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ABSTRACT 

COMPARISON BETWEEN CHEMICAL AND TISSUE 

CULTURE METHODS TO MONITOR ENVIRONMENTAL 

ESTROGENS 

 

R. Baguma 

M.Sc. Thesis, Department of Medical Biosciences, University of the Western Cape. 

 

Endocrine disrupting compounds (EDCs) are exogenous compounds/chemicals in the 

environment that interfere with the synthesis, secretion, distribution and function or elimination 

of natural hormones in the body. Environmental estrogens are a subclass of EDCs that may 

mimic or inhibit the effect of endogenous estrogen and can therefore influence developmental 

and reproductive health in humans and animals. EDCs have been reported to adversely affect the 

reproductive, immune, endocrine and nervous systems of wildlife and humans. The effects of 

EDCs include gonadal abnormalities, altered male/female sex ratios, reduced fertility and 

cancers of the male and female reproductive tract to mention a few. These effects are difficult to 

detect. Although it is essential to screen for EDCs in aqueous environmental samples, most 

countries have failed to implement this as part of their routine water quality monitoring programs 

due to various constraints such as the high cost of assays and the lack of infrastructure and skills 

required to do the assays. Therefore, there is a clear need for more user-friendly, more 
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economically viable and time saving assays that can be used for routine monitoring of 

environmental EDCs. 

The aim of this study was to investigate the comparison between chemical and tissue culture 

methods to monitor environmental estrogens. 28 environmental water samples were collected 

from various sites around South Africa and analyzed for EDCs using a battery of rapid in vitro 

tests. Samples collected for the current study were selected based on various human impacts and 

also to give approximately 50% high and 50% low estrogen values. The 28 environmental water 

samples were separated into two groups based on the estradiol ELISA. The estradiol ELISA was 

chosen because estradiol is the principal estrogen found in all mammalian species during their 

reproductive years. For this separation, an estradiol level of 5 pg/ml was used as cut-off. Of the 

28 samples investigated, 15 had estradiol levels higher than 5 pg/ml and were designated as high 

estradiol. The remaining 13 samples contained estradiol at 5 pg/ml or less and they were 

designated as low estradiol. 

The first objective of this study was to compare different rapid ELISAs for EDC monitoring to 

determine if the data obtained with these assays are similar/identical. The data obtained from the 

estrogenic ELISAs was related/similar and showed good correlation with each other. This is 

because the different estrogens are very similar and also due to the fact that the same sub-group 

in the population (the reproductively active females) is secreting these hormones. Therefore, an 

estradiol rapid assay was proposed as a first screening system for estrogens in samples. Even 

though there was a positive correlation between the estradiol rapid assay and testosterone rapid 

assay, separation of samples based on estradiol levels wasn’t a good predictor of testosterone 

levels in the samples. A testosterone rapid assay was therefore recommended as necessary to 

screen for androgens in samples. The positive correlation between the estradiol rapid assay and 
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progesterone rapid assay was expected because both estradiol and progesterone are secreted and 

excreted by the same population sub-group (reproductively active females). This study also 

demonstrated a good predictability of separating samples containing progesterone using the 

estradiol ELISA. Progesterone is secreted by pregnant women, a sub-group of the reproductively 

active females. It is advised that a progesterone rapid assay be included to screen samples for 

progestogens. 

The second objective of this study was to compare estradiol rapid ELISAs with a bioassay for 

anti-androgenicity using mouse testicular cell cultures. The mouse testicular cell testosterone 

synthesis bioassay to monitor anti-androgenicity of the samples showed no correlation between 

the ELISA data for estrogens. This study shows that anti-androgenic effects need to be 

monitored independently because the data for estrogenic compounds cannot be used as a 

predictor for anti-androgenic effects. This demonstrated the need for the inclusion of a mouse 

testicular cell testosterone synthesis bioassay to screen for androgenicity and anti-androgenicity 

of water samples. 

In summary, due to the different mechanisms of action of EDCs, this study recommended a 

battery of assays to monitor for EDCs. The battery of assays suggested is: 

 Estradiol ELISA as a rapid assay to screen for estrogens. 

 Testosterone ELISA as a rapid assay to screen for androgens. 

 Progesterone ELISA as a rapid assay to screen for progestogens. 

 Mouse testicular cell testosterone synthesis bioassay to screen for androgenicity and anti-

androgenicity. 

May 2012 
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CHAPTER 1 

Literature review 

 

An introduction to Endocrine Disrupting Compounds (EDCs) 

1.1 Endocrine Disrupting Compounds (EDCs) 

The U.S Environmental Protection Agency (EPA) defines EDCs as xenobiotics (agents foreign 

to an organism) that interfere with the synthesis, secretion, transport, binding, action or 

elimination of natural hormones in the body that are responsible for homeostasis, reproduction, 

development and/or behaviour (Crisp et al., 1998). 

Studies have linked EDCs to adverse biological effects in animals, giving rise to concerns that 

low-level exposure might cause similar effects in humans (Colborn et al., 1993). EDCs range in 

class from hormones, plant constituents, pesticides, compounds used in the plastics industry and 

in consumer products to industrial by-products and pollutants (WHO, 2002). Some EDCs are 

widely dispersed in the environment. Some are persistent organic pollutants (POPs), and can be 

transported long distances across national boundaries. POPs have been found in virtually all 

regions of the world. Others are rapidly degraded in the environment or human body or may be 

present for only short periods of time (Damstra et al., 2002). Health effects attributed to EDCs 

include a range of reproductive problems (male and female reproductive tract abnormalities, 

skewed male/female sex ratios, menstrual problems (Harrison et al., 1995)), decreased 

reproductive ability in men (Sharpe and Skakkebaek, 1993), premature puberty in females 
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(Herman-Giddens et al., 1997), increased rates of foetal death (Bell et al., 2001), changes in 

hormone levels, brain and behaviour problems/intellectual impairment (Jacobson and Jacobson, 

1996), impaired immune functions and various cancers (McKinlay et al., 2008; Barry, 2009). 

 

1.2 Properties of EDCs 

The effects of EDCs on physiological systems are dependent on their individual properties and 

these differ with chemical type (IEH, 1999). However, certain properties are common to many of 

the compounds. In general, the compounds are: 

 Persistent. i.e. they are slow to degrade in the environment and are therefore present in 

the environment for long enough to enter the food chain. Examples of highly persistent 

compounds are the insecticide dichlorodiphenyltrichloroethane (DDT), which hasn‟t been 

manufactured or used in the developed world for more than 25 years but which remains 

in the environment in biologically significant concentrations (Pesticide News, 1998). 

 Hydrophobic and lipophilic. Compounds with hydrophobic properties tend to come out of 

aqueous solution and become concentrated in organic matter, soil or silt. Lipophilic 

compounds associate with fat depots and are readily accumulated in the fat depots of 

animals (Nimrod and Benson, 1996). 

 Biologically active at very low concentrations. It should be noted that these compounds 

act on physiological systems at concentrations which are well below toxic concentrations 

and are generally less than 10
-9 

M (Rhind, 2009). 

 Weakly associated with steroid binding proteins in the blood of animals. Thus, although 

they may be present in animals in relatively low concentrations, most or all of the 
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compounds present may be biologically available, unlike endogenous steroids which are 

mostly attached to binding proteins and are not biologically available (Colborn et al., 

1993). 

 Able to act additively, antagonistically or synergistically and effects may be species-

dependent. Furthermore, responses observed in vitro are not always apparent when 

studied in vivo. These properties make it difficult to predict the likely effect of EDCs on 

animal physiology (Rhind, 2005). 

 

1.3 Mechanisms of action of EDCs 

The endocrine system is a complex system involving several central nervous system (CNS)-

pituitary-target organ feedback pathways which are involved in regulating a multitude of 

functions and maintaining homeostasis (i.e. self-regulated feedback mechanisms within the 

body) (US EPA, 1997b). Given this, there are several target organ sites within the endocrine 

system whereby environmental chemicals could potentially interact and disrupt normal function 

(US EPA, 1997b). Due to the complexity of the cellular processes involved in hormone function, 

any of these systems may be involved in a chemical‟s influence on the endocrine system (Henley 

and Korach, 2006). Understanding of the specific mechanism of action of EDCs is also made 

difficult because of factors such as the type, duration and timing of exposure, cell/tissue type on 

which the EDC acts and the nutritional status, age and gender of the individual (Williams, 2007). 

Consequently, the mechanisms of action of EDCs can be divided into two main categories 

namely receptor mediated and other mechanisms. 
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 Receptor mediated mechanisms are based on hormones eliciting a response from their 

target tissue through direct and specific binding to its intracellular or membrane bound 

receptors (Tremblay et al., 1998; Soverchia et al., 2005). 

 Other mechanisms include those which interfere with the synthesis (Almstrup et al., 

2002), release (Ando et al., 2004), distribution and metabolism of hormones, secondary 

messenger systems (Gillesby and Zacharewski, 1998), translational and post-translational 

mechanisms (LaChapelle et al., 2007) and other systems under hormonal control 

including cytochrome P450 expression (Buhler et al., 2000; Montserrat et al., 2004). 

Interaction with hormone receptors can result in either activation or inhibition of gene 

transcription by environmental hormones in the following ways: 

 Binding of a compound to a steroidal receptor converts the receptor to an active state, 

which promotes gene expression (receptor agonist) (Brzozowski et al., 1997). 

 Binding of a compound to a steroidal receptor causes the receptor to be unavailable to 

participate in gene expression (receptor antagonist) (Brzozowski et al., 1997; Tremblay et 

al., 1998). 

 Receptor phosphorylation, where activation of receptors occurs through processes not 

involving receptor binding (Daniel et al., 2007). 

 

1.4 Classes and sources of EDCs 

EDCs are found in low doses in so many products and all people are exposed to compounds with 

endocrine disrupting effects in their daily life (AwwaRF, 2008). These compounds can be 

divided into three major classes: 
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 Natural steroids: These are required for a normally functioning endocrine system. 

Endogenous steroidal hormones include the estrogens such as 17β-estradiol (E2), estriol 

(E3) and estrone (E1), androgens like testosterone and phytoestrogens such as genestein, 

lignans and isoflavonoids. Phytoestrogens naturally occur in foods such as soy beans and 

flax seeds and they produce effects similar to those of the female sex hormone estrogen, 

although a person would probably need to consume copious amounts of them to affect the 

endocrine system (Safe and Gaido, 1998). 

 Synthetic steroids:  These are compounds that have been designed to target the endocrine 

system. They include 17α-ethinylestradiol (EE2), mestranol (MES), diethylstilbestrol 

(DES) and anti-estrogens like tamoxifen (Desbrow et al., 1998). 

