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Abstract

Three-dimensional (3D) graphic representations of geographic environments have be-
come commonplace in a range of fields. These representations are often an attempt to
represent both geographic forms, as well as the relationships that exist between them.
In contrast to other fields, the use of 3D geological models in the visualisation of the
subsurface environment is relatively new. Additionally, these 3D geological models are
traditionally created through the painstaking process of manual development methods.
As such, the models developed are unable to fully utilise the wealth of geological data
that is collected during subsurface exploration.

Therefore, the objective of this research was to create a 3D geological prototype that al-
lowed for the visualisation of underground resource reservoirs in a faster, easier and more
aesthetically appealing manner. To achieve the objectives of this research, the problem
was tackled holistically by considering both the theoretical and practical components of
the research. Some theoretical components that were considered are: well log — wireline
log — data composition, the information that can be extracted from each well log com-
ponent, geological data interpolation as well as geological visualisation. Utilisation of
the theoretical component of this research facilitated the development of a programme
that modelled and visualised sub-surface environments. The programme applied the in-
formation from numerous well log datasets and interpolated the various geological layers
that could be found within a region.

This research used the machine perception process as the approach to develop a 3D
prototype of the Bredasdorp Basin. The steps involved were made up of 5 overarching
steps: data collection (acquired from the Petroleum Agency of South Africa), data
preprocessing, feature extraction, data clustering and data post-processing.

As part of this research the optimal number of components to explain 95% of the data
distribution was determined to be 6 components for the processed dataset. Following
this 3 clusters were determined to produce the best cluster separation. The identified
clusters were meant to distinguish between lithological sequences in the region, however,
when examined further they did not match the expected results. A number of factors
were linked to performance of the prototype, these included the distribution, consistency
and imputation of the data.

Nevertheless, the research has possible implications on viewer perception in well log
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interpretation as well as the applicability of machine learning in the field. Following
on from this research, a number of future directions can be taken with one being the
incorporation of pseudo labelling in the clustering of well logs.
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1 Introduction

1.1 Background

Geology can be described as a descriptive science, within which scientists are consistently
attempting to describe rock materials and communicate these descriptions (Peveraro,
2006). Well log data interpretation is no different. Research into the genesis of the
discipline and the artistic, comprehensive, verbose and subjective illustrations that were
created during the well log interpretation process, makes it apparent that well log data
interpretation is inherently visual. Its dependence on visual and descriptive mediums
can be credited to the fact that it is a representation of a complex, multi-dimensional

subject - the geological subsurface (Jones et al., 2009).

Therefore these drawings and writings, although as detailed and descriptive as they
could be, failed to fully express the core message geologists sought to portray, which is
an accurate, comprehensive and recognisable representation of the subsurface and all of
its complex relationships (Jones et al., 2009). Attempts to correct this propelled well
log interpretation into what it is today (Peveraro, 2006). Well log interpretation focuses
on measuring, recording and displaying rock material characteristics, and then deriving
descriptive geological parameters from the measured quantities (Peveraro, 2006). Simply
put, the practice of well log — wireline log — interpretation looks at inferring and conveying
the geological characteristics (e.g. lithology) of a region by measuring the properties of

rocks that surround several boreholes.

To map the geological subsurface of a region using the well log interpretation process,
probe instruments (sonde) that contain multiple sensors are extended into a well, so that
sedimentary property recordings can be made. As the sonde and its sensors are pulled
up from the depths of the well, they transmit information about their surroundings

(Luthi, 2001). Although, it is possible to post process the information gathered from
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Chapter 1 : Introduction

the sonde’s various sensors by using a range of applications both proprietary and freely
available, they are often limited to two-dimensional (2D) visualisations. This is prob-
lematic because as mentioned above, relying on 2D geo-modelling solutions ultimately

compromises the display of 3D data (Jones et al., 2009).

This research was, thus, carried out to answer the following question: Could more
information be conveyed about the complex and highly entangled geological subsurface
- through the creation of mindful 3D cartographic maps? Therefore, the objective of
this investigation was to determine groups (clusters) within well log data and visualise
them three-dimensionally; while also applying cartographic techniques that promoted

aesthetic appeal and user comprehension.

To achieve this objective - creating appealing and recognisable 3D subsurface visual-
isations - certain theoretical underpinnings had to be considered and used in the de-
velopment of a 3D cartographic prototype that ensures aesthetic appeal and improves
understanding. Topics that were explored include the practice of well logging, machine
learning (ML), geographical information systems (GIS) and the framework for carto-

graphic design.

However, the overarching goal of this research was to contribute to the quality and versa-
tility of well log data interpretation worldwide and, more specifically in the Bredasdorp

Basin - one of the sub-basins of the Outeniqua Basin and the chosen region of study.

The Outeniqua Basin and its sub-basins (four major and one minor), all give record of a
rich geological history of South Africa’s south coast. Continental rifting between east and
west Gondwana, extensional forces on the southern plate margins, and the subsequent
thermal subsidence and late drift sedimentation in well oxygenated environments, all
contributed to the formation of the enlarged basin parallel to the remnant continental
shelf break — the Outeniqua basin (McMillan et al., 1997).

Since the Outeniqua Basin’s discovery, countless in-depth explorations have been carried
out for hydrocarbon prospecting purposes using seismic, deep borehole drilling and other
geological acquisition methods (McMillan et al., 1997). Therefore, hundreds of wells have
been drilled in Outeniqua’s four major sub-basins and in its one of its minor sub-basin
i.e. the Bredasdorp, Pletmos, Gamtoos, Algoa and Infanta sub-basins respectively (see
figure 1.1).
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Figure 1.1: (Broad, 1990) Location map of South African southern offshore sedimentary

basins. Numbered boreholes are referred to in the text.

http://etd.uwc.ac.za/



Chapter 1 : Introduction

However, due to high water depths and strong currents in the distal portions of the
Outeniqua basin, most of these prospecting efforts have been focused on the Bredasdorp
basin as it is the richest and most viable source of hydrocarbons (McMillan et al., 1997).
Therefore, pertinent literature and theoretical frameworks were applied to well logs from

the Bredasdorp basin to develop a 3D geological prototype.

1.2 Statement of the Problem

The manner in which sedimentary properties gathered from well logging are represented
has a direct effect on the ability of geological users at all levels of expertise to make mean-
ingful conclusions about the geological landscape of a region. Although most present day
well log interpretation applications are suitable for their purpose, they are hindered by
their dimensionality, which can lead to costly time and resource expenses. Dimension-
ality hinders these applications because they visualise recorded sedimentary properties
in 2D space and thus do not adequately support the observation of the complex and
multi-dimensional subsurface environments (Jones et al., 2009). Additionally, these rep-

resentations can both be aesthetically unappealing and difficult to understand.
Hence, the driving research question behind this study was as follows:

While honouring vision and perception theory, could the complexr and highly entangled
geological subsurface be represented as a 3D geological prototype using data processed

from well logs?

Given the above, the pertinent readings and theoretical frameworks were reviewed before
applying them to assist in the development of the readable and aesthetically appealing
3D geological prototype.

1.3 Rationale of the Study

Presently, most well logging applications help maximise the value of geological subsur-
face data by transforming this data into visual, actionable information. However, the
versatility and capacity of these applications are hindered by their two dimensionality.
As the subject being displayed - the subsurface - is a three-dimensional physical envi-
ronment, the need to deliver a 3D modelling solutions is of great importance because

it would support confident decision making (Ford et al., 2008). Additionally, as noted
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by Jones et al. (2009), 3D visualisation allows for the depiction of complex geological

structures, and is more inherently intuitive than standard methods.

Therefore this study explored 3D well log visualisation as a means of conveying more
information about the complex geological subsurface while also ensuring for aesthetic
appeal to increase the ease of use and understanding of this information. Emerging
insights from this investigation will raise awareness and increase understanding about
the 3D method of geo-modelling, which (unlike traditional methods) is unlimited by
dimensionality (Jones et al., 2009).

1.4 Study Objectives

The objectives of this investigation were:
1. To present a geological understanding of the Bredasdorp Basin.
2. To demonstrate a clear understanding of what a well log is.
3. To determine the well logs that can be applied to 3D geological model development.

4. To identify and explain the fundamental characteristics that facilitate in user un-

derstanding and aesthetic appeal when working with cartographic representations.

5. To implement principal component analysis (PCA) and Kmeans clustering on well

log data and interpret the results.

6. To develop a prototype of a 3D geological map that supports aesthetic appeal and
user comprehension by adapting and combining the best practices within existing

3D modelling theory.

1.5 Concept Clarification

Python is an interpreted, high level and general purpose programming language that
was first developed by Guido van Rossum in the 1980s. This programming language
separates itself from its counterparts through its emphasis on code readability and multi-
programming paradigm support (Van Rossum et al., 2007). Python libraries support
functionalities that range from data extraction and conversion to data analysis and

modelling.
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Unlike traditional geological models, three-dimensional (3D) geological models are
continuous representations of the subsurface generated from powerful modelling tools
(Van der Meulen et al., 2013). These subsurface representations often include geological

properties, distribution and architecture (such as lithology) (Song et al., 2019).

3D geological mapping is a multifaceted topic that deals with the three-dimensional
visualistion of geological data (e.g. faults, lithology and volume) in a intuitive and
choherent manner that is suitable for human perception and interpretation (Malolepszy,
2005).

Acording to Hyne (2014), lithology (such as sandstones, limestones, claystones and
shales) is the general physical characteristics of rocks, and a common way of lithological

determination is through the interpretation of well logs.

Well logs record the formation properties of an area for a given depth during the well
logging process (Delfiner et al., 1987), with some geological properties captured in well

logs including resistivity and porosity.

Geological basins are ovular, circular or bowl-shaped depressions in the Earth’s sur-
face, that arise from either erosion or rifting. Their low-laying nature means that they
are often filled with water or sediments, thus making them good records of palacoclimates
(Rutledge et al., 2011). Three major basin types are: river drainage basins, structural

basins, and oceanic basins.

1.6 Scope

Despite the fact that other concerns and issues arose from this investigation, the in-
vestigation concentrated only on matters that affected well log data comprehension and
interpretation, as well as, 3D geological visualisation and prototyping. Overall, the issues
that emerged in this study had an impact on the creation of an aesthetically appealing

and intelligible 3D geological prototype based on well log data.

This research focused on issues, concerns and information gathered from research into
well logs, ML, 3D cartographic prototype development and 3D GIS. The information
gathered about the above mentioned topics were exclusively applied to the well log data
gathered from the Bredasdorp geological region. Aside from topographic data for the
region, no further information was considered and no additional data was gathered by

any other means other than that which is stated above, including those surrounding
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seismic data and website development.

Three elements were constraints (limitations) in this investigation. They are time, money

and the amount of information that could feasibly be gathered and effectively utilised.

1.7 Outline of Chapters

In this study there are five major chapters: the introduction, literature review, de-
sign/methodology, findings/results and conclusion. The short overview below highlights

the structure and arrangement of the research conducted in this thesis.

Chapter 1

This chapter introduced the subject matter for investigation - The use of well log data in
the creation of 3D geological maps - and provided context as to what would be presented

in the thesis and why. In addition to the preliminary notes, it included

e The background of the research

A general statement of the problem

The rationale of the study

The objectives of the research

Concept clarification

The scope of the research

And the chapter outline for the reseacrh

Chapter 2

Relevant literature and frameworks had to be examined in order to carry out the ob-
jectives of this investigation - creation of a 3D geological model that is bolstered by
cartographic comprehension and aesthetic appeal principles. Therefore, this chapter

outlined some of the information that previous academics have produced, including;:
e An overview of the geology of the region of interest - the Bredasdorp basin

e A narrative of well logging that covers a brief look into its history and the data

that can be derived from it
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Chapter 1 : Introduction

e An outline of machine learning

e A review of the 3D geological cartographic design cycle and it’s related components

Chapter 3

In order to provide sufficient detail about the experiment, this chapter covered the
methodological aspects of the investigation. This included the type of research under-
taken, the data that was collected, the tools and materials used to achieve the objectives

of the research and why these methods were chosen.

Chapter 4

Chapter 4 covered the results and discussion of the investigation. The results portion of
the chapter set out the key experimental results and whether the results were significant

or not.

The discussion portion of the chapter examined the results in the context of the literature
and established knowledge on the subject. The limitations of the research and the

implications of the findings were also discussed, and the study was critically evaluated.

Chapter 5

In addition to identifying areas for future research and making recommendations, this
chapter covered the critical aspects identified in the development and analysis of the

geological map before concluding the overall investigation.

http://etd.uwc.ac.za/



2 Literature Review

2.1 Introduction

Well log interpretation looks at measuring and recording rock material characteristics,
and then deriving descriptive geological parameters from the measured quantities (Pev-
eraro, 2006). In addition well logging is not only the recording and interpretation of
geological quantities, but it is also the creation of meaningful visual representations.

This is especially true as the data being represented is inherently visual.

However, the broader effect of well log interpretation, beyond being just a functional
graphical representation, has not been extensively considered or explored. Therefore,
this investigation was performed with the aim of transcending the typical and often
confining two-dimensional (2D) well interpretation research that considered interpreted
well logs as merely uncontextualised 2D representations, and re-orienting the discussion
towards three-dimensional (3D) cartographic well representations with user appeal and

comprehension.

In this chapter pertinent perspectives, literature and theoretical underpinnings on the
use of unsupervised machine learning in the development of a 3D geological prototype
that promotes aesthetic appeal and enhances user comprehension are discussed. In
addition the geological setting of the region of interest and the wireline data that was
collected from it are briefly looked at. This was done before delving into the literature
surrounding the development of an unsupervised machine learning (clustering) model.
Lastly, research into the concept of 3D cartography and its relation to how maps are

seen and understood, was conducted.
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2.2 The Geological Setting

The geological history of southern Africa, so far, spans about 3.8 billion years (Tankard
et al., 2012) and gives account of years of gradual sediment accumulation and loss.
Focusing on the middle to late Jurassic period gives insight into the geological and
tectonic processes that resulted in the formation of the Bredasdorp Basin (Parsiegla
et al., 2009), the setting for this research.
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Figure 2.1: Location map of South African southern offshore sedimentary basins - in-
cluding the region of interest, the Bredasdorp Basin, and its parent basin, the Outeniqua
Basin (Petroleum Agency of South Africa, 2003)

The Bredasdorp Basin, a large geological repository located off South Africa’s continental
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shelf, lies between Mossel Bay and the Cape Agulhas (see Figure 2.1) (Masindi, 2016).
It is bounded by two major basement arches — the Infanta Arch to the north-east and
the Agulhas Arch to the south-west. These arches are oriented parallel to the structural
grain of the orogenic Cape Fold Belt and set out an elongated basin with a width of about
80 km and a length of about 200 km. This has resulted in a basin (the Bredasdorp Basin)
that spans an area of around 18000 km?. This 18000 km? basin is filled with sediments
both from the time of continental rifting and the period after. In the basin, Upper
Jurassic and Lower Cretaceous continental and marine deposits chronicle the time of
continental rifting. While Cretaceous and Cenozoic divergent margin rocks tell of the

sedimentation during the post-rift period (Brown et al., 1995).

To better understand the geological setting and formation of the Bredasdorp Basin, the
geo-history of the basin and of its parent basin — the Outeniqua Basin — needed to be

explored.

