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Abstract

A Relativistic Analysis of Proton-induced Knockout Reactions From
Oxygen Isotopes With Direct and Inverse Kinematics.

by

Kanting Evidence Motimele

In this study a complete set of exclusive (~p, 2p) polarization transfer observables of closed-shell oxygen
isotopes are calculated using both direct and inverse kinematics using the relativistic plane wave im-
pulse approximation. The interaction matrix is written in terms of the SPVAT (scalar, pseudoscalar,
vector axial vector, tensor) covariants where each amplitude is obtained directly from experimental
phase shifts. A relativistic mean field theory approximation is used to compute boundstate wave
functions of the nucleons. We study the evolution of polarization transfer observables within oxygen
isotopes and identify observables which may discriminate between these isotopes. The same kine-
matical conditions are considered for both direct and inverse kinematics: the incident energy is set
at 504 MeV and coplanar angles are fixed at (22.12◦,−40.30◦). The results indicate that only three
spin observables, namely, Ay, P and Dnn distinguish different oxygen isotopes at these kinematical
conditions in the inverse kinematics.
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Chapter 1

Scientific Motivation

1.1 Introduction

At the low energies (<1 GeV) relevant to the structure and dynamics of nuclei, nucleons are the basic
degrees of freedom. Nucleons are complex objects composed of quarks which interact via gluons. The
underlying theory governing this interaction is called quantum chromodynamics (QCD). However,
in the energy regime relevant to nuclear physics QCD is non-perturbative and very difficult to solve
analytically and numerically. For many years, the nonrelativistic Shrödinger equation has been the
dynamical equation of preference with nucleons treated as degrees of freedom in the investigations
of nuclear structure and nucleon-nucleon (NN) interaction. However, in this work we will adopt a
relativistic1framework within which to perform the investigations of nuclear structure and reactions of
β-unstable nuclei lying far from the valley of stability. The nucleons are taken as fundamental degrees
of freedom interacting via exchange of various mesons. The questions of great importance this study
will try to answer are related to the understanding of the interaction between nucleons in the nuclear
medium and its relationship to the underlying fundamental interactions to the understanding of the
many-body manifestations of the nucleus as a system of correlated fermions. This will be achieved by
looking at the groundstate properties of nuclei such as total binding energy, single-nucleon energies
and wave functions, density profiles etc.

The choice of relativistic formalism is motivated by the immense success this formalism has enjoyed
in the description of nuclear structure and nuclear scattering phenomena of both stable and exotic
nuclei. The relativistic formalisms point to the importance of relativistic effects and provide natural
explanations for the observed features of nuclear matter. The potential of the relativistic approach
became apparent in the very early history of quantum field theory (QFT) when it was recognised that
the concept of spin within the relativistic dynamics is intrinsic, i.e., it occurs as a natural consequence
of using the relativistic Dirac equation. There are many consequences of taking a relativistic approach
to solving fundamental nuclear physics problems. This will be motivated below.

Nonrelativistic nuclear physics based on the solution of the Shrödinger equation has provided
exceptional theoretical results over the past decades. In recent years there has been a successful
application of ab initio methods of nuclear physics. Ab initio nuclear theory describe the atomic
nucleus beginning from all constituent nucleons and the fundamental forces between them and aims
at predicting the properties of nuclei. The idea is to solve the nonrelativistic Shrödinger equation
and derive accurate nuclear interactions using chiral effective field theory (EFT). This effective field
theory (EFT) includes all interactions compatible with the symmetries of QCD, ordered by the size of

1By relativistic we mean that the dynamical equation of motion is the Dirac Equation with its relativistic treatment
of the dynamics and kinematics
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their contributions. The degrees of freedom in EFT are nucleons and pions. The common techniques
used in the exact ab initio calculations [4, 5, 6, 7] for very light nuclei (A = 3, 4) involve solving
the nonrelativistic many-nucleon Schrödinger equation with the inter-nucleon interactions as the only
input. There exists plenty of ab initio calculations that are applicable to medium and heavy nuclei.
The enormous progress made in the last 10 years in this theory is largely due to the powerful ab initio
approaches and high-performance computing chiral EFT. In this dissertation we take a rather modest
approach as opposed to that of ab initio theory. We study the nuclear structure of unstable nuclei in
the framework of relativistic mean field theory and proton knockout scattering reactions with unstable
nuclei of are investigated within the context of relativistic impulse approximation.

In the 1970s the idea that nuclear dynamics should be described within a relativistic framework
gained traction following the success of quantum hydrodynamics (QHD) of Walecka [8, 9]. QHD is
a model for the study of the relativistic nuclear many-body problem through an effective Lagrangian
field theory. It describes nuclear matter as resulting from interactions between nucleons (baryons) in
the nucleus through the exchange of mesons. A relativistic mean field approximation to QHD provides
a framework to describe nuclear structure of finite and infinite nuclear matter using a minimal number
of phenomenological parameters . The relativistic treatment of fundamental nuclear physics problems
proved to provide satisfactory explanations to nuclear phenomena such as small binding energy, large
spin-splitting, nuclear saturation and density dependence of the interaction. For instance, the density
dependence of the interaction is due to the fact that the vector and scalar potentials have different
density dependences. The differences between the vector and scalar potentials give rise to nuclear
saturation in this model. The saturation of nuclear matter explains why there is only a limited number
of stable nuclei in nature. The small binding energy of saturation is explained as a consequence of
fine cancellation between large scalar potential and large vector potential. The model also explains
the existence of a nuclear shell model with the experimentally observed level orderings, spacings, and
major shell closures in nuclei. In the relativistic structure, a large spin-splitting, which is consistent
with experimental observations appears naturally.

The medium energy (100-1000 MeV) nucleon-nucleus scattering physics has its origin in the 1950s
and, to date, continues to provide enormous information in the studies of nuclear structure and NN
interaction. The medium-energy nuclear physics is only a part of grand efforts to gain comprehensive
understanding of the nature of strong forces responsible for nucleon-nucleon interactions in complex
many-body systems. The experiments performed at intermediate energy allow us to focus on the
NN interaction because at these energies knowledge of excited states is irrelevant. Furthermore, the
medium energy scattering and small scattering angles invoke impulse approximation. The relativistic
impulse approximation constitutes the cornerstone of this theoretical study. The impulse approxima-
tion assumes that the scattering process proceeds through the interaction of the incident projectile
with individual nucleons in the nucleus as opposed to interacting with the nucleus as a whole. Fur-
thermore, the approximation assumes that the nature of the interaction between the projectile and
the bound nucleon is identical to the nature of the interaction between a projectile and a free nucleon,
apart from including the binding aspect of the nucleon. One of the major goals of this study is to
investigate the scattering of incident medium energy neutron rich nuclei off a proton target for inverse
kinematics. The topical question that needs to be answered is how the free NN interaction is modified
in the nuclear medium: the exclusive nature of (p, 2p) reactions allows one to selectively knockout
protons from deep- to low-lying single-particle orbitals in nuclei, thus enabling one to systematically
study the effect of the nuclear density on the NN interaction.

The relativistic analysis of scattering reactions began with the pioneering work of Clark and
collaborators [10, 11, 12, 13, 14] when they solved the Dirac equation with large attractive vector and a
large repulsive phenomenological potentials to obtain excellent quantitative results for proton-nucleus
spin observables. McNeil, Shepard and Wallace developed a parameter-free theoretical description
called the relativistic impulse approximation (RIA) which was in accordance with the results of Clark
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et. al [15, 16]. The relativistic impulse approximation models are Lorentz covariant allowing for
reliable extrapolation to extreme conditions of density, temperature or momentum transfer. The
ability of relativistic models to describe elastic and inelastic proton-nucleus spin observables combined
with failures of the nonrelativistic Shrödinger equation-based models to describe the analysing power
for quasielastic (p, p′) scattering at 500 MeV from 40Ca and 208Pb targets, lead to the development of
the Relativistic (Dirac) Plane Wave Impulse Approximation (RPWIA) for quasielastic proton-nucleus
scattering [17]. The relativistic NN amplitudes are based on a Lorentz-invariant parametrization of
the standard five Fermi invariants (the so-called SVPAT form). In the RPWIA strong optical scalar
and time-like vector components of mean-fields in the medium enhance the lower components of the
Dirac nucleon wave functions of the projectile and target nucleons through effective masses as derived
in relativistic mean-field theory. It is through the use of an effective nucleon mass that the effect of
the spectator nucleons is taken into account, i.e., the fact that scattering takes place inside the nuclear
medium.

1.2 Exclusive Proton Knockout Reactions

The exclusive proton knockout reaction A(a, a′b′)C refers to a process wherein an incident proton a
with intermediate energy (100 - 1000 MeV) knocks out a bound proton b from a stationary target
nucleus A. The two protons (scattered projectile and the ejected nucleon) are detected as a correlated,
coplanar pair. The kinematical properties of the two scattered protons and of the residual fragment
carry valuable spectroscopic information about the particular quantum state of the struck proton
such as, for instance, its internal momentum and single-nucleon separation energy. Experiments of
this kind were first observed in 1952 at Berkeley laboratory [18, 19]. The explanation of the direct
proton-proton scattering mechanism inside the nucleus was provided in a number of later experiments
[20, 21, 22, 23]. At intermediate energy range, the mean free path of a proton inside a nuclear matter
is of order of magnitude comparable to the nuclear radius and the interaction is strongly localized,
since the de Broglie wavelength2of the projectile is smaller than the average inter-nucleon distance
in the nucleus. The initial investigations of quasifree reactions focused solely on (p, 2p) knockout
reactions but they have since been extended to include other quasifree scattering processes such as
(e, e′p), (π, π′p), (p, pn), (p, pd) and (α, 2α) [24].

Quasifree scattering (QFS) using direct kinematics with stable beams has provided enormous
information on the single-particle properties of nuclei (such as single-nucleon separation energies,
wave-functions and spectroscopic factors) [24] along the stability line. This reaction mechanism alone
offers the possibility to study not only the outer part but also allows the direct exploration of deeper
regions inside the nucleus. Besides, the use in the study of single particle properties of the nuclear
structure proton knockout reactions are a powerful tool to study the nature of the strong interaction
in nuclear matter. Since the process involves NN scattering in the nuclear field, quasifree scattering
provides a direct mechanism to investigate the NN interaction inside the nuclear medium [25]. It was
recognized early on in the history of proton knockout reactions that they can be used to study the
nature of the strong nuclear interaction in the nuclear medium [26]. However, investigations in this
fashion had to wait for the progress in the development of the theoretical description of effective NN
interaction in the 1980’s [27], as well as the availability of high quality polarized beams. Polarized
particle beams necessitate the measurement of spin observables, considered to be a more stringent
test of reaction models than cross-sections. In this study we will calculate a complete set of exclusive
(p, 2p) spin observables to investigate the nature of NN interaction in some selected nuclei located
away from the valley of stability.

The exclusive (p, 2p) reaction is preferred over inclusive quasielastic (p, p′) for the measurement of
polarization transfer observables for the following reasons:

2The de Broglie wavelength is defined as λ = hc/pc with p the particle’s momentum
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1. The ambiguities in nuclear structure and reaction mechanisms present in the description of
quasielastic scattering are minimized in exclusive (p, 2p ) scattering processes.

2. The quasielastic scattering deals with the superposition of scattering amplitudes of all nucleons
of the nucleus whereas quasifree knockout deals basically with the scattering amplitude of a
single nucleon [28].

3. An additional advantage of exclusive over inclusive quasifree scattering is that the two-body
kinematics can be specified through the experimental setup.

The theoretical and experimental developments of quasifree proton (p, 2p) and electron (e, e′p)
scattering from stable nuclei have taken place at the same time and their results have been com-
plementary [29, 30]. The advantage of this was that the the results obtained from quasifree proton
(p, 2p)could be compared to those coming from quasifree proton (e, e′p). The electron induced reac-
tions have the advantage of high accuracy of such measurements because electrons have longer mean
free path in nuclear matter thus reducing the distortion to just one of the outgoing particles. The
electron-induced knockout reactions are sensitive to the whole volume of the nucleus from surface to
the centre, and therefore they are ideal for studying the sensitivity of the spectroscopic factors to the
radius. The near model independence of (e, e′p) reactions is an attractive feature but these reactions
have low cross sections, due to the fact electrons interact with the nuclear matter only via electromag-
netic interaction [29]. The small electromagnetic cross section of electron-induced reactions combined
with biased selectivity for reaction with protons is an undesirable feature to study single-particle
states of neutrons, which are of a great interest in particular for investigation of the nuclear structure
in exotic nuclei with a large neutron-proton asymmetry. Furthermore, despite being much easier to
handle theoretically, the measurement of (e, e′p) cross sections requires double coincidence which is
difficult. The challenges associated with using electron-induced reactions in the investigations of the
structure of exotic nuclei will be addressed by an experiment such as The ELectron Ion Scattering
experiment (ELISe) [31]. In such experiments it will be possible to measure the scattering of electrons
off radioactive nuclei to study the nuclear structure of exotic nuclei.

Despite the unique opportunity to utilise electrons as probe to explore the structure of exotic
nuclei that will be provided by experiments such as ELISe, the (p, 2p) reaction offers a number of
advantages. For instance, in the studies of deeply bound nuclear states, the possibilities offered by
(p, 2p) are almost unparalleled. Moreover, the lower accuracy of (p, 2p) due to the larger distortion in
the nuclear medium is partially compensated for by their much higher cross sections and the possibility
of the study of neutron knockout [29]. However, quasifree scattering (QFS) in direct kinematics with
stable beams are limited to the study of the nuclei lying in the stability region. The quick-fix solution
is to make stationary targets of unstable isotopes, however in practice, it is very difficult to produce
such isotopes as they are short-lived, for that reason, the experiments with inverse kinematics are
required. In the inverse kinematics a radioactive nuclear beam composed of nuclei of interest collides
with a proton target (e.g., liquid hydrogen, CH2, etc). In terms of inverse kinematics, the quasifree
scattering process proceed via a single collision between an energetic nucleon in a projectile nucleus
and the proton target. This interaction is strongly localized if the projectile has intermediate energy
range and the nucleon removal process can be seen as an interaction between the (quasi) free nucleon
of the projectile nucleus and the target proton. The proton target increases the sensitivity to the
more deeply bound states. In addition, if the appropriate choice for incident energy is made, the
rescattering in the final state can be minimized, since the nucleon-nucleon interaction cross-section
reaches its minimum around 250 - 350 MeV.

The study of unstable nuclei with inverse kinematics has already revealed the secrets hidden in
the vastness of nuclear landscape. One of the first experiments with unstable beams showed that
when the interaction cross sections of light isotopes of lithium and beryllium were measured [32, 33],
they exhibited much larger radii than was predicted for stable nuclei via the empirical nuclear radius
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formula. The apparent deviation from the empirical relation is attributed to a phenomenon called
nuclear ’halo’ wherein a core of protons and neutrons can appear to be spatially separated from pure
neutron matter that surrounds it like a halo-like structure. Single nucleon knockout reactions have
also proven useful for other structure investigations in nuclei such as, observing the breakdown of the
N = 8 shell gap e.g. in the neutron-rich 12Be [34] along with other investigations into the breakdown
of known shell gaps and the emergence of new ones in the so-called ’island of inversion’ [35].

1.3 Exotic Nuclei

There are less than three hundred (300) stable or long-lived nuclides which are found along the valley
of stability in the nuclear chart. The stable and near stable nuclei studied to date show only a glimpse
of the many complexities that nuclear matter can pose. A much richer view will be revealed in the
study of nuclei with extreme proton-neutron composition which is the critical feature of radioactive
nuclear beams (RNBs). When the unstable nuclei, the number is now over three thousand3[36], are
explored, many exotic nuclear phenomena have been observed such as the nuclear halo [37], quenching
of magic numbers [38], new collective excitation modes [39] etc. The N/Z ratio between the number
of neutrons and protons gives an accurate indication of whether the nucleus is stable or unstable.
In stable nuclei, the ratio N/Z indicates that proton-neutron system is at equilibrium and occurs
in nature. Contrastingly, unstable nuclei tend to undergo a beta decay (thus changing the ratio
N/Z) to reach equilibrium, i.e., more tightly bound nuclei at the valley of stability. Such nuclei have
unusual N/Z ratio and are typically short-lived compared to the nuclei lying in valley of stability.
The further the nucleus is from the region of stability in the nuclear chart, the shorter its lifetime.
The isotopes found far from stability are often referred to as radioactive isotopes or exotic nuclei.
Exotic nuclei come in two configurations subject to whether they have excess neutrons or deficiency in
neutrons relative to stable nuclei: neutron-rich or neutron-deficient. The neutron-deficient nuclei are
less extended compared to neutron-rich nuclei since the Coulomb interaction between protons in the
nucleus overcomes strong nuclear force limiting the number of protons that can be added in a chain.
Exotic nuclei have their existence limit beyond which no more neutrons/protons can be added. This
limit is called the neutron/proton drip line collectively. The proton drip line has been experimentally
established up to protactinium (Z = 91). The presence of proton drip line near the stability valley is
due to Coulomb interaction. The neutron drip line has only been identified for light nuclei up to Z ≤ 8
and their precise location in the nuclear chart has not yet been pinpointed. For the most isotopic
chains the neutron drip lines remain elusive. Since neutrons do not possess an electric charge and
neither attraction nor repulsion exists between them, numerous neutrons may be clustered into nuclei
starting from the valley of stability. Consequently, the nuclear landscape separating the neutron drip
line and the valley of stability is large and difficult to probe experimentally.

