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Abstract 

The growing resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) to currently 

prescribed drugs has resulted in the failure of prevention and treatment of different infections 

caused by the superbug. Therefore, to keep pace with the resistance, there is a pressing need 

for novel antimicrobial agents, especially from non-conventional sources. Several natural 

products (NPs) have displayed varying in vitro activities against the pathogen but few of these 

natural compounds have been studied for their prospects to be potential antimicrobial drug 

candidates. This may be due to the high cost, tedious, and time-consuming process of 

conducting the important preclinical tests on these compounds. Hence, there is a need for cost-

effective strategies for mining the available data on these natural compounds. This would help 

to get the knowledge that may guide rational prioritization of “likely to succeed” natural 

compounds to be developed into potential antimicrobial drug candidates. Cheminformatic 

approaches in drug discovery enable chemical data mining, in conjunction with unsupervised 

and supervised learning from available bioactivity data that may unlock the full potential of 

NPs in antimicrobial drug discovery. Therefore, taking advantage of the available NPs with 

their known in vitro activity against MRSA, this study conducted cheminformatic and data 

mining analysis towards hit profiling, hit-prioritization, hit-optimization, and target prediction 

of anti-MRSA NPs. Cheminformatic profiling was conducted on the 111 anti-MRSA NPs 

(AMNPs) retrieved from literature. About 20 current drugs for MRSA (CDs) were used as a 

reference to identify AMNPs with promising prospects to become drug candidates. This was 

followed by the prioritization of hits and identification of the liabilities among the AMNPs for 

possible optimization. Reverse molecular docking was used to predict the possible targets of 

these natural compounds based on their predicted free binding energy to 34 selected druggable 

targets in MRSA. The results for the cheminformatics profiling revealed that most of the 

AMNPs were within the required drug-like space of the investigated properties. The AMNPs 

(up to 80 %) showed good compliance with the Lipinski, Veber, and Egan predictive rules for 

oral absorption and permeability. About 30 % of the AMNPs showed prospects to penetrate 

the blood-brain barrier. Conversely, only 50 to 60 % of the CDs complied with these predictive 

rules for oral absorption and permeability, and none of the CDs showed the likelihood to pass 

through the blood-brain barrier. Good oral absorption and permeability are desirable to achieve 

the desired plasma concentration of the AMNPs, which is a prerequisite to their effectiveness. 

Regarding the effect on cytochromeP450 (CYP450) enzymes, 16 to 43 % AMNPs were 

predicted as inhibitors of one or more CYP450 enzymes. CYP450 enzyme inhibitors might be 
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given less consideration during hit-prioritization and selection because of the potential to 

interact with other drugs. The analysis of toxicity revealed that 80 and 59 % of the CDs and 

AMNPs respectively, might have low or no toxicity risks. Hit-prioritization strategy using a 

novel “desirability scoring function” revealed that the AMNPs with the desired drug-likeness 

showed the best score. Hit-optimization strategies implemented on AMNPs with poor 

desirability scores led to the design of two compounds with improved desirability scores and 

good synthetic accessibility scores. Evaluation of the structural-activity relationship of the 

AMNPs revealed chemical groups that may be the determinants of the reported bioactivity of 

the compounds. Regarding druggable target prediction, more than two-thirds of the compounds 

revealed a sufficient free binding energy (≤ -6 kcal/mol) for all the investigated targets 

(proteins) involved in fatty acid metabolism. The results also showed that some of the AMNPs 

might have multiple druggable targets. Prediction of the potential targets of the AMNPs 

provides a hypothesis for the mechanism of action of the AMNPs. Overall, this study has mined 

the available bioactivity data and predicted properties of the AMNPs to gain the knowledge for 

rational AMNPs hit-prioritization and implementation of hit-optimization strategies. This 

could also be the crucial starting point for the development of drug candidates against MRSA 

infections from natural compounds. 
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Chapter one 

Introduction 

1.1 Background of the study 

The advent of antibiotics in the 20th century was a great turning point in the history of medical 

sciences and mankind (Aslam et al., 2018). Many antibiotics were discovered and developed 

for human use twenty years after the second world war (Adedeji, 2016). This golden era (the 

1940s to 1970s) is remembered for the wonders of antibiotics in transforming human health by 

saving many lives through the treatment of infectious diseases (Adedeji, 2016; Hutchings et 

al., 2019). However, the few antibiotics developed after the period were derivatives of the 

existing antibiotics. The situation was compounded by the sudden emergence of antibiotic-

resistant pathogens (Aslam et al., 2018; Silver, 2011). This condition has resulted in a global 

burden of bacterial infections to a significant threat level especially among those pathogens 

which cannot be controlled using the old classes of antimicrobial agents (Chokshi et al., 2019; 

O'neill, 2014).  

 

Inappropriate use, excessive use in livestock feeding, and continuous failure of researchers to 

discover and develop novel antibiotics are some of the main factors responsible for the 

emergence of antibiotic resistance (Aslam et al., 2018; Singhai, 2018). The reason for lack of 

interest in pursuing novel antibiotics among pharmaceutical industries may be due to the low 

throughput in the antibiotics drug development pipeline with the attendant financial loss as a 

result of the complexity in balancing efficacy and safety (Jackson et al., 2018; Newman and 

Cragg, 2020; Tacconelli et al., 2018). Therefore, there is a need for pharmaceutical industries 

to identify new and more effective strategies for discovering and developing novel antibiotics. 

 

Natural products (NPs) have continued to gain relevance in the battlefront against infectious 

diseases. Newman and Cragg (2020) studied the use of NPs as sources of novel drugs approved 

between 1981 and 2019. They concluded that these compounds have prospects for discovering 

new agents against various infectious diseases (Newman and Cragg, 2020). An earlier study 

conducted by Seyed (2019) also reported the potentials of NPs as antimicrobial agents against 

a wide range of human diseases. Therefore, it is anticipated that an efficient exploration of 

libraries of NPs that are active against bacteria could identify potential antibiotics to defeat 

drug-resistant bacteria.  
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Several cheminformatic techniques have been developed and employed in drug discovery, 

design, and development to reduce the research cycle and minimize the cost of producing new 

anti-infective agents (Pereira and Aires-de-Sousa, 2018). Generally, the cheminformatics 

approach to rational drug design involves the estimation of pharmacokinetic and toxicity 

properties of potential drug candidates, with the prospect of minimizing the risk of future 

attrition (Obaid et al., 2017; Campillos, 2016; Shivakumar et al., 2018). The following 

sections describe the research problem, aim, and objectives of this study.  

 

1.2 Research problem 

The incidence of Methicillin-Resistant Staphylococcus aureus (MRSA) has become a global 

problem and even with a growing concern among developing countries (Lee et al., 2018; 

Tacconelli et al., 2018). This pathogen is a common cause of many life-threatening infections 

especially those associated with catheters, skin, or soft tissue. The continuous failure of the 

currently prescribed drugs in the treatment of MRSA has called for an urgent need to promote 

novel antimicrobial agents against MRSA infections (Guo et al., 2020; Tayel et al., 2018). 

 

Researchers have studied cheminformatic analysis of NPs with reported activities against 

different resistance pathogens (Egieyeh et al., 2016; Seyed, 2019). The in vitro activities of 

hundreds of NPs against MRSA have also been reported (Okwu et al., 2019). Nevertheless, 

there is a limited study on the pharmacokinetic properties, safety, and potential targets of these 

anti-MRSA NPs. This may be attributed to the high cost and long time required to conduct 

these essential preclinical tests. Hence, many of these compounds have not made progress 

beyond the hit identification stage in the drug development pipeline. This calls for more 

efficient and cost-effective approaches to screening bioactive compounds for their prospects to 

become drug candidates. In response to this clarion call, this study provided a framework for 

profiling bioactive compounds and for data-driven decisions in the transformation of profiled 

bioactive compounds to potential drug candidates that are optimized for efficacy, safety, and 

oral administration.  

 

1.3 Significance of the study 

This study would provide a framework for the characterization, prioritization, and optimization 

of anti-MRSA NPs towards becoming drug candidates with desirable efficacy and safety. This 

could be of great benefit to drug developers by providing insight towards making rational 
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decisions in optimization towards drug-likeness among known anti-infective compounds 

against MRSA. Additionally, knowledge about the potential targets of these compounds could 

be of great importance in the early identification of their potential mechanisms of action. The 

techniques employed for target identification in this study can identify anti-MRSA NPs that 

may be simultaneously active on multiple targets thereby minimizing the risk of resistance. 

Finally, the integration of computational strategies into drug discovery and development as 

used in this study could minimize the costs and duration of bringing new drugs to the patient 

bedside.  

 

1.4 Aim  

This study was aimed at profiling anti-MRSA NPs for hit-prioritization, optimization and to 

predict their potential targets in MRSA. 

 

1.5 Research questions  

This study was designed to use available cheminformatics approaches in drug discovery to 

answer the following questions. 

i. What are the pharmacokinetic profiles of the selected anti-MRSA NPs? 

ii. What is the drug-likeness profiles of the selected anti-MRSA NPs? 

iii. Is there a relationship between the in vitro activities (MIC) of the anti-MRSA NPs, and 

their drug-like properties?  

iv. Is there any considerable difference in the pharmacokinetic profiles of natural 

compounds and those of currently prescribed oral drugs against MRSA? 

v. What are the potential targets for the anti-MRSA NPs in MRSA? 

 

1.6 Objectives 

The objectives of this study are; 

I. To conduct a literature search for retrieval of anti-MRSA NPs with their minimum 

inhibitory concentration (MIC). 

II. To perform cheminformatics data mining and analysis of the anti-MRSA NPs toward hit 

profiling, hit-prioritization, and hit-to-lead optimization using different cheminformatics 

software. 

III. To predict the binding affinity of the compounds within the sites of MRSA proteins using 

molecular docking. 
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1.7 Thesis outline 

In total, there are six chapters in this thesis. Chapter one presents the rationale for the study and 

a general overview of this thesis. It starts with brief background information on the global 

incidence of bacteria resistance to currently prescribed drugs and the need for novel antibiotics. 

This is followed by a brief description of the use of cheminformatic techniques in drug 

discovery. Furthermore, the statement of the problem, the aim, and objectives of this study are 

also provided. The concluding part of the chapter presents the outline of the subsequent 

chapters of this thesis. Four more chapters follow. Chapter two provides a comprehensive 

review of the literature on the global prevalence of antimicrobial resistance. It also discusses 

the prospects of NPs in drug discovery and their limitations. This chapter further identifies 

some of the molecular descriptors that are crucial for hit identification and hit-to-lead 

optimization process. In addition, some basic computational target prediction approaches, their 

advantages, and limitations in drug discovery research are also presented here. Chapter three 

is the methodology section. This chapter starts with the data collection process and the different 

software that was used in the study. It further describes the specific details of how the study 

was carried out. The remaining two chapters describe the actual findings of this study. Chapter 

four is the results and discussion section. It starts by providing the findings on the 

cheminformatic profiling, prioritization, and optimization of NPs that have shown in 

vitro activities against MRSA for drug-likeness. The latter part of this chapter provides the 

findings on the target prediction and the implications. Chapter 5 presents a summary of the 

major findings based on the objectives highlighted in chapter one. It also gives 

recommendations for future studies. Finally, the full lists of the cited works and supplemental 

information from this study are presented in chapter 6.  
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Chapter two 

Literature review 

This chapter provides a brief survey of previous studies that have been reported on the 

antimicrobial resistance of bacteria. The global prevalence of drug-resistant pathogens, their 

impact on public health and the economy is described. Information is also provided on the 

urgent need to avert the impending danger of antimicrobial resistance. Furthermore, the 

prospects of natural products over synthetic compounds in drug discovery and development 

are highlighted. The approaches and application of cheminformatic strategies in hit profiling 

and hit-to-lead optimization process of drug discovery are also discussed in this review. 

 

2.1 Overview of antimicrobial resistance 

Antimicrobial resistance (AMR) is a genetic alteration in microorganisms, that causes them to 

resist eradication by previously effective antibiotics (Aslam et al., 2018; O’neill, 2014). These 

microbes tend to prevent drugs from inhibiting, destroying, or killing them, causing persistent 

infections with increased risk of transmission (Smith et al., 2015; Wallinga et al., 2015). 

Resistance is developed by most pathogenic microbes (bacteria, viruses, fungi, protozoans, 

etc.) to the drugs used in their treatments (Dadgostar, 2019). The emergence of novel 

mechanisms of resistance in some pathogens accounts for their ability to simultaneously resist 

several classes of antibiotics (Ferri et al., 2017). These multidrug-resistant microbes are 

commonly called “superbugs’’ (Wallinga et al., 2015; WHO, 2014). 

 

The risk for inefficient treatment of infectious diseases as a result of multidrug resistance is 

becoming more problematic globally (McAdam et al., 2012). Researchers have unambiguously 

used AMR to describe public health associated problems. Of all the pathogenic microbes 

studied, the focus on bacteria has gained momentum due to the rapid loss in potency of various 

antibiotics that are used in the treatment of infections caused by them (McAdams et al., 2012; 

Wallinga et al., 2015). Some strains of bacteria are resistant to all groups of antibiotics 

(Krishnamoorthy et al., 2018). For instance, Methicillin-Resistant Staphylococcus aureus 

(MRSA) is not only resistant to β-lactam antibiotics but also aminoglycosides, 

chloramphenicol, macrolides, and tetracycline (Krishnamoorthy et al., 2018). Similarly, 

Klebsiella pneumoniae has shown resistance to third-generation cephalosporins and 

carbapenems (WHO, 2014). Therefore, there is a need for infection control and interventions 

aimed at preventing the spread of these highly resistant pathogens. 
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2.1.1 Contributing factors to antimicrobial resistance 

After the discovery of the first antibiotic, AMR was observed as a natural process. However, 

the genes responsible for resistance in some bacterial strains were shown to have existed 

millions of years before the discovery of antibiotics (McAdam et al., 2012; O’neill et al., 2014). 

Some factors have been reported to contribute to the exacerbation of AMR. These include the 

inappropriate use of antibiotics, patient non-compliance, and transfer of resistance within or 

from one strain to another (Borges et al., 2013; McAdam et al., 2012; Ventola, 2015; 

Wikaningtyas and Sukandar, 2016). Lastly, the extensive use of antibiotics as growth additives 

in livestock feeding in most parts of the world has also contributed to the menace of AMR 

(Dadgostar, 2019; Ventola, 2015).  The alteration in the genetic makeup of resistant bacteria 

because of these factors is prompting the potency of conventional drugs to fail within a very 

short period (Chandra et al., 2017). 

 

2.1.2 The worldwide prevalence of antimicrobial resistance to conventional drugs 

The global rates and spread of drug-resistant bacteria have been reported by various health 

agencies. The World Health Organisation (WHO), the European Centre for Disease Prevention 

and Control (ECDC), and the Centre for Disease Control and Prevention (CDC) have identified 

AMR pathogens as one of the main threats to public health (Ferri et al., 2017). The CDC 

recently identified 220 pathogenic bacterial strains with unusual antibiotic-resistant genes in 

about 27 regions of the United States of America (USA) (CDC, 2018). It further reported that 

about 25 % of all the identified pathogens can transfer resistant genes to non-resistant bacteria 

(CDC, 2018). In another study, high-risk clones such as Klebsiella pneumoniae ST258, 

Pseudomonas aeruginosa ST255, Enterococcus faecium CC17, and Escherichia coli ST 131 

were shown to transfer highly antibiotic-resistant phenotypes, thereby causing almost 

untreatable infections (Friedman et al., 2016). Additionally, based on the emergence of 

vancomycin-resistant Staphylococcus aureus strains, the failure of vancomycin which is 

considered as the mainstay of treatment for MRSA-caused infections has also been reported 

(Escobar et al., 2020). 

 

Furthermore, to investigate the current AMR worldwide surveillance, WHO has studied the 

resistance pattern of more than 30 bacteria isolates from each continent. One of the crucial 

findings of this investigation was the high rate of resistance among the isolated pathogens such 

as Staphylococcus aureus, Enterococcus spp, K. pneumonia, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter species commonly associated with 
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hospital-acquired infections (Founou et al., 2017; Santajit and Indrawattana, 2016; WHO, 

2014). In addition, Wang et al. (2020) studied multidrug resistance in patients with urinary 

infections and noticed a high rate of resistance to ampicillin,  3rd generation classes of 

cephalosporins, and fluoroquinolones in Escherichia coli, Enterococcus faecalis, Proteus 

mirabilis, and Klebsiella pneumoniae. Furthermore, the increased use of antibiotics as a 

regimen in the fight against the COVID-19 pandemic can also increase the prevalence of AMR 

globally (Nieuwlaat et al., 2020). Thus this problem could eventually have a negative impact 

on the economy and public health (Dadgostar, 2019; McGowan, 2001). 

 

2.1.3 Clinical and economic impacts of antimicrobial resistance 

The impact of AMR bacteria on global health and economy has been widely studied (Founou 

et al., 2017; Sharland et al., 2015; WHO, 2014). Presently, about 700,000 reported cases of 

mortality are annually attributed to AMR (Dadgostar, 2019; Ghosh et al., 2019). Various 

studies have also projected a rise above 100 million cases of untimely death by 2030, and an 

increase to 10 million per annum by 2050 (Founou et al., 2017; Ghanbar et al., 2018; O’neill 

et al., 2014). Similarly, it was recently mentioned that AMR would aggravate the rate of 

poverty in developing countries compared to the rest of the world (Dadgostar, 2019). 

Furthermore, bearing in mind that the high use of antibiotics in COVID-19 patients may shift 

gains in short-term COVID-19 mortality to an increase in long-term deaths caused by AMR, 

one may infer that AMR would be a worse global enemy to manage than the current pandemic 

(Nieuwlaat et al., 2020). Regarding the global economic impact, it was estimated that the AMR 

threat may cause a 1.4 and 2.5 % reduction in gross domestic products (GDP) by 2030 and 

2050 respectively (de Kraker et al., 2016; Ghosh et al., 2019; O’neill et al., 2014). Therefore, 

the current approaches to fight COVID-19 such as the development of new therapies, and 

vaccines may also be required to avert the impending danger of AMR (Nieuwlaat et al., 2020).  