Basin Evolution: The Bredasdorp Basin

The Bredasdorp Basin is one of the four major and one minor offshore depocenters of
the Outeniqua Basin. The others are the Pletmos, Gamtoos, Algoa and Infanta sub-
basins (McMillan et al., 1997). The Outeniqua Basin is thus a collection of both small
fault bounded and deeper sub basins located off the coast of the southern South African
continental margin (Parsiegla et al., 2009). The deeper sub basins of the Outeniqua
Basin are oriented closely to the Agulhas-Falkland Fracture Zone (AFFZ), a mid-ocean
valley that runs from the northern edge of the Falkland Plateau to the southern edge of
the African continent, and which forms the border between the continental and oceanic
crusts (McMillan et al., 1997).

The Outeniqua basin for the most part consists of mid Aptian to Maastrichtian deposits
on top of pre-existing rift basins and, according to McMillan et al. (1997), developed as

a result of three main episodes: rift, transitional and drift episodes.

In the first episode, continental rifting occurred between the East (Antarctica-Australia-
India) and West (South America) sections of Gondwana in the middle-late Jurassic to
Valanginian era. Rifting between east and west Gondwana is said to have occurred
along the progressively floundering rift zone between the Australasian and African Plate
(Khana and Dillay, 1986). Continental rifting and the position of the Outeniqua Basin
relative to the plate margin meant that it was sheared by right-lateral movements. This

event was unlike the stress events that occurred at other margins in the rest of southern
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Africa, where (instead of right lateral movements) extensional pull apart movements

were experienced (McMillan et al., 1997).

Continental rifting was then followed up by a transitional episode (late Valanginian
— early Aptian era), before the basin formation concluded with a drift episode (early
Aptian to present day) (McMillan et al., 1997).

Although a post rift formation, analysis of borehole samples from the Bredasdorp basin
have revealed that the region that later became the Bredasdorp basin started experi-
encing continental rifting around the middle-to-late Jurassic period. Extensional stress,
experienced because of the breakup between the Falkland Plateau (a complex series
of micro plates) and the Mozambique Ridge during continental rifting, induced normal
faulting. This in turn supported the definition of elongated horsts (raised blocks of land),
grabens and half grabens in the region (Brown et al., 1995). It was in these (half) graben
basins — depressed blocks of land with parallel banding faults which arise from blocks
of land being downthrown — that sediments were deposited. Sediments such as clastic,
fluvial and shallow marine deposits were lain. According to McMillan et al. (1997) these
sediments were deposited in marine and non-marine sediment successions and are made
up of four main lithogenic sequences: namely a lower fluvial interval, a lower shallow
marine interval, an upper fluvial interval and an upper shallow marine interval. These
landward (transgressive) and seaward (regressive) sequences were primarily induced by
syn-depositional normal faulting, and account for the thick successively deposited sedi-

ments visible today.

The geological history of this period is summarised in the table below:

12
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Following the Upper Shallow Marine interval, sedimentation continued until there was
major differential subsidence and the rifting induced extensional stresses ceased. Ac-
cording McMillan et al. (1997) and Brown et al. (1995), the uplift and truncation of the
underlying geological deposits is marked by the late Valanginian drift onset unconfor-
mity (1At1l) more than 126 Ma.

After the Valanginian drift onset unconformity (1Atl) marked the end of continental
rifting, and before the onset of drifting, the transitional activities of thermal subsidence
and reactivated faulting occurred. This is known as the transitional rift-drift phase.
During this period subsidence was uniform, slow and thermally driven. Additionally,
sediments and uplifted structural highs, such as horsts and bounding arches, were vari-

ably eroded because of the slower subsidence rates of the period (McMillan et al., 1997).

Sedimentation during this period occurred in deep, poorly oxygenated marine areas
overlain by poorly circulating water columns. This depositional environment resulted
in the deposition of mostly argillaceous (clay-rich) marine sediments, and then their
transportation to deeper waters by rapid downhill currents. Also as a result of the
depositional environment’s unsustainable biogenic oxygen levels signs of benthonic life

are rare or regionally confined (McMillan et al., 1997).

The geological history of this period is summarised in the table below:

Table 2.2: Summarised descriptions of the transitional rift-drift phase episodes

Transitional rift-drift Phase
Interval name Interval summary
1At] to 5At] During the 1Atl to 5Atl period of the transitional

(Late Valanginian to | phase, distal clay-rich sediments in the basin accrued in

Hauterivian). poorly oxygenated conditions. Additionally, southerly
inclined submarine valleys and canyons broke up the
pre-unconformity (1At1) shallow marine sandstones into
distinct areas which both provided a conduit for sedi-
ment flow and pockets for gas trapping (McMillan et al.,
1997).

15
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5Atl to 13Atl
(Barremian to Early
Aptian)

Sediments in the 5Atl to 13Atl period transitional
phase of the Bredasdorp basin formation, were de-
posited in a poorly circulating and poorly oxygenated
environment. Also, during this period, the seaward
movement of clean highly porous coastal sands was
defined by both a northern margin and by the Infanta
Arch (McMillan et al., 1997).

During the early Barremian period (6Atl) there were
3 major channels cut into both the 6Atl sedimentary
surface and the pre-1Atl rocks (i.e. upper shallow
marine interval). These channels thus acted as conduits
for sedimentary flow between proximal and distal
portions of the basin and assisted in the formation of
clay plugged gas trapping canyons (McMillan et al.,
1997).

Approaching the Early Aptian (13Atl) there was both
an uptick in sandstone deposition, and a marked decline
in the faulting subsidence rate (McMillan et al., 1997).

The end of the transitional rift drift phase occurred around the mid Albian period and
was followed by a drift phase. This period is marked by two things, firstly the separation

of the Falkland Plateau from Africa, and then the slow south-westerly migration of the

Falkland Plateau past the coast of Southern Africa (McMillan et al., 1997).

These activities subsequently led to the establishment of a true passive margin, as well

as the formation of some oblique rift half-graben sub-basins — such as the Bredasdorp

basin.

The geological history of this period is summarised in the table below:
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The above geo-history of the Bredasdorp Basin, a depocenter of the larger Outeniqua

Basin, is summarised in the form of a chronostratigraphic correlation chart below:
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Figure 2.2: Generalised chronostratigraphy of the Bredasdorp basin (Petroleum
Agency of South Africa, 2012)
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2.3 Well Logs

Hydrocarbons, an invaluable non-renewable source of energy, are found in abundance
in subsurface environments. However, these subsurface landscapes are tricky terrains to
access and navigate. Thus, the processes of hydrocarbon exploration and exploitation

often become challenging and expensive endeavors (Peveraro, 2006).

Due to a greater understanding of geological landscapes, as well as, the advent of tech-
nologically advanced machines that are used in geophysics and geo-engineering, hydro-

carbon prospecting has become an almost common practice (Peveraro, 2006).

To determine areas that will yield high hydrocarbon reservoirs, accurate lithological
information about subsurface environments need to be obtained from coring and drill
cuttings. The cores obtained from these activities are applied to the well logging pro-
cesses which allow for the determination of subsurface physical properties and lithology
with respect to depth (Peveraro, 2006).

Well logging provides a cheap, quick and accurate method of obtaining subsurface petro-
physical data like density, resistivity and travel time. These parameters are in turn used
for hydrocarbon identification and quantification of potential pay zones and hydrocarbon

reserves (Peveraro, 2006).

The hydrocarbon exploration process often begins with geological and geophysical sur-
veys. These surveys are used to determine the types of hydrocarbons present in the
subsurface by gathering information about the rock and sediment physical properties,

without the expensive undertaking of tunneling or digging (Peveraro, 2006).

After surveys have been carried out wells are drilled. The drilled wells are used to
confirm the existence of hydrocarbon bearing geological traps and quantify the possible
pay zone by mapping of petro-physical properties against depth (Peveraro, 2006). This
step in the process is generally what people in the geo-related field refer to when they
speak of ‘well logging’. Well logging can be carried out using one or a combination of

techniques.

One technique is Measurement While Drilling (MWD), where (during the drilling pro-
cess) the composition of rock samples are collected to be examined later against their
depths in a specialised laboratory, (Peveraro, 2006). Another technique is Logging While
Drilling (LWD), whereby sonde (probe instruments that contain multiple sensors) are

used to take continuous measurements of a wells petro-physical properties against the
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depth of the well. These probe instruments are extended into a well using a steel ca-
ble. From the well they later transmit information about their surroundings as they are
pulled up (Luthi, 2001) (see figure 2.3). The properties recorded by this method depends
on the sensors and tools that are used during the well logging process e.g. resistivity

tools, sonic tools, etc. (Peveraro, 2006).

o

Figure 2.3: Principal of well logging (Jahn et al., 2008)

The societal importance and profitability of well logging, has meant that subsurface
mapping, strata identification and the tools/methods used during these processes are
topics that have been extensively covered by both academics and oil purveyors alike -
with countless books, papers and charts being published on the topic. However, the
topic and practice of well logging, as we know it today, can be traced back to 1837 when
Professor Forbes, from The Royal Observatory Edinburgh, lowered temperature sensors
into three shafts up to 24 feet (7.3 meters) deep. He did this in an effort to determine
the effects of depth and time on temperature (Luthi, 2001).

Since then, those in the petro-physical field have been consumed with being able to
determine sedimentary properties and fluid saturation, lithology and hence, the location
of hydrocarbon bearing soils. Evidence of this can be clearly seen in the periodical pub-

lishing of books that detail the newest developments in the field of geological modelling
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(Luthi, 2001). To achieve their purpose, these publications both define the state of the
art in well logging field and also keep track of the technological advances through the
ages. Of special interest are the advancements that have engendered more useful hydro-

carbon measurement (Luthi, 2001).

The advancements in the well logging field have been, and continue to be, spurred on
by many external factors. External factors including electronics and computing, drilling
technology and new targets (Luthi, 2001). Electronics and computing have helped shape
hydrocarbon exploration through the provision of new tools that are adaptable to litho-
logical identification and the well logging field, as a whole. Examples of this can be seen
in the high data transmission and acquisition chips, as well as the imaging and array
sensors that are currently used in the field of well logging (Luthi, 2001). Advancements
in the electronics and computing field have also allowed petro-physicists to make rapid
and educated decisions on site because of real-time processing, quality control and ad-
vanced data visualisation (Luthi, 2001). Moreover, the development of satellites have
allowed for the quick relay and display of information in near real-time, anywhere, at
any time and on a range of devices. Advancements in drilling technology, specifically the
development of LWD tools, have facilitated real-time data transmission, a reduction in
the amount of fluid invasion during drilling as well as the prevention of borehole damage
during the logging process (Luthi, 2001). Overall, the advancements in this sector have
assisted in ensuring data integrity from start to finish. Lastly, as humans began to reach
all corners of the globe and deplete existing resources, hydrocarbon explorative efforts
had to shift to new targets. In particular, the possibilities presented by deep water
targets have led to both technological advancements and new geological insights. The
region of exploration challenged the logging community to develop more robust sensors
as deep-water environments are geologically young, poorly consolidated, highly porous
and thinly bedded. All of which can contribute to poor borehole conditions and the

need for equipment that can navigate these environments (Luthi, 2001).

From the above it is clear that the general growth of humanity has led to significant
progress in the logging field and made provision for a wide range of tools that can be
utilised to address each logger’s needs (Luthi, 2001).The relatively new tools developed
from the technological advancements, as well as from the examination of new frontiers,
have allowed those in the hydrocarbon and geoscience fields to carry out field explorations

to an almost surgical degree.

The logs (recorded sedimentary characteristics) derived from these field explorations act
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as data inputs in the creation of subsurface maps. As such an understanding of these
characteristics is important, if a 3D geological prototype is going to be created. However,
numerous characteristics are measured during well logging. The main characteristics
that will be used in the creation of the 3D subsurface maps are detailed in the following

section.

2.3.1 Spontaneous Potential

The spontaneous potential (SP) curve is a measure of the potential difference between
the potential of a kinetic electrode in a borehole and the potential of a static/fixed
electrode at the borehole surface. During logging a borehole penetrates a permeable
formation and puts two solutions of different chemical activities in contact (Peveraro,
2006). In congruence with the second law of thermodynamics, thermal agitation causes
the net migration of ions from the saline rich formation water in the adjacent shale
to the fresh drilling fluid in the borehole. Additionally, the negative electrical barrier
created by the negative outer surface of clay mineral platelets in the shale prevents the
diffusion of Cl- anions, but allows Na+ cations through. Thus, the borehole adjacent
shale acts as a cation selective membrane and results in the borehole fluid becoming

positive (Peveraro, 2006)(see figure 2.4).

g/ 7 EEEE/%::;&
.

// = {/
YW

— — — — . :Static SP Diagram—Potential in Mud When SP 6886
Cusrents are Prevented From Flowing

:SP Log — Potential in Mud When SP

Currents are Flowing

Figure 2.4: Schematic representation of potentials and current distribution in and around
a permeable bed penetrated by a borehole (Peveraro, 2006)
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It is important to note that SP values are not generated but are instead relative. There-
fore, the shale baseline is not zero, but is the relative position from which SP deflections

(and thus permeability) are measured.

During the SP measurement process no artificial currents are applied, instead the natural
potential difference, in millivolts (mV), that exists between an electrode as it descends
the depths of a borehole (moves downhole) and a fixed reference electrode at the surface
of a borehole is recorded by a galvanometer. Each formation has its own SP, however the
main objective of recording SP measurements is to allow differentiation between shale
and non-shale formations. In addition to this the SP log assists formation, permeability

and water resistivity determination (Peveraro, 2006).

SP is affected by a range of factors including the resistivity ratio, bed thickness, bed
resistivity, borehole diameter, invasion and porous and permeable bed shaliness. Several
factors influence the amplitude of an SP curve. These factors include bed thickness, bed

resistivity, hole diameter, permeability and Rmf/Rw (Peveraro, 2006).

2.3.2 Gamma Ray

Most rocks have nuclei of atoms that are stable and naturally unreactive, such as clean
sandstones and limestones. However, small portions of rocks are unstable and naturally
reactive, and may emit their zero mass particles or photons at any time. Shales fall
into this category and emit radiation from naturally occurring gamma ray sources such
as the daughter elements of the Uranium-Radiam and Thorium series, as well as from
radioactive potassium isotopes (40K) (Peveraro, 2006). These high energy pockets of
energy (photons) emitted from excited nuclei are known as gamma rays and are the
quantity measured in gamma ray (GR) logs. GR logs are captured by a scintillation
detector, which records the radioactive emissions of rocks and thus assists in the litho-

logical identification of shale and non-shale zones (Peveraro, 2006).

GR logs produced from the well logging process, measure the natural gamma radiation
that originates from the radioactive elements of three main element groups, that is
the thorium, uranium and potassium families. The amount of energy emitted by the
radioactive elements of the aforementioned groups is usually in the spectrum of 0 — 3
million electron volts (Mev) and is generally recorded with a simple or spectral gamma
ray tool. The simple, or natural, gamma ray tool takes GR readings without regard for

the source of the radiation. Whereas the spectral gamma ray tool identifies the source of
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the radiation and (through spectral analysis determines the contribution of each element,

thorium, uranium and potassium) to the overall energy spectrum (Peveraro, 2006).

