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Abstract

Commercial banks play a dominant role in facilitating the economic growth of a country by act-

ing as an intermediary between the deficit spending unit (borrowers) and the surplus spending

unit (lenders). In particular, they transform short-term deposits into medium and long-term

loans. Due to their important role in the economy and the financial system as a whole, com-

mercial banks are subject to high regulation standards in most countries. According to an

international set of capital standards known as the Basel Accords, banks are required to hold

a minimum level of capital as a buffer to protect their depositors and the financial market in

an event of severe unexpected losses caused by financial risk. Moreover, government regulators

aim to maintain public confidence and trust in the banking system through the use of a deposit

insurance scheme (DIS). Deposit insurance (DI) has the effect of eliminating mass withdrawals

of deposits in an event of a bank failure. However, DI comes at a cost. The insuring agent is

tasked with estimating a fairly priced premium that the bank should be charged for DI.

In this thesis, we model a commercial bank holding an asset portfolio of riskless and risky assets

in a constant interest rate-financial market. Firstly, we study an optimal control problem that

involves maximization of bank capital. In particular, we employ the stochastic optimal control

approach to derive optimal investment strategies in the bank’s assets that maximize an expected

utility of the bank’s capital at future date T > 0. Secondly, we study a deposit insurance (DI)

pricing problem based on the aforementioned bank. The latter problem entails employing a

Monte Carlo simulation method to estimate the cost of DI for a coverage horizon of T years.

The period of DI coverage, of duration T years, coincides with the interval on which the optimal

investment strategy is followed. This enables us to estimate the price for DI under the optimal

investment strategy. We present numerical simulations based on the optimal control and DI
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pricing problems. This includes studying the behaviours of the optimal investment strategy and

optimized capital numerically. By means of numerical simulations, we also study the effect of

changes in various model parameters on the estimate for the DI premium. Our results suggest

that the optimal investment strategy is to diversify the bank’s asset portfolio away from the

risky asset and towards the riskless asset. Under the optimal investment strategy our results

pertaining to the DI pricing problem suggest that for a fixed intial leverage ratio (deposit-to-

asset ratio) the cost of the DI premium will increase as either the volatility in the asset portfolio

of the bank or the coverage horizon increases. Similarly, for an increase in the initial leverage

level the cost of the DI premium will increase as either the volatility in the asset portfolio of the

bank or the coverage horizon increases.
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Chapter 1

Introduction and scope

A commercial bank is a financial institution that provides services such as accepting demand and

time deposits, checking accounts services, making loans to individuals and organizations, and

offering basic financial products like certificates of deposit and saving accounts to individuals

and small businesses [41]. Commercial banks play an important role in the economy and the

financial system as a whole. Banks use deposits and borrowed funds (the liabilities of the bank)

to make loans and/or to purchase securities (the assets of the bank). According to Petersen and

Mukuddem-Petersen [33], banks try to manage their assets in the following ways. Firstly, they

endeavour to grant loans to creditors who are likely to pay high interest rates and are unlikely to

default on their loans. Secondly, they try to purchase securities with high returns and low risk.

Lastly, in managing their assets, banks attempt to lower risk by diversifying their investment

portfolio. The main categories of assets held by banks are loans, treasuries and reserves.

According to Saeed and Zahid [36], banks face many serious problems due to unsuccessful credit

risk management, but credit lending remains the chief activity of the banking sector throughout

the world. If many of a bank’s borrowers default on their loans when due, the bank’s creditors,

including its depositors, risk loss. If a large number of customers of a bank withdraw their

deposits simultaneously due to uncertainty about the bank’s solvency, the bank might expe-

rience what is known as a bank run. Many bank runs can lead to the failure of the banking

system. This will result in heightened interest rates, which will have devastating effects on the

economy. Government regulators therefore aim to maintain stability by encouraging a certain
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level of public confidence and trust in the banking system through the use of a deposit insurance

scheme (DIS). Deposit insurance (DI) is based on the idea that if depositors know that their

deposits are covered in the event of a bank failure, then they will not feel the need to withdraw

all their deposited funds. DI thus protect depositors and give them confidence that their funds

are not at risk, hence minimising, if not preventing, the likelihood of bank runs.

A DI scheme could be either explicit (EDI) or implicit (IDI). EDI differs from IDI due to its

reliance on formal regulation through central bank law, banking law or the constitution. EDI

supposedly sets the rules of the game regarding coverage, participants, and funding. The afore-

mentioned come at a cost. When countries elect not to introduce EDI, then by default their

insurance is IDI [21]. Under IDI on the other hand, there is no formal law or regulation relating

to the compensation of depositors in the event of a bank failure. If the bank is facing a financial

crisis, the government can intervene and make direct payments to the depositors. According to

the moral hazard theory, EDI can encourage banks to be less careful about risk behaviour since

the deposit insurer will cover a large part of the bank’s debts in case of default. The moral

hazard problem associated with DI is usually interpreted in terms of an incentive for a bank

to increase risk in search for higher profits [13]. In this thesis we will be studying a DI pricing

problem based on EDI.

In 1977, Merton [24] suggested an analogy between DI and a put option to value DI contracts. In

this paper a formula is derived to evaluate the cost of DI coverage. The author of [24] suggested

that the strike price of the option equals the value of the insured deposits, and that the underly-

ing asset in the contract is the bank assets. The maturity of the DI contract, under the model of

[24], is equal to the length of time until the next bank audit. If the value of the bank’s assets is

below the value of the insured deposits at the time of the bank audit, the bank has the right to

sell the assets at the value of the insured deposits, otherwise, the option is not exercised. Since

Merton’s [24] analogy, there has been a tradition of modelling DI as a one-period European put

option. Examples of research papers from the literature of modelling DI in this way, which we

discuss in detail in Chaper 2, are for instance that of Marcus and Shaked [23], Ronn and Verma

[34], Lee et al. [22] and Duan [10].

2

http://etd.uwc.ac.za/ 
 



Allen and Saunders [1] were the first to depart from the tradition of modelling DI as a one-period

European put option, as they instead modelled DI as a callable perpetual American put option

with consideration of both regulatory closure policy and self-closure policy. Hwang et al. [17]

extended the model of Allen and Saunders [1] by introducing bankruptcy costs as an additional

risk factor. In the paper [11], Duan and Yu proposed an alternative way of interpreting DI in

a multiperiod framework. The defaulting banks in the model of Duan and Yu [11] are assumed

to have their assets reset to the level of the outstanding deposits plus accrued interests when

an insolvency resolution takes place. Based on the framework of Duan and Yu [11] , Muller

[30] developed a DI pricing model that incorporates the explicit solution of an optimal capital

control problem in conjunction with an asset value reset rule comparable to the typical practice

of insolvency resolution by insuring agencies.

In order to promote the soundness and stability of the international banking industry, the Basel

Committee on Banking Supervision (BCBS) regulates the international banking industry on

behalf of the government [14, 37, 35, 32, 31]. In this regard, the BCBS introduced the Basel

Capital Accord which stipulates minimum capital requirements for internationally active com-

mercial banks so as to reduce the risk in the international banking system. The Basel Capital

Accord set out capital requirements that required banks to hold a minimum level of capital

as a buffer to protect their depositors and the financial market in the event of severe unex-

pected losses caused by financial risks. This minimum capital requirement is known as the

capital adequacy of the bank, expressed as a ratio of a bank’s capital base and its risk weighted

assets (RWAs). From a shareholder’s perspective, utilizing more capital increases asset earn-

ings and lead to higher return on equity. From the regulator’s perspective, increasing buffer

capital reduces risk by cushioning the volatility of earnings [31]. However, decreasing capital

increases risk by increasing the bank’s financial leverage and, hence, a high probability of failure.

The Basel Capital Accord was finalized by the BCBS in July 1988 in Basel. The aim of the 1988

Capital Accord, also known as the Basel I Accord, was to set up regulatory minimum capital

requirements in order to ensure that banks , at all times, are able to return depositors’ funds.

The 1988 Capital Accord called for a minimum ratio of capital to RWAs of 8% to be imple-

mented by the end of 1992. In other words, the bank’s capital should be greater than or equal to
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8% of their RWAs. However, the 1988 Capital Accord was based on simplified calculations and

classifications, which have simultaneously called for its disappearance. In June 1999, the Basel

Committee issued a proposal for a new capital adequacy framework to address the shortcomings

of the 1988 Capital Accord. The proposal lead to the 2004 revised capital framework known

as the Basel II Accord. The Basel II Accord consisted of three key pillars: Pillar 1 covered

the minimal capital requirement, Pillar 2 covered the supervisory review process, and Pillar 3

covered market discipline and disclosure [2, 40]. In response to the 2007-2008 financial crisis, the

BCBS introduced a comprehensive set of reform measures known as the Basel III Accord. The

Basel III Accord builds upon the Basel II Accord, but aims to further strengthen global capital

standards. The Basel III Accord contains changes in the following areas: (i) augmentation in

the level and quality of capital; (ii) introduction of liquidity standards; (iii) modifications in

provisioning norms; (iv) introduction of a leverage ratio [18, 32, 31].