 

2.1.4 Approaches to combat antimicrobial resistance  

The two crucial strategies to address the challenges associated with drug-resistant pathogens 

are preventive and remedial approaches (Singhai, 2018). The goal of preventive measures is to 

combat the rate at which AMR develops as a result of human-related factors such as the 

inappropriate use of antimicrobial therapies. On the other hand, remedial approaches are 

targeted towards the development of novel treatment options (Abreu et al., 2012; Singhai, 

2018). The development of new antibiotics is crucial in eradicating AMR as it is the only means 

to ensure the level of infection control (Hughes and Karlén, 2014). 
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2.2 Methicillin-Resistant Staphylococcus aureus (MRSA) 

Methicillin-Resistant Staphylococcus aureus (MRSA) is a bacteria that has developed 

resistance to β-lactam therapies and several first-line drugs (Barrett, 2005; Hampton, 2016). 

This resistance is due to a mecA gene located on the Staphylococcal cassette chromosome mec 

(SCCmec) that codes for a 78-kDa penicillin-binding protein (PBP2a). This causes the MRSA 

to have a decreased affinity for methicillin and all other β-lactam drugs (Abdulgader et al., 

2015; Amoako et al., 2019; Boswihi et al., 2018; Catteau et al., 2018).  

 

2.2.1 MRSA: A serious challenge to public health 

MRSA is a serious threat to the public health of many countries. It is the main aetiological 

agent of nosocomial and community-acquired infections (Abubakar and Sulaiman, 2018; 

Abdulgader et al., 2015; Lee et al., 2018; Lee et al., 2010). During the last 4 decades, MRSA 

caused infections has worsened globally. This is evidenced by a rapid increase in reported cases 

from an average of 3 % in the mid-1980s to about 65 % in 2018 (Dong et al., 2018). Clinical 

conditions commonly associated with MRSA include bacteremia, bone, and joint infections, 

endocarditis, meningitis, osteomyelitis, pneumonia or respiratory infections, skin and soft-

tissue infections, surgical site infections, toxic shock syndrome, and urinary tract infections 

(Abubakar and Sulaiman, 2018; Amoako et al., 2019; Dong et al., 2018). Some of these 

infections if left untreated can result in serious morbidity, high economic burden, and 

eventually death (Abubakar and Sulaiman, 2018). 

 

2.2.2 The global prevalence of MRSA 

There has been an increasing concern about MRSA since the 1960s in many countries. Ventola, 

(2015) investigated the crises of antibiotic resistance and reported that MRSA kills more 

Americans annually than the combination of HIV/AIDS, Parkinson’s disease, homicide, and 

emphysema. Similarly, Lee et al. (2018) examined the global prevalence of MRSA infections 

and reported the highest rate of prevalence (above 50 %) in South America. Intermediate rates 

(between 25 and 50 %) are common in Africa, Australia, and some European countries such as 

Portugal and Italy. Scandinavia and Netherlands are some of the European nations with a very 

low burden (less than 5%) of MRSA (Craft et al., 2019; Ferri et al., 2017; Lee et al., 2018). 

The global rate of this prevalence is described in Figure 2.1 below. 
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Figure 2.1. The global prevalence of MRSA (Adapted from Lee et al., 2018). 

 

Other studies have compared the prevalence of MRSA in developed and developing countries.  

For instance, an improved condition of MRSA burden in some parts of developed countries 

such as Asia, Germany, Europe, the United States, and Canada was reported in the literature 

(Lee et al., 2018; Abubakar and Sulaiman, 2018). This improvement was credited to the 

execution of control intervention programs (Abubakar and Sulaiman, 2018; Ferri et al., 2017; 

Lee et al., 2018). Although there is a limited record of cases in many developing countries (Fig. 

2.1), the available data has shown that the incidence of MRSA in sub-Saharan African countries 

has increased since the year 2000 (Abubakar and Sulaiman, 2018; Falagas et al., 2013; Lee et 

al., 2018). The differences in drug availability and usage as well as the risk factors such as 

weakened immune systems have contributed to the reported rate of MRSA prevalence in Africa 

(Lee et al., 2018). Therefore, MRSA prevalence in Africa needs to be given more attention 

while addressing antimicrobial resistance globally (Falagas et al., 2013). 

 

2.2.3 Mechanisms of resistance in MRSA 

Methicillin and other β-lactam families are known for targeting and disrupting the bacterial cell 

wall (Berger-Bächi, 2002; Stapleton and Taylo, 2002). Strains of MRSA can resist these 

antibacterial substances via the activities of penicillin-binding proteins (PBPs) such as PBP(2a) 

(Peacock and Paterson, 2015; Stapleton and Taylo, 2002). The primary role of PBP(2a) is to 

synthesize the bacteria-peptidoglycan layer. Therefore, to possess transpeptidase activity, 

USA 

Asia 
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Cameroon 
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PBP(2a) is characterized by a negligible affinity for β-lactam drugs (Berger-Bächi, 2002; 

Peacock and Paterson, 2015; Stapleton and Taylo, 2002). This accounts for the ability to 

maintain structural integrity of the bacterial cell wall even in the presence of β-lactam drugs 

(Berger-Bächi, 2002; French, 2010). Thus, the mechanism of MRSA is through the expression 

of a PBP(2a) which is resistant to the activities of methicillin and its families (Stapleton and 

Taylo, 2002).  

 

2.2.4 Health and economic impact of MRSA 

Different studies have described the worldwide health and economic burden of the MRSA 

threat. Nosocomial infections caused by MRSA in Europe were reported to affect more than 

150,000 patients annually resulting in an additional health care cost of approximately £ 400 

million (Abubakar and Sulaiman, 2018; Abdulgader et al., 2015). Similarly, in the USA, about 

11,300 MRSA-associated deaths are reported annually. This has resulted in an economic 

burden of up to US$ 13.8 billion on the society, depending on the prevalence of the associated 

infections (Abdulgader et al., 2015; Lee et al., 2013). Moreover, in South-eastern China, the 

average cost of treating MRSA infections was estimated at US$ 10.565 per patient (You et al., 

2017). Currently, there is no available report for the health and economic burden of MRSA-

associated infections in developing countries. Nevertheless, the increased isolation rates in the 

healthcare settings of these less developed countries have led to the expectation of similar or 

higher effects than those of the advanced countries (Abubakar and Sulaiman, 2018; Founou et 

al., 2017).  

 

2.3 Natural products in drug discovery 

2.3.1 Natural products and their inherent medicinal values 

Compounds sourced from natural products (NPs) have proved to be promising in the discovery 

and development of novel anti-MRSA drugs (Abreu et al., 2012; Dong et al., 2018). These 

compounds are obtained from living organisms such as bacteria, fungi, plants, and marine 

microorganisms (Chen et al., 2015; Özakin and Bostanci, 2019). It was recently mentioned that 

four-fifths of the population in most developing nations are living on trado-medical practices 

as the main source of treatment in basic healthcare services (Wright, 2019; Zengin et al., 2017). 

In addition, a previous study has extensively described the approval of some NP-based 

therapies against a range of diseases such as cancer, diabetes, and other infections (Harvey, 

2008). Furthermore, three out of the five newly developed drugs by the United States Food and 

Drug Administration (FDA), representing novel classes of antibiotics between 1981 and 
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2010 were also sourced from NPs (Harvey et al., 2015). Therefore, there is an increased interest 

in exploring or pursuing NPs as promising lead compounds in combating multidrug-resistant 

bacteria (Jaradat et al., 2017; Zengin et al., 2017).  

 

2.3.2 In vitro antimicrobial activity of extracts from natural products 

Generally, the identification and evaluation of potential hits among NPs are essential towards 

the achievement of a set goal in drug development. This is because any biologically active 

compound could provide selective ligands for the target of disease-causing organisms 

eventually disrupting the disease pathways (Gu et al., 2013). The antimicrobial potential of 

crude extracts and pure NPs has been studied by observing the growth response of pathogens 

to samples. The selection criteria of potential antimicrobial compounds relate to minimum 

inhibitory concentration (MIC) values of not more than 100 μg/mL and 25 μM for crude extract 

and pure compounds respectively (Bueno, 2012).  

 

2.3.3 Natural products have more prospects than synthetic compounds in drug discovery. 

Nature has been described as the most inspiring source of new and efficient pharmacological 

molecules (Fang et al., 2018; Shen, 2015). The poly-pharmacological profiles of NPs are more 

than those found in synthetic drugs. Synthetic compounds have less complex stereochemical 

properties and are sometimes characterized by unacceptable side effects. Natural products 

however are known with broad chemical diversities, fewer aromatic rings, increased oxygen 

but lower nitrogen or halogen constituents, sp3-hybridization chiral centers, and larger macro-

cyclic aliphatic rings (Davison and Brimble, 2019; Guo, 2017; Wright, 2019). These properties 

enable the molecules to efficiently interact with biological targets (Wright, 2019). Thus, these 

compounds have privileged structures and they have remained essential components in the 

search for and development of novel, cheap, and safe drug candidates. 

 

2.3.4 Limitations of natural products in drug discovery projects 

Despite the enormous potential and previous accomplishments in drug developments, modern 

pharmaceutical industries have favored synthetic compounds as a more tractable replacement 

(Wright, 2019). This is due to the chemical complexity, toxicity, and poor pharmacokinetic 

properties that are often associated with NPs (Davison and Brimble, 2019; Harvey, 2008). 

Moreover, shifting in drug discovery strategies to biochemical and high throughput screening 

of large quantities of active molecules has also limited the use of NPs in drug development. 

This is because the screening process only permits large libraries of molecules to be explored 
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using modern synthetic approaches such as combinatorial chemistry which is not suitable for 

NPs (Davison and Brimble, 2019). 

 

Furthermore, since they are usually obtained in small amounts from the original organism, it is 

slow and difficult to work with NPs especially in terms of their purification and identification 

from complex mixtures. Finally, more than 200,000 NPs have been described in the literature. 

The consequence of this is that evaluation of the biological activities of extract from natural 

substances aimed at discovering novel molecules may lead to the identification of already 

known compounds repeatedly. All these challenges have limited the therapeutic potentials of 

NPs for modern drug designers. However, modifying the structure of these products can help 

in their optimization for drug candidates (Davison and Brimble, 2019). 

 

2.4 Challenges in drug discovery and development 

The process of drug discovery and development is difficult, broad, risky, costly, and time-

intensive (Pereira and Aires-de-Sousa, 2018; Prada-Graci et al., 2016). The probability of a 

bioactive compound reaching the clinical trial stage and eventually making it to the market was 

estimated at 12 % (Nicolaou, 2014; Pereira and Aires-de-Sousa, 2018). Additionally, it takes 

more than 10 years, and an average cost of US$ 2.5 billion to transform a bioactive compound 

into a commercialized drug. Furthermore, the ratio of drugs approved per annum to the 

resources used in their discovery and development has remained relatively unchanged over the 

last decade (Jayasundara et al., 2019; Mullard et al., 2014; Pereira and Aires-de-Sousa, 2018; 

Prada-Graci et al., 2016; Shivakumar et al., 2018). Therefore, it has become crucial to embrace 

the available knowledge in the quest for faster and more effective approaches to drug discovery 

and development. 

 

2.5 Modern techniques in drug discovery and development 

Modern drug developers have employed different strategies targeted at overcoming the 

aforementioned challenges. Some of these techniques rely on previously described methods 

(Nicolaou, 2014; Zhang et al., 2017). For instance, the use of traditional techniques such as 

combinatorial chemistry and high-throughput screening approaches have led to a large increase 

in the available volume of structural and biological data to steer rational decision making in 

pharmaceutical industries. This has given rise to a technique called cheminformatics (Gillet, 

2019).  
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2.5.1 Overview of cheminformatics  

Cheminformatic is a data mining technique that uses computer and information strategies to 

solve chemical problems by processing raw data into information and information into 

knowledge (Egieyeh et al., 2016; Gillet, 2019; Medina-Franco, 2013). Chemical data 

processing in this context involves working with chemical structures (Xu and Hagler, 2002). 

Therefore, the goal of this strategy for drug developers is to provide better and faster decision-

making processes in terms of discovery and lead optimization (Egieyeh et al., 2016; Gillet, 

2019). Cheminformatics is gaining much acceptance in the field of computational chemistry. 

It has great potential especially in the retrieval and extraction of chemical information, database 

search for compounds, interactive data mining for molecular graph, and analyses of chemical 

diversity (Gillet, 2019; Jónsdóttir, 2005; Medina-Franco, 2013; Xu and Haggler, 2002). Since 

these techniques employ computer-based modeling, they are sometimes called computer-aided 

rational drug design (CARD) (Wang et al., 2015). 

 

2.5.2 Computer-aided rational drug design 

Computer-aided rational design (CARD) has been used as a key tool in drug development to 

explore collections of small molecular compounds for potential lead (Pereira and Aires-de-

Sousa, 2018; Zhang et al., 2017;). Compounds with the most possibility of binding to an 

enzyme or other related drug targets are identified with CARD techniques and it enhances a 

more reliable hit rate than when only the traditional experimental screening technique is used 

(Zhang et al., 2017). The use of CARD by drug developers have been described as of great 

advantage over traditional techniques. The traditional technique is commonly characterized by 

a high cost of resources or time, and a high attrition rate (Chen et al., 2017; Živković et al., 

2019). In contrast, CARD can substantially save the cost of developing new drugs by up to 50 

%. This is because this tool can be employed to guide the focus of drug developers only on 

potential drug candidates instead of the large chemical libraries of small molecules (Chen et 

al., 2017; Wang et al., 2015).  

 

Corresponding CARD techniques involved in identifying hit or hit-to-lead compounds include 

pharmacophore modeling, QSAR models, and molecular docking. In addition, CARD has been 

successfully used to predict drug characteristics such as absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) of drug candidates (Chen et al., 2017; Hassan et al., 2016). 

This technique is also relevant in predicting the binding affinity of active molecules to putative 

drug targets (Chen et al., 2017; Hassan et al., 2016). Although to make relevant predictions 
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using these strategies for NPs, it is vital to have access to chemical structure with a well-defined 

spatial arrangement of the atoms. In another way, there is a propensity that computer-aided 

prediction favours synthetic molecules over natural compounds for physicochemical 

parameters. This is due to the more abundance and less structural complexity of the synthetic 

compounds. Nevertheless, CARD has proven significantly important in the evaluation of novel 

drug candidates from NPs (Chen et al., 2017). Some of the studies that have successfully 

applied CARD techniques towards identifying potential lead from NPs against MRSA are 

described in Table 2.1 below.  
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Table 2.1. Cases where CARD techniques were employed to identify potential lead compounds 

from NPs against MRSA. 

 

 

 

Investigated NPs Source of data Approaches used References 

Flavonoids In-house library of 

phenolic compounds 

Docking, molecular dynamic 

simulation and structure-activity 

relationship (SAR) analysis 

Alhadrami et 

al., 2020 

Melantriol  ADMET and docking studies Skariyachan et 

al., 2011 

β- Sitosterol  ADMET and docking studies Skariyachan et 

al., 2011 

Anthraquinone  Docking studies Wang et al., 

2018 

Diflunisal  Commercial databse 

screening-drug 

repurposing  

Virtual screening and similarity 

search 
Khodaverdian 

et al., 2013 

Marinopyrrole A, AGN-PC-
07NF8H, Azalomycin, 

Methylsulfomycin I, a10255, 

GE37468, Tallysomycin, 

Cleomycin B2, Bleomycin z, 

Bottromycin A2,  Berninamycin 

C and Cyclothiazomycin. 

StreptomeDB 2.0 library Machine learning through 
quantitative structure–activity 

relationship (QSAR) studies 

Dias et al., 

2019 

Sesamin, pellitorine, uineesine, 
brachystamide B and pipataline 

Plant (piper longum) Pharmacokinetics and docking 
studies 

Alluraiah et al., 

2019 

Oxadiazoles ZINC database Virtual sreening and docking O’Daniel et al., 

2014 

Quinazolinone  Plants Docking and ADMET prediction 

studies 
Qureshi et al., 

2019 

Phenolic compounds Algerian Sahara plant 

(Forssk) 

Docking studies Ziani,et al., 

2020 

Phenolic compounds 

(Protocatechuic, p‐coumaric acid, 

and 2,4‐dihydroxybenzoic, and ) 

Wild mushroom SAR analysis and docking 

studies 
Alves et al., 

2013 

Aspermerodione Fungus (Aspergillus sp.) Docking and virtual screening Qiao et al., 

2018 

Cannabinoid compounds Cannabis sativa Drug-likenesss prediction, 

QSAR and docking studies 
Cortes et al., 

2020 

Hamamelitannin derivative 

compounds 

PubChem database Ligand-Based Pharmacophore 

Modeling and Virtual Screening 
Johari et al., 

2013 
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2.5.3 Virtual screening for hit identification. 

Computational strategies enable the prediction of biological targets of active compounds at the 

early stage of drug discovery by using information from the chemical database (Banegas-Luna 

et al., 2018; Hassan et al., 2016). This technique commonly known as virtual screening (VS) 

is employed to identify promising molecules from a large chemical scaffold by exploring 

commercial or freely available chemical structure databases (Tomar et al., 2018). In a previous 

study, 11 compounds were discovered after VS analysis was conducted on about 4000 

phytochemicals against estrogen receptors (Medina-Franco, 2013). Apart from facilitating the 

querying of active molecules for their targets, this technique also tends to identify active 

compounds that require optimization (Prada-Gracia et al., 2016). Compounds that meet up with 

the desired filtering criteria in VS are called hit compounds. Nevertheless, hit molecules from 

VS are recommended for experimental validation of their predicted activities (Gimeno et al., 

2019). Furthermore, based on the type of information available about the system under 

inspection, VS techniques can be classified as either structure-based or ligand-based screening 

(Fig. 2.2) (Banegas-Luna et al., 2018; Vyas et al., 2008; Wermuth et al., 2015). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.2. A schematic representation of virtual screening techniques in drug discovery. 

