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Abstract

Three-dimensional (3D) graphic representations of geographic environments have be-
come commonplace in a range of �elds. These representations are often an attempt to
represent both geographic forms, as well as the relationships that exist between them.
In contrast to other �elds, the use of 3D geological models in the visualisation of the
subsurface environment is relatively new. Additionally, these 3D geological models are
traditionally created through the painstaking process of manual development methods.
As such, the models developed are unable to fully utilise the wealth of geological data
that is collected during subsurface exploration.

Therefore, the objective of this research was to create a 3D geological prototype that al-
lowed for the visualisation of underground resource reservoirs in a faster, easier and more
aesthetically appealing manner. To achieve the objectives of this research, the problem
was tackled holistically by considering both the theoretical and practical components of
the research. Some theoretical components that were considered are: well log � wireline
log � data composition, the information that can be extracted from each well log com-
ponent, geological data interpolation as well as geological visualisation. Utilisation of
the theoretical component of this research facilitated the development of a programme
that modelled and visualised sub-surface environments. The programme applied the in-
formation from numerous well log datasets and interpolated the various geological layers
that could be found within a region.

This research used the machine perception process as the approach to develop a 3D
prototype of the Bredasdorp Basin. The steps involved were made up of 5 overarching
steps: data collection (acquired from the Petroleum Agency of South Africa), data
preprocessing, feature extraction, data clustering and data post-processing.

As part of this research the optimal number of components to explain 95% of the data
distribution was determined to be 6 components for the processed dataset. Following
this 3 clusters were determined to produce the best cluster separation. The identi�ed
clusters were meant to distinguish between lithological sequences in the region, however,
when examined further they did not match the expected results. A number of factors
were linked to performance of the prototype, these included the distribution, consistency
and imputation of the data.

Nevertheless, the research has possible implications on viewer perception in well log

iii

http://etd.uwc.ac.za/ 



interpretation as well as the applicability of machine learning in the �eld. Following
on from this research, a number of future directions can be taken with one being the
incorporation of pseudo labelling in the clustering of well logs.

iv

http://etd.uwc.ac.za/ 



Contents

Declaration i

Acknowledgements ii

Abstract v

List of �gures xi

List of tables xiii

Nomenclature xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Rationale of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Study Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Concept Clari�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Outline of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Geological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Well Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Spontaneous Potential . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Gamma Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v

http://etd.uwc.ac.za/ 



2.3.4 Calipers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Cartographic Design Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Eye Brain System . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.3 Gestalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.4 Thematic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.5 Geographical Information Systems . . . . . . . . . . . . . . . . . 54

3 Method 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Data Desrciption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Data Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.4 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.5 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.6 Data Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Train/Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Data Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . 68

3.5.4 KMeans clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Data Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.1 Data Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.2 GIS prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Methodological Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Results and Analysis 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 3D Geological Prototype Process Outline . . . . . . . . . . . . . . . . . . 74

vi

http://etd.uwc.ac.za/ 



4.3 Data Optimisation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 PCA Optimal Parameter Derivation . . . . . . . . . . . . . . . . . . . . . 83

4.5 Principal Component Interpretation . . . . . . . . . . . . . . . . . . . . . 85

4.6 Derivation and Interpretation of the Optimal KMeans Parameters . . . . 88

4.7 Geological Prototype Analysis . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Conclusion 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Application of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Implications of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Recommendations and Future Work . . . . . . . . . . . . . . . . . . . . . 100

vii

http://etd.uwc.ac.za/ 



List of Figures

1.1 (Broad, 1990) Location map of South African southern o�shore sedimen-

tary basins. Numbered boreholes are referred to in the text. . . . . . . . 3

2.1 Location map of South African southern o�shore sedimentary basins -

including the region of interest, the Bredasdorp Basin, and its parent

basin, the Outeniqua Basin (Petroleum Agency of South Africa, 2003) . . 10

2.2 Generalised chronostratigraphy of the Bredasdorp basin (Petroleum Agency of

South Africa, 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Principal of well logging (Jahn et al., 2008) . . . . . . . . . . . . . . . . . 21

2.4 Schematic representation of potentials and current distribution in and

around a permeable bed penetrated by a borehole (Peveraro, 2006) . . . 23

2.5 Intersection of the machine learning �elds . . . . . . . . . . . . . . . . . 29

2.6 Decision steps in a simple spam �lter (Adapted from Beyeler (2017)) . . 30

2.7 Main machine learning categories: Supervised machine learning (Repro-

duced from Beyeler (2017)) . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Main machine learning categories: Unsupervised machine learning (Re-

produced from Beyeler (2017)) . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Main machine learning categories: Reinforcement machine learning (Re-

produced from Beyeler (2017)) . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 skleran �owchart on how to choose the right estimator (Developers, 2007) 33

2.11 Transformation of data with PCA (Müller et al., 2016) . . . . . . . . . . 35

2.12 Scatter plot of the digits dataset using the �rst two principal components

(left-hand side). Scatter plot of the digits dataset using two components

found by t-SNE (right-hand side) (Müller et al., 2016) . . . . . . . . . . 36

2.13 Input data and the three steps of the k-means algorithm (Müller et al.,

2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii

http://etd.uwc.ac.za/ 



2.14 The elbow and silhouette method for determining 'k' (the number of clus-

ters) (Adapted from Sarkar (2020)) . . . . . . . . . . . . . . . . . . . . . 38

2.15 The cartographic design cycle (Reproduced from Stevens et al. (2012)) . 39

2.16 The visual variables (graphic elements) of cartographic symbols (Adapted

from Tyner (2010)). First reproduced in Ile (2018). . . . . . . . . . . . . 40

2.17 Depiction of the visible band within the electromagnetic spectrum . . . . 42

2.18 Image depicting the three dimensions of the HSV colour space . . . . . . 43

2.19 Keates for the human visual system. . . . . . . . . . . . . . . . . . . . . 45

2.20 Image of the brain primarily devoted to visual perception (Keates) . . . . 46

2.21 Depiction of the Gestalt law of Figure/ground as seen in both a text and

image example (Adapted from Roth and Bruce (1995), and �rst repro-

duced in Ile (2018)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.22 Depiction of the Gestalt law of Closure as seen in both an image and text

example (Adapted from Graham (2008), and �rst reproduced in Ile (2018)). 48

2.23 Depiction of the Gestalt law of Common Fate (Adapted from Lidwell et al.

(2010)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.24 Depiction of the Gestalt law of Continuation (Adapted from Roth and

Bruce (1995), and �rst reproduced in Ile (2018)). . . . . . . . . . . . . . 49

2.25 Depiction of the Gestalt law of Pragnanz (Adapted from Lidwell et al.

(2010)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.26 Depiction of the Gestalt law of Proximity (Adapted from Lidwell et al.

(2010)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.27 Depiction of the Gestalt law of Similarity (Adapted from Graham (2008),

and �rst reproduced in Ile (2018)). . . . . . . . . . . . . . . . . . . . . . 50

2.28 Depiction of the Gestalt law of Uniform Connectedness (Adapted from

Lidwell et al. (2010)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.29 Dent et al. (2009) schematic for the di�erent map classi�cations. . . . . . 52

2.30 Qualitative thematic map example (Dent et al., 2009) . . . . . . . . . . . 53

2.31 Quantitative thematic map example (Dent et al., 2009) . . . . . . . . . . 53

2.32 The components of a thematic representation (Dent et al., 2009) . . . . . 53

2.33 Visual depicting a simpli�ed diagrammatic representation of GIS . . . . . 54

3.1 Image showing the approach used in the development of a 3D prototype

geomodel (adapted from Chopra et al. (2019)). . . . . . . . . . . . . . . . 57

3.2 Well locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Work�ow for exploring the data . . . . . . . . . . . . . . . . . . . . . . . 60

ix

http://etd.uwc.ac.za/ 



3.4 Work�ow for exploring the data . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Work�ow for selecting features . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Work�ow for integrating the data sets . . . . . . . . . . . . . . . . . . . . 63

3.7 Work�ow for cleaning the data . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Sample of outliers in a boxplot . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Work�ow for scaling the data . . . . . . . . . . . . . . . . . . . . . . . . 66

3.10 Train/Test split (Bronshtein, 2017) . . . . . . . . . . . . . . . . . . . . . 67

3.11 Work�ow step for splitting the data into a train and test the data . . . . 67

3.12 Work�ow step for carrying visual data correlation . . . . . . . . . . . . . 67

3.13 From left to right to left examples of a scatter plot, histogram and hexbin

plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Work�ow for performing PCA and KMeans Clustering . . . . . . . . . . 68

3.15 Work�ow for converting the data for 3D modelling . . . . . . . . . . . . . 69

3.16 Work�ow for 3D GIS prototyping . . . . . . . . . . . . . . . . . . . . . . 70

3.17 Complete methodology for the creation of a 3D geological prototype . . . 72

4.1 Holistic approach applied in this investigation . . . . . . . . . . . . . . . 74

4.2 File coversion: .las to .csv . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Overview of the log data for a large data set with 1395 records . . . . . . 75

4.4 Overview of the log data for a small data set with 58 records . . . . . . . 76

4.5 Header of the 1st data frame (out of 161 data frames) that has a unique

depth range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Data frame with duplicate columns . . . . . . . . . . . . . . . . . . . . . 77

4.7 Data frame with unique columns . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Header of the 1st data frame (out of 87 data frames) that had a DEPT

curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Header and footer of the 1st data frame (out of 87 data frames) that has

had empty logs added to it . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Statistics of the non null features . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Header and footer of the concatenated data frame . . . . . . . . . . . . . 80

4.12 Data frame with imputed values . . . . . . . . . . . . . . . . . . . . . . 80

4.13 Box plots depicting the distribution of the data, with outlier records sum-

marised below the plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.14 Box plot depicting the distribution of the data, with the outliers removed 83

4.15 Principal Component Analysis (PCA) number of components . . . . . . . 84

x

http://etd.uwc.ac.za/ 



4.16 Heatmap showing the correlations between the principal components and

the original variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.17 Table showing the correlations between the principal components and the

original variables with the signi�cant correlations highlighted in green. . . 85

4.18 KMeans number omf clusters . . . . . . . . . . . . . . . . . . . . . . . . 89

4.19 Visual silhouette analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.20 KMeans Cluster frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.21 Well log plot for the dataset set . . . . . . . . . . . . . . . . . . . . . . . 91

4.22 Image depicting the intervals of interset and sealing points the bottom

depth of the concatenated dataset. . . . . . . . . . . . . . . . . . . . . . 92

4.23 Visual representation of the null values in well F-04 . . . . . . . . . . . . 94

4.24 Visual representation of the null values in well F-06 . . . . . . . . . . . . 94

4.25 Visual representation of the null values in well F-08 . . . . . . . . . . . . 94

4.26 3D geological prototype with well log coloured by cluster name. . . . . . 95

4.27 Interpolated surface based on the cluster labels of the input data set (slices

taken every 1000 m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.28 Uncertainties associated with the interpolated surface (slices taken every

1000 m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.29 Predicted vs Measured plot . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.30 Normal plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.31 Interpolated surface summary statistics . . . . . . . . . . . . . . . . . . . 98

xi

http://etd.uwc.ac.za/ 



List of Tables

2.1 Summarised descriptions of the rift phase episodes . . . . . . . . . . . . . 13

2.2 Summarised descriptions of the transitional rift-drift phase episodes . . . 15

2.3 Summarised descriptions of the drift phase: 13Atl to present day . . . . . 17

2.4 Relationship of primary graphic elements with psychological depth cues . 40

2.5 The visual cartographic variables . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Summarised descriptions of the Gestalt laws . . . . . . . . . . . . . . . . 48

xii

http://etd.uwc.ac.za/ 



Nomenclature

2D Two dimensional

3D Three dimensional

ML Machine Learning

GIS Geographical Information Systems

xiii

http://etd.uwc.ac.za/ 



1 Introduction

1.1 Background

Geology can be described as a descriptive science, within which scientists are consistently

attempting to describe rock materials and communicate these descriptions (Peveraro,

2006). Well log data interpretation is no di�erent. Research into the genesis of the

discipline and the artistic, comprehensive, verbose and subjective illustrations that were

created during the well log interpretation process, makes it apparent that well log data

interpretation is inherently visual. Its dependence on visual and descriptive mediums

can be credited to the fact that it is a representation of a complex, multi-dimensional

subject - the geological subsurface (Jones et al., 2009).

Therefore these drawings and writings, although as detailed and descriptive as they

could be, failed to fully express the core message geologists sought to portray, which is

an accurate, comprehensive and recognisable representation of the subsurface and all of

its complex relationships (Jones et al., 2009). Attempts to correct this propelled well

log interpretation into what it is today (Peveraro, 2006). Well log interpretation focuses

on measuring, recording and displaying rock material characteristics, and then deriving

descriptive geological parameters from the measured quantities (Peveraro, 2006). Simply

put, the practice of well log � wireline log � interpretation looks at inferring and conveying

the geological characteristics (e.g. lithology) of a region by measuring the properties of

rocks that surround several boreholes.

To map the geological subsurface of a region using the well log interpretation process,

probe instruments (sonde) that contain multiple sensors are extended into a well, so that

sedimentary property recordings can be made. As the sonde and its sensors are pulled

up from the depths of the well, they transmit information about their surroundings

(Luthi, 2001). Although, it is possible to post process the information gathered from

1
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Chapter 1 : Introduction

the sonde's various sensors by using a range of applications both proprietary and freely

available, they are often limited to two-dimensional (2D) visualisations. This is prob-

lematic because as mentioned above, relying on 2D geo-modelling solutions ultimately

compromises the display of 3D data (Jones et al., 2009).

This research was, thus, carried out to answer the following question: Could more

information be conveyed about the complex and highly entangled geological subsurface

- through the creation of mindful 3D cartographic maps? Therefore, the objective of

this investigation was to determine groups (clusters) within well log data and visualise

them three-dimensionally; while also applying cartographic techniques that promoted

aesthetic appeal and user comprehension.

