validation reference data used was entirely independent of the MESMA model, unlike in 

the standard accuracy assessment procedure where the model internally splits the reference data 

into training and testing samples. The PA produced using an independent point dataset was 

relatively high showing relatively low errors of omission in the classification. Other studies have 

also reported high accuracies when using EMs derived using field spectroradiometer dataset 

(Landmann, 2003).  

Although the three EMs used in this chapter produced comparable accuracies, it is still a challenge 

to concretely locate enough EMs and their variability in different croplands to represent the 

heterogeneity of croplands and their various growth stages over the entire image (Franke et al., 

2009). We observed that spectral data from the same class had varying spectral characteristics 

perhaps attributable to crop age variations, insect pests, and disease damage, varying management 

practices, cropping system, or atmospheric effects (Degerickx et al., 2019). This, however, often 

leads to spectral variations and errors. Thus, it can be concluded that a spectrum that has been 

tested to adequately model other spectra within the library might not perform with the same 

precision when tested on a satellite image (Song, 2005). These disparities are often introduced by 
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fluxes in the brightness caused by bidirectional reflectance that is exacerbated by large viewing 

angles and broadband wavelengths when the in-situ EMs are upscaled to satellite-based imagery 

resolutions (Franke et al., 2009; Rosso et al., 2005). In comparison to other studies, the brightness-

effects did not appear to have caused a major impact on the Striga detection results, since MESMA 

automatically integrates shade as an endmember. 

Additionally, the novel two-step hierarchical approach for cropland mapping using RF and Striga 

detection using MESMA improved classification accuracies as the suppression of the spatial 

constraints (noise) from other classes minimized the spectral confusion (Degerickx et al., 2019). 

Therefore, applying a few EMs to a spatially constrained agroecosystem reduced the spectral 

densities and produced relatively high mapping accuracies at low complexity levels. Hence, this 

hierarchical MESMA approach accounts for the spectral pixel-to-pixel variability of 

agroecological systems through the simultaneous control of the spatial classification dimension 

(Franke et al., 2009). Additionally, in contrast with the other classification algorithms, MESMA 

provides the physical measurement of material contributions in a pixel or vegetation abundance 

(Li et al., 2005; Rosso et al., 2005). Thus, besides providing information about the occurrence of 

Striga in Rongo, this study quantified the magnitude and severity of the Striga infestation at 

suitable spatial resolutions (10 m x 10 m) that have never been provided before. Further studies 

are nevertheless desirable, to evaluate the performance of other classifiers and compare them to 

the Striga detection results derived from the approach of the present study.  

The results of the MESMA for detecting Striga revealed that most of the crop fields in Rongo were 

infested with the Striga weed. The results obtained in this study concurred with the reports from 

other studies that reported the occurrence of Striga in western Kenya (Atera et al., 2013; Oswald 

et al., 2001) and in Rongo, mainly in the north and northwestern sites of Rongo. This information 

is critical for agricultural planning in Rongo as most of the farms in the northwestern sites of 

Rongo practice little crop rotation and concentrate on maize throughout the year on degraded soils. 

Therefore, there is a need for awareness among the farmers to initiate crop rotation and to improve 

soil fertility by incorporating cover crops that add organic matter, use green manure, or growing 

legumes that enhance nitrogen fixation in the soil.  This is particularly different from the southern 

region where most of the farms are sugarcane plantations hence the low levels of Striga infestation 

observed.  
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4.6 Conclusions 

In this chapter, a two-step hierarchical approach was employed for mapping cropland using the RF 

classifier in GEE and the Striga weed using MESMA on Sentinel-2 data within a heterogeneous 

agroecological system in the Rongo sub-county in Kenya. This chapter confirmed the effectiveness 

of the GEE as a data curation and cropland characterization platform using RF. The high potential 

of the MESMA algorithm to decompose mixed pixels and detect Striga occurrence and infestation 

levels were demonstrated. Therefore, the masking out of other non-target classes for different land 

cover classes before the implementation of MESMA allowed for a more focused and spatially 

adjusted spectral unmixing procedure that proved to enhance the classification accuracy results 

and reduced spectral confusion. Besides, deriving EMs from the in-situ spectrometric dataset 

provided a more realistic array spectrum of Striga rather than deriving the EMs from the Sentinel-

2 image itself. Future studies should compare the use of Striga EMs from other sources and the 

respective EM selection mechanisms such as the endmember average root mean squared error 

(EAR), the minimum average spectral angle (MASA), and the count based endmember selection 

(CoB) that have been tested in other studies and are known to provide a filter to get pure spectra 

for use as EMs. Furthermore, Striga infestation fraction estimates could be empirically tested in 

areas of low, moderate, and high infestation, using the MESMA and cropland mapping hierarchical 

approach performed in this chapter.  
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Chapter 5  
 

Landscape-scale integrative modeling approach for predicting Striga invasion 

risk  

 

 

Photo: courtesy of Bester Tawona Mudereri 2018 
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Abstract 

Monitoring of destructive invasive weeds such as those from the genus Striga requires 

accurate, near real-time predictions and integrated assessment techniques to enable better 

surveillance and consistent assessment initiatives. Thus, in this chapter, the potential 

ecological niche of Striga (Striga asiatica) weed was predicted in Zimbabwe, to identify and 

understand its propagation and map potentially vulnerable cropping areas. Vegetation 

phenology from remote sensing, bioclimatic, and other environmental variables (i.e. 

cropping system, edaphic, land surface temperature, and terrain) were used as predictors. Six 

machine learning modeling techniques and the ensemble model were evaluated on their 

suitability to predict current and future Striga weed distributional patterns. The mentioned 

predictors (n = 40) were integrated into six models with ‘presence-only’ training and 

evaluation data, collected in Zimbabwe over the period between the 12th and 28th of March 

2018. The area under the curve (AUC) and true skill statistic (TSS) were used to validate the 

performance of the Striga modeling outputs. The results showed that the ensemble model 

had the strongest Striga occurrence predictive power (AUC = 0.98; TSS = 0.93) when 

compared to the other modeling algorithms. Temperature seasonality (Bio4), the maximum 

temperature of the warmest month (Bio5), and precipitation seasonality (Bio15) were 

determined to be the most dominant bioclimatic variables influencing Striga occurrence. 

‘Start of the season’ and ‘season minimum value’ of the ‘enhanced vegetation index base 

value’ were the most relevant remote sensing-based variables. Based on projected climate 

change scenarios, the chapter showed that up to 2050, the suitable area for Striga propagation 

will increase by ~ 0.73% in Zimbabwe. The present work demonstrated the importance of 

integrating multi-source data in predicting possible crop production restraints due to weed 

propagation. The results can enhance national preparedness and management strategies, 

specifically, if current future risks areas can be identified for early intervention and 

containment  

 

Keywords: climate variability; food security; machine learning; niche modeling; remote 

sensing; sub-Saharan Africa, Striga weeds 
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5.1 Introduction 

The genus Striga is composed of several species of parasitic weeds of global economic importance 

that cause socioeconomic losses of over US$ 1 billion in sub-Saharan Africa (Spallek et al. 2013). 

Striga hermonthica and S. asiatica are the most prevalent among the Striga species with S. asiatica 

reported affecting approximately 40% of arable land in the region (Cochrane and Press, 1997). 

These two species thrive in climatic conditions, which are also favorable for most cereal crops like 

maize, sorghum, millet, and rice (Khan et al., 2014). These cereal crops are the most important 

staple crops for the majority of the African population, with maize being grown for food purposes 

by more than 300 million people out of an estimated one billion population in sub-Saharan Africa 

(Sasson, 2012).  

Striga weeds attach themselves to the roots of the cereal crops, after germination and outcompete 

their hosts for space, nutrients, and water. As a result, the growth and development of the host 

crops deteriorate, causing considerable yield reduction (Ejeta and Gressel, 2007). In some areas in 

Africa, the scourge of Striga has reached epidemic magnitudes, causing a desperate scenario, 

mostly to poor small-scale farmers (Mandumbu et al. 2017a). The most common response practice 

in such scenarios is for farmers to abandon the land and look for new croplands, a very labor-

intensive task that inevitably contributes to cropland expansion and severe environmental 

degradation. 

In this chapter, the probability of occurrence of Striga (i.e. S. asiatica) was predicted in Zimbabwe, 

using vegetation phenology from remote sensing, bioclimatic, other remotely sensed variables (i.e. 

cropping system, edaphic, land surface temperature, and terrain), empirical machine learning and 

ecological niche modeling approaches. The advent of these freely available earth observation ‘big 

data’ from multiple sources and machine learning algorithms permit access to a new paradigm of 

immense opportunities to understand the earth and agroecological systems over time and space 

(Cian et al. 2018). This allows for comprehensive statistical analysis on large temporal resolution 

data using the phenological characteristics hidden in these time-series data (Landmann et al., 

2019). These various time-series inherent characteristics in the ‘big data’, are often concealed in 

single snapshot remotely sensed imagery (Cian et al. 2018; Ochungo et al. 2019).  