 

Structure-based virtual screening (Fig. 2.2) is employed during lead identification and 

optimization process to identify potential drugs by using the three-dimensional structural 
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2.2), however, uses the available information in known active ligands to predict the unknown 

targets (Banegas-Luna et al., 2018; Hamza et al., 2012). The ligand-based approach is 

popularly known for similarity comparisons between molecules (Pereira et al., 2020). Common 

examples of this technique include chemical similarity searching, pharmacophore modeling, 

and quantitative structure-activity relationship (QSAR) (Moumbock et al., 2019; Pereira et al., 

2020). The applications of some of these screening methods in drug discovery research are 

discussed below. 

 

2.5.3.1 Docking and scoring in structural-based screening. 

2.5.3.1.1 Docking  

Docking is a structure-based VS technique that is employed in the identification and 

optimization of prospective drug candidates through molecular modeling and investigation of 

ligand-target interactions (Sethi et al., 2019; Tomar et al., 2018). These interactions could 

generate many ligand conformations and orientations of which the most suitable ones are 

considered (Prada-Gracia et al., 2016). Additionally, the effectiveness of any promising drug 

candidate is a function of how appropriate the ligand is positioned in the receptor (Jónsdóttir 

et al., 2005). Docking has proved effective in the investigation of a large collection of chemical 

substances, narrowing them into a more reasonable subset that can be enhanced for the 

interacting targets (Prada-Gracia et al., 2016). Different software including Automated 

docking, AutoDock Vina, Gold, SURFLEX, DOCK, and GLIDE has been identified as 

programs available for docking (Katsila et al., 2016).  Different studies have also reported the 

successful application of docking strategy in drug discovery (Olğaç et al., 2017; Rout et al., 

2017; Sethi et al., 2019). Nevertheless, Sethi et al. (2019) studied the principles and 

applications of docking in modern drug discovery and reported poor scoring functions as the 

major limitation. 

 

2.5.3.1.2 Scoring  

Scoring is employed in VS to estimate and rank the free energy binding of a ligand at their 

different conformation to the target (Prada-Gracia et al., 2016; Sethi et al., 2019). Scoring 

evaluates the ligand-target interaction energy through a regression of two or more variable 

quantities of various properties to get a likely or actual binding energy in a short time (Tomar 

et al., 2018). These properties are lipophilicity, ionic interactions, and the number of hydrogen 

bonds, etc. The major classes of scoring functions include force field, statistical-based 
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potentials, machine learning, consensus-based and empirical-based score. SURFLEX software 

as an example employs an empirical-based function that relies on the counted numbers of 

existing ligand-target interactions. Similarly, DOCK employs a force field to estimate the 

strength of the intermolecular interactions between existing atoms of the two interacting 

partners (Katsila et al., 2016). 

 

2.5.3.2  Ligand-based screening methods in drug discovery 

2.5.3.2.1 Pharmacophore modeling 

Huang et al. (2018) have studied several methods of searching for the unknown targets of 

chemo-preventive molecules. They reported that the basic principle of pharmacophore 

modeling is the spatial arrangement of the features that are necessary for the binding of a ligand 

to its target. The pharmacophore model is described by the chemical features and spatial 

arrangement of features such as partial charge, aromatic and aliphatic hydrophobic moieties of 

the active site, hydrogen bonds, acidic, and basic side chains. The use of these descriptors in 

VS can provide a guide towards identifying prospective binding partners. The generated 

pharmacophore model can be used to query a database for potential hits or targets (Huang et 

al., 2018; Moumbock et al., 2019). Furthermore, commonly used software programs for 

pharmacophore modeling include Discovery studio, MOE, Schrodinger maestro, and 

LigandScout (Moumbock et al., 2019; Prada-Gracia et al., 2016). Kirchweger et al. (2018) 

recently employed LigandScout to identify G protein-coupled receptors (GPBAR1) as the 

target for two NPs; arnesiferol B and microlobidene. Nevertheless, there is no direct process 

for generating a pharmacophore query (Hassan et al., 2016). 

 

2.5.3.2.2 Quantitative structure-activity relationship (QSAR) 

The basis of this model is that physicochemical features and biological activities of a compound 

are embedded in its chemical structure (Tomar et al., 2018). Therefore, QSAR tends to link the 

chemical structure of a molecule to the physicochemical (including lipophilicity, molecular 

weight, aqueous solubility, geometry, atom types, molar refractivity, electronegativity, etc.) or 

therapeutic attributes (such as binding sites affinities of ligands and inhibition constants, 

toxicity, etc.) within the library of congeneric molecules (Ekins et al., 2007; Prada-Gracia et 

al., 2016; Tomar et al., 2018). In other words, if a considerable connection is generated for a 

group of compounds in the library with the robustness of biological data, informatics 

approaches can be employed in predicting the biological activities for other compounds. 
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Nevertheless, a successful prediction of QSAR is a function of choosing the appropriate 

descriptors as well as the capability to establish a suitable mathematical connection between 

different compounds (Ekins et al., 2007; Tomar et al., 2018). 

 

Finally, VS methods are preferred to the traditional techniques of screening because millions 

of substances can be screened within a very short period and at a very lower cost (Prada-Gracia 

et al., 2016; Pereira et al., 2020; Tomar et al., 2018). Nevertheless, considering the strength 

and weaknesses of each of the VS methods, an in silico project workflow that combines the 

different techniques is highly recommended to minimize false-positive result that is common 

to a single method (Pereira et al., 2020).  

 

2.6 Basic descriptors for evaluating physicochemical and pharmacokinetic properties. 

Evaluation of the physicochemical parameters (PP) of potential drug candidates is very crucial 

in drug development as it helps in the early identification of molecules that may fail at a later 

stage (Wenlock and Barton, 2013). The absorption or therapeutic action elicited by a drug 

depends largely on the interaction between the various physical and chemical properties of the 

drug and the targets (Chandrasekaran, 2018). Therefore, the physical and chemical properties 

of any compound are crucial to evaluate the drug-likeness (Medina-Franco, 2015). 

Furthermore, for a better drug-receptor relationship, PP can be manipulated to an optimized 

condition using computer-aided strategies (Chandrasekaran, 2018). A few of these PP that are 

key to determining the biological activity of any drug candidate are discussed below 

(Chandrasekaran, 2018; Wenlock and Barton, 2013). 

 

2.6.1 Partition coefficient (logP) 

The partition coefficient (logP) is the ability of an uncharged molecule to dissolve in a 

nonhomogeneous two-phase system of lipid and water (Bhal, 2007). It measures the amount of 

solute that mixes in the water against that which dissolves in a lipophilic portion.  This property 

is used to evaluate how a molecule travels to the target from the site of administration (Bhal, 

2007; Chandrasekaran, 2018). This implies that the values of logP are significant indicators of 

the fate of an administered drug in the target organism. A negative logP indicates that the 

molecule is more hydrophilic, and a positive logP shows that the molecule has a higher affinity 

for the lipophilic phase. Similarly, zero logP means that the substance is equally partitioned 

between the bi-phasic system (Bhal, 2007). To achieve the desired antibiotic efficiency, it is 
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therefore important to design high lipophilic drug candidates since the biological target is a 

lipid layer.  

 

2.6.2 Hydrogen bonding 

Hydrogen bonding refers to the affinity between an atom of hydrogen from a given compound 

(known as the donor) and a hydrogen atom from different compounds (known as acceptor). 

This is evidence by bond formation (Schwöbel et al., 2011; Yunta, 2017). Hydrogen bonds 

(HBs) are significantly important in evaluating the specificity of the binding of a ligand 

substance to a receptor. Studies have established the impact of HBs in the analysis of the 

quantitative structure-activity relationships (QSAR) model (Chandrasekaran, 2018; Schwöbel 

et al., 2011). Hence, the role of quantifying HBs is significant in the process of designing and 

optimization of lead compounds (Schwöbel et al., 2011). Furthermore, the addition of a 

properly positioned HBA side chain (to form an intramolecular HB) may be logical when 

HBDs are required for target activity (Rankovic, 2015). 

 

2.6.3 Permeability of drugs 

The propensity of a druglike substance to successfully move across the membrane of living 

organisms is highly essential. Knowledge about the permeability capacity of a drug is required 

in understanding the movement from sites of administration to the bloodstream (Bohnert and 

Prakash, 2011). A permeable drug is expected to pass through semi-permeable barriers, 

intestinal epithelial, and blood-brain barriers (BBB) by the pathway of passive diffusion. A 

poorly permeable drug may, however, be due to various structural characteristics and or efflux 

pathways connected with the membrane of the target. Additionally, drug permeability is 

influenced by other properties. For instance, physicochemical properties such as high 

lipophilicity, low molecular size, polarity, and hydrogen bond have been established to have a 

great influence on the prediction and optimization for drug permeability (Bohnert and Prakash, 

2011; Rankovic, 2015). 

 

2.7 Concept of drug-likeness 

Molecular techniques are preferred by drug developers than the experimental design because 

the former has the potential of enhancing the prospects of seeking novel drug candidates 

(Meanwell, 2011). Bickerton et al. (2012) reported that the distribution of some key PPs (such 

as molecular weight, lipophilicity, polarity, numbers of hydrogen bond acceptors, and donors) 
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of approved drugs confirms that they are relatively found within a definite range of possible 

values. Molecules within this range are called drug-like (Bickerton et al., 2012). The idea 

behind predicting the drug-likeness of a substance is that some properties can be more desirable 

in developing a drug candidate. For instance, some sets of criteria have been used by drug 

developers to evaluate the prospects of hits to become successful drugs (Krämer et al., 2016; 

Medina-Franco, 2013). In addition, by determining the pharmacokinetics and toxicity of the 

potential drug candidate, one could rather increase in vivo efficacy instead of attrition that is 

linked to drug toxicity (Boufridi and Quinn, 2018). 

 

2.7.1 Lipinski’s rule of five (Ro5) 

The Ro5 is a collection of some important PP that needs to be prioritized in determining the 

success of orally administered drugs (Chandrasekaran, 2018; Lipinski, 2004; Tian et al., 2015). 

There is a likelihood for poor absorption and permeability for drug candidates whose logP, 

hydrogen bond donors (HBDs), hydrogen bond acceptors (HBAs), and molecular weight 

(MW) are above 5, 5, 10, and 500, respectively (Krämer et al., 2016; Lipinski, 2004; Mignani 

et al., 2018; Tian et al., 2015). The digit 5 in Ro5 indicates the limit of the parameters which 

are multiples of 5 (Chandrasekaran, 2018). The goal of this strategy is to use a drug-likeness 

filter to quickly identify for; removal or optimization of poor pharmacokinetic compounds at 

an earlier stage of drug discovery (Krämer et al., 2016; Mignani et al., 2018; Tian et al., 2015).  

 

Several authors have explained successful cases where Ro5 has been employed to evaluate the 

drug-likeness of hundreds and thousands of NPs (Boufridi and Quinn, 2018; Lipinski et al., 

2012; Tian et al., 2015). Zhang and Wilkinson, (2007) also reported that about two-thirds of 

the FDA-approved drugs are both administered orally and passed the Ro5. However, some 

drawbacks have been identified with the use of Lipinski’s rule. For example, approved drugs 

such as atorvastatin, bromocriptine, and everolimus are notable violators of the Ro5 (Abad-

Zapatero, 2007; Benet et al., 2016). Similarly, Zhang and Wilkinson (2007) have reported that 

20 % of all orally administered drugs failed at least one of the parameters of Lipinski’s rule. 

Furthermore, the harsh cut-off that is used in Lipinski’s parameters has failed to distinguish 

between molecules with similar properties (Bickerton et al., 2012; Segall, 2014). In another 

way, a compound with a MW of 501 Da is considered to have a considerably lower likelihood 

of success than one with a MW of 499 Da (Wager et al., 2010). These constraints can result in 

significant missed opportunities (Segall, 2014; Wager et al., 2010). Therefore, the Ro5 alone 
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may not evaluate the pharmacological and drug-likeness prospects of any molecule (Mignani 

et al., 2018). 

 

2.7.2 Pharmacokinetics and toxicity parameters 

Pharmacokinetic descriptors such as absorption, distribution, metabolism, and excretion 

(ADME), and toxicity (T) are commonly used properties for profiling or predicting the fate of 

any drug candidate in the site of action (Vrbanac and Slauter, 2017). The concept of 

investigating the ADMET is of interest in early drug discovery because over 70 % of clinical 

failures have been connected to these properties (Sharma et al., 2018; Wang and Urban, 2004). 

In addition to potency, a successful drug candidate is expected to have favourable ADMET 

properties (Vrbanac and Slauter, 2017; Wang and Urban, 2004).  

 

The use of technologies in determining these parameters has significantly contributed to recent 

advancements in the discovery and development of new drug candidates (Chandrasekaran, 

2018). For instance, in silico approaches to evaluate ADME properties of drug candidates could 

guide computational chemists towards an effective structure-activity relationship (SAR) based 

optimization for good absorption, high bioavailability, metabolic stability, and the required 

distribution in the body (Ekins et al., 2007; Wang and Urban, 2004).  

 

2.8 Techniques for optimization of NPs 

The aim of structurally optimizing NPs is to enhance the development of a potential drug 

candidate. In this process, the physicochemical and pharmacokinetic properties of a potential 

drug candidate can be selectively modified based on the limitations of their structure or activity 

(Chen et al., 2015; Guo, 2017; Xiao et al., 2016). In general, the required technique for this 

process is to improve the efficacy of the molecule. Additionally, this strategy also tends to 

optimize the molecules toward reducing toxicity, adjusting the violation of Lipinski’s criteria 

and in general, raising their ADMET properties for maintaining balanced structural features 

with potency (Chen et al., 2015; Guo, 2017). Finally, optimization process tends to enhance 

the synthetic accessibility of a drug-like compound.  

 

Structural optimization in drug design can be carried out through a combination of different 

approaches (Xiao et al., 2016). The simplest of these strategies is the direct chemical 

modification of functional groups through isosteric replacement, addition, and alteration of the 
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ring systems (Harrold et al., 2013). This strategy is based on the chemical similarity principle, 

which states that chemically similar structures will have similar bioactivity. Another 

optimization approach is through SAR and subsequent SAR-directed optimization. At this 

stage, the combination of chemical and biological information of the compound is used to 

generate a SAR, for rational optimization of hit compounds. These two approaches describe 

the case of more than 30 % of anti-cancer drugs that are analogues of natural products (Sharifi-

Rad et al., 2019; Xiao et al., 2016). Optimization of natural hit also uses a molecular design 

based on the core structures to generate pharmacophore-oriented molecular design. Examples 

of this strategy include the elimination of redundant chiral centers and scaffold hopping, 

commonly used to identify novel hits with intellectual properties. Unlike the first two 

approaches, the core structures of the original compound may change significantly during the 

last approach (Xiao et al., 2016). 

 

2.9 Conclusion 

The known catastrophe from the familiar enemies called AMR bacteria is inescapable. 

Nevertheless, going by the lessons learned from the COVID-19 pandemic, it has become 

imperative for researchers to stay ahead of another global pandemic by developing newer and 

more potent antibiotics. Although many NPs have proven to have the potential of filling this 

gap, the high financial implications, cost in time, and attrition rates commonly associated with 

drug discovery and development may not encourage this move. In contrast, the potential of 

computational strategies to speed up the process of resurrecting many valuable NPs from the 

graveyard to become the solution to AMR has been reviewed in this chapter. Researchers have 

used some of the different computational approaches discussed in this chapter towards lead 

identification in drug discovery. For instance, prediction of drug-likeness, pharmacokinetic 

properties, and structural-based virtual screening of selected NPs against viral targets was used 

recently to identify potential inhibitors of matrix protein (VP40) in the Ebola virus (Pereira and 

Aires-de-Sousa, 2018). Nevertheless, the success of combining different drug approaches for 

the final identification of informatic leads is significantly greater than that which is done 

either in silico or in vitro (Neves et al., 2016). That said, the use of in vitro or in 

vivo techniques is crucial in the validation of in silico predictions as this could guide drug 

developers against false-positive results. 
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Chapter three 

Materials and methods 

This chapter describes the research methodology. It begins with an overview of the materials 

used for the research. This is followed by a detailed description of the methods used in the two 

phases of the study. Phase one contains a detailed overview of data collection and data mining 

procedures for drug-likeness and pharmacokinetic profiling of the ligands.  Phase two describes 

an overview of the procedures for target prediction and analysis.  

 

3.1 Hardware and software 

All the computational studies were carried out on a Windows 10 ultimate PC with Intel Core 

i5-7200U processor, 8 GB memory, and 64-bit operating system. Biological databases: 

ChEMBL, Drug bank, PubChem, and PDB (Protein Data Bank). Software: Cytoscape version 

3.7.0, OSIRIS DataWarrior, MOE program (2019.01), StarDrop™, GraphPad Prism, KNIME, 

OpenBabel, PyRx version 0.8, and UCCF Chimera were all used in the study. 

 

3.2 Phase 1: Procedures for cheminformatics profiling of the AMNPs 

3.2.1 Data collection and preparation 

An electronic search was conducted in May 2019 to identify relevant studies by employing 

freely available public databases (Google Scholar, Science Direct, Scopus, and PubMed). The 

keywords: “Marine OR natural products AND MRSA’’, “Phytochemicals AND MRSA’’, and 

“MIC of phytochemicals AND MRSA’’ were used. The last search date was 20th May 2019. 

The reference lists of some of those eligible studies were also checked for related 

studies. Studies that reported the susceptibility of clinical isolates of MRSA to NPs, as 

determined by the reported minimum inhibitory concentration (MIC) were also included in this 

study. The search was customized and limited to reported publications from January 2009 to 

May 2019.  

 

A sum of 111 anti-MRSA natural products (AMNPs) (Appendix A) was retrieved based on 

the search strategy described above. The “Simplified Molecular Input Line Entry System 

(SMILES)” structures of the AMNPs and their respective bioactivity data were stored as a text 

file. The dataset was divided into three categories based on the in-vitro bioactivities as reported 

by the MIC of the different AMNPs (which ranged from 0.01 to 1600 μg/mL), using a 

modification of previously described methods (Catteau et al., 2018; Ndjateu et al., 2014). The 
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bioactivity categories include significantly active (SA), active (A), and negligibly or less active 

(NA) for MIC values ≤ 10, 10 ˂ MIC ≤ 100, and MIC >100, respectively. The 111 AMNPs 

were made up of 55 % SA, 34.2 % A, 10.8 % NA. In addition, current drugs for MRSA (CD) 

that are mostly derivatives of natural products were also retrieved from literature and used as 

the reference compounds (Appendix B). 