The stochastic optimal control method is a popular optimization technique for solving opti-

mization problems in finance. The stochastic optimal control method involves solving the

Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE), derived under the prin-

ciple of dynamic programming. The aforementioned technique originated in the seminal paper

of Merton [25]. In the paper [25], the investor wishes to allocate his/her wealth between a

risk-free bond and a risky stock so as to maximize the expected utility of his/ her terminal

wealth. The author of [25] explicity solved the HJB PDE under a constant volatility of the risky

stock. Another important optimization technique used in finance is the so called Martingale

method. This method, which relies on the theory of Lagrange multipliers, was developed by

Cox and Huang [8] in a setting of complete markets. The Martingale approach incorporates a

risk-neutral measure and generally involves solving a PDE [38]. The Martingale method was

employed in banking by Witbooi et al. [38] who studied a portfolio optimization problem. In

this study we shall follow the stochastic optimal control approach.

In this thesis we study an optimal control problem that involves maximizing bank capital. In

particular, we employ the stochastic optimal control approach to derive optimal investment

strategies in the bank’s assets that will maximize an expected utility of the bank’s capital at

the future date T > 0. The constant interest rate financial market that the bank operates in
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consists of risky and riskless assets. Furthermore, we employ a Monte Carlo simulation method

to obtain estimates for the premium the bank should be charged for entering into a DI contract.

The Monte Carlo method incorporates an asset value reset rule comparable to what insuring

agencies typically employ. By embedding the optimal investment strategies from the control

problem into the Monte Carlo simulation method, we are able to see how the investment strate-

gies affect the DI premium.

The scope of this thesis takes the following form. The current chapter introduces briefly some

optimization problems studied in finance, the techniques used to solve them, as well as the

concept of deposit insurance pricing. Here we also discuss the importance of the regulation of

the international banking system. In Chapter 2 we discuss some of the papers that applied

optimization theory in finance and some papers on DI pricing. In Chapter 3 we introduce some

basic concepts and properties from finance and probability and measure theory that are used

throughout this study. In Chapter 4 we provide an explanation of the balance sheet of the

general commercial banking model and then introduce formulae describing the balance sheet

items pertaining to our study. More specifically, we describe the bank’s asset, liabilities, and

capital by means of differential equations. In Chapter 5 we present the optimal control problem

and obtain its solution. Here we also present a simulation study to illustrate graphically the

behaviour of the optimal proportions of the capital invested in the risky and riskless assets, as

well as the behaviour of the optimized bank capital. In Chapter 6 we derive the multiperiod DI

pricing model for the bank in question. This chapter also includes graphic illustrations of the

insured deposits and the bank’s asset portfolio under the asset value reset rule. Towards the end

of this chapter, we present our main results of the DI pricing problem. The thesis is concluded

with Chapter 7.

5
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Chapter 2

Literature review

We now discuss the works of some of the authors who studied optimization problems in finance.

In particular, we summarize the works of Merton [26], Devolder et al. [9], Mukuddem-Petersen

et al. [28], Mukuddem-Petersen and Petersen [33], Mulaudzi et al. [29], Witbooi et al. [38],

Muller and Witbooi [31] and Muller [30]. In addition, we will also discuss the works of some

of the authors who contributed to the development of deposit insurance pricing models. These

include the contributions of Merton [24], Marcus and Shaked [23], Ronn and Verma [34], Allen

and Saunders [1], Duan [10], Duan and Yu [11], Hwang et al. [17], Lee et al. [22] and Muller [30].

The seminal work of Merton [26] is considered as a pioneering point for the stochastic control and

dynamic programming method for continuous-time portfolio optimization. Merton [26] used the

Hamilton-Jacobi-Bellman (HJB) equation of the dynamic programming technique to explicitly

solve the question of optimal portfolio allocation in a market with a riskless bond and a risky

stock as an investment alternative. The stock price process in [26] is assumed to be driven by

a geometric Brownian motion. In the paper [26] it is assumed that an investor wishes to maxi-

mize his/her terminal wealth under a power utility function. Since Merton’s [26] seminal paper,

numerous authors have applied optimization theory in order to find similar optimal investment

strategies.

Devolder et al. [9] applied stochastic optimal control theory to obtain an optimal investment

policy, before and after retirement, for a defined contribution (DC) pension plan. The benefits
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of the plan are paid under the form of annuities which are guaranteed during a certain fixed

period of time. During the activity period of the contract, the contributions in [9] are invested

in the financial market with one riskless asset and one risky asset. The reserve obtained at

retirement age is the amount accumulated without any special guarantee given by the insurer.

At retirement age, the insurer uses the reserve to purchase a paid-up annuity. After retirement

the insurer has to pay the guaranteed annuity and also decide on how much of the remaining

mathematical reserve should be invested in the financial market in question. In view of the

fact that the liability is present after retirement, the authors of [9] split the problem into two

periods. For the first period before retirement, i.e., the period without liability, they optimized

the utility function of the final wealth at retirement. For the second period after retirement they

optimized the utility function of the final surplus. For each period they used both the power

law and the exponential utility function.

In their paper [33], Mukuddem-Petersen and Petersen applied stochastic optimization theory

to asset and capital adequacy management in banking. Their study was motivated by banking

regulation under Basel II that emphasized risk minimization practices associated with assets and

capital of a bank. The analysis of the paper [33] depend on the dynamics of the capital adequacy

ratio (CAR) which they computed in a stochastic setting by dividing regulatory bank capital

(RBC) by risk weighted assets (RWAs). The aforementioned authors demonstrated how the

CAR can be optimized in terms of the bank equity allocation and the rate at which additional

debt and equity is raised. To verify their results, the authors of [33] employed the dynamic

programming algorithm for stochastic optimization.

Mukuddem-Petersen et al. [28] solved a stochastic maximization problem related to consump-

tion and banking profit on a random time interval. The authors considered a bank balance sheet

that consists of items such as assets (loans, treasuries and reserves) and liabilities (deposits) that

are balanced by bank capital (shareholder equity and subordinate debt). Here the bank aims

to (i) optimize its expected utility of discounted depository consumption during a random time

interval and (ii), optimize its profit at terminal random time. The term depository consumption

refers to the consumption of the bank’s profits by the taking and holding of deposits. In par-

ticular, Mukuddem-Petersen et al. [28] determined an analytic solution for the associated HJB
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equation in the case where the utility function are either of power, logarithmic, or exponential

type. In the aforementioned study, the control variables are the depository consumption, the

value of the depository financial institution’s investment in loans and provisions for loan losses.

Furthermore, the authors of [28] analyzed certain aspects of the banking model and optimization

against the regulatory backdrop offered by the then latest banking regulation in the form of the

Basel II Capital Accord. Mukuddem-Petersen et al. [28] showed that it is possible for a bank to

maximize its expected utility of discounted depository consumption on a random time interval,

[t, τ ], and its final profit at time τ .

In the paper [29], Mulaudzi et al. investigated the investment of bank funds in loans and trea-

suries with the aim of generating an optimal final fund level. The results of [29] took behavioural

aspects such as risk and regret into account. More specifically, the authors applied a branch of

optimization theory that enable them to consider a regret attribute alongside a risk component

as an integral part of the utility function. In this case, regret-aversion corresponds to the convex-

ity of the regret function and the bank’s preference is assumed to be represented by optimization

subject to the utility. Moreover, Mulaudzi et al. [29] provided a comparison between risk- and

regret-averse banks in terms of optimal asset allocation between loans and treasuries. The au-

thors of [29] reached an analytical solution with regard to the optimal securitization problem

with control variable being the portfolio of mortgage-backed securities.

Witbooi et al. [38] applied stochastic optimization theory to asset and capital adequacy man-

agement in banking. Under the assumption of a complete and fictionless financial market which

allows at least two types of financial assets that can be bought and sold without incurring any

transaction cost or restriction on short sale. In the aforementioned paper, the authors addressed

the problem of obtaining an optimal equity allocation strategy that will optimize the terminal

utility of a banking portfolio consisting of three assets, namely a treasury, security and loan

under the Cox-Huang [8] methodology. At the same time Witbooi et al. [38] constructed a

continuous-time model of the Basel II CAR computed from the bank’s RWAs and capital in

a stochastic setting. A simulation of the optimal equity investment strategy in the paper [38]

indicates that the optimal porportion invested in the treasuries increases with respect to time.

On the other hand, the optimal proportion invested in the loans progressively decreases with
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respect to time, while the proportion invested in securities remains constant.

In the paper [31], Muller and Witbooi investigated the investment strategy that maximizes an

expected utility of a commercial bank’s asset portfolio at a future date. The bank modelled by

the aforementioned authors operates in a stochastic interest rate financial market consisting of

a treasury security, a marketable security, and a loan. The aforementioned investigation entails

obtaining formulas for the optimal amount of bank capital invested in different assets. Based

on the optimal investment strategy, a model for the Basel III CAR is derived. Moreover, the

authors of [31] considered the optimal investment strategy subject to a constant CAR at the

minimum prescribed level set by the BCBS, then derived a formula for the bank’s asset portfolio

at a constant (minimum) CAR value. Muller and Witbooi [31] presented numerical simulations

based on different scenarios. Their results indicate that the asset portfolio at constant (mini-

mum) CAR value grows considerably slower than the asset portfolio of the original investment

problem.