To achieve this objective - creating appealing and recognisable 3D subsurface visual-

isations - certain theoretical underpinnings had to be considered and used in the de-

velopment of a 3D cartographic prototype that ensures aesthetic appeal and improves

understanding. Topics that were explored include the practice of well logging, machine

learning (ML), geographical information systems (GIS) and the framework for carto-

graphic design.

However, the overarching goal of this research was to contribute to the quality and versa-

tility of well log data interpretation worldwide and, more speci�cally in the Bredasdorp

Basin - one of the sub-basins of the Outeniqua Basin and the chosen region of study.

The Outeniqua Basin and its sub-basins (four major and one minor), all give record of a

rich geological history of South Africa's south coast. Continental rifting between east and

west Gondwana, extensional forces on the southern plate margins, and the subsequent

thermal subsidence and late drift sedimentation in well oxygenated environments, all

contributed to the formation of the enlarged basin parallel to the remnant continental

shelf break � the Outeniqua basin (McMillan et al., 1997).

Since the Outeniqua Basin's discovery, countless in-depth explorations have been carried

out for hydrocarbon prospecting purposes using seismic, deep borehole drilling and other

geological acquisition methods (McMillan et al., 1997). Therefore, hundreds of wells have

been drilled in Outeniqua's four major sub-basins and in its one of its minor sub-basin

i.e. the Bredasdorp, Pletmos, Gamtoos, Algoa and Infanta sub-basins respectively (see

�gure 1.1).

2
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Chapter 1 : Introduction

Figure 1.1: (Broad, 1990) Location map of South African southern o�shore sedimentary
basins. Numbered boreholes are referred to in the text.

3
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However, due to high water depths and strong currents in the distal portions of the

Outeniqua basin, most of these prospecting e�orts have been focused on the Bredasdorp

basin as it is the richest and most viable source of hydrocarbons (McMillan et al., 1997).

Therefore, pertinent literature and theoretical frameworks were applied to well logs from

the Bredasdorp basin to develop a 3D geological prototype.

1.2 Statement of the Problem

The manner in which sedimentary properties gathered from well logging are represented

has a direct e�ect on the ability of geological users at all levels of expertise to make mean-

ingful conclusions about the geological landscape of a region. Although most present day

well log interpretation applications are suitable for their purpose, they are hindered by

their dimensionality, which can lead to costly time and resource expenses. Dimension-

ality hinders these applications because they visualise recorded sedimentary properties

in 2D space and thus do not adequately support the observation of the complex and

multi-dimensional subsurface environments (Jones et al., 2009). Additionally, these rep-

resentations can both be aesthetically unappealing and di�cult to understand.

Hence, the driving research question behind this study was as follows:

While honouring vision and perception theory, could the complex and highly entangled

geological subsurface be represented as a 3D geological prototype using data processed

from well logs?

Given the above, the pertinent readings and theoretical frameworks were reviewed before

applying them to assist in the development of the readable and aesthetically appealing

3D geological prototype.

1.3 Rationale of the Study

Presently, most well logging applications help maximise the value of geological subsur-

face data by transforming this data into visual, actionable information. However, the

versatility and capacity of these applications are hindered by their two dimensionality.

As the subject being displayed - the subsurface - is a three-dimensional physical envi-

ronment, the need to deliver a 3D modelling solutions is of great importance because

it would support con�dent decision making (Ford et al., 2008). Additionally, as noted

4
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by Jones et al. (2009), 3D visualisation allows for the depiction of complex geological

structures, and is more inherently intuitive than standard methods.

Therefore this study explored 3D well log visualisation as a means of conveying more

information about the complex geological subsurface while also ensuring for aesthetic

appeal to increase the ease of use and understanding of this information. Emerging

insights from this investigation will raise awareness and increase understanding about

the 3D method of geo-modelling, which (unlike traditional methods) is unlimited by

dimensionality (Jones et al., 2009).

1.4 Study Objectives

The objectives of this investigation were:

1. To present a geological understanding of the Bredasdorp Basin.

2. To demonstrate a clear understanding of what a well log is.

3. To determine the well logs that can be applied to 3D geological model development.

4. To identify and explain the fundamental characteristics that facilitate in user un-

derstanding and aesthetic appeal when working with cartographic representations.

5. To implement principal component analysis (PCA) and Kmeans clustering on well

log data and interpret the results.

6. To develop a prototype of a 3D geological map that supports aesthetic appeal and

user comprehension by adapting and combining the best practices within existing

3D modelling theory.

1.5 Concept Clari�cation

Python is an interpreted, high level and general purpose programming language that

was �rst developed by Guido van Rossum in the 1980s. This programming language

separates itself from its counterparts through its emphasis on code readability and multi-

programming paradigm support (Van Rossum et al., 2007). Python libraries support

functionalities that range from data extraction and conversion to data analysis and

modelling.

5
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Unlike traditional geological models, three-dimensional (3D) geological models are

continuous representations of the subsurface generated from powerful modelling tools

(Van der Meulen et al., 2013). These subsurface representations often include geological

properties, distribution and architecture (such as lithology) (Song et al., 2019).

3D geological mapping is a multifaceted topic that deals with the three-dimensional

visualistion of geological data (e.g. faults, lithology and volume) in a intuitive and

choherent manner that is suitable for human perception and interpretation (Malolepszy,

2005).

Acording to Hyne (2014), lithology (such as sandstones, limestones, claystones and

shales) is the general physical characteristics of rocks, and a common way of lithological

determination is through the interpretation of well logs.

Well logs record the formation properties of an area for a given depth during the well

logging process (Del�ner et al., 1987), with some geological properties captured in well

logs including resistivity and porosity.

Geological basins are ovular, circular or bowl-shaped depressions in the Earth's sur-

face, that arise from either erosion or rifting. Their low-laying nature means that they

are often �lled with water or sediments, thus making them good records of palaeoclimates

(Rutledge et al., 2011). Three major basin types are: river drainage basins, structural

basins, and oceanic basins.

1.6 Scope

Despite the fact that other concerns and issues arose from this investigation, the in-

vestigation concentrated only on matters that a�ected well log data comprehension and

interpretation, as well as, 3D geological visualisation and prototyping. Overall, the issues

that emerged in this study had an impact on the creation of an aesthetically appealing

and intelligible 3D geological prototype based on well log data.

This research focused on issues, concerns and information gathered from research into

well logs, ML, 3D cartographic prototype development and 3D GIS. The information

gathered about the above mentioned topics were exclusively applied to the well log data

gathered from the Bredasdorp geological region. Aside from topographic data for the

region, no further information was considered and no additional data was gathered by

any other means other than that which is stated above, including those surrounding

6
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seismic data and website development.

Three elements were constraints (limitations) in this investigation. They are time, money

and the amount of information that could feasibly be gathered and e�ectively utilised.

1.7 Outline of Chapters

In this study there are �ve major chapters: the introduction, literature review, de-

sign/methodology, �ndings/results and conclusion. The short overview below highlights

the structure and arrangement of the research conducted in this thesis.

Chapter 1

This chapter introduced the subject matter for investigation - The use of well log data in

the creation of 3D geological maps - and provided context as to what would be presented

in the thesis and why. In addition to the preliminary notes, it included

� The background of the research

� A general statement of the problem

� The rationale of the study

� The objectives of the research

� Concept clari�cation

� The scope of the research

� And the chapter outline for the reseacrh

Chapter 2

Relevant literature and frameworks had to be examined in order to carry out the ob-

jectives of this investigation - creation of a 3D geological model that is bolstered by

cartographic comprehension and aesthetic appeal principles. Therefore, this chapter

outlined some of the information that previous academics have produced, including:

� An overview of the geology of the region of interest - the Bredasdorp basin

� A narrative of well logging that covers a brief look into its history and the data

that can be derived from it

7
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� An outline of machine learning

� A review of the 3D geological cartographic design cycle and it's related components

Chapter 3

In order to provide su�cient detail about the experiment, this chapter covered the

methodological aspects of the investigation. This included the type of research under-

taken, the data that was collected, the tools and materials used to achieve the objectives

of the research and why these methods were chosen.

Chapter 4

Chapter 4 covered the results and discussion of the investigation. The results portion of

the chapter set out the key experimental results and whether the results were signi�cant

or not.

The discussion portion of the chapter examined the results in the context of the literature

and established knowledge on the subject. The limitations of the research and the

implications of the �ndings were also discussed, and the study was critically evaluated.

Chapter 5

In addition to identifying areas for future research and making recommendations, this

chapter covered the critical aspects identi�ed in the development and analysis of the

geological map before concluding the overall investigation.

8
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2 Literature Review

2.1 Introduction

Well log interpretation looks at measuring and recording rock material characteristics,

and then deriving descriptive geological parameters from the measured quantities (Pev-

eraro, 2006). In addition well logging is not only the recording and interpretation of

geological quantities, but it is also the creation of meaningful visual representations.

This is especially true as the data being represented is inherently visual.

However, the broader e�ect of well log interpretation, beyond being just a functional

graphical representation, has not been extensively considered or explored. Therefore,

this investigation was performed with the aim of transcending the typical and often

con�ning two-dimensional (2D) well interpretation research that considered interpreted

well logs as merely uncontextualised 2D representations, and re-orienting the discussion

towards three-dimensional (3D) cartographic well representations with user appeal and

comprehension.

In this chapter pertinent perspectives, literature and theoretical underpinnings on the

use of unsupervised machine learning in the development of a 3D geological prototype

that promotes aesthetic appeal and enhances user comprehension are discussed. In

addition the geological setting of the region of interest and the wireline data that was

collected from it are brie�y looked at. This was done before delving into the literature

surrounding the development of an unsupervised machine learning (clustering) model.

Lastly, research into the concept of 3D cartography and its relation to how maps are

seen and understood, was conducted.

9
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2.2 The Geological Setting

The geological history of southern Africa, so far, spans about 3.8 billion years (Tankard

et al., 2012) and gives account of years of gradual sediment accumulation and loss.

Focusing on the middle to late Jurassic period gives insight into the geological and

tectonic processes that resulted in the formation of the Bredasdorp Basin (Parsiegla

et al., 2009), the setting for this research.

Figure 2.1: Location map of South African southern o�shore sedimentary basins - in-
cluding the region of interest, the Bredasdorp Basin, and its parent basin, the Outeniqua
Basin (Petroleum Agency of South Africa, 2003)

The Bredasdorp Basin, a large geological repository located o� South Africa's continental
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shelf, lies between Mossel Bay and the Cape Agulhas (see Figure 2.1) (Masindi, 2016).

It is bounded by two major basement arches � the Infanta Arch to the north-east and

the Agulhas Arch to the south-west. These arches are oriented parallel to the structural

grain of the orogenic Cape Fold Belt and set out an elongated basin with a width of about

80 km and a length of about 200 km. This has resulted in a basin (the Bredasdorp Basin)

that spans an area of around 18000 km2. This 18000 km2 basin is �lled with sediments

both from the time of continental rifting and the period after. In the basin, Upper

Jurassic and Lower Cretaceous continental and marine deposits chronicle the time of

continental rifting. While Cretaceous and Cenozoic divergent margin rocks tell of the

sedimentation during the post-rift period (Brown et al., 1995).

To better understand the geological setting and formation of the Bredasdorp Basin, the

geo-history of the basin and of its parent basin � the Outeniqua Basin � needed to be

explored.

Basin Evolution: The Bredasdorp Basin

The Bredasdorp Basin is one of the four major and one minor o�shore depocenters of

the Outeniqua Basin. The others are the Pletmos, Gamtoos, Algoa and Infanta sub-

basins (McMillan et al., 1997). The Outeniqua Basin is thus a collection of both small

fault bounded and deeper sub basins located o� the coast of the southern South African

continental margin (Parsiegla et al., 2009). The deeper sub basins of the Outeniqua

Basin are oriented closely to the Agulhas-Falkland Fracture Zone (AFFZ), a mid-ocean

valley that runs from the northern edge of the Falkland Plateau to the southern edge of

the African continent, and which forms the border between the continental and oceanic

crusts (McMillan et al., 1997).

The Outeniqua basin for the most part consists of mid Aptian to Maastrichtian deposits

on top of pre-existing rift basins and, according to McMillan et al. (1997), developed as

a result of three main episodes: rift, transitional and drift episodes.

In the �rst episode, continental rifting occurred between the East (Antarctica-Australia-

India) and West (South America) sections of Gondwana in the middle-late Jurassic to

Valanginian era. Rifting between east and west Gondwana is said to have occurred

along the progressively �oundering rift zone between the Australasian and African Plate

(Khana and Dillay, 1986). Continental rifting and the position of the Outeniqua Basin

relative to the plate margin meant that it was sheared by right-lateral movements. This

event was unlike the stress events that occurred at other margins in the rest of southern
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Africa, where (instead of right lateral movements) extensional pull apart movements

were experienced (McMillan et al., 1997).

Continental rifting was then followed up by a transitional episode (late Valanginian

� early Aptian era), before the basin formation concluded with a drift episode (early

Aptian to present day) (McMillan et al., 1997).

Although a post rift formation, analysis of borehole samples from the Bredasdorp basin

have revealed that the region that later became the Bredasdorp basin started experi-

encing continental rifting around the middle-to-late Jurassic period. Extensional stress,

experienced because of the breakup between the Falkland Plateau (a complex series

of micro plates) and the Mozambique Ridge during continental rifting, induced normal

faulting. This in turn supported the de�nition of elongated horsts (raised blocks of land),

grabens and half grabens in the region (Brown et al., 1995). It was in these (half) graben

basins � depressed blocks of land with parallel banding faults which arise from blocks

of land being downthrown � that sediments were deposited. Sediments such as clastic,

�uvial and shallow marine deposits were lain. According to McMillan et al. (1997) these

sediments were deposited in marine and non-marine sediment successions and are made

up of four main lithogenic sequences: namely a lower �uvial interval, a lower shallow

marine interval, an upper �uvial interval and an upper shallow marine interval. These

landward (transgressive) and seaward (regressive) sequences were primarily induced by

syn-depositional normal faulting, and account for the thick successively deposited sedi-

ments visible today.