Gamma radiation is a penetrating electromagnetic radiation that is progressively ab-
sorbed as it passes from one geological material to another. As such, the amount of
energy emitted at a GR genesis gradually decreases as it passes from formation to for-
mation. This effect is known as Compton scattering. Compton scattering is affected
by the density of a formation with greater energy losses occurring in denser formations
(Peveraro, 2006).

The GR logs derived from both simple and spectral GR tools during the well logging
process, can be used to determine shale volume and lithology. However, only the spectral

GR tool can determine radioactive material volume (Peveraro, 2006).

Factors that affect the radiation in rocks include age and deposition type (Peveraro,
2006). Age in particular, plays an important role in rock radioactivity; and is inversely
related to the other i.e. increased gaining results in decreased radioactivity (Mennan,
2017)

2.3.3 Resistivity

Electrical resistance (R) is a substance’s opposition to the flow of electrical current
through it. It is this quantity that is measured in a resistivity log (which is measured in
ohms). Thus, resistivity can be defined as a substances’ resistance between two opposite

unit cube faces at a specific temperature (Peveraro, 2006).

Resistivity logs signify the presence of fluids (like water) in rocks because rock matrices
(excluding shale) are insulators, while saline fluids in their pore spaces are conductors.
Resistivity is thus inversely proportional to the volume of water present in a formation.
In other words, a formation with a high water content will have a low resistivity and

vice versa (Peveraro, 2006).

Resistivity is useful in identifying hydrocarbons because, (in comparison to their ex-
clusively water-bearing counterparts) the conductivity of porous rocks reduce in the
presence of hydrocarbons. This fact enables the distinction between hydrocarbons and

salt water in porous formations (Peveraro, 2006).

Resistivity is measured by three main methods: induction, laterlog and microresistivity

logging. Microresistivity logging works by using closely oriented borehole wallmounted

25

http://etd.uwc.ac.za/



Chapter 2 : Literature Review

electrodes, while laterlog logging uses carefully constructed electrode arrangements to
focus the surveying current and generate sharply focused horizontal current sheets of
predetermined thicknesses. Induction logging, on the other hand, works by using high

frequency alternating currents to induce concentric current loops (Peveraro, 2006).

The conductivity of a rock is a function of its porosity, the interrelation of its pores and

the conductivity of the fluid in its pores (Peveraro, 2006).

2.3.4 Calipers

Boreholes are formed by rotating a circular rock-bit. Therefore, a circular borehole
matching the diameter of the rock-bit is expected. However, this is often not the case.
Instead the resulting hole may be circular, oval, gauged, under-gauged, over-gauged,
cork-screwed or even key-holed. Gauged holes (circular and rock-bit sized) indicate the
presence of hard, dense and non-shaly rocks. Under-gauged holes (rock-bit sized minus
two times the thickness of mud cake infiltrates) indicate the presence of permeable,
porous formations such as clays and sloughing shales. Sloughing shales can also result
in over-gauged holes that are over-sized with a diameter much greater than the bit size
(Peveraro, 2006).

There are several mechanical calipers that are used to determine borehole geometry.
The tools fall into 6 main categories 1-arm, 2-arm, 3-arm, 4-arm, 6-arm and multi-finger
tools (Peveraro, 2006). Some of these calipering devices are designed to simply measure
borehole diameter while others also form an integral part in achieving the aims of the
overall survey, and are therefore embedded in other tools. For example in the 3-arm
caliper supports borehole diameter determination and is used as a centraliser in sonic,

dipmeter and production logging tools (Peveraro, 2006).

2.3.5 Porosity

There are three logging tools that can assist with determining the porosity and thus
formation mineralogy. These are density, neutron and sonic logging tools (Peveraro,
2006).

The density log measures the grams per cubic centimetre of scaled bulk density of forma-
tions. It does this by emitting a highly collimated beam of medium energy gamma rays
(Peveraro, 2006). These rays collide with electrons in the formation and lose some of

their energy as a result of the interaction, but continue to travel through the formation
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along an altered path (Compton scattering). As electron and mass density are almost
identical, the inverse proportionality between the number of back-scattered gamma rays
and the electron density of the formation can be used to determine the formation’s mass
density (Peveraro, 2006).

To achieve neutron log measurements, a chemical neutron (e.g. an Americium-Beryllium
mxture) is used to barrage the formation with fast neutrons. These neutrons then collide
with nuclei in the formation and slow to epithermal and then thermal neutrons. At this
energy level the neutron is captured by a nucleus in the formation. To stabilise itself
after the addition of the neutron the nucleus emits high energy gamma rays (Peveraro,
2006).

During this collision event the rate at which neutrons lose their energy depends on the
mass similarity between the neutron and the struck nucleus. If the nucleus is of greater
mass, no energy will be lost, and the neutron will bounce off elastically. However, if the
nucleus and the neutron have approximately the same mass, energy will be shared and
the neutron will slow (Peveraro, 2006). Hydrogen nuclei and neutrons are of almost the
same mass. Therefore in a head on collision the neutron could transfer all its energy to
the hydrogen nucleus. Thus, a neutron log is essentially a hydrogen log as the rate at
which a neutron loses its energy by collision is directly related to the amount of hydrogen

per unit volume (Hydrogen Index) present in the formation (Peveraro, 2006).

The Hydrogen Index of porous water-filled formations and shales is higher than the
Hydrogen Index of formations with gas and light oil. So in addition to assisting with
porosity determination, the neutron log can be used to identify shales as well as gas and

light oil zones(Peveraro, 2006).

Factors that affect neutron log readings include water, clay, oil and gas i.e. essentially

anything with hydrogen (Peveraro, 2006).

Sonic logs use sonic/acoustic velocity tools to determine the speed of sound in the rocks
beside the borehole. Using an electrical signal, these sonic tools emit a sharp sound from
an acoustic transmitter. The emitted sound moves in a spherical wave to and through
the borehole wall and is refracted back before it abates. The sound refracted back to the
detector is converted into an electrical signal. The amplitude of this signal is indicative
of the formation’s ability to carry acoustic energy and, as backed by Young’s modulus,

rock rigidity (Peveraro, 2006).

At the time of emission from the acoustic transmitter, the wave form is compressional.
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However, on contact with the borehole wall its splits into three parts: compressional
(fastest), shear and boundary wave forms (slowest). These waves retain their spacing as
they travel back to the detector and the first wave arrival times are used for determining
formation transit time. These transit times (along with velocity measurements) can
be used to determine common rock types based on rock acoustic response observations
(Peveraro, 2006)

2.4 Machine Learning

Pattern recognition is so deep-rooted in the human experience that it has become an
almost subconscious activity, carried out with an ease that belies its complexity (Duda
et al., 2012). Every task that makes use of this subconscious activity, often includes one
or more of our senses — whether sight, smell, taste, sound or touch; and includes the
ability to recognise a face, distinguish between fresh and rotten food and understand
spoken words (Duda et al., 2012). According to Duda et al. (2012), pattern recognition
can be defined as grouping data into patterns and making decisions based on the various

pattern categories that arise.

As humans have evolved, the ability to recognise and classify patterns has passed on
from generation to generation as a skill necessary for survival. With that said, and in
this technological age, it is only natural for humans to seek to design machines that can
carry out and improve on the application of this function. This is often referred to as
machine perception and examples of this can already be seen in facial, fingerprint and
automated speech recognition software (Duda et al., 2012) — with most of these design

achievements stemming from the observation of how nature solves these issues.

The objectives of this investigation, log data clustering, is really no different. Conse-
quently, the modelling techniques adopted, in order to develop a 3D subsurface prototype
and achieve the objectives of the investigation, were built primarily on the machine per-

ception principles and then more broadly on the principles of pattern classification.

In the fields of machine perception and pattern classification, machine learning is funda-
mental aspect. Machine learning lies at the intersection of statistics, artificial intelligence
(AI) and computer science (see Figure 2.5) and involves transforming data into knowl-
edge (Miiller et al., 2016).
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Statistics Al

Computer
Science

Figure 2.5: Intersection of the machine learning fields

It is this ability to extract knowledge from data that makes machine learning incredibly
influential in data driven research, including machine perception and pattern classifica-

tion.

In the early days of machine learning these extractions were carried out by explicitly
defining conditional statements. These conditional statements spelled out decision rules
that were executed depending on whether a condition was true or false. A great example

of this can be seen in figure 2.6 below:
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Figure 2.6: Decision steps in a simple spam filter (Adapted from Beyeler (2017))

Although these rules help process data and ultimately assist in the decision-making

process, as stated by Beyeler (2017), they are limited by two major factors:

1. Their extreme reliance on an expert’s domain knowledge, including all possible

exceptions, to form decision rules.

2. Their confinement to a specific task to the point where the slightest change in the

task often requires a rewrite of the entire rule system.

With the latest machine learning iterations these factors have been overcome. Therefore,
when presented with a large and varied dataset machines are able to find data patterns
- both hidden and apparent - without the task first having to be well defined (Beyeler,
2017).
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2.4.1 Machine Learning Approaches

Most machine learning problems fall into one of three categories, that is supervised

learning, unsupervised learning and reinforcement learning (Beyeler, 2017).

In supervised learning, decision making is automated by generalising from known ex-
amples (see figre 2.7). During this process the user provides input and desired output
sets by labelling each data point in the dataset with a category. Using the input/output
pairs as a ‘teacher’ the algorithm learns how to derive the output category from the
input data points. Then using this knowledge base, the algorithm can then categorise

an uncategorised new data point into a specific category (Beyeler, 2017).

Going back to the spam email example, to filter out spam emails a supervised learning
algorithm would be provided with a large set of emails (the input) and the category of
cach email i.e. whether the email is a spam email or not (the output) (Miiller et al.,
2016). Having learnt what constitutes a spam email, the supervised learning algorithm

would then be able to predict whether any future emails are spam emails (Beyeler, 2017).

Teacher/Targets

Error

Supervised learning

Input Output

Figure 2.7: Main machine learning categories: Supervised machine learning (Reproduced
from Beyeler (2017))

In unsupervised learning, the data is uncategorised and only the input data is known, so
decision making is automated without a known output vector (see figure 2.8). As there
is no ‘teacher’ to derive some knowledge from in the input dataset, the unsupervised
learning algorithm organises the data into natural groups or clusters such that the points
within a cluster are of great similarity while also being as disparate to other clusters as
possible (Duda et al., 2012).
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Often the data is simplified through a range of functions before it is clustered. These
functions include dimensionality reduction, so that it can be better described and then
later organised by the algorithm (Beyeler, 2017). From the simplified data the user has
to hypothesise the number of clusters in the dataset before the unsupervised algorithm

can assign each data point to a cluster (Duda et al., 2012).

In terms of the spam email example, knowing that there are two clusters (i.e. spam
and not spam) an unsupervised learning algorithm would identify email clusters by first
looking for similarities and disparities in the input data (the emails), and then grouping
the data points into a cluster based on this information (the output). Although now
categorised based on a cluster label, it is up to the user to interpret what each cluster
means i.e. whether cluster 1 indicates spam emails and clsuster 2 non-spam emails or
vice versa (Miiller et al., 2016). Having learnt what properties make up a cluster, the
unsupervised learning algorithm can then predict which cluster any future emails belong

to.

Unsupervised learning

Input Output

Figure 2.8: Main machine learning categories: Unsupervised machine learning (Repro-
duced from Beyeler (2017))

In reinforcement learning, decision making is automated by using known output vectors
to strengthen the initial classification of input data (see figure 2.9) (Duda et al., 2012).
During this process the data points are fed to the algorithm and then the algorithm
comes to a conclusion based on this information i.e. classifies the input data. Following
its conclusion, the algorithm is supplied with the feedback as to the accuracy of the
classification. Using this binary right/wrong critique the reinforcement algorithm can
then either maintain or modify its strategy in computing the correct category (Beyeler,
2017).

Going back to the spam email example, to filter out spam emails a reinforcement learning
algorithm would be provided an email (the input). It would then draw up a tentative
classification label. The algorithm will then be told whether the classification is correct

or incorrect and if correct the algorithm would maintain its strategy for identifying spam
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emails. However, if incorrect it would alter its strategy based on the feedback (Duda
et al., 2012). Having learnt what constitutes a spam email, the reinforcement learning

algorithm can then predict whether any future emails are spam emails

Error
Teacher/Targets

Reinforcement learning

A J

Input Output

Figure 2.9: Main machine learning categories: Reinforcement machine learning (Repro-
duced from Beyeler (2017))

For this investigation the second family of machine learning algorithms, unsupervised
machine learning, was employed. This was because the data from the study area had no
‘teacher’ (known output) to inform the learning and had instead to rely entirely on the
input data to extract knowledge. Also, following the sklearn flow chart (see figure 2.10),
as the dataset was a large sample of unlabelled data that needed to be categorised, a

clustering (unsupervised learning) algorithm would have to be used.

classification scikit-learn

algorithm cheat-sheet

s | category
ij

ot o you
JORKING
s v
@
number of quantity
ves s categories
known No R
o

clustering 4"\

e -m.... dimensionality
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Figure 2.10: skleran flowchart on how to choose the right estimator (Developers, 2007)
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2.4.2 Unsupervised Learning

Unsupervised learning comes in a multitude of forms and can be applied in numerous
ways; however, the intent of its use is always to transform an input data source into a
richer, more meaningful representation (Beyeler, 2017). The most common applications

of machine learning are in unsupervised transformations and clustering.

Unsupervised Transformations

Unsupervised transformations use the input dataset to create new data representations
that better support human or machine understanding. One such transformation is di-
mensionality reduction. In this transformation process, multi-feature high dimension-
ality data is compressed and represented as only informative essential features. Some
of the most widely used dimensionality reduction algorithms include principal compo-
nent analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) (Miiller
et al., 2016).