In stable nuclei, the magic numbers predicted by the shell model and observed experimentally
are valid, but away from the valley of stability towards exotic nuclei, which are nuclei close to the
drip-lines, the large energy gaps which characterize magic nuclei are not that pronounced or become
quenched and in some cases new ones can appear. The experimental observations reveal that neutron
shells N = 8, 20 for stable nuclei disappear in very neutron-rich nuclei and are replaced with N = 6,
16 shells [40]. As a result, some exotic nuclei that were expected to be magic are not and others, which
were not expected, turn out to be magic nuclei. This shell quenching in exotic nuclei is predicted for
neutron numbers all the way up to the N = 82 shell closure, while for protons it appears to stop
much sooner (Z = 20 ). This is because the Coulomb force prevents the descent of higher energy
orbitals from the continuum approaching the bound states [41], a process that is often linked to shell
quenching. Observation of N = 82 shell quenching, would shed light on the astrophysical r-process
by allowing a better fit of the data we have for element abundances [42].

3The theoretical prediction put the number at 7000
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To drive the point home by means of an example: the expected magic numbers N = 8 in 11Li
and N = 20 for the oxygen isotopes can not be confirmed by experiments. The shell model predicts
11Li to be a magic nucleus, with the two valence neutrons in the orbital 1p1/2. However, experiments
[32, 33] observe a large radius and a mixture of the 1p1/2 and the 1s1/2 shells in this nucleus, resulting
in the disappearance of the magicity of the N = 8. In the case of the oxygen isotopic chain, the chain
finishes at 24O and the neutron drip line for the oxygen isotopes starts with 26O and therefore, there is
no evidence for 28O to be bound, consequently, the N = 20 vanishes as magic number. Experimental
evidence suggests that in the oxygen isotope 24O the valence neutrons mainly populate the 2s1/2

orbital, creating a large gap between the 2s1/2 and 1d3/2 orbits making this nucleus doubly magic
[43, 44, 45]. It has been observed [46] that the energy of the first excited state for 22O is relatively
high making N = 14 a sub-shell closure for the oxygen isotopes. This behaviour seen in N = 14 is
not observed with the same strength for the 21N [47, 48] and it has vanished for 20C [49]. All these
works show that the magic numbers are not universal along the nuclear landscape as it was thought;
they evolve when we move far from the β-stability.

Accelerator facilities have immensely contributed to the understanding and knowledge of atomic
nuclei especially those lying along the valley of stability, experimental data obtained from these facili-
ties is essential in the development and refinement of theoretical models. The production of radioactive
nuclear beams has enabled the investigations of new territories of the nuclear landscape far from the
β-stability line. Moreover, this allows one to also test the validity of the models that were developed
to explore nuclei in the stability valley. There are two main techniques used for the production of un-
stable ions namely Isotope Separation On-Line (ISOL), and in-flight separation. In the ISOL method,
a primary beam bombards a thick production target and depending on the composition of the target,
a range of different species are produced through various reaction mechanisms, such as fragmentation,
fission and spallation. The ions of interest are then extracted from the production target and guided
through an electromagnetic mass analyser, which separates different masses. If there is a chemical
element that is not ionised, laser ionization may be used to selectively ionize specific elements. Finally,
the selected ions can be re-accelerated if necessary.

In the in-flight separation technique, a primary beam impinges on the thin production target. It is
often essential for the primary beam to be heavy and energetic so that reaction fragments can recoil
out of the thin target. The in-flight method has the advantage of applicability to short-lived RNBs
and does not depend on the chemistry of unstable ions. It is worth mentioning that this technique is
not restricted to high energy beams, in fact, at Notre Dame University there is a complete programme
that utilises low-energy RIBs for in-flight method and unlike the ISOL method it can produce almost
all ions between the proton and neutron drip lines. The ISOL technique produces ions with higher
intensities and better optical qualities than the ones produced by the in-flight technique. Some of
the operational accelerator facilities that use ISOL for RNBs production are REX-ISOLDE at CERN
(Switzerland), SPIRAL at GANIL (France) and Louvail-la-Neuve (Belgium). The following are some
of the operational facilities which use in-flight separation method: A1900 at NSCL (USA), SISSI-
ALPHA at GANIL (France) and RIPS at RIKEN (Japan). Many more RIB accelerator facilities
are planned and most of them will become operational in the near future4. For further details on
different aspects of ISOL and in-flight techniques the interested reader can consult the following
reviews [50, 51, 52] and [53, 54] references of the therein.

1.4 Objectives of this Study

We mentioned the objectives of this study in passing in the previous sections. Here we list the main
objectives we seek to accomplish in this work.

4see http://www-elsa.physik.uni-bonn.de/accelerator list.html for a complete list
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1. To write the new relativistic mean field theory codes which incorporates pairing correlation for
the study of exotic nuclei.

2. To study the nuclear structure, in particular, groundstate properties and variety of nuclear
phenomena, of nuclei throughout the nuclear landscape within the framework of relativistic
mean field theory.

3. To perform the first study of a complete set of the exclusive (p, 2p) spin observables of exotic
nuclei with inverse kinematics.

4. Finally, compare spin observables of magic oxygen isotopes to gauge medium modification as
nuclei become neutron-rich.

1.5 Organization of Dissertation

We want to highlight that in this work exclusive (p, 2p) knockout reaction refers to the nuclear reactions
in which all the protons are polarized unless stated otherwise. In the direct kinematics, the incident
proton is polarized and the two outgoing (scattered and knocked out) protons are polarized. There
is a large body of theoretical and experimental work dedicated to these types of reactions see latest
review in Ref. [55]. For the inverse kinematics, a target proton is polarized and the two outgoing
protons are also polarized. The experimental investigations of exclusive (p, 2p) knockout reaction
with inverse kinematics have only been achievable in the recent years [56]. RIKEN facility in Japan
is one of the leading RIB laboratories investigating unstable nuclei with polarized proton targets.
As far as we know there has never been any theoretical study looking at spin observables of the
exclusive (p, 2p) knockout reaction with inverse kinematics. We are encouraged by the developments
taking place at RIKEN that in the near future it will be possible to measure a complete set of spin
polarization observables for exclusive (p, 2p) knockout reaction with inverse kinematics and hence, we
undertake this theoretical task. In this manuscript, we adopt the conventions of Bjorken and Drell
[57]. Furthermore, all kinematic quantities are expressed in natural units ~,= c = 1, unless stated
otherwise.

In chapter 2 we present the nuclear structure of both stable and unstable nuclei nuclei within
the context of relativistic mean field theory. A systematic theoretical study of oxygen isotopes is
performed for exclusive (p, 2p) scattering reactions with direct and inverse kinematics, and analysed
within the relativistic impulse approximation framework in chapter 3. Chapter 5 is devoted to the
summary and outlook.
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Chapter 2

RELATIVISTIC MEAN FIELD

THEORY

2.1 Introduction

The primary goal of nuclear physics is to provide a comprehensive description of the nature of the
interaction between two or more nucleons in complex many-body systems such as finite nuclei and
neutron stars. The quantum chromodynamics (QCD) of quarks and gluons is a fundamental theory
of strong interactions. QCD describes the interaction between quarks through the exchange of gluons.
Hence, it is reasonable to expect QCD to explain possible modification to hadron properties in the
nuclear medium. However, enormous challenges make it an insurmountable task to solve the theory in
the non-perturbative regime of relevance to nuclear systems. The problem of studying nuclear systems
in a relativistic formalism from first principles of QCD is circumvented by formulating a consistent
microscopic treatment of nuclear systems using hadronic degrees of freedom. A relativistic descrip-
tion of nuclear many-body problem based on hadrons as degrees of freedom is known as quantum
hadrodynamics (QHD). In this theory, the strong interaction between nucleons in finite nuclei and ex-
tended nucleonic matter is due to the exchange of various mesons (quanta of nuclear force). Although,
QHD is an effective field theory it is constrained by QCD symmetries: parity invariance, Lorentz in-
variance, isospin symmetry, electromagnetic gauge invariance and chiral symmetry. This formulation
offers several advantages: (i) in nuclear experiments hadrons are the actual degrees of freedoms that
are observed as opposed to quarks which are more fundamental and are described by QCD, (ii) the
hadronic calculations can be calibrated by requiring that they reproduce empirical nuclear properties
and scattering observables, (iii) and QHD allows for the mesonic degrees of freedom to be included at
the beginning of the development of the model and principles of causality, retardation and relativistic
kinematics can be easily incorporated in the relativistic field theoretic approach.

The first successful QHD model [8] was formulated by taking into account only the contributions of
σ and ω mesons to the Lagrangian density and no nonlinear terms were incorporated. The model was
introduced by Walecka in 1974 and to distinguish it from subsequent QHD models it is called QHD-I
or the σ − ω model. Since the introduction of QHD-I, many other QHD models have been developed
to address various inadequacies of the σ − ω model. The extension by Serot, referred to as QHD-II
model [58], in addition, to σ and ω mesons includes charged vector ρ and charged pseudoscalar π
mesons. This model also incorporates the electromagnetic interaction through the photon field Aµ to
account for the Coulomb repulsion between protons in nuclei.

The mesons are selected according to their quantum properties: parity, spin and isospin. The
isoscalar-scalar field σ, with quantum numbers (Jπ, T ) = (0+, 0) mediates a long- and mid-range
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attraction between nucleons. Within relativistic mean field (RMF) theory, it is included as an effective
field to simulate the two-pion exchange of the nuclear force and it is responsible for the intermediate
range attractive part of the nucleon-nucleon interaction. The isoscalar-vector ω (1+, 0) is included to
reproduce the short-range repulsive interaction. An isovector-vector ρ (1−, 1) is needed to describe
the dependence of the nuclear force on isospin. In principle1, other mesons can also be included such
as the π (0−, 1)2 and η mesons which are pseudoscalar in nature and do not obey the ground-state
parity symmetry. It can be shown that pseudoscalar mesons do not enter in the relativistic Hartree
approximation when the nuclear ground state is spherically symmetric and a parity eigenstate.

When the parameter set of QHD-I is fitted to reproduce bulk properties of the nuclear matter,
unreasonably large compressibility K ≈ 550 MeV is predicted as opposed to experimentally observed
value of K = 210 ± 30 MeV from breathing mode energy experiments. This is due to the absence
of non-linear terms in the original Walecka model. The non-linear terms ensure self-interaction of
mesons. Buguta and Bodmer [59] introduced the σ self-coupling in the Lagrangian density in or-
der to improve the calculation of the incompressibility of the nuclear matter. The inclusion of the
scalar σ meson self-couplings led to a better prediction of finite nuclei properties and improved value
of the incompressibility of the nuclear matter. There is a huge number of parameter sets such as
NL1 [60], NL2 [61] and NL-SH [62] inspired by Lagrangian density containing σ meson self-coupling
terms. However, these parametrizations fail to reproduce the nuclear properties of unstable nuclei in
a satisfactory manner. Thus, the failure led to the introduction of the ω self-coupling term in the
Lagrangian density. This resulted in parameter sets TM1 [63] and TM2 [63] which reproduce the
nuclear properties of light and heavy unstable nuclei, respectively. The PK1 [64] parameter set was
developed as an improvement on TM1. The PK1 parameter set provides improved prediction of the
nuclear symmetry energy and compressibility. The NL3 [2] parameter set was introduced to address
various shortcomings of RMF models and proved to predict experimental values very well for both
stable and unstable nuclei. However, it was suggested that the NL3 parameter set only reproduces
the giant monopole resonance (GMR) in 280Pb by accident. It was hypothesised that if that were
true the NL3 model would have to overestimate the giant monopole resonance (GMR) in 90Zr and
underestimate the isovector giant dipole resonance (IVGDR) in 280Pb. The results agreed with the
hypothesis and led to the development of FSUGold parameter set [3] which is an accurately calibrated
RMF model. The FSUGold introduces a coupling term between ω meson and ρ meson to improve
density dependence of the nuclear asymmetry energy without altering saturation of the nuclear mat-
ter. FSUGold introduces two isovector-scalar coupling terms that are absent in NL3. In this work we
will employ the parameter sets of NL3 and FSUGold models. See Table 2.2.

In the next section we provide the formalism of our model based on the effective Lagrangian
density of QHD, we also make two important assumptions: no sea approximation and mean field
approximation. In the no sea approximation, all the contributions from antiparicles are neglected.
It is employed in plenty of relativistic models at mean field, Hartree-Fock and Bethe-Brueckner-
Goldstone treatment. The mean field approximation cuts down all the quantum fluctuations from
meson fields and as a result meson fields can be treated as classical fields. This removes many-body
effects because the nucleons move independently in the common mean field.

1In this STUDY we deal with nuclear states having good parity hence we shall only consider the mesons with natural
parity π = (−1)J . The currents with unnatural parity have vanishing expectation values.

2The pionic field is a basic ingredient of microscopic nuclear force that does not enter at classical Hartree level
because it leads to parity breaking field which has not been observed in actual nuclei.
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Table 2.1: The fields in NL3 and FSUGold

Field Description Particles Mass coupling

ψ Baryon p, n, . . . M
φ Neutral scalar meson σ ms gsψ̄φψ
Vµ Neutral vector meson ω mv gvψ̄γ

µVµψ
π Charged pseudoscalar meson π mπ igπψ̄γ

5τ · πψ
bµ Charged vector meson ρ mρ

1
2gρψ̄γ

µ τ · bµψ
Aµ Photon γ mγ = 0 eψ̄γµ 1

2 (1 + τ3)Aµψ

2.2 Lagrangian Density

In this section, we present quantum hadrodynamics within the framework of relativistic mean field
theory wherein the nucleons in the many-body systems, interact via the exchange of various mesons
and the photon mediate electromagnetic interaction between protons. The total Lagrangian density
for quantum hadrodynamics is given by

L = L0 + Lint, (2.1)

where the first term in equation (2.1) represents the Lagrangian density for particles in free space

L0 = ψ̄(iγµ∂µ −M)ψ +
1

2
∂µφ∂µφ−

1

2
m2
sφ

2 − 1

4
V µνVµν

+
1

2
m2

vV
µVµ −

1

4
bµν ·bµν +

1

2
m2
ρb

µ·bµ −
1

4
FµνFµν .

(2.2)

Refer to the above Table 2.1 for the meaning of various fields. The field tensors for the vector
mesons and electromagnetic field are defined as:

Vµν = ∂µVν − ∂νVµ, (2.3)

bµν = ∂µbν − ∂νbµ, (2.4)

Fµν = ∂µAν − ∂νAµ, (2.5)

where ψ is the isodoublet nucleon field, Aµ is the massless photon field, and φ, Vµ, and b represent
the isoscalar scalar σ−, isoscalar-vector ω−, and isovector-vector ρ-meson field, respectively.

The strong nuclear force between the nucleons (i.e., protons and neutrons) is mediated by isoscalar
and isovector mesons. The isoscalar mesons are blind to the isospin of nucleons and thus interact
with protons and neutrons in exactly same way whereas the isovector mesons, on the other hand,
can distinguish nucleons according to their isospin, and thus, interact with protons and neutrons in
different ways. The interaction between various particles is contained in the second term of Eq. (2.1)
and has the following form:

Lint = ψ̄
[
gsφ− (gvVµ +

gρ
2
τ · bµ +

e

2
(1 + τ3)Aµ)γµ

]
− Ueff(φ, V µ,bµ). (2.6)

Here τ are the isospin Pauli matrices and τ3 is the third component of τ . Note that (1 + τ3) = τp
is the isospin projection operator which projects out proton from the isodoublet nucleon field since it
is the one interacting with the photon. The first term in Eq. (2.6) contains the conventional Yukawa
couplings between the nucleons and the mesons. The self and mixed non-linear meson interactions
are incorporated in the last term Ueff(φ, V µ,bµ).
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All possible meson interactions permitted by symmetry considerations to a given order in a power-
counting scheme are included, in line with effective field theory, in Ueff(φ, V µ,bµ). In this work we
employ the effective interaction of the form [3]

Ueff(φ, V µ,bµ) =
κ

3!
(gsφ)3 +

λ

4!
(gsφ)4 − ζ

4!
(g2

vV
µVµ)2 − Λv(g

2
ρbµ · bµ)(g2

vV
νVν), (2.7)

where coefficients κ, λ, ζ and Λv denote four meson couplings. The first two κ and λ are coupling
constants of isoscalar meson self-interaction. They were introduced by Boguta and Bodmer [59] to
reduce the nuclear incompressibility coefficient of symmetric nuclear matter from a very large value
predicted by QHD model [8] to one that is obtained from breathing mode energy measurements [65]
mentioned earlier. The third coefficient ζ, like the first two, is also a coupling constant of isoscalar
meson self-interaction responsible for the softening of equation of state (EoS) of symmetric nuclear
matter, it was introduced by Muller and Serot [66], when they realized that it possible to build
models with different values of ζ that reproduced the same nuclear properties at normal densities but
produced maximum neutron-star masses differing by almost one solar mass. The mixed isoscalar-
isovector (ω − ρ ) coupling Λv improves the density dependence of the symmetry energy. Λv was
introduced by Horowitz and Piekarewicz [67].

We are now ready to derive the equation of motions from the Lagrangian density L = L0 + Lint
through the application of Euler-Lagrangian equations:

∂L
∂q
− ∂µ

(
∂L

∂(∂µq)

)
= 0, (2.8)

where q are generalized coordinates and denote various fields in Table 2.1. Thus, the field equations
for baryons is the Dirac equation [

γµ(i∂µ − V )− (M − S)
]
ψ = 0, (2.9)

where scalar (S) and vector (V) potentials with Lorentz character are defined as

V = gvVµ + gρτ · bµ +
e

2
(1 + τ3)Aµ, (2.10)

S = gsφ. (2.11)

The field equations of the mesons and photons are the Klein-Gordon equations:

(∂µ∂µ +m2
s)φ = −gsψ̄ψ − ζφ2 − λφ3, (2.12)

∂νV
µν +m2

vV
µ = gvψ̄γ

µψ, (2.13)

∂νb
µν +m2

ρb
µ = gρψ̄γ

µτψ + gρ(b
µ×V µν), (2.14)

∂νF
µν = eψ̄γµ

1 + τ3
2

ψ. (2.15)

2.3 Relativistic Mean Field Limit

The Dirac equation Eq. (2.9), Klein-Gordon equation Eq. (2.12) and Maxwell’s equations with source
terms Eqs. (2.13 - 2.15) form a system of coupled, nonlinear differential equations. To solve these
equations we resort to the mean field limit, i.e., Hartree approximation in which meson fields and
photon field operators are replaced by their classical fields (i.e., expectation values). For a static and
spherical symmetric system, the mean field approximation leads to the following:
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Table 2.2: Parameter sets for the two relativistic mean field models: NL3 [2] and FSUGold [3]. The
parameters κ and the σ−meson mass ms are given in MeV. Masses of nucleon M = 939 MeV, ω−meson
mv = 782.5 MeV and ρ−meson mρ = 786 MeV are fixed in both models.