 

3.2.2 Estimation of molecular descriptors and physicochemical properties of the datasets. 

The SMILES structures of the datasets, retrieved from PubChem 

(http://pubchem.ncbi.nlm.nih.gov) (Hähnke et al., 2018), were uploaded onto the SwissADME 

webserver (Daina et al., 2017) to estimate the physicochemical properties of the AMNPs. Key 

molecular descriptors such as molecular weight, hydrogen bonds, partition coefficient between 

n-octanol and water, rotatable bonds, and polar surface area were also predicted with the MOE 

program (2019.01) (CCGI, 2016). The mean values of these properties were calculated for the 

different bioactivity categories of AMNPs and compared with that of the CDs. The 

SwissADME web tool was used to predict the potential of each AMNP to inhibit the 

cytochrome P450 (CYP450) enzymes. Biotransformation processes of the compounds were 

predicted by using a freely available web service at www.biotransformer.ca (Djoumbou-

Feunang et al., 2019). The rules proposed by Lipinski, Veber, and Egan were used to predict 

the drug-likeness of the AMNPs and CDs (Daina et al., 2017). The absorption and 

bioavailability properties of AMNPs were also predicted as described by Daina and Zoete 

(2016). Toxicity properties such as mutagenic, tumorigenic, reproductive, and irritant effects 

were assessed using OSIRIS DataWarrior software (Sander et al., 2015).  

 

3.2.3 Exploration of chemical space (Assessment of chemical diversity

ChemGPS-NP Web was used to explore the chemical space occupied by AMNPs relative to 

CDs. The SMILES structure and identifier of the datasets were submitted in the space provided 

on the ChemGPS-NP Web service (http://chemgps.bmc.uu.se) (Rosén et al., 2009). The output 

with eight principal components added for each structure was retrieved as a text file. The text 

file was visualized on a 3D scatter plot in OSIRIS DataWarrior software (Sander et al., 2015) 

using the first three principal components. Markers were coloured according to the categories 

of bioactivity, and the fourth principal component was used to size the markers. 
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3.2.4 Data analysis and visualization  

Scatter plots, box plots, and bar charts of the molecular descriptors, physicochemical 

properties, and other parameters estimated or predicted were plotted for AMNPs (and the SA, 

A, and NA categories) and CD using OSIRIS DataWarrior (Sander et al., 2015) and Prism 

GraphPad 6.0 (GraphPad Software). The mean of the molecular descriptors and 

physicochemical properties for AMNPs (and the SA, A, and NA categories) and CD were 

compared, and statistical differences were assessed using analysis of variance (ANOVA), with 

significance set at p < 0.05. Furthermore, the association between in vitro activities (MIC) of 

AMNPs and the molecular descriptors or physicochemical properties were determined using 

the Bravais-Pearson correlation coefficient (r).  

 

3.3 Phase 2: Procedures for target prediction by reverse docking. 

3.3.1 Protein selection 

The protein-ligand interaction is a significant part of computer-aided drug design. Therefore, 

native protein structures were collected as drug targets. The keyword ‘’multidrug-resistant 

Staphylococcus aureus’’ was used to search for putative biological target information of S. 

aureus in ChEMBL (www.ebi.ac.uk/chembl/) and drug bank (www.drugbank.ca). The search 

result was filtered to targets in S. aureus only. About 57 hits were obtained in this process. The 

crystal structure of the four-letter code complexes with the lowest crystallographic resolution 

was downloaded from the RCSB protein data bank (https://www.rcsb.org/). The hits were 

further refined by removing all entries that were not related to S. aureus. Finally, about 34 

putative proteins were retained and used for the experiment (Appendix C). The search was 

conducted between March and June 2020. 

 

3.3.2 Ligand preparation 

The combined sdf structure of the AMNPs was imported onto PyRx (freely downloaded from 

http://pyrx.sourceforge.net/downloads) using the OpenBabel plugin tool (Dallakyan and 

Olson, 2015). The energies of the ligands were minimized using the uff geometry optimization 

force field, other parameters were left as default, and the minimized ligands were converted to 

a ready-to-dock PDBQT file (Shaker et al., 2020). 

 

3.3.3 Protein preparation 

Each of the downloaded protein structures (in their PDB format) was prepared with UCSF 

Chimera (https://www.cgl.ucsf.edu/chimera/) by removing molecules such as water, assigning 
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charges, and conducting energy minimization. The resultant protein was saved in PDB format, 

loaded onto PyRx, and converted to a ready-to-dock macromolecule PDBQT format (Shaker 

et al., 2020).  

 

3.3.4 Docking 

In this study, the PyRx version 0.8 software was selected over every other available resource 

for docking because it has a user-friendly graphical interface (Shaker et al., 2020). In addition, 

the scoring function in this tool provides for high efficiency, reliability, and accuracy of results 

(Attique et al., 2019; Chen and Ren, 2014). Molecular docking simulation was performed on 

this tool using the Autodock vina option inbuilt in the workspace (Dallakyan and Olson, 2015; 

Trott and Olson, 2010). The grid box was adjusted where necessary to enclose the residues of 

the active sites and their surroundings. Docking was run at exhaustiveness of 8 and all other 

parameters were left as default. 

 

3.3.5 Analysis  

The results from the docking were binding free energy values given in kcal/mol. The higher 

negative binding free energy (BE) values indicate better ligand-protein interaction (Dallakyan 

and Olson, 2015; Shaker et al., 2020). The summary result consists of the best binding free 

energy values of each AMNPs to the 34 putative proteins from MRSA. This was visualized as 

networks on Cytoscape software. Finally, the individual ligand-protein complexes were stored 

for further analysis of the amino acid interactions. 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



 

28 
 

3.4 Summary of methodology 

The Figure below (Fig. 3.1) provides the synopsis of all the major procedures explained in this 

chapter. It also highlights the major steps taken to conduct the current research project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. A flow chart of the method employed in the current research. 
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Chapter four 

Results and discussion 

This chapter is in two phases. The first phase provides detailed results from and implications 

of the cheminformatics profiling of the anti-MRSA natural products (AMNPs) for drug-

likeness and their pharmacokinetic properties. It also identifies and discusses their potentials 

for “hit” to “lead” optimization. The second phase of this chapter provides the findings on 

target prediction analysis and the implications. Finally, this chapter would be concluded with 

a summary of the key findings.  

 

4.1 Phase 1- Cheminformatics profiling for hit-prioritization and optimization of AMNPs  

The goal of this section was to use different cheminformatics software to perform data mining 

analysis of the datasets for drug-likeness profiling, hit-prioritization, and hit-to-lead 

optimization. The datasets were made up of the 111 AMNPs obtained from literature search.  

These compounds were predominantly phytochemicals and marine microbes, the range of 

reported bioactivity (MIC) was between 0.01 μg/mL to 1600 μg/mL. Drug-likeness profiling 

was done using 20 current drugs for MRSA (CDs) as reference compounds. The major results 

of these analyses are summarized below. 

  

4.1.1 Molecular descriptors and physicochemical properties of AMNPs and CDs  

The key molecular descriptors and physicochemical properties of the overall AMNPs and the 

different categories (significant active; SA, active; A and less active; NA) were profiled for 

drug-likeness using the current drugs for MRSA (CDs) as reference. The distribution of these 

properties and their implications are described below. 

 

4.1.1.1 Molecular weight (MW) 

Molecular weight (MW) is one of the key parameters required for oral bioavailability (Veber 

et al., 2002). Compounds with MW above 500 Da have been suggested to have a higher 

tendency for absorption problems, though natural products (NPs) may be an exception to this 

rule (Lipinski, 2004; Rosén et al., 2009). The results from this study depict that more than 86 

% of the AMNPs, as against 65 % of CDs were found less than 500 Da (Fig. 4.1a), and the 

mean of both datasets (AMNPs and CDs) were 381.1 and 733.5 Da, respectively. This implies 

that most of the AMNPs will be bioavailable via the oral route. 
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            a.                                                                                       b. 

 

 

4.1.1.2 Calculated octanol/water partition coefficient (clogP) 

The clogP is a well-known measure of hydrophilicity of a compound (Nalini et al., 2011). This 

descriptor also contributes to drug-receptor interaction as well as the solubility and absorption 

of compounds. Figure 4.1.1b illustrates the predicted trend of clogP for AMNPs in comparison 

to CDs. All categories of AMNPs have clogP values that are significantly higher than CDs (p 

˂ 0.05).  

a.                                                                b.  

Figure 4.1. Distribution of  MW for both AMNPs and CDs. Figure 4.1a presents the distribution 

of AMNP (green markers) and the CDs (blue markers) on a scatter plot. Figure 4.1b shows the 

box plot of the different categories of AMNPs with CDs. The statistical mean and median of 

each category are represented by red and black lines, respectively. The average MW of SA, A, 

and NA are significantly lower (P ˂ 0.05) than CDs. 

 

Additionally, most of the AMNPs could also have “room” for the addition of required 

bioisosteres towards improving certain drug-like properties during the hit-to-lead optimization 

process. The complex compounds in CDs, that are sourced from fungus or derivative of such 

natural products, may explain the higher MW observed in the CDs. The result for the average 

MW of the AMNPs categories is presented in Figure 4.1b. The A and NA categories showed 

similar mean MW (342.4 Da and 340.0 Da respectively), and they are significantly lower (p ˂ 

0.05) than that of SA (mean = 413.3) (Fig. 4.1a). This implies that the categories of AMNPs 

with the best bioactivity (SA) revealed the highest average MW. High MW has been associated 

with greater bioactivity because of the propensity of big compounds to encumber binding 

pockets of drug targets to bring about efficacy (Veber et al., 2002; Yunta, 2016). Furthermore, 

the high average MW observed for the CDs agrees with literature where the property space of 

antibacterial substances was characterized by larger MW (O’Shea and Moser, 2008; Reck et 

al., 2019). This is also consistent with the study by Doak et al. (2014) who observed that the 

average MW of small molecules approved in the past decades is above 500 Da. In contrast to 

this study, Egieyeh et al. (2016), Feher and Schmidt (2003), and Stratton et al. (2015) reported 

a higher mean value for MW in favour of NPs over approved drugs.  
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4.1.1.2 Calculated octanol/water partition coefficient (clogP) 

The clogP is a well-known measure of hydrophilicity of a compound (Nalini et al., 2011). This 

descriptor also contributes to drug-receptor interaction as well as the solubility and absorption 

of bioactive compounds. Figure 4.2a illustrates the distribution of clogP for the AMNPs in 

comparison to CDs. All categories of AMNPs have clogP values that are significantly higher 

than CDs (p ˂ 0.05) (Fig. 4.2b).  

a.                                                                        b.  

 

Figure 4.2. Distribution of clogP for both AMNPs and CDs. Figure 4.2a is a scatter plot 

showing the clogP of AMNP (green markers) and the CDs (blue markers). Figure 4.2b shows 

the box plot of the different categories of AMNPs and CDs. The statistical mean and median 

of each distribution are represented by red and black lines, respectively. The average clogP for 

all the categories of the AMNPs is significantly higher (P < 0.001) than CDs. 

 

Compounds with clogP values above 5 are not likely to be well absorbed. This is because high 

logP tends to compromise the bioavailability of an active molecule (Arnott and Planey, 2012; 

Bhal, 2007). It was observed that the means of both datasets (AMNPS and CDs) were lower 

than 5. In addition, 69 % of the AMNPs were found below 5, and mostly positive values (Fig. 

4.2a). Similarly, all the CDs have clogP values below 5, and about 70 % of these compounds 

showed negative clogP (Fig. 4.2a). This can be an indication that the CDs are more hydrophilic 

and with poor membrane permeability than the AMNPs. On the other hand, the more positive 

clogP values observed for the AMNPs indicate that they are more hydrophobic compared to 

most of the CDs. This finding is consistent with the study by Chen et al. (2018) who reported 

a higher positive clogP value in favour of NPs. Furthermore, this result agrees with the use of 

Lipinski’s rule in drug discovery (Lipinski, 2004; Stratton et al., 2015). Arnott et al.( 2013) 

also reported that compounds with clogP values below 4 could stand a higher chance of success 
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in the discovery pipelines. Therefore most of the AMNPs may be desirable to follow as 

potential anti-MRSA drug candidates. 

 

The more hydrophobic a molecule is the more likely it is to bind to a target and thus resulting 

in greater bioactivity. Therefore, the correlation between the clogP values of the AMNPs and 

the reported bioactivity (MIC) was explored. Surprisingly, there was a very weak linear 

correlation (r = -0.178) between clogP and the bioactivity of AMNPs (Appendix D1). This 

suggests that other molecular descriptors may have contributed to the observed differences in 

the in vitro activities of the AMNPs.  

 

4.1.1.3 Hydrogen bond acceptors and donors 

The hydrogen bond is a crucial property in drug-receptor interaction that may lead to 

pharmacological action. It also plays an important role in membrane transport and drug 

distribution in a biological system (Loureiro et al., 2019). In this study, the average hydrogen 

bonds of AMNPs (HBAs = 5.523 and HBDs =3.135) was generally lower than that of CDs 

(HBAs =12.65 and HBDs = 7.9) (Fig. 4.3a and b).  

a.                                                                   b.   

 

Figure 4.3. Distribution of hydrogen bonds for both AMNPs and CDs. Figures 4.1.3a and b are 

scatter plots showing the distribution of HBAs and HBDs respectively for both datasets. Blue 

and red markers represent AMNPs and CDs, respectively. 

 

The hydrogen bond acceptors (HBAs) (Fig. 4.4a) and hydrogen bond donors (HBDs) (Fig. 

4.4b) for the NA categories of AMNPs was not statistically different from the CDs (p > 0.05). 

Furthermore, for both HBAs (SA = 5.508; A = 5.158; NA = 6.75; CD = 12.65) and HBDs (SA 

= 3.131; A = 2.895; NA = 3.917; CD = 7.9), the average value for SA and A categories were 
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significantly lower than CDs (p ˂ 0.05). Among the categories of AMNPs, the result, however, 

showed no statistical difference (p > 0.05) for both descriptors (Fig. 4.4a and b).  

 

a.                                                                  b.   

 

Figure 4.4. Box plots of HBAs (a) and HBDs (b) against class of activity. The statistical mean 

and median of each distribution are represented by red and black lines, respectively. Only the 

NA category of AMNPs was not statistically different (p > 0.05) from the CDs. 

 

This implies that most of the AMNPs (especially A and SA categories) are likely to have more 

promising bioavailability compared to the CDs. This can be an indication that these compounds 

may not necessarily require optimization. This observation corroborates the use of Lipinski’s 

rule in drug discovery (Stratton et al., 2015). However, the observed distribution of AMNPs 

and CDs in this study are not consistent with cheminformatics studies which demonstrated that 

NPs have more HBDs and HBAs counts than approved drugs (Bade et al. 2010; Stratton et al., 

2015). 

 

4.1.1.4 Total polar surface area (TPSA)  

Studies have shown that molecules with TPSA above 140 Å2 are not likely to penetrate through 

the intestinal membrane (Nalini et al., 2011; Veber et al., 2002; Whitty et al., 2016). Figure 

4.5a indicates that there was no significant difference in the TPSA of AMNPs categories.  
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a.                                                                       b. 

Figure 4.5. Distribution of TPSA for both AMNPs and CDs. Figure 4.5a shows box plots of 

TPSA against the class of activity. The average value was significantly higher (p < 0.05) in 

CDs than the A and SA categories of AMNPs. Figure 4.5b is a scatter plot displaying the 

distribution of the TPSA for AMNPs (green markers) and the CDs (blue markers).  

 

The TPSA was significantly higher (p < 0.05) for CDs than the A and SA categories. Overall, 

87 % of the AMNPs were found below 140 Å2 while less than 50 % of the CD were found 

within this limit (Fig. 4.5b). Therefore, it can be inferred that most of the AMNPs have 

prospects for good intestinal epithelial permeability, and they may be pursued in the 

development of anti-MRSA drug candidates. 

 

The higher TPSA values observed for the CDs may be connected with their large MW because 

there is a strong and positive (r = 0.966) correlation between these two parameters (MW and 

TPSA) (Appendix D2). According to Whitty et al. (2016), oral drugs with high MWs mostly 

tend to have TPSA above the recommended range  (≤ 140 Å) Therefore, these chameleonic 

properties may have helped the CDs to achieve oral bioavailability as approved drugs. 

However, the observed distribution of TPSA is contrary to the findings of Egieyeh et al. (2016) 

who reported a significantly higher TPSA value in favour of NPs. 

 

4.1.1.5 Rotatable bonds (RTBs) count 

The number of RTBs has a direct effect on the flexibility of a molecule. It is used to predict 

how compounds transverses the membrane. Therefore, it is a key determinant of the 

bioavailability of a molecule via the oral route (Craciun et al., 2015). Based on the obtained 

results, the average RTBs for CDs were significantly higher (p > 0.05) than the A and SA 

categories of AMNPs (Fig. 4.6a). The NA however, showed no difference (p > 0.05) from the 
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CDs. Similarly, there was no significant difference (P > 0.05) observed between the three 

categories of AMNPs.  

 

An RTBs value, not more than 10 has been reported as one of the selection criteria for 

determining oral bioavailability (Craciun et al., 2015). This study reveals that 70 % of the CDs, 

and more than 90 % of AMNPs were found within this limit (Fig. 4.6b).  

 

a.                                                                     b.  

 

Figure 4.6. Distribution of RTBs for both AMNPs and CDs. Figure 4.6a displays the box plots 

of RTBs for CDs and the categories of AMNPs. The NA showed no statistical difference (p > 

0.05) from the CDs. Figure 4.6b is a scatter plot showing the RTBs of AMNPs (green markers) 

and the CDs (blue markers). 