The geological history of this period is summarised in the table below:
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Following the Upper Shallow Marine interval, sedimentation continued until there was

major di�erential subsidence and the rifting induced extensional stresses ceased. Ac-

cording McMillan et al. (1997) and Brown et al. (1995), the uplift and truncation of the

underlying geological deposits is marked by the late Valanginian drift onset unconfor-

mity (1At1) more than 126 Ma.

After the Valanginian drift onset unconformity (1At1) marked the end of continental

rifting, and before the onset of drifting, the transitional activities of thermal subsidence

and reactivated faulting occurred. This is known as the transitional rift-drift phase.

During this period subsidence was uniform, slow and thermally driven. Additionally,

sediments and uplifted structural highs, such as horsts and bounding arches, were vari-

ably eroded because of the slower subsidence rates of the period (McMillan et al., 1997).

Sedimentation during this period occurred in deep, poorly oxygenated marine areas

overlain by poorly circulating water columns. This depositional environment resulted

in the deposition of mostly argillaceous (clay-rich) marine sediments, and then their

transportation to deeper waters by rapid downhill currents. Also as a result of the

depositional environment's unsustainable biogenic oxygen levels signs of benthonic life

are rare or regionally con�ned (McMillan et al., 1997).

The geological history of this period is summarised in the table below:

Table 2.2: Summarised descriptions of the transitional rift-drift phase episodes

Transitional rift-drift Phase

Interval name Interval summary

1Atl to 5Atl

(Late Valanginian to

Hauterivian).

During the 1At1 to 5At1 period of the transitional

phase, distal clay-rich sediments in the basin accrued in

poorly oxygenated conditions. Additionally, southerly

inclined submarine valleys and canyons broke up the

pre-unconformity (1At1) shallow marine sandstones into

distinct areas which both provided a conduit for sedi-

ment �ow and pockets for gas trapping (McMillan et al.,

1997).
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5Atl to 13Atl

(Barremian to Early

Aptian)

Sediments in the 5At1 to 13At1 period transitional

phase of the Bredasdorp basin formation, were de-

posited in a poorly circulating and poorly oxygenated

environment. Also, during this period, the seaward

movement of clean highly porous coastal sands was

de�ned by both a northern margin and by the Infanta

Arch (McMillan et al., 1997).

During the early Barremian period (6Atl) there were

3 major channels cut into both the 6Atl sedimentary

surface and the pre-1Atl rocks (i.e. upper shallow

marine interval). These channels thus acted as conduits

for sedimentary �ow between proximal and distal

portions of the basin and assisted in the formation of

clay plugged gas trapping canyons (McMillan et al.,

1997).

Approaching the Early Aptian (13Atl) there was both

an uptick in sandstone deposition, and a marked decline

in the faulting subsidence rate (McMillan et al., 1997).

The end of the transitional rift drift phase occurred around the mid Albian period and

was followed by a drift phase. This period is marked by two things, �rstly the separation

of the Falkland Plateau from Africa, and then the slow south-westerly migration of the

Falkland Plateau past the coast of Southern Africa (McMillan et al., 1997).

These activities subsequently led to the establishment of a true passive margin, as well

as the formation of some oblique rift half-graben sub-basins � such as the Bredasdorp

basin.

The geological history of this period is summarised in the table below:
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The above geo-history of the Bredasdorp Basin, a depocenter of the larger Outeniqua

Basin, is summarised in the form of a chronostratigraphic correlation chart below:

Figure 2.2: Generalised chronostratigraphy of the Bredasdorp basin (Petroleum
Agency of South Africa, 2012)
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2.3 Well Logs

Hydrocarbons, an invaluable non-renewable source of energy, are found in abundance

in subsurface environments. However, these subsurface landscapes are tricky terrains to

access and navigate. Thus, the processes of hydrocarbon exploration and exploitation

often become challenging and expensive endeavors (Peveraro, 2006).

Due to a greater understanding of geological landscapes, as well as, the advent of tech-

nologically advanced machines that are used in geophysics and geo-engineering, hydro-

carbon prospecting has become an almost common practice (Peveraro, 2006).

To determine areas that will yield high hydrocarbon reservoirs, accurate lithological

information about subsurface environments need to be obtained from coring and drill

cuttings. The cores obtained from these activities are applied to the well logging pro-

cesses which allow for the determination of subsurface physical properties and lithology

with respect to depth (Peveraro, 2006).

Well logging provides a cheap, quick and accurate method of obtaining subsurface petro-

physical data like density, resistivity and travel time. These parameters are in turn used

for hydrocarbon identi�cation and quanti�cation of potential pay zones and hydrocarbon

reserves (Peveraro, 2006).

The hydrocarbon exploration process often begins with geological and geophysical sur-

veys. These surveys are used to determine the types of hydrocarbons present in the

subsurface by gathering information about the rock and sediment physical properties,

without the expensive undertaking of tunneling or digging (Peveraro, 2006).

After surveys have been carried out wells are drilled. The drilled wells are used to

con�rm the existence of hydrocarbon bearing geological traps and quantify the possible

pay zone by mapping of petro-physical properties against depth (Peveraro, 2006). This

step in the process is generally what people in the geo-related �eld refer to when they

speak of `well logging'. Well logging can be carried out using one or a combination of

techniques.

One technique is Measurement While Drilling (MWD), where (during the drilling pro-

cess) the composition of rock samples are collected to be examined later against their

depths in a specialised laboratory, (Peveraro, 2006). Another technique is Logging While

Drilling (LWD), whereby sonde (probe instruments that contain multiple sensors) are

used to take continuous measurements of a wells petro-physical properties against the
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depth of the well. These probe instruments are extended into a well using a steel ca-

ble. From the well they later transmit information about their surroundings as they are

pulled up (Luthi, 2001) (see �gure 2.3). The properties recorded by this method depends

on the sensors and tools that are used during the well logging process e.g. resistivity

tools, sonic tools, etc. (Peveraro, 2006).

Figure 2.3: Principal of well logging (Jahn et al., 2008)

The societal importance and pro�tability of well logging, has meant that subsurface

mapping, strata identi�cation and the tools/methods used during these processes are

topics that have been extensively covered by both academics and oil purveyors alike -

with countless books, papers and charts being published on the topic. However, the

topic and practice of well logging, as we know it today, can be traced back to 1837 when

Professor Forbes, from The Royal Observatory Edinburgh, lowered temperature sensors

into three shafts up to 24 feet (7.3 meters) deep. He did this in an e�ort to determine

the e�ects of depth and time on temperature (Luthi, 2001).

Since then, those in the petro-physical �eld have been consumed with being able to

determine sedimentary properties and �uid saturation, lithology and hence, the location

of hydrocarbon bearing soils. Evidence of this can be clearly seen in the periodical pub-

lishing of books that detail the newest developments in the �eld of geological modelling
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(Luthi, 2001). To achieve their purpose, these publications both de�ne the state of the

art in well logging �eld and also keep track of the technological advances through the

ages. Of special interest are the advancements that have engendered more useful hydro-

carbon measurement (Luthi, 2001).

The advancements in the well logging �eld have been, and continue to be, spurred on

by many external factors. External factors including electronics and computing, drilling

technology and new targets (Luthi, 2001). Electronics and computing have helped shape

hydrocarbon exploration through the provision of new tools that are adaptable to litho-

logical identi�cation and the well logging �eld, as a whole. Examples of this can be seen

in the high data transmission and acquisition chips, as well as the imaging and array

sensors that are currently used in the �eld of well logging (Luthi, 2001). Advancements

in the electronics and computing �eld have also allowed petro-physicists to make rapid

and educated decisions on site because of real-time processing, quality control and ad-

vanced data visualisation (Luthi, 2001). Moreover, the development of satellites have

allowed for the quick relay and display of information in near real-time, anywhere, at

any time and on a range of devices. Advancements in drilling technology, speci�cally the

development of LWD tools, have facilitated real-time data transmission, a reduction in

the amount of �uid invasion during drilling as well as the prevention of borehole damage

during the logging process (Luthi, 2001). Overall, the advancements in this sector have

assisted in ensuring data integrity from start to �nish. Lastly, as humans began to reach

all corners of the globe and deplete existing resources, hydrocarbon explorative e�orts

had to shift to new targets. In particular, the possibilities presented by deep water

targets have led to both technological advancements and new geological insights. The

region of exploration challenged the logging community to develop more robust sensors

as deep-water environments are geologically young, poorly consolidated, highly porous

and thinly bedded. All of which can contribute to poor borehole conditions and the

need for equipment that can navigate these environments (Luthi, 2001).

From the above it is clear that the general growth of humanity has led to signi�cant

progress in the logging �eld and made provision for a wide range of tools that can be

utilised to address each logger's needs (Luthi, 2001).The relatively new tools developed

from the technological advancements, as well as from the examination of new frontiers,

have allowed those in the hydrocarbon and geoscience �elds to carry out �eld explorations

to an almost surgical degree.

The logs (recorded sedimentary characteristics) derived from these �eld explorations act
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as data inputs in the creation of subsurface maps. As such an understanding of these

characteristics is important, if a 3D geological prototype is going to be created. However,

numerous characteristics are measured during well logging. The main characteristics

that will be used in the creation of the 3D subsurface maps are detailed in the following

section.

2.3.1 Spontaneous Potential

The spontaneous potential (SP) curve is a measure of the potential di�erence between

the potential of a kinetic electrode in a borehole and the potential of a static/�xed

electrode at the borehole surface. During logging a borehole penetrates a permeable

formation and puts two solutions of di�erent chemical activities in contact (Peveraro,

2006). In congruence with the second law of thermodynamics, thermal agitation causes

the net migration of ions from the saline rich formation water in the adjacent shale

to the fresh drilling �uid in the borehole. Additionally, the negative electrical barrier

created by the negative outer surface of clay mineral platelets in the shale prevents the

di�usion of Cl- anions, but allows Na+ cations through. Thus, the borehole adjacent

shale acts as a cation selective membrane and results in the borehole �uid becoming

positive (Peveraro, 2006)(see �gure 2.4).

Figure 2.4: Schematic representation of potentials and current distribution in and around
a permeable bed penetrated by a borehole (Peveraro, 2006)
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It is important to note that SP values are not generated but are instead relative. There-

fore, the shale baseline is not zero, but is the relative position from which SP de�ections

(and thus permeability) are measured.

During the SP measurement process no arti�cial currents are applied, instead the natural

potential di�erence, in millivolts (mV), that exists between an electrode as it descends

the depths of a borehole (moves downhole) and a �xed reference electrode at the surface

of a borehole is recorded by a galvanometer. Each formation has its own SP, however the

main objective of recording SP measurements is to allow di�erentiation between shale

and non-shale formations. In addition to this the SP log assists formation, permeability

and water resistivity determination (Peveraro, 2006).

SP is a�ected by a range of factors including the resistivity ratio, bed thickness, bed

resistivity, borehole diameter, invasion and porous and permeable bed shaliness. Several

factors in�uence the amplitude of an SP curve. These factors include bed thickness, bed

resistivity, hole diameter, permeability and Rmf/Rw (Peveraro, 2006).

2.3.2 Gamma Ray

Most rocks have nuclei of atoms that are stable and naturally unreactive, such as clean

sandstones and limestones. However, small portions of rocks are unstable and naturally

reactive, and may emit their zero mass particles or photons at any time. Shales fall

into this category and emit radiation from naturally occurring gamma ray sources such

as the daughter elements of the Uranium-Radiam and Thorium series, as well as from

radioactive potassium isotopes (40K) (Peveraro, 2006). These high energy pockets of

energy (photons) emitted from excited nuclei are known as gamma rays and are the

quantity measured in gamma ray (GR) logs. GR logs are captured by a scintillation

detector, which records the radioactive emissions of rocks and thus assists in the litho-

logical identi�cation of shale and non-shale zones (Peveraro, 2006).

GR logs produced from the well logging process, measure the natural gamma radiation

that originates from the radioactive elements of three main element groups, that is

the thorium, uranium and potassium families. The amount of energy emitted by the

radioactive elements of the aforementioned groups is usually in the spectrum of 0 � 3

million electron volts (Mev) and is generally recorded with a simple or spectral gamma

ray tool. The simple, or natural, gamma ray tool takes GR readings without regard for

the source of the radiation. Whereas the spectral gamma ray tool identi�es the source of
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the radiation and (through spectral analysis determines the contribution of each element,

thorium, uranium and potassium) to the overall energy spectrum (Peveraro, 2006).

Gamma radiation is a penetrating electromagnetic radiation that is progressively ab-

sorbed as it passes from one geological material to another. As such, the amount of

energy emitted at a GR genesis gradually decreases as it passes from formation to for-

mation. This e�ect is known as Compton scattering. Compton scattering is a�ected

by the density of a formation with greater energy losses occurring in denser formations

(Peveraro, 2006).

The GR logs derived from both simple and spectral GR tools during the well logging

process, can be used to determine shale volume and lithology. However, only the spectral

GR tool can determine radioactive material volume (Peveraro, 2006).

Factors that a�ect the radiation in rocks include age and deposition type (Peveraro,

2006). Age in particular, plays an important role in rock radioactivity; and is inversely

related to the other i.e. increased gaining results in decreased radioactivity (Mennan,

2017)

2.3.3 Resistivity

Electrical resistance (R) is a substance's opposition to the �ow of electrical current

through it. It is this quantity that is measured in a resistivity log (which is measured in

ohms). Thus, resistivity can be de�ned as a substances' resistance between two opposite

unit cube faces at a speci�c temperature (Peveraro, 2006).

Resistivity logs signify the presence of �uids (like water) in rocks because rock matrices

(excluding shale) are insulators, while saline �uids in their pore spaces are conductors.

Resistivity is thus inversely proportional to the volume of water present in a formation.