Thus, this multi-source remotely sensed data, coupled with advanced and efficient machine 
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learning and ecological niche modeling approaches provide a cost-effective, timely, robust, and 

very accurate platform to map and predict the occurrence of invasive weeds like Striga (Thamaga 

and Dube 2019; Jafarian et al.2019; Sibanda et al. 2019). In particular, mapping flowering Striga, 

i.e. S. hermonthica using in-situ methods, high spatial resolution satellite data, and machine 

learning has been proven to be largely possible and achievable at the plot (Mudereri et al. 2020a) 

and field scale (Mudereri et al. 2019a). However, the potential of using these remotely sensed data 

to detect and map the risk posed by the understory Striga such as the S. asiatica, which exists 

completely covered underneath crop canopies has not been attempted anywhere, more so at 

landscape scales or by using multi-source data. This information deficit is mainly attributable to 

the heterogeneous nature of the agro-natural landscapes in Africa and the multiple spectral 

responses obtained from crop fields that are infested with understory Striga weed, which cause 

enormous errors in their detection and mapping (Mudereri et al. 2019a). 

When used in species distribution modeling, machine learning and ecological niche models 

correlate the present location (‘presence-only’ or ‘presence-absence’ data) of a species with the 

appropriate predictor variables (e.g. environmental variables), thereby providing a statistical link 

between the spatial differences of the predictor variables and the dispersion of the species in the 

environment, in this case, Striga (Ayebare et al., 2018). Accuracy of the machine learning and 

ecological niche modeling relies on the precision and distribution of the ‘presence-only’ data tied 

with a careful selection of ecological and climatic predictor variables (Elith et al. 2010). However, 

it can be inferred that there is no universally best machine learning algorithm, which warrants the 

scoping into the best predictive model and the best predictor combinations for species distribution 

(Guo et al., 2019).  

Therefore, identifying robust machine learning and ecological niche modeling algorithms that can 

select the most relevant predictor variables from multiple ecological covariates to predict the 

occurrence, propagation, and distribution of the understory Striga species such as boosted 

regression trees (BRT: Friedman, 1999), classification and regression trees (CART: Breiman et 

al., 1984), flexible discriminant analysis (FDA: Fisher, 1936), generalized linear model (GLM: 

Nelder and Wedderburn, 1972), random forest (RF: Breiman, 2001) and support vector machines 

(SVM: Vapnik, 1979), is crucial. Moreover, integrating the remotely sensed and bioclimatic data 

in such machine learning and ecological niche modeling has been reported in other studies as the 
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best way to produce reliable and accurate results by harnessing the vast information provided by 

the intrinsic phenological vegetation metrics and the external influence of climatic variables 

(Kyalo et al., 2018; Makori et al., 2017).   

However, there is a huge deficit in information regarding the use of such technology on analysis 

and mapping of Striga distribution and risk particularly the influence of climate change on the 

distribution of Striga in Africa. Many studies have investigated the effects of climate change on a 

range of species, showing that change in climatic conditions has a profound impact on species 

distribution ranges (Mbatudde et al. 2012; Wan and Wang 2019; Guan et al. 2020). To the best of 

the candidate’s knowledge, there is no precise spatial information or scenario modeling detailing 

the current or probable risk that climate change will impose on the distribution, occurrence, and 

severity of Striga in Zimbabwe or on the entire African continent.  The risk inflicted by these 

parasitic weeds is likely to be worsened by climate change and the inadequate adaptive or 

mitigation capacity, in addition to the limited impact documentation leading to inadequate 

preparedness (Niang et al., 2014).  

Thus, identifying and controlling these invasive weeds before they can spread to new environments 

requires better surveillance and constant monitoring across the African countries with adequate, 

cost-effective tools and methods (Sibanda et al. 2019). It is, therefore, hypothesized that climate 

change might cause restrictions or expansions on the distribution of Striga species through altering 

host availability or imposing Striga intolerable or suitable climatic conditions (Cochrane and Press, 

1997). Thus, the uncertainties brought by these future climate scenarios necessitate robust and 

accurate mapping methods and relevant environmental multi-source variables and datasets to 

estimate and predict the potential and actual impact of climate change on the current and future 

distribution of the biological niche of Striga in Zimbabwe.  

5.2 Study area 

The occurrence of Striga in the 10 provinces of Zimbabwe (Figure 5.1) was predicted. Zimbabwe 

is a landlocked country in southern Africa covering a land area of ~ 390 753 km2, which shares 

borders with Botswana, Mozambique, South Africa, Zambia, and partly Namibia. It is bound 

within latitudes 15.60 and 22.40 South and longitudinally between 25.20 and 33.10 East (Kuri et al., 

2018). Geographically, the central part of the country is located on a high plateau forming a 

http://etd.uwc.ac.za/ 
 



 

85 

 

watershed between the two major river systems, i.e. Zambezi river in the north and Limpopo river 

in the south. The country has a remarkably varied climate, marked by the differences in latitude 

which characterizes the wide-ranging rainfall patterns and extensive agronomic activities. It is 

situated within the tropics and experiences the short cold, dry season between May and September, 

while the period November to April is marked by heavy rainfall (Mudereri et al. 2019a).  

Zimbabwe is subdivided into five agroecological regions that vary in temperature, rainfall, soil, 

and agricultural potential (Table 5.1). These five agroecological regions include regions I and II 

referred to as the Highveld; region III which is Middleveld, while region IV and V are referred to 

as the Lowveld (Sungirai et al., 2018). In Zimbabwe, the lowest annual rainfall is 400 mm which 

is received in region V and the highest amount (1 200 mm) is received in the region I. The mean 

annual temperature ranges from 160 C in regions I and II to ~ 26–350 C in the southern Lowveld 

(Kuri et al., 2019). Approximately, 11% of the country is arable land with ~ 0.31% of that arable 

land being continuously under different crops such as maize, wheat, sorghum, and millet. Of these 

crops, maize is the most economically important and commonly grown cereal crop at both small- 

and large-scales (Kuri et al., 2018). 
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Figure 5.1: Location of Zimbabwe in Africa and the relative location and boundaries of the five 

agroecological regions of the country which characterize the study area. See Table 5.1 for a detailed 
description of the agroecological regions.  
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Table 5.1: Characteristics of the five agroecological regions of Zimbabwe (FAO and ACFD, 1999; Mugandani et al., 

2012).  

Agroecological 

region 

Average 

annual 
rainfall (mm 

year-1) 

Mean 

maximum 
temperature 

(0C) 

Dominant 

soil type 

Agriculture potential and 

farming system 

I >1000 16–19 Acrisols, 

Ferralsols 

Suitable for dairy farming 

forestry, tea, coffee, fruit, beef, 
and maize production 

II 700–1050 19–23 Cambisols, 

Luvisols, 
Arenosols 

Suitable for intensive farming, 

based on maize, tobacco, 
cotton, and livestock 

 

III 500–800 23–26 Arenosols Suitable for intensive farming, 
based on maize, tobacco, 

cotton, and livestock 

IV 450–650 19–26 Leptosols, 

Vertisols, 
Solonetz 

Semi-extensive region. 

Suitable for farm systems 
based on livestock and resistant 

fodder crops. Forestry, 

wildlife/tourism 
V <450 26–32 Leptosols, 

Vertisols, 

Solonetz 

Extensive farming region. 

Suitable for extensive cattle 

ranching. Zambezi Valley is 
infested with tsetse fly. 

Forestry, wildlife/tourism 

5.3 Methodology  

Figure 5.2 shows a flowchart that explains the entire methodology adopted in the present chapter 

for modeling Striga invasion risk. 
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Figure 5.2: Flow diagram of the methodology of Striga invasion risk modeling. The six models used are random forest 

(RF), generalized linear model (GLM), support vector machines (SVM), classification and regression trees (CART), 
flexible discriminant analysis (FDA), and boosted regression trees (BRT). 

5.3.1 Striga occurrence data collection 

The Striga ‘presence-only’ data were collected between the period 12th and 28th of March 2018. 

The data collection period matched with the flowering phase of Striga in Zimbabwe. The flowering 

phase was targeted since this is the best time to differentiate Striga from other co-occurring weeds 

(Mudereri et al. 2020a). Reference ‘presence-only’ data were gathered within maize croplands, 

which in the study area were mainly mono and mixed maize cropping systems. The mixed cropping 

system is mostly a combination of maize with groundnuts, round-nuts, or beans. A purposive 

sampling approach was employed using local expert knowledge (i.e. extension officers and 
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farmers) to assist in the identification of the Striga infested fields. A handheld global positioning 

system (GPS) device with an error margin of ±3 m was used to locate the reference control points. 