 Non-steroidal synthetic chemicals: This group comprises a very wide range of 

compounds that have been designed for use in a variety of industries. They include 

alkylphenol ethoxylates, organohalogens, phenols, phthalates, pesticides, heavy metals 

and organotins. Table 1 below gives a few examples of key non-steroidal synthetic 

chemicals. 
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Classification Compound Reference 

Alkylphenols Nonylphenols (NPs) 

Nonylphenol ethoxylates (NPEs) 

Octylphenols (OPs) 

Pojana et al., 2004 

Phenols Bisphenol A (BPA) Pojana et al., 2004 

Organohalogens Dioxins, Polychlorinated 

biphenyls (PCBs) 

DeRosa et al., 1998 

Phthalates Di-n-pentyl phthalate 

Butyl benzyl phthalate (BBP) 

Harris et al., 1997 

Pesticides DDT, Atrazine, Dicofol, 

Dieldrin, Endosulfan, 

Vinclozolin, Triclosan 

DeRosa et al., 1998 

Heavy Metals Arsenic, Lead, Mercury, 

Cadmium 

DeRosa et al., 1998 

Organotins Tributyltin Nishikawa, 2006 

 

Table 1. A few examples of key non-steroidal synthetic chemicals. 
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1.5 Effects of EDCs on ecosystems 

The earliest and the best defined ecological effects of EDCs are on aquatic fauna. In 1980, Lake 

Apopka was the site of an insecticide spill containing DDT and during the last 40 years, it has 

received extensive agricultural pesticide (dicofol) and nutrient runoff. The impact on alligators 

and turtles was severe. Abnormal development of the reproductive system (morphological 

abnormalities of the testis and ovary), reduced egg hatching and low juvenile survival rates were 

recorded. Examination of the endocrine systems of hatchlings and juvenile alligators revealed 

alterations in testosterone, plasma 17β-estradiol, dihydrotestosterone and thyroxine 

concentrations (Guillette et al., 2000; US EPA, 1997b). Adverse effects on fish populations such 

as masculinization (development of male secondary sex characteristics) of female fish, are 

frequently recorded downstream of contaminant sources (Howell et al., 1980). It was also 

observed that the progeny of viviparous fish are biased towards male offspring (Larsson and 

Forlin, 2002). Perhaps the most powerful directly adverse effect on aquatic wildlife was that 

exerted by tributyltin, formerly widely used as an anti-fouling agent on ships‟ hulls (Matthiessen 

and Gibbs, 1998). This chemical tributyltin prevents the growth of marine organisms on 

submerged structures such as ships‟ hulls, buoys and oil rig supports. Unfortunately, 

contamination of ports by tributyltin resulted in the local extinction of some species of marine 

organisms and masculinization of others, a condition termed imposex. For example, female 

gastropod mollusks in marine environments heavily used by shipping developed a penis-like 

structure with an associated vas deferens resulting in infertility (Matthiessen, 2003). The 

opposite effect (feminization of male fish and mollusks due to estrogenic contamination) has 

been reported in fresh waters downstream of sewage treatment plants (Jobling and Sumpter, 

1993). Feminization of reproductive ducts in male fish in which the testis forms an ovary-like 
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cavity, ovotestis (presence of oocytes in the testis) and the synthesis of the female egg protein 

vitellin (or its precursor vitellogenin) in male fish exposed to wastewater from sewage treatment 

plants have been recorded (Rodgers-Gray et al., 2001). 

 

1.6 Effects of EDCs on humans 

1.6.1 Pharmaceuticals 

The case of the drug DES, a non-steroidal estrogen is one example of the consequences of 

exposing developing animals including humans, to hormonally active substances. In the past, 

large doses of DES were administered to women for pharmacological reasons such as prevention 

of miscarriage, the inhibition of lactation or stunting of growth in tall girls. This was later 

associated with several adverse effects (Swan, 2000; Milhan, 1992). It was discovered that DES 

exposure resulted in reproductive abnormalities in both male and female infants, and also vaginal 

cancer in females in later life (Herbst, 1981; Sharpe and Skakkebaek, 1993). 

Experiments with animals have identified critical developmental time points in utero and days 

after birth when exposure to chemicals that interfere with or mimic hormones have adverse 

effects that persist into adulthood (Bigsby et al., 1999; Eriksson et al., 1991; Recabarren et al., 

2008; Szabo et al., 2009). 
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1.6.2 Reproductive Hormones 

The pharmacological effectiveness of estrogens and progestins has been studied for almost one 

hundred years, and these chemicals have been employed to both assist and block fertility (Glick, 

1967). Estrogens and progestogens are naturally secreted in women as integral components of 

the menstrual cycle. Secreted residues of these are hydroxylated and conjugated to glucuronides 

before they are excreted in urine. These conjugated steroids are converted to active steroids by 

microbial action during sewage treatment (Panter et al., 1999). The major recent 

pharmacological addition to the natural steroid hormone excretion in women has been the oral 

contraceptives, particularly the synthetic estrogen ethinylestradiol (EE2), which is similarly 

excreted in the urine (Falconer, 2006). 

 

1.7 Biomarkers for EDCs 

1.7.1 Vitellogenin (VTG) as a biomarker of exposure to EDCs 

One of the most documented effects of xenoestrogens is the induction of vitellogenin (VTG) in 

oviparous (egg laying) animals. VTG is the precursor of the egg yolk protein, vitellin (VN), 

which provides energy reserves for the embryo. Vitellogenin is a large, glycolipophosphoprotein 

having calcium and zinc ligands (Wallace, 1985; Montorzi et al., 1994; Denslow et al., 1999). 

VTG is considered to have similar characteristics in vertebrates, such as fish and frogs, 

and invertebrates, particularly molluscs (Blaise et al., 1999). In addition to being a nutrient 

reserve and the major source of amino acids and lipids for the developing embryo, VTG also 

transports the bound cations (Ca
2+

, Mg
2+

, Zn
2+

 and Fe
3+

) to the oocyte for use during future 
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embryogenesis. It also binds steroid and thyroid hormones (Cyr and Eales, 1996; Scott et al., 

1995; Tagawa et al., 2000) and may transport these into the egg to control embryo development. 

Changes in environmental stimuli such as photoperiod, temperature or food availability activate 

the hypothalamus-pituitary-gonad (HPG) axis. The activated hypothalamus secretes 

gonadotropin releasing hormone (GnRH), which in turn stimulates the pituitary to synthesise and 

release two types of gonadotropin hormones; GtH I  (similar to follicle stimulating hormone) and 

GtH II (similar to luteinizing hormone) (Kouril, 2009). In females, GtH I stimulates the follicular 

cells of the ovary to produce testosterone, which is then converted to 17β-estradiol (E2) by the 

enzyme aromatase (Redding and Patino, 1993). A rise in circulating endogenous estrogen (E2) 

stimulates VTG production in the liver of sexually mature female oviparous vertebrates. Within 

liver cells, E2 binds to the nuclear estrogen receptor (ER), which dimerises and binds to the 

estrogen responsive element (ERE) of the promoter region of E2-inducible genes, including 

VTG and the ER itself. The binding of the ER to the ERE thus results in increased mRNA 

transcription and consequent production of E2-inducible proteins (Ding, 2005). 

In female oviparous animals, hepatically produced VTG is released into the bloodstream and 

transported to the ovary. It is then taken up through receptor-mediated endocytosis and stored in 

developing oocytes (Denslow et al., 1999). Here, it is sequestered by the developing oocytes and 

processed to form egg yolk. The incorporation of large amounts of VTG into the oocytes results 

in the characteristic increase in the size of the ovaries during sexual maturation. The VTG gene 

is also present in the livers of males but it is normally silent. Upon exposure to estrogen or to an 

estrogen mimic, the gene is turned on and VTG is synthesized and secreted (Jackson et al., 1977; 

Flouriot et al., 1995; Palmer and Palmer, 1995). It is then exported into the blood where, in 

males, it remains until it is degraded by plasma proteases or cleared out by the kidneys. VTG 
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proteins are degraded slowly and thus their levels can accumulate and remain high in the plasma 

for some time after exposure (Denslow et al., 1999). The presence of measurable amounts of 

VTG in the plasma of male or immature female fish, where it is not normally found, indicates 

exposure to chemicals that mimic the receptor binding properties of the female reproductive 

hormone 17β-estradiol (E2). This is considered a useful biomarker of exposure to estrogenic 

compounds in aquatic environments (Heppel et al., 1995; Hansen et al., 1998; Blaise et al., 

1999). Low doses of estrogen can result in large increases in plasma VTG, making the 

determination of VTG in male fish an extremely sensitive marker for estrogen exposure 

(Sumpter and Jobling, 1995). 

The degree to which an estrogenic compound is able to induce VTG is governed by its ability to 

bind to the hepatic estrogen receptor (ER). Many compounds for example alkylphenols, 

halogenated organic compounds, certain pesticides, some phthalate plasticizers, paraben 

preservatives and phytosterols are weakly estrogenic, whereas a few pharmaceutical compounds 

such as EE2 and DES may be more potent that E2 itself. Some organochlorine compounds 

including DDT, methoxychlor and certain polychlorinated biphenyl (PCB) congeners are 

themselves very weak ER agonists, but their hydrolysed metabolites are much stronger ER 

agonists (Bulger et al., 1978; Korach et al., 1988; Soontornchat et al., 1994). 

ER agonists have the same mechanism of action as E2, and thus exposure to mixtures of 

exogenous estrogen mimics results in increased VTG response. The effects of exposure to 

multiple estrogenic compounds are sometimes additive, based upon the relative concentrations 

and potencies of the individual components of the mixture (Payne et al., 2000; Thorpe et al., 

2003; Brian et al., 2005). Consequently, even when the individual compounds are each below the 

threshold concentration that causes VTG induction, the overall potency of the mixture may be 
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sufficient to induce VTG (Silva et al., 2002). Some compounds block the binding of E2 to the 

ER and are thus anti-estrogenic. Others for example some planar organic compounds and certain 

metals have indirect anti-estrogenic effects. Many polycyclic aromatic hydrocarbons (PAHs) and 

other planar organic compounds that interact with the aryl hydrocarbon receptor (AhR) to cause 

induction of the cytochrome P450 1A (CYP1A) detoxification enzyme system, are also believed 

to be indirectly anti-estrogenic (Arukwe and Goksøyr, 2003). Female exposure to these 

compounds can lead to increased E2 metabolism and reduced plasma E2 titres, thus inhibiting 

VTG production, impairing oocyte development and reducing reproductive output (reviewed in 

Nicolas, 1999). The inhibition of estrogenic effects by AhR agonists may also be due to a 

reduction in ER expression (Bermanian et al., 2004). 

 

1.7.2 Steroidogenesis Using Minced Testes Assay 

Normal functioning of the reproductive system is essential for sexual development, behaviour 

and spermatogenesis.  Under normal conditions, testosterone, the main sex hormone in males, is 

produced in the testes by the leydig cells through steroidogenesis upon stimulation by luteinizing 

hormone (LH) from the pituitary gland (Gail and Hedger, 1992; Kumar et al., 2008). The 

complete steroidogenic pathway from signal transduction to end-hormone production is present 

in the testes. Modulation of this biochemical pathway can result in an inhibition or stimulation of 

steroid hormone synthesis, resulting in a hormonal imbalance which can cause adverse effects on 

the reproductive system (US EPA, 2005). 

The minced testes assay can be used to identify substances that alter testosterone production due 

to direct effect on the enzymes or the endogenous components of the steroidogenic pathway 
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found in the testes. Anti-androgens and anti-estrogens act via a number of direct mechanisms in 

addition to those which directly involve the steroid hormone receptors.  One prominent 

mechanism of anti-hormonal activity is inhibition of hormone synthesis by inhibiting the activity 

of P450 enzymes in the steroid pathway.  Such activity could be detected in a fairly simple in 

vitro procedure with minced testicular tissue obtained from adult male rats. Leydig cell cultures 

could be used in place of the minced testes culture (US EPA, 1997a). 

The minced testes assay is able to identify substances that either increase or decrease testosterone 

production. Thus, it can identify inhibitors or stimulants of the steroidogenic pathway (US EPA, 

2005). 

 

1.7.3 Breeding (nuptial) gland morphology 

Adult males of many frog species exhibit patches of skin, nuptial pads, on the ventral side and 

digits of the forelegs. These nuptial patches may contain keratin hooks, which give the patch a 

darker appearance and simple saccular glands called breeding (nuptial) glands. Breeding 

(nuptial) glands are mostly recognized as a male secondary sex characteristic, restricted to the 

nuptial pads and digit pads in Xenopus laevis (african clawed frog) (Fujikura et al., 1988). 

The exact function of the secretions of these male breeding glands is still lacking, although 

several lines of evidence suggest that nuptial glands may be associated with sexual behaviour, 

specifically mating behaviour (Kurabuchi, 1993; Epstein and Blackburn, 1997; Emerson, et al., 

1999). The function of these breeding (nuptial) glands is also not well studied. It is however 

speculated, that they are used by males to clasp/grasp females during amplexus/mating 

https://etd.uwc.ac.za/



14 

 

(Duellman and Trueb, 1986; Thomas et al., 1993). Like the breeding glands, speculations are 

that these hooks assist with clasping during mating (Duellman and Trueb, 1986). 

Several androgen replacement studies have shown that nuptial glands in amphibians are triggered 

by androgen hormones (Rastogi and Chieffi, 1971; Wetzel and Kelley, 1983; Thomas et al., 

1993; Lynch and Blackburn, 1995; Epstein and Blackburn, 1997; Emerson et al., 1999). The 

sensitivity to and dependence on androgens makes nuptial glands potential biomarkers for 

environmental anti-androgens. 