Model ms g2
s g2

v g2
ρ κ λ ζ Λv

NL3 508.194 104.3871 165.5854 79.6000 3.8599 -0.015 905 0.0000 0.0000
FSUGold 491.500 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.0600 0.0300

φ→ 〈φ〉 = φ0(x), (2.16)

V µ → 〈V µ〉 = gµ0V0(x), (2.17)

bµa → 〈bµa〉 = gµ0δa3b0(x), (2.18)

Aµ → 〈Aµ〉 = gµ0A0(x). (2.19)

In a static and symmetric nucleus, current conservation ensures that the spatial components of
V µ,bµ and Aµ have vanishing contribution to the static limit. As a result, we only consider the time-
like components of the vector fields: V 0, b0, and A0. Furthermore, charge conservation guarantees
that only the the third component(ρ0,3) of the isovector ρ0 contributes to the interaction. Similarly,
the baryon sources to which the mesons and photons couple are replaced by their expectation values
in the mean-field ground state:

ψ̄(x)ψ(x)→ 〈ψ̄(x)ψ(x)〉 = ρs(x), (2.20)

ψ̄(x)γµψ(x)→ 〈ψ̄(x)γµψ(x)〉 = gµ0ρv(x), (2.21)

ψ̄(x)γµτiψ(x)→ 〈ψ̄(x)γµτiψ(x)〉 = gµ0δi3ρ3(x), (2.22)

ψ̄(x)γµτpψ(x)→ 〈ψ̄(x)γµτpψ(x)〉 = gµ0ρp(x). (2.23)

Here ρs(x) denotes Lorentz scalar density, ρv is the baryon density and ρ3 is the isovector density
which is the difference between neutron ρn and proton ρp densities.

The nucleons satisfy the Dirac equation in the presence of mean-field potentials having Lorentz
scalar and vector character:

[iγµ(∂µ − (M − gsφ)− γ0(gvV0 + gρτb0 +
e

2
(1 + τ3)A0)]ψ = 0. (2.24)

The various meson fields satisfy nonlinear and inhomogeneous Klein-Gordon equations with nuclear
densities acting as their sources:

∇2φ0 −msφ0 − ∂φ0
Ueff(φ0, V0, b0) = −gsρs, (2.25)

∇2V0 −mvV0 + ∂V0
Ueff(V0, V0, b0) = −gvρv, (2.26)

∇2b0 −mρb0 + ∂b0Ueff(V0, V0, b0) = −gρ
2
ρ3. (2.27)

The photon field obeys the Poisson equation with the proton density as a source:

∇2A0 = −eρp. (2.28)
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2.4 Rotationally Invariant Systems

For a spherically symmetric nuclear potential, the solutions to single particle Dirac equation have the
form

Uα(x) = U(x)nκmt =

 gnκt(x)Yκm(x̂)

ifnκt(x)Y−κm(x̂)

 , (2.29)

where n is the principal quantum number, κ is the generalized relativistic angular momentum
which uniquely specifies both the orbital l and total j angular momenta:

j = |k| − 1

2
, l =

{
κ for κ > 0,

1− κ for κ < 0
, l′ = 2j − l =

{
κ− 1 for κ > 0

−κ for κ < 0
, (2.30)

and m is the projection of j. The spin spherical harmonics, Y±km(x̂), which determine the angular
and spin parts of the wave function are given by

Yκm =
∑

sz′=± 1
2

〈
l,

1

2
,ml,ms|jm

〉
Yl,m−sz′ (x̂)χsz′ , (2.31)

Y−κm =
∑

sz′=± 1
2

〈
l′,

1

2
,ml,ms|jm

〉
Yl,m−sz′ (x̂)χsz′ , (2.32)

where the bracket 〈〉 denotes the usual Clebsch-Gordon coefficients and Yl,ml
are the usual spherical

harmonics of order l. The Pauli spinors χsz′ are

χsz′= 1
2

=

(
1
0

)
and χsz′=− 1

2
=

(
0
1

)
. (2.33)

The upper and lower radial wavefunctions are denoted by gα(x) and fα(x), respectively. One gets
two coupled differential equations of the bound nucleon radial wavefunctions upon substitution of Eq.
(2.29) into Eq. (2.9):

d

dx
gα(x)− κ

x
gα(x)− [E − V0 +M − S0]fα(x) = 0, (2.34)

d

dx
fα(x)− κ

x
fα(x) + [E − V0 +M + S0]gα(x) = 0. (2.35)

The normalization condition is given by∫ ∞
0

dr
[
g2
α(x) + f2

α(x)
]

= 1. (2.36)

A system of coupled differential Eqs. (2.24 - 2.27) and (2.34 - 2.35) form what is known as rela-
tivistic Hartree equations. To obtain the numerical solution to the Hartree equations a self-consistent
iterative procedure is implemented to solve the Dirac equation (2.24) with scalar and vector potentials
obtained from the solutions of the Klein-Gordon equations(2.25 - 2.27). The self-consistency starts
with Woods-Saxon-shaped meson fields to produce boundstate energies and corresponding wave func-
tions for single-particle states. The scalar and vector densities calculated from these wave functions
are utilised as sources for the meson and electromagnetic fields and, in turn, the meson and electro-
magnetic fields determine the mean-field potentials for the nucleons. The Green functions techniques
are utilised to produce new meson fields. The iterative procedure continues until self-consistency is
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obtained. One then obtains the ground-state properties of the nucleus of interest, such as total binding
energy, single-nucleon energies, root mean square proton and neutron radii and wave functions, dis-
tribution of meson and photon fields, and density profiles. We developed a new computer program to
perform the numerical calculations presented in this chapter. In appendix A we describe the program
in detail. Note that we incorporated the BCS model pairing correlation for the open-shell nuclei.

The Eqs. (2.20 - 2.23) put on display the richness of treating nuclear many body problem with
relativistic quantum field theory as five types of nuclear densities: scalar, pseudoscalar, vector, axial-
vector and tensor emerge in a natural manner as opposed to nonrelativistic treatment where only one
is observed namely the matter (vector) nuclear density. For closed shell nuclei, Eqs. (2.20 - 2.23) can
be rewritten so that one obtains scalar density, vector density, isovector density and charge density:

ρs(r) =

occ∑
α

Ūα(x)Uα(x), (2.37)

ρv(r) =

occ∑
α

Ūα(x)γ0Uα(x), (2.38)

ρ3(r) =

occ∑
α

U†α(x)τ3Uα(x), (2.39)

ρp(r) =

occ∑
α

U†α(x)
1 + τ3

2
Uα(x), (2.40)

where Uα is a single-particle Dirac spinor for boundstate nucleon. The summations run over all
occupied single particle states.

The proton root-mean-square (rms) matter radius is given by:

r = [〈r2〉] 1
2 =

[
1

Z

∫
dτ r2ρv,p(r)

] 1
2

. (2.41)

and charge mean-square radius is given by:

r = [〈r2
ch〉]

1
2 =

[
1

Z

∫
dτ r2ρch(r)

] 1
2

. (2.42)

2.5 Halo Nuclei and Skin

As the number of neutrons in a particular nucleus increases, the nuclear surface gets diffuse and
nuclear density decreases. This leads to the two important phenomena of neutron halos and skins.
The nuclei whose radius is significantly larger than the radius predicted by empirical radius formula
r = r0A

1
3 are called neutron halo nuclei. This phenomenon emerges within light neutron-rich nuclei

along or on the drip line. In neutron halo nuclei, a core of protons and neutrons can appear to be
separated from other neutron matter that surrounds it in a halo-like structure. This is depicted by a
long tail in the matter distribution due to the wave function of the weakly bound nucleons, i.e., halo
nuclei have density distribution reaching further out than expected. 11Li is the first nucleus observed
experimentally that has neutron halo. Some nuclei with one neutron halo are 14N, 11Be, 19C 6He and
those which have two-neutron halo 6He, 14Be and 17B. Besides, one and two neutron halo nuclei there
exists a neutron halo nucleus formed by four neutrons: 8He. The trait of nuclear halo in exotic nuclei
is not limited to neutron halo. There are some exotic nuclei with possible proton halo for example:
17N, 17F and 8B. There exist halo nuclei that are not formed by nucleon such as hypertriton where Λ
particle orbits around a deuterium core.
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In heavy or unstable neutron-rich nuclei the excess neutrons are pushed out against the surface
tension forming a neutron skin, which is defined as the difference between the neutron and proton
root-mean-square radii. This phenomenon takes place when the number of neutrons increases with
respect to the constant number of protons. The isospin asymmetry forces, in general, prefer uniform
proton and neutron densities throughout the nucleus. However, protons become more bound with
increase of the neutron number and hence, the density distribution of protons can not extend to
the nucleus surface. From the macroscopic point of view, the nuclear medium of neutron-rich nuclei
applies sufficient pressure to hold protons in the core of the nucleus and consequently, the surface is
composed of neutron skin. Neutron skins characterize a form of nuclear matter considered to exist
only in neutron stars. Some of the ideal nuclei for studying neutron skin thickness are 48Ca, stable
208Pb and 118Sn Isotopes. They are stable, neutron-rich doubly magic nuclei. These properties are
essential in ensuring that theoretical and experimental uncertainties are minimal in extracting neutron
thickness.
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Chapter 3

RELATIVISTIC PLANE WAVE

MODEL

3.1 Introduction

Proton knock-out, and in particular exclusive (p, 2p) reactions, in direct kinematics (see Fig. 3.1)
with stable beams has proven to be an essential device to study the single-particle properties of
nuclei and the nucleon-nucleon NN interaction in a nuclear medium along the beta stability valley.
In direct kinematics, an incident proton beam ejects a bound proton from the target nucleus. In
the medium energy regime the probability for nucleon-nucleon collisions (multi-scattering) within the
nuclear field is expected to be significantly reduced and the interaction is assumed to be dominated
by single-collision processes, i.e., a quasifree1collision between the incident proton and the bound
proton. As stated in chapter 1, the proton (p, 2p) knockout scattering reaction is essentially a nucleon-
nucleon interaction which consists of two primary applications; (1) as a mechanism to study the single
particle properties of a target nucleus and (2) as a tool to investigate in-medium nucleon-nucleon NN
interactions.

The availability of high-energy radioactive beams allows in principle to utilise the method of (p, 2p)
knockout scattering in inverse kinematics with hydrogen targets. The knockout reactions that occur in
inverse kinematics are expected to play a crucial role in investigating the structures of those unstable
nuclei, with the evaluation of these reactions serving as a spectroscopic tool. It is expected that in
future (p, 2p) knockout reactions will be performed with unstable nuclear beams and polarized proton
target. With polarized beams both nuclear structure and the nature of strong NN interaction in
nuclear matter of such nuclei will be able to be studied. Because the process involves NN scattering
in the nuclear field, quasifree scattering provides a direct mechanism to investigate the NN interaction
inside the nuclear medium. At the kinematical conditions considered in this work it is expected that
nuclear distortion effects on the scattered protons will become negligible. Hence, the plane wave model
should be sufficient for study of complete set of spin-transfer observables.

The use of relativistic plane wave models to study polarization transfer observables has contributed
an immense qualitative and quantitative information regarding the nature of strong NN interaction
in the nuclear field. In the study of quasielastic (p, p′) with RPWIA model[68, 69, 70], it was observed
that the use of relativistic models lead to a phenomenon of the quenching of analyzing power relative
to values of free NN scattering. Quenching effect is when values calculated with relativistic models

1This means we can consider the collision of the projectile and the struck nucleon as “free” and the residual nucleus
as a spectator in the reaction.
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appear to be suppressed relative to the corresponding free NN scattering values. Since the quenching
of analysing of power does not emerge in the nonrelativistic models, it was interpreted as the relativistic
signature. The quenching effect of analyzing power seen as the evidence of nuclear medium effects[].
However, in Ref [71, 72] it was shown the quenching of analysing power may be due to the use IA1
representation of NN interaction. The reduction of analyzing power relative to free proton-proton
scattering values is also observed in exclusive (p, 2p) knockout reactions[73, 74]. In Ref [28] it was
shown that that density-dependent corrections to meson-nucleon coupling constants and meson masses
have the effect of suppressing the analyzing power and other spin transfer observables. RPWIA has
also been used to study the sensitivity of exclusive proton knockout spin observables to different
Lorentz invariant representations of the NN interaction [75]. In Ref[76], the influence of effective
masses on spin transfer observables of the exclusive (p, 2p) was studied extensively within relativistic
plane wave impulse approximation (RPWIA).

It has been shown that polarization transfer observables provide information regarding the mod-
ification of the free nucleon-nucleon (NN) interaction by the surrounding nuclear medium in the
intermediate energy region [77, 78]. This implies that nucleon-nucleon interactions in free space can
be realized by polarization transfer observables. The polarization transfer observables permit us to
study the influence of the surrounding nuclear medium on the free NN interaction. Since the plane
wave models provided good description of the spin transfer observables it was reasoned that they are
insensitive to distortions. The hand-waving argument insisted that since polarization transfer observ-
ables are effectively the ratios of linear combinations of spin-dependent cross sections the effects of
distortions largely cancel out. However, it was shown in Ref [78] in the study of exclusive (p, 2p)
reaction that this argument is only sufficient for certain kinematical conditions such as zero recoil
momentum. In this work our use of RPWIA model motivated by the fact that this model has proven
to be an effective probe of sensitivity of nuclear medium-modifications. Furthermore, since this is the
first study to describe polarization transfer observables with the inverse kinematics RPWIA should be
adequate to give initial feel of the behaviour of the spin transfer observables. By using RPWIA model
with the NN amplitudes represented by five-term Lorentz invariant parametrization of the NN scatter-
ing matrix, we avoid complications associated with relativistic distorted wave impulse approximation
and IA2. A plane wave model should provide a reasonable description of the scattering observables at
intimidate energies. Exclusive (p, 2p) scattering is an ideal tool to investigate medium modifications
of the NN interaction [77, 28]. The suppression of analyzing power is not limited to quasielatic data,
it was also observed in the study of exclusive (p, 2p) scattering reaction [74].

In this chapter we exploit the features of (p, 2p) scattering in order to employ a relativistic plane
wave impulse approximation (RPWIA) for the task of studying nucleon-nucleon interaction in the
nuclear medium of selected oxygen isotopes. It will be interesting to see how polarization observables
vary within a particular isotopic chain. The variation or evolution of polarization observables will
allow us to study the nuclear medium modification in oxygen isotope as neutron number increases.
The isotopes will be investigated with both direct and indirect scattering reactions, however, as a
first step the theoretical formalism below is provided in terms of direct kinematics. Direct kinematics
are intuitive and will make transition into indirect kinematics more convenient. The use of direct
kinematics will permit us to perform numerical checks and compare our results with the previous
works. By direct kinematics we mean that the nucleus of interest serves as a target and in the indirect
(inverse) kinematics unstable isotope serves as a projectile and the stationary proton is placed as
a target. The core assumption of relativistic plane wave impulse approximation remains that the
(p, 2p) knockout reaction is a two-body scattering process (i.e., for direct kinematics proton-nucleus
interaction and for inverse kinematics nucleus-proton interaction).

There exist two parametrizations of the scattering operator F̂ namely IA1 [15, 16] representa-
tion of F̂ and IA2 [79, 80] representation of F̂ . In IA1 representation F̂ is parametrized in terms
of five Fermi (scalar, pseudo-scalar, vector, axial-vector, and tensor) invariant amplitudes and the
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experimental data completely specify F̂ . There exists a large number of SPVAT parametrizations
of NN scattering matrix models; the most successfully include McNeil-Ray-Wallace parametrization
[15, 16], Goldburger-Nambu- Öehme GNO invariants [81] and perturbative invariants [82]. However,
these models suffer from a plenty of ambiguities inherent in most IA1 representations such as fail-
ure to distinguish between pseudoscalar and pseudovector pion-nucleon coupling. In addition, the
aforementioned models do not provide adequate explanation for the exchange behaviour of the NN
amplitudes in the nuclear medium [83, 84]. The IA1 model which addresses these shortcomings is
called relativistic Horowitz-Love-Franey (HLF) model wherein the amplitudes are parametrized in
terms of Yukawa-type meson exchanges. HLF model extends the positive energy scattering data to
the full Dirac space of two particles thereby prescribing the negative energy matrix elements [85].
In this model the direct and exchange terms are evaluated explicitly, consequently, allowing one to
investigate direct and exchange contributions separately.

In the present study a target nucleus is modelled as a Fermi gas in the context of relativistic
mean field theory. Furthermore, RPWIA implicitly takes into account the effect of external nucleon
via the inclusion of constant effective masses within Dirac plane wave spinors. This is a realistic
treatment of scattering process since the collision occurs within a nuclear medium. The RPWIA
model we present is expected to provide a reasonable approximation of spin transfer observables since
at the momentum transfers and excitation energies of interest initial and final distortion effects to be
minimum. The details of the nuclear structure of the nuclei of interest are incorporated via the the
boundstate wavefunction which is calculated in relativistic mean field theory. Section 2.4 illustrates
the features of the radial boundstate is computed within the context of the RMF theory. In our model
we use FSUGold parameter set.