The edge-effect was avoided by collecting the Striga ‘presence-only’ data at the center of the field 

(sampling unit: 30 m x 50 m). A total of 50 ‘presence-only’ Striga reference data were collected 

covering the six districts in Midlands and Masvingo provinces (Figure 5.1); namely Bikita, Chivi, 

Gweru, Masvingo, Shurugwi, and Zaka (agroecological regions III and IV). These points were 

spread across the different elevation gradients (400–1 600 m a.s.l), except for the highest elevation 

in the Eastern highlands (> 1 600 a.s.l). Agroecological region V, which was not sampled, is the 

region mainly reserved for livestock production in Zimbabwe and is characterized by non-arable 

land and pastures (see Table 5.1).  

5.3.2 Predictor variables 

The predictor variables that were used in this chapter were grouped into two main categories, i.e. 

bioclimatic and remotely sensed variables (Table 5.2 Table 5.3). Variable spatial and temporal 

resolutions are a key notion in determining a dataset’s fitness for a given use as they influence the 

pattern that can be observed during the analysis (Degbelo and Kuhn, 2018). However, Csillag et 

al. (1992) pointed out that there is no single best resolution when combining environmental 

variables of varying resolutions. In this chapter, the variables ranged in pixel size from 1 km x 1 

km to approximately 250 m x 250 m spatial resolution. This variation influences the integration of 

multiresolution variables within models.  

The variation was, therefore, counteracted by resampling all the datasets to the lowest spatial 

resolution of 250 m x 250 m pixel size. In addition, the vegetation phenological variables were 

derived from multidate input data, while other remotely sensed and bioclimatic variables were 

generic. Thus, only their respective derivatives (i.e. output variables) from the TIMESAT model 

were used as inputs in the invasion risk modeling analysis to offset the effect of the temporal 

variation. Therefore, there is no expectation of any influence of the spatial or temporal resolution 

on the accuracy of the models. It is further worth noting that all the predictor variables are freely 

available. 

5.3.2.1 Bioclimatic variables 

In this chapter, 19 bioclimatic variables (Table 5.2) that are freely downloadable from the 
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WorldClim platform (www.worldclim.org) at ~1 km x 1 km spatial resolution were used to 

determine the key climatic conditions influencing the distribution of Striga in Zimbabwe for both 

the current and future climate scenarios. Four representative concentration pathways (RCPs) were 

set by the IPCC using the total radioactive forcing of values 2.6, 4.5, 6.0, and 8.5 watt/m2 (IPCC, 

2014). The current bioclimatic data (1950–2000) and a one-time step of the future climate data of 

the maximum emission (RCP8.5) for the CO2 concentrations predicted for 2050 (average of 

predictions for 2041–2060: Guan et al. 2020) were used. The future climatic data were obtained 

from the fourth version of the community climate system model (CCSM4), which is one of the 

models that provide the most efficient global future climate projections (Mohammadi et al., 2019; 

Mudereri et al., 2020b). All these bioclimatic variables were clipped to the Zimbabwean country 

boundary and resampled to 250 m x 250 m pixel size, to match the size and extents of the remotely 

sensed variables. 

5.3.2.2 Remotely sensed variables 

A total of five remotely sensed variable categories was used i.e. cropping system, edaphic, land 

surface temperature, terrain, and vegetation phenology (vegetation seasonality characteristics) 

(Table 5.3). These variables were selected because they are reported in several studies as key 

determinants of Striga distribution (Mandumbu et al. 2017a; Oswald et al. 2001; Parker 2009; 

Mudereri et al. 2019a). All the remotely sensed variables that were not in the 250 m x 250 m spatial 

resolution were standardized and resampled to this pixel size.  

Cropping system variable. The cropping system variable provided by the study of Landmann et 

al. (2019) was used. The variable was obtained at 30 m x 30 m pixel size with three categorical 

classes: rainfed wildland, rainfed cropland, and irrigated cropland.  The cropping system variable 

for Zimbabwe was derived at 97% accuracy (Landmann et al., 2019) using vegetation harmonics 

of the time-series NDVI derived from Landsat 8 operational land imager (OLI) images.  

Edaphic variables. Four soil properties that were downloaded from https://www.isric.org/explore 

and referred to as the ‘AfSoilGrids50m’ (Hengl et al., 2015) were used. Specifically, the Africa 

soil grids produced at 0–30 cm depth with a spatial resolution of 250 m x 250 m was used. The 

soil characteristics data includes total soil nitrogen (N) (mg/kg: ppm), soil pH, soil organic carbon 

(SOC) in g/kg, and sand content (50-2000 µm) in g/100 g (Hengl et al., 2015). These variables 
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were chosen because they broadly influence soil fertility, and thus the potential occurrence of 

Striga. Several studies have established that depleted soil fertility leads to rapid propagation and 

thriving of Striga within croplands (Ekeleme et al., 2014; Yoneyama et al., 2007).  

Land surface temperature. ‘Day time’ land surface temperature climate modeling grid 

(LST_Day_CMG) available in K, simulated from the moderate resolution imaging spectro-

radiometer (MODIS) data and available at https://lpdaac.usgs.gov/products/mod11c2v006/, (Wan 

et al. 2015) was used. Specifically, the ‘multi-day’ MOD11C2 LST product of 5.6 x 5.6 km spatial 

resolution available from the year 2000 to the present was used. LST was chosen because the cereal 

chemical that triggers Striga germination requires optimal temperature (i.e. 220 – 300C) and Striga 

seeds also need an optimum soil temperature range to germinate (Rich and Ejeta, 2007). It is 

therefore postulated that the surface fluxes measured by LST would be one of the proxy key 

variables that immensely predict the potential germination of Striga seeds. 

Terrain variables. The terrain variables were calculated from the shuttle radar topographic mission 

(SRTM) data which are available as 3 arc seconds (~ 90 m resolution) digital elevation model 

(DEM). The vertical error of the DEM was less than 16 m, which was sufficient for the intended 

purpose (CGIAR-CSI, 2019). In addition to the elevation, other terrain variables (aspect, hill-

shade, and slope) were derived using the ‘terrain analysis’ plugin in QGIS (QGIS Development 

Team, 2019). The influence of elevation, slope, hill-shade, and aspect on soil type, soil moisture 

content, soil fertility, soil temperature, and runoff among other factors were anticipated to 

influence the occurrence and propagation of Striga weed. Striga has been reported by other studies 

to be tolerant of a wide range of altitudes from sea level to ~2 480 m a.s.l (Cochrane and Press, 

1997). 

Vegetation phenological variables. Vegetation phenological variables were estimated from 250 

m, MODIS 16-day EVI time-series composites. A 6-year observation period between 2012 and 

2018 was used. The vegetation phenological variables were computed using the TIMESAT 

software (Eklundh and Jönsson 2017; Jönsson and Eklundh 2004, 2002). TIMESAT enumerates 

phenological harmonics that occur within a time-series satellite dataset by superimposing localized 

equations to the time-series data points. Curve smoothing functions are thereafter applied to the 

model to extract the seasonal vegetation phenological parameters from these vast multitemporal 
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data dimensions. This consecutively reduces the influence of residual signal noise produced by the 

variation in the raw EVI time-series data (Hentze et al. 2016; Makori et al. 2017). A Savitzky-

Golay filter was employed to smoothen the fitting curves and removed outliers using a 3- and 5-

point window over 2 fitting steps, 3.0 adaptation strength without a spike or amplitude cut-offs, a 

0.0 season cut-off, and a 20% threshold for the beginning and end of the season following a 

procedure described in Makori et al. (2017). Using this protocol, 11 vegetation phenological 

variables (Table 5.3) were extracted. For a detailed explanation of the calculated variables and 

how the TIMESAT algorithm operates, readers are referred to Eklundh and Jönsson (2017). 

5.3.3 Collinearity test of variables used in the ecological niche modeling  

A 2-stage variable elimination criterion was employed using the variance inflation factor (VIF) 

and the Person correlation coefficient. VIF detects multicollinearity by taking each predictor and 

regressing it against the other variables in a multiple linear regression analysis (Plant, 2012). The 

resulting R2 value obtained from this multiple regression analysis is then replaced in the VIF 

calculation formula as shown in Equation 5.1.  

VIFi = 
1

1− 𝑅𝑖
2       (5.1) 

Where i is the predictor 

 In this chapter, the ‘vifcor’ function in the ‘usdm’ package available in R (Naimi et al., 2014; R 

Core Team, 2019) was chosen to perform the variable elimination. The ‘vifcor’ function iteratively 

selects pairs of variables with high linear correlation, then eliminates the one with the highest VIF. 