Several studies have indicated that gland epithelium heights and the gland cross-sectional area 

are sensitive biomarkers for androgenic receptor binding activity in frogs, including X. laevis 

(Thomas et al., 1993; Lynch and Blackburn, 1995; Kelley and Pfaff, 1976; Epstein and 

Blackburn, 1997; Emerson et al., 1999). It was reported that when female frogs were treated with 

androgens, breeding glands appeared (Kelley and Pfaff, 1976; Emerson, et al., 1999). Several 

studies have indicated that estrogen inhibits breeding gland expression in both adult males and 

females (Emerson et al., 1999). 

Van Wyk et al., (2003) investigated the potential of nuptial gland activity to be employed as a 

biomarker system for screening for anti-androgenic activity by certain EDCs. In their study, 

nuptial glands were not observed in female frogs. Their results indicated that flutamide, a 

pharmaceutic anti-androgen significantly affected the androgen-dependent breeding (nuptial) 

glands and plasma testosterone concentrations in male X. laevis. This study confirmed the 

potential of nuptial gland activity as a biomarker to screen chemicals and environmental samples 

for estrogenic and anti-androgenic activity using X. laevis males. 
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1.7.4 Dimorphism indicators: anal fin (gonopodium) in mosquitofish 

The eastern mosquitofish (Gambusia holbrooki) is a sexually dimorphic species that is 

considered a sentinel species for the presence of EDCs (Batty and Lim, 1999; Angus et al., 2002; 

Doyle et al., 2003). Male mosquitofish are much smaller than female mosquitofish and possess a 

highly elongated and modified anal fin (the gonopodium) used as an intromittent organ during 

copulation. The development of the gonopodium occurs under androgenic stimulation from the 

testis in the final stages of sexual maturation (Turner, 1941). Gonopodium development can be 

inhibited by castration (Turner, 1947) and to a lesser extent by exposure to estrogenic chemicals 

(Doyle and Lim, 2002).  However, the anal fins of female mosquitofish are also capable of 

responding to androgens and can be induced to develop into gonopodium-like structures by the 

administration of hormones (Turner, 1941; Turner, 1942a; Turner, 1942b). Laboratory exposure 

of juvenile female mosquitofish to androgenic stimulation results in gonopodium-like elongation 

of the anal fin typical of juvenile male mosquitofish (Angus et al., 2001). Several studies done 

downstream of pulp and paper mills, (Bortone and Davis, 1994; Bortone and Cody, 1999 and 

Parks et al., 2001) showed that there was an increase in the number of masculinized females, 

indicating that chemicals with androgenic activity are present in the mill effluents. The presence 

of modified anal fins in female mosquitofish is visible evidence of exposure to an androgenic 

substance. 

Gonopodium elongation in mosquitofish has been used as an endpoint for endocrine impacts in 

mosquitofish exposed to sewage water in Australia (Batty and Lim, 1999).  In that study, wild 

male G. holbrooki sampled in an industrial area downstream from a sewage and wastewater 

treatment plant in New South Wales had significantly shorter gonopodia than mosquitofish 

sampled at a reference site, suggesting the presence of estrogenic chemicals (Batty and Lim, 
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1999).  This hormone-dependent morphological trait can thus be used as a biomarker for EDCs 

in fresh water systems. 

 

1.7.5 Cytochrome P450 (CYP) 

Cytochrome P450 is a diverse group of enzymes belonging to a super family of proteins. The 

cytochrome P450 heme-containing proteins are so named because of their cellular (cyto) location 

and spectrophotometric characteristics (chrome). When the reduced heme iron forms 

an adduct with carbon monoxide (CO), P450 enzymes absorb light at wavelengths near 450 nm, 

identifiable as a characteristic Soret peak (Mondal et al., 2011). The function of this large and 

diverse group of enzymes is to oxidize, hydrolyze or reduce compounds through the insertion of 

an atom of atmospheric oxygen into an organic substrate while the other oxygen atom is reduced 

to water during the reaction cycle (Nebert et al., 1993; Nelson et al., 1996). 

CYP enzymes have been identified in all kingdoms of life namely animals, plants, fungi, bacteria 

and archaea (Sigel et al., 2007). CYP enzymes are present in most tissues of the body, embedded 

within the smooth endoplasmic reticulum, where they synthesize cholesterol, metabolize/break 

down endogenous compounds such as steroidal hormones (estrogen and testosterone), fatty 

acids, cytokines, prostaglandins, vitamin D as well as exogenous compounds or potentially toxic 

substances like drugs (Oberdöster et al., 1998). CYPs are not only involved in the metabolism of 

the products of endogenous metabolism, for example bilirubin in the liver, but also drug 

metabolism and bioactivation, thus accounting for 75% of the total metabolism. By metabolizing 

different compounds, CYPs generally increase the water solubility of substrates, thereby 
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enhancing their elimination (Andersson and Förlin, 1992). In this way, cytochromes P450 such 

as CYP1A tend to detoxify xenobiotic chemicals. 

CYP 1A is highly induced (increases in concentration) in the livers of aquatic organisms by very 

low levels of toxic compounds. This makes it a very good biomarker for exposure to 

xenoestrogens like PAHs, PCBs, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), 2, 3, 7, 8-

tetrachlorodibenzofuran (TCDF) and DDT (Stegeman, 1993; Rattner et al., 1993; Bucheli and 

Fent, 1995). In the liver, the prominent expression and induction of CYP1A is consistent with the 

role of this organ in xenobiotic metabolism and excretion (Van Veld et al., 1997; Anulacion et 

al., 1998; Goksøyr and Husøy, 1998; Reinecke and Segner, 1998). Increased CYP1A expression 

may in a qualitative way, point to potential endocrine disruption activity that warrants further 

investigation. 

CYP1A induction is mediated through the binding of xenobiotics to a cytosolic aryl hydrocarbon 

receptor (AhR). AhR ligands generally have isoteric configurations and are similar in structure to 

TCDD, a model CYP1A inducer. Receptor binding is followed by a series of molecular events 

leading to the expression of several genes (including CYP1A) known as the “Ah-gene battery” 

(Nebert et al., 1993). The toxic effects of phenylhydrazine hydrochloride (PHH) and structurally 

similar compounds are thought to be mediated through the AhR, with induced proteins causing 

alterations in cellular homeostasis (DeVito and Birnbaum, 1994). In mammals, these effects 

include wasting syndrome, tumor promotion and thymic atrophy (Poland and Knutson, 1982). In 

fish, early life stages appear to be particularly sensitive to AhR ligands (Mehrle et al., 1988; 

Walker and Peterson, 1991), and recent evidence indicates the involvement of CYP1A enzymes 

specifically in this toxic response (Cantrell et al., 1996). The use of CYP1A induction as an 

assessment technique has increased in recent years, due mainly to the optimization of protocols 
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for the rapid and relatively inexpensive measurement of its associated enzymatic catalytic 

activity, the ethoxyresorufin O-deethylase (EROD) activity (Kennedy and Jones, 1994; Burke 

and Mayer, 1974; Pohl and Fouts, 1980). 

EROD induction as a biomarker in teleost species has several advantages. By indicating the 

induction of CYP1A, EROD activity provides a fingerprint of the presence of AhR-active 

compounds. Induction of EROD is an extremely sensitive indicator of environmental alterations 

and is usually one of the first detectable, quantifiable responses to exposure (Stegeman, 1992). 

EROD activity describes the rate of the CYP1A mediated deethylation of the substrate 7-

ethoxyresorufin (7-ER) to form the product resorufin. The catalytic activity towards this 

substrate is an indication of the amount of enzyme present and is measured as the concentration 

of resorufin produced per mg protein per minute (Mol/mg/min) (Kennedy and Jones, 1994). 

Because metabolism is generally highest in hepatic tissue, the assay is typically conducted using 

fish liver (Whyte et al., 2000). 

 

1.7.6 Metallothioneins (MTs) 

Metallothioneins (MTs) are cysteine-rich, low molecular weight (500 to 14,000 Da) metal-

binding proteins. Their function is not clear. MTs have the capacity to bind both physiological 

metals such as zinc, copper and selenium as well as xenobiotic toxic heavy metals such as 

cadmium, mercury, silver and arsenic (Sigel et al., 2009). Experimental data suggests that MTs 

may be involved in the regulation of homeostasis/cellular metabolism of these essential 

physiological metals, detoxification of heavy metals, cellular adaptation to stress and protection 

of cells against reactive oxygen species (ROS) and alkylating agents (Nordberg, 1998; Smirnov 
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et al., 2005). MTs likely participate in the uptake, transport and regulation of zinc in biological 

systems. By binding and releasing zinc, MTs may regulate zinc levels within the body. MTs are 

present in almost all forms of life ranging from prokaryotes, protozoa, invertebrates and 

vertebrates. Four main isoforms are expressed in humans and large quantities of MTs are 

synthesised primarily in the liver and kidneys (Thirumoorthy et al., 2011). MT expression also 

occurs in the pancreas and intestine. Their production is dependent on availability of the dietary 

minerals zinc, copper and selenium and the amino acids histidine and cysteine. 

Metallothionein gene expression can be induced by a large number of glucocorticoids, metal ion 

exposure (zinc, copper, cadmium, mercury), chatecholamines, ROS, lipopolysaccharides (LPS), 

physiological and physical stress (Penkowa, 2006; Klaassen et al., 1999). Elevated MT levels 

have frequently been associated with metal exposure and therefore MT induction is considered a 

response of an organism to physical or chemical stress. As such, it has been used as one of the 

biomarkers of exposure to heavy metal pollution (Amiard et al., 2006; Costa et al., 2007; 

Monserrat et al., 2007). 

According to Rainbow (1988), the induction of metallothioneins is a common defence strategy in 

all organisms to protect against heavy metal exposure (Kägi, 1991; Webb, 1979). The binding by 

MTs, of nonessential metals, such as cadmium and mercury, most likely represents a 

sequestration function that aims to suppress their toxicity (Roesijadi, 1992). 

MTs control oxidative stress by the cysteine residues capturing harmful oxidant radicals like the 

superoxide and hydroxyl radicals (Kumari et al., 1998). In this reaction, cysteine is oxidized to 

cystine, and the metal ions which were bound to cysteine are liberated to the media. 
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1.7.7 Heat Shock Proteins (HSPs) 

Living organisms respond at the cellular level to unfavourable conditions such as temperature-

shock and chemicals/toxins (ethanol, arsenic, trace metals and ultra violet light among others) by 

the rapid, vigorous and transient acceleration in the synthesis of a class of proteins known as heat 

shock proteins (HSPs) or stress proteins (Fincato et al., 1991). Other stressful situations include 

environmental pollution, pesticides, hormones, exercise, starvation, hypoxia, drugs, infection, 

inflammation or ischemia. First described in experiments in which sudden increases in 

temperature were used, hence their name, it is now well acknowledged that HSP synthesis can 

also be induced by other stress factors (Schlesinger, 1990; Nover, 1991; Sanders, 1993). The 

upregulation of heat shock proteins is sometimes described more generally as part of the stress 

response (Santoro, 2000). 

Heat shock proteins (HSPs) are families of proteins that, when expressed, play an important role 

in the protection and maintenance of many vital cellular functions. They are normally
 
localized 

in the cytoplasm and nucleus. In many of the model organisms studied, four major heat shock 

protein families were named based on the molecular mass
 
(kDa) of the proteins. These protein 

families are HSP90 (85-90 kDa), HSP70 (68-73 kDa), HSP 60 and low-molecular-mass
 
HSPs 

(16-24 kDa) (Forreiter and Nover, 1998).  HSPs are highly conserved and found in both 

eukaryotes (plants and vertebrates, including humans) and prokaryotes (archaebacteria to 

eubacteria and yeasts) (Kelley and Schlesinger, 1982; Lindquist, 1986; Sanders, 1990; Ang et al., 

1991). The low-molecular-mass HSPs have
 
diverse functions and it has been proposed that they 

function
 
as molecular chaperones, preventing irreversible protein aggregation

 
(Derham and 

Harding, 1999). Extracellular and membrane bound heat shock proteins, especially HSP70 are 

involved in binding antigens and presenting them to the immune system (Nishikawa et al., 
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2008). In humans, the major HSP group is the HSP70 family, which comprises constitutively
 

expressed and inducible proteins and is known to assist in the folding of nascent polypeptide
 

chains (Beckmann et al., 1990; Fincato et al., 1991). This is done through adenosine triphosphate 

(ATP) - and cofactor-regulated binding and release cycles. They typically recognize hydrophobic 

amino acid side chains exposed by non-native proteins and may functionally cooperate with 

ATP-independent chaperones, such as the small HSPs, which function as „holdases‟, buffering 

aggregation (Hartl et al., 2011). Many HSPs also act as molecular chaperones by facilitating the 

folding of newly synthesized proteins to acquire their proper 3-dimensional conformation, 

organizing their transport out of the Golgi apparatus and mediating the repair 

(refolding/renaturing)
 
or degradation of altered or denatured proteins in the proteasomes (Welch, 

1992). This is a “housekeeping” role (Lindquist and Craig, 1988; Schlesinger, 1990; Becker and 

Craig, 1994; Morimoto et al., 1994; Hartl, 1996; Fink, 1999). HSP90 is active
 
in supporting 

various components of the cytoskeleton, enzymes
 
and steroid hormone receptors. 