This chapter presents the theoretical formalism for the computation of spin transfer observables
with direct and inverse kinematics within the context of relativistic plane wave model. In section 3.2
we will develop a relativistic plane wave framework that will allow us to compute spin observables
for the exclusive (p, 2p) reaction in direct and inverse kinematics. In section 3.3 we compute the
spin observables and the NN interaction is given by IA1 representation. We also present a flowchart
diagram in Fig. 3.3 for the Python programming language code that that was written to compute
numerical values of the spin transfer observables.

3.2 Theoretical Formalism

Here we present and discuss the formulation of the relativistic plane wave model. We use it to
analyse exclusive (p, 2p) reactions performed with direct and indirect kinematics. Fig. 3.1 displays
the schematic view for coplanar geometry of the A(a, a′b′)C reaction in the laboratory frame. Here
the notation A(a, a′b′)C represents the exclusive (p, 2p) reaction where an incident proton a interacts
and knocks out a bound proton b from a specific orbital in the target nucleus A generating a one-hole
state, resulting in three particles in the final state, namely, the recoil residual nucleus C and two
outgoing protons a′ and b′ which are detected in coincidence at coplanar laboratory scattering angles
(on opposite sides of the incident beam) θa′ and θb′ , respectively. Note that the probability for a
proton knockout reaction described above to occur is related to the triple differential cross section
[24, 77]:

d3σ

dEadΩadΩb
=

Fkin
(2sa + 1)(2Jb + 1)

SLbJb

∑
γ

|TLJMJ
(sa, sa′ , sb′)|2. (3.1)

A spectroscopic factor SLbJb gives the probability that a proton is found in an orbital specified
by the orbital angular momentum and total angular momentum quantum numbers. In the above
expression Fkin is a kinematical factor defined as
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Figure 3.1: Schematic representation for proton knockout reaction (p, 2p) in the lab frame.

Fkin =
EaEa′Eb′

(2π)5

ka′kb′

ka

[
1 +

Eb′

EC

(
1− ka

kb′
cos θb′ +

ka′

kb
cos(θa′ + θb′)

)]−1

, (3.2)

where Ei and ki denote the total energies and momenta of incident proton a, two outgoing protons
a′ and b′, and the residual nucleus C. The summation γ of the transition matrix TLJMJ

(sa, sa′ , sb′)
in Eq. (3.1) is taken over all spin components sa, sa′ and sb′ in initial and final states.

The most significant quantity that has to be computed in order to calculate the spin observables
of interest is the invariant transition matrix element which is given by:

T = 〈f |F̂ |i〉, (3.3)

where |i〉 and |f〉 are the initial and final nuclear states of scattering process, respectively, and F̂
is the NN scattering operator. In this chapter, the scattering operator F̂ is parametrized in terms
of five Fermi covariants, the so-called SPVAT form or the original relativistic impulse approximation
(IA1) representation of F̂ . It is defined as follows:

F̂ =

T∑
L=S

FL(λL ⊗ λL), (3.4)

where λL ∈ {I4, γ5, γµ, γ5γµ, σµν}, with L = S, P, V,A, T and FL is a complex NN amplitude. The
symbol ⊗ is the Kronecker product. In this work for the IA1 calculations we use the amplitudes of
Ref. [86].

We now consider Fig. 3.2, in order to compute the invariant matrix element for exclusive (p, 2p)
keeping in mind that RPWIA considers this reaction to be single-step process wherein the incident
proton interacts only with one target nucleon in the orbit with specific quantum numbers inside the
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Figure 3.2: The Feynman-like diagram for the representation of proton knockout reaction (p, 2p). The
IS stands for the initial nuclear state and FS for final nuclear state of the scattering reaction. The
scattered and the outgoing proton are detected in coincidence, while the residual nucleus remains
inert.
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nucleus. Thus, the RPWIA reduces the process to a two-body scattering process wherein the initial
state is given by:

|i〉 = |i1〉 ⊗ |i2〉 = ψ(+)(~x,~ka, sa)⊗ ULJMJ
(~x), (3.5)

and the final state is given by

|f〉 = |f1〉 ⊗ |f2〉 = ψ̄(−)(~x,~ka′ , sa′)⊗ ψ̄(−)(~x,~kb′ , sb′). (3.6)

With these assumptions, we now impose the zero range approximation on the NN interaction and
Eq. (3.3) becomes:

TLJMJ
(sa, sa′ , sb′) =

∫
d3~x[ψ̄(−)(~x,~ka′ , sa′)⊗ ψ̄(−)(~x,~kb′ , sb′)]F̂ [ψ(+)(~x,~ka, sa)⊗ ULJMJ

(~x)], (3.7)

The four-component scattering wave functions ψ(~x,~ki, si) are solutions to the fixed-energy Dirac
scattering equations. Thus, the scattering solutions to the free Dirac equation are given by:

Ψ(+)(~x,~ka, sa) = ei
~ka·~xU(~ka, sa), (3.8a)

Ψ̄(−)(~x,~ka′ , sa′) = e−i
~ka′ ·~xU(~ka′ , sa′), (3.8b)

Ψ̄(−)(~x,~kb′ , sb′) = e−i
~kb′ ·~xU(~kb′ , sb′), (3.8c)

where,

• ψ(+)(~x,~ka, sa) is the relativistic scattering wave function for particle a with outgoing boundary

conditions indicated by the superscript (−), where ~ka is the momentum of particle a in the

laboratory frame, and sa is the spin projection thereof with respect to ~ka as the ẑ-quantization
axis.

• ψ̄(−)(~x,~ka′ , sa′) is the relativistic distorted wave function of the projectile a′ with incoming

boundary conditions where ~ka′ is the momentum of particle a in the laboratory frame, and sa′

is the spin projection thereof with respect to ~k′a as the ẑ-quantization axis.

• ψ̄(−)(~x,~kb′ , sb′) is the adjoint relativistic scattering wave function for particle b′ with incoming
boundary conditions indicated by the superscript (−), where kb′ is the momentum of particle

b′ in the laboratory frame, and sb′ is the spin projection thereof with respect to ~kb′ as the
ẑ-quantization axis.

• ULJMJ
(~x) is a boundstate wavefunction for the target proton and labelled with single-particle

quantum numbers L, J and MJ . See chapter 2 on how it is computed.

The Dirac spinor is defined as

U(~ki, si) =

[
Ei +mi

2mi

] 1
2

 χs

~σ · ~ki
Ei +mi

χs

 (3.9)

where mi and ~ki refers to the rest mass and momentum of particle i ∈ (a, a′, b′) with energy
Ei =

√
k2
i +m2

i . We assume that the x−z is the scattering plane and the particle with the momentum
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~k makes scattering angle θlab with the plane. Hence, we can compute quantity ~σ · ~k of Eq. (3.9) as
follows

~σ · ~k = σ1kx + σ2ky + σ1kz, (3.10)

= k sin θlabσ1 + k cos θlabσ3, (3.11)

= k

[
cos θlab sin θlab
sin θlab − cos θlab

]
. (3.12)

The normalization condition for the free Dirac spinors is

Ū(~ki, si)U(~ki, si) = 1. (3.13)

The Pauli spinor χs for projection s = ± 1
2 along an arbitrary quantization axis (i) in the rest

frame of the nucleon is defined as

χs =
∑
sz

D(1/2)
szs (α, β, γ)χsz =

∑
sz

D(1/2)
szs (i)χsz , (3.14)

in which D(1/2)
szs (α, β, γ) is a Wigner D-function written in terms of the rotation (Euler) angles (α, β

and γ) of the quantization axis with respect to the ẑ-axis. The base spin vectors for the quantization
axis along the ẑ-axis are:

for spin-up

χsz=1/2 =

(
1
0

)
, (3.15)

and spin down

χsz=−1/2 =

(
0
1

)
. (3.16)

The polarized two-component spinor is expanded in terms of the base spin vectors of Eqs. (3.15)
and (3.16) as follows

χs = χsz=+1/2 + χsz=−1/2. (3.17)

One performs Wigner-D transformation on χs in order to get the orientation of the spin polariza-
tion. To do this, we define the longitudinal, sideways and normal polarization directions l̂, ŝ and n̂,
respectively. Finally, the Wigner-D function is a 2× 2 matrix, given by

D(1/2)(α, β, γ) = exp(
iσ3α

2
) exp(

iσ2β

2
) exp(

iσ3γ

2
), (3.18)

=

e
−i(α+γ)/2 cos β2 −e−i(α−γ)/2 sin β

2

ei(α−γ)/2 sin β
2 ei(α+γ)/2 cos β2

 . (3.19)

The quantization axis î denotes the spin polarizations l̂, ŝ and n̂. It is assumed that a particle
is scattered along the x − z plane with scattering angle θlab relative to the z-axis. Therefore, these
polarizations are related to the Euler angles used in Eq. (3.19) as follows:
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l̂ : α = 0, β = θlab, γ = 0, (3.20)

ŝ : α = 0, β = θlab +
π

2
, γ = 0, (3.21)

n̂ : α =
π

2
, β =

π

2
, γ = 0. (3.22)

Following the substitution of Eqs. (3.20 - 3.22) into Eq. (3.19), we obtain

D(1/2)(l̂) =

cos
θlab
2

− sin
θlab
2

sin
θlab
2

cos
θlab
2

 , (3.23)

D(1/2)(ŝ) =


1√
2

(cos
θlab
2
− sin

θlab
2

)
1√
2

(sin
θlab
2

+ cos
θlab
2

)

1√
2

(sin
θlab
2

+ cos
θlab
2

)
1√
2

(cos
θlab
2
− sin

θlab
2

)

 , (3.24)

D(1/2)(n̂) =


1− i

2
− 1−i

2

1 + i

2

1 + i

2

 . (3.25)

We substitute the Eqs. (3.8) and (3.4) into Eq. (3.7) to obtain:

T (sa, sa′ , sb′) =

∫
d3~x[e−i

~ka′ ·~xŪ(~ka′ , sa′)⊗e−i
~kb′ ·~xŪ(~kb′ , sb′)]F̂ [e−i

~kb′ ·~xU(~ka, sa)⊗ULJMJ
(~x)]. (3.26)

After rearranging the terms in the above expression one gets

T (sa, sa′ , sb′) = [Ū(~ka′ , sa′)⊗ Ū(~kb′ , sb′)]F̂ [U(~ka, sa)⊗
∫
d3~xei(

~ka·~x−~ka′ ·~x−~kb′ ·~x)ULJMJ
(~x)], (3.27)

∫
d3~xe−i

~K·~xULJMJ
(~x) = ULJMJ

( ~K), (3.28)

T (sa, sa′ , sb′) =

T∑
L=S

FL[Ū(~ka′ , sa′)⊗ Ū(~kb′ , sb′)](λ
L ⊗ λL)[U(~ka, sa)⊗ ULJMJ

( ~K)]. (3.29)

In arriving at Eq. (3.29), we substituted Eq. (3.4) into Eq. (3.27) where we took advantage of

the fact that the recoil momentum of residual nucleus is given by ~kC = − ~K = ~ka − ~ka′ − ~kb′ , in
order to perform Fourier transform of the relativistic bound-state wave function as illustrated by Eq.
(3.28). Thus, the coordinate space boundstate wave function in chapter 2 can now be presented in
momentum space as:

ULJMJ
( ~K) = ULJMJ

(−kC) =

 4πiLYLJMJ
(θkC , φkC )gLJ(kC)

4πi2J−L+1Y2J−L+1,JMJ
(θkC , φkC )f2J−L,J(kC)

 (3.30)
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with the Fourier transforms of the radial wave functions as

gLJ(kC) =

∫ ∞
0

dx x jL(kCx)gLJ(x), (3.31)

f2J−L,J(kC) =

∫ ∞
0

dx x j2J−L(kCx)fLJ(x). (3.32)

Note that the jL(kCx) are the usual spherical Bessel function of order L and the angular spin
spherical harmonics are defined as

YLJm(θ, φ) =
∑

sz′=±1/2

〈
l,

1

2
,m− sz′ , sz′ |jm

〉
YL,m−sz′ (θ, φ)χsz . (3.33)

In the spirit of RPWIA, the Eq. (3.29) may now be interpreted as the transition matrix element for
a two-body scattering process in which the initial proton is bound. We apply the following property
of matrices on Eq. (3.29):

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (3.34)

to get

T =

T∑
L=S

FL[Ū(~ka′ , sa′)(λ
L)U(~ka, sa)][Ū(~kb′ , sb′)(λL)(ULJMJ

( ~K)]. (3.35)

On taking the complex conjugate of Eq. (3.35) and using the following properties of matrices

(AB)∗ = B∗A∗

and
[X̄AY ]∗ = [X̄AY ]† = [Ȳ ĀX],

one gets:

T ∗ =

T∑
L′=S

F ∗L′ [ŪLJMJ
( ~K)(λ̄L′)U(~kb′ , sb′)][Ū(~ka′ , sa′)(λ̄

L′
)U(~ka′ , sa′)]. (3.36)

The product of Eqs. (3.35) and (3.36) is equal to |T (sa, sa′ , sb′)|2 which is a quantity that is needed
to compute a triple differential cross section in Eq. (3.1):

|T (sa, sa′ , sb′)|2 =

T∑
L,L′=S

FLF
∗
L′ [Ū(~ka′ , sa′)(λ

L)U(~ka, sa)][Ū(~kb′ , sb′)(λL)(ULJMJ
( ~K)]

[ŪLJMJ
( ~K)(λ̄L′)U(~kb′ , sb′)][Ū(~kb, sb)(λ̄

L′
)U(~ka, sa)].

(3.37)

Appendix C illustrates how (3.37) can be obtained using trace technique. Recall that the main
reason for this development is to compute the polarization transfer observables for exclusive (p, 2p)
nuclear scattering reaction which are defined as ratios of linear combinations of polarized triple differ-
ential cross sections for different orientations of spin projections consistent with time reversal, parity
and rotational invariance. In order to simulate a polarized (p, 2p) experiment, the spin projections of
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incident proton a and the scattered proton a′ are fixed. The spin projections of boundstate proton
b and outgoing proton b′ are left unfixed. Thus, the polarized triple differential cross section is ob-
tained by setting γ = sb′ ,Mb in Eq. (3.1). That is the desired form |T (sa, sa′ , sb′)|2 is obtained by
summing over the spin projections of b and b′ meanwhile keeping the spin projections of the particles,
a and a′ fixed. For the bound proton summation is taken over all possible spin projections which a
proton in a state with total orbital angular momentum of Jb can have. We sum over the total angular
momentum projection Mb and the spin projection sb′ . Explicitly, the desired form of |T (sa, sa′ , sb′)|2
is shown below and it is evaluated directly using the free Dirac spinor Eq. (3.9) and the boundstate
wavefunction Eq. (3.30).

∑
Mb,sb′

|T (sa, sa′ , sb′ |2 =

T∑
LL′=S

∑
Mb,sb′

FLF
∗
L′ [Ū(~ka′ , sa′)(λ

L)U(~ka, sa)][Ū(~kb′ , sb′)(λL)(ULJMJ
( ~K)]

[ŪLJMJ
( ~K)(λ̄L′)U(~kb′ , sb′)][Ū(~ka, sa)(λ̄L

′
)U(~ka′ , sa′)]

(3.38)

3.3 Spin Observables

In the preceding section we derived the expression for the square of transition amplitude which is a
key component for the computation of the exclusive (p, 2p) spin observables. Here we look at how
to calculate a complete set of polarization observables in the laboratory frame, that is, the analyzing
power Ay, induced polarization P , and polarization transfer coefficients Di′j . This will permit us
to study nature of NN interaction in the nuclear medium. This assertion is motivated by the fact
that experimental data on spin observables suggest that quasielastic and exclusive (p, 2p) scattering
approximately simulates NN scattering in the nuclear medium. Thus, spin observables allow one to
study medium modification of NN interaction. The effect of medium modification on spin observables
can be established if P , Ay or Di′j for exclusive (p, 2p) scattering are different from the corresponding
values for free NN scattering. The other observables that can be computed for the exclusive (~p, 2~p)
are unpolarized and polarized triple differential cross sections. To obtain the former the summation γ
in Eq. (3.1) is taken over the spin of the incident proton a, the spin projection of the projectile a, the
two outgoing particles a′ and b′, and the total angular momentum projection of the bound particle b,
respectively. The latter is obtained by summing γ in Eq. (3.1) over spin projection of the outgoing
particle b′ and the total angular momentum projection of the bound particle b, respectively.

The NN interaction is dependent on the spin orientations of the interacting particles. Therefore,
with the use of polarized beams, polarization transfer observables can be determined in the labora-
tory frame. The polarization experiments utilise an incident proton beam polarized in an arbitrary
orientation to determine the components of the polarization of the scattered protons. The initial and
final laboratory coordinate frames are defined in terms of the initial (k) and final (k′) momenta in the
laboratory frame. The unit vectors are defined as:
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ŝ =
n̂× l̂
|n̂× l̂|

(3.39)

n̂ =
k̂a × k̂a′
|k̂a × k̂a′ |

(3.40)

l̂ =
~ka

|~ka|
(3.41)

ŝ′ =
n̂× l̂′

|n̂× l̂′|
(3.42)

n̂′ = n̂ (3.43)

l̂′ =
~ka

|~ka|
. (3.44)

The complete sets of nucleon-nucleon (NN) spin transfer observables is denoted by Di′j (i′ =
s′, n′, l′, j = s, n, l) where j(i′) is the initial (final) polarization direction. The polarization transfer
observables are defined as

Di′j =

∑
MJbsb

Tr(TσjT
†σi′)∑

MJbsb
Tr(TT †)

(3.45)

where D0n denotes the induced polarization, P, which is the polarization that results from the
scattering of an unpolarized beam from an unpolarized target. Dn0 refers to the analyzing power,
Ay, which is the ratio of initially polarized beam (nucleons) left unpolarized after interacting with the
target nucleus. The remaining polarization observables, which are also constrained by parity, charge
invariance and time reversal symmetry are Dnn, Ds′s, Dl′l, Ds′l and Dl′s. In Eq. (3.45), the symbols
σi and σj refer to the 2× 2 Pauli spin matrix and T refers to the 2× 2 matrix which is given by

T =

 T
sa= 1

2 ,sa′= 1
2

LJ T
sa=− 1

2 ,sa′=+ 1
2

LJ

T
sa=− 1

2 ,sa′=+ 1
2

LJ T
sa=− 1

2 ,sa′=− 1
2

LJ

 . (3.46)

where sa and sa′ refer to the spin projections of particles a and a′ along the ẑ and ẑ′ axes, defined
in Eqs. (3.39 - 3.41) and Eqs. (3.42 - 3.44), respectively.