Muller [30] employed the stochastic optimal control method to derive an optimal investment

strategy in a bank’s assets that maximizes an expected exponential utility function of its capital

at a future date. The paper considered a bank that trades in a financial market where the

interest rate is constant and where it is possible to invest in a treasury, a marketable security

and a loan. The aforementioned author provided a simulation study pertaining to the optimal

proportions of the capital in the treasury, marketable security and loans. The simulation results

reveal that the optimal investment strategy is to diversify the asset portfolio of the bank away

from the risky assets and towards the riskless treasury.

Merton [24] suggested that the premium for deposit insurance can be modelled as a put option,

with the strike price of the option equal to the value of the bank’s deposits, and with the under-

lying asset being the bank assets. In [24] the asset portfolio of the bank is assumed to be driven

by geometric Brownian motion, and the maturity of the DI contract is equal to the length of time

until the next bank audit. Thus, using the Black-Scholes formula [7], Merton [24] showed that

it is possible to find the value of the option, which is considered to be the insurance premium.

The option is to be exercised if the bank is found insolvent during the audit. The practical
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application of the model [24] requires some important variables which include the value of the

bank’s assets, the volatility of the return on the assets and the impact of stochastic interest rate

on the total bank assets.

For countries that have adopted or are adopting DI, pricing DI as accurately as possible is vi-

tal. In countries with explicit deposit insurance (EDI), DI is under-priced (over-priced) if the

deposit insurer actually charges less (more) for its services than the estimated opportunity cost

value of these services [21]. Marcus and Shaked [23] estimated the fair value of Federal Deposit

Insurance Corporation (FDIC) insurance using the model [24] of Merton calibrated with data

from 40 large banks that accounted for 25% of the US demand deposit in 1980. In their analy-

sis, Marcus and Shaked [23] encountered two practical challenges that often arise when valuing

government guarantees to firms using the option pricing approach. These are the limitations of

bank assets and the volatility of the return on the bank assets not being observed directly. The

latter authors concluded that the fair value of FDIC insurance is over-priced.

Ronn and Verma [34] found that FDIC insurance is under-priced. They took the assumption of

Merton [24] that the time until maturity of the debt is equal to the time until the next bank

audit. Ronn and Verma [34] further took the assumption that the strike price of the put option

is equal to the total debt of the bank, rather than just the total deposits. Their model relies on

two variables, i.e., the bank’s asset value and the equity volatility. The bank’s asset value can

be observed, but the equity volatility must be estimated. According to [34] the sample standard

deviation of equity returns should thus be used as the equity volatility.

Duan [10] suggested that the methodology of Ronn and Verma [34] is flawed, because they in-

correctly treated the equity volatility as a constant. Duan [10] further suggested that if a bank’s

assets are assumed to follow a process with constant variance as in [24], and if bank equity is

a call option on bank assets, then the bank equity must have a non-constant variance. Duan

[10] offered an alternative methodology which overcomes some of the shortcomings of the model

[34]. Duan [10] proposed the maximum likelihood estimation method to estimate theoretically

correct values for the mean return and equity volatility from a sample of a bank’s equity values.
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Allen and Saunders [1] modelled DI as a callable perpetual American put option with consid-

eration of both regulatory closure policy and self-closure policy. The authors of [1] argued that

DI can be described as a callable put in the sense that DI is a perpetual put option with the

insuring agent holding the right to terminate the put option prematurely. The aforementioned

authors assumed that the FDIC’s closure rule is strictly observed and that there is no additional

forbearance. More specifically, banks cannot be granted permission to continue operating with

capital levels below the regulatory standards, except in the case of the largest banks. When it

comes to the right to exercise, the DI is actually not a standard put option. If the option expires

in the money, bank shareholders may choose not to exercise because this would imply voluntary

bank closure. In [1], the closure decision is used to control the timing to exercise.

Hwang et al. [17] extended the callable perpetual American put option model of Allen and Saun-

ders [1]. In particular, their model incorporates explicit consideration of bankruptcy costs and

more realistic closure rules considering possible forbearance can be accounted for. Bankruptcy

cost in [17] plays an important role and it is set as a function of asset return volatility. Applying

the isomorphic relationship between DI and a put option, Hwang et al. [17] first obtained a

closed-form solution for the pricing model with bankruptcy costs and closure policies. There-

after, they modified the barrier option approach to price the DI. In their model, Hwang et al.

[17] assume that at the time of bank solvency, deposit holders are entitled to a prorated fraction

of the asset value with all debt holders. Hence, the model [17] assume that all debts are of equal

liquidation. According to Hwang et al. [17], the big challenge in fair pricing of DI is how to

make the premium properly reflect the risk of the insured bank.

Based on the framework of Merton [24], Lee et al. [22] developed a DI pricing model that in-

corporates assets correlation, i.e., a measurement for the systemic risk of a bank to account for

the risk of joint bank failures. According to [22] the joint bank failure risk is a systematic risk

representing the joint loss distribution of dependence among bank’s assets. The authors of the

latter paper introduced a systematic risk factor to capture the risk of joint bank failures, with

the expected cost of DI being the value of the put option. In [22] banks with higher risk of joint

bank failures and higher asset correlations are required to pay higher DI premiums.
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Duan and Yu [11] proposed an alternative way of interpreting DI in a multiperiod framework.

The defaulting banks in [11] are assumed to have their assets reset to the level of the out-

standing deposits plus accrued interest when an insolvency resolution takes place. According

to the deposit insurance contract, the amount required to reset the assets is the legal liability

of the insuring agent. The setup of paper [11] is supported by the United State’s historical

experience of deposit insurance. Through the use of either purchase-and-assumption or the

government-assisted merger method, the majority of defaulting depository institutions were re-

solved. According to the data reported in the paper of Bartholomew [3], 1730 thrifts were

resolved from 1980 to 1990, of which 85.4% thrifts were resolved through this form of reorga-

nization. According to Table 125 of the 1990 FDIC’s annual report, 1813 banks closed during

the period 1945 through 1990. Among these banks, 69.6% were resolved through this form of

reorganization. According to Duan and Yu [11], even after reorganization, the majority of banks

continue defaulting. At the point of solvency resolution such banks can be regarded as receiving

an at-the money put option. Hence, the DI in [11] can be viewed as a stream of one-period

Merton-type put options with occasional asset value resets. The fairly-priced premium rate of

Duan and Yu’s [11] model is found to be substantially different from that of Merton [24]. The

former authors incorparated capital forbearance and moral hazard into their model. Their re-

sults suggest that fairly-priced premium is not neutral to forbearance policy even in the absence

of moral hazard.

Muller [30] derived a multiperiod DI pricing model that incorporates the explicit solution of his

optimal control problem (discussed earlier). The DI premium in [30] is estimated by incorparat-

ing the optimal investment strategies for different bank assets in the sense that the expressions

describing these strategies are embedded in the bank’s asset portfolio formula. The author of

[30] employed Monte Carlo simulation method to estimate the value of the DI premium for

a coverage horizon of T years. Moreover, the author of [30] assumed that the bank does not

pay any dividends to its shareholders through the life of the contract. Similar to the paper by

Duan and Yu [11], the pricing model of [30] incorporates an asset value reset rule comparable to

the typical practice of insolvency resolution by insuring agencies. Muller [30] assumed that the

insuring agent adopts a purchase-and-assumption or government assisted merger as a means to

conduct insolvency resolution, in which case the insuring agent provides a lump sum transfer to
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the acquirer of the insolvent bank at the time of bank audit. The lump sum amount is sufficient

to cover the face value of the insured deposits plus accrued interest. The author of [30] found

that, under the optimal investment strategy, for a fixed initial leverage level the DI premium

increases when either the risk in the bank asset portfolio or the DI coverage horizon is increased.

On the other hand, for the rising initial leverage levels it was found that the DI premium rises

as the risk in the bank asset portfolio is raised. However, as the coverage horizon is increased,

the DI premium drops.
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Chapter 3

Preliminaries

In this chapter we introduce mathematical concepts from finance as well as probability and

measure theory that will be used throughout this thesis. In particular, we will present relevant

definitions, lemmas and theorems here. Our main references for these items are the books by

Bhattacharya and Waymire [6], Etheridge [12], Baz and Chacko [5] and Hull [16].

3.1 Concepts from probability and measure theory

Definition 3.1. (σ-algebra) Let Ω be any non-empty set. A σ-algebra or σ-field on Ω is a

class F of subsets of Ω with the following three properties:

1. Ω ∈ F ;

2. if {A(t)} is a finite or infinite sequence of sets in F , then ∪ A(t) ∈ F ;

3. if A ∈ F then Ac ∈ F .