Because HSPs are activated very early in the cascade of cellular events that follow toxic 

exposure and at concentrations below the lethal dose, they are strong candidates for biomarkers 

of environmental pollution. Still, little is known about the induction of HSPs under different 

environmental conditions. Thus, analysis of the over expression and accumulation of these heat 

shock proteins may be useful in determining whether a particular environmental condition is 

perceived by the organism to be stressful or not. The use of stress protein response as a 

biomarker of environmental stress in aquatic organisms such as fish is also well documented 

(Köhler et al., 2001; Iwama et al., 1998; Sanders, 1993). 
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1.8 In vitro assays for screening EDCs 

Analytical tools based on techniques such as gas or liquid chromatography (GC or LC) coupled 

to sensitive detection systems such as mass spectrometry (MS) or tandem mass spectrometry 

(MS/MS) have been applied to detect EDCs (Petrovic et al., 2005; Mottaleb et al., 2009). 

Unfortunately, most of these techniques are not only time consuming, but are also expensive due 

to the extensive cleanup and sample treatment methods. Treatment of samples very often 

requires derivatization procedures to aid detection (Bowden et al., 2009). Alternatively, 

immunochemical techniques offer a large number of advantages. The most relevant advantages 

are the selectivity and sensitivity shown by the specific antibodies for the target analyte, the use 

of small sample volumes, the low cost and the simplicity of the methodologies (Estévez-Alberola 

and Marco, 2004). Moreover, they are easily adapted to automated systems and to development 

of high throughput screening (HTS) methods. 

Several in vitro bioassays (Zacharewski, 1997) are being used as rapid primary screens to detect 

xenobiotic estrogenic activity (Odum et al., 1998) in order to determine whether such chemicals 

are hazardous to human health. The in vitro bioassays available to assess estrogenic or 

androgenic activity of single compounds or complex mixtures range from simple competitive 

receptor binding assays, which rely entirely on the substance‟s ability to bind to the estrogen 

receptor (Jobling et al., 1995; Shelby et al., 1996), to more complex systems where the substance 

binds to and activates the receptor. Assay systems include direct immunoassay detection of 

single active compounds, reporter gene assays and cell proliferation assays such as the E-screen 

assay which involves the proliferation of the human breast cancer cell line (MCF-7) (Soto et al., 

1995; Soto et al., 1994), vitellogenin gene expression in hepatocyte cultures (Jobling and 
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Sumpter, 1993) and yeast-based assays expressing either rainbow trout (Petit et al., 1997) or 

human estrogen receptors (Routledge and Sumpter, 1996). 

 

1.8.1 Immunoassays for specific EDCs 

Immunoassay techniques, particularly colorimetric enzyme-linked immunosorbent assays 

(ELISAs), are currently very popular for the determination of trace amounts of environmental 

contaminants such as industrial pollutants like PCBs (Johnson and Van Emon, 1996), pesticides 

(Lee et al., 1995; McAdam et al., 1992; Wittmann et al., 1996), herbicides (Wong and Ahmed, 

1992), petroleum (Friedman and Allen, 1994) and heavy metals (Chakrabarti et al., 1994). This 

is because of their robustness, high sensitivity, ease of use, smaller required sample volume and 

relative cost. 

Compared to traditional analytical methods for environmental testing such as gas 

chromatography - mass spectrometry (GC-MS) and liquid chromatography - mass spectrometry 

(LC-MS), the ELISA technique is more cost effective and rapid, thus reducing the analysis time. 

The analysis time for an ELISA is typically one day and requires minimal cleanup, as compared 

to GC-MS, which is typically 2 to 3 weeks and requires extensive cleanup. ELISA kits are 

available commercially and are designed to be user friendly with easy to follow step-by-step 

instructions (Reddy et al., 2005; Huang and Sedlak, 2001). 

ELISAs are very specific and only measure the compound they are designed to detect. They 

employ antibodies as analytical reagents. The ELISA is based on the interaction of antigens and 

antibodies. Polyclonal or monoclonal antibodies (that have been raised against a particular 

analyte of interest) are used to detect the target analyte in a sample by specific antigen/antibody 
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interactions. The principle of immunoassay analytical detection is competition between an 

enzyme-labelled conjugate of the analyte and the particular analyte in the sample to bind with a 

limited number of antibody binding sites that coat the inside of a well (Plaza et al., 2000). A 

colour change denotes reaction between the enzyme-labelled conjugate and a substrate and this 

colour change is indicative of the concentration of the analyte concentration in the sample. The 

colour change can then be recorded using a microtiter plate spectrophotometer. The extent of 

colour development is inversely proportional to the amount/concentration of chemical in the 

sample or standard. The higher the concentration of a specific steroid or other EDC chemical in 

the sample, the less colour reaction produced. 

 

1.8.2 E-Screen assay 

Both natural and synthetic environmental estrogens (ligands) are known to bind and activate the 

nuclear estrogen receptor (ER). Three receptor sub-types (ERα, ERβ1 and ERβ2), known to 

mediate the estrogen response are expressed in several body tissues (Esterhuyse, 2008; Swart and 

Pool, 2009; Fu et al., 2008). The ligand binds to the nuclear ER, forming a complex, which also 

binds to a specific estrogen response element (ERE) sequence on DNA. This initiates mRNA 

transcription of a downstream gene and consequent production of specific E2-inducible proteins. 

Estrogens are important regulators of growth and differentiation of normal cells such as the 

mammary gland. However, altered expression of genes involved in the cell cycle could lead to 

the mitogenic effects resulting in breast cancer (Moggs, 2005). MCF-7 is a human breast cancer 

cell line that was derived from a patient with metastatic breast adenocarcinoma at the Michigan 

Cancer Foundation (Soule et al., 1973).  The MCF-7 cell line predominantly expresses ERα (also 

https://etd.uwc.ac.za/



25 

 

some ERβ) (Bursztyka et al., 2008) and has been extensively used to screen for EDCs with 

estrogenic activity (E-Screen) (Soto et al., 1995; Soto et al., 2006). This assay measures the 

ability of a sample to initiate the proliferation of the MCF-7 cells upon exposure. Quantification 

of the MCF-7 cell proliferation can be done by counting the cells, or by measuring secondary 

endpoints related to MCF-7 cell proliferation (Swart and Pool, 2009; Rasmussen and Nielsen, 

2002). Two such secondary endpoints are the increase in cellular lactate dehydrogenase (LDH) 

and associated downregulation of ERα protein expression (Swart and Pool, 2009). 

 

1.8.3 The Recombinant Yeast Screen Assay (YES) 

The Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) outlined a 

tiered screening/testing strategy for EDCs. Included in the Tier I testing scheme are in vitro 

transactivation assays such as yeast-based bioassays for screening xenobiotics that interact with 

the estrogen, androgen and thyroid hormone/receptor systems (US EPA, 1998). The advantages 

of using yeast cells are the cheap media components, they grow fast, are easy to handle and 

robust towards toxic effects of test chemicals or solvents. Therefore, yeast-based bioassays are a 

fast and easy tool for screening EDCs before performing more expensive, laborious and time 

consuming in vivo tests (Charles et al., 2000). 

Yeast cells do not normally contain endogenous steroid receptors. Mammalian steroid receptors 

are introduced along with a steroid responsive reporter gene into yeast cells by recombinant 

technology (Metzger et al., 1988; Purvis et al., 1991; Gaido et al., 1998). The yeast cells contain 

expression plasmids carrying the reporter gene lacZ, which produces the enzyme β-

galactosidase. This enzyme is used to measure the receptors' activity (Routledge and Sumpter, 
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1996; Beresford et al., 2000). When a ligand binds the estrogen receptor, the reporter gene lacZ 

is expressed, producing β-galactosidase, which is secreted into the medium where it metabolises 

a yellow, chromogenic substrate, chlorophenol red-β-D-galactopyranoside (CPRG) into a red 

product that can be measured by absorbance at 540 nm. As a result, genetically modified yeast 

are useful tools for studying mammalian steroid receptor function in isolation of confounding 

factors found in mammalian cells. When a steroid responsive reporter gene is introduced into the 

yeast along with the steroid receptor, chemical interaction with that receptor can be determined 

by measuring the reporter gene product. A yeast based steroid receptor assay differs from a 

competitive binding assay in that it not only determines the ability of a chemical to bind to a 

receptor, but also to cause that receptor to dimerize and bind to the appropriate steroid responsive 

regions of the DNA to induce reporter gene activity. Other advantages of using yeast to study 

steroid receptor function include the ease of manipulation, rapid attainment of stable 

transformants, ability to process a large number of samples quickly and relatively inexpensively 

(Gaido et al., 1998). A limitation of the yeast-based assay is that the permeability of the cells to 

some substances may generate false negative results and some strain specific effects have been 

reported. The yeast estrogenicity assay of Routledge and Sumpter (Routledge and Sumpter, 

1996) has certain advantages over other yeast-based assays in that the colour can be monitored 

over a period of time. 
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1.8.4 High-performance liquid chromatography (HPLC) and gas 

chromatography (GC) for EDC determination 

Chromatographic methods identify the chemical of interest and quantify the concentration. 

Sampling and handling are important to preserve the integrity of the sample and EDCs within. 

Complex matrices such as sewage or sediment often require extensive extraction and clean-up 

procedures before the sample is fit for determination (Petrovic et al., 2002; Voulvoulis and 

Scrimshaw, 2003). For steroid estrogens, their determination requires concentration of the 

aqueous sample to reach trace levels (ng/L). Large volumes of typically 1L and up to 20L are 

collected, depending on the sensitivity and the selectivity of the chemical technique (Belfroid et 

al., 1999). Upon collection of the aqueous sample, preservatives such as methanol (MetOH) 

(Desbrow et al., 1998) and formaldehyde (1% v/v) (Baronti et al., 2000), may be added to halt 

microbial activity whilst solid samples are refrigerated or stored at -18
o
C (Ternes et al., 2002). 

EDCs are mainly hydrophobic and tend to bind to sediment where it becomes concentrated 

(Bowman et al., 2002). 

Upon collection, aqueous samples are usually prepared by filtration to remove particles that may 

interfere with the extraction procedure. Any EDCs associated with the particles may be extracted 

by washing of the particles with a solvent such as MetOH. Extraction is generally carried out 

within 48 hours of collection and may even be carried out on site, negating the need for 

preservatives and ensuring that EDCs within are not adversely affected by storage conditions. 

Solid Phase Extraction (SPE) is the main technique used to extract steroids from aqueous 

samples, while solid samples have to be freeze dried prior to ultrasonic extraction in solvent. 

SPE utilises either disks or more commonly, cartridges. Disks reduce sample clogging and have 
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a large surface area for sample contact compared to cartridges. Using dried sediment or sewage 

sludge samples, Soxhlet is the preferred extraction technique with duration periods of 4-24 hours 

(Petrovic et al., 2002). 

After extraction, sample clean-up utilizing mainly adsorption chromatography or SPE is 

necessary to remove further co-extractives (Voulvoulis and Scrimshaw, 2003). Further clean-up 

is not normally necessary for aqueous samples. For steroid estrogen monitoring in sediment and 

sludge samples, clean-up is a requirement and may be a multi-step procedure. Following 

extraction, steroid estrogens in sewage sludge are cleaned up by gel permeation chromatography 

(GPC) followed by silica gel (Ternes et al., 2002). Some more intensive clean-up by HPLC 

fractionation is followed by elution over silica gel and (H2SO4) sulphuric acid treatment (De 

Boer et al., 2000). Sulphuric acid is used for lipid removal although it may adversely affect the 

analyte. GPC, alumina and florisil columns are gentler ways to remove lipids. Sulphur present in 

sludge and sediment samples can interfere with gas chromatography (GC) determination. 