We have now succeeded in deriving the expression for spin transfer observable (see Eq. (3.45)) in
order to turn the mathematical equations to numbers we wrote a python code Spinorbs. The flow
diagram illustrating how Spinorbs computes spin transfer is in Fig. 3.3.All kinematic quantities in
the RPWIA formalism are completely specified from the following input parameters, namely

• the laboratory kinetic energy Ta of the projectile proton

• the laboratory scattering angles (θa′ and θb′) of two outgoing protons

• the nucleon mass m

• the mass of the target nucleus mA

• the upper g(r) and lower f(r) components of boundstate wavefunction
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Start

Input: Ta, θa′ , θb′ , g(r), f(r), m, mA

Calculate kinematics
see Appendix B

Calculate Boundstate wf
in mom space using Eq. (3.30)

Calculate IA1
amplitudes using Eq. (3.4)

Calculate relativistic (p, 2p)
transition matrix using Eq. (3.29)

Calculate T and T † using Eq. (3.46)

Calculate: Di′j using Eq. (??)

Output: Di′j

stop

Figure 3.3: The flowchart illustrates how Spinorbs calculates the polarization transfer for the exclusive
(p, 2p) nuclear reaction.
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Chapter 4

Discussion and Results

The aim of this chapter is to present and discuss the results obtained from relativistic mean field
theory formalism presented in chapter 2 and relativistic plane wave model developed in chapter 3.
In chapter 2 we developed a theoretical formalism to study groundstate properties of nucleus within
the relativistic mean field theory. Chapter 3 focuses on the calculation of spin transfer observables of
the exclusive (p, 2p) knockout with both direct and inverse kinematics within relativistic plane wave
formalism.

4.1 RMF results and discussions

In an effort to perform calculation based on relativistic mean field theory, we developed a Python
programming language code RMF KE to compute the nuclear groundstate properties using NL3 and
FSUGold parameter sets within relativistic mean field theory. In Appendix A, we provide the details
on how RMF KE computer program operates. In order to ensure that the program works properly
several numerical checks were implemented. The most important checks included comparison of
calculations performed with RMF KE to those calculated with a well-known RMF code, Timora [87].
Further numerical checks were implemented such as comparing the results from RMF KE code to those
generated by RMF code used in Ref [88] and they were found to be in a reasonable agreement. The
Figs. 4.1 and 4.2 display the upper and lower components of proton radial wavefunction of oxygen
isotopes. The expressions for the upper and lower components of radial wavefunctions are given by Eq.
(2.29). We only give proton wavefunctions as these will be used to compute the the boundstate wave
function which is an an integral part of transition matrix element of the exclusive (p, 2p) knockout
reaction. The radial wavefunctions have been calculated for all the occupied of states of 14,16,22,24,28O.
All oxygen nuclei plotted in Figs. 4.1 and 4.2 are magic nuclei with exception of 28O nucleus. However,
as seen in Eq. (3.29) the invariant transition matrix has to be evaluated in momentum space. This
implies that the radial wavefunctions have to be transformed into momentum space. The Eq. (3.31)
and Eq. (3.32) illustrate the Fourier transforms of the upper and lower components of position
space radial wavefunctions. The Fig 4.3 depicts the upper and lower components of boundstate wave
functions in momentum space as calculated with FSUGold parameter set. The momentum space
radial wavefunctions have been calculated for all the occupied of states of magic oxygen nuclei for
which spin transfer observables will be calculated.

Now having calculated the components of radial wavefunctions we compute the groundstate prop-
erties of various nuclei to test our model. In an effort to validate predictive power of RMF KE, we
opted to calculate the binding energy per nucleon, charge radius and neutron skin of various nuclei
and compare with the empirical experimental data on the binding energy per nucleon, charge radius
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and neutron skins from Refs [1] and [89]. Tables 4.1 and 4.2 display theoretical results for binding
energy per nucleon, charge radius, and neutron-skin thickness of selected closed shell nuclei from
16O to 68Ni and 90Zr to 208Pb, respectively, which are compared with experimental values. These
observables are computed with NL3 and FSUGold parameter sets which are provided in Table (2.2).
The experimental data for binding energy per nucleon and charge radius were obtained from Refs.
[1] and [89], respectively. The NL3 and FSUGold parameter sets reproduce experimental data for
the binding energy and charge radii extremely well. Even though NL3 and FSUGold parameter sets
predict different stiffness for the equation of state their prediction for binding energy and charge radii
are quite similar so we can infer that these two observables have insignificant impact on the stiffness of
equation of state (EoS). The results in Tables 4.1 and 4.2 show that NL3 and FSUGold models predict
the ground state observables in finite nuclei throughout the nuclear chart with impressive accuracy.

We now proceed to show the evolution of average binding energy in oxygen and calcium isotopes
in Fig. 4.5 and Fig. 4.6, respectively. These figures depict how binding energy changes as oxygen
and calcium nucleus become neutron-rich. Figs. 4.5 and 4.6 display the evolution of groundstate
energies of 12O to 28O and 34Ca to 60Ca, respectively. The data used was taken from Ref. [1] and
theoretical predictions were performed with FSUGold parameter set. We also calculate single particle
energies of various nuclei. Figs. 4.7 and 4.8 depict the single-neutron energy spectra of 24O and 48Ca,
respectively, and the theoretical prediction are determined from NL3 and FSUGold parametrizations.
In Fig. 4.8 there is a level inversion with 2s1/2 state occurring between 1d3/2 and 1f7/2 state. The
level inversion is pronounced in the single-neutron state energies predicted by FSUGold parameter
set; the NL3 parameter set predicts 2s1/2 and 1d3/2 orbital states to be almost degenerate.

In chapter 2 we also discussed the neutron skins which can be defined as the difference between
neutron and proton density distributions. Fig. 4.4 shows proton and neutron density distributions in
208Pb. There is a very distinct difference in the proton and neutron density distributions that is due
to the fact that there are 44 excess neutrons relative to proton number in 208Pb. The lead nucleus
has a surface that is composed of neutrons (i.e., neutron skin). This is illustrated by huge disparities
in the proton and neutron density distributions. In the Fig. 4.4 the region between the lines showing
proton and neutron densities characterises what is known as neutron skin i.e a matter made purely of
neutrons.

4.2 Results for Proton and Neutron Densities

Proton and neutron nuclear densities are very important in the calculation of scattering observables.
In this section we present and discuss vector (matter) nuclear densities in the oxygen and calcium
isotopic chains. We also discuss the evolution of charge distributions with increasing neutron number
(isospin) for a fixed proton number. The calculations are performed within the relativistic mean
field (RMF) formalism with NL3 and FSUGold models. Fig. 4.9 displays proton (panel a) and
neutron (panel b) nuclear vector densities as a function of radial coordinate r of representative oxygen
isotopes computed with FSUGold. Fig. 4.10 displays proton (panel a) and neutron (panel b) nuclear
vector densities as a function of radial coordinate r of representative calcium isotopes computed with
FSUGold. All the nuclei studied for both isotopic chains were found to be bound, however, from an
experimental perspective the neutron drip line in oxygen chain begins at 26O and consequently neither
NL3 nor FSUGold is supposed to predict a boundstate of 26−28O.

It is worth noting that the differences between proton and neutron densities are directly propor-
tional to the increase in the number of neutrons. Furthermore, as the neutron number increases, a
gradual increase in the nuclear radius is observed. The effect of this is to populate and expand the
neutron densities and, to a lesser degree, also the proton densities. There is a gradual decline of the
proton density in the nuclear interior of oxygen isotopes as neutron numbers increase to maintain
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Figure 4.1: The radial upper wavefunctions g(r) of bound state protons occupying the RSM orbitals
of oxygen isotopes. These radial components of the boundstate wavefunction are computed from the
FSUGold parameter set.
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Figure 4.2: The lower radial wavefunctions f(r) of bound state protons occupying the RSM orbitals
of oxygen isotopes. The radial components of the boundstate wavefunction are computed from the
FSUGold parameter set.
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Figure 4.3: The upper g(k) and lower g(k) components of momentum space radial wavefunctions g(k)
of boundstate protons occupying orbitals of oxygen isotopes. These radial components of the Dirac
spinors are determined from the FSUGold parameter set.
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Table 4.1: Binding energy per nucleon(B/A in MeV), charge radius (rch in fm) and neutron skin
(rn − rp in fm).

Nucleus Observable Experiment NL3 FSUGold
16O B/A 7.98 8.06 7.98

rch 2.70 2.70 2.70
rn − rp − -0.03 -0.03

40Ca B/A 8.55 8.53 8.55
rch 3.48 3.47 3.48

rn − rp − -0.05 -0.05
48Ca B/A 8.67 8.66 8.58

rch 3.48 3.49 3.48
rn − rp − 0.23 0.20

54Ca B/A 8.25 8.23 8.53
rch 3.56 3.60 3.57

rn − rp − 0.40 0.34
58Ca B/A 7.84 7.91 8.20

rch − 3.62 3.60
rn − rp − 0.54 0.48

60Ca B/A − 7.56 7.69
rch − 3.64 3.63

rn − rp − 0.61 0.54
68Ni B/A 8.68 8.71 8.66

rch − 3.88 3.88
rn − rp − 0.26 0.21

Table 4.2: Binding energy per nucleon(B/A in MeV), charge radius (rch in fm) and neutron skin
(rn − rp in fm).

Nucleus Observable Experiment NL3 FSUGold
90Zr B/A 8.71 8.70 8.68

rch 4.27 4.28 4.27
rn − rp − -0.03 -0.03

98Zr B/A 8.25 8.30 8.68
rch 4.40 4.38 4.40

rn − rp − 0.24 0.20
100Sn B/A 8.25 8.30 8.24

rch − 4.48 4.48
rn − rp − 0.08 0.08

116Sn B/A 8.52 8.50 8.24
rch 4.63 4.63 4.63

rn − rp − 0.40 0.34
132Sn B/A 8.36 8.38 8.34

rch 4.71 4.72 4.74
rn − rp − 0.17 0.12

208Pb B/A 7.87 7.90 7.89
rch 5.50 5.53 5.54

rn − rp 0.33+0.16
−0.18 [90] 0.28 0.21
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Figure 4.4: Proton and neutron density distributions in 208Pb as predicted by NL3 parameter set.

the normalization to the constant number of protons. The same trend is observed in the density
distributions of calcium isotopic chain in Fig. 4.10.

The nuclear charge distributions provide a significant information regarding nuclear structure of
nuclei as they are directly related to the wave functions of protons. In the stability region of nuclear
landscape, electron-nucleus scattering has been used as one of the powerful probes to investigate
nuclear charge densities. The measurements of charge distributions of exotic nuclei are planned to be
obtained by colliding electron with exotic nuclei with in storage rings at RIB facilities. The Fig. 4.11
shows theoretical predictions of charge distributions amongst the magic nuclei within isotopic oxygen
chain. It is clear that addition of neutron in has an effect of lowering the charge distribution. The
calculations for NL3 and FSUGold agree quite well.

4.3 RPWIA results and discussions

We begin this section by motivating our choice to calculate the polarization transfer observables for the
oxygen-isotopic chain. The stable oxygen nucleus 16O has been studied extensively and its structure
is well-understood [91]. Furthermore, there exists studies of exclusive 16O(~p, 2p) of spin observables
which will serve as a guide for the quantitative analysis we give here for select members of oxygen
isotopic chain. The oxygen isotopes are interesting to investigate because they are the heaviest nuclei
for which the neutron drip line has been established. The experimental evidence suggests that all
neutron-rich oxygen isotopes up to 24O [92] fall within the neutron drip line and that 25O [93, 94],
26O [95, 96], 27O [97] and 28O lie outside of neutron drip line. From these isotopes, 28O seems to
be an unexpected departure from nuclei with high stability because according to the shell-model of
Mayer, Jensen and Suess the Z = 8 and N = 20 are magic number for stable nuclei. It was expected
that 28O composed of 8 protons and 28 neutrons would be a closed-shell nucleus or at very least
display stability. However, in neuron-rich nuclei new magic nuclei have been identified and in the
oxygen chain experimental observations identified 14,16,24O as strong doubly magic nuclei and 22O as
weak doubly magic nucleus. The prevalence of magicity in the oxygen-isotopic chain and the fact that
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Figure 4.5: The groundstate energies of oxygen isotopes as predicted by FSUGold parameter set and
the data are taken from Ref [1]. The solid line serves merely to guide the eye.

experimentally magic numbers are more accessible influenced the choice of these particular isotopes.
This is in addition to the fact that oxygen isotopes being medium-size nuclei are very suited for the
investigation of the details of nuclear forces. The curious features of nuclear forces between nucleons
moving in orbits with specific quantum numbers are much better studied in medium nuclei.

There exists no experimental measurements for a complete set of exclusive (p, 2p) scattering reac-
tion spin observables from unstable nuclei with inverse kinematics and this presents a challenge to our
theoretical study pertaining to the choice of kinematical conditions. However, TRIUMF undertook
experimental measurements [73] for the analysing power of the 16O(p, 2p) reaction for different single
particle orbits at an incoming energy of 504 MeV where the coplanar angles were fixed at several
angle pairs. The two spin-transfer observables Ds′s andDs′l for nucleon knockout from an 16O target
were also measured in this experiment. The significance of this TRUIMF experiment from a historical
perspective is that same experiment made first experimental measurements for spin transfer oberv-
ables at intermediate energies for the exclusive (p, 2p) reaction. The spin transfer observables for the
(p, 2p) were measured as a function of the angle made by the scattered proton θb′ . All subsequent
exclusive (p, 2p) reaction experiments worldwide measured spin observables as a function of kinetic
energy of the scattered proton Ta′ . The TRIUMF experiment motivated the choice for energy of the
incident proton and angle pairs for our calculations. The TRIUMF experiment only extracted spin
transfer observables for 1s1/2 but not p-shell knockout because of uncertainties associated with fitting
the low-statistics 1p1/2 and 1p3/2 peaks in the missing mass spectra. However, it is expected that
in inverse kinematics these uncertainties will be minimized, therefore, in this theoretical study we
extract spin observables from 1s1/2, and 1p1/2 in inverse kinematics. The calculations in the direct
kinematics for 16O(p, 2p) reaction will also be restricted to 1s1/2 and 1p1/2. The kinematical condi-
tions are chosen such that the effects of absorption on the final state nucleons are minimized. The
spin observables computed with both direct and inverse kinematics will utilise the Arndt amplitudes
[86] of the nucleon-nucleon interaction. It expected that since these amplitudes are calculated directly
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Figure 4.6: The groundstate energies of calcium isotopes as predicted by FSUGold parameter set and
the data are taken from Ref [1]. The solid line serves merely to guide the eye.

from experimental phase shifts they will give a better approximation of spin observables compared to
any other phenomenological model including the Horowitz-Love-Franey model.

Numerical checks form the backbone of any numerical model in physics. However, if one has exper-
imental data to compare with then it is often easier to gauge predictive power of the model. Therefore
in this study, where there is an absence of experimental data to compare against, theoretical model has
to undergo stringent numerical tests. A Python code named Spinorbs was written to perfor the cal-
culations of spin observables. We developed Spinorbs entirely within Python programming language.
Spinorbs uses a kinematics code described in Appendix B. The Fig. 3.3 illustrates how Spinorbs

computes polarization transfer observables. Note that since kinematics and transition matrix for the
exclusive (p, 2p) nuclear reaction with direct and inverse kinematics are different we have two versions
of Spinorbs. We have a version designed for direct kinematics and the other written to do calcula-
tions for the inverse kinematics. The Spinorbs takes radial wavefunction which are computed within
the framework of relativistic mean field theory1(FSUGold) as part of input parameters to compute
the boundstate wavefunction in momentum space (see Eq. (3.30)) needed to compute the invariant
matrix element. To be certain that the radial functions used are reliable, a calculation was performed
to confirm that the radial wavefunctions respect the normalization condition in Eq. (2.36). Note
that the relativistic mean field theory calculation were calculated with KE RMF2 which was written in
Python and Fortran using the Python package f2py. The integral to perform Fourier transform in
Eq. (3.28) was evaluated using Gauss-Legendre integration and the results were verified using the
other numerical integration quadratures such as Gauss-Kronrod [98]. We plot the momentum space
upper and lower components of boundstate wave function for doubly magic oxygen isotopes Figs. 4.3
- ??. In this study for IA1 representation the NN scattering amplitudes used are calculated directly

1Our RMF calculations are vindicated by experimental data. See Chapter 2
2See Appendix A on how KE RMF code performs RMF calculation
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Figure 4.7: Single-neutron energy spectrum for 24O as predicted by NL3 and FSUGold parameter
sets.

from Arndt phases. In an effort to ensure proper calculation of the amplitudes the spin observables
calculated with Arndt amplitudes were compared with the spin observables calculated with NN am-
plitudes coming from F̂ 11 (which are essentially the SPVAT form) amplitudes of IA2 representation
and they were found to be equal.