A threshold of th = 0.7 was set, which represents a Pearson correlation coefficient (r ≥ 0.7) 

following Kyalo et al. (2018) recommendation. In principle, a VIF value greater than 10 is 

evidence of the collinearity problem within a model (Dormann et al., 2013). Although some of the 

variables from the VIF calculation process showed low VIF values, the correlation matrix (Figure 

5.3) revealed further correlations among some of the variables. Therefore, from the variables with 

low VIF, the variables that have been reported in the literature to be of ecological significance 

(Mandumbu 2017) were selected. The variable elimination procedure resulted in a selection of 21 

eligible variables from 40 bioclimatic and remotely sensed variables. The 21 variables that were 

used in the final modeling procedure are highlighted in bold in Table 5.2 Table 5.3. 
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 Table 5.2: Bioclimatic variables used in the species distribution models for Striga occurrence prediction and their 

variance inflation factor (VIF) values. The variables in bold were used in the final Striga occurrence prediction after 

eliminating highly correlated ones. 

BioClim 

Code 

Environmental variable description Unit VIF value 

Bio1 Annual mean temperature 
0
C 7.30 

Bio2 Mean diurnal range [mean of monthly 

(max temp–min temp)] 

0C 3.05 

Bio3 Iso-thermality (Bio2/Bio7) (×100)  3.25 

Bio4 Temperature seasonality (standard 

deviation ×100) 

 2.00 

Bio5 Maximum temperature of the warmest 

month 

0
C 8.21 

Bio6 Min temperature of the coldest month 0C 10.23 

Bio7 Temperature annual range (Bio5–Bio6) 0C 12.63 
Bio8 Mean temperature of wettest quarter 0C 5.04 

Bio9 Mean temperature of driest quarter 0C 1.92 

Bio10 Mean temperature of warmest quarter 0C 8.73 
Bio11 Mean temperature of coldest quarter 0C 1.62 

Bio12 Annual precipitation mm 2.76 

Bio13 Precipitation of wettest month mm 7.27 

Bio14 Precipitation of driest month mm 3.91 

Bio15 Precipitation seasonality (coefficient of 

variation) 

mm 4.32 

Bio16 Precipitation of wettest quarter mm 4.70 
Bio17 Precipitation of driest quarter mm 6.33 

Bio18 Precipitation of warmest quarter mm 5.41 

Bio19 Precipitation of coldest quarter mm 2.58 
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Table 5.3: Remotely sensed variables used in the species distribution models for Striga occurrence prediction and 

their variance inflation factor (VIF) values. The variables in bold were used in the final Striga occurrence prediction 

model after eliminating highly correlated ones. EVI is the enhanced vegetation index. 

Variable Description Units VIF 

Value 

 Cropping system   

Cropping system Irrigated or rain-fed 

cropland/wildland 

Categorical 1.20 

 Edaphic variables   

Sand content Quantity of sand in the soil g/100g 2.44 

Soil nitrogen (N) The total amount of nitrogen in 

the soil 

mg/kg 2.50 

Soil organic 

carbon 

Organic matter present in the soil g/kg 1.89 

Soil pH Acidity or alkalinity of the soil pH value 2.07 

 Land surface temperature (LST)   

LST Land surface temperature K 1.07 

 Seasonality variables   

Amplitude The difference between maximum 

EVI and base value 

EVI value 1.09 

Base value Minimum EVI value EVI value 1.60 

End of season EVI value at the time of the end 

of season 

EVI value 1.02 

Large integral Integral of the season from start 

to end 

 1.58 

Left derivative Rate of EVI value increase at the 

start of the season 

% 1.23 

Length of season Time-lapse from start to end of 

season 

Days 6.88 

Maximum EVI Maximum EVI value in season EVI value 1.05 
Middle of season Absolute value at the middle of the 

season 

EVI value 2.19 

Right derivative Rate of EVI value increase at the 

end of season 

% 1.99 

Small integral Integral of the season and base 

value from start to end of season 

 2.47 

Start of season EVI value at the beginning of the 

season  

EVI value 1.04 

 Terrain variables   

Aspect Slope direction Degrees 1.15 

Elevation Ground height above sea level m 4.46 

Hillshade Shading the sun effect  1.22 

Slope Ground steepness % 1.76 

 

Collinearity amongst the predictor variables in most ecological niche modeling causes instability 

and volatility of the model parameterization and performance (Dormann et al., 2013). The 

variables correlation matrix using the Pearson correlation coefficient is shown in Figure 5.3.  
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Figure 5.3: Collinearity matrix for ecological niche models’ predictor variables. Darker shades of blue and red color 

indicate high variable collinearity, while lighter shades indicate low collinearity. Similarly, the smaller the circle, the 

lower the correlation value. 

5.3.4 Species distribution models implementation 

Striga occurrence predictive models were built using the ‘sdm’ package (Naimi and Araújo, 2016) 

performed in R (R Core Team, 2019). The 50 ‘presence-only’ points data that were collected in 

the field against 1 000 pseudo-absence points generated using the ‘sdmdata’ function inherent in 

the ‘sdm’ package were used.  Stockwell and Peterson (2002) concluded that when using machine 

learning methods for species niche predictions, the accuracy for predicting the occurrence of a 

species at a location, was 90% of maximum within 10 sample points, and was near maximal at 50 

data points. Therefore, the Striga ‘presence-only’ sample size (i.e. 50) was within the sufficient 

sample size required for accurate predictions when ecological niche modeling is used at a national 
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scale (Stockwell and Peterson, 2002). Often, obtaining real ‘presence-absence’ data is logistically 

impractical; however like other ecological niche models, ‘sdm’ allows for the use of background 

pseudo-absence data (Guan et al., 2020; Mudereri et al., 2020b). The package ‘sdm’ combines 

diverse executions of ecological niche models (n = 15) within a single platform and uses the same 

‘presence-only’ and pseudo-absence data by applying an object-oriented reproducible and 

extensible framework for ecological niche modeling in R (Naimi and Araújo, 2016). In the present 

chapter, only 6 of the 15 modeling techniques in ‘sdm’ as follows: CART, BRT, RF, FDA, GLM, 

and SVM were used and inter-compared.   

The CART model grows a single decision tree based on the binary partitioning algorithm, which 

splits the data until it is homogenous, using a hierarchical structure and regression tree (Breiman 

et al., 1984). Similarly, the BRT model uses the same decision tree approach but improves from 

the use of a single regression tree by combining multiple decision trees in a process called boosting 

(Elith et al. 2008). On the other hand, the RF uses these multiple decision trees and randomly 

grows a forest of decision trees, then predictions are conducted through majority voting for the 

class with the highest number of votes among these multiple grown trees (Bangira et al., 2019). 

FDA is a non-parametric multiple regression and additive technique and the GLM uses a linear 

regression approach (Nelder and Wedderburn, 1972), while SVM uses a hyperplane to estimate 

the divergence of class groupings for the prediction (Hastie et al. 1994; Vapnik 1979). These six 

algorithms were selected in this chapter because they are widely used in conducting complex 

output predictions with relatively high modeling accuracies for regression and classification 

(Abdel-Rahman et al. 2013a; Makaya et al. 2019; Mosomtai et al. 2016; Tesfamichael et al. 2018). 

A summary of these models’ execution syntax and their corresponding packages used by ‘sdm’ in 

the parallel model simulations is provided in Table 5.4. 
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Table 5.4: R software packages used by ‘sdm’ in the parallel execution of the six models; namely (a) boosted 

regression trees (BRT), (b) classification and regression trees (CART), (c) flexible discriminant analysis (FDA), (d) 

generalized linear model (GLM), (e) random forest (RF) and (f) support vector machines (SVM) 

Algorithm Syntax 

code in 
‘sdm’ 

Package 

used 

Reference 

Boosted regression trees ‘brt’ gbm (Elith et al. 2008) 

Classification and regression trees ‘cart’ rpart (Breiman et al., 1984) 

Flexible discriminant analysis ‘fda’ earth (Hastie et al., 1994) 

Generalized linear regression ‘glm’ glmnet (Friedman et al., 2010) 

Random forest ‘rf’ randomForest (Liaw et al., 2002) 

Support vector machines ‘svm’ Kernlab (Karatzoglou et al., 2004) 

An ensemble projection approach was used to harmonize the variations produced by the different 

model predictions. Ensembles have been reported to have superior predictive performance as 

compared to individual models (Hao et al., 2019). The ensemble modeling fits and maximizes the 

prediction accuracy with higher reliability as it binds together the highest performance of all the 

models that have the most acceptable precision and accuracy. The function ‘ensemble’ within the 

‘sdm’ package was used to harmonize the results of the Striga occurrence prediction amongst the 

six modeling algorithms using the TSS weighted average approach (Naimi and Araújo, 2016). 

Compared to using the most intuitive approach, which applies the mean or median, the weighted 

average improves the model's predictive ability (Naimi and Araújo 2016; Jafarian et al. 2019). 