 

Therefore, most of the AMNPs could have a higher chance of good absorption. The estimated 

average value for both datasets (AMNPs = 4 and CD = 10.4) is consistent with a study by Chen 

et al. (2018). They reported that the mean of RTBs for readily obtainable NPs is smaller than 

approved drugs. Similarly, this study also corroborates the findings of Bade et al. (2010) who 

observed that more than 70 % of NPs have RTBs below the established value. 

 

4.1.2 Profiling drug-likeness of AMNPs  

4.1.2.1 Prediction of absorption and distribution based on drug-likeness rules 

Some predictive models have been developed to efficiently evaluate the drug-likeness of a 

molecule (Di and Kerns, 2015). These rules provide guidelines for the early identification of 

compounds with an increased chance of high oral absorption. In this study, the predictive rules 

of Lipinski, Veber, and Egan were employed to investigate the consistency of drug-likeness 

among AMNPs with known anti-MRSA drugs (CDs). 
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Lipinski’s rule describes molecules with MW < 500, clogP < 5, HBDs < 5, and HBAs < 10 as 

more likely to have prospects for good oral absorption and permeation (Lipinski, 2004; 

Loureiro et al., 2019). Figure 4.7 displays the results for compliance of the datasets with this 

rule. Overall, it was observed that 55 % of both AMNPs and CDs passed the rule without any 

violation (Fig. 4.7). Similarly, for the AMNPs categories, 43 %, 68 %, and 83 % of SA, A, and 

NA, respectively, obeyed the rule of five (Fig. 4.7). 
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Figure 4.7. Histograms of Lipinski’s rule compliance for both AMNPs and CDs. Up to 55 % 

of both AMNPs and CD complied with the rule without any violation. About 43, 68, and 83 % 

of SA, A, and NA respectively also infringed none of the rules.  

 

Lipinski mentioned that a compound that violates any one of the limits can still be considered 

drug-like (Craciun et al., 2015). When the rule was relaxed to exceed any one of the cut off 

values, AMNPs (55 to 83 %) and CDs (55 to 60 %) passed this rule (Table 4.1).  

                                                              

Table 4.1. Lipinski’s rule compliance based on the principle that drug-like compounds can 

break up to 1 of the rules. 

Class of activity MW 

relaxed 

clogP 

relaxed 

HBDs 

relaxed 

HBAs 

relaxed 

AMNPs (n = 111) 64 92 65 61 

CD (n = 20) 12 11 12 11 

SA (n = 61) 28 47 26 25 

A (n = 38) 26 34 29 26 

NA (n= 12) 10 11 10 10 
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Among the categories of AMNPs, almost all (83 to 91.7 %) of the NA molecules were within 

the space of this rule (Table 4.1). This can be an indication that the less active category of 

AMNPs (NA) has the highest prospect to become orally active drugs. In another way, it can be 

inferred from this result that bioactivity may not suggest drug-likeness. A similar distribution 

was reported for subgroups of NPs with activity against plasmodium in the literature (Egieyeh 

et al., 2016). The observed compliance of CDs agrees with the study by Nazarbahjat et al. 

(2016) who reported that 30 % of FDA-approved drugs violate Lipinski’s rule. Similarly, 

Zhang and Wilkinson (2007) reported that 20 % of all orally administered drugs failed at least 

one of the parameters of Lipinski’s rule. Therefore, the yardstick employed by Lipinski may 

not measure the actual absorption or permeability of NPs and the derivatives (Lipinski, 2004; 

Loureiro et al., 2019). 

 

The obtained result for oral absorption based on Veber’s rule is presented in Figure 4.8. 

Approximately, 85 % of AMNPs and 45 % of CDs were found within the space of the rule 

(RTB ≤ 10 and TPSA ≤ 140 Å2). 

 

  

Figure 4.8. Prediction of oral absorption for both AMNPs and CDs based on Veber’s rule. Each 

of the panels represents a class of activities (CDs and categories of AMNPs). More than 80 % 

of each of the AMNPs, and 45 % of CDs obeyed Veber’s rule without any violation. 

 

For the AMNPs categories, all compounds in the NA, except tannic acid (TPSA = 777.98 and 

RTB = 31) were found within the rule. Additionally, more than 80 % of both A and SA 

categories complied. Hence, there are greater chances for most of the AMNPs to achieve 

permeability at the Veber’s limits. 
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The human intestinal absorption (HIA), permeation through the blood-brain barrier (BBB), 

inhibition of cytochrome P450 isozymes, and drug assessment for substrates of p-glycoproteins 

(p-gp) are crucial pharmacokinetic properties. They can be used in the early discovery process 

to determine the extent of intestinal absorption of a bioactive compound in humans (Dahlgren 

and Lennernäs, 2019; Daina and Zoete, 2016; Daina et al., 2017; Nazarbahjat et al., 2016). The 

result presented in Figure 4.9 revealed that more than 77 % of the AMNPs (compounds found 

within the white region) exhibited “high’’ HIA. 

 

Figure 4.9. BOILED-Egg predictive model for absorption, and bioavailability of AMNPs. The 

markers (markers representing AMNPs) within the white region are occupied by molecules (77 

% of AMNPs) that are most likely to be absorbed by the gastrointestinal tract and those within 

the yellow region are for molecules (30 % of AMNPs) that are likely to pass through the BBB. 

The blue and red markers respectively represent substrates and non-p-gp substrates. 

 

The result further revealed that 80 % (red markers) of the AMNPs are non-p-gp substrates (i.e 

may not efflux from cells). Conversely, for the reference data (CDs), 45 % were predicted to 

have high HIA, and 25 % were predicted as non-p-gp substrates (Appendix E). One of the 

crucial screenings during the early stage of the drug discovery process is to check whether the 

biologically active molecules are substrates of p-gp. This is because p-gp functions to decrease 

cellular uptake, absorption, oral bioavailability, distribution, and retention time of drugs in the 

body through unidirectional lipid flippase pathway (Prachayasittikul and Prachayasittikul, 

2016). The p-gp can limit the effective concentration of bioactive molecules at the desired 

cellular sites leading to the rapid development of resistance, especially for anti-infective 

compounds. Therefore, more than 80 % AMNPs (red markers) that were predicted as non-

substrates of p-gp in this study could have prospects for well absorption and bioavailability. 

For the reference compounds, linezolid, tedizolid, and ciprofloxacin are few examples of these 
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compounds that are known for good absorption and bioavailability as contained in the drug 

bank (www.drugbank.ca). On the other hand, vancomycin, ceftaroline, and ampicillin among 

others, are also known for poor oral absorption (www.drugbank.ca). Therefore, the present 

study is consistent with the established pharmacokinetic profile of the CDs.  

 

Furthermore, it was also observed that 30 % of the AMNPs (compounds found within the 

yellow region) can permeate the BBB (Figure 4.9). In contrast, none of the CDs showed a 

propensity for permeation of this barrier (Appendix E). The poor BBB permeability of the 

CDs could be as a result of their negative average clogP values. The BBB is a major hindrance 

in the development of drugs for the central nervous system (CNS) (Wen et al., 2015). This has 

made the CNS infections that are caused by multidrug-resistant organisms such as multidrug-

resistant gram-negative aerobic bacilli, MRSA, penicillin-resistant pneumococci, and other 

organisms continually result in serious health threat (Nau et al., 2010; Wen et al., 2015) 

Therefore, the AMNPs with predicted BBB in this study are desirable for these CNS infections.  

 

4.1.2.2 Predicted metabolism of the AMNPs and identification of their metabolites 

Orally administered drugs are prone to extensive biotransformation in the liver such that their 

bioavailability and efficacy are extremely reduced (Mannan and Unnisa, 2019). Therefore, the 

propensity for the metabolism of AMNPs by phase 1 and phase 2 enzymes was evaluated. The 

results summarised in Table 4.2 revealed that 59 and 71 % of AMNPs are likely to be 

metabolized by phase 1 and 2 enzymes respectively, while more than 50 % of AMNPs may be 

metabolized by both phase 1 and phase 2 enzymes. A total of 20 % AMNPs are not likely to 

be biotransformed by both phase 1 and phase 2 enzymes.  

 

Table 4.2. Prediction of phase 1 and phase 2 biotransformation of AMNPs 

Phase of metabolism No of AMNPs that formed or without metabolites  

(n = 111) 

Phase 1 66 

Phase 2 79 

Both phase 1 and 2 56 

Without metabolites 22 

 

The obtained result for phase 1 reveals that 60 % of the AMNPs may suffer the first-pass 

biotransformation while passing through the liver. This could consequentially reduce the 
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bioavailability of these compounds before reaching their targets. In contrast, the result for phase 

2 shows that 71 % of AMNPs may produce metabolites at this stage, implying that most of the 

AMNPs could be readily excreted out of the body. The structural representation of the 

biotransformation result for one of the AMNPs (juncuenin D) is presented in Figure 4.10 

below. Juncuenin D was metabolized to produce 2 and 1 metabolites in phase 1 and phase 2, 

respectively.  

 

 

 

 

Figure 4.10. HTML document containing the results for biotransformation predicted for 

Juncuenin D. The first line illustrates the structure of the parent compound (left side of the 

reaction), the enzymes (Cytochrome P450) that may likely act on it, and the products of the 

reactions (right side of the reaction) during phase 1 metabolism. The second line illustrates the 

parent structure (left side of the reaction), the enzymes (UDP-glucuronosyltransferase) that 

may likely act on it, and the predicted metabolite (right side of the reaction) during phase 2. 

Each of the circles represents the points of transformation while the arrow points to the atom 

that is transformed.   

 

It has been reported that metabolites may play significant roles in the pharmacology of the 

parent molecules. Metabolites can cause adverse effects or become active products (Zhang and 

Tang, 2018). Therefore, biologically active categories of AMNPs (SA and A) with 

pharmacologically active metabolites might be a prospect for prolonged action of these 
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compounds in the body. Similarly, active metabolites formed by less active categories of 

AMNPs (NA) may be considered further for advancement rather than the parent compounds. 

Hence, recognizing the pharmacological prospects of the AMNPs metabolite can be necessary 

to prevent their efficacy from being compromised at a later stage of drug development (Kang 

et al., 2010; Zhang and Tang, 2018). 

 

4.1.2.3 Predicted CYP450 inhibitory potential of the AMNPs 

Potent inhibitors of CYP450 isozymes are not desirable in drug discovery as it may result in 

drug-drug interactions (Sychev et al., 2018). The results from this study revealed that between 

16 and 43 % of the AMNPs returned  “ YES’’ for inhibition of one or more of the isozymes 

(Fig. 4.11a). A closer look at the different categories of AMNPs revealed that 36, 21, and 50 

% of the SA, A, and NA respectively, might not inhibit any of the isozymes (Fig. 4.11b).  

 

a.                                                             b.  
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Figure 4.11. The percentage of inhibitors and non-inhibitors of CYP450 isozymes. Figure 4.11a 

shows the percentage of the AMNPs that are inhibitors of one or more CYP450 isozymes. 

Figure 4.11b shows the percentage of CDs and AMNPs categories that are non-inhibitors of 

any CYP450 isozymes. 

 

Similarly, none of the CDs showed a tendency to inhibit any of the CYP450 isozymes (Fig. 

4.11b). Among the various  CDs, chloramphenicol has been established to have no inhibitory 

effect on CYP450 isozymes (Živković et al., 2019). Inhibition of CYP450 isozymes has led to 

the market withdrawal of many drugs, causing loss of valuable time, resources as well as drug 

lag (Kumar et al., 2012). Therefore, in silico prediction of CYP450 enzyme inhibition potential 
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for AMNPs at the early stage of drug discovery is desirable. This can help to prevent the 

colossal waste that may come from the withdrawal of drug candidates at a later stage of 

development. Hence, the AMNPs predicted to inhibit CYP450 enzymes in this study should be 

given less consideration during hit selection irrespective of their bioactivity. 

  

4.1.2.4 Toxicity profiling of AMNPs 

The prediction of the toxicity of potential drug candidates is one of the important components 

of modern drug discovery. In this study, the toxicity of AMNPs was predicted by OSIRIS 

DataWarrior software. The result revealed that 59 % AMNPs and 80 % CDs may likely have 

negligible or no mutagenic, tumorigenic, reproductive, and irritant effects (Appendix F). For 

the categories of AMNPs, at least 50, 66, and 60 % of NA, A, and SA respectively returned 

“none’’ for all the toxicological parameters (Table 4.3).  

 

Table 4.3. Estimated toxicological properties of AMNPs and CDs 

Class of activity Mutagenicity Tumorigenicity Reproductive 

effects 

Irritant effects 

SA (n = 61) 53 55 43 52 

A (n = 38) 33 35 32 34 

NA (n = 12) 6 9 8 9 

CD (n = 20) 18 19 17 18 

 

This observation is consistent with the toxicity assessment conducted by Kumar et al. (2017). 

They reported that about 57 % of the compounds identified from a 3D-QSAR study showed 

none for tumorigenic, mutagenic, irritant, and reproductive risks. Similarly, chloramphenicol 

(DB224) was one of the CDs that showed high toxicity risk for all these toxicological 

properties. This observation builds on existing evidence that chloramphenicol is likely to have 

all the four risks (Živković et al., 2019). Toxicity has been identified as the cause of attrition 

of approximately 33 % of drug candidates especially at the late stage of drug development. 

However, chemical manipulation through the replacement or removal of functional groups 

during the optimization stage can avert this major issue (Xiao et al., 2016). Therefore, early 

identification of potentially toxic chemotypes can help to circumvent safety liabilities (Kramer 

et al., 2007). 
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4.1.2.5 Synthetic accessibility score 

It is assumed that molecular fragments that frequently occur among easily obtainable 

compounds would be synthesized easily (Daina et al., 2017). Hence, the synthetic accessibility 

value of AMNPs was predicted to know their ease of being produced. The result with the value 

from 1 (easy to synthesize) to 10 (not easy to synthesize) is presented below (Fig.4.12).  

  

Figure 4.12. Box plots of synthetic accessibility against class of activity. The statistical mean 

and median of each distribution are represented by red and black lines, respectively. The mean 

value of both A and NA subgroups of AMNPs were both significantly (p < 0.05) lower than 

CDs. 

 

It was observed that only the most active categories of the AMNP (SA) may be similar (p > 

0.05) to CDs (Fig. 4.12). Similarly, there was no difference (p > 0.05) between the average 

synthetic accessibility score of the AMNPs categories. Overall, about 77 % of the AMNPs 

were observed to have synthetic accessibility values below 5. This can be an indication that 

most of the AMNPs have frequently occurring chemical moieties than CDs. 

 

4.1.3 Hit-prioritization of the AMNPs  

A “drug-likeness profile” provides a qualitative visualization of the various predicted “drug-

like” properties and parameters (Bickerton et al., 2012; Manallack et al., 2013; Mignani et al., 

2018; Yusof and Segall, 2013). This visualization allows for the prioritization of compounds 

with desirable or ideal drug-likeness. Secondly, it highlights properties and/or parameters that 

need to be optimized to get the compounds with the desired drug-likeness profile. In another 

way, a balanced prioritization strategy that considers the physicochemical and pharmacokinetic 

attributes of bioactive compounds is important for early identification of molecules with the 

prospect to truly become drug candidates (Bickerton et al., 2012; Lobell et al., 2006; Mignani 

et al., 2018; Wunberg et al., 2006).  
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In this study,  the probability scoring function described in Segall (2014) was used to combine 

the desirability of key ADMET and physicochemical properties of each of the AMNPs into a 

single number, ranging between 0 and 1. These properties include  MW, TPSA, HBA, HBD, 

logP,  RTBs, aromatic rings, and the toxicity risks of the compounds. A score of 1 in this 

context describes any compound that has all the physicochemical and pharmacokinetic 

properties within the ideal drug-like profile. On the other hand, a score of 0 represents 

compounds with undesired properties. Those compounds with a desirability score close to 1 

may have prospects for success during the preclinical drug discovery stage and might be 

prioritized for further development.  

 

The comprehensive prioritized list of the AMNPs is shown in Appendix G. Based on their 

desirability score, the distribution of the prioritized list for the three categories of AMNPs is 

described in Figure 4.13a.  

 

 

Figure 4.13a. Histogram showing the distribution of AMNPs for prioritization. The numbers 

of AMNPs were plotted against the overall desirability score. The bars were coloured by the 

class of activity. The score for each compound suggests the likelihood of the compound to 

achieve the ideal property criteria. 

 

Most of the compounds in the active categories of AMNPs (SA and A) have desirability scores 

distributed closer to 0 compared to the less active (NA categories) which were found closer to 
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1. This can be an indication that most of the NA compounds are more likely to become 

successful in the discovery and development pipelines. Further analysis of the level of 

confidence in this score revealed that the best 40 (36 %) of the AMNPs are not significantly 

different from one another (Fig. 4.13b).  

 

 

Figure 4.13b. Snake plot showing the statistical distribution of the scoring function. The plots 

on the X-axis describe each of the AMNPs ordered from left to right by score while the Y-axis 

presents the overall score for the individual compound. The AMNPs indicated with red markers 

are those whose error bars revealed no statistical difference from the best scoring compound.  

 

Interestingly, 10 out of the 12 compounds in the NA category were among these compounds, 

implying that there might be a need to only optimize for potency in this group of compounds. 

On the contrary, the few compounds that showed a score that is close to 1 among the active 

categories (especially SA) may have more prospects for success during the preclinical drug 

discovery stage. However, compounds among the SA or A categories that revealed a low score 

can be optimized to increase drug-likeness order than potency. This result is consistent with a 

previous study by Egieyeh et al. (2016). They reported a high and low average desirability 

score respectively, for the less active and active categories of antimalarial NPs (Egieyeh et al., 

2016). Wunberg et al. (2006) conducted a data-driven screening of hits for drug-like and lead-

like. They established that the most promising molecules are those having good potency, and 

with liabilities that can easily be addressed. Therefore, some of the compounds with a poor 

balance of properties in the active categories might be a promising starting point for discovery 

and design since most of them have room for optimization. Nevertheless, the identified 

liabilities of some of the AMNPs might vary in severity, and thus complicating the optimization 

process.  
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4.1.4 Desirability scoring function allows in silico hit-optimization strategies 

The goal of preclinical drug discovery is to maintain desirable properties with sufficient safety 

as well as to improve on the identified liabilities in the lead compounds (Hughes et al., 2011). 