4.4 Calculations of Spin Observables

The proper implementation of the boundstate wave function is an essential part of the relativistic im-
pulse approximation models. To this end we computed the Fourier transforms of radial wavefunction
of each state of the bound nucleons of the oxygen isotopes considered. In addition, since the invariant
scattering matrix element (see Eq. (3.29)) is proportional to the Fourier transformed boundstate
wavefunction, we examine the momentum nature of the wavefunction. The lower and upper compo-
nents of the momentum space boundstate wavefunction for the orbitals of the doubly magic oxygen
isotopes occupied by proton are presented in Fig. 4.3. The components were calculated with the
FSUGold parameter set which is provided in Table 2.2 of chapter 2 and the significance of these plots
other than for proper calculation of the spin observables is that they serve to show that FSUGold
parameter set predict the oxygen isotopes considered here to be bound. For the orbitals considered
it is apparent that both lower and upper wavefunctions are significant for momentum k ≤ 350 MeV
and reach maximum at around momentum k ≤ 150 MeV. The results for the exclusive (p, 2p) reaction
spin observables for IA1 representation are presented in this chapter.

The results presented for the spin transfer orbservables can be separated into two categories namely
those computed with direct kinematics and those that are calculated with the inverse kinematics. The
choice for kinematical conditions for the spin observables in the direct kinematics is partly informed
by those used in a TRIUMF experiment [73] to measure the analysing power and two spin-transfer
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Figure 4.8: Single-neutron energy spectrum for 48Ca as predicted by NL3 and FSUGold. Note the
occurrence of level inversion wherein the 1d3/2 state appears below the 2s1/2 it is predicted by both
models.

observables (Ds′s and Ds′l). For the direct kinematics we consider proton knockout reaction from s1/2

state and p1/2 state of the 16O target via an exclusive (p, 2p) reaction. The incoming polarized-proton
of 504 MeV is used and the angles of scattered proton and outgoing proton are fixed at θa′ = 22.12
and θb′ = −40.3, respectively. The NN scattering matrix in these calculations is based on a direct
parametrization of the Arndt ampltitudes. In order to ensure that our numerical implementation is
properly executed, the spin observables of 16O calculated directly from Arndt amplitudes [86] were
compared to spin observables calculated with F 11 amplitudes. The results are presented in Fig.
4.14 and were found to be in reasonable agreement with each other. These figures demonstrate that
our RPWIA model to calculate the spin transfer observables, Di′j , was implemented correctly. The
results were generated with Python code Spinorbs. Fig. 4.15 - 4.16 displays the analysing power,
polarization and transfer coefficients of 1p1/2 of 16O calculated with direct kinematics.

Since there are no experimental data to constrain the inverse kinematical conditions for the mea-
surement of spin transfer observables the following was taken into consideration in arriving at the
choice of kinematics in this chapter. The incident energy of nuclei was chosen in such a way that
there will be minimum distortion effects during the collision of the target proton and bound proton
in the incident nuclei. The choice for angle pairs was also motivated by the same consideration as for
incident energy and also a desire to minimize the effects of absorption on the final state nucleons. The
kinematical conditions will also permit us to investigate deep lying states with inverse kinematics: the
incoming energy of 504 MeV and the angle pair (22.12◦,−40.30◦) for θa′ and θb′ , respectively. The
Figs. 4.17-4.20 show the results of analzing power, polarization and Di′j from 1s1/2 and 1p1/2 of 14O
calculated with the inverse kinematics.

The Fig. 4.14 illustrates the results of spin transfer observables of 16O calculated directly from
Arndt phase shifts and from F 11. The results are in agreement with each other showing that Spinors

37



0 1 2 3 4 5 6
r (fm)

0.00

0.02

0.04

0.06

0.08

0.10

 (f
m

3 )

 (a)

proton densities 14O
16O
18O
20O
22O
24O
26O
28O

0 1 2 3 4 5 6
r (fm)

0.00

0.02

0.04

0.06

0.08

0.10

(fm
3 )

 (b)

 neutron densitities 14O
16O
18O
20O
22O
24O
26O
28O

Figure 4.9: Proton, panel (a), and neutron, panel (b), vector densities for the various oxygen isotopes.
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Figure 4.10: Proton, panel (a), and neutron, panel (b), vector densities for the various calcium isotopes.
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Figure 4.11: Evolution of charge density along doubly-magic oxygen nuclei as predicted by NL3 and
FSUGold.

was properly programmed. The Figs. (4.17 - 4.18) illustrate the complete set of spin transfer ob-
servables of the 14,22,24O isotopes from 1s1/2 computed with the inverse kinematics. The kimematical
conditions are given above. We see that analyzing power Ay, induced polarization P , and Dnn are
the only spin-transfer observables which differentiate between various oxygen isotopes. The remaining
spin transfer observables are practically identical for all oxygen isotopes. This implies that in order
to study the nuclear medium modification in oxygen isotopes with inverse kinematics using exclusive
(p, 2p) the spin observables that will need to be measured are analyzing power Ay, induced polariza-
tion P , and Dnn. In Fig. 4.19 - 4.20 we studied the spin transfer observables from 1p1/2 of 14,22,24O
isotopes, all spin transfer observables are the same for 22,24O and different from 14O.

39



200 300 400 500

147.5

145.0

142.5

140.0

137.5

135.0

132.5

130.0
Am

pl
itu

de
 (G

eV
2 )

 (a)

200 300 400 500

200

220

240

260

280

300

 (b)

200 300 400 500

116

118

120

122

124

126

128

 (c)

200 300 400 500
Ta′ (MeV)

16.0

15.5

15.0

14.5

14.0

13.5

13.0

12.5

Am
pl

itu
de

 (G
eV

2 )

(d) 

200 300 400 500
Ta′ (MeV)

16.0

15.5

15.0

14.5

14.0

13.5

13.0

12.5

 (e) 

300 350 400 450 500
Ta′ (MeV)

100

0

100

200

300

 (f)

FS
FP
FV
FA
FT

Figure 4.12: The real parts of IA1 amplitudes used for the computation of spin-transfer observables
for proton knockout from 16O target.
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Figure 4.13: The imaginary parts of IA1 amplitudes used for the computation of spin-transfer observ-
ables for proton knockout from 16O target.
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Figure 4.14: The (p, 2p) spin observables as a function of laboratory kinetic energy Ta′ of the scattered
proton a′, for proton knock-out from the 1s1/2 orbital of 16O at an incident energy of 504 MeV, and
for coincident coplanar scattering angles (22.12◦,−40.30◦). The solid lines depict spin observables
calculated directly from Arndt amplitudes while the dotted line depicts amplitudes calculated from
F 11 amplitudes.
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Figure 4.15: Values of analyzing power and induced polarization as a function of laboratory kinetic
energy Ta′ of the scattered proton a′, for proton knock-out from the 1p1/2 orbital of 16O at an incident
energy of 504 MeV, and for coincident coplanar scattering angles (22.12◦,−40.30◦).
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Figure 4.16: Values of polarization of transfer coefficients Di′j as a function of laboratory kinetic
energy Ta′ of the scattered proton a′, for proton knock-out from the 1p1/2 orbital of 16O at an
incident energy of 504 MeV, and for coincident coplanar scattering angles (22.12◦,−40.30◦).
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Figure 4.17: Values of analyzing power and induced polarization as a function of laboratory kinetic
energy Ta′ of the scattered proton a′, for proton knock-out from the 1s1/2 orbital of 14,22,24O at an
incident energy of 504 MeV, and for coincident coplanar scattering angles (22.12◦,−40.30◦).

44



40 60 80 100
Ta′ (MeV) 

1

0

1

D n
n

14O
22O
24O

40 60 80 100
Ta′ (MeV) 

0.5

0.0

0.5
D l

′ l
14O
22O
24O

40 60 80 100
Ta′ (MeV) 

0.5

0.0

0.5

D s
′ s

14O
22O
24O

40 60 80 100
Ta′ (MeV) 

0.5

0.0

0.5

D s
′ l

14O
22O
24O

40 60 80 100
Ta′ (MeV) 

0.5

0.0

0.5

D l
′ s

14O
22O
24O

Figure 4.18: Values of polarization of transfer coefficients Di′j as a function of laboratory kinetic
energy Ta′ of the scattered proton a′, for proton knock-out from the 1s1/2 orbital of 14,22,24O at an
incident energy of 504 MeV, and for coincident coplanar scattering angles (22.12◦,−40.30◦).
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Figure 4.19: Values of analyzing power and induced polarization as a function of laboratory kinetic
energy Ta′ of the scattered proton a′, for proton knock-out from the 1p1/2 orbital of 14,22,24O at an
incident energy of 504 MeV, and for coincident coplanar scattering angles (22.12◦,−40.30◦).
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Figure 4.20: Values of polarization transfer coefficients Di′j as a function of laboratory kinetic energy
Ta′ of the scattered proton a′, for proton knock-out from the 1p1/2 orbital of 14,22,24O at an incident
energy of 504 MeV, and for coincident coplanar scattering angles (22.12◦,−40.30◦).
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Chapter 5

Summary and outlook

The first part (see chapter 2) of this manuscript sought to investigate nuclear structure, in particular
the ground state properties, of finite nuclei throughout the nuclear landscape in the framework of
relativistic mean field theory and the findings were presented in chapter 2. A variety of nuclear
phenomena such as halos and skins were studied. We observed that the main difference between
stable nuclei and nuclei far from the stability region is that neutron/proton-rich nuclei tend to have
extended neutron/proton distributions in a form of nuclear halos, or skins. The unstable nuclei
also have a smaller binding energy per nucleon compared to stable nuclei. The understanding of
nuclei with large neutron-proton asymmetry provides us with unique insights into nuclear structure
of nuclei unavailable in nature due to their lack of stability. The rare isotope beam (RIB) facilities
make unstable isotopes accessible for the studies of astrophysics and nucleosynthesis in terrestrial
laboratories. This allows us to study, among others things neutron skins, in essence neutron matter
that was once thought to only exist in neutron stars. The groundstate properties of stable and unstable
nuclei such as binding energies and charge radii were computed with FSUGold and NL3 parameter
sets and compared with experimental data and good agreement was found. The results of chapter
2 indicated that NL3 and FSUGold predict ground state properties of nuclei throughout the nuclear
chart very well (see Tables 4.1 and 4.2 ). In summary, in the first part of the manuscript we used the
RMF theory to advance the understanding of nuclear force and contribute to the efforts of establishing
the limits of nuclear existence.

In the second part (see chapter 3) of this manuscript we studied proton-induced knockout reactions
in the intermediate energy regime (100 - 1000 MeV) from doubly magic nuclei using a fully relativistic
formalism in the framework of relativistic plane wave approximation (RPWIA). The doubly magic
nuclei or the so-called closed shell nuclei are preferred because they are suited for exclusive reaction
process to take place. We developed a general RPWIA model that is suitable for the investigation of
exclusive (p, 2p) and (p, pn) reactions but in this work we only studied the exclusive (p, 2p) reaction.
This was motivated by the fact that the exclusive (p, 2p) reactions have been studied extensively and
these reactions tend to have large cross-sections. Moreover, in the laboratory, it is easier to extract the
polarization transfer observables from the exclusive (p, 2p) reactions as opposed to exclusive (p, pn).
In addition, in the polarization measurements the exclusive (p, 2p) are j-dependent which makes
(p, 2p) a unique nuclear spectroscopic tool unmatched by any knockout reactions. The relativistic
impulse approximation to the (p, 2p) reaction assumes that the scattering reaction can be reduced to
a two body scattering process. In the direct kinematics the incident proton only interacts with the
target proton in a particular orbital of the stationary nucleus. Similarly, for inverse kinematics the
boundstate proton in the incident nucleus interacts with the target proton. In our model we take into
consideration the fact that the reaction takes place in the nuclear field and incorporate the medium
effects such as nuclear binding, Fermi motion, Pauli Blocking etc via the bound state wave function
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computed from the relativistic mean field theory with FSUGold parameter set.

Our RPWIA model was used to study polarization transfer observables which are regarded to
be sensitive to nuclear medium modification effects, while remaining insensitive to the final state
interaction effects. The use of RPWIA in this study is justified by the following reasons:

1. RPWIA model incorporates the main features of the exclusive (p, 2p) scattering reaction.

2. RPWIA model provides baseline calculation for inclusion of nuclear distortion effects.

3. RPWIA forms the baseline against which future RDWIA calculations must be compared.

4. From a theoretical view point the RPWIA offers analytical manipulation in a form of the trace
method (see Appendix C) which eases numerical implementation.

5. RPWIA provides a first order approximation of the behaviour of the observables of exclusive
scattering reactions.

6. RPWIA model is best suited for the study of spin transfer observables of the exclusive A(a, a′b′)B
since distortions are negligible in such investigations.

Moreover, since this study is exploratory in its nature the we believe that RPWIA formalism
provides the best framework to carry out our investigation because the more sophisticated RDWIA
formalism is prone to errors and its execution takes time to produce results. However, the implemen-
tation of a fully relativistic distorted wave impulse approximation (RDWIA) builds on RPWIA thus
this study is a first step towards building RDWIA.

We summarise the findings of this work as follows: we computed a complete set of exclusive
(p, 2p) knock-out reaction polarization transfer observables of closed shell oxygen isotopes 14,22,24O
with inverse kinematics at 504 MeV for coplanar angle pair (22.12◦,−40.30◦). The main aim of the
study was to investigate evolution of polarization transfer observables within this particular isotopic
chain. The other objectives included identifying polarization transfer observables which discriminate
between different isotopes as this offers the opportunity to investigate medium modification as the
nucleus becomes neutron-rich. To this end, a relativistic plane wave impulse approximation was
developed mainly because of insensitivity of polarization transfer observables to distortion effects and
partly as this is a quantitative study the inclusion of distorting optical potentials on scattering wave
function would have added an extra layer of complication to the calculations. The nuclear structure
of the isotopes investigated were taken into account within the relativistic mean field approximation
using the FSUGold parameter set. We would like to bring to the attention that the relativistic
formalism presented in this manuscript can with ease be used for the inclusion of distortion effects as
the invariant matrix element is computed directly. In addition, we stress that this formalism, albeit,
with minor modifications can be used to study neutrino-induced strange particle production on nuclei
or any quasifree knockout reaction of the form A(a, a′b′)B.

We found that analysing power Ay, polarization P , and Dnn of 1s1/2 state of 14,22,24O at 504 MeV
for angle pair (22.12◦,−40.30◦) are the only polarization transfer observables that distinguish between
the different oxygen isotopes. The differences in the magnitudes of these observables are pronounced
for analysing power Ay and polarization P . However, the differences in Dnn are peripheral, in fact,
at certain energies this observable cannot discriminate between different oxygen isotopes. The rest of
the spin transfer coefficients (Dl′l, Ds′s, Ds′l, Dl′s) are virtually the same for 1s1/2 state of 14,22,24O at
504 MeV for angle pair (22.12◦,−40.30◦). This is consistent with a long-held view that spin transfer
observables are independent of the target nuclei1. The polarization transfer coefficients extracted

1In this case projectile nuclei
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from 1p1/2 state of 14,22,24O at 504 MeV for angle pair (22.12◦,−40.30◦) for the 22,24O are the same
and different from 14O. The similarity between observables of 22,24O for 1p1/2 state and, analogously,
differences to 14O could be due to kinematic choices or could be due to the fact that only s state is
suited for measurement of polarization transfer observables. We argue it has nothing to do with the
mass differences between these oxygen isotopes, otherwise the same results would have emerged in
the calculations of spin observables from 1s1/2 state. This study is timely in a sense that plenty of
rare isotope accelerator facilities are now operational and in the next few years years many more will
become operational. Therefore, it is inevitable that soon these facilities will have capacity to measure
spin transfer observables.

In future the following aspects in relativistic can be investigated:

1. Calculate spin transfer observables for different isotopic, isobaric and isotonic chains with the
inverse kinematics for various kinematic conditions.

2. Investigate the influence of kinematic choices on the spin transfer observables for isotopic chain
with the inverse kinematics.

3. Check the influence of effective masses on the the spin transfer observables for isotopic chain
with the inverse kinematics.

4. Using a general Lorentz representation of NN interaction which is known as IA2 representation.

5. Inclusion of nuclear distortion effects for the incoming and outgoing channels where NN inter-
action is parametrized by a general Lorentz representation.
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Appendix A

The description of the new RMF

code

In order to use relativistic mean field approximation to get numerical results that can be compared
with experimental data a new computer program called KE RMF1 was written. In order to optimize
the KE RMF code the f2py package in Python programming language was used. The the f2py package
provides one the ability use Fortran speed in Python and run Fortran subroutines in Python. The
KE RMF code differs from the previously used RMF codes in that it uses the modern programming
language, Python, maintaining the speed of compiled language such as Fortran or C++ and it also
incorporates the pairing correlations which are important for the study of exotic nuclei. The KE RMF

code solves the system of coupled nonlinear differential equations of Eqs. (2.24 - 2.27) and (2.34 -
2.35) and the normalisation condition Eq. (2.36), in order to obtain nuclear groundstate properties
from RMF theory approximation. The procedure used in KE RMF begins with the initial guess for the
scalar and vector potential in a Woods-Saxon form. Then a use of Shooting point method is made to
solve the Dirac equation Eq. (2.24) iteratively. In the shooting method, we first integrates outward
from small r to a predefined match radius rm (the so-called shooting point), and then integrates
inward from large r to rm. In order to impose the proper boundary conditions the analytic solutions
to the equations in the regions of large and small r were used. The solutions are scaled so that gα is
continuous at the shooting point rm, and the radial wave functions are then normalized to unity, see
Eq. (2.36). The discontinuity in fα is taken advantage in order to fine-tune the energy eigenvalue as
follows:

δEα = −mgα(rm)[fα(r+
m)− fα(r−m)] (A.1)

The shooting method continues until |δEα| is less than a pre-set tolerance value. Once the wave
functions for single-particle states and boundstate energies are calculated from Woods-Saxon-shaped
meson fields. The scalar and vector densities calculated from these wave functions are utilised as
sources for the meson and electromagnetic fields and, in turn, the meson and electromagnetic fields
determine the mean-field potentials for the nucleons. The Green functions techniques are utilised
to produce new meson fields. The iterative procedure continues until self-consistency is obtained.
Since the code was developed with specific intention of studying exotic nuclei it was important to also
incorporates the pairing correlations which contribute significantly in open shell nuclei[99]. Pairing
correlations emanates from a short range part of the nucleon-nucleon interaction. The Bardeen-
Cooper-Schrieffer (BCS) model under constant gap approximation is preferred for including pairing
correlations within RMF theory. The occupation numbers nα was introduced to the sums of Eqs.