Removal of sulphur interferences can be achieved with the addition of copper either prior to 

extraction or during the clean-up stage (Eljarrat et al., 2002). 

The identification of the EDC of interest is dependent on an extraction procedure and an 

analytical technique which is selective for that compound. To allow investigation into the study 

of compounds and their interaction with their environment, column chromatography is able to 

achieve the objectives of separation, identification and quantification. 

According to Richardson (2002), GC is the preferred analytical technique for the determination 

of persistent organic pollutants (POPs), having utilized GC with electrochemical (EC) detection 

and GC-MS with negative chemical isolation (NCI) or electron impact (EI) detection. A 
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prerequisite for analysis by GC is that the chemical of interest is volatile and thermally stable. 

When this is not the case, derivatization can be used to overcome this limitation (Blau and 

Halket, 1993). Traditionally, GC using derivatization has been used for estrogen monitoring. 

Disadvantages of derivatization are that it is labour intensive and can reduce analyte recovery. 

Apart from making chemicals amenable to GC-MS analysis, derivatization can also increase 

sensitivity using LC-MS. 

 

1.8.5 Minced testes assay 

With respect to the male reproductive system, several in vitro methods are used to screen for 

EDCs. These methods include whole testis used in simple incubation, perifusion, or perfusion 

assays. Other methods are testis cell line assays and sectioned or minced testes assays. Isolated 

and cultured crude or purified Leydig cells are other in vitro methods that can be used to screen 

for EDCs (US EPA, 2005). Of these in vitro methods, the sectioned or minced testes assay was 

selected as the most promising screening tool for identifying substances with steroidogenic-

altering activity (US EPA, 2005). This method uses untreated animals as a source of testes.  

After removal of the whole testis from an anesthetized or euthanized animal, the testes are 

further processed into smaller sizes for use. A method to prepare the testes for measuring 

steroidogenesis was described in detail (Sikka et al., 1985). It was also determined that this 

single assay would suffice as a screen for females as well, because the steroidogenic pathways of 

both males and females are very similar, the testes provide more organ for testing and organ 

isolation and preparation are technically easier to accomplish using the male organs. Other 

reasons for this assay‟s recommendation were its minimal cost, being quick and simple to 
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perform, relative sensitivity and specificity, use of standard and basic laboratory equipment and 

skills and its ease of preparation (Gray et al., 1997). The organ remains viable for several hours 

and the assay also maintains the cyto-architecture of the organ, minimizes animal usage, has the 

ability to screen many samples, is relatively easy to standardize by optimization and has well-

defined and multiple endpoints (US EPA, 2005). 

Ebrahim (2010) optimized an in vitro minced mouse testicular cell culture assay that could be 

employed as a valuable screening tool for endocrine disrupting compounds in food, water and 

other environmental samples. Testosterone synthesis was used as an endpoint after luteinizing 

hormone (LH) stimulation of the testicular cells. Increased testosterone synthesis indicated the 

effect of androgenic compounds in a sample while a decrease in testosterone synthesis was 

indicative of the anti-androgenic effects of a sample. 

 

1.8.6 Frog and fish in vitro liver assays 

Monitoring the induction/synthesis of the estrogenic biomarker VTG in primary cultured 

hepatocytes and liver slices is a useful tool for screening the estrogenic potencies of chemicals 

and environmental samples. The genes for VTG are found in the livers of both females and 

males (Gronen et al., 1999). Therefore, although males do not normally synthesize VTG, they 

possess the ability to synthesize VTG upon estrogen exposure (Green and Tata, 1976; Sumpter 

and Jobling, 1995). This ability of males to synthesize VTG after estrogen exposure has been 

exploited as a biomarker for measuring exposure of oviparous animals to environmental 

estrogens (Palmer and Palmer, 1995; Palmer et al., 1998; Sumpter, 1995; Gronen et al., 1999). 
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In vitro production of vitellogenin by hepatocytes of fish and amphibians has been used to study 

estrogenicity (Heppell et al., 1995; Toomey et al., 1999; Gagné et al., 1999). Estrogenic 

compounds added to the hepatocyte culture medium activate the same receptor-mediated gene 

transcription mechanisms as endogenous estrogen, resulting in vitellogenin production. 

A study done by Lutz and Kloas (1999) reports that in order to get a useful tool for investigating 

the binding of environmental samples to estrogen receptors in amphibians, a radio-receptor assay 

of estrogen receptors was established using cytosolic liver homogenates of Xenopus laevis 

(African clawed frog). Their results clearly indicated that liver cytosol of both male and female 

X. laevis can be used for determination of estrogen receptor binding because no sex-specific 

differences could be observed. 

Lutz et al., (1999) further described a novel semi-quantitative reverse transcription polymerase 

chain reaction (RT-PCR) technique for screening estrogenicity by assaying messenger 

ribonucleic acid (mRNA) induction of the estrogenic biomarker vitellogenin. This in vitro 

method combined with classical exposure experiments in vivo demonstrated the biological 

significance of estrogenic endocrine disruptors on the amphibian X. laevis. The effects of 

endocrine disrupting chemicals were demonstrated at several levels of organization including 

binding to liver estrogen receptor and the induction of vitellogenin-mRNA by RT-PCR in 

primary cultured hepatocytes. According to Lutz et al., (1999), both documented methods 

represented a comprehensive amphibian model to study potential estrogenic activities of 

endocrine disruptors. 

A sensitive bioassay for detecting environmental estrogens and estrogen mimics was developed 

by Hurter et al., (2002) using X. laevis liver slice culture. Vitellogenin synthesis by X. laevis 
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liver slice cultures was used as a biomarker for estrogenic activity of environmental water 

samples. It was found that not only uncontaminated males but also estrogen-pretreated males and 

females can successfully be used as bioindicators. Female liver tissue slices, being equally if not 

more sensitive than estrogen pre-exposed male liver tissue slices, can thus be used as an 

alternative to traditional studies that only used male animals to study the effects of estrogen and 

estrogen mimics on endocrine disruption (Hurter et al., 2002). 

Hurter et al., (2002) optimized the X. laevis liver slice assay that could be used to detect man-

made estrogen mimics that might pollute the environment. Only liver tissue slices were 

investigated because they were more representative of in vivo conditions than isolated 

hepatocytes. This is due to the fact that all the cell types are present and can interact as they 

would in vivo, as they are in the right spatial orientation with one another in the liver slice system 

(Hurter et al., 2002). Hurter et al., (2002) suggested that this assay, being more representative of 

in vivo conditions than the isolated hepatocyte assay and the yeast screen assay for estrogen, be 

included in the battery of tests for endocrine disruptors. 

Williams et al., (1998) showed rainbow trout to be sensitive to xenoestrogens and their effects on 

responses such as modulation of cytochromes P450 (CYPs) and carcinogenesis. Since the use of 

rainbow trout (Oncorhynchus mykiss) liver slices to screen for estrogenic compounds offered a 

link between cultured cell models and in vivo studies, Shilling and Williams (2000) developed a 

rainbow trout liver slice assay to quantify the relative estrogenicity of chemicals by measuring 

VTG induction. Their model demonstrated the capacity to screen environmental and dietary 

compounds for estrogenicity. The results were consistent with those of other studies by Pelissero 

et al., (1993) and Maitre et al., (1986), which described similar in vitro techniques which utilized 

VTG induction by rainbow trout hepatocytes as a biomarker to assess the estrogenic activity of 
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chemicals. Jobling and Sumpter (1993) also reported the use of rainbow trout hepatocytes in an 

in vitro bioassay to detect the estrogenic potencies of detergent components (surfactants) in 

sewage effluent to fish. Slices are faster and easier to prepare than hepatocytes because no 

collagenase, isolation or culturing steps are required (Seglan, 1975). Another advantage is that 

unlike mammalian liver slices, rainbow trout slices can be maintained for several days, allowing 

for more extensive studies of induction and inhibition (Oganesian et al., 1997a and b). Liver 

slices also allow for the preservation of the different types of cells and maintenance of cell-to-

cell interactions (Guillouzo, 1998). That, and the retention of metabolic activity over a longer 

period of time (Vickers, 1994; Beamand et al., 1993) make liver slices an ideal model to monitor 

estrogenicity of samples. 

 

  

https://etd.uwc.ac.za/



34 

 

CHAPTER 2 

Problem Statement and Aim 

 

There is a growing concern over the occurrence of endocrine disrupting compounds (EDCs) in 

the environment (Kavlock et al., 1996). Prolonged exposure to environmental estrogens (a sub-

group of EDCs) is believed to be responsible for a variety of adverse health effects in humans 

and wildlife. These effects include gonadal abnormalities, reduced fertility, cancers of the male 

and female reproductive tract and altered male/female sex ratios among others (Sumpter, 1995; 

Sumpter and Jobling, 1995). These effects are difficult to detect. Although it is essential to 

screen for EDCs in aqueous environmental samples, most countries have failed to implement this 

as part of their routine water quality monitoring programs due to various constraints such as the 

high cost of assays and the lack of infrastructure and skills required to do the assays. Therefore, 

there is a clear need for more user-friendly, more economically viable and time saving assays 

that can be used for routine monitoring of environmental EDCs. 

To this end, the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) 

was formed to make recommendations to the US Environmental Protection Agency (EPA) on 

how to develop screening strategies to monitor EDCs in the environment. EDSTAC 

recommended a two-tiered approach that involves in vitro and in vivo mammalian and eco-

toxicological screens as a Tier 1 system and a set of in vivo tests as a Tier 2 system for the 

identification of endocrine effects of various environmental contaminants (US EPA, 1998). 
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The aim of this study is to compare different rapid ELISAs for EDC monitoring to determine if 

data obtained with these assays are similar/identical.  The study also aims to compare the 

estradiol rapid ELISA with a bioassay for anti-androgenicity using mouse testicular cell cultures. 

In so doing, this research hopes to demonstrate how well estradiol levels can be used to predict 

the presence of other steroid hormones in a sample and also demonstrate how effective estradiol 

levels are at predicting/monitoring the anti-androgenicity of a sample. The eventual goal of the 

above is to select representative assays that can also be used to predict other likely contaminants 

in a sample.  Assays giving identical/similar results will be replaced with a single assay that will 

be used for routine monitoring.  Reduction of assays will have major cost and human resource 

benefits. These resources can then be redirected to develop and implement assays for other 

groups of EDCs, such as the hypothalamus-pituitary-thyroid (HPT) axis inhibitors, for which 

rapid assays are not yet available.  

This research intends to evaluate data for various EDC screening tests and then propose a 

minimalist battery of screening assays to monitor for environmental estrogens, progestogens, 

androgens and anti-androgens in water samples. 
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CHAPTER 3 

 

3.1 Introduction 

The U.S Environmental Protection Agency (EPA) defines EDCs as xenobiotics (agents foreign 

to an organism) that interfere with the synthesis, secretion, transport, binding, action or 

elimination of natural hormones in the body that are responsible for homeostasis, reproduction, 

development and/or behaviour (Crisp et al., 1998). Most EDCs are synthetic compounds 

produced as a result of industrial, agricultural and domestic activities (Desbrow et al., 1998; 

Pojana et al., 2004; DeRosa et al., 1998, Harris et al., 1997). Some EDCs are natural steroids. 

Examples of these are the endogenous steroid hormones such as the estrogens (estrone, 17β-

estradiol and estriol), androgens like testosterone and phytoestrogens such as genestein and 

lignans (Safe and Gaido, 1998). 

There is considerable concern over the occurrence of EDCs in the environment. They have been 

found in natural water resources, drinking water and in an accumulated form in the food of many 

human and animal populations, potentially posing a great health threat upon prolonged exposure 

(Soto et al., 1995; Palmer et al., 1998). EDCs have been reported to adversely affect the 

reproductive, immune, endocrine, nervous and metabolic systems in wildlife and human 

populations (Colborn, 1995). 