In other words, a formation with a high water content will have a low resistivity and

vice versa (Peveraro, 2006).

Resistivity is useful in identifying hydrocarbons because, (in comparison to their ex-

clusively water-bearing counterparts) the conductivity of porous rocks reduce in the

presence of hydrocarbons. This fact enables the distinction between hydrocarbons and

salt water in porous formations (Peveraro, 2006).

Resistivity is measured by three main methods: induction, laterlog and microresistivity

logging. Microresistivity logging works by using closely oriented borehole wallmounted
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electrodes, while laterlog logging uses carefully constructed electrode arrangements to

focus the surveying current and generate sharply focused horizontal current sheets of

predetermined thicknesses. Induction logging, on the other hand, works by using high

frequency alternating currents to induce concentric current loops (Peveraro, 2006).

The conductivity of a rock is a function of its porosity, the interrelation of its pores and

the conductivity of the �uid in its pores (Peveraro, 2006).

2.3.4 Calipers

Boreholes are formed by rotating a circular rock-bit. Therefore, a circular borehole

matching the diameter of the rock-bit is expected. However, this is often not the case.

Instead the resulting hole may be circular, oval, gauged, under-gauged, over-gauged,

cork-screwed or even key-holed. Gauged holes (circular and rock-bit sized) indicate the

presence of hard, dense and non-shaly rocks. Under-gauged holes (rock-bit sized minus

two times the thickness of mud cake in�ltrates) indicate the presence of permeable,

porous formations such as clays and sloughing shales. Sloughing shales can also result

in over-gauged holes that are over-sized with a diameter much greater than the bit size

(Peveraro, 2006).

There are several mechanical calipers that are used to determine borehole geometry.

The tools fall into 6 main categories 1-arm, 2-arm, 3-arm, 4-arm, 6-arm and multi-�nger

tools (Peveraro, 2006). Some of these calipering devices are designed to simply measure

borehole diameter while others also form an integral part in achieving the aims of the

overall survey, and are therefore embedded in other tools. For example in the 3-arm

caliper supports borehole diameter determination and is used as a centraliser in sonic,

dipmeter and production logging tools (Peveraro, 2006).

2.3.5 Porosity

There are three logging tools that can assist with determining the porosity and thus

formation mineralogy. These are density, neutron and sonic logging tools (Peveraro,

2006).

The density log measures the grams per cubic centimetre of scaled bulk density of forma-

tions. It does this by emitting a highly collimated beam of medium energy gamma rays

(Peveraro, 2006). These rays collide with electrons in the formation and lose some of

their energy as a result of the interaction, but continue to travel through the formation
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along an altered path (Compton scattering). As electron and mass density are almost

identical, the inverse proportionality between the number of back-scattered gamma rays

and the electron density of the formation can be used to determine the formation's mass

density (Peveraro, 2006).

To achieve neutron log measurements, a chemical neutron (e.g. an Americium-Beryllium

mxture) is used to barrage the formation with fast neutrons. These neutrons then collide

with nuclei in the formation and slow to epithermal and then thermal neutrons. At this

energy level the neutron is captured by a nucleus in the formation. To stabilise itself

after the addition of the neutron the nucleus emits high energy gamma rays (Peveraro,

2006).

During this collision event the rate at which neutrons lose their energy depends on the

mass similarity between the neutron and the struck nucleus. If the nucleus is of greater

mass, no energy will be lost, and the neutron will bounce o� elastically. However, if the

nucleus and the neutron have approximately the same mass, energy will be shared and

the neutron will slow (Peveraro, 2006). Hydrogen nuclei and neutrons are of almost the

same mass. Therefore in a head on collision the neutron could transfer all its energy to

the hydrogen nucleus. Thus, a neutron log is essentially a hydrogen log as the rate at

which a neutron loses its energy by collision is directly related to the amount of hydrogen

per unit volume (Hydrogen Index) present in the formation (Peveraro, 2006).

The Hydrogen Index of porous water-�lled formations and shales is higher than the

Hydrogen Index of formations with gas and light oil. So in addition to assisting with

porosity determination, the neutron log can be used to identify shales as well as gas and

light oil zones(Peveraro, 2006).

Factors that a�ect neutron log readings include water, clay, oil and gas i.e. essentially

anything with hydrogen (Peveraro, 2006).

Sonic logs use sonic/acoustic velocity tools to determine the speed of sound in the rocks

beside the borehole. Using an electrical signal, these sonic tools emit a sharp sound from

an acoustic transmitter. The emitted sound moves in a spherical wave to and through

the borehole wall and is refracted back before it abates. The sound refracted back to the

detector is converted into an electrical signal. The amplitude of this signal is indicative

of the formation's ability to carry acoustic energy and, as backed by Young's modulus,

rock rigidity (Peveraro, 2006).

At the time of emission from the acoustic transmitter, the wave form is compressional.
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However, on contact with the borehole wall its splits into three parts: compressional

(fastest), shear and boundary wave forms (slowest). These waves retain their spacing as

they travel back to the detector and the �rst wave arrival times are used for determining

formation transit time. These transit times (along with velocity measurements) can

be used to determine common rock types based on rock acoustic response observations

(Peveraro, 2006)

2.4 Machine Learning

Pattern recognition is so deep-rooted in the human experience that it has become an

almost subconscious activity, carried out with an ease that belies its complexity (Duda

et al., 2012). Every task that makes use of this subconscious activity, often includes one

or more of our senses � whether sight, smell, taste, sound or touch; and includes the

ability to recognise a face, distinguish between fresh and rotten food and understand

spoken words (Duda et al., 2012). According to Duda et al. (2012), pattern recognition

can be de�ned as grouping data into patterns and making decisions based on the various

pattern categories that arise.

As humans have evolved, the ability to recognise and classify patterns has passed on

from generation to generation as a skill necessary for survival. With that said, and in

this technological age, it is only natural for humans to seek to design machines that can

carry out and improve on the application of this function. This is often referred to as

machine perception and examples of this can already be seen in facial, �ngerprint and

automated speech recognition software (Duda et al., 2012) � with most of these design

achievements stemming from the observation of how nature solves these issues.

The objectives of this investigation, log data clustering, is really no di�erent. Conse-

quently, the modelling techniques adopted, in order to develop a 3D subsurface prototype

and achieve the objectives of the investigation, were built primarily on the machine per-

ception principles and then more broadly on the principles of pattern classi�cation.

In the �elds of machine perception and pattern classi�cation, machine learning is funda-

mental aspect. Machine learning lies at the intersection of statistics, arti�cial intelligence

(AI) and computer science (see Figure 2.5) and involves transforming data into knowl-

edge (Müller et al., 2016).
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Figure 2.5: Intersection of the machine learning �elds

It is this ability to extract knowledge from data that makes machine learning incredibly

in�uential in data driven research, including machine perception and pattern classi�ca-

tion.

In the early days of machine learning these extractions were carried out by explicitly

de�ning conditional statements. These conditional statements spelled out decision rules

that were executed depending on whether a condition was true or false. A great example

of this can be seen in �gure 2.6 below:
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Figure 2.6: Decision steps in a simple spam �lter (Adapted from Beyeler (2017))

Although these rules help process data and ultimately assist in the decision-making

process, as stated by Beyeler (2017), they are limited by two major factors:

1. Their extreme reliance on an expert's domain knowledge, including all possible

exceptions, to form decision rules.

2. Their con�nement to a speci�c task to the point where the slightest change in the

task often requires a rewrite of the entire rule system.

With the latest machine learning iterations these factors have been overcome. Therefore,

when presented with a large and varied dataset machines are able to �nd data patterns

- both hidden and apparent - without the task �rst having to be well de�ned (Beyeler,

2017).
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2.4.1 Machine Learning Approaches

Most machine learning problems fall into one of three categories, that is supervised

learning, unsupervised learning and reinforcement learning (Beyeler, 2017).

In supervised learning, decision making is automated by generalising from known ex-

amples (see �gre 2.7). During this process the user provides input and desired output

sets by labelling each data point in the dataset with a category. Using the input/output

pairs as a `teacher' the algorithm learns how to derive the output category from the

input data points. Then using this knowledge base, the algorithm can then categorise

an uncategorised new data point into a speci�c category (Beyeler, 2017).

Going back to the spam email example, to �lter out spam emails a supervised learning

algorithm would be provided with a large set of emails (the input) and the category of

each email i.e. whether the email is a spam email or not (the output) (Müller et al.,

2016). Having learnt what constitutes a spam email, the supervised learning algorithm

would then be able to predict whether any future emails are spam emails (Beyeler, 2017).

Figure 2.7: Main machine learning categories: Supervised machine learning (Reproduced
from Beyeler (2017))

In unsupervised learning, the data is uncategorised and only the input data is known, so

decision making is automated without a known output vector (see �gure 2.8). As there

is no `teacher' to derive some knowledge from in the input dataset, the unsupervised

learning algorithm organises the data into natural groups or clusters such that the points

within a cluster are of great similarity while also being as disparate to other clusters as

possible (Duda et al., 2012).
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Often the data is simpli�ed through a range of functions before it is clustered. These

functions include dimensionality reduction, so that it can be better described and then

later organised by the algorithm (Beyeler, 2017). From the simpli�ed data the user has

to hypothesise the number of clusters in the dataset before the unsupervised algorithm

can assign each data point to a cluster (Duda et al., 2012).

In terms of the spam email example, knowing that there are two clusters (i.e. spam

and not spam) an unsupervised learning algorithm would identify email clusters by �rst

looking for similarities and disparities in the input data (the emails), and then grouping

the data points into a cluster based on this information (the output). Although now

categorised based on a cluster label, it is up to the user to interpret what each cluster

means i.e. whether cluster 1 indicates spam emails and clsuster 2 non-spam emails or

vice versa (Müller et al., 2016). Having learnt what properties make up a cluster, the

unsupervised learning algorithm can then predict which cluster any future emails belong

to.

Figure 2.8: Main machine learning categories: Unsupervised machine learning (Repro-
duced from Beyeler (2017))

In reinforcement learning, decision making is automated by using known output vectors

to strengthen the initial classi�cation of input data (see �gure 2.9) (Duda et al., 2012).

During this process the data points are fed to the algorithm and then the algorithm

comes to a conclusion based on this information i.e. classi�es the input data. Following

its conclusion, the algorithm is supplied with the feedback as to the accuracy of the

classi�cation. Using this binary right/wrong critique the reinforcement algorithm can

then either maintain or modify its strategy in computing the correct category (Beyeler,

2017).

Going back to the spam email example, to �lter out spam emails a reinforcement learning

algorithm would be provided an email (the input). It would then draw up a tentative

classi�cation label. The algorithm will then be told whether the classi�cation is correct

or incorrect and if correct the algorithm would maintain its strategy for identifying spam
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emails. However, if incorrect it would alter its strategy based on the feedback (Duda

et al., 2012). Having learnt what constitutes a spam email, the reinforcement learning

algorithm can then predict whether any future emails are spam emails

Figure 2.9: Main machine learning categories: Reinforcement machine learning (Repro-
duced from Beyeler (2017))

For this investigation the second family of machine learning algorithms, unsupervised

machine learning, was employed. This was because the data from the study area had no

`teacher' (known output) to inform the learning and had instead to rely entirely on the

input data to extract knowledge. Also, following the sklearn �ow chart (see �gure 2.10),

as the dataset was a large sample of unlabelled data that needed to be categorised, a

clustering (unsupervised learning) algorithm would have to be used.

Figure 2.10: skleran �owchart on how to choose the right estimator (Developers, 2007)
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2.4.2 Unsupervised Learning

Unsupervised learning comes in a multitude of forms and can be applied in numerous

ways; however, the intent of its use is always to transform an input data source into a

richer, more meaningful representation (Beyeler, 2017). The most common applications

of machine learning are in unsupervised transformations and clustering.

Unsupervised Transformations

Unsupervised transformations use the input dataset to create new data representations

that better support human or machine understanding. One such transformation is di-

mensionality reduction. In this transformation process, multi-feature high dimension-

ality data is compressed and represented as only informative essential features. Some

of the most widely used dimensionality reduction algorithms include principal compo-

nent analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) (Müller

et al., 2016).

In PCA the dataset is represented in a lower dimensional space by orthogonally rotating

all the data points until they are aligned with the two axes that explain the most variance

(Beyeler, 2017). An example of the PCA process can be seen in �gure 2.11. In plot 1 of

�gure 2.11, component 1 is the vector that contains most of the data and which explains

the direction of greatest correlation. Component 2 is a vector orthogonal to component

1 and which explains the direction of the next greatest correlation. The directions

obtained from this process (components 1 and 2) are the principal components of the

data and they describe the directions of greatest variance. Plot 2 in �gure 2.11 shows the

mean standardised data rotated to align with the axes of the �rst and second principal

components. To reduce dimensionality of the data only certain principal components

can be retained, as seen in plot 3 of �gure 2.11 where only the �rst principal component

is retained. Thus, the data is reduced from a two to one dimension dataset. Removing

the rotation and applying the mean back to the data, plot 4 in �gure 2.11 displays the

information that was retained from the PCA process (Müller et al., 2016)..
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Figure 2.11: Transformation of data with PCA (Müller et al., 2016)

The next unsupervised transformation algorithm, t-SNE, starts by randomly represent-

ing the data points in two-dimensional space. Following that, the algorithm attempts to

increase both the proximity of neighbouring points and the remoteness of distant points

in the original feature space. Figure 2.12 below shows an example of the application of

t-SNE to PCA transformed data. In the image barring a few exceptions, there is a clear

separation between classes (Müller et al., 2016).
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Figure 2.12: Scatter plot of the digits dataset using the �rst two principal components
(left-hand side). Scatter plot of the digits dataset using two components found by t-SNE
(right-hand side) (Müller et al., 2016)

Clustering

Clustering algorithms partition data into di�erent classes of like objects (clusters). Sim-

ilarly to t-SNE, clustering algorithms split the dataset into groups that have both great

internal similarity and great external dissimilarity. There are many clustering algo-

rithms that can achieve data partitioning, however k-means clustering is the simplest,

most commonly used and best suited to the data of this investigation (based on the

sklearn work�ow, �gure 2.10). K-means clustering works by �nding the cluster centres

of `k' number of groups that represent the di�erent sections of the data (Albon, 2018).