However, the weighted average requires validation of the selected modeling algorithms before 

inclusion in the ‘sdm’ (Hao et al., 2019). For the present chapter, the threshold of TSS = 0.7 was 

set for the models to qualify for inclusion in the ensemble as generally a TSS score of > 0.7 shows 

high agreements between the predictor variable and the independent data (Allouche et al. 2006).  

For consistency, the same approach was used to perform the Striga occurrence predictions for both 

the current and future climate scenarios. Since this study was more focused on the influence of 

climate change on the distribution of Striga, only the selected climatic variables were varied, but 

all the other variables were assumed to remain constant in the future and if they would be 

differences, it is assumed that they would not to be significant enough to cause major variances to 

the obtained results. 

The predicted suitable area for the probability of Striga occurrence for both the current and future 

scenarios was further calculated using an average thresholding value of all the models. Using this 
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value, a binary raster image of the ‘presence’ (occurrence) and ‘absence’ classes for the whole 

study area was created. The total number of pixels to estimate the total coverage of the predicted 

area against the unsuitable area was used. 

5.3.5 Models’ accuracy validation 

The accuracy and variable importance of the models were tested using a 10-fold cross-validation 

approach. The relative variable contribution was used to the model using the inbuilt randomly split 

‘independent test dataset’ option available in the ‘sdm’ package. This was automated to universally 

apply to each of the six models. The performance of the six models was further validated using the 

receiver operating curve (ROC) by analyzing the area under the curve (AUC) and true skills 

statistic (TSS: Allouche et al. 2006; Guan et al. 2020). The ROC is a graphical representation of 

how well the model fits the data points. The values for the AUC range between 0 and 1. Models 

whose predictions are 100% inaccurate have an AUC of 0, while those with perfect prediction 

have an AUC of 1. In general, AUC values ≥ 0.7 demonstrate high model prediction performances 

(Mohammadi et al., 2019).  

On the other hand, TSS combines sensitivity and specificity to explain the model commission and 

omission errors (Kyalo et al., 2018). The values of TSS range between −1 to +1, where +1 

demonstrates a perfect agreement between the observed and the predicted Striga occurrence, while 

values ≤ 0 indicate no agreements or that most of the predictions for the Striga occurrence were 

produced by chance (Allouche et al., 2006). The weighted average of the TSS was therefore used 

to perform the ensemble predictions. TSS was chosen since it is a relatively reliable measure 

instead of the AUC and chi-squared (X2) statistics which are somewhat biased and highly sensitive 

to the proportional extent of the predicted presence observations (Kyalo et al., 2018). The ensemble 

model merges the strengths of these ecological niche modeling approaches while minimizing their 

weaknesses (Araújo et al., 2019; Guan et al., 2020) 

 TSS = Sensitivity + Specificity – 1    (5.1) 

             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑎

𝑎+𝑏
 (5.2) 

              𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑑

𝑐+𝑑
             (5.3) 
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where a is true positive, b is a false negative, c is false positive, and d is true negative. 

The output maps from the six models and their respective ensembles were imported into a 

geographical information system (GIS) environment for further analysis. Based on a suggestion 

by Abdelaal et al. (2019), the probability maps were reclassified into five classes of Striga 

probability of occurrence. These classes were: (i) very low probability (≤ 0.05), (ii) low probability 

(0.051–0.10), (iii) moderate probability (0.11–0.30), (iv) high probability (0.31–0.50), and (v) very 

high probability (≥ 0.50).  

5.4 Results 

5.4.1 Models’ accuracy, comparison, and validation 

The VIF statistic of the predictor variables that were included in the modeling approach using the 

six models is summarized in Table 5.2 and Table 5.3. The lowest values of VIF were related to 

remotely sensed variables i.e. end of the season (1.02), the start of the season (1.04), LST (1.07), 

and amplitude (1.09), while bioclimatic variables had higher values of VIF such as Bio5 (8.21), 

Bio1 (7.30), Bio18 (5.41) and Bio15 (4.32). However, these values were not large enough to 

warrant these variables to be eliminated from the modeling. On the other hand, the VIF values for 

Bio6 and Bio7 were 10.23 and 12.63, respectively. These variables had VIF values greater than 

10, so they were excluded from the modeling analysis.   

Using the ROC, the patterns of the smoothened graphs of the ten replicated ROCs showed that RF 

and GLM were relatively consistent in their prediction amongst the model replicates compared to 

the other models (Figure 5.4). Some of the replicated graphs using different sets of data folds for 

the CART, FDA, and BRT models were below or closer to the one-to-one line (the black dotted 

line in Figure 5.4). 

All the models generally showed relatively high accuracy in predicting Striga occurrence in 

Zimbabwe, with all the models producing acceptable accuracies viz. AUC > 0.85 and TSS > 0.70. 

Further, the models’ predictive performance, as indicated by AUC and TSS values revealed that 

RF had the highest values of AUC (0.98) and TSS (0.92) (Figure 5.4). The FDA model produced 

the lowest AUC (0.87) and TSS (0.72) scores. It is, however, observed variations where models 

such as the GLM had a higher AUC, but lower TSS in comparison to other models such as CART. 
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Nonetheless, the FDA performed the least using the AUC and the TSS accuracy measures. 

 

Figure 5.4: Results of the receiver operating curve (ROC) for the six machine learning and ecological niche model 

algorithms used to predict Striga occurrence in Zimbabwe; namely: (a) random forest (RF), (b) support vector 

machines (SVM), (c) classification and regression trees (CART), (d) generalized linear model (GLM), (e) boosted 

regression trees (BRT), and (f) flexible discriminant analysis (FDA). The red curve represents the smoothened mean 

area under the curve (AUC) using the training data, while the blue curve depicts the smoothened mean AUC using the 

test data from the 10-fold cross-validation sampling. The cyan curves show the 10-fold replicated model runs using 

the training data. 

5.4.2 Variable importance using the current climate scenario 

A total of 5 out of the 21 predictor variables appeared in the ten most relevant variables for all six 

models. The five predictor variables regarded as very relevant by all the models are ‘base value’, 

‘start of season’, ‘temperature seasonality’ (Bio4), ‘maximum temperature of the warmest month’ 

(Bio5), and ‘precipitation seasonality’ (Bio15). The respective variable contributions in the 

different models are summarized in Figure 5.5. The Bio5 variable appeared twice as the most 

relevant variable i.e. for the RF and BRT models, while the Bio1 variable also appeared twice as 

the most relevant variable for the GLM and FDA models. Bio4 and Bio15 were also selected as 

important predictors for the CART and SVM models, respectively.  

Further analysis of the variable importance revealed that the bioclimatic and seasonality 
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parameters dominated the most relevant list while the edaphic, terrain, LST, and cropping system 

were not particularly relevant across the six algorithms tested. Terrain variables appeared in all the 

models at different contribution levels; however, elevation appeared more frequently than the other 

terrain variables. Similarly, regarding the edaphic variables, soil organic carbon and sand content 

dominated their category with varying contributions across the six models. The cropping system 

variable appeared once under the BRT model, however, with a very low contribution to the entire 

model. LST did not appear among the ten most important variables for the six models. RF, which 

had the highest accuracy (AUC = 0.98) amongst the other models, selected Bio5, Bio4, and Bio15 

as the most relevant predictor variables for the estimating occurrence probability of Striga in 

Zimbabwe (Figure 5.5). 

 

Figure 5.5: The ten most important variables for the six ecological niche model algorithms used to predict Striga 

occurrence in Zimbabwe; namely (a) random forest (RF), (b) support vector machines (SVM), (c) classification and 
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regression trees (CART), (d) generalized linear model (GLM), (e) boosted regression trees (BRT), and (f) flexible 

discriminant analysis (FDA). 

5.4.3 Ecological niche models for predicting the occurrence of Striga using the current 

climate scenario 

The six ecological niche models using the 21 predictor variables exhibited varied results for 

predicting Striga probability of occurrence (Figure 5.6). However, all six models predicted the 

ecological niche and Striga occurrence to be within the central plateau (mainly ecological region 

II, III, and IV) of the country’s main watershed as shown by the warmer colors (yellow, orange, 

and red) in Figure 5.6. Areas close to the boundaries of Zimbabwe (ecological region V) 

represented by the cooler colors (green) were predicted to be relatively safe and free from potential 

Striga infestation using SVM and CART, while in the eastern highlands of Zimbabwe (i.e. 

ecological region I and II), the occurrence of Striga was predicted using RF, FDA, and BRT.  