Definition 3.2. (Filtration) A filtration is a family {F}t∈J of σ-algebras F(t) ⊂ F which is

increasing in the sense that whenever s,t ∈ J and s ≤ t, then F(s) ⊂ F(t).

Definition 3.3. (Probability triple) A probability triple (Ω, F , P), consists of a set Ω (sample

space), a collection of subsets F of Ω (events) and a probability measure P, which specifies the

probability of each event A ∈ F . The collection F is assumed closed under the operations of

countable union and taking complements (σ-field). The probability measure P must of course

satisfy the following axioms:
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1. 0 ≤ P[A] ≤ 1 for all A ∈ F ;

2. P[Ω] = 1;

3. P[A ∪B] = P[A] + P[B] for any disjoint A and B in F ;

4. if A(n) ∈ F for all n ∈ N and A(1) ⊆ A(2) ⊆ . . . , then P[A(n)] ↑ P[∪nA(n)] as n ↑ ∞.

Definition 3.4. (Stochastic process) Given an indexed set I, a stochastic process indexed by

I is a collection of random variables {Bλ : λ ∈ I} on a probability space (Ω,F ,P) taking values

in a set S. The set S is called the state space of the process.

Definition 3.5. (Simple random walk) A stochastic process {S(n)}n>0 is a simple random

walk under the probability measure P if S(n) =
∑n

i=1 ξ(i) where the ξ(i) can only take the values

{+1,−1} and are independent and identically distributed under P.

Definition 3.6. (Brownian motion) A real-valued stochastic process {B(t)}t≥0 is a P-Brownian

motion (or a P-Wiener process) if for some real constant σ, under P,

1. for each s ≥ 0 and t > 0 the random variable B(t+ s)−B(s) has the normal distribution

with mean zero and variance σ2t;

2. for each n ≥ 1 and any times 0 ≤ t(0) ≤ t(1) ≤ t(2)... ≤ t(n), the random variables

{B(t(r))−B(t(r − 1))} are independent;

3. B(0) = 0;

4. B(t) is continuous in a variable t.

Theorem 3.7. The Hamilton-Jacobi-Bellman (or HJB) equation of optimal control for Ito’s

process for the optimization problem

J(0, X) = max
y

E

[∫ T

0
f(t,X, y)dt+B(T,X(T ))

∣∣∣F(0)

]

subject to the constraints

dX = µ(t,X, y)dt+ σ(t,X, y)dW
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and with X(0) fixed, is of the form

−∂J(t,X)

∂t
= max

y

[
f(t,X, y) +

∂J(t,X)

∂X(t)
µ(t,X, y) +

1

2

∂2J(t,X)

∂X2(t)
σ2(t,X, y)

]
.

The HJB equation is a PDE with boundary condition

J(T,X(T )) = B(T,X(T )).
(
see Baz and Chacko [5]

)
.

The variable y is called the decision/ control variable, whereas the variable X is called the state

variable.

Alternative notation for the HJB equation, which we will be using in Chapter 5, is:

−Jt = max
y

[
f(t,X, y) + Jxµ(t,X, y) +

1

2
Jxxσ

2(t,X, y)

]
Example 3.8. We now present the optimal control problem addressed by Devolder et al. [9].

In particular, we show how the aforementioned authors derived the “best” investment policy

for the assets backing a defined contribution pension plan’s liabilities before the retirement of

the participant. During this period, the participant’s contributions can be invested in a riskless

asset, X1, or a risky asset, X2; the reserve obtained at retirement age is the amount accumulated

without any special guarantee given by the insurer. At retirement of the participant, this reserve

is used to purchase a paid up annuity for the participant.

If t ∈[0, N ], where N is the retirement date of the participant, then the problem above involves

optimizing the utility of the final wealth at retirement. The state variable for the optimization

problem is the assets of the pension plan, F (t), where t ∈[0, N ]. The decision variable is chosen

as the proportion of the contribution invested in the risky asset.

The financial market considered by Devolder et al. [9] is assumed to be described by the two

assets given by

dX1(t) = rX1(t)dt (3.2)

and

dX2(t) = αX2(t)dt+ σX2(t)dw(t), (3.3)
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where r, α and σ are positive constants and w(t) is a standard Brownian motion. Suppose

that the proportion of the contribution invested in the risky asset at time t is u(t), then the

proportion invested in the riskless asset is 1−u(t). The optimization problem of Devolder et al.

[9] is to find the optimal process for u(t).

Devolder et al. [9] assumed that a lump sum is paid to the pension plan at time t = 0 and that

there are no other future contributions. Taking into account that the riskless asset’s evolution

is described by Eq.(3.2), while that of the risky asset is described by Eq.(3.3), the process F is

a solution of the stochastic differential equation (SDE).

dF (t) = F (t)
[
u(t)α+ (1− u(t))r

]
dt+ F (t)u(t)σdw(t),

with

F (0) = P > 0.

Now the optimization problem of Devolder et al. [9] which recall, is to optimize the utility of

the final wealth at retirement, can be written as

max
u

EU
[
F (N)

]
with

dF (t) = F (t)
[
u(t)α+ (1− u(t)r)

]
dt+ F (t)u(t)σdw(t)

and

F (0) = P > 0.

Devolder et al. [9] introduced the value function of the problem as:

W (t, F ) = max
u

E
[
U(F (N)|F (t) = F )

]
.

The HJB equation of the problem, according to Theorem 3.7, can be written as

−∂W (t, F )

∂t
= max

u

[[
u(t)(α− r) + r

]
F
∂W (t, F )

∂F (t)
+

1

2
u2(t)σ2F 2(t)

∂2W (t, F )

∂F 2(t)

]
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or

0 = max
u

[
∂W

∂t
+
[
u(t)(α− r) + r

]
F
∂W

∂F
+

1

2
u2(t)σ2F 2∂

2W

∂F 2

]
. (3.4)

The latter equation can be written as

0 = max
u
{H}.

This leads to two equations and a second-order condition given by

H(u∗) = 0; (3.5)

∂H

∂u
(u∗) = 0; (3.6)

∂2H

∂u2
(u∗) < 0.

Eq.(3.6) gives

0 = (α− r)F ∂W
∂F

+ u∗(t)F 2σ2
∂2W

∂F 2
,

from which a first explicit form for the optimal investment proportion u∗ in the risky asset

emerges:

u∗(t) = −
∂W
∂F

F
(
∂2W
∂F 2

) α− r
σ2

(3.7)

Substituting this into Eq.(3.5) yields a PDE for the value function

∂W

∂t
+ rF

∂W

∂F
− 1

2

(α− r)2

σ2

(
∂W
∂F

)2
∂2W
∂F 2

= 0 (3.8)

with limit condition

W (N,F ) = U(F ).

The problem is now to solve Eq.(3.8) for the value function W and replacing it in Eq.(3.7) to

obtain the optimal policy.
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By using the power law utility

U(F ) =
F γ

γ
,

with γ < 1 and γ 6= 0, and the structure

W (t, F ) = b(t)
F γ

γ

where b(N) = 1, Devolder et al. [9] derived the explicit optimal policy as

u∗(t) = − b(t)

Fb(t)(γ − 1)F γ−2
α− r
σ2

(3.9)

=
α− r
σ2

1

1− γ
.

This is a constant proportion depending on the risk premium α − r, the volatility σ2 and risk

aversion γ.

The optimal amount of the participant’s wealth to invest in the risky asset is thus

F (t)u∗(t) = F (t)
α− r
σ2

1

1− γ
. (3.10)

We now present a simulation of Eq.(3.10) based on the parameters

N = 10, P = 1, α = 0.12, r = 0.11, σ = 0.16 and γ = 0.9.

t 0 1 2 3

F (t)u∗(t) 3.9062 16.9415 12.5199 6.3658

t 4 5 6 7

F (t)u∗(t) 7.1090 40.3987 54.3738 50.6230

t 8 9 10

F (t)u∗(t) 99.7404 271.9812 609.8181

Table 3.1: The optimal amount of the defined contribution pension plan member’s wealth to

invest in the risky asset

In Table 3.1 we present the optimal amounts of the participant’s wealth F (t)u∗(t) that should

be invested in the risky asset at intervals of 1 year over a 10 year period. We observe an upward
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trend in the value of F (t)u∗(t) over the 10 year period. We plot the evolution of F (t)u∗(t) over

a period of 10 years in Figure 3.1 below. We observe that the range of F (t)u∗(t) is interval form

[3.9062, 609.8181].

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Time in years

F(t)u*(t)

Figure 3.1: A simulation of the evolution of the optimal amount of wealth of the defined contri-

bution pension plan participant over a 10 year period.

3.2 Stock price evolution over time

Lemma 3.9. (Itô’s Lemma) Suppose that S(t) denotes the price of a stock at time t and that

it follows the Itô process

dS(t) = µS(t)dt+ σS(t)dB(t), (3.11)

where µ and σ are finite positive constants denoting, respectively, the mean and standard de-

viation of the random variable S. The stochastic process B(t) is a standard Brownian motion

under the risk-neutral probability. In this case S(t) is a geometric Brownian motion.