According to Albon (2018), it does this by

1. Creating `k' randomly placed cluster centers

2. Calculating the distance between each point and the cluster centers

3. Assigning each point to the group of the nearest cluster center

4. Resetting the location of cluster centers to the mean of the redetermined clusters

5. Repeating steps 2-4 until there are no more cluster membership changes

A visual representation of this process is depicted in �gure 2.13 below.
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Figure 2.13: Input data and the three steps of the k-means algorithm (Müller et al.,
2016)

The most important step in the k-means work�ow occurs before the �rst step and is

the de�nition of the number of clusters. Having to de�ne the number of clusters be-

forehand can be problematic if the phenomena being modelled is complex and not fully

understood. To overcome this, the elbow method and silhouette analysis can be imple-

mented. The elbow method repeats the clustering for a range of cluster `k' values and

documents the compactness value against this `k' value. The plotted compactness by `k'

graph resembles an arm and the `elbow' points to smallest number of clusters that gives

a very compact representation (see �gure 2.14 ). This cluster number is what should be

speci�ed in the k-means algorithm (Beyeler, 2017). While the elbow method considers

compactness, silhouette analysis takes into account the separation between clusters. By

highlighting whether most of the points in a given cluster are closer to a neighbouring

cluster than their own, silhouette analysis assists in cluster number selection.
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Figure 2.14: The elbow and silhouette method for determining 'k' (the number of clus-
ters) (Adapted from Sarkar (2020))

2.5 Cartographic Design Cycle

According to Crampton and Krygier (2005) cartography the art and practice of mapping

out spatial data can be traced back to the genesis of most human civilisations. This

is because of humanities enduring need to visually record geographically located phe-

nomena (Bailey and Gatrell, 1995). This recording is carried out by creating graphical

representations, where image objects symbolise phenomena occurring in the real world

(Rhind and Taylor, 2013). These representations, however, were often fraught with dis-

tortions due to their 2D con�nement and ultimately led to maps that were unable to

fully capture both the spatial and non-spatial relationships that existed within the 3D

geographic environment being depicted (Monmonier, 2018).

These 2D map distortions played themselves out in all the basic map components: scale,

projection and symbolisation. In addition to the inability of 2D visualisation techniques

to minimise distortions, its failure to realise multi-dimensional representation, increase

user coverage and step away from its paper dependence ultimately led to the development

of the 3D cartographic technique. The 3D cartographic technique was developed to

address the abovementioned 2D cartographic pitfalls and support the creation of multi-

scale dynamic models that support user understanding and appeal (Jones et al., 2009).

All these improvements thus allowed cartographic users at all experience levels to depart

from a painstaking, fragile and limited visualisation technique and move towards an

easily accessible and enduring method of representation (Rhind and Taylor, 2013).

Despite the move from 2D to 3D, the cartographic design cycle, a process which links
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a map, its maker, its user and the environment being represented, is still applicable

(Stevens et al., 2012). The cartographic design cycle, as seen in �gure 2.15 is a recursive

process in which the outcomes of a given stage inform subsequent stages.

Figure 2.15: The cartographic design cycle (Reproduced from Stevens et al. (2012))

The cartographic design cycle starts with the environment being mapped. After data

acquisition through both on-site and remote methods, the map-maker's perception of

the physical environment (and its relationships) determines the way the data is prepared

for map creation. Therefore, the patterns that exist in the raw data as well as the

purpose and use of the map are all used to inform the created cartographic representation

(Stevens et al., 2012).

Next, using a range of map production techniques the cartographer (map maker) at-

tempts to visually represent the prepared data in the form of a map. This is known

as encoding and the techniques used by the cartographer during this process include

symbolisation and generalisation (Stevens et al., 2012).
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Figure 2.16: The visual variables (graphic elements) of cartographic symbols (Adapted
from Tyner (2010)). First reproduced in Ile (2018).

Before deciding on the graphic elements of a map, their relationship to psychological

factors have to be considered (Kraak, 1993). Some of the relationships between map

graphic elements and psychological factors are detailed in the table below:

Table 2.4: The relationship between the primary graphic elements and the psychological
depth cues (Kraak, 1993).

Primary Graphic Elements Psychological Depth Cues

value �

colour colour

size rectinal image size

texture texture

orientation shape linear perspective

� aerial perspective

� detail perspective

� shades

� obstruction/overlapping

With the necessary pyscological cues considered, symbolisation (the association of graphic

elements with real world geographic objects) can be carried out. This activity improves

the look and comprehension of maps (Ile, 2018). According to Haeberling (2005) there

are eight essential graphic elements size, shape, spacing, orientation, arrangement, colour

40

http://etd.uwc.ac.za/ 



Chapter 2 : Literature Review

and brightness, texture and pattern and special graphical e�ects. Shown in table 2.5

below are the visual graphic elements that make up the symbolisation process.

Table 2.5: The symbolisation visual variables necessary for cartographic representation
of real world graphic objects

Visual variable Variable properties

Size The manipulation of an object's physical proportions

can either emphasise or de-emphasise some quality

about it. This characteristic lends size to the e�ort-

less display of volume or amount (Tyner, 2010)

Shape In maps, shape is used as a means to denote di�erence

in kind (Tyner, 2010).

Colour and brightness This variable consists of three parts - hue, value and sat-

uration - and each plays a di�erent role in cartographic

representations. Hue is used to di�erentiate between ob-

jects of similar form (size and shape). Value and satura-

tion are often used together, with value used to represent

amount/quantity while saturation is used to distinguish

between subcategories within a group (Tyner, 2010).

Texture Texture is used to conjure an impression about an object

and is created by amalgamating smaller elements and

arranging them in a particular pattern (Tyner, 2010).

Arrangement This variable refers to the layout of objects in a carto-

graphic representation (Ile, 2018).

Orientation Orientation sets the direction of objects and can thus be

used as an indicator of similarity or di�erence (Tyner,

2010).

While symbolisation uses graphic elements to increase aesthetic appeal and information

conveyance, generalisation on the other hand improves image discernment and imaging

speeds through data and detail reduction.

In addition to symbolisation and generalisation, other map production techniques can

be employed during the cartographic design cycle. Such production techniques include

the application of lighting and environmental e�ects to display the relationship between

geographic features, complete the representation and ensure e�ective visualisation of the
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graphic scene (Haeberling, 2005). At the end of this stage of the cartographic design

cycle a coherent �t for purpose map is produced.

Due to the intelligible map designed by the cartographer, during the third stage of the

cartographic design cycle, the map user can decode the symbols of the map and decipher

the patterns within it. The decoded map is thus legible and available for analysis and

interpretation by the user.

Lastly, information gathered during the map use informs any decisions made and actions

taken. Therefore, the way maps are framed in�uence our spatial understanding, behavior

and preferences ultimately shaping how we perceive the environment (Stevens et al.,

2012).

2.5.1 Colour

The power of colour in the development of a meaningful, �t for purpose cartographic

representation is often obscured by its decorative role. Therefore, study of this graphic

element is required to ensure that the representation makes plain the phenomenon being

mapped instead of obscuring it with �ourishes.

Figure 2.17: Image depicting the visible band within the electromagnetic radiation spec-
trum, with the wavelength for each colour band included (Monmonier, 2018)

Colour is a sensory phenomenon experienced in response to light from a narrow band

of the visible electromagnetic spectrum (Hunt and Pointer, 2011). The band of visible

light is between 0.4 µm and 0.7 µm (see �gure 2.17 ), and although narrow it has been

estimated that over 10 million di�erent colours can be distinguished from this band (Judd

and G, 1975). According to Hunt and Pointer (2011), this ability is only possible because

of the 3 basic perceptual attributes of colour. These are brightness, colourfulness and
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hue and they can respectively cause and area to appear bright/dim, more/less saturated

and similar to one or more portions of red, yellow, green and blue (see �gure 2.18).

Figure 2.18: Image depicting the HSV colour space in three dimensions (hue, saturation
and value). The relationship and the means of interaction of these quantities can also
be seen (Monmonier, 2018)

In the �gure above, hue is depicted as a colour wheel with orthogonally extending sat-

urations centred on a value/brightness axis which ranges from black (at the bottom) to

white (at the top) (Hunt and Pointer, 2011). Black and white light can be described as

the absence and presence of all wavelengths from the visible band of the electromagnetic

spectrum, respectively (Monmonier, 2018).

From the statements above it is clear that colour is a multifaceted tool that is able to

reinforce meaning and order while also supporting the visual interest of a representation.

To best ensure e�ective use of this colour, Lidwell et al. (2010) suggests the adherence

to a few guidelines:

1. Number of colours:

� Colour should be used conservatively and with focused intent, especially as a

signi�cant percentage of the population has a limited perception of it (Lidwell

et al., 2010).

2. Colour combinations:
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� Use cooler colours to mark background objects and warmer colours to distin-

guish foreground objects (Lidwell et al., 2010).

� Achieve aesthetic cohesion and appeal by using colours that are either com-

binations found in nature or that are analogous (adjacent)/complementary

(opposite) colours on the colour wheel (Lidwell et al., 2010).

3. Saturation:

� When considering saturation in a representation it is important to remem-

ber that dark colours are perceived as serious and professional, while bright

colours are are seen as more friendly representations (Lidwell et al., 2010).

Saturated colours, which are viewed as exciting and dynamic, are best used

to indicate objects of high priority. Whereas, desaturated colours �nd their

place in the creation of e�cient and fast renditions. Above all, the use of sat-

urated colours should be carefully considered before implementation because

excessive combinations can lead to eye fatigue (Lidwell et al., 2010).

4. Symbolism:

� The emotional and symbolic meaning of colour has to be tailored to the

audience that will view the representation (Lidwell et al., 2010).

2.5.2 Eye Brain System

The output of the cartographic design cycle is a map, a visual representation of the

earth. So to understand the message being conveyed by the representation a means of

visual processing is required. Within humans this is satis�ed by the visual system, a

pathway which spans from the retina to the cortex and starts with the eyes (Hubel and

Wiesel, 1979).

Without sight not only would people be unable to observe colour they would also be

unable to visually process cartographic creations. Hence, it is appropriate to consider

the human eye-brain system as part of this investigation.
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Figure 2.19: Keates (2014) schematic for the human visual system.

The iris, a structure that provides an adjustable aperture, controls the amount of light

that enters the eye through the cornea (a curved transparent window within the eye).

The cornea in conjunction with the cillary-adjusted lens focus light on to the retina

(light sensitive cells at the back of the eye). Light then passes to the rod and cone

photoreceptors (named thusly because of their shape) which are found within the retina

(Snowden et al., 2012). Cones and rods, which vary in type and distribution, are sensitive

to wavelengths and light respectively. Their varied type and distribution result in a

selectively processed image of reality (Keates, 2014).

From the rod and cone photoreceptors, light is then passed to the retinal ganglion M

(responsible for movement) and P (responsible for colour information) cells layer, before

leaving the eye at the blind spot through optic nerves. Optic nerves are essentially

millions of bundled blood vessels and retinal ganglion cell axons (Snowden et al., 2012).
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Figure 2.20: Adaptation of Keates (2014) diagram depicting the areas of the brain
primarily devoted to visual perception. First reproduced in Ile (2018).

Here begins the journey to the brain, with the projection of information from the optic

nerve to the lateral geniculate nuclei (LGN), a relay center for visual information. There

are 6 layers in the LGN, 3 for the right eye and 3 for the left. In these layers retinotopic

mapping, the orderly mapping of the visual world, is observed for the creation of a

clear image. In addition to mapping the visual scene the LGN highlights information of

importance by �ltering out the contents of the visual �eld (Snowden et al., 2012). Then

after traversing several synapses cells, the LGN pass their axons directly to the visual

cortex. Due to the crossing of the optical nerve at the optic chiasm (the point of optic

nerve conveyance), the left LGN and cortex are concerned with the visual scene from the

right eye. The opposite is true for the right LGN and cortex. In a hierarchical manner

simpler cells feed information from the retina to more complex cells for transformation

in orientation and for the combination of retinal inputs (Hubel and Wiesel, 1979).

These transformation processes assist in the perception and comprehension of a visual

scene by breaking down the graphical objects into their simplest components before re-

grouping it. For example in the case of a square, it would would �rst be split into a

series of vertical and horizontal lines before being regrouped as a square. As such, the

increased complexity and variability of an object necessitates more neural connections

and results in increased image processing speeds as well as increased di�culty in per-

ceiving an object (Keates, 2014).

Another important understanding of visual comprehension can be gained by looking at

eye movements. Unlike in the general evaluation of cartographic scenes, comprehensive
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map analysis (i.e. object detection, discrimination and identi�cation) occurs by means

saccadic movements instead of through the use of central (foveal) vision (Keates, 2014).

During these saccadic movements the eyes go through a cycle of �xating on an object,

jumping away and then refocusing on it again. As the �xation length is directly related to

the complexity of an object - in terms of its size, colour, shape, texture and orientation -

the de�nition of a simple and familiar scene is critical for promoting visual comprehension

(Keates, 2014).

2.5.3 Gestalt

It is important for a cartographer to consider these individual cartographic elements.

However, consideration of the e�ect of all elements on the map composition is as im-

portant. This is especially true when one considers the fact that the human eye-brain

system is often incapable of observing the map elements without also observing their

setting (Kent and Vujakovic, 2017). Human cognisance of the visual is, thus, dependent

on relating the foreground with background. In this way the viewer's perception of the

scene is not of fragmented elements, but rather of coherent, well-de�ned objects which

are distinguishable from each other and from their environment (Roth and Bruce, 1995).