In PCA the dataset is represented in a lower dimensional space by orthogonally rotating
all the data points until they are aligned with the two axes that explain the most variance
(Beyeler, 2017). An example of the PCA process can be seen in figure 2.11. In plot 1 of
figure 2.11, component 1 is the vector that contains most of the data and which explains
the direction of greatest correlation. Component 2 is a vector orthogonal to component
1 and which explains the direction of the next greatest correlation. The directions
obtained from this process (components 1 and 2) are the principal components of the
data and they describe the directions of greatest variance. Plot 2 in figure 2.11 shows the
mean standardised data rotated to align with the axes of the first and second principal
components. To reduce dimensionality of the data only certain principal components
can be retained, as seen in plot 3 of figure 2.11 where only the first principal component
is retained. Thus, the data is reduced from a two to one dimension dataset. Removing
the rotation and applying the mean back to the data, plot 4 in figure 2.11 displays the
information that was retained from the PCA process (Miiller et al., 2016)..
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Figure 2.11: Transformation of data with PCA (Miiller et al., 2016)

The next unsupervised transformation algorithm, t-SNE; starts by randomly represent-
ing the data points in two-dimensional space. Following that, the algorithm attempts to
increase both the proximity of neighbouring points and the remoteness of distant points
in the original feature space. Figure 2.12 below shows an example of the application of
t-SNE to PCA transformed data. In the image barring a few exceptions, there is a clear

separation between classes (Miiller et al., 2016).
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Figure 2.12: Scatter plot of the digits dataset using the first two principal components
(left-hand side). Scatter plot of the digits dataset using two components found by t-SNE
(right-hand side) (Miiller et al., 2016)

Clustering

Clustering algorithms partition data into different classes of like objects (clusters). Sim-
ilarly to t-SNE, clustering algorithms split the dataset into groups that have both great
internal similarity and great external dissimilarity. There are many clustering algo-
rithms that can achieve data partitioning, however k-means clustering is the simplest,
most commonly used and best suited to the data of this investigation (based on the
sklearn workflow, figure 2.10). K-means clustering works by finding the cluster centres
of ‘k’ number of groups that represent the different sections of the data (Albon, 2018).
According to Albon (2018), it does this by

1. Creating ‘k’ randomly placed cluster centers

2. Calculating the distance between each point and the cluster centers

3. Assigning each point to the group of the nearest cluster center

4. Resetting the location of cluster centers to the mean of the redetermined clusters
5. Repeating steps 2-4 until there are no more cluster membership changes

A visual representation of this process is depicted in figure 2.13 below.
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Figure 2.13: Input data and the three steps of the k-means algorithm (Miiller et al.,
2016)

The most important step in the k-means workflow occurs before the first step and is
the definition of the number of clusters. Having to define the number of clusters be-
forehand can be problematic if the phenomena being modelled is complex and not fully
understood. To overcome this, the elbow method and silhouette analysis can be imple-
mented. The elbow method repeats the clustering for a range of cluster ‘k’ values and
documents the compactness value against this ‘k’ value. The plotted compactness by ‘k’
graph resembles an arm and the ‘elbow’ points to smallest number of clusters that gives
a very compact representation (see figure 2.14 ). This cluster number is what should be
specified in the k-means algorithm (Beyeler, 2017). While the elbow method considers
compactness, silhouette analysis takes into account the separation between clusters. By
highlighting whether most of the points in a given cluster are closer to a neighbouring

cluster than their own, silhouette analysis assists in cluster number selection.
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Figure 2.14: The elbow and silhouette method for determining 'k’ (the number of clus-
ters) (Adapted from Sarkar (2020))

2.5 Cartographic Design Cycle

According to Crampton and Krygier (2005) cartography the art and practice of mapping
out spatial data can be traced back to the genesis of most human civilisations. This
is because of humanities enduring need to visually record geographically located phe-
nomena (Bailey and Gatrell, 1995). This recording is carried out by creating graphical
representations, where image objects symbolise phenomena occurring in the real world
(Rhind and Taylor, 2013). These representations, however, were often fraught with dis-
tortions due to their 2D confinement and ultimately led to maps that were unable to
fully capture both the spatial and non-spatial relationships that existed within the 3D

geographic environment being depicted (Monmenier, 2018).

These 2D map distortions played themselves out in all the basic map components: scale,
projection and symbolisation. In addition to the inability of 2D visualisation techniques
to minimise distortions, its failure to realise multi-dimensional representation, increase
user coverage and step away from its paper dependence ultimately led to the development
of the 3D cartographic technique. The 3D cartographic technique was developed to
address the abovementioned 2D cartographic pitfalls and support the creation of multi-
scale dynamic models that support user understanding and appeal (Jones et al., 2009).
All these improvements thus allowed cartographic users at all experience levels to depart
from a painstaking, fragile and limited visualisation technique and move towards an

easily accessible and enduring method of representation (Rhind and Taylor, 2013).

Despite the move from 2D to 3D, the cartographic design cycle, a process which links
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a map, its maker, its user and the environment being represented, is still applicable
(Stevens et al., 2012). The cartographic design cycle, as seen in figure 2.15 is a recursive

process in which the outcomes of a given stage inform subsequent stages.

Real or Imagined
Environment

Spatial Pattern
Cognition /s, atial Behaviour Technology Detection
. Remote Sensing
Spatial Preference i
Perception

decision-making | data collection

Map User map use map design Map-Maker

Reading Generalisation
Analysis Symbolisation

Decoding Interpretation Production

. E )
Pattern Recognition ncoding

Map
Tangible or Virtual & Static or Dynamic

Figure 2.15: The cartographic design cycle (Reproduced from Stevens et al. (2012))

The cartographic design cycle starts with the environment being mapped. After data
acquisition through both on-site and remote methods, the map-maker’s perception of
the physical environment (and its relationships) determines the way the data is prepared
for map creation. Therefore, the patterns that exist in the raw data as well as the
purpose and use of the map are all used to inform the created cartographic representation
(Stevens et al., 2012).

Next, using a range of map production techniques the cartographer (map maker) at-
tempts to visually represent the prepared data in the form of a map. This is known
as encoding and the techniques used by the cartographer during this process include

symbolisation and generalisation (Stevens et al., 2012).
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Figure 2.16: The visual variables (graphic elements) of cartographic symbols (Adapted
from Tyner (2010)). First reproduced in Ile (2018).

Before deciding on the graphic elements of a map, their relationship to psychological
factors have to be considered (Kraak, 1993). Some of the relationships between map

graphic elements and psychological factors are detailed in the table below:

Table 2.4: The relationship between the primary graphic elements and the psychological
depth cues (Kraak, 1993).

Primary Graphic Elements | Psychological Depth Cues

value —
colour colour
size rectinal image size
texture texture
orientation shape linear perspective

. B aerial perspective

— detail perspective

— shades

— obstruction /overlapping

With the necessary pyscological cues considered, symbolisation (the association of graphic
elements with real world geographic objects) can be carried out. This activity improves
the look and comprehension of maps (Ile, 2018). According to Haeberling (2005) there

are eight essential graphic elements size, shape, spacing, orientation, arrangement, colour
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and brightness, texture and pattern and special graphical effects. Shown in table 2.5

below are the visual graphic elements that make up the symbolisation process.

Table 2.5: The symbolisation visual variables necessary for cartographic representation
of real world graphic objects

Visual variable Variable properties

Size The manipulation of an object’s physical proportions
can either emphasise or de-emphasise some quality
about it. This characteristic lends size to the effort-

less display of volume or amount (Tyner, 2010)

Shape In maps, shape is used as a means to denote difference
in kind (Tyner, 2010).

Colour and brightness | This variable consists of three parts - hue, value and sat-

uration - and each plays a different role in cartographic
representations. Hue is used to differentiate between ob-
jects of similar form (size and shape). Value and satura-
tion are often used together, with value used to represent
amount /quantity while saturation is used to distinguish

between subcategories within a group (Tyner, 2010).

Texture Texture is used to conjure an impression about an object
and is created by amalgamating smaller elements and

arranging them in a particular pattern (Tyner, 2010).

Arrangement This variable refers to the layout of objects in a carto-

graphic representation (Ile, 2018).

Orientation Orientation sets the direction of objects and can thus be
used as an indicator of similarity or difference (Tyner,
2010).

While symbolisation uses graphic elements to increase aesthetic appeal and information
conveyance, generalisation on the other hand improves image discernment and imaging

speeds through data and detail reduction.

In addition to symbolisation and generalisation, other map production techniques can
be employed during the cartographic design cycle. Such production techniques include
the application of lighting and environmental effects to display the relationship between

geographic features, complete the representation and ensure effective visualisation of the
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graphic scene (Haeberling, 2005). At the end of this stage of the cartographic design

cycle a coherent fit for purpose map is produced.

Due to the intelligible map designed by the cartographer, during the third stage of the
cartographic design cycle, the map user can decode the symbols of the map and decipher
the patterns within it. The decoded map is thus legible and available for analysis and

interpretation by the user.

Lastly, information gathered during the map use informs any decisions made and actions
taken. Therefore, the way maps are framed influence our spatial understanding, behavior
and preferences ultimately shaping how we perceive the environment (Stevens et al.,
2012).

2.5.1 Colour

The power of colour in the development of a meaningful, fit for purpose cartographic
representation is often obscured by its decorative role. Therefore, study of this graphic
element is required to ensure that the representation makes plain the phenomenon being

mapped instead of obscuring it with flourishes.

Electromagnetic Spectrum  Wavelength in micrometers

10 1y 107 LCr- .01 0,1 |l 1Ck (alel 1Cx ]UII 1Ly 10¥ 10y
[ ] ] | 1 | | ] 1 1 ] ] ] ]
.'—"_"'-_ —
Gamma Ray X Rav U Aolet Visihle Infirred—___ Microwaves Eadio Waves

il ——
_'_,__,-'—"'_'- T ——
il _\_\_\_‘_‘—\—\.

400 480 540 580 700
Visible Spectrum - Wavelength in nanometers

Figure 2.17: Image depicting the visible band within the electromagnetic radiation spec-
trum, with the wavelength for each colour band included (Monmonier, 2018)

Colour is a sensory phenomenon experienced in response to light from a narrow band
of the visible electromagnetic spectrum (Hunt and Pointer, 2011). The band of visible
light is between 0.4 pm and 0.7 pum (see figure 2.17 ), and although narrow it has been
estimated that over 10 million different colours can be distinguished from this band (Judd
and G, 1975). According to Hunt and Pointer (2011), this ability is only possible because

of the 3 basic perceptual attributes of colour. These are brightness, colourfulness and
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hue and they can respectively cause and area to appear bright/dim, more/less saturated

and similar to one or more portions of red, yellow, green and blue (see figure 2.18).

Figure 2.18: Tmage depicting the HSV colour space in three dimensions (hue, saturation
and value). The relationship and the means of interaction of these quantities can also
be seen (Monmonier, 2018)

In the figure above, hue is depicted as a colour wheel with orthogonally extending sat-
urations centred on a value/brightness axis which ranges from black (at the bottom) to
white (at the top) (Hunt and Pointer, 2011). Black and white light can be described as
the absence and presence of all wavelengths from the visible band of the electromagnetic

spectrum, respectively (Monmonier, 2018).

From the statements above it is clear that colour is a multifaceted tool that is able to
reinforce meaning and order while also supporting the visual interest of a representation.
To best ensure effective use of this colour, Lidwell et al. (2010) suggests the adherence

to a few guidelines:
1. Number of colours:

e Colour should be used conservatively and with focused intent, especially as a
significant percentage of the population has a limited perception of it (Lidwell
et al., 2010).

2. Colour combinations:
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e Use cooler colours to mark background objects and warmer colours to distin-
guish foreground objects (Lidwell et al., 2010).

e Achieve aesthetic cohesion and appeal by using colours that are either com-
binations found in nature or that are analogous (adjacent)/complementary

(opposite) colours on the colour wheel (Lidwell et al., 2010).
3. Saturation:

e When considering saturation in a representation it is important to remem-
ber that dark colours are perceived as serious and professional, while bright
colours are are seen as more friendly representations (Lidwell et al., 2010).
Saturated colours, which are viewed as exciting and dynamic, are best used
to indicate objects of high priority. Whereas, desaturated colours find their
place in the creation of efficient and fast renditions. Above all, the use of sat-
urated colours should be carefully considered before implementation because

excessive combinations can lead to eye fatigue (Lidwell et al., 2010).
4. Symbolism:

e The emotional and symbolic meaning of colour has to be tailored to the

audience that will view the representation (Lidwell et al., 2010).

2.5.2 Eye Brain System

The output of the cartographic design cycle is a map, a visual representation of the
earth. So to understand the message being conveyed by the representation a means of
visual processing is required. Within humans this is satisfied by the visual system, a
pathway which spans from the retina to the cortex and starts with the eyes (Hubel and
Wiesel, 1979).

Without sight not only would people be unable to observe colour they would also be
unable to visually process cartographic creations. Hence, it is appropriate to consider

the human eye-brain system as part of this investigation.
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Figure 2.19: Keates (2014) schematic for the human visual system.

The iris, a structure that provides an adjustable aperture, controls the amount of light
that enters the eye through the cornea (a curved transparent window within the eye).
The cornea in conjunction with the cillary-adjusted lens focus light on to the retina
(light sensitive cells at the back of the eye). Light then passes to the rod and cone
photoreceptors (named thusly because of their shape) which are found within the retina
(Snowden et al., 2012). Cones and rods, which vary in type and distribution, are sensitive
to wavelengths and light respectively. Their varied type and distribution result in a

selectively processed image of reality (Keates, 2014).

From the rod and cone photoreceptors, light is then passed to the retinal ganglion M
(responsible for movement) and P (responsible for colour information) cells layer, before
leaving the eye at the blind spot through optic nerves. Optic nerves are essentially

millions of bundled blood vessels and retinal ganglion cell axons (Snowden et al., 2012).
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General
interpretive area

Primary visual Visual
cortex interpretative
areas

Figure 2.20: Adaptation of Keates (2014) diagram depicting the areas of the brain
primarily devoted to visual perception. First reproduced in Ile (2018).

Here begins the journey to the brain, with the projection of information from the optic
nerve to the lateral geniculate nuclei (LGN), a relay center for visual information. There
are 6 layers in the LGN, 3 for the right eye and 3 for the left. In these layers retinotopic
mapping, the orderly mapping of the visual world, is observed for the creation of a
clear image. In addition to mapping the visual scene the LGN highlights information of
importance by filtering out the contents of the visual field (Snowden et al., 2012). Then
after traversing several synapses cells, the LGN pass their axons directly to the visual
cortex. Due to the crossing of the optical nerve at the optic chiasm (the point of optic
nerve conveyance), the left LGN and cortex are concerned with the visual scene from the
right eye. The opposite is true for the right LGN and cortex. In a hierarchical manner
simpler cells feed information from the retina to more complex cells for transformation

in orientation and for the combination of retinal inputs (Hubel and Wiesel, 1979).

These transformation processes assist in the perception and comprehension of a visual
scene by breaking down the graphical objects into their simplest components before re-
grouping it. For example in the case of a square, it would would first be split into a
series of vertical and horizontal lines before being regrouped as a square. As such, the
increased complexity and variability of an object necessitates more neural connections
and results in increased image processing speeds as well as increased difficulty in per-

ceiving an object (Keates, 2014).

Another important understanding of visual comprehension can be gained by looking at

eye movements. Unlike in the general evaluation of cartographic scenes, comprehensive
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map analysis (i.e. object detection, discrimination and identification) occurs by means
saccadic movements instead of through the use of central (foveal) vision (Keates, 2014).
During these saccadic movements the eyes go through a cycle of fixating on an object,
jumping away and then refocusing on it again. As the fixation length is directly related to
the complexity of an object - in terms of its size, colour, shape, texture and orientation -
the definition of a simple and familiar scene is critical for promoting visual comprehension
(Keates, 2014).

2.5.3 Gestalt

It is important for a cartographer to consider these individual cartographic elements.
However, consideration of the effect of all elements on the map composition is as im-
portant. This is especially true when one considers the fact that the human eye-brain
system is often incapable of observing the map elements without also observing their
setting (Kent and Vujakovie, 2017). Human cognisance of the visual is, thus, dependent
on relating the foreground with background. In this way the viewer’s perception of the
scene is not of fragmented elements, but rather of coherent, well-defined objects which

are distinguishable from each other and from their environment (Roth and Bruce, 1995).

The relationships between objects and their background can be preserved through the
observation of gestalt laws, which (in addition to fore- and background distinction)
also aid the viewer’s ability to read, analyse and interpret maps. The gestalt laws
which describe how visual elements and the patterns they make are perceived (Graham,
2008), include the laws of figure/ground, closure, common fate, good continuation, law

of pragnanz, proximity, similarity and uniform connectedness.
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Chapter 2 : Literature Review

2.5.4 Thematic Maps

For cartographers, a driving force in map creation is the consideration of the map’s

purpose.