   

Figure 5.6: Striga probability of occurrence using the current remotely sensed and bioclimatic variables and the six 

ecological niche model algorithms: (a) random forest (RF), (b) support vector machines (SVM), (c) classification and 

regression trees (CART), (d) generalized linear model (GLM), (e) flexible discriminant analysis (FDA), and (f) 

boosted regression trees (BRT). 
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5.4.4 Ensemble projection for predicting the occurrence of Striga using the current climate 

scenario 

The results of the ensemble projection of the six models using the current climate scenario (1950–

2000) combined the best predictions of all the models and estimated the overall Striga probability 

of occurrence (Figure 5.7). The highest prevalence and probability of occurrence was predicted to 

be in the Midlands and Masvingo provinces which are in regions III and IV that are regions with 

very low intensity of irrigation agriculture. However, some relatively similar predictions were also 

observed in Matabeleland North province towards the Kariba dam which has climate 

characteristics of ecological region III. Similarly, parts of the provinces of Manicaland (ecological 

region I and II), Bulawayo (ecological region IV), and Mashonaland East (ecological region II and 

III) exhibited moderate, high to very high probabilities of potential Striga incidences. The highest 

probability of occurrence was observed in agroecological regions I, II, III, and IV, whereas very 

little to none Striga probabilities of occurrence were predicted in region V. Interestingly, the 

ensemble model was precise (AUC = 0.98) in predicting Striga occurrence following the 

boundaries of region V where the Striga occurrence is predicted to very low. The area towards the 

west of region IV was predicted to have a very low Striga probability of occurrence, whereas the 

central and eastern areas within region IV were predicted to have high to very high incidences of 

Striga occurrence. In general, the warmer colors also showed that the Striga probability of 

occurrence is skewed towards the central and eastern regions of the country with relatively high-

altitudes (800 m–1 600 m a.s.l) compared to the low-altitude areas (< 800 m a.s.l) on the west, 

south, and north (Figure 5.7). 
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Figure 5.7: Current Striga probability of occurrence predicted using ensemble projection and the weighted average of 

the true skill statistics (TSS) of the six prediction models, viz. random forest, support vector machines, classification 

and regression trees, generalized linear model, flexible discriminant analysis, and boosted regression trees ecological 

niche model algorithms. 

5.4.5 Comparison of the ensemble predictions using the current and future climate 

scenarios 

Slight differences in the suitable area between the current and future climate scenarios for Striga 

occurrence in Zimbabwe were detected. It is observed that Striga occurrence would shift towards 

the North, i.e. Mashonaland West and East, which are in ecological region II (Figure 5.8) and will 

be reduced in the southern regions of the country, i.e. Matabeleland North and South occurring in 

ecological region IV (Figure 5.8). The future model predicted a very high increase in the area that 

shall be suitable for Striga, particularly for Masvingo and Midlands provinces which are in the 

ecological region III. It is noted that the intensity of the severity as evidenced by the increase of 

most areas from the moderate class to very high probability was particularly in ecological region 

III.  

The current area suitable for Striga occurrence in Zimbabwe is 7.4% of the total area, while an 

increase of ~ 0.73% is likely by the end of 2050 due to climate change. Therefore, the approximate 
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area currently suitable for the occurrence of Striga is 28 916 km2, while it is expected to increase 

to 31 768 km2 (8.13%) by the year 2050 using the maximum carbon emission scenario (RCP8.5). 

The estimated increase of the area occupied by Striga due to climate change by the year 2050 is 2 

852 km2 which is an estimated gradual increase rate of ~95 km2/yr-1 over 30 years. 

 

Figure 5.8: Striga probability of occurrence predicted using the representative concentration pathway (RCP:8.5), 

ensemble projection, and the weighted average of the true skill statistics (TSS) of six ecological niche model 

algorithms, viz. random forest, support vector machines, classification and regression trees, generalized linear model, 

flexible discriminant analysis, and boosted regression trees. (a) Current (1950–2000) and (b) future (2041–2060) 

climate scenario. 

5.5 Discussion 

In this chapter, six machine learning and ecological niche modeling models were used to predict 

the current Striga probability of occurrence in Zimbabwe. The best practice standards for 

ecological niche modeling were followed by assessing the quality of the response variables, 

predictor variables, model evaluation ideals, and building multiple models using the same data 

following the protocols suggested by Araújo et al. (2019). Although a sufficient sample size 

required for accurate predictions when using ecological niche models at a national scale (Stockwell 

and Peterson, 2002) was used, the performance of some models like FDA and GLM which require 

a relatively large sample size could have been reduced. 

http://etd.uwc.ac.za/ 
 



 

106 

 

5.5.1 Model performances 

Generally, predictive models with AUC and TSS values larger than 0.7 suggest good predictive 

and simulation performance (Elith et al. 2010). In this chapter, AUC and TSS values for all the six 

models were above the 0.7 threshold, demonstrating that the models were exceptional for 

simulating the distribution of Striga in Zimbabwe. As expected, the model accuracies and the 

predicted areas differed across the six models, since models depend on different mathematical 

functions and tuning parameters (Araújo et al., 2019). Using AUC and TSS, the results pointed to 

RF as the best predictive model, which was consistent with the hypothesis of the present chapter. 

Based on the obtained AUC and TSS results from this chapter, we recommend the use of the 

ensemble, RF, SVM, and CART for Striga predictive modeling using multi-source data. These 

recommended methods have also been used and suggested by many researchers as the best for 

simulating predictions for invasive weed species occurrence and mapping their geographical 

niches (Mudereri et al. 2019a; Tesfamichael et al. 2018; Landmann et al. 2020; Guan et al. 2020).  

Importantly, it is, however, noted that there were huge overlaps and similarities in the areas 

anticipated to be suitable for Striga occurrence. These varied outputs and accuracy results are in 

agreement with other studies that have used the multiple models approach in ecological niche 

modeling (Hao et al. 2019; Jafarian et al. 2019; Mohammadi et al. 2019; Guan et al. 2020). Jafarian 

et al. (2019) used four predictive models to simulate the occurrence of five dominant plant species 

in Iran and concluded that the ensemble method yielded high predictive power compared to the 

individual models. On the other hand, Mohammadi et al. (2019) also compared MaxEnt and ‘sdm’ 

to predict two rodent species and they established that all models were comparable and 

demonstrated high predictive power. Similarly, in this chapter, there is no convincing indication 

to prove that one model is significantly better than the other. Therefore, regarding the future 

investigations that will focus on the accuracy of Striga occurrence and prediction, it is 

recommended to include several models in an ensemble approach to reduce the modeling 

uncertainties.  

5.5.2 Striga probability of occurrence in the current climate scenario and under climate 

change 

Fundamentally, input data preparation is key to determine and improve the accuracy and 
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dependability of the outputs derived from predictive models (Araújo et al., 2019). ecological niche 

models reflect the deep interrelationships and interactions among species and their environmental 

parameters. Using the package ‘usdm’ and the ‘vifcor’ function provided an easy and practical 

way of eliminating the correlated variables systematically (Jafarian et al. 2019). Specifically, the 

use of VIF as a measure of collinearity and elimination of conflating variables improved the 

accuracy of the modeling results. This is per other studies that have successfully employed VIF to 

select a few noncorrelated predicted variables (Abdelaal et al., 2019; Muposhi et al., 2016). The 

non-conflating variables (n = 21) that were finally used in the modeling experiments were crucial 

in explaining the occurrence of the Striga weed.  

Notwithstanding, the important variables that were selected by the models for mapping Striga 

occurrence were local and not global. That means the variables were only relevant for modeling 

Striga in Zimbabwe and not somewhere else on the globe.  As anticipated, the results showed that 

the interrelationship between temperature (Bio1, Bio4, and Bio5) and precipitation (Bio15) was 

central in defining the ecological niche of the Striga weed. This concurred with the results reported 

by Cotter and Sauerborn (2012), who alluded to the variation in the current and future distribution 

of Striga in the entire African continent to be influenced by mean annual temperature (Bio1). 

However, the future Striga prediction models should be interpreted with some caution as they were 

not yet validated.   

Striga requires both optimum rainfall and temperature for germination, growth, propagation, and 

simultaneously the growth of its hosts i.e. cereal crops (Mandumbu et al. 2017b). However, 

extreme temperature and heavy rainfall conditions limit the propagation of Striga (Rich and Ejeta, 

2007); hence, the very low probability of Striga occurrence in ecological region V of Zimbabwe. 

Region V, which is mostly on the borders of Zimbabwe, experiences very high temperatures and 

low rainfall making it unsuitable for crop production, hence the unavailability of cereals that are 

Striga hosts. However, with the increase in temperatures anticipated through climate change, most 

farmers in all agroecological regions of Zimbabwe are likely to shift to planting C4 crops like 

sorghum and millet which are drought-resistant but are attractive to the occurrence of Striga 

(Mandumbu, 2017).  

Agroecological regions I–IV experience very high to moderate rainfall and temperature compared 
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to ecological region V (Mugandani et al., 2012). This could have been the reason for the high 

prediction of Striga occurrence in these regions. These regions have varied climatic conditions, 

but the modeling and mapping results showed that ecological regions II, III, and IV have the most 

optimum climatic conditions for the germination, growth, reproduction, and spread of Striga 

species. Because of the immense dependence on the distribution of Striga on climatic variables, 

future climate conditions may greatly determine the suitable niche for Striga (Mandumbu et al. 