Therefore, molecules with deficiencies in their physicochemical, pharmacokinetic, or 

toxicological properties can be modified structurally for improvement (Harrold and Zavod, 

2013). In this study, two compounds from the SA categories identified with liabilities were 

optimized for a good balance of properties. The 2-dimensional structure of these compounds 

was drawn and modified using Chemdraw software (version 12.0) and their molecular 

descriptors were estimated using the MOE program (2019.01). The details of the selected 

compounds and the results are described below. 

 

Cryptotanshinon (DB196) is one of the AMNPs with a good potency (0.5 μg/mL) but low 

desirability score of (0.1589). Poor permeability, inhibitory effects on drug metabolic enzymes 

(CYP3A4, CYP2C9, CYP2C19, and CYP1A2), and high reproductive risk were some of the 

liabilities identified with this compound. These red flags were improved by changing some of 

its atoms or functional groups (Fig. 4.14a).  

  

Compound DB196                                                                   Compound ANA196 

Figure 4. 14a. Optimization of cryptotanshinon evolved the compound ANA196. The round 

circles highlight the atoms (CH3) that were replaced in DB196 with polar functional groups 

(OH and OH) during optimization. 

 

The product of this modification is compound ANA196 which exhibited a well-improved 

physicochemical property, and a desirability score (0.3427) not statistically different from the 

best scoring compound (Appendix H). 

 

Similarly, aminoethyl-chitosan (DB211) is another compound that showed good potency (0.5 

μg/mL) but one of the lowest desirability scores (0.04693). The poor pharmacokinetics and 

drug-likeness properties of this molecule were, however, improved by removal or replacement 

of some of its polar functional groups (OH and NH2). The details of this process are illustrated  
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in  Fig. 4.14b. The desirability score of the new compound; ANA211 (0.667) showed an 

improvement and with no significant difference from the best scoring AMNPs (Appendix H). 

 

 

 

 

 

 

 

Compound DB211                                                                Compound ANA211 

Figure 4.14b. Optimization of DB211 (aminoethyl-chitosan) produced compound ANA211. 

The round circles highlight the atoms that were replaced with non-polar functional group 

(CH3), and the arrows are pointing to the atoms that were removed during optimization.    

 

In addition to their well-improved property, each of the two analogues revealed improved 

chemical accessibility and safety. A search through the chemical database further revealed no 

result for both compounds, implying that they might be representing novel chemotypes.  

 

The quest for minimizing high attrition rates at the latter stages of drug development has 

necessitated the need to balance the efficacy of hit molecules with pharmacokinetic and 

toxicological properties through optimization (Joubert et al., 2017; Lipinski, 2003; Miao et al., 

2019). The characterization of the drug-likeness profiling of AMNPs has allowed for the design 

of multi-parameter hit-optimization strategies for compounds with undesired properties. This 

process is essential for building up activity against undesired effects, and at the same time, 

keeping the physicochemical properties in the drug-like range (Xiao et al., 2016). However, 

the bioactivity of the novel compounds obtained in this study was not assessed. Structural-

activity relationship (SAR) or activity cliff could reveal which functional group is required for 

such bioactivity. Therefore, optimization should be done with a knowledge of SAR. 

 

4.1.5 Exploration of the molecular similarity/diversity within the AMNPs  

To visualize the chemical space occupied by the ANMPs relative to CDs, principal component 

analysis (PCA) was conducted on the structural and physicochemical properties of the datasets.  

The PCA is a statistical approach to visualize molecular similarity/diversity within a molecule 

set (Begam and Kumar, 2014). It allows for the visualization of multidimensional data on two 
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or three-dimensional plots with reduced loss of information (Rosén et al., 2009; Stratton et al., 

2015). The result of the PCA analysis for ANMPs relative to CDs in this study is shown in 

Figure 4.15.  

 

Figure 4.15. Distribution of AMNPs and CDs in chemical space. Green and blue markers 

represent AMNPs and CDs, respectively. The coordinates were generated from ChemGPS-NP 

with dimensions PS1, PS2, PS3, and PS4 for size (of the marker), aromaticity, lipophilicity, 

and flexibility of the compounds, respectively. The AMNPs showed higher diversity in 

comparison with the CDs. 

 

The first four components of the ChemGPS-NP Web map are interpreted as size, aromaticity, 

lipophilicity, and flexibility for PS1, PS2, PS3, and PS4, respectively. The X, Y, and Z axes of 

the 3-dimensional plots are respectively PS2, PS3, and PS4 while PS1 represents the size of 

the markers. Although CDs are distributed across the chemical space, the AMNPs showed a 

higher diversity (Fig. 4.15). Furthermore, the plot displayed that CDs are bigger than AMNPs 

(PS1) while a closer look at the PS2 revealed that AMNPs are more aromatic than CDs. 

Similarly, the plot on the Y-axis reveals higher lipophilicity in favour of AMNPs while the 

diversity of AMNPs tends towards less flexibility (PS4) than CDs. In respect to bioactivity, the 

significantly active category of the AMNPs (SA) was the most diverse. Stratton et al. (2015) 
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used PCA to compare the chemical diversity of NPs and synthetic drugs that were approved 

between 1981 to 2010. They reported that NPs revealed larger diversity in chemical space than 

approved drugs (Stratton et al., 2015). Similarly, Calixto (2019) studied the role of NPs in 

modern drug discovery and reported that the chemical diversity of these compounds are 

unmatched by their synthetic counterparts. These reports are in agreement with the present 

study, which confirmed that NPs are more structurally diverse than CDs.  

 

The AMNPs that are highly far apart from the reference compounds (CDs) may indicate novel 

mechanisms of action. In the light that most CDs are now known to be ineffective in the 

treatment of MRSA infections, those AMNPs with prospects for novel biological targets are 

highly desirable for anti-MRSA drug development. Nevertheless, the AMNPs situated close to 

CDs in the chemical space may indicate similar pharmacokinetic or drug-likeness prospects. 

Hence, some of the AMNPs may have satisfactory pharmacokinetic properties and thus pass 

through preclinical screening for anti-MRSA drug development. The concepts of diversity and 

similarity of molecules are widely used in quantitative methods for designing and selecting a 

representative set of molecules (Egieyeh et al., 2016; Rosén et al., 2009). This is also important 

for analyzing the relationship between chemical structure and biological activity (Rosén et al., 

2009). Therefore, the relationship between the chemical structure and biological activity of the 

AMNPs was further explored in this study.  

 

4.1.6 Structural-activity relationship (SAR) landscape  

The analysis of structure-activity relationships (SAR) is one of the fundamental tasks in 

medicinal chemistry. The underlying goal of exploration of the SAR landscape is to identify 

structural differences between molecules in a large dataset that lead to differences in their 

bioactivities (Stumpfe et al., 2020). Therefore, given a pair of structurally similar molecules 

that showed activity cliff, structural-activity landscape index (SALI) calculates how much 

potency is gained or lost while Delta Activity represents the difference between the activity of 

a pair of similar molecules (Egieyeh et al., 2016). The results of the exploration of SAR for the 

AMNPs are summarised in Figure 4.16.  

http://etd.uwc.ac.za/ 
 



 

50 
 

 

Figure 4.16. Scatter plot of the structural-activity relationship landscape of AMNPs. Markers 

are coloured by Delta Activity (the difference between bioactivity) and sized by SALI 

(structural-activity landscape index). Red markers represent smooth regions of the SAR 

landscape. Blue, green, and yellow markers represent compounds that exhibited an activity 

cliff. 

 

Red coloured markers represent pairs of similar compounds with little or no difference in 

bioactivity (see example in Fig. 4.17a). This is often referred to as the smooth region (X) of the 

SAR landscape.   

 

i.                                                                                ii. 

 

      MIC = 78.1 µg/mL                                                              MIC = 78.1 µg/mL 

Figure 4.17a. A pair of similar AMNPs (X) with little or no difference in bioactivity. The 

addition of hydroxyl (the small circle) in structure (ii) to the 1,4-benzopyron ring structure (i) 

did not cause any changes in bioactivity (MIC values). Hence, the two structures have about 

87 % structural similarity and the same bioactivity (Delta Activity = 0 µg/mL). 

X 

 

Y 
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Markers with blue, green, and yellow colours signify a pair of similar molecules with widely 

different bioactivity. These regions (e.g Y) are often called activity cliff of the SAR landscape 

(see example in Fig. 4.17b).  

 

i.             ii.  

 

MIC = 260 µg/mL                                                                       MIC = 3.9 µg/mL 

Figure 4.17b. A pair of AMNPs (Y) showing an activity cliff. The two structures have about 

94 % similarity but are very widely different in bioactivity (Delta Activity = 256.1µg/mL). An 

aldehyde group in structure (i) (the small circle) replaced by a methyl group in structure (ii) 

(the small circle) caused a large difference in bioactivity.   

 

The concept of activity cliff is significant in identifying small structural modifications 

associated with large changes in potency (Kang et al., 2010; Stumpfe et al., 2020). Therefore, 

those AMNPs identified with blue, green, and yellow colour (Figure 4.16) provide insight into 

potential functional groups in the AMNPs that can modulate bioactivities. On the other hand, 

the smooth region of the SAR landscape contains compounds that are good input data to build 

QSAR models (Ekins et al., 2007). The predicted SAR between the AMNPs is provided in 

Appendix I. 

 

4.2 Phase 2- Target prediction of the AMNPs 

This phase was conducted to assess the binding affinity of AMNPs within the sites of MRSA 

proteins and to identify potential inhibitors using reverse molecular docking. Reverse 

molecular docking is a computational technique that is aimed at identifying the unknown 

target(s) of a bioactive compound. It involves docking of a ligand to a set of drug targets 

(Huang et al., 2018; Kulkarni et al., 2020). Docking and scoring can be used during the early 

stage of drug discovery to screen a library of active compounds for the identification of possible 

drug candidates against a given protein target (Huang et al., 2018; Kulkarni et al., 2020; Park 

and Cho, 2017). Vital components of bacterial cells can be explored as potential targets in the 

discovery of antimicrobial agents. Few of these targets are associated with cell wall 
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biosynthesis, biofilms formation, DNA replication, fatty acid, protein synthesis, etc 

(Bandyopadhyay and Muthuirulan, 2018; Hooper, 2001; Khameneh et al., 2019). The AMNPs 

were docked against each of the 34 MRSA targets that perform any of these functions in the 

bacteria. A comprehensive list of binding affinity for the AMNPs-target interactions obtained 

in this phase is presented in Appendix J. The summary of the observed affinity is presented 

below. 

 

4.2.1 Inhibitors of the cell wall and membrane synthesis targets 

The cell wall synthesis pathway is a common pharmacological target for the development of 

new antibiotics. This is because the inhibition of this target can lead to cell lysis and death 

(Mahasenan et al., 2017). Methicillin-resistant S. aureus is, however, resistant to most of the 

classes of antibiotics that are linked to the disruption of this mechanism. Therefore, there is a 

need for new classes of compounds with the ability to circumvent their resistance pathways. In 

this study, eleven (11) proteins among the metabolic pathways used by S. aureus for cell wall 

biosynthesis were investigated for their potential inhibitors among the AMNPs (Table 4.4).  

 

Table 4.4. Summary of the AMNPs with a profound affinity for cell wall biosynthesis pathway, 

as measured by binding energy (BE). 

PDB Nos of ligands with 

strong BE (≤ -6 

kcal/mol) 

Comments (n = no of 

ligands) 

Best ligand with their BE (kcal/mol) 

4YWZ 96 Nil DB184: 4-(((Z)-5-((4-((E)-3-(2-chlorophenyl)-3-oxoprop-

1-en-1-yl) benzylidene)-2,4-dioxothiazolidin-3-yl) methyl) 

benzoic acid (-11.8) 

1NG5 20 Nil DB129: Atractylenolide I and DB163: Anthocyanin (-6.0) 

4BL2 1 Nil DB175 Punicalagin (-6.5) 

3Q81 0 Generally low to mild 

affinity 

DB185: Gancaonin G (-5.4) 

DB187: 8-(γ,γ-dimethylallyl)-wighteone (-5.4) 

5M19 1 Nil DB125: 12b-Hydroxy-des-D-garcigerrin A (-6.3) 

1MWS 38 Nil DB162: Bartericin A, and  

DB209: Acetyl-11-keto-b-boswellic acid (-7.0) 

1HSK 70 27 showed BE ≤ -7 DB210: Celastrol (-8.5) 

2OLV 85 55 showed BE ≤ -7 DB194: Rugulosin A (-9.8) 

1ALQ 73 21 showed BE ≤ -7 DB210: Celastrol (-8.0) 

1VQQ 19 2 showed BE ≤ -7 DB 194: Rugulosin A (-7.3) 

3HUN 49 Nil DB199: Hinokinin (-8.0) 
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About 86 % of the AMNPs (comprising DB101-136, 139-146, 148, 150-155, 159-168, 

171,172, 174, 176-181, 183-189, 191-208, and 211) showed a significant affinity for the sensor 

protein kinase WalK receptor (4WYZ). The compound 4-(((Z)-5-((4-((E)-3-(2-chlorophenyl)-

3-oxoprop-1-en-1-yl)benzylidene)-2,4-dioxothiazolidin-3-yl) methyl (DB184) revealed the 

highest binding energy (BE) of -11.8 kcal/mol for this protein (Table 4.4). As a novel drug 

target in bacteria, inhibitors of sensor protein kinase WalK have been evaluated and described 

in the literature (Bem et al., 2015). However, no structural similarity was observed between 

the already established inhibitors, and the promising anti-4WYZ identified in this study. 

Therefore, this can be an indication that some of the identified anti-4WYZ may be novel 

chemical classes with the ability to inhibit the enzyme through novel mechanisms of action.  

 

Similarly, only atractylenolide I (DB129) and anthocyanin (DB163), both with BE of -6.0 

kcal/mol showed a considerable affinity for the sortase A (1NG5) target. This result is 

consistent with previous studies where the activity of anthocyanin was reported to damage the 

integrity of the cytoplasmic membrane of S. aureus (Sivamaruthi et al., 2018; Sun et al., 2018). 

Additionally, punicalagin (DB175) with the BE of -6.8 kcal/mol was found to have the 

strongest molecular interaction with the 4BL2: β-lactam-inducible penicillin-binding protein 

(PBP2a). Except for the 4-benzoic acid (DB184) which also revealed a BE of -5.7 kcal/mol, all 

other AMNPs showed a weak to mild binding score for 4BL2, as revealed by their docking 

score (> -5). The high binding score observed of punicalagin agrees with Mun et al. (2018) 

who reported the therapeutic role of punicalagin as a potential mediator in the inhibition of 

PBP2a protein in S. aureus. Since most of the AMNPs showed a low affinity for the 4BL2, 

DB184 might also be a promising drug candidate against this target.  

 

The target, regulatory protein blar1(3Q81) also showed a similar trend. The highest but mild 

affinity was exhibited by both gancaoninG (DB185) and 8-(γ,γ-dimethylallyl)-wighteone 

(DB187) for this protein. Both compounds had a docking score of -5.4 kcal/mol. This finding 

is consistent with a study by Hatano et al. (2005) who presumed that both DB185 and DB187 

were targeting the cell membrane of S. aureus.  

 

Furthermore, only 12b-hydroxy-des-D-garcigerrin A (DB125) with BE of -6.3 kcal/mol 

revealed a strong affinity for mecA (5M19) (Table 4.4).  β-lactam antibiotics are designed 

against this target. The analysis of the structural similarity between β-lactam antibiotics and 
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DB125, however, revealed low relationships. Therefore, DB125 may have the potential to 

circumvent β-lactamase resistance through a different mechanism from the known antibiotics 

(Fuda et al., 2005; Mahasenan et al., 2017).  

 

Another part of the results also revealed an energetically favourable interaction of the AMNPs 

with penicillin-binding proteins (PBPs). It was observed that DB113, 114, 122, 124, 135, 141, 

159, 160, 162, 175, 183, 184, 186, 191, 194, 195, 200, 201, and 210 revealed high binding 

energy scores for the penicillin-binding protein 2a (1VQQ) (Figure 4.18). This observation was 

based on their docking scores which were found less than -6 kcal/mol. Rugulosin A (DB194; 

yellow) with BE of -7.3 kcal/mol, however, showed the highest affinity for this target (Fig 

4.18). 

 

Figure 4.18. Visualization map showing the AMNPs with strong affinities (BE ≤ -6 kcal/mol) 

for PBPs proteins. The proteins (2OLV, 1VQQ, and 1MWS) are presented as colour green, 

yellow represents compounds with the strongest affinity for the proteins (DB194 for 1VQQ 

and 2OLV; D162 and DB209 for 1MWS). A represents AMNPs inhibitors of both 1MWS and 

2OLV, B represents inhibitors of both 1VQQ and 2OLV while C represents inhibitors of the 

three enzymes.  

 

Moreover, bartericin A (DB162) and acetyl-11-keto-b-boswellic acid (DB209) (yellow) with 

BE of -7.0 kcal/mol had the strongest binding affinity for mecA PBP2 (1MWS) (Fig. 4.18). 

Other compounds comprising DB104, 105, 109, 113-115, 124, 134, 135, 137-139, 141, 144, 
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146, 151, 154, 157, 159, 161, 164, 167, 184, 186, 189-191, 194-197, 199, 201, 202, 207, and 

210) also showed promising affinity for this enzyme (≤ -6 kcal/mol). Similarly, rugulosin A 

(DB194) with BE of -9.8 kcal/mol exhibited the highest docking score for PBP2; penicillin-

binding protein 2 (2OLV). Overall, more than 85 % of the AMNPs (such as DB101-111, 113-

115, 119, 122-125, 127, 130-141, 144-148, 150-168, 174-175, 181-202, 204, and 206-211) 

demonstrated promising affinity for the target. This observation was based on their 

energetically favourable interaction with the 2OLV. Those compounds that revealed a high 

affinity for 1VQQ also showed a profound affinity for the other two targets (2OLV and 1MWS) 

(Fig. 4.18). Turk et al. (2011) conducted a screening for an in-house bank of compounds and 

identified 3-(Quinoline-8-sulfonamido) benzamide and 5-Bromo-2-(3-propoxybenzamido) 

benzoic acid as inhibitors of two PBPs enzymes. Lahiri and Alm (2016) also reported that 

ceftaroline can disrupt the pathways involving PBPs and PBP2a. These reports corroborate the 

present study. Therefore, it can be inferred that many of the AMNPs are multi-target 

compounds with the prospect of binding to related proteins (Gray and Wenzel, 2020).  