EDCs have been shown to interfere with the normal functioning of the endocrine system by 

mimicking the effects of natural hormones. EDCs can mimic the binding of hormones to their 

receptors (for example binding the estrogen receptor leading to feminization), block the binding 
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of natural hormones to their receptors (for example the male hormone testosterone, leading to 

demasculinization of males) or modulate the effect of natural hormones by interfering with 

important cell signalling pathways (Kelce and Gray, 1999). The best studied environmental 

EDCs include chemicals that induce responses mimicking the effect of natural estrogen (Gillesby 

and Zacharewski, 1998; Toomey et al., 1999; Soto et al., 1995) or act as anti-estrogenic 

compounds (Kime et al., 1999).  

The effects of EDCs are among others, altered male/female sex ratios, feminization of males, 

reduced fertility and gonadal abnormalities to mention a few (Sumpter, 1995; Sumpter and 

Jobling, 1995; Gagné et al., 1999; Kime et al., 1999). 

Biomarkers must be developed and implemented to screen for EDCs in the environment. 

Analytical tools based on traditional chemical monitoring techniques such as gas 

chromatography - mass spectrometry (GC-MS) and high-performance liquid chromatography 

(HPLC) have been applied to detect EDCs (Snyder et al., 1999; Snyder et al., 2000). These 

techniques are reliable, but they are very expensive, require a very high level of skill to operate 

and are time consuming. Beresford et al., (2000) concluded that due to the need for cost 

effective, rapid and simple methods that could also allow for screening of large numbers of 

samples, in vitro test methods were more appropriate. 

Several in vitro bioassays (Zacharewski, 1997) are being used as rapid primary screens to detect 

xenobiotic estrogenic activity (Odum et al., 1998). The in vitro bioassays available to assess 

estrogenic or androgenic activity of single compounds or complex mixtures range from simple 

competitive receptor binding assays, which rely entirely on the substance‟s ability to bind to the 

estrogen receptor (Jobling et al., 1995; Shelby et al., 1996), to more complex systems where the 
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substance binds to and activates the receptor. Assay systems include direct immunoassay 

detection of single active compounds, reporter gene assays and cell proliferation assays such as 

the E-screen assay which involves the proliferation of the human breast cancer cell line (MCF-7) 

(Soto et al., 1995; Soto et al., 1994), vitellogenin gene expression in hepatocyte cultures (Jobling 

and Sumpter, 1993) and yeast-based assays expressing either rainbow trout (Petit et al., 1997) or 

human estrogen receptors (Routledge and Sumpter, 1996). 

Other ex vivo bioassays are based on the quantitation of hormone-induced changes in the 

expression of endogenous proteins and genes. Examples of methods employing estrogen-induced 

changes in the expression of proteins include the Xenopus laevis (Hurter et al., 2002) and 

rainbow trout (Shilling and Williams, 2000) liver slice assays. These assays monitor in vitro 

induced vitellogenin (VTG) as a biomarker endpoint. Another method, the minced testes assay is 

based on the steroidogenic activity of rat/mouse testicular cells. This assay monitors the potential 

of samples to interfere with steroid hormone biosynthesis or more directly alter testosterone 

levels (Gray et al., 1995; Laskey et al., 1995). 

A study conducted in South Africa by Swart and Pool (2007), demonstrated the presence of 

significant amounts of steroid hormones released back into the environment from sewage 

treatment plants. Steroid hormones have the potential to cause endocrine disruption, not only in 

animals, but in humans as well (Swart and Pool, 2007). Research done by Swart et al. (2011) has 

shown that accurate evaluation of environmental water samples for estrogenic activity requires a 

battery of in vitro and in vivo bioassays. For this study, the environmental water samples 

collected were selected based on various human impacts and comparatively analysed using 

various biomarker assays. 
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The aim of this study was to investigate the comparison between chemical and tissue culture 

methods to monitor environmental estrogens. Specific objectives were to compare different rapid 

ELISAs for EDC monitoring and to compare the estradiol rapid ELISA with a bioassay for anti-

androgenicity using mouse testicular cell cultures. 
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3.2 Materials and Methods 

3.2.1 Reagents and chemicals 

All chemicals, reagents and solvents were purchased from Sigma (USA), Merck (Germany) and 

Roche Diagnostics (South Africa). All reagents were of analytical grade. 

 

3.2.2 Animals 

After obtaining approval from the institutional animal ethics committee, male Balb/C mice were 

used for this study.  Two month old, pathogen free mice were purchased from the University of 

Cape Town Animal Unit (Cape Town, South Africa).  The mice were then housed in a well-

ventilated animal house with a light/dark cycle of 12:12.  The mice had free access to normal 

drinking water and were fed standard mouse feed (Medical Research Council, Cape Town, South 

Africa). 

 

3.2.3 Water Sampling 

Water samples were collected in clean 250 ml glass bottles. The bottles were cleaned by washing 

with soap, followed by rinsing with tap water. The bottles were then rinsed with distilled water, 

followed by analytical grade ethanol (Merck, Germany) and finally rinsed again with distilled 

water. The bottles were then allowed to dry upside down on a dry rack. Environmental water 

samples were collected from various sites around South Africa. Samples collected for the current 

study were selected based on various human impacts and also to give approximately 50% high 

and 50% low estrogen values. Samples were numerically labeled and given to the assay operator 

for an independent comparative analysis of various biomarker assays. The samples were taken to 

the laboratory and processed immediately. Normal laboratory tap water was used as a control. 
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3.2.4 Detection of steroid hormones in water 

3.2.4.1 Solid Phase Extraction (SPE) of water samples 

To prevent clogging the columns during extraction, particle-containing samples were centrifuged 

at 4000 rpm for 15 minutes. Water samples were then extracted using C-18 SPE columns (Sigma 

Aldrich, USA). Columns were conditioned by adding 2 ml of Phase B solution (45% methanol, 

40% hexane and 15% 2-propanol), then charged by adding 2 ml ethanol and then washed with 4 

ml distilled water. Care was taken to ensure that the sorbents do not dry between the different 

steps. After the wash step, 100 ml of water sample was passed through the column. The columns 

were then dried using a vacuum pump (PALL Life Sciences vacuum/pressure pump) until the 

column was completely dry. The hydrophobic analytes bound to the resin were eluted with 2 ml 

of Phase B solution. The eluates were dried under a stream of hot air. The dried sample was 

reconstituted in 100 μl dimethyl sulfoxide (DMSO) to make a 1000 times concentrated sample 

extract solution. The samples were stored at 4
0
C until further use. Extracts were diluted 

appropriately for the different ELISAs. 

 

3.2.4.2 Estrone (E1) ELISA analysis of water extracts 

Concentrated (1000 times) water extracts were diluted 1/500 using wash solution. The diluted (2 

times concentrated) extracts were assayed directly using E1 ELISA kits purchased from DRG 

Instruments GmbH, Germany. All the reagents required were supplied in the kit. The microtiter 

plate wells supplied with the kit were pre-coated with a polyclonal antibody directed towards an 

antigenic site on the E1 molecule. All assays were done in duplicate. Standard, control or 

samples (50 μl per well) were dispensed into appropriate wells on the anti-estrone coated plate. 

Thereafter, 100 μl of enzyme conjugate (estrone horseradish peroxidase) was added to each well. 
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The contents of the wells were mixed by tapping the plate. The mixture was incubated for 1 hour 

at room temperature on a plate shaker (Barloworld Scientific, Stuart Microtiter Plate Shaker, 

SSM5). After incubation, the wells were washed five times with 400 μl per well of wash solution 

and then tapped dry on adsorbent paper to remove residual droplets. Thereafter, 150 μl of 

tetramethylbenzidine (TMB) substrate was added to each well and incubated in the dark for 30 

minutes at room temperature. The enzymatic reaction was stopped by adding 50 μl of stop 

solution (0.5 M H2SO4) to all wells. The absorbance/optical density (OD) of each well was then 

measured at 450 nm using a microtiter plate reader (Thermo Electron Corporation, Original 

Multiskan Ex). A standard curve was drawn using the OD readings obtained for the standards 

and the concentrations of the samples were read off this curve. 

 

3.2.4.3 Estradiol (E2) analysis of water extracts 

Concentrated (1000 times) water extracts were diluted 1/500 using wash solution. The diluted (2 

times concentrated) extracts were assayed directly using E2 ELISA kits purchased from DRG 

Instruments GmbH, Germany. All the reagents required were supplied in the kit. The microtiter 

plate wells supplied with the kit were pre-coated with a polyclonal rabbit antibody directed 

towards an antigenic site on the E2 molecule. Assays were done in duplicate. Standard, control 

or samples (25 μl per well) were dispensed into appropriate wells on the anti-estradiol coated 

plate. Thereafter, 200 μl of enzyme conjugate (estradiol horseradish peroxidase) was added to 

each well. The contents of the wells were mixed by tapping the plate. The mixture was incubated 

for 2 hours at room temperature on a plate shaker (Barloworld Scientific, Stuart Microtiter Plate 

Shaker, SSM5). After incubation, the wells were washed four times with 400 μl per well of wash 

solution and then tapped dry on adsorbent paper to remove residual droplets. Thereafter, 100 μl 
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of tetramethylbenzidine (TMB) substrate was added to each well and incubated in the dark for 15 

minutes at room temperature. The enzymatic reaction was stopped by adding 50 μl of stop 

solution (0.5 M H2SO4) to all wells. The absorbance/optical density (OD) of each well was then 

measured at 450 nm using a microtiter plate reader (Thermo Electron Corporation, Original 

Multiskan Ex). A standard curve was drawn using the OD readings obtained for the standards 

and the concentrations of the samples were read off this curve. 

 

3.2.4.4 Testosterone ELISA analysis of water extracts 

Concentrated (1000 times) water extracts were diluted 1/100 using wash solution. The diluted 

(10 times concentrated) extracts were assayed directly using testosterone ELISA kits purchased 

from DRG Instruments GmbH, Germany. All the reagents required were supplied in the kit. The 

microtiter plate wells supplied with the kit were pre-coated with a monoclonal mouse antibody 

directed towards a unique antigenic site on the testosterone molecule. All assays were done in 

duplicate. Standard, control or samples (25 μl per well) were dispensed into appropriate wells on 

the anti-testosterone coated plate. Thereafter, 200 μl of enzyme conjugate (testosterone 

horseradish peroxidase) was added to each well. The contents of the wells were mixed by 

tapping the plate. The mixture was incubated for 1 hour at room temperature on a plate shaker 

(Barloworld Scientific, Stuart Microtiter Plate Shaker, SSM5). After incubation, the wells were 

washed four times with 400 μl per well of wash solution and tapped dry on adsorbent paper to 

remove residual droplets. Thereafter, 200 μl of tetramethylbenzidine (TMB) substrate was added 

to each well and incubated in the dark for 15 minutes at room temperature. The enzymatic 

reaction was stopped by adding 100 μl of stop solution (0.5 M H2SO4) to all wells. The 

absorbance/optical density (OD) of each well was then measured at 450 nm using a microtiter 
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plate reader (Thermo Electron Corporation, Original Multiskan Ex). A standard curve was drawn 

using the OD readings obtained for the standards and the concentrations of the samples were 

read off this curve. 

 

3.2.4.5 Progesterone ELISA analysis of water extracts 

Concentrated (1000 times) water extracts were diluted 1/100 using wash solution. The diluted 

(10 times concentrated) extracts were assayed directly using progesterone ELISA kits purchased 

from DRG Instruments GmbH, Germany. All the reagents required were supplied in the kit. The 

microtiter plate wells supplied with the kit were pre-coated with a polyclonal antibody directed 

towards an antigenic site on the progesterone molecule. All assays were done in duplicate. 

Standard, control or samples (25 μl per well) were dispensed into appropriate wells on the anti-

progesterone coated plate and incubated for 5 minutes at room temperature. Thereafter, 200 μl of 

enzyme conjugate (progesterone horseradish peroxidase) was added to each well. The contents 

of the wells were mixed by tapping the plate. The mixture was incubated for 1 hour at room 

temperature on a plate shaker (Barloworld Scientific, Stuart Microtiter Plate Shaker, SSM5). 