2017a; Cotter and Sauerborn 2012).  

Because of climate change, the increase in carbon dioxide and temperature changes are likely to 

lead to an increase in the germination and spread rates of Striga in areas that were once non-Striga 

occurrence areas. The results agreed with the perception reported by Mandumbu et al. (2017a), 

who argued that the future increase in temperature would increase the breaking of dormancy of 

Striga seeds, thereby increasing its germination rate. As could be seen from the results, Striga shall 

occupy new adjacent areas to the already infested areas, mostly in regions III and IV of Zimbabwe. 

These areas are predicted to have temperature ranges between 200C and 350C. This phenomenon 

is likely to result in increased areas occupied by Striga and enhance the intensity and severity of 

the crop losses caused by this weed. Additionally, as the temperature continues to increase in the 

future, crops that are currently not affected by Striga such as the winter wheat may eventually 

become susceptible to the weed infestation (Mandumbu et al. 2017a). Therefore, any efforts 

targeted at curbing the spread of Striga in the future should focus on areas with the likelihood of 

temperature increase and a reduced amount of rainfall.   

Soil N is reported to constrain the germination of Striga seeds by reducing the production of 

Strigolactones, the chemical that is produced by the host plants to simulate the germination of 

Striga seeds, while soil N also increases the vegetative growth of the host plant (Ekeleme et al., 

2014). Notwithstanding, the results indicated that the edaphic factors that were tested (i.e. soil N, 

soil pH, soil organic C, and soil sand content) had little effects on the Striga modeling accuracy, 

probably because of the interplay between them and precipitation (i.e. Bio15). To the best of the 

candidate knowledge, soil moisture affects nutrient motility, particularly nitrogen, which is mostly 

unstable and susceptible to leaching (Yoneyama et al., 2007).  

It is worth noting that precipitation could be a proxy for soil moisture that is an important predictor 
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variable for triggering the germination of Striga seeds. It is expected that the edaphic factor 

variables and precipitation are intimately interlinked. Hence, they tend to result in low performance 

of each other in predictive modeling, due to the relatively high correlation. However, various 

studies argue that degraded soils of high acidity promote the growth and proliferation of Striga 

weed (Midega et al. 2017; Larsson 2012; Yoneyama et al. 2007). On the other hand, it is reported 

that the degradation of soils and increasing its soil pH is expected to worsen with climate change 

(Mandumbu et al. 2017a). As earlier mentioned, in response to the low soil fertility and drought, 

farmers are likely to shift to C4 plants which are more tolerant of droughts and high temperatures 

but are more susceptible to the Striga infestation.  

This chapter also shows that ‘start of season’ and EVI ‘base value’ were among the most important 

predictor variables in all the six ecological niche modeling algorithms. Striga depends on the 

availability of the host cereal crops for its germination, survival, and propagation. The minimum 

level of greenness in the whole season and the level of greenness at the start of the season can be 

described by the EVI values which foretell crop planting date and crop health (e.g. Striga 

infestation rate). Similarly, the minimum value of EVI during the season signifies the crop health 

status. Thus, the start of season and EVI base value can be very relevant variables to predict the 

occurrence of Striga in semi-arid environments.  

 5.5.3 Implications of the study 

Modeling the potential distribution of weeds such as Striga is useful in agricultural management 

systems in areas most likely to be susceptible to invasion and colonization. This chapter supports 

national scale preparedness and management strategies for the protection of key crops from 

diseases and pests, especially in the face of climate change and variability. Furthermore, results 

from the present chapter show that using ecological niche modeling is one of the most reliable and 

central tools for determining the fundamental and realized niche of Striga within a geographical 

space. This chapter showed that Striga spread and propagation is likely to be within the adjacent 

areas in the ecological region III of Zimbabwe.  

Although this cannot precisely be empirically derived from the current models, it is inferred and 

anticipate that wind, water, animal, and human movement shall be the main modes of Striga seed 

spread. Striga plants are highly productive with the potential to produce between 10 000 and 200 
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000 seeds per plant (Ejeta and Butler 1993). These seeds are of lightweight (~ 4-7 µg per seed), 

which makes them easy to disperse by wind water or animals (Mandumbu et al. 2017a; Wan and 

Wang 2019).  Similarly, farmers within the same or adjacent areas are likely to exchange farming 

equipment, thereby promoting the spread of Striga seeds. Additionally, since the soils in the 

ecological region III of Zimbabwe are deep Kalahari sands, further degradation of these soils 

which leads to losses in soil fertility and ultimately could promote the spread of Striga (Yoneyama 

et al., 2007) was anticipated. To combat Striga occurrence and spread particularly in regions II, 

III, and IV of Zimbabwe, the results of this chapter can be utilized for guiding the implementation 

and upscaling of ‘push-pull’ technology (PPT).  

PPT is a climate-smart integrated farming system that uses the legume Desmodium as an intercrop 

to combat the reproduction cycle of Striga and repel insect pests i.e. stemborers and fall armyworm 

(Khan et al., 2014). Desmodium secretes a set of compounds that promote the suicidal germination 

of Striga and effectively inhibits the possibilities of the Striga to attach their roots to the roots of 

the host plant. Interested readers are referred to Khan et al. (2006) and  Pickett et al. (2014), for 

elaborate information on the PPT farming system.  

5.6 Conclusions 

The machine learning ecological niche models i.e. RF, CART, SVM, BRT, GLM, FDA, and their 

respective ensemble were compared for predicting the probability of Striga occurrence in 

Zimbabwe using multi-source bioclimatic and remotely sensed data. It is established that RF, 

CART, SVM, and the ensemble approach, yield the most accurate Striga occurrence prediction 

results in Zimbabwe. The results showed that temperature and precipitation are the key drivers of 

the occurrence of Striga. Also, the Striga epidemic in Zimbabwe is highly likely to worsen and 

spread into new areas where it was not initially found, particularly in the ecological regions I to 

IV of the country. Therefore, immediate and palliative action is critical to contain and manage the 

spread and intensity of Striga in Zimbabwe.  

The results could help researchers, policymakers, extension officers, and various other 

stakeholders to employ and implement effective and early Striga management options to contain 

and eradicate the weed. Because this chapter employed a synoptic approach at a national scale 

using datasets at a coarse spatial resolution (250 m x 250 m pixel size), future studies should focus 

http://etd.uwc.ac.za/ 
 



 

111 

 

on developing localized early warning advisory platforms and high resolution (i.e. submeter) 

remotely sensed observations to detect and monitor Striga infestation and density. Specifically, the 

use of UAVs should be investigated for appropriate use to early detect Striga occurrence and 

suitable habitats before its flowering stages. Although Zimbabwe was used as a case study, the 

modeling results can be upscaled in other African countries that possess similar agroecological 

characteristics.  
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Chapter 6  
 

Striga weed detection and modeling across different agroecological farming 

systems: A synthesis 
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6.1 Summary of findings 

The results of the study showed that in-situ hyperspectral remote sensing is an effective means to 

discriminate Striga weeds and provided new avenues to track weed invasions and improve their 

characterization in complex heterogeneous mixed cropping systems.  Specifically, this research 

demonstrated the unique capabilities and application of in-situ hyperspectral remotely sensed data, 

as one of the critical baseline data sources for the detection and discrimination of co-occurring 

vegetation that exhibits similar spectra such as Striga occurrence and other weeds and crop classes. 

A spectral library demonstrating the spectral behavior of Striga at a canopy level was generated 

from the in-situ hyperspectral data collected, using a FieldSpec® Handheld 2™ analytical spectral 

device. Coupling the in-situ hyperspectral wavebands and their visible and near-infrared (VNIR) 

derived indices with machine learning discriminant algorithms (i.e. in this case random forest (RF), 

linear discriminant analysis (LDA), gradient boosting (GB), and support vector machines (SVM)) 

demonstrated plausible capability and high accuracy for discriminating among different levels of 

Striga (i.e. S. hermonthica) infestations in maize fields in western Kenya.  

Further, Sentinel-2 waveband configurations simulated from the in-situ hyperspectral data 

demonstrated credible capabilities for use in mapping and discriminating Striga infestation in 

heterogeneous cereal crop fields. Despite the challenges due to spectral behavior similarities 

among Striga and the co-occurring plants, seven Striga infestation classes based on three flowering 

Striga classes (low, moderate, and high) against two background endmembers were successfully 

detected and distinguished. The use of canopy-level in-situ hyperspectral data to predict the 

presence and level of Striga infestation based on flowering characteristics provided the critical 

windows for Striga weed detection and mapping. This was particularly possible during the peak 

flowering period. However, the reliance on this phenological stage hinders the timely Striga weed 

mapping for meaningful interventions before crop damage.  