 

Celastrol (DB210) exhibited profound molecular interactions with the UDP-N-

acetylenolpyruvoylglucosamine reductase (1HSK) target (BE of -8.5 kcal/mol). Other 

compounds (DB101-107, 109-111, 113-115, 122, 124, 125, 129-141, 144, 146, 151, 153-155, 

157, 159-162, 164-168, 174, 177, 182-184, 186-187, 189-197, 199-202, 204, and 207-209) also 

showed high docking score (BE ≤ -6 kcal/mol) for this protein (Fig. 4.19).  
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Figure 4.19. Visualization map showing the AMNPs with a strong affinity (BE ≤ -6 kcal/mol) 

for 1HSK and 1ALQ proteins. The proteins are presented as red, each of the yellow represents 

compounds with a profound affinity for the proteins.  A represents AMNPs inhibitors of both 

proteins while green represents the strongest inhibitor of the two enzymes.  

 

Similarly, celastrol (DB210) demonstrated the strongest affinity for the β-lactamase (1ALQ) 

by showing the highest docking score (-8.0 kcal/mol) (Fig. 4.19). The compounds DB101-107, 

109-111, 113-115, 122, 124-125, 127-128, 130-139, 141, 144-146, 148, 151, 153-155, 157, 

159-167, 174, 182-197, 199-202, 204, and 207-210 also showed BE below -6 kcal/mol for the 

target (Fig. 4.19). A closer look at the results of 1HSK and 1ALQ targets revealed that they 

almost have the same AMNPs inhibitors (Fig 4.19). This can be an indication that many of the 

AMNPs are multi-target compounds with the prospect of binding to related proteins (Gray and 

Wenzel, 2020). The role of DB210 in biofilm eradication has been established (Kim et al., 

2018; Woo et al., 2016). Nevertheless, the observed significant binding affinity of this 

compound for the proteins involved in cell wall biosynthesis implies that celastrol could bind 

to proteins involved in independent cellular processes (Gray and Wenzel, 2020).   

 

For the penicillin-binding protein 4 (PBP4); 3HUN, 44 % of AMNPs (DB103, 106-107, 111, 

113-114, 116, 118-122, 124, 130, 135, 139, 141, 145, 151, 152, 159-162, 164-167, 176-181, 

183, 184, 186, 187, 191, 192, 195, 197, 199, 200, 203, 205, 206, 208, 210) can potentially bind 

to this protein. This is based on their strong docking scores (BE ≤ -6 kcal/mol). These 

compounds, especially hinokinin (DB199) which had the BE of -8.0 kcal/mol might actively 

alter the role of penicillin-binding protein 4 (PBP4) in MRSA.  

 

4.2.2 Inhibitors of growth and cell division related proteins 

The mechanism of growth and cell division in bacteria play a pivotal role in cell survival. The 

proteins associated with this process have been widely studied as promising targets for various 

antimicrobial agents (Eswara et al., 2018; Wagstaff et al., 2017). In this study, 2 proteins in 

MRSA that are crucial for cell survival were studied for their possibility of being inhibited by 

the AMNPs. The results depicts that 19.8 % of the AMNPs comprising DB103, 109, 111, 135, 

139, 145-146, 150-151, 159, 164, 166-167, 175, 184, 189, 191, 194-195, 199, 201, and 207 

had high affinity (BE ≤ -6 kcal/mol) for 5MN4 (cell division protein ftsZ) (Fig. 4.20).  
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Figure 4.20. Visualization map showing the AMNPs with a profound affinity (BE ≤ -6 

kcal/mol) for growth and cell division proteins. The proteins (5MN4 and 3VSL) are presented 

as blue markers, yellow represents compounds with the strongest affinity for the proteins 

(DB150 for 5MN4; D135 for 3VSL) while brown (including DB135) represents AMNPs with 

a stronger affinity for 3VSL than curcumin. The groups annotated with A represent AMNPs 

inhibitors of both proteins while the green marker represents the compound that showed a 

strong affinity for 5MN4 only. 

 

Similarly, about 86 % of AMNPs comprising DB101-111, 113-115, 119, 121-146, 148, 150-

155, 157, 159-168, 174, and 176-211 demonstrated BE below -6 kcal/mol for the 3VSL 

(penicillin-binding protein 3) target. Notably, all the compounds that showed a strong affinity 

for 5MN4 also revealed considerable BE for 3VSL, except DB175 (Fig. 4.20; green). Among 

these compounds, heyneanol A (DB150; yellow) exhibited the highest binding affinity (-7.1 

kcal/mol) for the 5MN4 protein while sanguinarine (DB135; yellow) with the BE of -9.3 

kcal/mol demonstrated the highest affinity for the 3VSL protein (Fig. 4.20). Curcumin (DB200) 

also had a docking score of -7.5 kcal/mol and a strong affinity for the protein.  However, more 

than 40 other compounds showed a stronger affinity (< -7.5 kcal/mol) for 3VSL than DB200. 

This implies that more than 40 AMNPs could be prioritized in the search for new inhibitors of 

penicillin-binding protein 3 target. 
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The antibacterial activity of DB200 has been identified with the blockage of cell proliferation 

(Teow et al., 2016). However, the observed BE of DB200 confirms that some of the AMNPs 

could potentially disrupt the pathway involving cell division and growth better than some of 

the already established molecules.  In another study, heyneanol A sourced from the root of wild 

grape was reported to have an anti-infective mechanism identified with the inhibition of growth 

(Peng et al., 2008). Similarly, the antimicrobial activity of sanguinarine (DB135) has also been 

linked to the disruption of the pathway leading to cell division (Beuria et al., 2005; Obiang-

Obounou et al., 2011; Opperman et al., 2016). Therefore, these reports are in agreement with 

the observations of this study.  

 

4.2.3 Inhibitors of enzymes involved in protein biosynthesis 

Protein biosynthesis plays a key role in the regulation of gene expression and it has been studied 

as an important pathway that aids bacteria cell survival (Bandyopadhyay and Muthuirulan, 

2018). Therefore, it is a promising strategy to target protein biosynthesis in drug discovery 

(Bandyopadhyay and Muthuirulan, 2018). In this study, 5 different proteins (1NYR, 1FFY, 

4QRE, 1KNY, and 1LM4) that are involved in protein biosynthesis in S. aureus were explored 

for the possibility of the AMNPs to inhibit their functions. The summary AMNPs that showed 

a strong affinity for these proteins is presented in Table 4.5.  

 

Table 4.5. The summary of AMNPs that showed a promising affinity for protein synthesis, as 

measured by binding energy (BE). 

PDB Nos of ligands 

with BE ≤ -6 

Comments (n = no of 

ligands) 

Best ligand with their BE (kcal/mol) 

1NYR 91 77 showed BE ≤ -7 DB150: Heyneanol A (-10.1) 

4QRE 80 49 showed BE ≤ -7 DB199: Hinokinin (-9.0) 

1KNY 16 Nil DB131: Juncusol (-6.9) 

1FFY 74 36 showed BE ≤ -7 DB150: Heyneanol A, and  

DB184: 4-(((Z)-5-((4-((E)-3-(2-chlorophenyl)-3-oxoprop-

1-en-1-yl) benzylidene)-2,4- dioxothiazolidin-3-yl) methyl) 

benzoic acid (-8.2) 

1LM4 12 Nil DB164: Corylifol C (-7.3) 
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Although heyneanol A (DB150) demonstrated the highest affinity (BE of -10.1 kcal/mol) for 

threonine-tRNA ligase (1NYR), 82 % of the AMNPs (comprising DB101-115, 122-148, 151-

168, 174-175, 181-202, 204-211) could potentially inhibit this protein. This observation was 

based on their docking scores which were found below -6 kcal/mol. The heyneanol A (DB150) 

and 4-(((Z)-5-((4-((E)-3-(2-chlorophenyl)-3-oxoprop-1-en-1-yl)benzylidene)-2,4-

dioxothiazolidin-3-yl) methyl) benzoic acid (DB184) showed the strongest affinity for 

isoleucine-tRNA ligase (1FFY) as indicated by their docking score (-8.2 kcal/mol). Other 

compounds including DB101-102, 104-111, 113-115, 122, 124, 125, 127, 129-139, 141, 144-

146, 148, 151, 153-155, 157, 159-167, 174, 175, 182-183, 185-187, 189-197, 199-202, 204, 

and 207-210 also exhibited strong binding affinity for this protein.  

 

Another part of the results showed that most of the AMNPs showed favourable interaction with 

the methionine-tRNA ligase (4QRE). In this complex, the best binding affinity was 

demonstrated by hinokinin (DB199) and BE of -9.0 kcal/mol (Table 4.5). Other compounds 

such as DB101-114, 116, 119-125, 127-135, 139-146, 148, 151-153, 155, 159-168, 172, 174, 

178, 181, 183-189, 191-193, 195-198, 200, 202-206, 208, and 211 also demonstrated strong 

binding affinities (BE ≤ -6 kcal/mol) for the protein. Additionally, the complexes formed by 

AMNPs and 1KNY showed that DB113, 114, 122, 131, 159, 160, 174, 183, 184, 192, 195, and 

199-202 have a greater chance of targeting this enzyme as their major mechanism of destroying 

the MRSA. Juncusol (DB131) with a molecular docking score of -6.9 kcal/mol, however, 

exhibited the best affinity for this target.  

 

Likewise, for the peptide deformylase (1LM4); DB101-102, 109-110, 114, 122, 161, 164, 167, 

192, 199, and 204 were found to reveal a notable affinity for this enzyme. Among these 

compounds, protosappanin B (DB101) had a docking score of -6.2 kcal/mol. DB101 has been 

identified in a virtual screening study as one of the few potential inhibitors of peptide 

deformylase (Liang et al., 2018). Nevertheless, 7 other molecules (Fig. 4.21) including 

corylifol C (DB164) revealed a higher docking score (< -6.2 kcal/mol) against 1LM4. This can 

be an indication that the compounds may be more valuable candidates against the 1LM4 target 

in MRSA.  
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Figure 4.21. Visualization map showing the AMNPs with a profound affinity (BE ≤ -6 

kcal/mol) for peptide deformylase. The protein (1LM4) is presented as a red marker. Each of 

the other markers represents compounds with a strong affinity for the 1LM4. A (yellow 

markers) represents AMNPs with a stronger affinity compared with protosappanin B (DB101). 

 

Many of the AMNPs bind strongly to at least two proteins. Berberine (DB174) and 

sanguinarine (DB135) showed a strong affinity for most of the enzymes. It implies that both 

compounds could be potential antimicrobial agents with broad-spectrum activity. This 

observation corroborates the study of Khameneh et al. (2019) who described both DB135 and 

DB174 as potential antimicrobial agents with broad-spectrum activity. Similarly, 

protosappanin_A (DB102) and curcumin (DB200) demonstrated a high affinity for nearly all 

the proteins. The antimicrobial effect of curcumin has been identified with the disruption of 

protein synthesis (Teow and Ali, 2015). Therefore, this report is consistent with the predicted 

interaction of curcumin (DB200) in this study. However, the effects of some of the AMNPs 

(especially, DB131, 150, 164, 184, and 199) on protein synthesis machinery in S aureus has 

not been reported. Therefore, the strong affinity of these compounds for the different proteins 

(Table 4.5) strongly indicates that they could be prioritized in the search for new antimicrobial 

agents against MRSA. In addition, the AMNPs that showed a strong affinity for more than one 

protein might be an indication of their ability to destroy the pathogen through multi-target 

strategies (Gray and Wenzel, 2020).  

 

4.2.4 Inhibitors of DNA biosynthesis proteins 

Bacteria cells generally depend on DNA biosynthesis for their growth. Drug candidates that 

inhibit this target may result in the loss of cell viability (Bandyopadhyay and Muthuirulan, 

2018; Dastidar et al., 2000). In this study, 5 proteins (3E2I, 1EYA, 1RRI, 2INR, and 3JSL) 

used by S. aureus for the biosynthesis of DNA were investigated for their potential inhibitors 
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among the AMNPs. Figure 4.22 represents the AMNPs that demonstrated a profound 

interaction based on their binding affinities (BE ≤ -6 kcal/mol) for the proteins.  

 

 

Figure 4.22. Visualization map showing the AMNPs with a strong affinity (BE ≤ -6 kcal/mol) 

for targets related to DNA synthesis. The proteins are presented as green markers, yellow 

represents compounds with the strongest affinity for the proteins (DB150 for 3E2I; DB144 and 

DB186 for 2INR, DB144 and DB189 for 1RRI; DB208 for 3JSL, and D135 for 3FRB).  The 

groups annotated with: A represents AMNPs with a strong affinity for both 3JSL and 3E2I; B 

represents AMNPs with a strong affinity for both 3E2I and 2INR; C represents AMNPs with a 

strong affinity for both 2INR and 3JSL; D represents AMNPs with a strong affinity for 3JSL, 

3E2I, and 3FRB; E represents AMNPs with a strong affinity for 3JSL, 3E2I, and 2INR while 

F represents AMNPs with a strong affinity for all the proteins except 1EYA. The absence of 

connections to the 1EYA node means that the AMNPs generally have BEs weaker than -6 

kcal/mol. 

 

Overall, 62 % of AMNPs showed a considerable affinity for the thymidine kinase (3E2I) target 

(Fig. 4.22). One of these compounds is heyneanol A (DB150) (Fig. 4.22; yellow marker) which 

demonstrated the highest BE (-9.5 kcal/mol) for this enzyme (Fig. 4.22). On the contrary, low 

to moderate binding affinity was revealed across the AMNPs for thermonuclease (1EYA). 

Ikarugamycin (DB207) with the BE of -5.6 kcal/mol showed the strongest affinity for this 

enzyme. The low binding affinity of AMNPs for 1EYA is further illustrated in Figure 4.22, 

where the node (1EYA) has no edge (AMNPs) connected to it. Similarly, only erybraedin A 
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(DB144) and glabridin (DB189) both with BE of -6 kcal/mol showed a promising affinity for 

the dihydroneopterin aldolase (1RRI) enzyme (Fig. 4.22). 

 

The observed low affinity for these proteins implies that the reported in vitro activities of 

AMNPs may not be through interference with the mechanisms involving thermonuclease or 

dihydroneopterin aldolase in MRSA. On the contrary, few of the AMNPs ( DB105, 118, 119, 

137, 140, 146, 148-150, 152, 174, 182, 191, and 195) including erybraedin A (DB144) and 3-

kievitone (DB186) both with BE of -6.4 kcal/mol showed a strong affinity (≤ -6 kcal/mol) for 

the DNA topoisomerase 4 subunit A enzyme (2INR) (Fig. 4.22). The result also revealed that 

83 % of the compounds, comprising DB101-103, 105-114, 116-126, 128-135, 139-146, 148, 

151-155, 159-168, 171-174, 176-181, 183-193, 195-208 and 210-211 showed profound 

molecular interactions with the protein target; 3JSL. One of these compounds, licoricidin 

(DB208) with BE -9.7 kcal/mol had the strongest affinity for the protein (Fig. 4.22; yellow 

marker). As shown in Figure 4.22, some of the AMNPs (A, B, C, D, E, F) may potentially 

inhibit at least two of these proteins. This can be an indication that many of the AMNPs are 

multi-target compounds. This could also imply that they may have the prospect of inhibiting 

the pathogen by binding to related proteins (Gray and Wenzel, 2020).  

 

4.2.5 Inhibitors of fatty acid synthesis (FASII) proteins 

The pathway of fatty acid synthesis (FASII) is essential for its role in bacteria cell membrane 

structure (Parsons and Rock, 2011). Therefore, the enzymes associated with this process have 

been prioritized in the present-day drug development against MRSA (Kénanian et al., 2019; 

Parsons and Rock, 2011). In this study, the potentials of AMNPs to disrupt the activities of 

some of the proteins (1XPM, 4ALM, 4FS3, 3IM9) involved in FASII were explored. The result 

shows that about 96 % of the AMNPs were in the pocket of the 1XPM (HMG-CoA synthase), 

each exhibiting a strong binding affinity (BE ≤ -7.3 kcal/mol). One of these compounds is 

erythrabyssin II (DB139) which demonstrated the overall strongest binding affinity (BE = -

12.1 kcal/mol) for 1XPM (Fig. 4.23). 
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Figure 4.23. Visualization map showing multi-target inhibitors (BE ≤ -6 kcal/mol) of FASII 

proteins. The proteins (4ALM, 3IM9, 4FS3, and 1XPM) are presented as green markers while 

red markers represent the AMNPs.  

 

Similarly, DB101-111, 113-116, 122-125, 127-142, 144-146, 151-155, 157, 159-168, 174, 177, 

180-211 were compounds that showed strong affinity (BE ≤ -6 kcal/mol) for the malonyl CoA-

acyl carrier protein transacylase (3IM9). Among these compounds, sanguinarine (DB135) had 

a docking score of -9.1 kcal/mol, the highest affinity for the 3IM9 target. About 73.8 % of the 

AMNPs (comprising of DB101-107, 109-111, 113-116, 118-122, 124-125, 127-133, 135-139, 

141, 144-147, 150, 151, 153-155, 157, 159, 160, 162-167, 174, 175, 177, 178, 180, 182-197, 

199-204, 207-210) also showed profound interaction with the enoyl-[acyl-carrier-protein] 

reductase [NADPH] (4ALM) target. This observation was based on their docking scores which 

were found below -6 kcal/mol. The results also revealed a favourable interaction between the 

AMNPs and threonine-tRNA ligase (4FS3) target. As shown in Figure 4.23, rugulosin A (DB 

194) revealed the strongest BE (-8.6 kcal/mol) for 4FS3. The compounds DB101-111, 113-

116, 122-125, 127-146, 148, 151-155, 157, 159-168, 174, 182-197, 199-202, and 204-210 also 

showed BE below -6 kcal/mol for the same protein. Among these compounds, 

dihydrokaempferol (DB134), andrimid (DB146), epicatechin gallate (DB159), and hinokinin 

(DB199) exhibited the highest binding affinity (BE of -8.1 kcal/mol) (Fig. 4.23). Furthermore, 

about 60 % of the AMNPs could potentially inhibit all of the four enzymes (Fig. 4.23). Among 
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these compounds are DB135, 146, 159, and 174 whose antimicrobial activity has been 

identified with the disruption of fatty acid biosynthesis (Chow and Sato 2013; Ishikawa et al., 

2016; Wang et al., 2003; Zhang et al., 2016). On the other hand, erythrabyssin II (DB139) and 

a few other AMNPs have no previous reports on the effect that they disrupt FASII enzymes. 