The relationships between objects and their background can be preserved through the

observation of gestalt laws, which (in addition to fore- and background distinction)

also aid the viewer's ability to read, analyse and interpret maps. The gestalt laws

which describe how visual elements and the patterns they make are perceived (Graham,

2008), include the laws of �gure/ground, closure, common fate, good continuation, law

of pragnanz, proximity, similarity and uniform connectedness.
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2.5.4 Thematic Maps

For cartographers, a driving force in map creation is the consideration of the map's

purpose.

Figure 2.29: Dent et al. (2009) schematic for the di�erent map classi�cations.

There are two main objectives in map creation: the display of a variety of features on

a location focused map or the display of the structural characteristics of a geographical

feature (Dent et al., 2009). Seeking to achieve the former objective results in the pro-

duction of a reference map, whereas seeking to achieve the latter objective results in the

production of a thematic map.

As the purpose of this investigation was to illustrate the characteristics of a geographical

feature an understanding of thematic maps (created through the manipulation of graphic

variables and with a single purpose in mind (Muehlenhaus, 2013)) had to be gained.

The success of thematic maps hinge on the type of data being used, either categorical

(qualitative) or numerical (quantitative) data. Categorical data are data that can be

assigned to discrete, non-numerical classes. The di�erent classes can be distinguished by

a range of graphic elements including shape, size and colour. Numerical data, however,

are concerned with the representation of rank/magnitude within a data set. Therefore,

qualitative maps show the spatial distribution or location of features while quantitative

maps are more focused on showing feature quantities (Dent et al., 2009). Regardless of
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the data type thematic maps highlight intent, assist with the display of spatial distribu-

tion and ease the decision-making process.

Figure 2.30: Qualitative thematic map ex-
ample (Dent et al., 2009)

Figure 2.31: Quantitative thematic map
example (Dent et al., 2009)

Thematic maps are composed of three cartographic units a basemap which provides

spatial context to a thematic overlay which sets the purpose of the map and, lastly,

auxiliary map elements.

Figure 2.32: The components of a thematic representation (Dent et al., 2009)
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It has become very common for thematic maps to be produced using geographical in-

formation systems (GIS) therefore it is a tool that requires some consideration (Dent

et al., 2009).

2.5.5 Geographical Information Systems

3D geological modelling is a hot topic in a range of �elds including the geosciences.

This is because of its ability to de�ne the boundaries between geological strata, enhance

visibility and improve the accuracy of geological analysis (Zhu et al., 2012). To achieve

the creation of such a model, various professionals in the geographical �eld - from urban

developers to geologists - often look to GIS. GIS portray a simpli�ed view of a complex

reality and encompass the interaction of people and machines for the collection, stor-

age, modelling, manipulation, management and dissemination of geographic information

(Worboys and Duckham, 2004).

Figure 2.33: Visual depicting a simpli�ed diagrammatic representation of GIS

GIS relies on four components: geographic data, human knowledge and experience, hard-

ware and software. The �rst is geographic data i.e. having data that describes some

phenomenon (Grinderud, 2009). This data can either be spatial (a geographic location
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e.g. residential address) or non-spatial (descriptive information about a geographic lo-

cation e.g. residence owner) (Jovanovi¢, 2016). With the data in hand, user knowledge

and experience determines the degree to which the available technology is exploited.

Here familiarity with both the system and the phenomena being represented yields the

best outcomes (Grinderud, 2009). Next, geographic information technologies hardware

and software are used to map, explore, process, interpret, share and store the spatial

and non-spatial data.

Of the entire system, the most important technological unit is undoubtedly the data

store (database). The database, a data container organised based on a data model and

used for the storage and retrieval of data (Worboys and Duckham, 2004), lies at the heart

of all GIS. Databases support various manipulation techniques including generalisation

and transformation, where the data is smoothed, projected and scaled. Therefore, the

development of a sound data model is key. To glean real spatial insights, analytical

techniques (such as volume, area and overlay operations) are applied to the manipulated

data set. These insights can then be displayed as maps, graphs, tables, reports and other

such presentation formats. It is thus, this technology (GIS) that will be leveraged to

display the outputs of this investigation � 3D cartographic maps.

At present, the tools available to geo-related professionals are con�ned to two-dimensional

(2D) spatial visualisation, which not only cause di�culty in displaying complex real-

world objects but also in processing and manipulating it. It was the inability of 2D

systems to achieve successful and true representations of the 3D world, that led to the

development of the 3D modelling technique � a technique used to directly transfer reality

into a 3D digital model. The success of 3D modelling is in its freedom of a �xed viewing

position.
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3.1 Introduction

This chapter covers both the approach used to develop a 3D geological prototype and

describes the facets associated with it. As such, pertinent work�ows and diagrams

are included to aid explanation. Overall, both qualitative and quantitative data and a

stepwise methodology were used to develop the algorithm that achieved the objectives of

the investigation (the development of an aesthetically appealing user comprehensible 3D

geological prototype). However, while the derived subsurface prototype was developed

by instantiating an algorithm that makes its own inferences from unclassi�ed/unlabeled

input data; the adopted methodology took some geological understandings into account.

This was especially true during the feature imputation, normalisation, engineering and

selection stages of the data pre-processing.
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3.2 Research Approach

Figure 3.1: Image showing the approach used in the development of a 3D prototype
geomodel (adapted from Chopra et al. (2019)).

The machine perception process used is summarised in Figure 3.1 and has both a

`bottom-up' and `top-down' �ow to enable the response incorporation of later levels.

However, traditionally the process starts with the phenomena being observed. During

this stage the phenomena of interest is studied and observations are recorded. These

recordings often hinge on three characteristics: the nature of the phenomena, envi-

ronmental factors and sensor response settings and characteristics (Bychkovskiy et al.,

2003). Consequently, these characteristics have great impact on the breadth and qual-

ity of the data recorded. As the data used in this investigation was accessed and not

collected, these characteristics played a major role in the results obtained as well as in

the way the data was processed and used.

After data collection, and in adherence with the machine perception approach, data

exploration was the next step undertaken. During this step, knowledge was gained

about the data by learning about the information collected. As such, the input features

(i.e. well logs) available for predicting the target variable (i.e. the groups � that the

wells represented) were inspected. Besides this the data was explored to gain a better

understanding of its structure and quality by looking at the data format (i.e. numeri-

cal/categorial, organized/unorganised), completeness and distribution.
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With data exploration completed, the next step carried out was data pre-processing. In

pre-processing the data was cleaned, scaled and formatted to support noise reduction as

well as the development of the best prototype possible (Duda et al., 2012). Although

there are numerous other pre-processing activities, such as data encoding and binarising,

this investigation only focused on pre-processing activities that could be applied to

numerical data. This was because the data almost entirety consisted of only quantitative

data.

After the cleaned training data was split into two sets (a training and testing set) it was

then available for use in dimensionality reduction, visualisation and clustering machine

learning algorithms. In the application of these models the line between over and under

�tting had to be tread very carefully. This endeavour was carried out to ensure that the

prototype captured the complexity of the data as best as possible, without making it

unadaptable to new datasets.

The penultimate step of this process was post-processing and involved analysing and

evaluating the prototype. Here, the developed prototype was assessed by looking at

factors such as bias, run time and input feature variable importance. Although not

always the case, during this step GIS visualisation was implemented to facilitate the

decision-making process and highlight possible areas of geological exploration.

The process ended with the decision step, where conclusions were drawn based on the

output of the machine perception work�ow.

3.3 Data Desrciption

The data used as part of this investigation was accessed and not collected. Thus, instead

of detailing the data collection process, the data source and the data itself will be

described.

The geological logs were obtained courtesy of the Petroleum Agency of South Africa

(PASA), an agency which promotes on- and o�-shore oil and gas exploration and de-

velopment on behalf of South Africa's government (Petroleum Agency of South Africa,

2013). PASA provided the geological logs for 3 wells surveyed over a period of 16 years

(2000 � 2016) and located o� the Bredasdorp coast: F-04, F-06 and F-08 (see �gure 3.2).
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Figure 3.2: Well locations

The information captured from the wells were commonly used logs (curves) such as

caliper logs, spontaneous potential logs, resistivity logs, and many other wireline logs.

The information also detailed well and parametric information, to provide environmental

context.

In total 439 .las �les held the curves for all three wells; with 314 , 61 and 64 logs belonging

to wells F-04, F-06 and F-08 respectively. Despite there being over 140 curves in some

�les only 15 of them (DEPT, GR, TNPH, NPHI, RHOB, LLD, MSFL, MRES, MTEM,

SP, CALS, BS, DT, DTLN and ITT) were used to develop the prototype. These 15 were

chosen because they are some of the most common, descriptive and useful features that

can be used in well log interpretation.
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3.4 Data Pre-Processing

3.4.1 Data Conversion

Figure 3.3: Work�ow for exploring the data

The raw data for this machine learning endeavour was stored in las �le format over

multiple �les. Therefore, the �rst step in preprocessing the data involved getting the

raw data into the development environment in a readable and manageable format. This

was best achieved by reading all the las �les for each well and then converting them into

comma-separated value (csv) �les (as seen in Figure 3.4).

The converted csv �les were then read into the development environment before being

converted into data frames. This format conversion was done because the tabular (row

and column based) data frames structured the data, promoted intuitive and versatile

data use and also supported data wrangling i.e. the transformation, cleaning and organ-

ising of raw data (Albon, 2018).

When performing the format conversion from .las to .csv �les, a number of wells either

did not have well coordinates or were entirely blank (i.e. datasets that had header
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information but were otherwise completely empty). The presence of these quantities was

necessary for prototype development, therefore these incomplete �les were discarded as

their use in the project would not have meaningfully added to the research but would

have detracted from it instead.

3.4.2 Data Exploration

Figure 3.4: Work�ow for exploring the data

After the data was loaded in the correct format it was explored to garner a better under-

standing of data structure and content. First, the wells were mapped to gain a spatial

understanding of their locations. Although technically a step in the data transforma-

tion process, the well locations were obtained by converting the degree-minute-second

coordinates (dms) to decimal degrees (dd) and then displayed on a map.

Following the spatial exploration, samples from the data set were displayed. Samples,

instead of the entire data set, were viewed because the data set was reasonably large and

only a quick exploration of a few records was necessary to understand the data scheme.

As such, for each data frame a view of the �rst 5 rows was created and the dimensions

(number of columns and rows) were extracted. Also, as part of the data exploration

process, descriptive and summary statistics for all the numerical columns were obtained.

It was from these two data exploration processes that it was gathered that each column

corresponds to one well log while each row corresponds to one observation.

As missing values are ubiquitous in almost all machine learning problems, the data

exploration process wrapped up with visualisation of the null entries in the data.

61

http://etd.uwc.ac.za/ 



Chapter 3 : Method

3.4.3 Feature Selection

Figure 3.5: Work�ow for selecting features

Between the data integration activities (see subsection 3.4.4 below), the data was re-

composed to only re�ect features (well logs/curves) that were important in well log

clustering. This was done by identifying and extracting conventional well log interpre-

tation curves from the data.

In this vein, only well logs that had depth (DEPT) curves were extracted and then

assessed for the presence of other pertinent well logs. As mentioned in section 3.3, aside

from DEPT the other curves extracted were GR, TNPH, NPHI, RHOB, LLD, MSFL,

MRES, MTEM, SP, CALS, BS, DT, DTLN and ITT. These logs were selected because

they are the most commonly captured curves during the well logging process and would,

therefore, be consistent measures to which to apply machine learning algorithms.

However, if a curve (excluding DEPT) did not exist for a record, an empty entry was

created. This allowed for data imputation later in the preprocessing work�ow (see

subsection 3.4.5).
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3.4.4 Data Integration

Figure 3.6: Work�ow for integrating the data sets

After a brief look at the condition of the data, and some pertinent descriptive and

summary statistics, the next steps involved concatenating the separate data frames into

a single unit. Concatenating the data supported meaningful information extraction and

analysis from a uni�ed structure.

To achieve the desired data con�guration, the data frames were put through a few

processes. The �rst involved sorting all the well sections by their start and stop depths,

and then separating the data into unique and non-unique depth ranges. If there were

multiple data frames with the same depth range, these �les were grouped into one set.

The grouped data were then evaluated to ensure that each column (well log) was unique.

If the feature wasn't unique, then one of the duplicated columns were dropped so that

curve singularity could be established.

Penultimately, the uniqueness of each depth range was recon�rmed before the unique

depth range data frames were combined into one data frame warehouse. After aggregat-

ing the data into one uni�ed structure the next step in pre-processing (data cleaning)

could be carried out.
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3.4.5 Data Cleaning

Figure 3.7: Work�ow for cleaning the data

Before cleaning the data, a fresh set of visual and descriptive statistics were obtained

for the aggregated data frame. This included the location, spread and quantity of null

entries in the data frame.

Following this, the main activities of data cleaning - missing data and outlier manage-

ment - were executed. These data inconsistencies had to be identi�ed and addressed

because a consistent and complete data set was crucial for carrying out clustering and

making predictions.

There are two primary ways for handling missing values removing the data or imputing

it. In the data removal process rows or columns are deleted based on the percentage of

missing values they have. The deletion threshold is mutable but usually lies between

70-75% (Beyeler, 2017)). The following equation was used determine which features fell

above this threshold:

missing entries (%) =
nmissing

n

In this equation, nmissing is the number of missing entries and n is the total number of

entries.

The advantage of removing null entries is that it ensures a usable data set and can be

carried out both quickly and easily. Despite these advantages, it can also result in the

loss of important features.

Therefore, to balance the data loss, data imputation was also carried out. With this
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approach statistical methods (e.g. mean, median, mode) or a modelled approach is used

to derive missing values.

For this investigation the modelled imputation approach was used because the values in

the data set correlate with each other and a modelled approach considers missing entries

as functions of all the other entries in a record (row) (Pedregosa et al., 2011).