Also, the study showed that the RF model yielded slightly better Striga weed detection and 

mapping results compared with other different machine learning algorithms. This was the case 

from the use of both the in-situ hyperspectral and resampled Sentinel-2 multispectral wavebands. 

This was necessitated by the improvement brought by using the reduced dimensionality of the 

hyperspectral data based on the guided regularized random forest (GRRF). These positive findings 

from the use of in-situ hyperspectral data prompted the interest to test the utility of Sentinel-2 
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imagery to detect Striga occurrence at a landscape scale. 

Moreover, the use of Sentinel-2 and the constellation of dove nanosatellites i.e. PlanetScope data, 

in Striga weed (S. hermonthica) mapping within intercropped maize fields proved to be relatively 

important in mapping the Striga occurrence, although PlanetScope data demonstrated slightly 

higher Striga detection capacity. These results were expected since PlanetScope has a higher 

spatial resolution (3 m x 3 m) when compared to the Sentinel-2 (10 m x 10 m) spatial resolution. 

Nonetheless, these findings proved that Sentinel-2 can operationally be used in Striga weed 

mapping as it is readily and freely available. However, errors of commission between Striga and 

non-Striga fields caused by similarities in the spectral behaviors of the crops and other 

confounding factors in this study prompted further investigations using a hierarchical approach. 

The hierarchical approach involved masking out croplands and using subpixel-unmixing 

algorithms to improve the detectability of Striga. Therefore, a two-step hierarchical approach was 

employed, using multidate and multiyear (2017 to 2018) Sentinel-2 data to firstly classify and 

obtain a cropland mask using RF in cloud-based Google Earth Engine (GEE), and then depict 

Striga occurrence and infestation using the subpixel multiple endmember spectral mixture analysis 

(MESMA). The hierarchical classification approach proved to be well suitable for Striga weed 

detection in a heterogeneous agroecological system. 

In addition, the high potential of the MESMA algorithm to decompose mixed pixels and detect 

Striga occurrence and infestation levels were demonstrated. Despite the few misclassifications 

realized when using the two-step hierarchical approach, the masking out of the other non-target 

classes belonging to other different land cover/ land use classes before the implementation of 

MESMA demonstrated to be a more focused and spatially adjusted spectral unmixing procedure 

that proved to enhance classification accuracy and reduce spectral confusion. Also, the 

effectiveness of the GEE as a data curation and cropland mapping platform was inferred. 

Additionally, deriving endmembers (EMs) using in-situ hyperspectral data provided more realistic 

Striga spectra rather than deriving the EMs from the image itself in light of the noise from non-

target features that often hinders the acquisition of high-quality images. Despite the good 

performance of the two-step hierarchical method, the approach was found inapplicable for S. 

asiatica detection and mapping as this weed occurs completely covered underneath the cereal 

crops. The use of ecological niche machine learning and the ensemble modeling techniques is 
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fundamental for integrating multi-source data and predicting possible crop production restraints 

due to the Striga weed propagation. It is thus commendable to use the ensemble modeling approach 

to ensure harmonization and reduction of predictive errors from individual models when a multi-

model approach is used. The study integrated bioclimatic and remotely sensed variables to predict 

Striga occurrence using six ecological niche machine learning algorithms and their ensemble 

model. It was established that RF, SVM, classification, and regression trees (CART), and the 

ensemble models performed the best for mapping Striga (S. asiatica) occurrence. Furthermore, 

temperature and precipitation were depicted as the key drivers of the Striga occurrence in 

agroecological systems, with projections indicating that that by the year 2050, the suitable area for 

Striga propagation will extend into new agroecological regions.  

Overall, this study provides baseline information required for Striga weed management to reduce 

further cereal crop losses in Africa. 

6.2 Conclusions 

The use of the relatively new multispectral systems and image processing techniques, integrated 

with non-parametric machine learning algorithms, accurately improves Striga detection and 

mapping. This is particularly necessary for resource-scarce areas, a previously challenging task 

with old traditional multispectral systems. Based on the findings in the different chapters of this 

study, the following was concluded:  

1. Levels of Striga infestation (low, moderate, and high) can accurately be detected and 

predicted using machine learning algorithms and in-situ hyperspectral data at a plot 

level, 

2. The narrow-waveband spectral variables; WBI, ARI, ARI2, Datt4, DDN, and PRI.CI2, 

415 nm, 548 nm, 551 nm, 556 nm, 568 nm, 578 nm, 657 nm, 677 nm, and 1 060 nm 

plus the broad wavebands of Sentinel-2; band 3, band 4, band 9, band 1, band 5 and 

band 2 (in order of importance) are very relevant for predicting Striga infestation in 

maize fields in semi-arid agroecosystems, 

3. The machine learning GRRF algorithm is deemed to be a powerful feature selection 

method that can be used to reduce the redundancy in the complex multi-dimensional 1-
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nm hyperspectral datasets, 

4. The relatively new multispectral Sentinel-2 sensor remains a potential primary data 

source for estimating Striga occurrence and infestation level, particularly when 

integrated with ancillary datasets such as bioclimatic data at multiple mapping scales,  

5. Besides, the study has demonstrated the strength associated with machine learning 

algorithms for discriminating Striga at multiple scales within heterogeneous cropping 

systems such as those used by the small-holder farmers in Africa, 

6. The GEE is an effective data curation and cropland characterization platform using RF,  

7. The MESMA algorithm provides the commendable potential to decompose mixed 

pixels and detect Striga occurrence and infestation levels at both field and landscape 

scales,  

8. The masking out of non-target classes of different land cover classes before 

implementing the MESMA algorithm, allows for a more focused and spatially adjusted 

spectral unmixing procedure, and enhances classification of the target class (i.e. Striga) 

and reduces spectral confusion, 

9. This study revealed that it is not feasible to directly detect Striga asiatica using satellite 

imagery because this Striga species grows underneath the crops. Thus, for S. asiatica, 

remotely sensed ancillary data and machine learning algorithms have plausible 

predictive abilities of the ecological niche and potentially susceptible areas of Striga 

invasion. Specifically, the RF, CART, SVM, and the ensemble modeling approaches 

yield the most accurate Striga occurrence prediction results, and 

10. Overall, the findings of the present study demonstrated the importance of the earth 

observation and geospatial modeling algorithms as important and powerful tools that 

help to detect and map Striga weeds within heterogenous croplands at different 

mapping scales. This study underscores the utility of multi-source remotely sensed data 

for providing invaluable datasets for regional-scale Striga occurrence predictions. 

http://etd.uwc.ac.za/ 
 



 

117 

 

6.4 The future 

Multi-source ancillary data and the relatively new multispectral systems present an effective and 

robust primary data source required for characterizing Striga weeds in small-holder farms. The 

findings of this study provide the necessary insight and motivation to the agricultural, remote 

sensing, ecology, and environment communities to shift towards embracing the use of the cheap 

and readily-available remotely sensed data necessary for reliable and accurate monitoring of the 

Striga weed in data-scarce environments, where the use of hyperspectral and high-resolution 

airborne systems remains a challenge due to the associated acquisition and processing costs. This 

study, therefore, suggests the following recommendations for future research: 

1. For more precise and reliable research-based outputs for monitoring Striga at a global 

scale, earth observation and geospatial modeling tools could be assessed to detect and 

map the condition of the infested crops rather than targeting the Striga weed itself,  

2. Although the use of the field hyperspectral data in vegetation studies is not new, the 

spectral library generated in this study could be applied in other areas of similar 

climatic conditions. Further, future studies should compare the use of EMs from other 

sources like satellite imagery to test the effectiveness of other  EM selection 

mechanisms such as the endmember average root mean squared error (EAR), the 

minimum average spectral angle (MASA), and the count based endmember selection 

(CoB) that have been tested in other studies and shown to provide pure spectra for use 

as EMs,  

3. The EMs (i.e. spectral libraries) developed in this study can be used to craft and design 

a Striga-specific vegetation index that could be up-scaled to detect and map Striga weed 

using Satellite-based multispectral systems such as Sentinel-2, 

4. Models for Striga infestation fraction estimates developed in this study could be tested 

for better precision in areas of low, moderate, and high Striga infestations using high 

resolution airborne- and UAV multispectral data, 

5. Striga detection and mapping approaches developed in the present study should be 

further upscaled and projected at different points in space and time. In other words, 
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models developed in the present study should be tested in other sites or the same sites 

but under different cropping seasons, and  

6. The Striga prediction, detection, and mapping modeling frameworks developed in the 

present study should be integrated with crowdsourced ‘big data’ and the advanced 

artificial intelligence (AI) algorithms to develop cloud-based dashboards and mobile 

applications (apps) for effective and near-real-time Striga monitoring at various scales.   
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