After incubation, the wells were washed four times with 400 μl per well of wash solution and 

tapped dry on adsorbent paper to remove residual droplets. Thereafter, 200 μl of 

tetramethylbenzidine (TMB) substrate was added to each well and incubated in the dark for 15 

minutes at room temperature. The enzymatic reaction was stopped by adding 100 μl of stop 

solution (0.5 M H2SO4) to all wells. The absorbance/optical density (OD) of each well was then 

measured at 450 nm using a microtiter plate reader (Thermo Electron Corporation, Original 

Multiskan Ex). A standard curve was drawn using the OD readings obtained for the standards 

and the concentrations of the samples were read off this curve. 
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3.2.4.6 Estriol (E3) ELISA analysis of water extracts 

Concentrated (1000 times) water extracts were diluted 1/40 using incubation buffer. The diluted 

(25 times concentrated) extracts were assayed directly using E3 ELISA kits purchased from 

DRG Instruments GmbH, Germany. All the reagents required were supplied in the kit. The 

microtiter plate wells supplied with the kit were pre-coated with antibody against the E3 

molecule. All assays were done in duplicate. Before use, the standards were mixed for 2 minutes 

on a rotating mixer/vortex (Scientific Industries, Vortex Genie-2); whereas the enzyme conjugate 

(estriol horseradish peroxidase) was prepared immediately before use. Conjugate (10 μl) was 

added to 2 ml of incubation buffer and gently mixed on the rotating mixer for 5 minutes. 

Standard, control or samples (20 μl per well) were dispensed into appropriate wells on the anti-

estriol coated plate. Thereafter, 200 μl of enzyme conjugate was added to each well. The 

contents of the wells were mixed by tapping the plate. The mixture was incubated for 1 hour at 

37
0
C. After incubation, the wells were washed three times with 300 μl per well of distilled water 

and tapped dry on adsorbent paper to remove residual droplets. Thereafter, 100 μl of 

tetramethylbenzidine (TMB) substrate was added to each well and incubated in the dark for 15 

minutes at 22 - 28
0
C. The enzymatic reaction was stopped by adding 100 μl of stop solution 

(0.15 M H2SO4) to all wells. The absorbance/optical density (OD) of each well was then 

measured at 450 nm using a microtiter plate reader (Thermo Electron Corporation, Original 

Multiskan Ex). A standard curve was drawn using the OD readings obtained for the standards 

and the concentrations of the samples were read off this curve. 
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3.2.4.7 Ethinylestradiol (EE2) ELISA analysis of water extracts 

Concentrated (1000 times) water extracts were diluted 1/100 using diluent (40% (v/v) Methanol 

(MetOH) in distilled water). The diluted (10 times concentrated) extracts were assayed directly 

using EE2 ELISA kits purchased from R-Biopharm AG, Darmstadt, Germany. All the reagents 

required were supplied in the kit. The microtiter plate wells supplied with the kit were pre-coated 

with capture antibodies directed against anti-ethinylestradiol antibodies. All assays were done in 

duplicate. Before use, the ethinylestradiol enzyme conjugate and anti-ethinylestradiol antibody 

concentrates were diluted 1:11 in dilution buffer. Standard, control or samples (20 μl per well) 

were dispensed into appropriate duplicate wells on the anti-ethinylestradiol coated plate. 

Thereafter, 50 μl of diluted enzyme conjugate was added to the bottom of each well. 50 μl of 

diluted antibody solution was added to each well and the contents of the wells were mixed gently 

by shaking the plate manually. The mixture was incubated for 2 hours at room temperature (20 - 

25
0
C). After incubation, the wells were washed four times with 250 μl per well of distilled water 

and tapped dry on adsorbent paper to remove residual droplets. Thereafter, 50 μl of substrate 

(containing urea peroxide) and 50 μl of chromogen (containing tetramethylbenzidine) was added 

to each well and mixed gently by shaking the plate manually. The plate was then incubated in the 

dark for 30 minutes at room temperature. The enzymatic reaction was stopped by adding 100 μl 

of stop solution (0.5 M H2SO4) to each well. The absorbance/optical density (OD) of each well 

was then measured at 450 nm using a microtiter plate reader (Thermo Electron Corporation, 

Original Multiskan Ex). A standard curve was drawn using the OD readings obtained for the 

standards and the concentrations of the samples were read off this curve. 
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3.2.5 The effects of water extracts on testicular culture testosterone synthesis 

3.2.5.1 Preparation of testicular cells 

Mice were sacrificed by cervical dislocation. Their testes were then removed aseptically, finely 

minced and then transferred to a 50 ml tube (Greiner Bio-one) containing 10 ml serum-free 

medium (100 μl glutamax (Invitrogen), 100 μl Penicillin/Streptomycin/Fungizone mix (Sigma) 

and 9.8 ml RPMI-1640 medium (Sigma)).  Debris was allowed to collect at the bottom of the 

tube and thereafter, the supernatant (containing testicular cells) was transferred to a new tube.  

Serum-free medium was then added to the cells resulting in a final volume of 20 ml.  The cells 

were then incubated at 37
0
C with 5% CO2 for 1 hour.  After incubation, the cells were 

centrifuged at 4000 rpm for 15 minutes on a Boeco C-28A centrifuge (Boeckel & Co.). The 

supernatant was then discarded and the cell pellet was resuspended in 15 ml fresh serum-free 

medium and incubated at 37
0
C with 5% CO2 for 30 minutes.  The cells were centrifuged once 

again at 4000 rpm for 15 minutes and the supernatant obtained was again discarded.  The cell 

pellet was then resuspended in 16 ml complete (enriched) medium containing 160 μl fetal bovine 

serum (FBS) (to give a concentration of 1.0 x 10
6 

cells/ml). The complete medium also contained 

160 μl Glutamax (Invitrogen), 160 μl Penicillin/Streptomycin/Fungizone mix (Sigma) and 15.52 

ml RPMI-1640 medium (Sigma)). The cell suspensions were then used for testosterone 

production assays. 

 

3.2.5.2 Testicular cell culture bioassays on water extracts 

DMSO diluted 1/500 in RPMI-1640 medium (Sigma) was used as a control. Water extracts 

diluted 1/500 (2 times final concentration) in RPMI-1640 medium (Sigma) were added to the 

wells of a 96-well tissue culture plate (Nunc, Denmark) at a volume of 50 µl per well. Cell 

https://etd.uwc.ac.za/



48 

 

suspension (50 µl per well) was then added to the water extracts in the tissue culture plate.  The 

culture plate was then incubated overnight at 37
0
C in 5% CO2.  Unstimulated cells then received 

50 µl enriched medium, while stimulated cultures receive 50 µl enriched medium containing 10 

mU per ml luteinizing hormone (LH). The cultures were then incubated for 4 hours at 37
0
C in 

5% CO2. After the 4 hour incubation period, supernatants from LH-treated and non-treated cells 

were harvested and diluted 1/10 with phosphate buffered saline (PBS) containing 0.1% Tween 

20. The diluted sample supernatant was screened for testosterone concentration using a 

commercially available ELISA kit (DRG Instruments GmbH, Germany). The ELISA kit contains 

all the necessary reagents for the assay and the assay was performed as per manufacturer‟s 

instructions (refer to 3.2.4.4). 

 

3.2.5.3 Statistical analysis 

Each experiment was performed in triplicate. The results were analyzed using one-way analysis 

of variance (ANOVA) followed by a pairwise multiple comparison procedure (Holm-Sidak 

method) to indicate significantly different groups (P < 0.05); using the SigmaStat 12.0 software 

package (Systat Software Inc., USA). 
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3.3 Results and Discussion 

3.3.1 Steroid hormone detection in water samples using specific ELISAs 

The standard curves for the ELISAs to determine the estrogen (estrone, estradiol, estriol and 

ethinylestradiol) concentrations in environmental water samples are shown in Figure 1. The 

correlation coefficients (R
2
) for all the standard curves are between 0.939 and 0.991. This data is 

similar to results previously obtained by Swart and Pool (2007). The standard curves show good 

inverse correlations between the optical density and the estrogenic hormone concentration. The 

ELISAs have detection ranges between 15 - 2000 pg/ml, 9.7 - 2000 pg/ml, 2000 - 200000 pg/ml 

and 20 - 12800 pg/ml for the estrone, estradiol, estriol and ethinylestradiol ELISAs respectively. 

Estrone, estradiol, testosterone, progesterone, estriol and ethinylestradiol concentrations detected 

in environmental water samples are shown in Table 2. The levels of testosterone synthesized by 

mouse testicular cells exposed to the environmental water samples are also included in Table 2. 

The 28 environmental water samples were separated into two groups based on the estradiol 

ELISA. The estradiol ELISA was chosen because estradiol is the principal estrogen found in all 

mammalian species during their reproductive years (Duff and DeAvila, 2005). For this 

separation, an estradiol level of 5 pg/ml was used as cut-off. Valentini et al., (2002) estimated the 

detection limit of 17β-estradiol in waste water to be 5 pg/ml. Of the 28 samples investigated, 15 

had estradiol levels higher than 5 pg/ml and were designated as high estradiol.  The remaining 13 

samples contained estradiol at 5 pg/ml or less and they were designated as low estradiol. 
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3.3.2 Comparison between data obtained using the panel of estrogen ELISAs 

for monitoring water samples 

The estrone, estriol and ethinylestradiol ELISAs for rapid screening of environmental water 

samples for EDCs show positive correlations of R² = 0.539, R² = 0.720  and R² = 0.871 

respectively when compared with the estradiol ELISA (Figure 2). The estrone, estriol and 

ethinylestradiol levels of the low and high estradiol sets of environmental water samples were 

then compared to see how effective the estradiol levels were at predicting high and low levels of 

the other hormones within the samples (Figures 3, 4 and 5). Results of this show that separation 

of water samples based on estradiol levels was very effective at separating samples with high and 

low levels of estrone (P < 0.001), estriol (P = 0.03) and ethinylestradiol (P = 0.006).  The 

similarity of results based on the estradiol assay may be due to the fact that these assays screen 

for hormones and pharmaceutical residues in the environment that are secreted mainly by the 

same population sub-group, namely reproductively active females. 
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Figure 1. Standard curves for the ELISAs to determine the estrogenic hormone (estrone, estradiol, estriol and 

ethinylestradiol) concentrations in environmental water samples. 
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Data published by Swart and Pool (2007), showed that the results obtained using rapid ELISAs 

for estrogens gave similar results.  The same authors also showed that the rapid ELISAs for 

estrogens gave similar results to the estrogen bioassays done using juvenile tilapia fish in vivo 

and MCF-7 cell culture (Swart et al., 2011). The current study showed similar data for the 

estrogen rapid ELISAs using a larger data set than the previous studies. Based on this, we 

recommend that only one of the estrogen rapid ELISAs be done for routine screening. 

 

 

Figure 2. Correlation graphs between the estradiol ELISA and the estrone, estriol and ethinylestradiol ELISAs when 

rapidly screening environmental water samples for EDCs. 
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Figure 3. Bar graph of estrone levels of environmental water samples (N = 28) separated into high estradiol           

(> 5pg/ml; n = 15) and low estradiol (≤ 5 pg/ml; n = 13) groups. The estrone levels of the two groups are 

significantly different from each other (P < 0.001). Vertical bars represent the average estrone concentration, 

whereas error bars represent standard error of mean. 
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Figure 4. Bar graph of estriol levels of environmental water samples (N = 28) separated into high estradiol             

(> 5pg/ml; n = 15) and low estradiol (≤ 5 pg/ml; n = 13) groups. The estriol levels of the two groups are significantly 

different from each other (P = 0.03). Vertical bars represent the average estriol concentration, whereas error bars 

represent standard error of mean. 
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Figure 5. Bar graph of ethinylestradiol levels of environmental water samples (N = 28) separated into high estradiol 

(> 5pg/ml; n = 15) and low estradiol (≤ 5 pg/ml; n = 13) groups. The ethinylestradiol levels of the two groups are 

significantly different from each other (P = 0.006). Vertical bars represent the average ethinylestradiol 

concentration, whereas error bars represent standard error of mean. 
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3.3.3 Comparison between 17β-estradiol rapid assay and the rapid assays for 

other steroid hormones 

 

 

Figure 6. Standard curves for the ELISAs to determine other steroid hormone (progesterone and testosterone) 

concentrations in environmental water samples. 