Map Types
Mental Tangible Virtual
Reference Thematic
Qualitative Quantitative

Single variable Multi-variable

Figure 2.29: Dent et al. (2009) schematic for the different map classifications.

There are two main objectives in map creation: the display of a variety of features on
a location focused map or the display of the structural characteristics of a geographical
feature (Dent et al., 2009). Seeking to achieve the former objective results in the pro-
duction of a reference map, whereas seeking to achieve the latter objective results in the

production of a thematic map.

As the purpose of this investigation was to illustrate the characteristics of a geographical
feature an understanding of thematic maps (created through the manipulation of graphic

variables and with a single purpose in mind (Muehlenhaus, 2013)) had to be gained.

The success of thematic maps hinge on the type of data being used, either categorical
(qualitative) or numerical (quantitative) data. Categorical data are data that can be
assigned to discrete, non-numerical classes. The different classes can be distinguished by
a range of graphic elements including shape, size and colour. Numerical data, however,
are concerned with the representation of rank /magnitude within a data set. Therefore,
qualitative maps show the spatial distribution or location of features while quantitative

maps are more focused on showing feature quantities (Dent et al., 2009). Regardless of
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the data type thematic maps highlight intent, assist with the display of spatial distribu-
tion and ease the decision-making process.

Contiguous United States Coal Ficlds

‘ ' AR EEEE ﬁﬂ—’

Oklahoma Tornadoes Reported
by County, 1950-1991

‘30-42
§ 19-28
" 718 [} 100 Miles

Source: United States Ceological Survey

Figure 2.30: Qualitative thematic map ex-

Figure 2.31: Quantitative thematic map
ample (Dent et al., 2009)

example (Dent et al., 2009)

Thematic maps are composed of three cartographic units a basemap which provides

spatial context to a thematic overlay which sets the purpose of the map and, lastly,
auxiliary map elements.

- []
.‘Géographit.:_"_f“-' ) [] ...
jorbasemapi. 1 o @

— S, P

Thematic

\ / overlay

Ancillary elements

Title
T e
[ ] \._ g
- 00
. ® 000
® @T /"
Legend
©1.000,000 (@)5,000,000 .10.000!000
Data Source

Figure 2.32: The components of a thematic representation (Dent et al., 2009)
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It has become very common for thematic maps to be produced using geographical in-
formation systems (GIS) therefore it is a tool that requires some consideration (Dent
et al., 2009).

2.5.5 Geographical Information Systems

3D geological modelling is a hot topic in a range of fields including the geosciences.
This is because of its ability to define the boundaries between geological strata, enhance
visibility and improve the accuracy of geological analysis (Zhu et al., 2012). To achieve
the creation of such a model, various professionals in the geographical field - from urban
developers to geologists - often look to GIS. GIS portray a simplified view of a complex
reality and encompass the interaction of people and machines for the collection, stor-
age, modelling, manipulation, management and dissemination of geographic information
(Worboys and Duckham, 2004).

Spatial data

N
7 N\

/7 N

G IS Knowledge

N 7
N 7
N Hardware 7

Figure 2.33: Visual depicting a simplified diagrammatic representation of GIS

GIS relies on four components: geographic data, human knowledge and experience, hard-
ware and software. The first is geographic data i.e. having data that describes some

phenomenon (Grinderud, 2009). This data can either be spatial (a geographic location
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e.g. residential address) or non-spatial (descriptive information about a geographic lo-
cation e.g. residence owner) (Jovanovi¢, 2016). With the data in hand, user knowledge
and experience determines the degree to which the available technology is exploited.
Here familiarity with both the system and the phenomena being represented yields the
best outcomes (Grinderud, 2009). Next, geographic information technologies hardware
and software are used to map, explore, process, interpret, share and store the spatial

and non-spatial data.

Of the entire system, the most important technological unit is undoubtedly the data
store (database). The database, a data container organised based on a data model and
used for the storage and retrieval of data (Worboys and Duckham, 2004), lies at the heart
of all GIS. Databases support various manipulation techniques including generalisation
and transformation, where the data is smoothed, projected and scaled. Therefore, the
development of a sound data model is key. To glean real spatial insights, analytical
techniques (such as volume, area and overlay operations) are applied to the manipulated
data set. These insights can then be displayed as maps, graphs, tables, reports and other
such presentation formats. It is thus, this technology (GIS) that will be leveraged to
display the outputs of this investigation — 3D cartographic maps.

At present, the tools available to geo-related professionals are confined to two-dimensional
(2D) spatial visualisation, which not only cause difficulty in displaying complex real-
world objects but also in processing and manipulating it. It was the inability of 2D
systems to achieve successful and true representations of the 3D world, that led to the
development of the 3D modelling technique — a technique used to directly transfer reality
into a 3D digital model. The success of 3D modelling is in its freedom of a fixed viewing

position.
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3 Method

3.1 Introduction

This chapter covers both the approach used to develop a 3D geological prototype and
describes the facets associated with it. As such, pertinent workflows and diagrams
are included to aid explanation. Overall, both qualitative and quantitative data and a
stepwise methodology were used to develop the algorithm that achieved the objectives of
the investigation (the development of an aesthetically appealing user comprehensible 3D
geological prototype). However, while the derived subsurface prototype was developed
by instantiating an algorithm that makes its own inferences from unclassified /unlabeled
input data; the adopted methodology took some geological understandings into account.
This was especially true during the feature imputation, normalisation, engineering and

selection stages of the data pre-processing.
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3.2 Research Approach

Data Collection

1

Prepreocessing

1 1

Feature Extraction

1 1

Classification

4

Post Processing

$

Decision

Figure 3.1: Image showing the approach used in the development of a 3D prototype
geomodel (adapted from Chopra et al. (2019)).

The machine perception process used is summarised in Figure 3.1 and has both a
‘bottom-up’ and ‘top-down’ flow to enable the response incorporation of later levels.
However, traditionally the process starts with the phenomena being observed. During
this stage the phenomena of interest is studied and observations are recorded. These
recordings often hinge on three characteristics: the nature of the phenomena, envi-
ronmental factors and sensor response settings and characteristics (Bychkovskiy et al.,
2003). Consequently, these characteristics have great impact on the breadth and qual-
ity of the data recorded. As the data used in this investigation was accessed and not
collected, these characteristics played a major role in the results obtained as well as in

the way the data was processed and used.

After data collection, and in adherence with the machine perception approach, data
exploration was the next step undertaken. During this step, knowledge was gained
about the data by learning about the information collected. As such, the input features
(i.e. well logs) available for predicting the target variable (i.e. the groups — that the
wells represented) were inspected. Besides this the data was explored to gain a better
understanding of its structure and quality by looking at the data format (i.e. numeri-

cal /categorial, organized /unorganised), completeness and distribution.
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With data exploration completed, the next step carried out was data pre-processing. In
pre-processing the data was cleaned, scaled and formatted to support noise reduction as
well as the development of the best prototype possible (Duda et al., 2012). Although
there are numerous other pre-processing activities, such as data encoding and binarising,
this investigation only focused on pre-processing activities that could be applied to
numerical data. This was because the data almost entirety consisted of only quantitative
data.

After the cleaned training data was split into two sets (a training and testing set) it was
then available for use in dimensionality reduction, visualisation and clustering machine
learning algorithms. In the application of these models the line between over and under
fitting had to be tread very carefully. This endeavour was carried out to ensure that the
prototype captured the complexity of the data as best as possible, without making it

unadaptable to new datasets.

The penultimate step of this process was post-processing and involved analysing and
evaluating the prototype. Here, the developed prototype was assessed by looking at
factors such as bias, run time and input feature variable importance. Although not
always the case, during this step GIS visualisation was implemented to facilitate the

decision-making process and highlight possible areas of geological exploration.

The process ended with the decision step, where conclusions were drawn based on the

output of the machine perception workflow.

3.3 Data Desrciption

The data used as part of this investigation was accessed and not collected. Thus, instead
of detailing the data collection process, the data source and the data itself will be
described.

The geological logs were obtained courtesy of the Petroleum Agency of South Africa
(PASA), an agency which promotes on- and off-shore oil and gas exploration and de-
velopment on behalf of South Africa’s government (Petroleum Agency of South Africa,
2013). PASA provided the geological logs for 3 wells surveyed over a period of 16 years
(2000 - 2016) and located off the Bredasdorp coast: F-04, F-06 and F-08 (see figure 3.2).
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Figure 3.2: Well locations

The information captured from the wells were commonly used logs (curves) such as
caliper logs, spontaneous potential logs, resistivity logs, and many other wireline logs.
The information also detailed well and parametric information, to provide environmental

context.

In total 439 .las files held the curves for all three wells; with 314 , 61 and 64 logs belonging
to wells F-04, F-06 and F-08 respectively. Despite there being over 140 curves in some
files only 15 of them (DEPT, GR, TNPH, NPHI, RHOB, LLD, MSFL, MRES, MTEM,
SP, CALS, BS, DT, DTLN and ITT) were used to develop the prototype. These 15 were
chosen because they are some of the most common, descriptive and useful features that

can be used in well log interpretation.
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3.4 Data Pre-Processing

3.4.1 Data Conversion

Discard
the file

A

Does the well
section have
anx,yand
z value?

Is the .las N
— O gy,

file blank?

Original .las Convert the .las Convert the .csv
well data files to csv files files to data frames

Figure 3.3: Workflow for exploring the data

The raw data for this machine learning endeavour was stored in las file format over
multiple files. Therefore, the first step in preprocessing the data involved getting the
raw data into the development environment in a readable and manageable format. This
was best achieved by reading all the las files for each well and then converting them into

comma-separated value (csv) files (as seen in Figure 3.4).

The converted csv files were then read into the development environment before being
converted into data frames. This format conversion was done because the tabular (row
and column based) data frames structured the data, promoted intuitive and versatile
data use and also supported data wrangling i.e. the transformation, cleaning and organ-
ising of raw data (Albon, 2018).

When performing the format conversion from .las to .csv files, a number of wells either

did not have well coordinates or were entirely blank (i.e. datasets that had header
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information but were otherwise completely empty). The presence of these quantities was
necessary for prototype development, therefore these incomplete files were discarded as
their use in the project would not have meaningfully added to the research but would

have detracted from it instead.

3.4.2 Data Exploration

. L Get statistics on the null entries
Get the x, y, z of the well . View and get statistics on each ]
. Map the well locations in each well dataframe and
sections well data frame . .
visualise them

Figure 3.4: Workflow for exploring the data

After the data was loaded in the correct format it was explored to garner a better under-
standing of data structure and content. First, the wells were mapped to gain a spatial
understanding of their locations. Although technically a step in the data transforma-
tion process, the well locations were obtained by converting the degree-minute-second

coordinates (dms) to decimal degrees (dd) and then displayed on a map.

Following the spatial exploration, samples from the data set were displayed. Samples,
instead of the entire data set, were viewed because the data set was reasonably large and
only a quick exploration of a few records was necessary to understand the data scheme.
As such, for each data frame a view of the first 5 rows was created and the dimensions
(number of columns and rows) were extracted. Also, as part of the data exploration
process, descriptive and summary statistics for all the numerical columns were obtained.
It was from these two data exploration processes that it was gathered that each column

corresponds to one well log while each row corresponds to one observation.

As missing values are ubiquitous in almost all machine learning problems, the data

exploration process wrapped up with visualisation of the null entries in the data.
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3.4.3 Feature Selection

Do the well Do the necessary
sections contain ML features (curves)
—> .
a DEPTH exist in the well

curve? sections?

\/

Yes

Create the curves in the well
section and set their values to
NULL

Discard
the section

Figure 3.5: Workflow for selecting features

Between the data integration activities (see subsection 3.4.4 below), the data was re-
composed to only reflect features (well logs/curves) that were important in well log
clustering. This was done by identifying and extracting conventional well log interpre-

tation curves from the data.

In this vein, only well logs that had depth (DEPT) curves were extracted and then
assessed for the presence of other pertinent well logs. As mentioned in section 3.3, aside
from DEPT the other curves extracted were GR, TNPH, NPHI, RHOB, LLD, MSFL,
MRES, MTEM, SP, CALS, BS, DT, DTLN and ITT. These logs were selected because
they are the most commonly captured curves during the well logging process and would,

therefore, be consistent measures to which to apply machine learning algorithms.

However, if a curve (excluding DEPT) did not exist for a record, an empty entry was
created. This allowed for data imputation later in the preprocessing workflow (see
subsection 3.4.5).
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3.4.4 Data Integration

Figure 3.6: Workflow for integrating the data sets

After a brief look at the condition of the data, and some pertinent descriptive and
summary statistics, the next steps involved concatenating the separate data frames into
a single unit. Concatenating the data supported meaningful information extraction and

analysis from a unified structure.

To achieve the desired data configuration, the data frames were put through a few
processes. The first involved sorting all the well sections by their start and stop depths,
and then separating the data into unique and non-unique depth ranges. If there were

multiple data frames with the same depth range, these files were grouped into one set.

The grouped data were then evaluated to ensure that each column (well log) was unique.
If the feature wasn’t unique, then one of the duplicated columns were dropped so that

curve singularity could be established.

Penultimately, the uniqueness of each depth range was reconfirmed before the unique
depth range data frames were combined into one data frame warehouse. After aggregat-
ing the data into one unified structure the next step in pre-processing (data cleaning)

could be carried out.
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3.4.5 Data Cleaning

Get statistics on the combined Get statistics on the null entries . Use the IQR to identify and
. Impute missing values . Plot the curves/well logs
data frame and visualise them remove outliers

Figure 3.7: Workflow for cleaning the data

Before cleaning the data, a fresh set of visual and descriptive statistics were obtained
for the aggregated data frame. This included the location, spread and quantity of null

entries in the data frame.

Following this, the main activities of data cleaning - missing data and outlier manage-
ment - were executed. These data inconsistencies had to be identified and addressed
because a consistent and complete data set was crucial for carrying out clustering and

making predictions.

There are two primary ways for handling missing values removing the data or imputing
it. In the data removal process rows or columns are deleted based on the percentage of
missing values they have. The deletion threshold is mutable but usually lies between
70-75% (Beyeler, 2017)). The following equation was used determine which features fell
above this threshold:

Nmissing

missing entries (%) =
n

In this equation, Nmising is the number of missing entries and n is the total number of
entries.

The advantage of removing null entries is that it ensures a usable data set and can be
carried out both quickly and easily. Despite these advantages, it can also result in the

loss of important features.

Therefore, to balance the data loss, data imputation was also carried out. With this
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approach statistical methods (e.g. mean, median, mode) or a modelled approach is used

to derive missing values.

For this investigation the modelled imputation approach was used because the values in
the data set correlate with each other and a modelled approach considers missing entries

as functions of all the other entries in a record (row) (Pedregosa et al., 2011).