Itô’s lemma states that for a suitable function G(t, S(t)) of t and S(t), the differential dG(t, S(t))

can be expressed as

dG(t, S(t)) =

[
µS(t)

∂G(t, S(t))

∂S(t)
+
∂G(t, S(t))

∂t
+
σ2S2(t)

2

∂2G(t, S(t))

∂S2(t)

]
dt

+ σS(t)
∂G(t, S(t))

∂S(t)
dB(t),
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where B(t) is the standard Brownian motion. Therefore, if G(t, S(t)) = ln(S(t)), then using

Itô’s formula, G(t, S(t)) follows the process

dG(t, S(t)) =

(
µS(t)

1

S(t)
− σ2S2(t)

2

1

S2(t)

)
dt+ σS(t)

1

S(t)
dB(t),

or

dG(t, S(t)) =

(
µ− σ2

2

)
dt+ σdB(t).

3.3 Concepts from finance

Definition 3.10. (Option) An option is a contract which gives the holder the right, but not

the obligation, to buy (call option) or sell (put option) the underlying asset by a certain date for

a certain price.

Definition 3.11. (European option) A European option is an option which gives the buyer

or seller the right to exercise the option only at the maturity date.

Definition 3.12. (Payoff of a European option) The payoffs (both long and short position)

of European options with strike price K, expiration date T and final price of the underlying asset

S(T ), are as follow:

1. The payoff from a long position in a European call option is max(S(T )−K, 0);

2. The payoff from a short position in the European call option is

−max(S(T )−K, 0) = min(K−S(T ), 0);

3. The payoff from a long position in a European put option is max(K−S(T ), 0);

4. The payoff from a short position in a European put option is

−max(K−S(T ), 0) = min(S(T )−K, 0).

We now consider a European put option written on a risky asset whose price dynamic evolves

according to the geometric Brownian motion process

dŜ(t)

Ŝ(t)
= r̂dt+ σ̂dB̂(t), t≥ 0.
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Here r̂ is the risk-free rate of interest per annum and σ̂ the volatility of the asset price. If K̂

denotes the exercise price of the option at the expiration date T , then using the Black-Scholes

formula the price P̃ of the option can be expressed as

P̃ = K̂e−r̂TN(−d2)− Ŝ(0)N(−d1).

In the above formular,

d1 =
ln
( Ŝ(0)
K̂

)
+
(
r̂ + σ̂2

2

)
T

σ̂
√
T

and d2 = d1− σ̂
√
T . The function N(·) is the cumulative probability distribution function for a

standardized normal distrbution.

In the example below we employ the Black-Scholes formula to compute the price of a European

put option written on some risky asset.

Example 3.13. The price of a European put option with expiration date T = 1 years and strike

price K̂=85, written on a risky asset with price Ŝ and r̂ = 0.05, σ̂ = 0.08 and Ŝ(0) = 100, is:

P̃ = 85e−0.05∗1N

(
−
ln(10085 ) +

(
0.05 + (0.08)2

2 ∗ 1
)

0.08 ∗
√

1
− 0.08 ∗

√
1

)
− 100N

(
−
ln(10085 ) +

(
0.05 + (0.08)2

2 ∗ 1
)

0.08 ∗
√

1

)
= 0.0088
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Chapter 4

The general commercial banking

model

In this chapter we present some theory on the general commercial banking model. More specif-

ically, we explain the stylized balance sheet variables of commercial banks, which are needed to

formulate the banking problems studied in this thesis.

We consider a commercial bank that is assumed to trade in a financial market that is complete

and frictionless and continuously open over a fixed time interval [0, T ]. We assume throughout

this thesis that we are working with a probability space (Ω,F , {F(t)}t≥0,P), where P is the real

world probability measure. The Brownian motions W , WD and WB appearing in the dynamics

of the balance sheet variables to be introduced later in this chapter are assumed to be defined on

the probability space (Ω,F , {F(t)}t≥0,P). The filtration {F(t)}t≥0 is generated by the Brownian

motions and satisfies the usual conditions (see Definition 3.6 of the pleliminary chapter).

4.1 Stylized balance sheet

We now discuss the stylized balance sheet of commercial banks, which records the assets and

liabilities of banks. Assets are items banks own, while liabilities are the banks’ debts. Com-

mercial banks use liabilities to finance their assets. According to references [27, 38, 31, 30], the
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balance sheet of a commercial bank, at time t ≥ 0, can be described by the equation

R(t) + S(t) + L(t) = D(t) +B(t) + C(t). (4.1)

In the above equation, the variables R , S , L , D , B and C are regarded as stochastic processes

representing the values of reserves, securities, loans, deposits, borrowings and capital, respec-

tively. The sum of the reserves, securities and loans of the bank make up the total assets of the

commercial bank, while the total liabilities is the sum of the deposits and borrowings of the bank.

Bank reserves refer to the sum of currency that commercial banks hold in the form of deposits

in accounts with the central bank, as well as currency that it physically holds in its vault (vault

cash). The vault cash is used to meet the day-to-day currency withdrawals by the banks’ cus-

tomers [31, 30]. The minimum reserve requirements of commercial banks are set by the central

bank. However, only a small portion of the total deposits is needed as reseverves since it is

uncommon for depositors to withdraw all their funds at the same time [28].

The primary securities banks own are treasury securities (treasuries) and marketable securities.

Treasuries are bonds issued by national treasuries in most countries as a means of borrowing

money to meet government expenditures not covered by tax revenues [31]. There are four types

of treasuries, namely treasury bills, treasury notes, treasury bonds and savings bonds. All of

the treasury securities besides savings bonds are very liquid [28]. On the other hand, marketable

securities are stocks and bonds that can be sold quickly and easily in the secondary market

when a bank is in need of extra cash [30]. They are often referred to as secondary reserves with

a readily determined fair market value.

Loans granted by a commercial bank include business loans, mortgage loans (land loans), con-

sumer loans and interbank loans [31]. A business loan is a loan specifically intended for business

purposes. Mortgages are long term loans used to buy property. A consumer loan is a loan to

individuals for personal or household purposes. An interbank loan is a loan between banking

institutions, with terms ranging from overnight to one week. There are two basic categories

that most loans types fall into. These are secured and unsecured loans. A secured loan is a loan

in which a lender accepts some asset as collateral for the loan. Secured loans are safer for the
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lender and more affordable for the borrower, as the lower risk allows for lower interest rates.

Unsecured loans are loans that do not have collateral associated with them. Unsecured loans

carry more risk for the lender, and to compensate for the increased risk, lenders charge higher

interest to these types of loans. The bank sets the fixed period over which the loan is provided,

as well as the rate of interest and the amount of repayment. Bank loans earn more interest than

banks have to pay on deposits. Thus, bank loans are a major source of revenue for a bank.

Bank deposits refer to money that the bank’s customers place in the banking institution for

safekeeping [31, 30]. Deposits can be classified as demand deposits or time deposits. A demand

deposit is a deposit account that gives the depositor the right to withdraw their funds from the

account without prior notice. An example of a demand account offered by the bank is a checking

account. A time deposit is an interest-bearing bank deposit account that has a specified date

of maturity. A time deposit can only be withdrawn prior to its maturity with advanced notice

and/or by paying a penalty. A time deposit refers to a savings account or certificate of deposit

offered by a bank.

The term borrowings refers to the funds that commercial banks borrow from other banks (via

interbank market) and/or the central bank [31, 30]. Banks are required to hold an adequate

amount of liquid assets in order to be able to cover any unexpected and large withdrawal request.

Commercial banks borrow from the central bank or interbank market in order to meet these

reserve requirements when their cash at hand is low before the close of business. Some banks

on the other hand, have excess liquid assets above the liquidity requirements. These banks will

lend money in the interbank market, receiving interest on the assets.

Bank capital represents the net worth of the bank and is defined as the value of the bank’s

assets minus the value of its liabilities. The more capital the bank has the better it can absorb

losses on its assets before it becomes insolvent. Bank capital is raised by selling new equity,

retaining earnings and by issuing debt or building up loan-loss reserves. It is usually the bank’s

risk management department’s responsibility to calculate its capital requirements, which is then

approved by the bank’s top executive management. The dynamics of bank capital is stochastic

in nature as it depends in part on the uncertainty related to debt and shareholder contributions.
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In theory, the bank can decide on the rate at which debt and equity is raised [31, 30].

The regulatory bank capital is divided into different tiers based on subordination and the ability

to absorb losses, with sharp distinction of capital instrument when a bank is still solvent versus

after it goes bankrupt [39, 4]. Under Basel III, bank capital, C, takes the form

C(t) = CT1(t) + CT2(t),

where CT1(t) and CT2(t) are Tier 1 and Tier 2 capital respectively [4, 32, 31, 30].