With the missing values taken care of, the next activity in data cleaning - outlier man-

agement - was tackled. Here, points that were very large or small with respect to the

data distribution were removed. For each column (well log), this was achieved by

1. Sorting the data

2. Plotting a boxplot

3. Getting the upper and lower fences as well as the interquartile range (IQR)

4. Removing the data points that were either below Q1 � (1.5 x IQR) or above

Q3 + (1.5 x IQR) (see �gure 3.8)

Figure 3.8: Sample of outliers in a boxplot

Before the �nal step in the pre-processing work�ow the cleaned data (up to this point)

was visualised. The visualisation carried out was a log (formation parameter) by depth

plot, which is the standard well log method of display. To the trained eye, these plots

can provide immediate lithological identi�cation, porous and non-porous rock distinction

and potential pay zone recognition (Peveraro, 2006).
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3.4.6 Data Scaling

Figure 3.9: Work�ow for scaling the data

The �nal step in the pre-processing work�ow (data scaling) involved transforming the

features so that they used the same scale, magnitude and range. This was an essential

step in preparing the data for clustering because machine learning algorithms weigh

a feature's importance based on its magnitude and therefore non-normalised readings

could greatly a�ect any predictions made.

The scalar used to transform the data was a Standard Scalar. This scalar was used

because it scales the data into a uniform unit over the entire data range, and in this

manner ensures that the appropriate e�ect of each feature is considered (Beyeler, 2017).

The Standard Scalar module works by �rst subtracting each value(x) from the mean (µ)

of all the data and then dividing it by the variance of the data (σ) i.e.

xscaled =
x − µ

σ

At this stage the data was in a format suitable for the data sensitive machine learning

algorithms and could used in the next stage of the machine learning work�ow - cluster-

ing.

3.5 Clustering

3.5.1 Train/Test Split

As mentioned in section 2.4.2 unsupervised machine learning is made up of two main

activities: unsupervised transformations and clustering.

However, before the pre-processed data could be applied to machine learning algorithms,

the data had to be separated into a testing and training set (see �gure 3.11). The training
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set was created to provide the machine learning algorithms with data knowledge, upon

which predictions (on the test set) could be made.

The training and test set were created using the 80:20 train/test split ratio, where 80

percent of the data was used for training and the 20 percent was used for testing (see

�gure 3.10) .

Figure 3.10: Train/Test split (Bronshtein, 2017)

Figure 3.11: Work�ow step for splitting
the data into a train and test the data

Figure 3.12: Work�ow step for carrying
visual data correlation

3.5.2 Data Correlation

Next, using the training set, two visual correlation matrices were created as a means to

better understand the linear relationships between each variable. The �rst correlation

plot was created by linearly relating all the features in the training set, getting the

correlation value between them, associating these values with a set colour range and

then plotting the colour associated correlations.

The second correlation matrix was created by plotting the features under investigation

in 2D space. The manner of representation was altered depending on whether it was

on the upper triangle, lower triangle or diagonal. On the lower triangle the features

relationships were represented as scatter plots i.e points on a 2D axis where the value
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of a feature determined its location. On the upper triangle features relationships were

represented as hexbins i.e. colour associated quantity counts in a binned 2D feature

space. Lastly, the diagonal represented feature relationships as histograms i.e. quantity

counts in grouped ranges (see �gure 3.13).

Figure 3.13: From left to right to left examples of a scatter plot, histogram and hexbin
plot

3.5.3 Principle Component Analysis

With the preliminary activities completed, the �rst unsupervised exercise - PCA - was

conducted.

To determine the optimal number of dimensions to apply to the PCA algorithm, the

PCA algorithm was run iteratively for the total number of features (columns) in the data

frame, which is to say that the algorithm was run for a 2 component feature space up

to n component spaces. Running the algorithm this away allowed the minimum number

of components necessary for 95% data variance to be ascertained.

Using this value, the number of components that explain 95% of the data variance,

the PCA was run again and applied to the training data set. Application of the PCA

algorithm to the training data set reduced its dimensionality while maintaining as much

information as possible

Figure 3.14: Work�ow for performing PCA and KMeans Clustering
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3.5.4 KMeans clustering

Similarly to the process undergone during PCA, KMeans clustering involved working

out optimal algorithm parameters, running the algorithm for the optimal algorithm

parameters and applying the KMeans algorithm to the PCA-reduced data set.

In this case, the optimal algorithm parameters (the number of clusters) were determined

by using three evaluation metrics: the elbow method, the silhouette coe�cient and the

Davies-Bouldin score. Assessment of these three metrics showed coincidence and pointed

to the number of clusters that should be used in the KMeans clustering algorithm.

Therefore the KMeans clustering was re-run for the optimal number of clusters and

applied to the PCA reduced data set.

The output of the KMeans process, a cluster label for each point, was then visualised

as a frequency count before it was mapped against both the PCA reduced data and the

entire training data set.

Next the KMeans algorithm was programmed to make cluster label predictions with the

test set as the input data set. These cluster assignments along with those for the test

set were then visualised alongside the log (formation parameter) by depth plots to wrap

up the well log interpretation process.

3.6 Data Post-Processing

3.6.1 Data Conversion

Figure 3.15: Work�ow for converting the data for 3D modelling
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To visualise the clustered well logs as a prototyped 3D geomodel, the results of the

KMeans clustering had to be extracted and converted into a csv �le - a GIS readable

format. This csv �le was then read into two visualisation environments, one program-

matically created through python and the other created via a GIS application. In the

GIS application the csv �le was read in as a feature class - a geographical layer - and

stored in a �le geodatabase. It was on this geographical layer that an interpolated 3D

subsurface prototype was created.

During the conversion of the csv �le into a feature class, the desired spatial reference was

set to a projected coordinated system as the interpolation tool requires this projection

type.

3.6.2 GIS prototyping

Figure 3.16: Work�ow for 3D GIS prototyping

The �nal step in the development of a 3D geological prototype, prototyping of the GIS

model, consisted of four steps:

1. Setting up the appearance of the scene

2. Setting up the appearance of the features

3. Interpolating a surface between the points in the feature class

4. Viewing the uncertainties and accuracies around the interpolation

To kick o� 3D rendering, topographical points for the southern tip of South Africa

were extracted from Google Earth and converted into readable text �les. These points

were then imported into the 3D scene which was created with vedo (a pythonic library

that supports the visualisation of 3D objects). Before being scaled and coloured to

approximate relaity, the imported points were interpolated to get a topographical surface
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for the region. With this completed, the classi�ed wells were imported into the scene

and their appearances were set. The symbology of the features were set to graduated

colours for each of the unique cluster labels.

To get a geo-statistical understanding of the uncertainty and accuracy of a surface inter-

polated between the class predicted wells, 3D surface interpolation was carried out using

the 3D Empirical Bayesian Kriging geo-statistical method in ArcGIS Pro (a powerful

GIS desktop application developed by Esri). To set up the 3D scene in the application,

a topobathy (a combination topographic and bathymetric) basemap was imported and

the vertical exaggeration of the surface was set to 10. This surface was also given a

transparent surface colour so that subsurface visualisation would be possible. Next the

projection of the scene was set to match that of the imported feature class before the

appearance of the feature class was set. Next the symbology of the feature class was set

to graduated colours for each of the unique cluster labels.

The optimal parameters for the surface interpolation were determined through the use

of the geo-statistical wizard, which allowed for parameter tuning and result simulation

before �nal application. Overall, the use of ArcGIS Pro allowed for regional class values

to be set between the wells based on the limited known class values.

Data post-processing concluded with the assessment of the automatically generated geo-

statistical uncertainty and accuracy of the interpolated surface.

3.7 Methodological Framework

The entire methodology used in the creation of the 3D geological prototype can be seen

in the image below:
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Figure 3.17: Complete methodology for the creation of a 3D geological prototype
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4 Results and Analysis

4.1 Introduction

Four of the six objectives of the investigation (listed below) were covered in the literature

review.

1. To present a geological understanding of the Bredasdorp Basin.

2. To demonstrate a clear understanding of what a well log is.

3. To determine the well logs that can be applied to 3D geological model development.

4. To identify and explain the fundamental characteristics that facilitate in user un-

derstanding and aesthetic appeal when working with cartographic representations.

This chapter presents the results of the 3D geological prototype creation process for

wells in the Bredasdorp Basin. Therefore, the chapter contains the results obtained to

achieve the last two objectives of the investigation (listed below).

1. To implement principal component analysis (PCA) and Kmeans clustering on well

log data and interpret the results.

2. To develop a prototype of a 3D geological map that supports aesthetic appeal and

user comprehension by adapting and combining the best practices within existing

3D modelling theory.

As such this chapter covers the results of data optimisation, data reduction (through

PCA), cluster selection (through unsupervised machine learning metrics) and geological

prototype analysis. The results are presented in the form of data frames, box plots,

correlation plots, unsupervised machine learning metric plots, and log plots. From these

results measures were extracted and comparisons were made to give an indication of how

the 3D geological prototyping fared.
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4.2 3D Geological Prototype Process Outline

To achieve the objectives set out in this investigation, and develop a robust solution,

both the theoretical and practical facets of the problem had to be considered. The

factors considered are outlined in Figure 4.1:

Figure 4.1: Holistic approach applied in the development of a 3D geological model based
on well log data.

74

http://etd.uwc.ac.za/ 



Chapter 4 : Results and Analysis

4.3 Data Optimisation Results

A total of 439 .las �les were read into the development environment and coverted into

.csv �les (see �gure 4.2).

Figure 4.2: File coversion: .las to .csv

However, only 280 of them were not blank and were populated with x, y and z coordinate

information. Therefore 159 las �les had to be discarded as unsuitable for clustering. The

kept data frames varied in size, features (well logs/curves) and thus statistics (see �gure

4.3 and 4.4).

Figure 4.3: Overview of the log data for a large data set with 1395 records
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Figure 4.4: Overview of the log data for a small data set with 58 records

Exploration of data provided a quick understanding of the logs (features) available for

use during the classi�cation as well as the statistics (count, mean, standard deviation,

minimum, maximum and percentile ranks) of each feature.

From the retained wells, 198 data frames had a depth range that matched another, while

82 wells had a unique depth ranges. The data frames with the repeated depth ranges

can be explained as observations split over multiple �les. Therefore, these data frames

were aggregated to form 161 unique depth ranges (including the 82 already unique depth

ranges) (see �gure 4.5).

Figure 4.5: Header of the 1st data frame (out of 161 data frames) that has a unique
depth range
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Grouping the observations that had been split over multiple data frames, into 1 data

frame, resulted in duplicate columns. Therefore, for each data frame a unique set of

features (columns) was obtained. In some cases this action drastically reduced the

dimensionality of the data frame (see �gures 4.6 and 4.7).

Figure 4.6: Data frame with duplicate
columns

Figure 4.7: Data frame with unique
columns

After examining the 161 unique depth range data frames for the presence of DEPT logs,

only 87 data frames passed and were kept, while the rest were removed (see �gure 4.8).

Figure 4.8: Header of the 1st data frame (out of 87 data frames) that had a DEPT curve

The data frames with DEPT information, were each assessed for the presence of the logs

necessary for clustering (i.e. GR, TNPH, NPHI, RHOB, LLD, etc.). If these logs were

not present, they were added as empty values (see �gure 4.9). The number of necessary

(cluster) logs present in each data frame varied from three to twelve logs. Therefore, at

least three empty logs were added for each data frame. This action ensured that the
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data frames shared the same column dimension and could thus be concatenated into one

data frame based on their depths.

Figure 4.9: Header and footer of the 1st data frame (out of 87 data frames) that has
had empty logs added to it

As stated above, dimension and feature matching (during the concatenation process)

resulted in empty (Null) values in the combined data frame (see �gure 4.11). Therefore

only statistics on columns that were completely populated could be obtained (see �gure

4.10)
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Figure 4.10: Statistics of the non null features

Followinng this, the dataframes were �ltered to only re�ect the logs necessary for clus-

tering.

79

http://etd.uwc.ac.za/ 



Chapter 4 : Results and Analysis

Figure 4.11: Header and footer of the concatenated data frame

The missing values were addressed by running an imputation method (see �gure 4.12)

before the data set was assessed for outliers (see �gure 4.13). All the logs (except the

DEPT log) had values that fell outside of the range speci�ed by the IQR rule. Therefore

these values were removed from the data set to ensure that the clustering process was

not biased by points unrepresentative of the data distribution (see �gures 4.13 and 4.14).

Figure 4.12: Data frame with imputed values
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Figure 4.13: Box plots depicting the distribution of the data, with outlier records sum-
marised below the plot
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Following the outlier removal process, the distribution of the data was once again visu-

alised to get a sense of the data's new spread (see �gures 4.14).

Figure 4.14: Box plot depicting the distribution of the data, with the outliers removed

4.4 PCA Optimal Parameter Derivation

One of the key objectives in this research was deriving the best parameters possible for

the dimensionality reduction algorithm. This was of importance because this value had

a signi�cant impact on the results of the clustering; and hence prototype creation.
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Figure 4.15: Principal Component Analysis (PCA) number of components

Figure 4.15 depicts the optimal number of components for the dimensionality reduction

i.e. 6 components. This number was obtained from an iteratively run PCA process

and indicates that 6 components explain 95% of the data distribution. Which means

that the �rst 6 components describe the greatest variances within the data and can be

used to reconstruct a majority of it (thus making the remaining components redundant).

Therefore the optimal stretch and rotation from the 13 dimensional well log data set to

a 6 dimensional PCA data space has been found.

Here it is also important to note that the exercise of reducing the dimensionality of

the data (to that of only its necessary components), also automatically �ltered out any

random noise that might have been embedded within the data. Also, standardising the

data points and removing and outliers was critical in determing the optimal number of

components as the dimensionality reduction algorithm is sensitive to these qualities.