With the missing values taken care of, the next activity in data cleaning - outlier man-
agement - was tackled. Here, points that were very large or small with respect to the

data distribution were removed. For each column (well log), this was achieved by
1. Sorting the data
2. Plotting a boxplot
3. Getting the upper and lower fences as well as the interquartile range (IQR)

4. Removing the data points that were either below Q1 — (1.5 x IQR) or above
Q3 + (1.5 x IQR) (see figure 3.8)

First Third
Quartile Median Quartile

N/

Minimum Maximum

Outliers

5 4 3 -2 1 0 1 2 3 a 5

Figure 3.8: Sample of outliers in a boxplot

Before the final step in the pre-processing workflow the cleaned data (up to this point)
was visualised. The visualisation carried out was a log (formation parameter) by depth
plot, which is the standard well log method of display. To the trained eye, these plots
can provide immediate lithological identification, porous and non-porous rock distinction

and potential pay zone recognition (Peveraro, 2006).
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3.4.6 Data Scaling

Scale the data

Figure 3.9: Workflow for scaling the data

The final step in the pre-processing workflow (data scaling) involved transforming the
features so that they used the same scale, magnitude and range. This was an essential
step in preparing the data for clustering because machine learning algorithms weigh
a feature’s importance based on its magnitude and therefore non-normalised readings

could greatly affect any predictions made.

The scalar used to transform the data was a Standard Scalar. This scalar was used
because it scales the data into a uniform unit over the entire data range, and in this
manner ensures that the appropriate effect of each feature is considered (Beyeler, 2017).
The Standard Scalar module works by first subtracting each value(x) from the mean (u)

of all the data and then dividing it by the variance of the data (o) i.e.

X — i

Xscaled =

At this stage the data was in a format suitable for the data sensitive machine learning
algorithms and could used in the next stage of the machine learning workflow - cluster-

ing.

3.5 Clustering

3.5.1 Train/Test Split

As mentioned in section 2.4.2 unsupervised machine learning is made up of two main

activities: unsupervised transformations and clustering.

However, before the pre-processed data could be applied to machine learning algorithms,

the data had to be separated into a testing and training set (see figure 3.11). The training
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set was created to provide the machine learning algorithms with data knowledge, upon

which predictions (on the test set) could be made.

The training and test set were created using the 80:20 train/test split ratio, where 80
percent of the data was used for training and the 20 percent was used for testing (see
figure 3.10) .

Training Set

|

Total number of entries

Figure 3.10: Train/Test split (Bronshtein, 2017)

Split the data into a train and Generate visual correlation
test set statistics

Figure 3.11: Workflow step for splitting  Figure 3.12: Workflow step for carrying
the data into a train and test the data visual data correlation

3.5.2 Data Correlation

Next, using the training set, two visual correlation matrices were created as a means to
better understand the linear relationships between each variable. The first correlation
plot was created by linearly relating all the features in the training set, getting the
correlation value between them, associating these values with a set colour range and

then plotting the colour associated correlations.

The second correlation matrix was created by plotting the features under investigation
in 2D space. The manner of representation was altered depending on whether it was
on the upper triangle, lower triangle or diagonal. On the lower triangle the features

relationships were represented as scatter plots i.e points on a 2D axis where the value
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of a feature determined its location. On the upper triangle features relationships were
represented as hexbins i.e. colour associated quantity counts in a binned 2D feature

space. Lastly, the diagonal represented feature relationships as histograms i.e. quantity

0
[_Tl'l’l'l

= EAEL)

counts in grouped ranges (see figure 3.13).
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Figure 3.13: From left to right to left examples of a scatter plot, histogram and hexbin
plot

3.5.3 Principle Component Analysis

With the preliminary activities completed, the first unsupervised exercise - PCA - was

conducted.

To determine the optimal number of dimensions to apply to the PCA algorithm, the
PCA algorithm was run iteratively for the total number of features (columns) in the data
frame, which is to say that the algorithm was run for a 2 component feature space up
to n component spaces. Running the algorithm this away allowed the minimum number

of components necessary for 95% data variance to be ascertained.

Using this value, the number of components that explain 95% of the data variance,
the PCA was run again and applied to the training data set. Application of the PCA
algorithm to the training data set reduced its dimensionality while maintaining as much

information as possible

Identify the optimal data
N P Determine the number of q
dimensionality, reduce the data e Apply the Kmeans clustering to
dimensionality (and visualise it) algorithm by employing visual [Carry out the KMeans clustering| Plot the curves/well logs with the test set and plot the curves/
and visualise the correlation g " DAY . and visualise it the cluster assignment well logs with the cluster
o P elbow, silhouette and Davies- 0
between the dimensionality assignment

reduced data Bouldin analysis

Figure 3.14: Workflow for performing PCA and KMeans Clustering
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3.5.4 KMeans clustering

Similarly to the process undergone during PCA, KMeans clustering involved working
out optimal algorithm parameters, running the algorithm for the optimal algorithm

parameters and applying the KMeans algorithm to the PCA-reduced data set.

In this case, the optimal algorithm parameters (the number of clusters) were determined
by using three evaluation metrics: the elbow method, the silhouette coefficient and the
Davies-Bouldin score. Assessment of these three metrics showed coincidence and pointed
to the number of clusters that should be used in the KMeans clustering algorithm.
Therefore the KMeans clustering was re-run for the optimal number of clusters and
applied to the PCA reduced data set.

The output of the KMeans process, a cluster label for each point, was then visualised
as a frequency count before it was mapped against both the PCA reduced data and the

entire training data set.

Next the KMeans algorithm was programmed to make cluster label predictions with the
test set as the input data set. These cluster assignments along with those for the test
set were then visualised alongside the log (formation parameter) by depth plots to wrap

up the well log interpretation process.

3.6 Data Post-Processing

3.6.1 Data Conversion

ﬁ_»_.
L

Convert the output dataframe to a csv file Import the data into a
gdb as a feature class

Figure 3.15: Workflow for converting the data for 3D modelling
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To visualise the clustered well logs as a prototyped 3D geomodel, the results of the
KMeans clustering had to be extracted and converted into a csv file - a GIS readable
format. This csv file was then read into two visualisation environments, one program-
matically created through python and the other created via a GIS application. In the
GIS application the csv file was read in as a feature class - a geographical layer - and
stored in a file geodatabase. It was on this geographical layer that an interpolated 3D

subsurface prototype was created.

During the conversion of the csv file into a feature class, the desired spatial reference was

set to a projected coordinated system as the interpolation tool requires this projection

type.

3.6.2 GIS prototyping

'd A
Interpolate surfaces between . _—
. ) . ! View the uncertainties and
Set the environmental Symbolise the points by their the wells based on cluster label . ) .
L statistical accuracies associated
characteristics of the 3D scene cluster label and edit their visualisation . . .
) with the interpolation
properties
. J

Figure 3.16: Workflow for 3D GIS prototyping

The final step in the development of a 3D geological prototype, prototyping of the GIS

model, consisted of four steps:
1. Setting up the appearance of the scene
2. Setting up the appearance of the features
3. Interpolating a surface between the points in the feature class
4. Viewing the uncertainties and accuracies around the interpolation

To kick off 3D rendering, topographical points for the southern tip of South Africa
were extracted from Google Earth and converted into readable text files. These points
were then imported into the 3D scene which was created with vedo (a pythonic library
that supports the visualisation of 3D objects). Before being scaled and coloured to

approximate relaity, the imported points were interpolated to get a topographical surface
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for the region. With this completed, the classified wells were imported into the scene
and their appearances were set. The symbology of the features were set to graduated

colours for each of the unique cluster labels.

To get a geo-statistical understanding of the uncertainty and accuracy of a surface inter-
polated between the class predicted wells, 3D surface interpolation was carried out using
the 3D Empirical Bayesian Kriging geo-statistical method in ArcGIS Pro (a powerful
GIS desktop application developed by Esri). To set up the 3D scene in the application,
a topobathy (a combination topographic and bathymetric) basemap was imported and
the vertical exaggeration of the surface was set to 10. This surface was also given a
transparent surface colour so that subsurface visualisation would be possible. Next the
projection of the scene was set to match that of the imported feature class before the
appearance of the feature class was set. Next the symbology of the feature class was set

to graduated colours for each of the unique cluster labels.

The optimal parameters for the surface interpolation were determined through the use
of the geo-statistical wizard, which allowed for parameter tuning and result simulation
before final application. Overall, the use of ArcGIS Pro allowed for regional class values

to be set between the wells based on the limited known class values.

Data post-processing concluded with the assessment of the automatically generated geo-

statistical uncertainty and accuracy of the interpolated surface.

3.7 Methodological Framework

The entire methodology used in the creation of the 3D geological prototype can be seen

in the image below:
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Figure 3.17: Complete methodology for the creation of a 3D geological prototype
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4 Results and Analysis

4.1 Introduction

Four of the six objectives of the investigation (listed below) were covered in the literature

review.
1. To present a geological understanding of the Bredasdorp Basin.
2. To demonstrate a clear understanding of what a well log is.
3. To determine the well logs that can be applied to 3D geological model development.

4. To identify and explain the fundamental characteristics that facilitate in user un-

derstanding and aesthetic appeal when working with cartographic representations.

This chapter presents the results of the 3D geological prototype creation process for
wells in the Bredasdorp Basin. Therefore, the chapter contains the results obtained to

achieve the last two objectives of the investigation (listed below).

1. To implement principal component analysis (PCA) and Kmeans clustering on well

log data and interpret the results.

2. To develop a prototype of a 3D geological map that supports aesthetic appeal and
user comprehension by adapting and combining the best practices within existing

3D modelling theory.

As such this chapter covers the results of data optimisation, data reduction (through
PCA), cluster selection (through unsupervised machine learning metrics) and geological
prototype analysis. The results are presented in the form of data frames, box plots,
correlation plots, unsupervised machine learning metric plots, and log plots. From these
results measures were extracted and comparisons were made to give an indication of how

the 3D geological prototyping fared.
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4.2 3D Geological Prototype Process Outline

To achieve the objectives set out in this investigation, and develop a robust solution,

both the theoretical and practical facets of the problem had to be considered. The

factors considered are outlined in Figure 4.1:

Theoretical component

Geological setting
component

1
1

Well log data 1
component :
1

1

1

Machine Learning H
component :

3D geological
cartographic model
component

theory

Map visualisation

‘ I

comprehension Map design theory

theory

! I i l

Eye-brain system

Gestalt theory Cartographic Colour theory Thematic map

design theory theory

1
1
1
1
1
1
1
1
1
1
1
1
Ma 1
" 1
1
1
1
1
1
1
1
1
1
1
1

Practical component

=

3D geological
prototype

Figure 4.1: Holistic approach applied in the development of a 3D geological model based

on well log data.
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4.3 Data Optimisation Results

A total of 439 .las files were read into the development environment and coverted into

.csv files (see figure 4.2).

Name Date modified Type Size
CMR_033_PDD28039PetroSA_tape3.csv Microsaft Excel Co.. 89 KB
|| CMR_033_PDD28039PetroSA_tape3.las LAS File 170 KB
CMR_033_PetroSA_tape2.csv Microsaft Excel Co.. 89 KB
|| CMR_033_PetroSA_tape2.las LAS File

F_04_SEl.csv
|1 F.04_SEllas
F_04_STA_079_DLl.csv
[] F.04_STA_079_DLllas

Microsoft Excel Co...

Microsoft Excel Co...

Figure 4.2: File coversion: .las to .csv

However, only 280 of them were not blank and were populated with x, y and z coordinate
information. Therefore 159 las files had to be discarded as unsuitable for clustering. The

kept data frames varied in size, features (well logs/curves) and thus statistics (see figure
4.3 and 4.4).

PFRA PONE PTEN PHUN PTHO .. SG_TEMP_COEF[0] SGPF 5QSW RTES RSSW SHOS CSHO TEMS RAT1

2.9600 20 10 10 a0 . 1.0177  925.7705 0.0 289.7407 0.0 0.0 00 2963983 622
2.0000 20 10 10 a0 . 1.0177  925.7616 0.0 289.7407 0.0 0.0 00 2963983 6217
2.0000 20 10 10 80 .. 1.0177 925.7642 0.0 289.7407 0.0 0.0 0.0 296.3983 631!
1.0400 20 10 10 80 . 1.0177  925.7596 00 289.7407 0.0 0.0 00 2963983 G351
1.3733 20 10 10 80 .. 1.0177  925.7597 0.0 289.7537 0.0 0.0 00 2964116 827
9.0000 30 00 10 a0 1.0177 925007 00 2903115 0o 00 00 2974881 658
9.0000 30 oo 10 a0 1.0177 9250051 00 29038115 0o oo 00 2974881 B63(
9.0000 30 00 10 a0 1.0177 9250039 00 29038115 00 0.0 00 2974881 B&3(
9.0000 30 L] 10 a0 1.0177 9250054 00 29038033 0o L] 00 2974797 658
§.2933 30 00 10 a0 1.0177 9250024 00 29038115 00 0.0 00 2974881 659!

4 3
PFRA PONE PTEN PHUN PTHO PTNO RDSW SCSN SG_PRES_COEF[D
count 1395000000 1395000000 13%5000000 1395000000 1395000000 1395000000 1395000000 1395.0 13950
mean 4209892 3812454 2 040076 5 489257 7218848 4895341 12806 135434 00 ot
std 2818743 3175189 1583349 3778084 0850090 0 480428 915233383 00 0t
min 0000000 0000000 0.000000 0.000000 2000000 4000000 9346 000000 00 -0
5% 0000000 0 000000 0000000 1.000000 & 000000 4000000 9346 000000 00 -0
25% 2000000 1.000000 1.000000 1.000000 7 000000 4 000000 12420 000000 00 -0
50% 4.000000 4.000000 2.000000 6.000000 7.000000 5.000000 12420.000000 0.0 0.0
7a% 7.000000 7.000000 2.100000 9.000000 &.000000 2.000000  13444.000000 0.0 -0.0
95% 2.000000 9.000000 7.000000 9.000000 &.000000 5.000000 13444.000000 0.0 0.0
max 9.000000 9.000000 9.000000 9.000000 &.000000 5.000000 134465.000000 0.0 -0

»

Figure 4.3: Overview of the log data for a large data set with 1395 records

75

http://etd.uwc.ac.za/



Chapter 4 : Results and Analysis

PFRA PONE PTEN PHUN PTHO .. SQSW RTES RSSW SHOS CSHO TEMS HTEN_SL MRES_SL MTEM_SL 2
8.0001 -0.0 -0.0 -0.0001 -0.0001 .. 0.0 50.4456 0.0 0.0 0.0 £3.4223  -43.9524 87.0997 60.7121
7.0000 00 00 0.0000 0.0000 00 60453 0.0 0.0 00 634298  -39.941  108.4431 60.6203
7.0000 0.0 00 0.0000 00000 . 00 60.453 0.0 00 0.0 83.4298 -3836M 109.4431 80.8314
7.0000 o0 00 00000 00000 00 60453 00 00 00 634293 -41346  108.4431 60.6314
7.0000 0.0 00 0.0000 00000 . 00 60.453 0.0 00 0.0 ©3.4298 -39.2326  109.3924 80.8314
7.0000 0.0 00 0.0000 00000 . 00 60.479 0.0 0.0 0.0 ©3.4561 -40.0267 107.5053 60.5489
7.0000 0.0 00 0.0000 00000 .. 0.0 604811 0.0 0.0 0.0 £3.4582 -41.7502  107.5053 60.5378
7.0000 00 00 0.0000 0.0000 00 60482 0.0 0.0 00 634591 38.7236 107.5053  60.5378
7.0000 0.0 00 0.0000 00000 .. 00 60.4382 0.0 0.0 0.0 63.4591 -426119  107.5053 60.5378
7.0000 o0 00 00000 00000 00 60482 00 00 00 634531 431704 107.5053 605378
4 L4

PFRA PONE PTEN PHUN PTHO PTNO RDSW SCSN SG_PRES_COEF[0] SG_TEMP_COEF[0] St

count 58 000000 580 580 58000000 58000000 580 58000000 550 560 58.0000

mean  7.091959 0.0 0.0 -0.000002 -0.000002 0.0 15491.982759 -1.0 0.0 1.0121
std 0255205 00 00 0000013 0000013 0.0 0131306 0.0 00 0.0000
min  6.849300 -0.0 -0.0 -0.000100 -0.000100 0.0 15491.000000 -1.0 0.0 1.0121
5%  7.000000 00 00 0000000 0000000 0.0 15492 000000 -1.0 00 1.0121

25%  7.000000 0.0 0.0 0.000000 0.000000 0.0 15492.000000 -1.0 0.0 1.0121

50%  7.000000 00 00 0000000 0000000 0.0 15492 000000 -1.0 00 1.0121

75%  7.000000 0.0 0.0  0.000000  0.000000 0.0 15452.000000  -1.0 0o 1.0121

95%  7.816900 0.0 0.0 0000000 0.000000 0.0 15492.000000 -1.0 0.0 1.0121

max 8000100 0.0 -0.0 0000000  0.000000 0.0 15482.000000  -1.0 00 1.0121

»

Figure 4.4: Overview

of the log data for a small data set with 58 records

Exploration of data provided a quick understanding of the logs (features) available for

use during the classification as well as the statistics (count, mean, standard deviation,

minimum, maximum and percentile ranks) of each feature.