Tier 1 capital consists of shareholders’ equity and retained earnings. Tier 1 capital is the

core measure of the banks’ financial strength from the regulator’s perspective. It is always

available and acts as a buffer against losses without ceasing business operations. The amount of

Tier 1 capital affects returns for shareholders, while a minimum amount of such is required by

regulatory authorities. Tier 2 capital includes revaluation reserves, undisclosed reserves, hybrid

securities, subordinated debt and general loan-loss reserves. Tier 2 capital is supplementary

capital. From the regulator’s perspective, it measures the banks’ financial strength with regard

to the second most reliable form of financial capital [4, 32, 31, 30, 42].

4.2 Modelling the underlying bank

We now introduce formulae for the assets in which the bank modelled in this thesis invests. We

consider a constant interest rate r > 0. We assume that the riskless and risky asset dynamics,

respectively, follow the differential equations

dR1(t)

R1(t)
= rdt,

R1(0) > 0 (4.2)

and

dR2(t)

R2(t)
= µdt+ σdW (t),

R2(0) > 0. (4.3)

In Eq.(4.3), µ = r +m1, where m1 is a positive constant.
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Figure 4.1: A simulation of the evolution of the price of the riskless asset, R1(t), with r = 0.065,

R1(0) = 1 and T = 10 years.
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Figure 4.2: A simulation of the evolution of the price of the risky asset, R2(t), with µ = 0.1,

σ = 0.12, R2(0) = 1 and T = 10 years.

In Figures 4.1 and 4.2 we simulate the evolution of the riskless and risky asset dynamics over

a period of 10 years. The simulations are based on the parameters r = 0.065, m1 = 0.035 and

σ = 0.12. We consider initial conditions R1(0) = R2(0) = 1. The prices of the assets both

exhibit upward behaviour.

The amount of capital invested in the risky asset and the riskless asset at time t are denoted

by θ(t) and [A(t)− θ(t)], respectively. Thus, the asset portfolio consiting of the risky asset and
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riskless asset is given by (see [15, 31, 30] for instance)

dA(t) =
[
A(t)− θ(t)

]dR1(t)

R1(t)
+ θ(t)

dR2(t)

R2(t)
+ dK(t),

which takes the form

dA(t) =
[
A(t)− θ(t)

]
rdt+ θ(t)

[
µdt+ σdW (t)

]
+ dK(t)

= A(t)rdt− θ(t)rdt+ θ(t)µdt+ θ(t)σdW (t) + dK(t)

=
[
A(t)r − θ(t)r + θ(t)µ

]
dt+ θ(t)σdW (t) + dK(t)

=

{[
A(t)− θ(t)

]
r + θ(t)µ

}
dt+ θ(t)σdW (t) + dK(t) (4.4)

when Eq.(4.2) and Eq.(4.3) are imported into the expression for dA(t).

In Eq.(4.4), dK(t) represents the rate at which shareholders raise capital that is invested in

the bank’s assets. If dK(t)=Mdt, for M a positive constant, then

dA(t) =

{[
A(t)− θ(t)

]
r + θ(t)µ

}
dt+ θ(t)σdW (t) +Mdt

or

dA(t) =

{[
A(t)− θ(t)

]
r + θ(t)µ+M

}
dt+ θ(t)σdW (t). (4.5)

We assume that the total liabilities, L(t), of the bank is given by the equation

L(t) = B(t) +D(t),

where, recall, B and D denote the borrowings and deposits of the bank. Hence, the SDE

governing L(t) is

dL(t) = dB(t) + dD(t). (4.6)

We take the assumption that B(t) and D(t), respectively, evolve according to SDEs

dB(t) = µBdt+ σBdWB(t) (4.7)
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and

dD(t) = µDdt+ σDdWD(t). (4.8)

Here the coefficients µB, σB, µD and σD are positive constants.
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Figure 4.3: A simulation of the evolution of the bank’s borrowings, B(t), with µB = 0.1,

σB = 0.12, B(0) = 1 and T = 10 years.
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Figure 4.4: A simulation of the evolution of the bank’s deposits, D(t), with µD = 0.12, σD =

0.15, D(0) = 1 and T = 10 years.

In the Figures 4.3 and 4.4 we simulate, respectively, the evolution of the borrowings and deposits

over a 10-year period. We consider the parameters µB = 0.1, σB = 0.12, µD = 0.12, σD = 0.15

and the initial conditions B(0) = D(0) = 1 in the simulations. We note that both liabilities
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exhibit upward behaviour.

The bank’s capital can then be defined as the bank’s assets minus the bank’s liabilities, i.e.,

C(t) = A(t)− L(t),

for which we can write

dC(t) = dA(t)− dL(t)

= dA(t)− [dB(t) + dD(t)].

Thus, the SDE governing C(t) is therefore

dC(t) = dA(t)− dB(t)− dD(t). (4.9)

Subsituting the right hand sides of Eqs.(4.5), (4.7) and (4.8) for the expressions dA(t), dB(t)

and dD(t) in Eq.(4.9) yields:

dC(t) =

{[
A(t)− θ(t)

]
r + θ(t)µ+M

}
dt+ θ(t)σdW (t)− µBdt− σBdWB(t)− µDdt− σDdWD(t)

=

{[
A(t)− θ(t)

]
r + θ(t)µ+M − µB − µD

}
dt

+ θ(t)σdW (t)− σBdWB(t)− σDdWD(t). (4.10)

We are now ready to formulate the optimal control for the commercial bank that we modelled

above. This is done in the next chapter.
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Chapter 5

The optimal control problem

We now present the optimal control problem and derive its solution. In particular, we determine

the investment strategy that maximizes an expected utility of the bank’s capital at time T > 0.

The problem we wish to solve is as follows.

Problem: The objective is to maximize the expected utility of the bank’s capital at time

T > 0, i.e.,

max
θ

E

[
U
(
C(T )

)]
,

with the dynamics of C(t) described by the SDE

dC(t) =

{[
A(t)− θ(t)

]
r + θ(t)µ+M − µB − µD

}
dt+ θ(t)σdW (t)− σBdWB(t)− σDdWD(t),

C(0) > 0.

We define the value function of our problem as

H(t, C) = sup
θ

E

[
U
(
C(T )

)
|C(t) = C

]

for 0 < t < T . The value function can be considered as a kind of utility function. While the

marginal utility of the value function is a constant, the marginal utility of the original utility

function U(·) decreases to zero as C →∞ according to Kramkov and Schachermayer [20].
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According to Jonsson and Sircar [19], the value function inherits the convexity of the utility

function and is strictly convex for t < T even if U(·) is not.

The maximum principle leads to the Hamilton-Jacobi-Belman equation:

Ht + max
θ

{[
(A− θ)r + θµ+M − µD − µB

]
Hc

+
1

2

[
(θσ)2 + σ2D + σ2B

]
Hcc

}
= 0, (5.1)

where the variable t has been suppressed.

Differentiation of Eq.(5.1) with respect to θ yields:

(−r + µ)Hc +
1

2
(2θ)σ2Hcc = 0

or

(−r + µ)Hc + θσ2Hcc = 0,

from which we obtain the first-order maximizing condition for the optimal inverstment strategy

in the risky asset as

θ =
(r − µ)Hc

σ2Hcc
. (5.2)

We substitute the RHS of Eq.(5.2) into Eq.(5.1) and get

Ht +

{[
A− (r − µ)Hc

σ2Hcc

]
r +

(r − µ)Hc

σ2Hcc
µ+M − µD − µB

}
Hc

+
1

2

{[(r − µ)Hc

σ2Hcc
σ
]2

+ σ2D + σ2B

}
Hcc

= 0. (5.3)

The problem is now to solve the PDE (5.3) for the value function H and placing it in Eq.(5.2)

to obtain the optimal investment strategy θ. The PDE (5.3) admits an explicit solution for the

utility function of the form

U(C) = −1

g
e−gC ,
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where g > 0 is a positive constant

for which

−U
′′(C)

U ′(C)
= g.

(
See Devolder et al. [9] and Muller [30]

)
. We try to find an explicit solution for the PDE (5.3)

with the structure

H(t, C) = −1

g
e−gC+b(t) (5.4)

of Muller [30], for which it was assumed that b(T ) = 1.