Looking at 4.15, the explained varience ratio in the �rst principal component is at a

58% variance because it is a linear combination of all the features such that it accounts

for as much of the variance in the data as possible. Similar to the �rst component, the

second principal component is a linear combination of features such that as much of the

remaining variation as possible is accounted for. Thus bringing the total variation at
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the end of the second component to a 79% variance. The remaining four principal com-

ponents adhere to this same property, that is they are linear combinations that account

for as much of the remaining variation as possible. Therefore principal components 3,

4, 5 and 6 with variances of 6%, 6%, 3% and 2% respectively, bring the total variance

in the data to 96% - which is just over the set PCA threshold of 95%.

4.5 Principal Component Interpretation

The PCA process ensured that only the most descriptive and relevant portions of the

data was used to identify clusters, in addition to facilitating with faster visualisation

because of the reduced feature space.

Figure 4.16: Heatmap showing the corre-
lations between the principal components
and the original variables.

Figure 4.17: Table showing the correla-
tions between the principal components
and the original variables with the signi�-
cant correlations highlighted in green.

To understand the features (well logs) described by each component, the principal com-

ponents were plotted against each of the origional features (see �gure 4.16) . This action

allowed for features that were strongly correlated (either positively or negatively) with

each component to be seen and extracted. Before signi�cant features for each compo-

nent could be extracted a correlation cuto� magnitude had to be set. The correlation

cuto� magnitude for this operation was set at values above or below 0.2. This value was

chosen by considering the range of the data and then selecting a correlation value that

allowed every feature to be described by a component at least once.
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Before delving further into the component interpretation, an important observation can

be made: The only features that weren't described in any of the principal components

were BS and BS_was_missing. This is because BS and BS_was_missing returned

a correlation value of 0 for all the components. Therefore for this dataset, BS and

BS_was_missing (and by extension borehole shape and size) did not have a relationship

with any of the components.

First Principal Component

The �rst principal component is correlated with twelve of the 25 features used in the well

log interpolation process. The twelve features are: SP, DTLN, ITT, LLD_was_missing,

MSFL_was_missing, MRES_was_missing, MTEM_was_missing, SP_was_missing,

CALS_was_missing, DT_was_missing, DTLN_was_missing and ITT_was_missing.

The �rst principal component is thus a measure of well log data completeness, formation

transit time and shale presence.

The component is an inverse measure of data completeness because it describes the

most signi�cant values for all the non-zero imputed features (i.e. LLD_was_missing,

MSFL_was_missing, MRES_was_missing, MTEM_was_missing, SP_was_missing,

CALS_was_missing, DT_was_missing, DTLN_was_missing and ITT_was_missing).

The correlation magnitude for all these features is -0.27, which means that a decrease in

these features results in an increase in the value of the �rst componenet. Additionally,

as these features vary together by the same amount, a change in one feature will cause

the other features in this set to change by an equivalent value.

The �rst component is also a formation transit measure because it gives record of two

of the three sonic log (DTLN and ITT) used in the investigation. Although, these logs

have an equal correlation magnitude they act in di�erent directions, with DTLN having

a correlation value of -0.23 and ITT having a correlation value of 0.23. Therefore,

a decrease in DTLN will result in an increase in the �rst component value while the

opposite is true for the ITT log.

SP accounts for the shale presence measure in component 1. With a value of 0.22 it

increases as the component increases. Along with ITT, SP varies positively while the

other features in the component vary in the opposite direction.
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Second Principal Component

In the second principal component, �ve of its features (GR, MSFL, MTEM, CALS and

DT) vary together positively, with correlation values of 0.39, 0.23, 0.3, 0.41 and 0.27

respectively. While three features (LLD, SP and ITT) vary together in the opposite

direction. These negatively correlated features have correlation values of -0.43, -0.23

and -0.21 respectively.

Most interestingly this component fully represents two feature above the set threshold.

These features are LLD (a resistivity measure) and MTEM (a measure of mud temper-

ature).

Third Principal Component

This component can be viewed as a measure of the quality of formation gamma radiation,

resistivity and transit time, as well as borehole depth. This is because DEPT, GR,

MSFL, MRES and DT have the highest above threshold values for the component. The

magnitude of each of these features is 0.5, -0.23, 0.28, -0.48 and -0.43 respectively.

GR, DT and MRES vary together, decreasing as the componenet increases, while an

increase in DEPT and MSFL causes the component to increase. The two resistivity

measures (MSFL and MRES) are inversely related to the componet. As such, the third

component increases as MSFL increases, but decreases as MRES increases.

Fourth Principal Component

The fourth principal component has a strong positive correlation with two of the origional

features i.e. the xy location of the well (i.e. WELL_START_XANDWELL_START_Y).

Therefore, the fourth principal component increases as they increase and can be viewed

as a locational measure.

For the investigation dataset, these two features vary together and their equal correlation

magnitudes (0.66 for both WELL_START_X AND WELL_START_Y) suggests that

a change in either of the features would produce an identically proportional change in

the principal component.

Fifth Principal Component

This component is described by �ve features: MSFL, MRES, CALS, DT and DTLN.

Although MSFL, DT and DTLN are entities in other components, the highest correlation
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values for these features are seen in this component (regardless of the direction). The

opposite, however, is true for CALS, where the component indicates the smallest above

threshold value for the feature.

In the case of MRES, the feature is equally represented in both this and the third compo-

nent, with a value of -048. This correlation value is indicative of the negative relationship

between a formation's resistivity and the component's value. So, as MRES decreases

the value of the component will increase. This pattern, of inverse proportionality is also

displayed by MSFL (another resistivity measure) with a value of -0.36, and CALS (a

borehole geometry measure) with a value of -0.26.

The only features that increases as the �fth principal component increases are the time

measures, with DT and DTLN having correlation values of 0.58 and 0.38 respectively.

Seeing that all the features in this component have already been accounted for by other

components, their addition adds redundancy to the results.

Sixth Principal Component

The sixth principal component is strongly correlated with four of the original well log

features. However, the features that make up this component vary in opposite directions.

That is for descreasing DEPT and MRES values the component increases. While, for

MSFL and CALS, their positive component correlation means that the value of the

component increases as they increase.

This component can be viewed as a measure of a formations resistivity as well as a

boreholes geometry and depth.

Furthermore, we see that the sixth principal component correlates most strongly with

the DEPT. In fact, it could be said that based on a correlation value of -0.75 that this

principal component is primarily a measure of DEPT.

4.6 Derivation and Interpretation of the Optimal KMeans

Parameters

Unlike in supervised learning, unsupervised machine learning algorithms do not have

have a 'teacher' to learn from. And without domain knowledge, specifying the number

of clusters to partition the data into can be problematic. To overcome this downstream
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modelling, where the response of the KMeans model to a given number of clusters, was

employed. In this approach, the e�ect of 'k' clusters on the performance of a model was

assessed by specifying and testing the KMeans model on a range of 'k' clusters.

Figure 4.18: KMeans number omf clusters

Two downstream evaluation metrics were used to assess the performance of 'k' clusters

on the KMeans model. The �rst metric used was the elbow method, as seen in plot 1

of �gure 4.18. Using the sum squared distance (SSE) between the data points and their

assigned cluster centres, the elbow method indicated that the ideal number of clusters

could have been anywhere between 3 and 7 clusters.

To clarify this uncertainty, the second metric silhouette analysis was used. This metric

was calculated by getting the coe�cient between the mean intra-cluster distance and the

mean nearest cluster distance. As the value for the silhouette coe�cient ranges from 1 to

-1, 1 essentially indicates correct cluster assignment (a great distance between clusters),

-1 an incorrect cluster assignment (an incredibly small distance between clusters) and 0

a debatable cluster assignment (a small distance between clusters). The values returned

from this metric fell between 0.4 and 0.6, with the values peaking at around 0.56 before

falling again (as seen in the second plot of �gure 4.18).

These values indicated a decent cluster assignment for all of the cluster numbers tested

(2-9), but that the best cluster separation would be achieved with 3 clusters with a

silhouette coe�cient of about 0.56. Figure 4.19 is a visual depiction of the silhouette

metric and for 3 clusters shows that the about 60-70 percent of the data is clustered
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into the second cluster (labelled 1), while the other 30-40 % is split between clusters 1

(labelled 0) and 3 (labelled 2) (see �gure 4.20).

Figure 4.19: Visual silhouette analysis

Figure 4.20: KMeans Cluster frequency
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The log plots, with the associated cluster label (exluding the �rst plot), are presented

for the concated well data.

Figure 4.21: Well log plot for the dataset set
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Focusing on the 5000 - 12000 depth range for the GR plot, the distinction between

sandstones and shales can be seen. Additionally, the reservoir seals - impermeable rocks

that form barriers above and below reservoir sections - are identi�able (see �gure 4.22).

However, the cluster plot for the interval does not match the lithological types indeicated

by the GR plot. The factors that most-likely a�ected the prototypes performance are

detailed in the section below.

Figure 4.22: Image depicting the intervals of interset and sealing points the bottom
depth of the concatenated dataset.
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4.7 Geological Prototype Analysis

To interpolate a surface between the well logs, based on their assigned clusters, and to

complete prototype development the data set was imported into both a pythonic and

GIS environment. Visualisation of the points in 3D showed that the Data optimisation

had reduced the data set to only points in well F-04. This can be attributed to three

main reasons:

1. The number of data points wells F-06 and F-08 contributed to the combined data

set were minimal in comparison to the number contributed to by well F-04. This

unequal distribution could have skewed what the model determined as outliers and

removed the values for wells F-06 and F-08.

2. Most of the logs used in the creation of the model (i.e. all of the logs besides

DEPTH, TNPH, SP, BS, and ITT) were not present in wells F-06 and F-08.

Therefore, these logs (GR, NPHI, RHOB, LLD, MSFL, MRES, MTEM, CALS,

DT and DTLN) had to be added as empty values (see �gures 4.23, 4.24 and 4.25).

This resulted in wells F-06 and F-08 contributing to most of the null values in the

data set (see �gures 4.23, 4.24 and 4.25).

3. In addition to pertinent logs being missing, their values had to be imputed to get

pseudo data for those missing entries. These imputed, model approximated values,

could have been calculated as values lower or higher than they should have been

and were thus removed - by the model - because of the its classi�cation of them

as outliers.
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Figure 4.23: Visual representation of the null values in well F-04

Figure 4.24: Visual representation of
the null values in well F-06

Figure 4.25: Visual representation of
the null values in well F-08

Since a surface could not be interpolated from only well F-04, pseudo data had to be

generated for what well F-06 and F-08 would have been in order to generate a 3D

geological prototype. This process was achieved by duplicating the results for well F-04

and o�setting them by variable amounts.
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The prototype geomodel developed (see �gure 4.26 and �g: predictions) had the un-

certainties depicted in 4.28 at the same level. These uncertainties vary but generally

increase the further away the interpolated surface gets from the well.

Figure 4.27: Interpolated surface based on the cluster labels of the input data set (slices
taken every 1000 m)

Figure 4.28: Uncertainties associated with the interpolated surface (slices taken every
1000 m)

Delving deeper into how well the interpolated surface is predicted, the inclination of the

prediction plot shows there is a high correlation between the points. This can be seen

in how the line �tted through the data (seen in blue and described by the equation on

the bottom of the image) is close to the 1:1 auto-correlation grey line.
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Figure 4.29: Predicted vs Measured plot

The quantiles of the di�erence between the predicted and measured values from a stan-

dard normal distribution can be seen in the Normal QQ Plot graph below. Here the

close correation beweten the data points and the grey line show that the errors of the

predictions, from their true values, are mostly normally distributed.

Figure 4.30: Normal plot
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From the statistical outputs depicted in the image below (see �gure 4.31), a couple

inferences can be made about the interpolated surface:

� As the root mean squared standardised errors are greater than 1, the variability

in the predictions are being underestimated. This is also con�rmed by the average

standard errors being less than the root mean squared prediction errors.

� The inside 90% interval, shows that about 89 percent of points fall within a 90

percent cross validation con�dence interval.

� The inside 95% interval, shows that about 96 percent of points can be found within

a 95 percent cross validation con�dence interval.

� The average Continuous Ranked Probability Score (CRPS) of all points, at about

0.2 shows that there is a deviation between the predictive cumulative distribution

function and each observed data value

Figure 4.31: Interpolated surface summary statistics
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5 Conclusion

5.1 Introduction

3D visualisation in well log interpretation has only been around for a comparatively short

period of time in the history of the �eld, and it was only through major technological

advancements that it became a possibility. The relative infancy of the domain means

that it is a quickly becoming a burgeoning �eld of research with endless possibilities. To

contribute to knowledge in the �eld, this dissertation set out to build a 3D geological

prototype from well logs. The developed prototype had to apply well log interpretation

theory as well as vision and perception theory to promote user understanding and aes-

thetic appeal. These outcomes were achieved by investigating the study area, well logs,

unsupervised learning as well as GIS and the cartographic design process.

5.2 Application of the Research

The �ndings of this investigation detail the versatility and practicality of 3D well log

interpretation, which are tools that can be transferred to other �elds and industries that

require data processing, classi�cation and visualisation.

5.3 Implications of the Research

� The viewer focused prototype development (in terms of understanding and appeal)

could promote greater examination of the in�uence of design on perception and

appeal.

� The outcomes of this investigation highlights the applicability of machine learning

in geological data processing and visualisation.
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5.4 Recommendations and Future Work

Future research directions may focus on the following:

� The application of pseudo-labelling in the clustering of well logs. By applying

this recommendation, the accuracy of the geological prototype would be improved

upon as the build is based on pseudo-labels of a certain degree of con�dence.

� The incorporation of a web component to both the processing and visualisation

of subsurface environments. This web component could consist of an interactive

website that supports users in carrying out machine learning processes on their

own data before displaying the rendered geological maps.

� The development of this investigation's machine learning work�ow into a tool that

allows for parameter tuning in addition to well log and machine learning algorithm

selection.

� Comparison of the di�erent machine learning algorithms (as well as their hyper

parameters) on the clustering and visualisation of well logs.

� The extension of the research to other subsurface datasets in the development

of a 3D geological prototype. Datasets such as seismic, fault and temperature

isosurface recordings.
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