From the retained wells, 198 data frames had a depth range that matched another, while

82 wells had a unique depth ranges. The data frames with the repeated depth ranges

can be explained as observations split over multiple files. Therefore, these data frames

were aggregated to form 161 unique depth ranges (including the 82 already unique depth

ranges) (see figure 4.5).

The length of all the wells (combined

[ TIME
a  72.0
1 73.0
2 74.0
3 5.8
4 76.0
81 153.8
82 154.0
83 155.0
84 156.8
85 157.8
FTHO
e 0.0
1 e.0
2 8.8
3 e.e
i aa

split wells and non-split wells): 161

TIME TDEP ETIM RFFD PFRA PONE PTEN
72loeo.e B363.0 @.2ee0 16.1833 6.9746 7.9709 0.99564
7ieeo.e B363.0 @.7373 16.1620 7.008@ S.e00@ 1.0000
74oe0.8 B363.0 1.7373 16.1620 7.798% G5.eede 1.0000
750e0.2 B363.0 2.7373 16.1620 B.008¢ 5.e008 1.0000
76000.@ 6363.0 3.7373 16.1620 B3.008¢ 5.0000 1.0000

153@e0.@ 6363.0 80.7373 16.1620 0.2022 ©.2000 2.0000
154220.2 6363.0 81.7373 16.1620 0.0022 ©.2008 2.0000
155280.2 6£363.0 82.7372 16.1620 0.0022 ©.2002 1.0000
156@80.8 6363.0 B83.7373 16.1620 0.0028 ©.2008 2.8000
157@e0.@ 6363.0 84.7373 16.1620 0.0082 ©.2008 2.0000
TEMS RAT1_S5L ATEl_SL WELL_START_DEPTH WELL_STOP_I

78.4874 -53.973% -53.973% 7.8

78.7768 -81.4757 -61.4797 7.8

78.7752 -54.1458 -54.1458 7.8

78.7795 -54.1342 -54.1342 7.8

7= 7RG _EA 13RI _E4 13283 T2 4

Figure 4.5: Header of the 1st data frame (out of 161 data

depth range
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Grouping the observations that had been split over multiple data frames, into 1 data
frame, resulted in duplicate columns. Therefore, for each data frame a unique set of
features (columns) was obtained. In some cases this action drastically reduced the

dimensionality of the data frame (see figures 4.6 and 4.7).

Dataframe with 188 columns.

The columns are:

Index(['DEPT', 'TDEP', 'TIME', 'BS', 'CS', 'CVEL', 'TENS', 'ETIM', 'MARK',
'ECGR", 'HTEN', 'MRES', 'DTEM', 'MTEM', 'AMTE', 'RGR’, 'GR', 'PFRADL',

Dataframe with 58 columns.
The columns are:

*PONE_DL*, 'PTEN_DL', 'PHUN DL', 'PTHO DL', 'HPGP_DL', "HPF DL', ['DEPT" 'TDEP' 'TIME' 'BS' "CS' "CVEL' 'TENS' 'ETIM' 'MARK' 'ECGR' "HTEN'
‘CSGP DL', 'SGP DL', 'DHV DL', *MSPE DL', 'PTNO DL', 'RAW RFPD DL®, MRES' 'DTEM' 'MTEM' 'AMTE' 'RGR' 'GR' 'PFRA_DL' 'PONE_DL' 'PTEN_DL
*CABLE_SLACK_DL®, 'RDSW_DL', 'RSGP_DL', 'SCSN_DL', 'SG_PRES_COEF_DL[®]', 'PHUN_DL' °"PTHO_DL' 'HPGP_DL' 'HPF_DL' 'CSGP_DL' 'SGP_DL' 'DMv_DL'
'SG_TEMP_COEF_DL[@]', 'SGPF_DL', 'SQSM_DL', 'RTES_DL', 'TEMS_DL', 'MSPE_DL' "PTHO_DL' 'RAW_RFPD_DL' "CABLE_SLACK DL 'RDSW DL’ 'RSGP_DL'
'RSSW_DL', 'SHOS_DL', 'CSHO DL', 'WELL_START_DEPTH', 'WELL_STOP_DEPTH', 'SCSN_DL' "SG_PRES_COEF_DL[@]" 'SG_TEMP_COEF_DL[8]' 'SGPF_DL' 'SQSH_DL'
'WELL_TOTAL_DEPTH', 'WELL_START_Y', 'WELL_START_X', 'WELL_NAVE', ‘RTES DL' "TEMS DL’ 'RS5W DL' °SHOS DL’ "CSHO DL® 'WELL START DEPTH'
'FILEPATH', 'DEPT_1°, 'TDEP_1', 'TIME_1', 'BS_1°, 'C5_1', 'CVEL 1, ‘WELL_STOP_DEPTH' 'WELL_TOTAL_DEPTH' 'WELL_START_Y' 'WELL_START_X'
‘TENS_1', 'ETIM_1°, 'MARK_1', 'PFRA_DL_1', 'PONE_DL_1°, 'PTEN_DL_1', WELL NAMET 'FILEPATH']

*PHUN_DL_1", 'PTHO_DL_1°, 'HPGP_DL_1', 'HPF_DL_1°, "CSGP_DL_1"
'sGP_DL_1', 'DMV_DL_1', 'MSPE_DL_1', 'PTHO_DL_1', 'RAW_RFPD_DL_1',
"CABLE_SLACK DL 1', 'RDSW DL_1', 'RSGP DL 1', 'SCSN DL 1°,

'SG_PRES COEF_DL[@]_1', 'SG_TEMP_COEF DL[@] 1', 'SGPF DL 1',
*SQSW_DL_1', 'RTES_DL_1°, 'TEMS DL_1', 'RSSW DL_1°, "SHOS DL 1°,
*CSHO_DL_1', 'ECGR_1', °"RGR_1', 'GR_1°, 'HTEN_1', 'MRES_1*, "DTEM_1°
*MTEM_1', "AMTE_1', 'WELL_START_DEPTH_1', 'WELL_STOP_DEPTH_1',
"WELL_TOTAL_DEPTH_1', 'WELL_START Y 1', 'WELL_START X 1', 'WELL_MAME_1',
'FILEPATH 1'1,

dtype="object")

Figure 4.6: Data frame with duplicate  Figure 4.7: Data frame with unique
columns columns

After examining the 161 unique depth range data frames for the presence of DEPT logs,

only 87 data frames passed and were kept, while the rest were removed (see figure 4.8).

The number of wells that contain depth ('DEPT') information: 87

[ DEPT TDEP TIME BS cs CVEL TENS ETIM MARK
@ 333.@ 399c60.@ @.0e0a 8.5 58083.4746 25.4177 5S60.@ a.eoaa a.e
1 333.5 40820.@ 359.7%@8 8.5 50085.4382 25.4428 526.4 @.3598 a.a
2 334.8 49880.@ 356.9219 8.5 4979.4658 25.2957 484.@ @a.7167 a.e
3 334.5 40148.2 376.8281 3.5 4994.7363 25.3733 487.48 1.8935 a.2
4 335.@ 4@2ee.e 352.8281 8.5 4993.3667 25.3663 526.@ 1.4463 a.e
132 39%.8 47886.@ 312.5608 8.5 5646.9832 28.6863 533.@ 44,1108 @.a
133 39%.5 47948.8 309.1719% 8.5 5658.7476 28.7858 520.8 44.41%2 a.e
134 4p@.2 438806.2 315.3281 8.5 5649.8262 28.7811 586.8 44,7345 a.a
135 4@8.5 48860.8 319.3758 8.5 5645.9556 28.6815 532.8 45.8539 a.e
136 4el.8 481206.8 322.1258 8.5 5643.0854 28.6665 502.8 45.3760 a.e
PFRA_DL ... CS5HO_DL RAT1 ATE1l WELL_START_DEPTH 1\

@ 2.8 ... 2.8 473.4245 473.4245 333.0

1 z.@ @.@ 473.7858% 473.7035 333.8

2 6.8 @.@ 473.4245 473.4245 333.8

3 a.8 @.8 45%.8981 459.8981 333.0

a aa A A A73 TAAC 4T3 Ianc 333 A

Figure 4.8: Header of the 1st data frame (out of 87 data frames) that had a DEPT curve

The data frames with DEPT information, were each assessed for the presence of the logs
necessary for clustering (i.e. GR, TNPH, NPHI, RHOB, LLD, etc.). If these logs were
not present, they were added as empty values (see figure 4.9). The number of necessary
(cluster) logs present in each data frame varied from three to twelve logs. Therefore, at

least three empty logs were added for each data frame. This action ensured that the
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data frames shared the same column dimension and could thus be concatenated into one

data frame based on their depths.

[ DEPT TDEP TIME BS s CWVEL TENS ETIM MARK
a 333.8 329960.@ .08 B.5 5283.4745 25.4177 GS60.@ @.ea0a a.a
1 333.5 49828.8 359.7508 8.5 5888.4382 25.4428 526.@ @.3598 a.a
2 334.9 40880.2 356.9219 8.5 4972.4658 25.2957 434.8 a.71e7 a.a
3 334.5 48l148.8 376.8281 8.5 4994.7388 25.3733 497.@ 1.8%35 a.a
4 335.8 46208.2 352.8281 8.5 4993.3667 25.3663 526.8@ 1.4483 a.a
132 39%.@ 47886.8 312.5088 6.5 5645.%2882 28.6863 533.8 44.11e0 a.a
132 39%.5 47940.8 309.1719 8.5 5650.7476 28.7858 520.8 44.41%2 a.a
134 4ee.e 45ee6.8 315.3281 8.5 5649.8262 28.7811 586.8 44,7345 a.a
135 4p@.5 4Be@s8.@ 319.375¢ 8.5 5645.9556 28.681% 532.8 45.8539 a.a
136 4el.@ 48126.8 322.1258 8.5 5643.8854 28.6665% 582.8 45.3760 a.a

PFRA_DL ... RHOB LLD MSFL MRES MTEM SP CALs DT DTLN ITT
a a.a MNone MNone MNone MNone Mone None Mone HNone MNone MNone
1 2.@ None MNone MNone None MNone MNone Mone HNone None Mone
2 6.8 ... HNone MNone MNone MNone MNone MNone MNone HNone MNone MNone
3 a.a MNone Mone Mone MNone MNone MNone MNone HNone None Mone
4 3.@ None MNone MNone None MNone None MNone HNone MNone MNone
132 None MNone MNone None MNone MNone Mone HNone None Mone
133 MNone MNone MNone MNone Mone None Mone HNone MNone MNone

135 None MNone MNone None MNone None MNone HNone MNone MNone

6.8
a.a ...
134 3.8 ... HNone MNone MNone MNone MNone MNone MNone HNone MNone MNone
7.8
138 a.a MNone Mone Mone MNone MNone MNone MNone HNone None Mone

Figure 4.9: Header and footer of the 1st data frame (out of 87 data frames) that has
had empty logs added to it

As stated above, dimension and feature matching (during the concatenation process)
resulted in empty (Null) values in the combined data frame (see figure 4.11). Therefore
only statistics on columns that were completely populated could be obtained (see figure
4.10)
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Distribution of TIME Distribution of TOEP.

e

Distribution of DEPT Distribution of TENS

Distribution of ETIM Distribution of GR
PRISF SIS, K &
o
Distribution of CVEL Distribution of MARK

ank
Distribution of BS Distribution of RGR
5 WESPE AR

o

rer
Distribution of ECGR
Distribution of CS.

Figure 4.10: Statistics of the non null features

Followinng this, the dataframes were filtered to only reflect the logs necessary for clus-

tering.
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The number of wells that will be used in the unsupervised machine learning: 295858

DEPT GR TNPH NPHI RHOB LLD MSFL MRES MTEM SP .. BS DT DTLN  ITT WELL_NAME WELL_START_X WELL_START

0 3330 44767 Nome None None Nene MNone MNene MNone MNone .. 85 None None None F-04 22540069 351165
1 3335 121675 MNome Nonme Nonme None MNone MNone MNone MNone 85 Nome None None F-04 22540969 35.1165
2 3340 176112 None None None Nome Neme MNone MNone Mome .. &5 Nome None None F-04 22540968 35.1165
3 3345 231788 MNome None Nonme None MNone MNone MNone MNone 85 Nome None None F-04 22540969 35.1165
4 3350 230626 None None Nene Nome Neme MNone MNone Mome .. &5 Nome None MNone F-04 22540968 35.1165
295853 117810  None None Nome None None None MNone None MNone . 85 None Nome 0.0705 F-03 23530358 35.1478
295854 117805 None MNone None MNone None MNone MNone None MNone 85 None None 00705 F-08 23530358 351478
295855 117800  None None Nome None None None MNone None MNone . 85 None Nome 0.0705 F-03 23530358 35.1478
295856 117795 None MNone Nome None Nonme MNone MNone  None MNone 85 Nome Nome 00705 F-08 23530358 351478
205857 117790  None None Nome None None None MNone None None .. 85 None Nome 0.0705 F-03 23530358 35.1478

295858 rows x 21 columns

Figure 4.11: Header and footer of the concatenated data frame

The missing values were addressed by running an imputation method (see figure 4.12)
before the data set was assessed for outliers (see figure 4.13). All the logs (except the
DEPT log) had values that fell outside of the range specified by the IQR rule. Therefore
these values were removed from the data set to ensure that the clustering process was

not biased by points unrepresentative of the data distribution (see figures 4.13 and 4.14).