 

The standard curves for the ELISAs to determine other steroid hormone (progesterone and 

testosterone) concentrations in environmental water samples are displayed in Figure 6. The 

correlation coefficients (R
2
) for these standard curves are 0.955 and 0.987 for testosterone and 

progesterone respectively. These standard curves show good inverse correlations between the 

optical density and the steroid hormone concentration. The testosterone and progesterone 

ELISAs have detection ranges between 83 - 16,000 pg/ml and 300 - 40,000 pg/ml respectively. 

The current study showed that detectable levels of testosterone and progesterone are present in 

some of the environmental samples. The rapid ELISA kits are relatively expensive and due to 

this, it was investigated if estradiol concentration can be used to predict which of the high or low 

estradiol water samples had low or high levels of testosterone and progesterone. Figure 7 shows 

that there are positive correlations between the estradiol levels and the testosterone (R² = 0.788) 
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and progesterone (R² = 0.627) levels of the samples. The positive correlation between the 

estradiol and progesterone rapid assays was expected considering that both hormones are 

secreted and excreted by the same population sub-group (reproductively active females). The 

testosterone and progesterone levels of the low and high estradiol sets were then compared to see 

how effective the estradiol levels were at predicting high and low levels of testosterone and 

progesterone within the samples (Figures 8 and 9). Figure 8 shows that there is a significant 

difference between the progesterone levels of the group of samples with low estradiol levels and 

that with high levels of estradiol (P = 0.02). This indicates that separation of water samples based 

on estradiol levels is a good predictor of progesterone levels. This particular trend with 

progesterone is particularly akin to that displayed in Figures 3, 4 and 5 with the estrogens. Even 

though there is a positive correlation and good predictability using the estradiol ELISA, since 

progesterone is secreted by pregnant women, a sub-group of the reproductively active females, it 

is recommended to be assayed because it provides a different hormonal endpoint that can also be 

screened for in samples using the progesterone rapid assay. Figure 9 shows that there is no 

significant difference in the testosterone levels of the high and low estradiol groups (P = 0.051). 

This indicates that separation of samples based on estradiol levels is not a good predictor of 

testosterone levels. From this result, it can be concluded that a biomarker battery of tests must 

also include testosterone ELISA as positive and negative samples cannot be predicted by the 

estradiol ELISA data. 
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Figure 7. Correlation graphs between the estradiol ELISA and the testosterone and progesterone ELISAs when 

rapidly screening environmental water samples for EDCs. 
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Figure 8. Bar graph of progesterone levels of environmental water samples (N = 28) separated into high estradiol (> 

5pg/ml; n = 15) and low estradiol (≤ 5 pg/ml; n = 13) groups. The progesterone levels of the two groups are 

significantly different from each other (P = 0.02). Vertical bars represent the average progesterone concentration, 

whereas error bars represent standard error of mean. 
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Figure 9. Bar graph of testosterone levels of environmental water samples (N = 28) separated into high estradiol (> 

5pg/ml; n = 15) and low estradiol (≤ 5 pg/ml; n = 13) groups. The testosterone levels of the two groups are not 

significantly different from each other (P = 0.051). Vertical bars represent the average testosterone concentration, 

whereas error bars represent standard error of mean. 
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3.3.4 Comparison between 17β-estradiol rapid assay and the mouse testicular 

cell testosterone synthesis assay 

 

 

Figure 10. This graph shows a negative correlation (R² = 0.131) between the estradiol ELISA and the mouse 

testicular cell testosterone synthesis assay. 

The graph in Figure 10 displays a R
2
 of 0.131 between the 17β-estradiol rapid assay and the 

mouse testicular cell testosterone synthesis assay. This means that the 17β-estradiol rapid assay 

showed little or no relationship with the mouse testicular cell testosterone synthesis assay. Infact, 

the correlation coefficient suggests that only 13% of the variation in one of the assays is related 

to the variation in the other assay (only 13% of the variance is related). The current study 

investigates if the ELISA data for estrogens correlates with the anti-androgenic effects. This 

study shows that there is no correlation between the data obtained for the estrogenic compounds 

and the testosterone synthesis data. To determine how effective the estradiol levels were at 

predicting testosterone synthesized in mouse testicular cells exposed to different water samples, 

the group of samples containing low levels of estradiol was compared against that containing 
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high levels of estradiol. Results of this show no significant difference (P = 0.166) between the 

concentration of testosterone synthesized by mouse testicular cells exposed to low estradiol 

water samples and the concentration of testosterone synthesized by mouse testicular cells 

exposed to high estradiol water samples (Figure 11). The high variation of testosterone 

synthesized by testicular cells exposed to the water samples with low estradiol levels could be 

due to the presence of other anti-androgenic chemicals such as Bisphenol A (BPA), butyl benzyl 

phthalate (BBP) and dichlorodiphenyltrichloroethane (DDT). Anti-androgenic activity of the so-

called „environmental estrogens‟ BPA, BBP and DDT was reported by Sohoni & Sumpter 

(1998). Therefore, the estradiol assay is not a good predictor of the anti-androgenic effects of 

water samples. The anti-androgenic effects need to be monitored independently as part of an 

EDC monitoring battery of assays. 
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Figure 11. Bar graph of testosterone levels secreted by the mouse testicular cells exposed to low estradiol water 

samples (≤ 5 pg/ml; n = 13) and those exposed to high estradiol water samples (> 5 pg/ml; n = 15). The testosterone 

levels of the two groups are not significantly different from each other (P = 0.166). Vertical bars represent the 

average testosterone concentrations synthesized by the mouse testicular cells, whereas error bars represent standard 

error of mean. 
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3.4 Conclusion 

Water is a very important natural resource and the availability of safe water is crucial to the life 

and good health of both humans and animals. However, there are major concerns that this very 

important natural resource is being contaminated by EDCs together with other pollutants such as 

pathogens and toxic chemicals (Mbazo, 2006). EDCs are not only altering normal hormone 

levels or activity in the body, but are also causing a number of adverse effects to human and 

animal health. The increased incidence of contamination of the environment with EDCs has 

necessitated the development of screening tools to detect and monitor EDCs (Snyder et al., 

2000). In this regard, the US EPA has set out to implement guidelines that can be used for 

monitoring and screening of EDCs. 

Since in vivo methods for screening EDCs are time-consuming, expensive, laborious and require 

specialized skills and equipment, the US EPA recommends rapid screening methods as a first tier 

screen for EDCs. This is due to the fact that rapid screening tests are in vitro, relatively fast, 

inexpensive, simple to perform, very sensitive and can screen large numbers of samples at a time 

(US EPA, 2005). 

The aim of this study was to investigate the comparison between chemical and tissue culture 

methods to monitor environmental estrogens. In order to achieve this aim, the first objective was 

to compare different rapid ELISAs for EDC monitoring. The second objective was to compare 

estradiol rapid ELISAs with a bioassay for anti-androgenicity using mouse testicular cell 

cultures. Both objectives were accomplished. 

Environmental water samples were collected from various sites around South Africa and 

analyzed for EDCs using a battery of rapid in vitro tests. 
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This study confirmed earlier reports that estrogenic ELISAs are related/similar and show good 

correlations with each other (Swart and Pool, 2007). This is because the different estrogens are 

very similar and also due to the fact that the same sub-group in the population (the 

reproductively active females) is secreting these hormones. In an evaluation of commercial 

immunoassays for the detection of estrogens in water by comparison with high-performance 

liquid chromatography tandem mass spectrometry (HPLC-MS/MS), Farré et al., 2006 reported 

that the rapid estrogen ELISAs gave similar results to those from HPLC-MS/MS. Studies done 

by Swart et al., (2011) showed that similar good correlations exist between the rapid estrogen 

ELISA and in vivo and in vitro bioassays for estrogens. Based on this good correlation, one 

estradiol rapid assay is recommended as a first screening system for estrogenicity in samples. 

In this study, it was observed that even though there was a positive correlation between the 

estradiol rapid assay and testosterone rapid assay, separation of samples based on estradiol levels 

wasn‟t a good predictor of testosterone levels. It can hence be concluded that a testosterone rapid 

assay is necessary to screen for androgenicity in samples. 

This study also indicated a positive correlation between the estradiol rapid assay and 

progesterone rapid assay. This result was expected because both estradiol and progesterone are 

secreted and excreted by the same population sub-group (reproductively active females). It also 

showed a good predictability of separating samples containing progesterone using the estradiol 

ELISA. Since progesterone is secreted by pregnant women, a sub-group of the reproductively 

active females, it is recommended that a progesterone rapid assay be included to screen for 

progestogens in samples. 
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Bioassay screening will help determine the endocrine disrupting potency/effects of 

environmental water samples and can also assess the cumulative effects of EDCs without having 

to quantify unknown chemicals (Bovee and Hoogenboom, 2009). The mouse testicular cell 

testosterone synthesis bioassay was used in this study to monitor anti-androgenicity. Anti-

androgenicity is a function of the reduction of testosterone synthesis by these samples. The 

results for this study show no correlation between the ELISA data for estrogens and the data for 

testosterone synthesis. Many, but not all of the xenoestrogens possess anti-androgenic activity. 

Sohoni and Sumpter (1998) found that some other chemicals like BPA and DDT, which possess 

estrogenic activity, have been found to also possess anti-androgenic activity. By blocking 

androgen action, exposure to anti-androgens may cause changes similar to those associated with 

estrogenic exposure (Jobling et al., 1995). Since the data for estrogenic compounds cannot be 

used as a predictor for anti-androgenic effects, the anti-androgenic effects need to be monitored 

independently. Therefore, there is a need to include a mouse testicular cell testosterone synthesis 

bioassay to screen for androgenicity and anti-androgenicity of the water samples. 

Due to the different mechanisms of action of EDCs, it is favourable to use a battery of tests for 

monitoring (Shelby et al., 1996). Based on data generated by this study, a single rapid ELISA for 

an estrogen (estrone, estradiol, estriol or ethinylestradiol), a progesterone and testosterone 

ELISAs as rapid assays plus the mouse testicular cell testosterone synthesis bioassay are 

recommended as part of a battery of tests for EDCs. 
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CHAPTER 4 

Recommendations 

 

All water resources intended for domestic, industrial, agricultural or recreational use must be 

routinely screened for EDCs. A US EPA report proposes a tiered strategy for screening and 

monitoring EDCs (Tyler et al., 1998). This approach starts off with in vitro tests with endocrine 

endpoints followed by more extensive in vivo tests with developmental endpoints. The 

implementation of a battery of assays encompassing both in vitro and in vivo tests is essential for 

the comprehensive screening of EDCs and their effects. The implementation of the following 

guidelines can help mitigate the adverse health effects associated with exposure to environmental 

estrogens: 

 Only one estrogenic ELISA is recommended in a battery of assays to monitor for 

environmental estrogens. 

 To complete the battery of assays (in order to obtain a holistic picture inclusive of the 

potential effects of environmental estrogens), it is necessary to perform an estrogenic 

assay, an androgenic assay and an anti-androgenic assay. 

 Therefore, the following assays are recommended as a first tier battery of assays for 

monitoring EDCs: 

o Estradiol, testosterone and progesterone ELISAs as rapid assays to screen for 

estrogens, androgens and progestogens respectively. 
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o Mouse testicular cell testosterone synthesis bioassay to screen for androgenicity 

and anti-androgenicity. 

In order to monitor our environment, it is also recommended that further assays to 

comprehensively screen for EDCs be developed. It is also important that these rapid assays be 

affordable and use species relevant to a particular area. Very importantly, these in vitro assays 

need to be confirmed with further in vivo studies. 

The media needs to be encouraged to highlight the growing problem of EDCs and sensitize the 

public. Government agencies need to implement guidelines that will safeguard the health of 

humans and wildlife from EDCs. Routine monitoring of water sources needs to be incorporated 

into standard routines by the water supply sector, to screen water for EDCs. 

Lastly but certainly not least, as Marchese (2006) proposes, there are many actions we can take, 

both to reduce our personal risk and reduce the amount of dangerous chemicals that enter the 

environment to begin with. These actions comprise avoiding plastics as much as possible, eating 

fish low in mercury and fat, eating organic food whenever possible, using natural pest control 

instead of pesticides and herbicides, increasing awareness about EDCs and supporting efforts to 

increase EDC research and government regulation of EDCs to mention a few. 
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