We calculate the partial derivatives appearing in Eq.(5.2) from Eq.(5.4) as:

Ht = −b
′(t)

g
e−gC+b(t)

HC = e−gC+b(t)

HCC = −ge−gC+b(t)

Substitution of these derivatives into Eq.(5.3) yields

− b′(t)

g
e−gC+b(t) +

{[
A− (r − µ)e−gC+b(t)

σ2(−ge−gC+b(t))

]
r +

(r − µ)e−gC+b(t)

σ2(−ge−gC+b(t))
µ+M − µD − µB

}
e−gC+b(t)

+
1

2

{[ (r − µ)e−gC+b(t)

σ2(−ge−gC+b(t))
σ
]2

+ σ2D + σ2B

}
(−ge−gC+b(t))

= 0, (5.5)

which simplifies to

− b′(t)

g
e−gC+b(t) +

{[
A+

(r − µ)

σ2g

]
r − (r − µ)

σ2g
µ+M − µD − µB

}
e−gC+b(t)

− 1

2

{[
− (r − µ)

σg

]2
+ σ2D + σ2B

}
ge−gC+b(t)

= 0. (5.6)
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If, at the same time, we multiply Eq.(5.6) by −g and divide it by e−gC+b(t), we get

b′(t) − g

{[
A+

(r − µ)

σ2g

]
r − (r − µ)

σ2g
+M − µD − µB

}

+
1

2
g2

{[(µ− r)
σg

]2
+ σ2D + σ2B

}
= 0. (5.7)

Now if we let

λ = g

{[
A+

(r − µ)

σ2g

]
r − (r − µ)

σ2g
+M − µD − µB

}
− 1

2
g2

{[(µ− r)
σg

]2
+ σ2D + σ2B

}
,

then Eq.(5.7) can be written as the ordinary differential equation (ODE)

b′(t)− λ = 0. (5.8)

We proceed to solve Eq.(5.8) for b as follows:

b′(t)− λ = 0⇒ b′(t) = λ

⇒ b(t) =

∫
λdt

= λt+ κ

By imposing the condition that b(T ) = 1, we find that κ = 1− λT ,

hence

b(t) = λt+ 1− λT

= λ(t− T ) + 1.

Our value function thus becomes

H(t, C) = −1

g
e−gC+λ(t−T )+1.

We note that the second-order condition is also satisfied, as

σ2HCC = σ2(−ge−gC+λ(t−T )+1)

= −gσ2e−gC+λ(t−T )+1

< 0.
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From Eq.(5.2), we find that:

θ =
(r − µ)Hc

σ2Hcc
=

(r − µ)e−gC+λ(t−T )+1

σ2(−g)e−gC+λ(t−T )+1

=
(r − µ)

σ2(−g)

=
(µ− r)
σ2g

The amount of capital to invest in the riskless asset is thus

A− θ = A− (µ− r)
σ2g

= A+
(r − µ)

σ2g
.

The proportions of capital to invest, respectively, in the risky and riskless assets are thus given

by

Z1 =
θ

A
=

(µ− r)
σ2gA

(5.9)

and

Z2 =
A− θ
A

= 1− θ

A
= 1− (µ− r)

σ2gA
= 1− Z1. (5.10)

We now present a simulation study to characterize the behaviour of the optimal proportions of

the capital invested in the risky and riskless assets, as well as the behaviour of the optimized

bank capital.

We consider an investment horizon of T = 10 years and assume that M = 0.12. The simu-

lations are based on the following parameter values and intial conditions:

r = 0.065, m1 = 0.035, σ = 0.12, µB = 0.10, σB = 0.12, µD = 0.12, σD = 0.15, g = 2.5,

A(0) = 1, D(0) = 0.5, B(0) = 0.2 and C(0) = 0.3.
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Figure 5.1: A simulation of the optimal proportions Z1(t) and Z2(t) of the capital invested,

repectively, in the risky and riskless assets.
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Figure 5.2: A simulation of the optimized bank capital C(t) together with the bank asssets A(t),

bank deposits D(t) and bank borrowings B(t).

In Figure 5.1 we simulate the optimal proportions of capital invested in the risky and riskless

assets. According to the investment strategy depicted in Figure 5.1, the bank has to initially

invest most of its capital in the risky asset. Over time, the amount invested in the risky asset

should be reduced while the amount invested in the riskless asset should be increased. In other

words, the optimal investment strategy is to diversify the bank’s portfolio away from the risky

asset and towards the riskless asset. This finding is in accordance with the papers Witbooi et

al. [38], Muller and Witbooi [31] and Muller [30]. The authors of the aforemantioned papers

presented simulations of the optimal proportions of capital invested in the marketable security,
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loans and treasury. In the paper by Witbooi et al. [38], the authors found that the propor-

tion invested in the marketable security remains constant throughout the time horizon of the

optimization problem. On the other hand, the optimal proportion invested in the loans progres-

sively decreases with respect to time, while the optimal proportion invested in the treasuries

increases. The authors of the papers [31] and [30] both found that, over time, the proportions of

capital invested in the risky assets (marketable security and loan) decrease while the proportion

invested in the treasury increases.

In Figure 5.2 we simulate the optimized capital of the bank along with the assets, deposits and

borrowings. We observe that the optimized bank capital, bank’s asset portfolio, the deposits

and borrowings exhibit upward trends. A similar observation was made by Muller [30]. The

optimal asset portfolio modelled by Muller and Witbooi [31] also exhibits an upward trend.

In the paper by Witbooi et al. [38], the authors further observed that the Basel II CAR of

the commercial bank modelled in their paper, subject to the optimal equity allocation strategy,

resembles a mean-reverting process.

We will now derive the DI pricing model that incorporates the solution of the optimal control

problem studied in this chapter.
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Chapter 6

The multiperiod deposit insurance

pricing model

In this chapter we derive the multiperiod DI pricing model for the underlying commercial bank

of our study. In deriving the DI pricing model, we follow an options based pricing approach

similar to the methodologies of Merton [24], Ronn and Verma [34], Duan and Yu [11] and Muller

[30]. The aforementioned authors modelled DI as some form of put option. We assume that

the bank does not pay any dividends to its shareholders on the interval [0, T ]. Furthermore, the

bank is assumed to be audited at the times t(i), i = 1, 2, 3, . . . , n− 1, n, where t(i) are positive

integers such that 0 = t(1) < t(2) < t(3) · · · < t(n− 1) < t(n) = T .

We let the total insured deposits of the bank at time t be denoted by D̂(t). Following Muller

[30], we assume that the total insured deposits are of the form

ˆD(t) = ρD(t), (6.1)

where 0 ≤ ρ ≤ 1, so that the SDE governing D̂(t) is

d ˆD(t) = ρdD(t). (6.2)

Replacing the dD(t) in Eq.(6.2) by the RHS of Eq.(4.8) we obtain the expression

d ˆD(t) = ρ[µDdt+ σDdWD]. (6.3)
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We further assume, as in the papers [11] and [30], that the bank’s total asset value is subject to

reset at the time of the audit. More specifically, the total asset value of the bank at time t(i) is

determined by the following rule:

• Should A(t(i)) < ert(i)D̂(t(i)), then the bank’s total asset value will be reset to the value

ert(i)D̂(0), which is the face value of the total insured deposits plus accrued interest.

• If instead, the bank is found to be solvent, then the bank total asset value will follow the

SDE in Eq.(4.5).

The value of the DI at time t(i), for i=1, 2, 3,. . . , n − 1, n, can be described as a put option

on the assets of the bank A(t(i)), with a strike price equal to ert(i)D̂(t(i)). Facing the insuring

agent is a stream of put option-like liabilities, each giving rise to payment denoted by K(t(i)).

Here

K(t(i)) =


ert(i)D̂(t(i))−A(t(i)), if A(t(i))<ert(i)D̂(t(i))

0, if otherwise.

(6.4)

The cash payment, K(t(i)), at time t(i) can be thus generalized to

K(t(i)) =
[
ert(i)D̂(t(i))−A(t(i))

]+
, (6.5)

which implies that

K(t(i)) = max
[
0, ert(i)D̂(t(i))−A(t(i))

]
. (6.6)

The SDE (4.5) describing our bank asset portfolio does not follow a geometric Brownian motion.

Hence, we cannot apply the Black-Scholes [7] model to price the option-like liabilities faced by

the insuring agent. Instead, we employ a Monte Carlo simulation method for estimating the

price of these liabilities.

In our DI pricing problem, as was done in [11] and [30], we take the assumption that the

fairly-priced premium for the bank can be determined by the formula

P̂ =
1

nD̂(0)

n∑
j=1

e−rt(i)E[K(t(i))], (6.7)
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which takes the form

P̂ =
1

nD̂(0)

n∑
j=1

e−rt(i)E
[
ert(i)D̂(t(i))−A(t(i))

]+
, (6.8)

if we replace K(t(i)) in Eq.(6.7) by the RHS of Eq.(6.5).

In Algorithm 1 below, we present the Monte Carlo simulation algorithm of Muller [30] that we

apply to compute the fairly-priced premium for our bank model.

An algorithm for the Monte Carlo simulation method used to estimate P̂ :

While generating 105 sets, each consisting of a pair of sample paths for D̂ and A on the interval

[0, T ],

DO

At each t(i), where i = 1, 2, 3, . . . , n − 1, n and t(1) < t(2) < t(3), . . . , t(n − 1) < t(n) = T are

positive integers:

Compute the payoff [ert(i)D̂(t(i)) − A(t(i))]+ for each set consisting of the sample paths of D̂

and A.

Using all the sets of sample paths of D̂ and A, compute the average of the payoffs [ert(i)D̂(t(i))−

A(t(i))]+ as a proxy to E[ert(i)D̂(t(i))−A(t(i))]+.

Discount the proxy to time zero by multiplying it by e−rt(i).

END

Sum the values of all the discounted proxies computed at times t(i), where i = 1, 2, 3, . . . , n−1, n.