1KE in the codename are initials of names: Kanting Evidence
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(2.37 - 2.40) to deal with pairing for open shell nuclei. When there are pairing correlations, nα = 1
for occupied levels and zero for unoccupied levels. The occupation numbers nα is given by [100, 63]:

nα =
1

2

(
1− εα − λ

(εα − λ)2 + ∆2

)
(A.2)

where εα denotes the single-particle energy. The Fermi energy λ for protons (neutrons) is given
by: ∑

α

nα = Z(N), (A.3)

and the sum is taken over proton (neutron) states. The occupation probability and the unoccupation
probability are given by nα = v2 and u2

α = 1 − v2
α, respectively. The constant gap parameter is

computed with the five-point formula:

∆ = −1

8
[M(N + 2)− 4M(N + 1) + 6M(N)− 4M(N − 1) +M(N − 2)], (A.4)

where M(N) is the atomic mass of a nucleus with N neutrons and Z protons.

For the nuclei studied in Chapter 2 using a the newly written code, KE RMF, all integrations were
performed for nuclear radius of 16 fm and a stepsize of 0.01 fm. The set of a couple differential
equations were solved for a shooting point of 2 fm using a fourth-order Runge-Kutta algorithm. For
a convergence criterion a tolerance level of 0.001 MeV was set on all single-particle energy levels. The
total energy of system E was calculated using the following expression:

E =
∑
αocc

εα(2jα + 1)− 1

2

∫
d~r
[
− gsφ0(r)ρs(r) + gvV0(r)ρB(r) + gρb0(r)ρ3(r) + eA0(r)ρp(r)

]
(A.5)

A series of numerical checks was performed to ensure that the newly developed code was properly
implemented this included comparing the our results to experimental data such as binding energy per
nucleon and nuclear radii data. The binding energy can easily be calculated from the total energy of
the system in Eq (A.5). Note that in this work we use the NL3 and FSUGold parameter sets which are
listed in Table 2.2. However, other parameter sets of Walecka-inspired relativistic mean field theory
models such as QHD-I,QHD-II, NL-1 can also be used in KE RMF code.
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Appendix B

Reaction Mechanism

The (p, 2p) proton-induced knockout reactions are nuclear reactions of the form A(a, a′b′) in which
an incoming proton a interacts with a boundstate nucleon in a target nucleus and knocks out this
nucleon, generating a one-hole state in the residual nucleus. This reaction process is most dominant in
the intermediate energy regime (100 - 1000 MeV). In this energy regime, the effect of the absorption
of incident proton in the nuclear medium is minimal. Therefore, we can assume that the interaction is
between the incident proton and bound proton. Furthermore, there is no violent interaction between
incident proton and spectator nucleons of the residual nucleus. This kind of reaction differs from
free scattering reaction by the binding aspect of probed (bound) nucleon as the separation energy is
required to free a bound nucleon. In the free scattering process, the entire energy of the incident proton
is available as the kinetic energy of the two outgoing protons (scattered and knocked out). A(a, a′b′)
knockout reactions are important for the studies of the single-particle properties of a nucleus such as
the shell structure and the effects on the bound nucleons. These nuclear reactions can be utilised to
investigate nuclear information such as separation energies, spectroscopic factors, medium effects and
nuclear distortions.

There is a one-hole state in a particular energy level in the residual nucleus left by ejected nucleon.
If this hole is in the level below Fermi surface, the residual nucleus acquires an additional excitation
energy corresponding to the energy of this single-particle state relative to the Fermi level. The
conservation energy principle can be applied to the reaction depicted in Fig. B.1 and the binding
energy BN of state occupied the bound nucleon in stationary nucleus is:

BN = SN + EC = Ta − Ta′ + Tb′ + TC (B.1)

In Eq. (B.1) SN = (mA −mC −mN )c2 is the separation energy required to free a bound nucleon
from the target nucleus. The quantities mA, mC , and mN denotes are the masses of the target,
residual nucleus (A − 1) and the ejected nucleon N, respectively. The kinetic energies of incoming
proton a, scattered proton, ejected proton and residual nucleus are denoted by Ta, Ta′ , Tb′ and TC ,
respectively.

The binding energy of the individual state of the nucleon is an important quantity but equally
important internal momentum of individual state inside the nucleus. The internal momentum of a
specific state inside the nucleus can be determined upon applying the conservation of momentum
principle on the (p, 2p) knockout reaction depicted in Fig. B.1

~kA−1 = ~ka − ~ka′ − ~kb′ = −~kC (B.2)

53



It clear from Eq. (B.2) that the internal momentum of nucleon is associated with the momentum
of the residual nucleus taken with negative sign. The internal momentum of the nucleon can be
determined in two ways:

• Via measurements of momenta of all participants in the reaction.

• Via detection of the recoil momentum residual nucleus.

The simplified picture above is generally accepted but significant modifications are required for the
inclusion of initial and final interactions. We provide a complete complete derivation of kinematics of
the knockout reaction A(a, a′b′)B for both direct and inverse kinematics. In section B.1 we present the
direct kinematics for a reaction of the form A(a, a′b′)B in both laboratory frame centre of mass frame.
In section B.1 we present the derivation for kinematics for a reaction of the form A(a, a′b′)B in both
laboratory frame centre of mass frame. Note that reaction mechanism presented above is applicable
to knockout reaction A(a, a′b′)B for inverse kinematics wherein the role of incident proton and target
nucleus are reversed. Section B.2 presents the derivation for the A(a, a′b′)B knockout reaction with
the inverse kinematics.

B.1 Direct Kinematics Derivation

We now derive the direct kinematics for the knockout nuclear reaction of the form A(a, a′b′)B. In
this derivation will discuss both laboratory and centre of mass dynamics. We begin the derivation by
looking at the scattering diagram for direct kinematics in the laboratory frame:

Figure B.1: The diagram depicting a quasifree scattering reaction A(a, a′b′)B with direct kinematics
in the laboratory frame.

Start with 4-momentum conservation:

Ea +mA = Ea′ + Eb′ + EC , (B.3)

~ka = ~ka′ + ~kb′ + ~kC (B.4)
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where

Ea = Ta +m, m ≡ proton mass (B.5)

Ea′ = Ta′ +m, (B.6)

The quantity Ta is the initial kinetic energy of the incident proton in the laboratory frame. Note that
all kinematical quantities are a function of the kinetic energy of the outgoing nucleon Ta′ .

With,

|~ka| = ka =
√
E2
a −m2, (B.7)

|~ka′ | = ka′ =
√
E2
a′ −m2. (B.8)

If we look at Eq. (B.3), the we see that Eb′ and EC still unknown quantities. In Eq. (B.4) Eb′

and EC are unknown. We are going to set up an equation for kb′ .

From Eq. (B.4)

~kC = ~ka − ~ka′ − ~kb′ , (B.9)

~k2
C = (~ka − ~ka′ − ~kb′)(~kA − ~ka′ − ~kb′), (B.10)

=
[
~ka − (~ka′ + ~kb′)

]2
, (B.11)

= ~k2
a + (~ka′ + ~kb′)

2 − 2~ka · (~ka′ + ~kb′) (B.12)

= ~k2
a + ~k2

a′ + ~k2
b′ + 2~ka · ~kb′ − 2~ka · (~ka′ + ~kb′), (B.13)

= k2
a + k2

a′ + k2
b′ − 2kaka′ cos(θa′)− 2kakb′ cos(θb′) + 2kakb′ cos(θa′ + θb′) (B.14)

From Eq. (B.3)

Ea − Ea′ +mA − Eb′ = EC (B.15)

Ea − Ea′ +mA −
√
~k2
b′ +m2 =

√
k2
C +m2

C (B.16)

Let

C1 = Ea − Ea′ +mA (B.17)

C1 −
√
k2
b′ +m2 =

√
k2
C +m2

C (B.18)

Square Eq. (B.18) [
C1 −

√
k2
b′ +m2

]2

= k2
C +m2

C (B.19)

55



C2
1 + k2

b′ +m2 − 2C1

√
~k2
b′ +m2 = k2

C +m2
C , (B.20)

= k2
a + k2

a′ + k2
b′ − 2kaka′ cos(θa′)− 2kakb′ cos(θb′)

+ 2ka′kb′ cos(θa′ + θb′) +m2
C . (B.21)

C2
1 +��k

2
b′+m

2−2C1

√
~k2
b′ +m2 =��k

2
b′+kb′

[
2ka′ cos(θa′+θb′)−2ka cos(θb′)

]
+k2

a+k2
a′−2kaka′ cos(θa′)+m

2
C

(B.22)

− 2C1

√
~k2
b′ +m2 = kb′

[
2ka′ cos(θa′ + θb′)− 2ka cos(θb′)

]
+ k2

a + k2
a′ − 2kaka′ cos(θa′) +m2

C −m2 −C1

(B.23)
Let

C2 = k2
a + k2

a′ − 2kaka′ cos(θa′)− C2
1 +m2

C −m2, (B.24)

C3 = 2ka′ cos(θa′ + θb′)− 2ka cos(θb′) (B.25)

− 2C1

√
k2
b′ +m2 = C3kb′ + C2 (B.26)

Square Eq. (B.26)

4C1(k2
b′ +m2) = C2

3k
2
b′ + C2

2 + 2C2C3kb′ (B.27)

k2
b′ [4C

2
1 − C2

3 ] + kb′ [−2C2C3] + [4m2C2
1 − C2

2 ] = 0 (B.28)

Let

A = 4C2
1 − C2

3 , (B.29)

B = −2C2C3, (B.30)

C = 4m2C2
1 − C2

2 (B.31)

Ak2
b′ +Bkb′ + C = 0 (B.32)

Hence

kb′ =
−B ±

√
∆

2A
(B.33)

where

∆ = B2 − 4AC. (B.34)

From Eq. (B.33), we can deduce the magnitude of ~kb′ .
Then

Eb′ =
√
k2
b′ −m (B.35)
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and

Tb′ = Eb′ −m (B.36)

EC = Ea − Ea′ +mA − Eb′ (B.37)

Then

TC = EC −mC (B.38)

and

kC =
√
E2
C −m2

C (B.39)

To determine the angles of the residual nucleus, we look at the Cartertian components:
From Eq. (B.4)

~ka = ~ka′ + ~kb′ + ~kC (B.40)

We have

~ka = kaẑ, (B.41)

~ka′ = ka′ cos(θa′)ẑ + ka′ sin(θa′)x̂, (B.42)

~kb′ = kb′ cos(θb′)ẑ − kb′ sin(θb′)x̂, (B.43)

~kC = kC cos(θC)ẑ − ka′ sin(θC)x̂ (B.44)

Calculation of the three momenta

~kA = ~ka′ + ~kb′ + ~kC (B.45)

ẑ :

ka = ka′ cos(θa′) + kb′ cos(θb′) + kC cos(θC) (B.46)

Therefore:

cos(θC) =
ka − ka′ cos(θa′)− kb′ cos(θb′)

kC
(B.47)

x̂ :

0 = ka′ sin(θa′)− kb′ sin(θb′)− kC sin(θC), (B.48)

sin(θC) =
ka′ sin(θa′)− kb′ sin(θb′)

kC
(B.49)

Momentum of residual nucleus:

~kmis = −~kC . (B.50)

Now we need to transform to the centre of mass frame. Laboratory frame:
Consider now the A-a center of mass:

Before the collision we can write
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Figure B.2: The diagram depicting a quasifree scattering reaction A(a, a′b′)B with direct kinematics
in the laboratory frame.

Figure B.3: The diagram depicting a quasifree scattering reaction A(a, a′b′)B with direct kinematics
in the laboratory frame.

s = (ka + kA)2 (B.51)

This quantity is Lorentz-invariant and can be evaluated in two frames in two frames: (i) laboratory
and (ii) centre of mass
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Figure B.4: The diagram depicting a centre of mass frame after b-C collision

s = (ka + kA)2 (B.52)

= k2
a + k2

A + 2ka · kA, (B.53)

= m2 +m2
A + 2ka · kA ≡ general expression for s if both particles are on-shell. (B.54)

In the laboratory frame:
~ka 6= 0 & ~kA = 0 (B.55)

Hence

s = m2 +m2
A + 2EaEA − 2~ka · ~kA︸︷︷︸

=0

(B.56)

= m2 +m2
A + 2EamA, (B.57)

where Ea ≡ total laboratory energy of incident proton. See Eq. (B.5). Let us now evaluate Eq.
(B.54) in the centre of mass frame:

s = m2 +m2
A + 2EaEA − 2~ka · ~kA, (B.58)

= m2 +m2
A + 2Ea,cmEA,cm − 2~ka,cm · (−~ka,cm), (B.59)

= m2 +m2
A + 2Ea,cmEA,cm + 2~k2

a,cm (B.60)

= m2 +m2
A + 2

√
~k2
a,cm +m2

√
~k2
a,cm +m2

A + 2~k2
a,cm (B.61)

Therefore

2

√
~k2
a,cm +m2

√
~k2
a,cm +m2

A = s−m2 −M2
A︸ ︷︷ ︸

A

−2~k2
a,cm

= A− 2k2
A,cm

(B.62)
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Square Eq. (B.62)

4(~k2
a,cm +m2)(~k2

a,cm +m2
A) = A2 + 4~k4

a,cm − 4A~k2
a,cm (B.63)

����
4~k4
a,cm + 4m2~k2

a,cm + 4m2
A
~k2
a,cm + 4m2m2

A = A2 +����
4~k4
a,cm − 4A~k2

a,cm (B.64)

~k2
a,cm[4m2 + 4m2

A + 4A︸ ︷︷ ︸
4s

] = A2 − 4m2m2
A (B.65)

Since

4m2 + 4m2
A + 4A = 4m2 + 4m2

A + 4s− 4m2 − 4m2
A, (B.66)

= 4s. (B.67)

(4s)~ka,cm =
(
s−m2 +m2

A

)2 − 4m2m2
A (B.68)

ka,cm =
1

2
√
s

[(
s−m2 +m2

A

)2 − 4m2m2
A

] 1
2

(B.69)

s = Eq.(B.57)

After the collision we can define a quantity:

sa′C = (ka′ + kC)2 This is an invariant quantity. It can be evaluated in any frame. (B.70)

The evaluation of Eq. (B.70) will proceed along exactly the same lines as Eq. (B.54) in the centre
of mass frame. Since

~kC = −~ka′ (B.71)

Hence, we can say:

ka′,cm =
1

2
√
sa′C

[(
sa′C −m2 −m2

C

)2 − 4m2m2
C

] 1
2

(B.72)

Where we need to now evaluate sa′C in the laboratory frame:

sa′C = m2 +m2
C + 2ka′ · kC (B.73)

= m2 +m2
C + 2Ea′EC − 2~ka′ · ~kC lab frame, (B.74)

= m2 +m2
C + 2Ea′EC − 2ka′kC cos(θa′C) (B.75)

Where θa′C ≡ laboratory angle between a′ and C. −→ See Eq. (B.84).

Ea′ = Eq. (B.6), (B.76)

EC = Eq. (B.37), (B.77)

ka′ = Eq. (B.8), (B.78)

kC = Eq. (B.39). (B.79)
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We will need to calculate θa′C
We know that

~ka′ · ~kC = ka′kC cos(θa′C), (B.80)

= (~ka′)x(~kC)x + (~ka′)z(~kC)z (B.81)

= (ka′ sin(θa′))(−kC sin(θC)) + (ka′ cos(θa′))(kC cos(θC)) (B.82)

= ka′kC
[

cos(θa′)(cos(θC)− sin(θa′)(sin(θC)
]

(B.83)

Therefore:

cos(θa′C) = cos(θa′) cos(θC)− sin(θa′) sin(θC) (B.84)

where

cos(θC) = Eq. (B.49), (B.85)

sin(θC) = Eq. (B.47). (B.86)

After collision we define

sb′C = (kb′ + kC)2 (B.87)

For sa′C we will define

kb′,cm =
1

2
√
sb′C

[ (
sb′C −m2 −m2

C

)2 − 4m2m2
C

] 1
2

(B.88)

where

sb′C = m2 +m2
C + 2EbEC − 2kbkC cos(θb′C) (B.89)

with

Eb′ = Eq. (B.35), (B.90)

EC = Eq. (B.37), (B.91)

kb′ = Eq. (B.33), (B.92)

kC = Eq. (B.39), (B.93)

~kb′ · ~kC = (~kb′)x(~kC)x + (~kb′)z(~kC)z (B.94)

= (−kb′ sin(θb′))(−kC sin(θC)) + (kb′ cos(θb′))(kC cos(θC)) (B.95)

= kb′kC [cos(θb′)(cos(θC) + sin(θb′)(sin(θC)] (B.96)

Therefore:

cos(θb′C) = cos(θb′) cos(θC)− sin(θb′) sin(θC) (B.97)

where
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cos(θC) = Eq. (B.47), (B.98)

sin(θC) = Eq. (B.49). (B.99)

We wrote a python code, DirectKine, to compute the kinematics for a nuclear reaction of the
form A(a, a′b′)B in the direct kinematics. In Fig. B.5 below, the flowchart illustrates how DirectKine

calculates the kinematics for the A(a, a′b′)B. In this work DirectKine was used for the kinematics of
the (p, 2p) knockout reaction. However, DirectKine can be used for any knockout reaction of the form
A(a, a′b′)B. For instance, where incident nucleon or alpha particle knocks out a nucleon or cluster
from a target nucleus.
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Start

Input: Ta, θa′ , θb′ , m, mA

Calculate: Ea, ka, EA, mCCalculate: Ta′

Calculate: Ea′ , ka′

Calculate: C1, C2, C3, C4

Calculate: kb′ , Eb′ , Tb′

Calculate: kC , EC , TC , ~kCCalculate: ~k, Ek′

Calculate: ka,cm, kb,cm

Figure B.5: The flowchart illustrates how our code calculates the kinematics for the A(a, a′b′)B nuclear
reaction.
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B.2 Inverse Kinematics Derivation

In this section, we will derive the following:

• Lab kinematics for the inverse reaction

• CM kinematics for the inverse reaction

The scattering diagram for inverse kinematics in the LAB frame is shown in Fig. B.6

A+ p −→ 2p +A− 1 (B.100)

Figure B.6: The diagram depicting a quasifree scattering reaction A(a, a′b′)B with inverse kinematics
in the laboratory frame.