Hence, these compounds could be novel and promising potential drug candidates against 

MRSA. 

 

4.2.6 Inhibitors of hemolysins associated proteins 

The hemolysins are classes of four different exotoxins produced by S. aureus causing 

pathogenesis through lysis of red blood cells (Otto, 2014; Mohan and Venugopal, 2013). These 

proteins include α, β, and γ-hemolysins which function through the receptor-mediated process 

and δ which is a non-receptor mediated hemolytic toxin (Kong et al., 2016; Mohan and 

Venugopal, 2013). Inhibitors of these enzymes have been widely described as potential anti-

virulence agents (Bandyopadhyay and Muthuirulan, 2018; Escajadillo and Nize, 2018). In this 

study, the potential AMNPs inhibitors of the γ and δ-hemolysin were investigated and the result 

is summarised in Table 4.6.  

 

Table 4.6. Summary of the AMNPs that showed a strong affinity for hemolysin proteins, as 

measured by binding energy (BE).  

PDB Nos of ligands with 

BE ≤ -6 

Comments (n = no of ligands) Best ligand with their BE 

(kcal/mol) 

1DHL 0 Low binding affinity (less negative BE) 

was observed across all the ligands 

DB207: Ikarugamycin and 

DB210: Celastrol (-4.8) 

2ERN 71 22 showed BE ≤ -7 DB194: Rugulosin A (-9.4) 

 

Generally, the AMNPs revealed a low to mild binding affinity for delta-hemolysin (1DHL), 

where ikarugamycin (DB207) and celastrol (DB210) both with BE of -4.8 kcal/mol 

demonstrated the strongest affinity for the target. On the contrary, about 64 % of the AMNPs 

comprising DB101-105, 108-111, 113-115, 122, 124-125, 127, 130-135, 137-139, 141, 144-

148, 150-151, 153-155, 157, 159-162, 164-167, 174, 182-191, 193-197, 199-202, 204, and 

207-211 exhibited binding energy below -6 kcal/mol for the gamma-hemolysin component B 

protein (2ERN). 
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Among these compounds, rugulosin A (DB194) with the binding energy of -9.4 kcal/mol 

revealed the highest affinity for this protein and thus could be the most promising molecule 

with the ability to inhibit the role of gamma-hemolysin component B in MRSA. The low 

binding affinity observed across the AMNPs for 1DHL however, implies that most of the 

AMNPs are more likely to inhibit the pathogen by neutralizing the receptor-mediated process 

rather than the δ-hemolysin machinery.  

 

4.2.7 Inhibitors of quorum-sensing associated proteins 

The quorum-sensing (QS) system in bacteria aids their communication with each other through 

the activation of some specific arsenals of virulence behaviours (Bandyopadhyay and 

Muthuirulan, 2018; Jiang et al., 2019). It regulates various kinds of biological processes 

including oxidative stress responses, pathogenicity, and antibiotic resistance (Bandyopadhyay 

and Muthuirulan, 2018). Therefore, the disruption of this system can result in neutralized 

bacterial virulence; a promising approach to overcome drug-resistant pathogens (Fleitas-

Martínez et al., 2019; Kalia and Purohit, 2011). The possible interactions between AMNPs and 

the enzymes (1WCZ, 4G4K, 4GCM, and 1MJT) associated with the pathways leading to the 

QS system were explored in this study. The result showed that AMNPs demonstrated a low to 

a mild affinity for glutamyl endopeptidase (1WCZ) target (Table 4.7). 

 

Table 4.7. Summary of the AMNPs that showed a potent affinity for the quorum-sensing 

system, as measured by binding energy (BE).   

PDB Nos of ligands 

with BE ≤ -6 

Comments (n = no of ligands) Best ligand with their BE 

1CWZ 2 Nil DB199: Hinokinin (-7.1) 

4G4K 6 Nil DB191: Licoisoflavone B (-6.8) 

4GCM 74 26 showed BE ≤ -7 DB135: Sanguinarine (-8.1) 

1MJT 

 

95 77 showed BE ≤ -7; 48 showed BE ≤ -8  

while 32 showed BE ≤ -9 

DB151: Erycristagallin (-11.1) 

 

Only DB161 and 199 showed strong affinity (BE < -6 kcal/mol) for this receptor. This is 

evidenced by the score of -6.6 kcal/mol observed for epigallocatechin (DB161) and the 

hinokinin (DB199) having the best score of -7.1 kcal/mol. This result implies that DB161 and  

DB199 might be prioritized in the search for AMNPs with the prospect of disrupting the 

activities of glutamyl endopeptidase. 
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The potentials of epigallocatechin to alter biofilm formation by interference with the QS has 

been reported (Matsunaga et al., 2010; Zhu et al., 2015). These findings agree with the 

observation of the present study, where epigallocatechin (DB161) showed a strong affinity for 

1WCZ. In another study, carvacrol was suggested to alter the formation of bacterial biofilms 

and QS only at a sub-lethal concentration (Burt et al., 2014). This could be the cause of the 

mild affinity (-4.3 kcal/mol) demonstrated by this compound (DB172) as observed in the 

present study. Nevertheless, there is no report on the anti-biofilms nor QS related effect of 

hinokinin (DB199) on any bacteria. This implies that DB199 could be a new and promising 

compound in quenching the biofilms and QS compared to some of the already known 

compounds.  

 

As part of this study, it was observed that licoisoflavone B (DB191) with BE of -6.8 kcal/mol 

had the strongest affinity among the 5 % AMNPs (DB113, 125, 184, 191, 196, and 201) that 

exhibited a high binding affinity (BE ≤ -6 kcal/mol) for accessory gene regulator protein A 

(4G4K) (Table 4.7). Similarly, sanguinarine (DB135) was best docked with the thioredoxin 

reductase (4GCM) target. This is evidenced by the BE of -8.5 kcal/mol observed for the ligand 

(Table 4.7). Additionally, 60 % of AMNPs (comprising DB101-111, 113-115, 122-125, 127, 

129-135, 138-141, 144-146, 151, 153-155, 157, 159-168, 174, 181, 183-197, 199, 200, 202, 

204, and 207-211) were found to potentially alter the role of this enzyme in the pathogen.  

 

Energetically favourable interaction was observed between the nitric oxide synthase oxygenase 

(1MJT) enzyme and most of AMNPs. This was evidenced by the 85 % of AMNPs (comprising 

DB101-114, 116-137, 139-146, 148, 151-155, 159-168,171-174,176-189, 191-193,195-206, 

208 and 211) that showed strong affinity (BE ≤ -6 kcal/mol) for this target. One of these 

compounds, erycristagallin (DB151) with BE of -11.1 kcal/mol showed the most profound 

molecular interaction (Table 4.2.4). These results imply that most of the AMNPs may 

potentially block the activity of 1MJT in MRSA. Resveratrol (DB107), myricetin (DB113), 

and glabridin (DB189) were among the compounds identified with a promising affinity (BE ≤ 

-7 kcal/mol) for the 1MJT protein. This result is consistent with previous reports where 

antimicrobial activities of the three compounds; resveratrol, myricetin and glabridin were 

identified with alteration of the pathways related to oxidative stress response in S. aureus (Ma 

et al., 2018; Silva et al., 2017; Singh et al., 2015). The compounds DB151, DB191, and DB199 

demonstrated more promising affinities for this target. However, none of these compounds has 

been linked to oxidative stress response in the literature. Therefore, it can be inferred that some 
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of the AMNPs may potentially disrupt the stress response pathway in MRSA better than some 

of the already known compounds. 

 

4.3 Summary of the chapter 

This chapter has presented, discussed, and interpreted the results for the cheminformatic 

characterization, prioritization, and optimization of AMNPs towards becoming safe orally 

administered drugs. The results and implications of the predicted putative drug targets for the 

AMNPs in MRSA were also discussed. Most of the investigated properties were found within 

the drug-likeness space of more AMNPs compared with the CDs. In addition, some AMNPs 

might be more desirable in the synthesis of novel anti-MRSA drugs. Interestingly, AMNPs 

with the least bioactivity showed the greatest potential to become oral drugs. Optimization for 

drug-likeness deficiencies among the SA category also led to the identification of two 

promising and novel chemotypes with better safety and synthetic accessibility scores. For target 

prediction analysis, AMNPs with promising affinity were identified based on their molecular 

docking score for the different putative drug targets in MRSA. Most of the AMNPs showed 

strong affinities for related or different independent targets. It was also established that some 

of the AMNPs could be prioritized above most of the already known inhibitors in the search 

for novel anti-MRSA drugs with broad-spectrum. 
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Chapter five 

Conclusion and recommendations 

This chapter presents a summary of the major findings and conclusions from the objectives set 

out in this study. It also defines the limitations of the study as well as provides 

recommendations for future work. 

 

Computational strategies are valuable and essential in the drug discovery and development 

process. They have the benefits of providing a cost-saving and efficient output within a very 

short time (Pereira and Aires-de-Sousa, 2018). Additionally, continuous failure of the currently 

prescribed drugs against Methicillin-Resistant Staphylococcus aureus (MRSA) necessitates an 

urgent need for novel antimicrobial agents, especially from non-conventional sources (Tayel 

et al., 2018). Therefore, to stay ahead of the impending danger of MRSA, it is crucial to 

embrace computational strategies in the search for potential drug candidates that can combat 

the pathogen. Taking advantage of the available natural products that have shown in vitro 

activity against MRSA (AMNPs), this study was set out to conduct cheminformatic and 

pharmacokinetic profiling of these compounds as well as to predict their potential targets in the 

bacteria. The major findings from this study are outlined below. 

 

5.1 Summary of key findings 

The main results for each of the objectives of this study are succinctly summarised below: 

 

 I. To conduct a literature search to retrieve anti-MRSA natural products with their minimum 

inhibitory concentration (MIC).  

Relevant keywords were used on freely available public databases to identify recent studies 

that reported AMNPs with their bioactivity. A sum of 111 AMNPs was retrieved based on the 

conducted search, and the MIC of these compounds ranged from 0.01 μg/mL to 1600 μg/mL. 

 

II.   To perform cheminformatics and data mining analysis of the AMNPs toward hit profiling, 

hit-prioritization, and hit-to-lead optimization using different cheminformatics software. 

Cheminformatics profiling was conducted on the AMNPs. A few approved anti-MRSA drugs 

(CDs) were used as a reference to identify compounds with prospects to become drug 

candidates. This was followed by prioritization of the AMNPs and identification of compounds 

for possible optimization. Profiling of molecular descriptors and physicochemical properties 
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of the AMNPs and CDs revealed that the AMNPs could be more drug-like compared to most 

of the CDs. This is because most of the AMNPs were found within the required drug-like limits 

of the investigated properties. In addition, most of the AMNPs were identified to have “room” 

for the potential addition of required chemical entities towards improving certain drug-like 

properties during the hit-to-lead optimization stage. Among the bioactivity categories of 

AMNPs, there were no significant differences in some of the properties evaluated. 

Furthermore, it was also observed that some crucial properties that determine drug-likeness 

(including hydrogen-bond acceptors, donors, and flexibility) were within the required limit for 

the less-active (NA) category. However, these properties were outside the limits for most of 

the active categories (A and SA), implying that strong bioactivity may not determine drug-

likeness. 

 

Absorption and permeability profiles were based on the rules defined by Lipinski, Veber, and 

Egan. The result revealed that more than 80 % of the AMNPs could have the chance of 

achieving good absorption. About 30 % of these compounds were also predicted to pass 

through the blood-brain barrier and up to 80 % were non-substrates of efflux transporters. 

Among the categories of AMNPs, the NA exhibited the highest prospect for good oral 

absorption. The CDs however, revealed a lower absorption. This is based on 60 % of these 

compounds that were found within the space of Lipinski’s rule. In addition, less than 50 % of 

the CDs revealed the chances of achieving high permeability at the Veber and Egan’s limits. 

The predicted permeability results for the CDs also reinforced their low permeability potentials. 

This is based on 25 % of the compounds that were confirmed as none p-gp substrates. None of 

the CDs was also predicted as a CNS drug. Above all, the absorption profiles revealed that the 

AMNPs exhibited the potential to become more orally active drugs than most of the CDs. 

 

The CDs did not show a tendency to inhibit any of the CYP450 isozymes. On the contrary, 

about 16 to 43 % of the AMNPs could potentially inhibit one or more of the isozymes. These 

inhibitors might be given less consideration during hit selection regardless of their in vitro 

activity. Additionally, the result predicted for phase 2 revealed that 71 % may produce 

metabolites at this stage. This implies that most of the AMNPs could be readily excreted out 

of the body. The assessment of toxicity also established that 80 and 59 % of the CDs and 

AMNPs respectively, might have negligible or no toxicity risks. The synthetic accessibility 

score of the AMNPs indicated that most of these compounds might be easier to synthesize than 

the CDs. 
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The hit-prioritization strategy led to the design of a visualization that allows easy identification 

of AMNPs that met all the desirable drug-likeness criteria and the drug-likeness deficiencies 

of other AMNPs. The drug-likeness deficiencies of two AMNPs were addressed by hit-

optimization to evolve novel compounds  (ANA196 and ANA 211) that are druglike. 

Furthermore, visualization of the chemical space revealed that AMNPs displayed higher 

diversity but lesser structural complexity in comparison with the CDs. Exploration of the 

structural-activity relationship also revealed activity cliffs (i.e. similar compounds with 

significantly diverse activities). Chemical groups responsible for enhanced anti-MRSA 

bioactivity were identified.  

 

III. To predicts the binding affinity of the compounds within the sites of MRSA proteins using 

molecular docking. 

In the second phase of this study, the potential targets of the 111 AMNPs in MRSA were 

successfully predicted using reverse molecular docking. The analysis of the docking 

interactions of AMNPs with the different putative protein targets in MRSA revealed that most 

of the AMNPs had an exceptionally strong binding affinity for some of the important protein 

targets. 

 

Overall, the AMNPs showed the strongest and most promising prospect for fatty acid 

metabolism associated proteins. This was evidenced by their high percentage of inhibitors for 

all the investigated fatty acid metabolism targets; 1XPM (96 %), 3IM9 (73.8 %), 4ALM (73.8 

%), and 4FS3 (76 %). Among the cell wall and membrane synthesis proteins, 88 and 77 % of 

the datasets showed a strong affinity for the 4WYZ and 2OLV, respectively. Additionally, most 

of the ligands interfere with growth and cell division related proteins. This is evidenced by the 

strong binding affinity of about 88 % AMNPs obtained for the penicillin-binding protein 3 

(3VSL). Most of the compounds were also predicted to interact with protein synthesis related 

pathways, based on the inhibition of 1NYR protein by 82 % of the ligands. Similarly, 83 % of 

the AMNPs revealed higher chances of blocking the DNA synthesis pathway as their 

therapeutic target through the inhibition of 3JSL protein. Furthermore, about 64 % of AMNPs 

showed promising prospects in disrupting the pathway involving hemolysins by targeting the 

gamma-hemolysin component B (2ERN). Additionally, 67 and 86 % of the AMNPs might 

strongly interfere with the 4GCM and 1MJT targets, respectively to cause inhibition of quorum 

sensing in the pathogen. 
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Some of the AMNPs were predicted to have the best binding scores for 2 or more related and 

unrelated targets. These compounds include celastrol (DB210) and sanguinarine (DB135) that 

showed the strongest affinity for three different proteins. Heyneanol A (DB150), and hinokinin 

(DB199) also revealed the best docking score and affinity for about four different proteins 

while rugulosin (DB194) had the best and significant binding affinity for about five proteins. 

This can be an indication that many of the AMNPs might be multi-target compounds with the 

prospect of destroying the pathogen by binding to different proteins. Additionally, most of 

these AMNPs were structurally diverse from established inhibitors in the literature. This 

structural diversity could be an indication of their potentials to inhibit the same or similar 

targets by different mechanisms. 

 

5.2 Overall goal and conclusion 

This work has provided a framework for the characterization, prioritization, optimization, and 

target prediction of AMNPs towards the discovery of orally active anti-MRSA lead 

compounds. The findings strongly indicate that some of the top prioritized AMNPs are safer 

and have greater potential than most currently administered drugs for MRSA. This study has 

also shown that most of the AMNPs have desired drug-like properties, and those with liabilities 

can be optimized for better performance. Furthermore, the study identified the prospective 

targets for the AMNPs thus giving insight into the potential mechanisms of the compounds. 

Therefore, the AMNPs with good drug-like properties and binding affinity for the MRSA drug 

targets are suggested to establish ideal lead candidates to be developed into new generation of 

drugs against MRSA-caused infections. Finally, the knowledge gained through this study could 

help realize the full prospects of available data in drug development chains, thereby reducing 

the attrition rates. The schematic representation of the main achievements of this study is shown 

in Figure 5.1 below. 
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Figure 5.1 Schematic representation of the main achievements of this study. 
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5.3 Limitations of the study and recommendations for future work 

The generalizability of the predicted drug-likeness and targets of the AMNPs is limited by the 

lack of in vitro validation which is beyond the scope of this study. Additionally, it was not 

ascertained whether the two novel compounds identified in this study exhibited any 

antimicrobial activity. Therefore, further in vitro and in vivo studies are needed to substantiate 

the in silico predictions.
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