Divide the sum of the discounted proxies by nD̂(0).

Algorithm 1: Muller’s [30] alogrithm for the Monte Carlo simulation used to estimate P̂ .
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Table 6.1: Estimations for the fairly-priced deposit insurance premium

D(0)/A(0) = 0.80 σ = 0.08 σ = 0.10 σ = 0.12 σ = 0.14 σ = 0.16

T = 2 0.0055 0.0173 0.0319 0.0461 0.0582

T = 4 0.0099 0.0418 0.0893 0.1357 0.1753

T = 6 0.0162 0.0835 0.1901 0.2940 0.3758

T = 8 0.0264 0.1609 0.3736 0.5662 0.7054

T = 10 0.0442 0.3069 0.6952 1.0041 1.2078

D(0)/A(0) = 0.85 σ = 0.08 σ = 0.10 σ = 0.12 σ = 0.14 σ = 0.16

T = 2 0.0082 0.0246 0.0439 0.0620 0.0770

T = 4 0.0144 0.0552 0.1106 0.1622 0.2038

T = 6 0.0226 0.1055 0.2243 0.3316 0.4119

T = 8 0.0356 0.1922 0.4177 0.6063 0.7378

T = 10 0.0586 0.3536 0.7470 1.0411 1.2272

D(0)/A(0) = 0.90 σ = 0.08 σ = 0.10 σ = 0.12 σ = 0.14 σ = 0.16

T = 2 0.0121 0.0344 0.0591 0.0804 0.0975

T = 4 0.0200 0.0717 0.1355 0.1906 0.2334

T = 6 0.0310 0.1304 0.2594 0.3666 0.4446

T = 8 0.0478 0.2295 0.4647 0.6467 0.7677

T = 10 0.0759 0.4044 0.8012 1.0765 1.2418

D(0)/A(0) = 0.95 σ = 0.08 σ = 0.10 σ = 0.12 σ = 0.14 σ = 0.16

T = 2 0.0173 0.0459 0.0755 0.0997 0.1182

T = 4 0.0272 0.0899 0.1605 0.2176 0.2590

T = 6 0.0415 0.1589 0.2962 0.4022 0.4735

T = 8 0.0629 0.2697 0.5101 0.6833 0.7905

T = 10 0.0979 0.4606 0.8537 1.1065 1.2501

D(0)/A(0) = 1.00 σ = 0.08 σ = 0.10 σ = 0.12 σ = 0.14 σ = 0.16

T = 2 0.0237 0.0590 0.0928 0.1186 0.1370

T = 4 0.0362 0.1105 0.1862 0.2428 0.2809

T = 6 0.0538 0.1880 0.3289 0.4303 0.4939

T = 8 0.0803 0.3120 0.5536 0.7132 0.8063

T = 10 0.1229 0.5148 0.8981 1.1256 1.2461
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In Table 6.1 we employ Algorithm 1 to estimate the fairly-priced premium our bank should be

charged for DI. Similar to [30], the premiums obtained in Table 6.1 are computed for different

values of σ and T ranging from 0.08 to 0.16 and from 2 to 10 years, respectively. Also, we

consider different intial leverage levels (deposit-to-asset ratios) by varying the intial condition

D(0), while keeping intial condition A(0) fixed at 1.00. We set the values for D(0) to 0.80, 0.85,

0.90, 0.95 and 1.00. However, for the parameters r, m1, g, µD, σD and M we use the same

values as for the simulation study of Chapter 5.

For a fixed intial leverage level, we observe that the estimated price of the DI contract increases

as either the volatility (σ) or the covarage horizon (T ) increases. This means that the bank will

pay higher premiums for the DI contract as the volatility in the asset portfolio or as the covarage

horizon increases. Also, we notice that when the intial leverage level of the bank increases the

estimated price of the DI contract increases as either the volatility in the asset portfolio or

the covarage horizon increases. This implies that the bank with higher intial leverage level,

compared to the one with a low intial leverage level, will pay higher premiums when either the

volatility of the asset portfolio or the covarage horizon increases.

Our first observation is consistent with the findings of Duan and Yu [11], for the case where there

is no capital forbearance and moral hazard, and that of Muller [30]. Our second observation is

also consistent with the findings of Duan and Yu [11]. However, in the paper of Muller [30], the

author found that increasing the intial leverage level increases the DI premium as the volatility

in the bank’s asset portfoilo is increased, but decreases as the coverage horizon is increased.
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Figure 6.1: A simulation of the average, Y (t), of 105 sample paths of A(t) under the asset value

reset rule for D(0)/A(0) = 1 and σ = 0.08.
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Figure 6.2: A simulation of the average, Z(t), of 105 sample paths of D̂(t) for ρ = 0.95, µD = 0.12

and σD = 0.15.

In Figures 6.1 and 6.2 we observe that the sample path of A(t) and the sample path of D̂(t)

revolve around the average Y (t) and Z(t), respectively. In Figures 6.3 and 6.4 we present

simulations of 105 sample path of A(t) and D̂(t), based on the quantities µ = 0.1, σ = 0.08,

D(0)/A(0) = 1, ρ = 0.95, µD = 0.12, σD = 0.15 and D̂(0) = 1.
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Figure 6.3: A simulation of 105 sample paths of A(t) under the asset value reset rule for an

initial leverage level of D(0)/A(0) = 1 and σ = 0.08.

Figure 6.4: A simulation of 105 sample paths of D̂(t) for ρ = 0.95, µD = 0.12, σD = 0.15 and

D̂(0) = 1.
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Chapter 7

Conclusion

To solve optimization problems in finance, one can either employ the Martingale method or the

stochastic optimal control technique. In this study we follow the latter approach by showing

how to optimize the capital of a commercial bank in terms of utility maximization. We assume

that bank capital, raised by the shareholders of the bank, is invested in the bank’s assets. Bank

capital, by definition, is the difference between the values of a bank’s asset portfolio and liabil-

ities. Our bank’s liabilities are assumed to come in the form of deposits and borrowings. The

financial market in which the bank trades consists of risky and riskless assets and the interest

rate in the market is assumed constant. To formulate the optimal control problem, we first

introduce SDEs satisfied by the dynamics of the bank’s asset portfolio and liabilities and then

derive the SDE for the bank’s capital. We employ the stochastic optimal control approach to

derive optimal investment strategies in the bank’s assets that maximize an expected utility of

the bank’s capital at future date T > 0. We find an explicit solution to the optimal control

problem by using an exponential utility function similar to the one considered by Devolder et al.

[9] and Muller [30]. In addition, we study the behaviours of the optimal investment strategies

and optimized capital numerically. We find that the optimal investment strategy is to diversify

the bank’s asset portfolio away from the risky asset and towards the riskless asset over time.

That is, the bank should initially invest more of its capital in the risky asset than the riskless

asset. Over time, less capital should be invested in the risky asset and more in the riskless one.

Our findings are similar to that of the paper by Muller and Witbooi [31] and Muller [30] that

both found that, over time, the proportions of capital invested in the risky assets (marketable
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security and loan) should be decreased while the proportion invested in the treasury should

increase.

While banks are important to the economy, they are vulnerable to illiquidity and insolvency. For

these reasons, many countries have implemented DI schemes. For the bank considered in the

optimal control problem we study a DI pricing problem by following the options based approach

followed by Merton [24], Ronn and Verma [34], Duan and Yu [11] and Muller [30]. We employ

a Monte Carlo simulation method to estimate the cost of DI for a coverage horizon of T years,

where T is the date at which the bank wishes to maximize the utility of its capital. We assume

that the bank in question does not pay any dividends to its shareholders on the interval [0,T]

and that the audits of the bank is conducted periodically at times t(i), i = 1, 2, ...., T . Our

Monte Carlo method incorporates an asset value reset rule similar to those of Duan and Yu

[11] and Muller [30]. In particular, should the bank be insolvent at the auditing times, then its

assets are set to the level of the face value of the total insured deposits plus accrued interest, but

follows the SDE describing the asset portfolio otherwise. By embedding the optimal investment

strategy from the control problem into the Monte Carlo simulation method, we are able to see

how the investment strategy affects the DI premium. By means of numerical simulations, we

also study the effect of changes in various model parameters on the estimate for the DI premium.

Under the optimal investment strategy our results suggest that, for a fixed initial leverage ratio

(deposit-to-asset ratio), the cost of the DI premium must increase as either the volatility in

the asset portfolio of the bank or the coverage horizon increases. Similarly, for an increasing

intial leverage level the cost of the DI premium must increase as either the volatility in the asset

portfolio of the bank or the coverage horizon increases. Our first observation is consistent with

the findings of Duan and Yu [11], for the case where there is no capital forbearance and moral

hazard, and that of Muller [30]. Our second observation is also consistent with the findings of

Duan and Yu [11]. However, in the paper of Muller [30], the author found that increasing the

intial leverage level increases the DI premium as the volatility in the bank’s asset portfoilo is

increased, but decreases as the coverage horizon is increased.
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