The separation energy of a nucleon inside the nucleus is given by:

S = Ta − (Ta′ + Tb′ + TC) (B.101)

The momentum of the knocked out nucleon from inside the nucleus is written as:

~kmis = −~kC (B.102)

Start with 4-momentum conservation:

EA +m = Ea′ + Eb′ + EC , (B.103)

~kA = ~ka′ + ~kb′ + ~kC (B.104)

where
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EA = TA +mA, (B.105)

Ea′ = Ta′ +m, (B.106)

|~kA| = kA =
√
E2
A −m2

A (B.107)

|~ka′ | = ka′ =
√
E2
a′ −m2 (B.108)

Now we follow name procedure as in section B.1 to derive an equation for kb′ .

From Eq. (B.104)

~kC = ~kA + ~ka′ − ~kb′ , (B.109)

~k2
C = (~kA + ~ka′ − ~kb′)(~kA + ~ka′ − ~kb′), (B.110)

=
[
~kA − (~ka′ + ~kb′)

]2
, (B.111)

= ~k2
A +

(
~ka′ + ~kb′

)2

− 2~kA ·
(
~ka′ + ~kb′

)
, (B.112)

= ~k2
A + ~k2

a′ + ~k2
b′ + 2~ka′ · ~kb′ − 2~kA · ~ka′ − 2~kA · ~kb′ . (B.113)

From Eq. (B.103)

EA +m = Ea′ +

√
~k2
b′ +m2 +

√
~k2
C +m2

C (B.114)

EA − Ea′ +m−
√
~k2
b′ +m2 =

√
~k2
C +m2

C (B.115)

Let

C1 = EA − Ea′ +m (B.116)

C1 −
√
~k2
b′ +m2 =

√
~k2
C +m2

C (B.117)

Square Eq. (B.117) [
C1 −

√
~k2
b′ +m2

]2

= ~k2
C +m2

C (B.118)

C2
1 +��k

2
b′ +m2−2C1

√
~k2
b′ +m2 = ~k2

A+~k2
a′ +��

~k2
b′ +2ka′kb′ cos(θa′b′)−2kAka′ cos(θAa′)−2kAkb′ cos(θAb′)

(B.119)

−2C1

√
k2
b′ +m2 = k2

A+k2
a′ −2kAka′ cos(θa′)−2kAkb′ cos(θb′)+2ka′kb′ cos(θa′ +θb′)+m2

C −m2−C2
1

(B.120)
Let

C2 = k2
A + k2

a′ − 2kAka′ cos(θa′)− C2
1 +m2

C −m2, (B.121)

C3 = 2ka′ cos(θa′ + θb′)− 2kA cos(θb′) (B.122)
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− 2C1

√
k2
b′ +m2 = C2 + C2kb′ (B.123)

Square Eq. (B.123),

4C1(k2
b′ +m2) = C2

3k
2
b′ + 2C2C3kb′ + C2

2 (B.124)

k2
b′ [4C

2
1 − C2

3 ] + kb′ [−2C2C3] + 4m2C2
1 − C2

2 = 0 (B.125)

Let

A = 4C2
1 − C2

3 (B.126)

B = −2C2C3, (B.127)

C = 4m2C2
1 − C2

2 . (B.128)

Ak2
b′ +Bkb′ + C = 0 (B.129)

Hence

kb′ =
−B ±

√
∆

2A
(B.130)

Where

∆ = B2 + 4AC (B.131)

From Eq. (B.130)

Eb′ =
√

(k2
b′ −m2) (B.132)

and
Tb′ = Eb′ −m (B.133)

From Eq. (B.103)

EC = EA − Ea′ +m− Eb′ (B.134)

Then

TC = EC −mC (B.135)

and

kC =
√
E2
C −m2

C (B.136)

To determine the angles of the residual nucleus, we look at the Cartesian components:

~kA = kAẑ, (B.137)

~ka′ = ka′ cos(θa′)ẑ + ka′ sin(θa′)x̂, (B.138)

~kb′ = kb′ cos(θb′)ẑ − kb′ sin(θb′)x̂, (B.139)

~kC = kC cos(θC)ẑ − kC sin(θC)x̂ (B.140)

Calculation of the three momenta
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~kA = ~ka′ + ~kb′ + ~kC (B.141)

ẑ

kA = ka′ cos(θa′) + kb′ cos(θb′) + kC cos(θC) (B.142)

cos(θC) =
kA − ka′ cos(θa′)− kb′ cos(θb′)

kC
(B.143)

x̂

0 = ka′ sin(θa′)− kb′ sin(θb′)− kC sin(θC), (B.144)

sin(θC) =
ka′ sin(θa′)− kb′ sin(θb′)

kC
. This is same as Eq. B.49 (B.145)

Consider now the A− a center of mass:

Define

s = (kA + ka)2 (B.146)

This quantity is Lorentz-invariant and can be evaluated in the two frames: (i) laboratory and (ii)
centre of mass

s = k2
A + k2

a + 2kA · ka, (B.147)

= m2
A +m2 + 2kA · ka (B.148)

In the laboratory frame: ~ka = 0, hence

s = m2
A +m2 + 2EAm (B.149)

In the centre of mass frame:

s = m2
A +m2 + 2EAEa − 2~kA,cm · ~ka,cm, (B.150)

= m2
A +m2 + 2

√
~k2
A,cm +m2

A

√
~k2
A,cm +m2 − 2~k2

A,cm (B.151)

2
√
~k2
A,cm +m2

A

√
~k2
A,cm +m2 = s−m2

A −m2︸ ︷︷ ︸−2~k2
a,cm

= A− 2k2
A,cm

(B.152)

Square Eq. (B.152)

4(~k2
A,cm +m2

A)(~k2
A,cm +m2) = A2 + 4k4

A,cm − 4Ak2
A,cm (B.153)

�
���4k4
A,cm + 4m2k2

A,cm + 4m2k2
A,cm + 4m2m2

A = A2 +
�

���4k4
A,cm − 4Ak2

A,cm (B.154)
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k2
A,cm

[
4m2 +m2

A + 4A︸ ︷︷ ︸
4s

]
= A2 − 4m2m2

A (B.155)

kA,cm =
1

2
√
s

[
(s−m2 −m2

A)2 − 4m2m2
A

] 1
2

(B.156)

s = Eq. (B.149)

After the collision, we define a quantity:

sa′C = (ka′ + kC)2 (B.157)

The calculation of Eq. (B.157) will proceed along the same lines as Eq. (B.146) since

~kC = −~ka′ (B.158)

Therefore

ka′,cm =
1

2
√
sa′C

[
sa′C −m2 −m2

C)2 − 4m2m2
A

] 1
2

(B.159)

Where sa′C can be evaluated in the laboratory frame: We find

sa′C = m2 +m2
C + 2EaEC − 2kakC cos(θa′C) (B.160)

Where

Ea′ = Eq. (B.106), (B.161)

EC = Eq. (B.134), (B.162)

ka′ = Eq. (B.108), (B.163)

kC = Eq. (B.136) (B.164)

cos(θa′C) = cos(θa′) cos(θC)− sin(θa′) sin(θC) (B.165)

where

cos(θC) = Eq. (B.143), (B.166)

sin(θC) = Eq. (B.145) (B.167)

We define

sb′C = (kb′ + kC)2 (B.168)

where we find

kb′,cm =
1

2
√
sb′C

[ (
sb′C −m2 −m2

C

)2 − 4m2m2
C

] 1
2

(B.169)

where
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Eb′ = Eq. (B.132), (B.170)

EC = Eq. (B.134), (B.171)

kb′ = Eq. (B.130), (B.172)

kC = Eq. (B.136). (B.173)

sb′C = m2 +m2
C + 2Eb′EC − 2kb′kC cos(θb′C) (B.174)

cos(θb′C) = cos(θb′) cos(θC)− sin(θb′) sin(θC) (B.175)

cos(θC) = Eq. (B.143), (B.176)

sin(θC) = Eq. (B.145). (B.177)

We wrote a python code, InverseKine, to compute the kinematics for a nuclear reaction of the form
A(a, a′b′)B in the inverse kinematics. InverseKine is similar to DirectKine hence Fig. B.5 illustrates
how InverseKine calculates the kinematics for the A(a, a′b′)B knockout reaction. Note the roles of
incident proton and target are interchanged in InverseKine.
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Appendix C

The Trace Method

We begin our derivation of the square of invariant transition matrix for the exclusive (~p, 2~p) using
trace methods with the expression, Eq. (3.29), derived in chapter 3:

T (sa, sa′ , sb′) =

T∑
L=S

FL[U(~ka′ , sa′)⊗ U(~kb′ , sb′)](λ
L ⊗ λL)[U(~ka, sa)⊗ ULJMJ

(− ~K)]. (C.1)

The boundstate proton wave function ULJMJ
(− ~K) = Uα(− ~K) is labelled by single-particle quantum

numbers L, J , and MJ . The Eq. (C.1) represents the invariant transition matrix element for a
two-body scattering process in which the initial proton is bound. We apply the following property of
matrices on Eq. (C.1):

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (C.2)

to get

T (sa, sa′ , sb′) =

T∑
L=S

FL[Ūi(~ka′ , sa′)(λ
L)ijUj(~ka, sa)][Ūk(~kb′ , sb′)(λL)klULJMJ

(− ~K)l]. (C.3)

Upon taking the complex conjugate of Eq. (C.3) and using the property below

[X̄AY ]∗ = [X̄AY ]† = [Ȳ ĀX], (C.4)

one gets:

T ∗(sa, sa′ , sb′) =

T∑
L=S

F ∗L[(Ūα)r(λ̄L)rs(Ub′)s][(Ūa)k(λ̄L)mn(Ua′)n]. (C.5)

The product of Eqs. (C.3) and (C.5) is equal to |T (sa, sa′ , sb′ |2 which is the most significant
quantity that is needed to compute spin observables of interest in section 3.3
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|T (sa, sa′ , sb′ |2 =

T∑
LL′=S

FLF
∗
L′ [Ūi(~ka′ , sa′)(λ

L)ijUj(~ka, sa)][Ūk(~kb′ , sb′)(λL)kl(Uα)l]

× [(Ūα)r(λ̄L)rsUs(~ka′ , sa′)][(Ūk(~ka, sa)(λ̄L)mnUn(~ka′ , sa′)],

=

T∑
LL′=S

FLF
∗
L′ [Us(~ka′ , sa′)Ūi(~ka′ , sa′)(λ

L)ijUj(~ka, sa)Ūr(~ka, sa)(λ̄L
′

)rs]

× [Un(~kb′ , sb′)Ūk(~kb′ , sb′)(λL)kl{UαŪα}lm(λ̄L′ )mn].

(C.6)

The energy projection operator is given by

∑
s

Uα(~k, s)Ūβ(~k, s) =

(
/k +m

2m

)
αβ

. (C.7)

and the spin projection operator is given by

Σ̂(s) =
1 + γ5/s

2
. (C.8)

Similarly, the following identity of Dirac spinors holds

∑
s

Uα(~k, s)Ūβ(~k, s) =

(
/k +m

2m
· 1 + γ5/s

2

)
αβ

, (C.9)

=

(
Λ+(k,m)Σ̂(i, s)

)
αβ

. (C.10)

In a polarized (p, 2p) experiment, the spin projections of particles a and a′ are fixed in the entrance
and exit channels and spin projections of particles b and b′ are left unfixed. In order to fix the spin
projections of particles a and a′ we use a spin projector Σ̂(s) as illustrated below. In accounting
for the particles b and b′, we the sum over the total angular momentum projection Mb and the spin
projection sb′ . This results in a desired form of matrix element:

∑
Mbsb′

|M|2 =
∑
Mbsb′

T∑
L,L′

FLF
∗
L′

[(
Λ+(ka′ ,m)Σ̂(̂i, s)

)
si

(λL)ij

(
Λ+(ka,m)Σ̂(̂i, s)

)
jr

(λ̄L
′
)rs)

]
×[(Λ+(kb′ ,m)nk(λL)kl(UαŪα)lm(λ̄L′)mn]. (C.11)

All possible combinations of spin projections over a and a′ are represented by indices si and sf ,
respectively.

∑
Mbsb′

|M|2 =
∑
Mbsb′

T∑
L,L′

FLF
∗
L′

[(
Λ+(ka′ ,m)Σ̂(̂i, s)

)
si

(λL)ij

(
Λ+(ka,m)Σ̂(̂i, s)

)
jr

(λ̄L
′
)rs)

]
×[(Λ+(kb′ ,m)nk(λL)kl(UαŪα)lm(λ̄L′)mn]. (C.12)
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It was in shown Ref. [101] that Casimir trick performed on spinors holds even for bound-state
spinors. However, the following identities have to be satisfied:

∑
m

Y+km(k̂)Y∗+km(k̂) =
∑
m

Y−km(k̂)Y∗−km(k̂), (C.13)

=
2j + 1

8π
, (C.14)∑

m

Y+km(k̂)Y∗−km(k̂) =
∑
m

Y−km(k̂)Y∗+km(k̂), (C.15)

= −2j + 1

8π
(σ · k̂). (C.16)

With the above identities established, we are now in a position to introduce boundstate propaga-
tor1.

Sα(k) =
1

2j + 1

∑
δ

(Uαδ(k)Ūαδ(k)), (C.17)

= /kα +mα, (C.18)

=
(/kα +mα)

2mα
× 2mα, (C.19)

= 2mαΛ+(kα,mα) where (α = {E, κ}). (C.20)

The mass-, energy- and momentum-like quantities are defined as

mα = M =
( π
k2

)[
g2
α(k)− f2

α(k)
]
, (C.21)

Eα = M =
( π
k2

)[
g2
α(k) + f2

α(k)
]
, (C.22)

kα = M =
( π
k2

)[
2gα(k)fα(k)k̂

]
, (C.23)

which are consistent with the on-shell relation:

k2
α = E2

α − k2
α = m2

α. (C.24)

Note that the similarity between the free and bound propagators enables us to use trace techniques
to compute polarization observables for both free and bound nucleons. If the distortions of the bound
nucleon are included the simplicity of trace method gets lost, thus, these expressions are only valid
when the distortions are not incorporated. The Figs. C.1 and C.2 display the plots of the effective
energy-, mass-, momentum-like quantities as a function of momentum for the 1p3/2 proton and neutron
hole states of 24O. From the figures we observe that Eα ≈ mα � kα. This emanates from the fact
that even though fα(k) is reinforced in the nuclear medium, it remains to be very dominated by gα(k).

1Note that the α refer to the quantum numbers of the boundstae wavefuntion not the Lorentz index.

72



Note that cross section and spin observables are directly proportional to the term kα + mα in C.19,
and since kα � Eα and kα ≈ Eα cross section and spin observables become directly proportional
to Eα. This allows us to interpret Eα in Eq. C.21 as a bound-nucleon density in momentum space.
Therefore, we can conclude that knockout reactions such as A(a, a′b′)B serve as a direct probe of
momentum distribution in the bound-nucleon wavefunction.

Finally summing over repeated indices we obtain:

∑
Mbsb′

|M|2 =
∑
Mbsb′

T∑
L,L′

FLF
∗
L′Tr

[(
Λ+(ka′ ,m)Σ̂(̂i, s)

)
(λL)

(
Λ+(ka,m)Σ̂(̂i, s)

)
(λ̄L

′
))
]

×Tr[(Λ+(kb′ ,m)(λL)(UαŪα)(λ̄L′)]. (C.25)

We can now define hadronic tensor as:

HLL′
(ka, ka′ ,m, sa, sa′) = Tr

[
Λ+(ka′ ,m)Σ̂(̂i, sa′)λ

LΛ+(ka,m)Σ̂(̂i, sa)λ̄L
′
]
, (C.26)

and target tensor as follows:

WLL′( ~K, kb′ ,m,Mb) = Tr[(Λ+(kb′ ,m)(λL)(UαŪα)(λ̄L′)]. (C.27)

The Eq. (C.25) can now be recast in a more compact fashion:

∑
Mbsb′

|M|2 =
∑
Mbsb′

T∑
L,L′

FLF
∗
L′HLL′

(ka, ka′ ,m, sa, sa′)WLL′( ~K, kb′ ,m,Mb) (C.28)

Here the quantity HLL′
(ka, ka′ ,m, sa, sa′) is a spin dependent hadronic tensor (also known as

projectile tensor), it contains the information about the polarization of the protons in the entrance

and exit channels of the exclusive (~p, 2~p) nuclear reaction. The expression WLL′( ~K, kb′ ,m,Mb) is the
target tensor (response function), it contains information about bound proton in the nucleus. It is
evident that all the information about the scattering cross-sections and polarization transfer observ-
ables is contained in the hadronic and target tensors. The explicit evaluation of the two expressions
HLL′

(ka, ka′ ,m, sa, sa′) and WLL′( ~K, kb′ ,m,Mb) is straightforward and not discussed in this work.
The interested reader is advised to consult Ref [76] for the procedure.
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Figure C.1: The effective energy-, mass-, momentum-like quantities as a function of momentum for
the 1p3/2 proton state of 24O.
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Figure C.2: The effective energy-, mass-, momentum-like quantities as a function of momentum for
the 1p3/2 neutron state of 24O.
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[47] D. Sohler, M. Stanoiu, Z. Dombrádi, F. Azaiez, B. Brown, M. Saint-Laurent, O. Sorlin, Y.-E.
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