DEPT GR LLD MSFL MRES MTEM sP CALS BS DT .. BS_was_missing DT_w:
0 101.4984 4476700  82.028997 3339578 0124287  181.033073  -401.499517 2590090 &5 68588014 00
1 1016508 12167500  77.677845 3433358 0148965  186.521586  -409.882348 21907095 85 69299596 00
2 1018032 17.611900  74.597592 3500617 0152277  190.407138  -415.816656  3.131512 &5 69.803325 00
3 1019556 23178800 71448036 3568876  0.155663 194380103  -421.884485 3360977 &5 70.318389 00
4 1021080 23062600  71.513691 3567510 0155592 194207784  -421757866 3356204 &5 70.307614 00
295853 12844.5000 -3429.446203 9430.099378 2859.689953 -81.996224 -3385.358189 18529.707223 2350.128992 &5 405326166 00
295854 12845.0000 -3420.446557 9430.099231 2869.690081 -81996224 -3385.357739 18529.707073 2350.129030 &5 405326091 00
295855 128455000 -3429.446911 9430099085 2869.690209 -81996224 -3385.357289 18529.706922 2350.129088 &5 405326017 00
295356 12345.0000 -3420.447264 0430093938 2569.690336 -31.996224 -3385.356830 18520706772 2350120106 55 405325043 o0
295857 12845.5000 -3420434436 0430091950 2869.691345 -81.996233 -3385.332222 18520.696710 2350120705 &5 405326706 o0

295858 rows x 29 columns

Figure 4.12: Data frame with imputed values
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R
oEPT
0 0
4000 2000 0 w0 o wo w0
T W0 400 000 8000 10600 12000
oFr
Pt or uo MSFL MRES uTEM s caLs Bs DT .. BS_was_missing
SS671 27166824  S35SS471 221309912 43543508 1033657 31613051 130187500  7.C0STI7 8494755 73883007 10
5574 27168348 53610055 22183014 44542421 103377 B1GOTE1 130425000 37906433 B494THD  TIEEITOL 10
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Figure 4.13: Box plots depicting the distribution of the data, with outlier records sum-
marised below the plot
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Following the outlier removal process, the distribution of the data was once again visu-

alised to get a sense of the data’s new spread (see figures 4.14).

DEPT &R Lo HSFL

0 W00 4000 600  BO0D 10000 12000 P B N ®
DEPT

MRES MTEH 5 caLs

Es oT DTLN T

Figure 4.14: Box plot depicting the distribution of the data, with the outliers removed

4.4 PCA Optimal Parameter Derivation

One of the key objectives in this research was deriving the best parameters possible for
the dimensionality reduction algorithm. This was of importance because this value had

a significant impact on the results of the clustering; and hence prototype creation.

83

http://etd.uwc.ac.za/



Chapter 4 : Results and Analysis
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Figure 4.15: Principal Component Analysis (PCA) number of components

Figure 4.15 depicts the optimal number of components for the dimensionality reduction
i.e. 6 components. This number was obtained from an iteratively run PCA process
and indicates that 6 components explain 95% of the data distribution. Which means
that the first 6 components describe the greatest variances within the data and can be
used to reconstruct a majority of it (thus making the remaining components redundant).
Therefore the optimal stretch and rotation from the 13 dimensional well log data set to

a 6 dimensional PCA data space has been found.

Here it is also important to note that the exercise of reducing the dimensionality of
the data (to that of only its necessary components), also automatically filtered out any
random noise that might have been embedded within the data. Also, standardising the
data points and removing and outliers was critical in determing the optimal number of

components as the dimensionality reduction algorithm is sensitive to these qualities.

Looking at 4.15, the explained varience ratio in the first principal component is at a
58% variance because it is a linear combination of all the features such that it accounts
for as much of the variance in the data as possible. Similar to the first component, the
second principal component is a linear combination of features such that as much of the

remaining variation as possible is accounted for. Thus bringing the total variation at
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the end of the second component to a 79% variance. The remaining four principal com-
ponents adhere to this same property, that is they are linear combinations that account
for as much of the remaining variation as possible. Therefore principal components 3,
4, 5 and 6 with variances of 6%, 6%, 3% and 2% respectively, bring the total variance
in the data to 96% - which is just over the set PCA threshold of 95%.

4.5 Principal Component Interpretation

The PCA process ensured that only the most descriptive and relevant portions of the
data was used to identify clusters, in addition to facilitating with faster visualisation

because of the reduced feature space.

Heat map of the 6 principal components on the welllog datasets

N Component 6 Component 5 Component 4 Component 3 Component 2 Component 1
N _ _ i DEPT -0,75 0,065 0,089 05 0,19 -0,099
GR -0,073 0,15 -0,02 -0,23 0,39 -0,1

LD 0,007 0,12 0,013 0,11 -0,43 0,071

MSFL 0,26 -0,36 0,063 0,28 0,23 -0,18

MRES -0,44 -0,48 -0,11 -0,48 0,15 0,12

l B MTEM -0,01 0,06 -0,012 0.2 0.3 -0,19

SP 0,015 0,056 0,077 017 -0,23 0,22

CALS 0,39 -0,26 0,11 0,071 0,41 -0,055

4 ‘ BS 0 0 0 0 0 0
N I DT 0,015 0,58 0,012 -043 0,27 0,014
DTLN 01 0,38 -0,036 0,14 0,026 -0,23

' T -0,019 -0,16 0,017 -0,15 -0,21 0,23
E GR_was_missing 0 0 0 0 0 0
LLD_was_missing -0,02 -0,039 -01 -0,062 -0,11 -0,27

A ! ! ! | MSFL_was_missing -0,02 -0,039 -01 -0,062 -0,11 -0,27
MRES_was_missing -0,014 -0,037 -01 -0,057 -0.1 -0,27

MTEM_was_missing -0,014 -0,037 -01 -0,057 -0.1 -0,27

SP_was_missing 0,02 -0,039 01 -0,062 0,11 -0,27

CALS_was_missing -0,02 -0,039 -01 -0,062 -0,11 -0,27

BS_was_missing 0 0 0 0 0 0

DT_was_missing -0,02 -0,039 -01 -0,062 -0,11 -0,27

DTLN_was_missing -0,02 -0,039 -01 -0,062 -011 -0,27

ITT_was_missing -0,02 -0,039 -01 -0,062 -0,11 -0,27

WELL_START_X -0,041 -0,027 0,66 -0,14 -0,094 -0,19

WELL_START_Y -0,041 -0,027 0,66 -0,14 -0,094 -0,19

Figure 4.17: Table showing the correla-
Figure 4.16: Heatmap showing the corre-  tions between the principal components
lations between the principal components  and the original variables with the signifi-
and the original variables. cant correlations highlighted in green.

To understand the features (well logs) described by each component, the principal com-
ponents were plotted against each of the origional features (see figure 4.16) . This action
allowed for features that were strongly correlated (either positively or negatively) with
each component to be seen and extracted. Before significant features for each compo-
nent could be extracted a correlation cutoff magnitude had to be set. The correlation
cutoff magnitude for this operation was set at values above or below 0.2. This value was
chosen by considering the range of the data and then selecting a correlation value that

allowed every feature to be described by a component at least once.
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Before delving further into the component interpretation, an important observation can
be made: The only features that weren’t described in any of the principal components
were BS and BS was missing. This is because BS and BS was missing returned
a correlation value of 0 for all the components. Therefore for this dataset, BS and
BS was_missing (and by extension borehole shape and size) did not have a relationship

with any of the components.

First Principal Component

The first principal component is correlated with twelve of the 25 features used in the well
log interpolation process. The twelve features are: SP, DTLN, I'TT, LLD was_missing,
MSFL _was missing, MRES was_ missing, MTEM was missing, SP_was_missing,
CALS_ was_missing, DT was_missing, DTLN was_missing and ITT was_missing.
The first principal component is thus a measure of well log data completeness, formation

transit time and shale presence.

The component is an inverse measure of data completeness because it describes the
most significant values for all the non-zero imputed features (i.e. LLD was missing,
MSFL was missing, MRES was missing, MTEM was missing, SP_was_missing,
CALS was_ missing, DT was missing, DTLN was missing and ITT was missing).
The correlation magnitude for all these features is -0.27, which means that a decrease in
these features results in an increase in the value of the first componenet. Additionally,
as these features vary together by the same amount, a change in one feature will cause

the other features in this set to change by an equivalent value.

The first component is also a formation transit measure because it gives record of two
of the three sonic log (DTLN and ITT) used in the investigation. Although, these logs
have an equal correlation magnitude they act in different directions, with DTLN having
a correlation value of -0.23 and ITT having a correlation value of 0.23. Therefore,
a decrease in DTLN will result in an increase in the first component value while the

opposite is true for the I'TT log.

SP accounts for the shale presence measure in component 1. With a value of 0.22 it
increases as the component increases. Along with ITT, SP varies positively while the

other features in the component vary in the opposite direction.
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Second Principal Component

In the second principal component, five of its features (GR, MSFL, MTEM, CALS and
DT) vary together positively, with correlation values of 0.39, 0.23, 0.3, 0.41 and 0.27
respectively. While three features (LLD, SP and ITT) vary together in the opposite
direction. These negatively correlated features have correlation values of -0.43, -0.23

and -0.21 respectively.

Most interestingly this component fully represents two feature above the set threshold.
These features are LLD (a resistivity measure) and MTEM (a measure of mud temper-

ature).

Third Principal Component

This component can be viewed as a measure of the quality of formation gamma radiation,
resistivity and transit time, as well as borehole depth. This is because DEPT, GR,
MSFL, MRES and DT have the highest above threshold values for the component. The
magnitude of each of these features is 0.5, -0.23, 0.28, -0.48 and -0.43 respectively.

GR, DT and MRES vary together, decreasing as the componenet increases, while an
increase in DEPT and MSFL causes the component to increase. The two resistivity
measures (MSFL and MRES) are inversely related to the componet. As such, the third

component increases as MSFL increases, but decreases as MRES increases.

Fourth Principal Component

The fourth principal component has a strong positive correlation with two of the origional
featuresi.e. the xy location of the well (i.e. WELL START X AND WELL START Y).
Therefore, the fourth principal component increases as they increase and can be viewed

as a locational measure.

For the investigation dataset, these two features vary together and their equal correlation
magnitudes (0.66 for both WELL START X AND WELL START Y) suggests that
a change in either of the features would produce an identically proportional change in

the principal component.

Fifth Principal Component

This component is described by five features: MSFL, MRES, CALS, DT and DTLN.
Although MSFL, DT and DTLN are entities in other components, the highest correlation
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values for these features are seen in this component (regardless of the direction). The
opposite, however, is true for CALS, where the component indicates the smallest above

threshold value for the feature.

In the case of MRES, the feature is equally represented in both this and the third compo-
nent, with a value of -048. This correlation value is indicative of the negative relationship
between a formation’s resistivity and the component’s value. So, as MRES decreases
the value of the component will increase. This pattern, of inverse proportionality is also
displayed by MSFL (another resistivity measure) with a value of -0.36, and CALS (a

borehole geometry measure) with a value of -0.26.

The only features that increases as the fifth principal component increases are the time

measures, with DT and DTLN having correlation values of 0.58 and 0.38 respectively.

Seeing that all the features in this component have already been accounted for by other

components, their addition adds redundancy to the results.

Sixth Principal Component

The sixth principal component is strongly correlated with four of the original well log
features. However, the features that make up this component vary in opposite directions.
That is for descreasing DEPT and MRES values the component increases. While, for
MSFL and CALS, their positive component correlation means that the value of the

component increases as they increase.

This component can be viewed as a measure of a formations resistivity as well as a

boreholes geometry and depth.

Furthermore, we see that the sixth principal component correlates most strongly with
the DEPT. In fact, it could be said that based on a correlation value of -0.75 that this

principal component is primarily a measure of DEPT.

4.6 Derivation and Interpretation of the Optimal KMeans

Parameters

Unlike in supervised learning, unsupervised machine learning algorithms do not have
have a ’teacher’ to learn from. And without domain knowledge, specifying the number

of clusters to partition the data into can be problematic. To overcome this downstream
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modelling, where the response of the KMeans model to a given number of clusters, was
employed. In this approach, the effect of 'k’ clusters on the performance of a model was

assessed by specifying and testing the KMeans model on a range of 'k’ clusters.

- The silhouette coefficient method
he elbow method for determining number of clusters for determining number of clusters
1600000 @ 0.58
1400000 0.56
L o ¢
& 1200000 g 054
£ 1000000 g 02
1 S 050
T B000O0 £
x 7 0.48 s} e ¢ o
BOOOD0 046 +
® o
400000 0.44
3 3 5 6 a g 2 3 4 5 6 7 i
Number of clustars Number of clusters

Figure 4.18: KMeans number omf clusters

Two downstream evaluation metrics were used to assess the performance of 'k’ clusters
on the KMeans model. The first metric used was the elbow method, as seen in plot 1
of figure 4.18. Using the sum squared distance (SSE) between the data points and their
assigned cluster centres, the elbow method indicated that the ideal number of clusters

could have been anywhere between 3 and 7 clusters.

To clarify this uncertainty, the second metric silhouette analysis was used. This metric
was calculated by getting the coefficient between the mean intra-cluster distance and the
mean nearest cluster distance. As the value for the silhouette coefficient ranges from 1 to
-1, 1 essentially indicates correct cluster assignment (a great distance between clusters),
-1 an incorrect cluster assignment (an incredibly small distance between clusters) and 0
a debatable cluster assignment (a small distance between clusters). The values returned
from this metric fell between 0.4 and 0.6, with the values peaking at around 0.56 before

falling again (as seen in the second plot of figure 4.18).

These values indicated a decent cluster assignment for all of the cluster numbers tested
(2-9), but that the best cluster separation would be achieved with 3 clusters with a
silhouette coefficient of about 0.56. Figure 4.19 is a visual depiction of the silhouette

metric and for 3 clusters shows that the about 60-70 percent of the data is clustered
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into the second cluster (labelled 1), while the other 30-40 % is split between clusters 1
(labelled 0) and 3 (labelled 2) (see figure 4.20).

Silhouette analysis for KMeans clustering on well log data with n_clusters = 2. Silhouette analysis for KMeans clustering on well log data with n_clusters = 3

The sihouste it

Clsterabel

Clustar abel

e sihoeta cosicien values

Silhouette analysis for KiMeans clustering on well log data with n_clusters = 4

dusters

he siouate plt for the

Clusar el

Clustar bl

Silhouette analysis for Kieans clustering on well log data with n_clusters = 6 Silhouette analysis for KiMeans clustering on well log data with n_clusters = 7

The shouette plot for th various clsters.

he visslzaion ofthe custersd data 3 The visuslzation of ths clustered data

Cluser el

1 of the clstered data
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Figure 4.19: Visual silhouette analysis
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Figure 4.20: KMeans Cluster frequency
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The log plots, with the associated cluster label (exluding the first plot), are presented

for the concated well data.
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Focusing on the 5000 - 12000 depth range for the GR plot, the distinction between
sandstones and shales can be seen. Additionally, the reservoir seals - impermeable rocks
that form barriers above and below reservoir sections - are identifiable (see figure 4.22).
However, the cluster plot for the interval does not match the lithological types indeicated

by the GR plot. The factors that most-likely affected the prototypes performance are
detailed in the section below.

"+"‘"‘"—‘4|\.a||\nw‘\ #"yf‘

Sandstone

Reservoir seal

Shale baseline .

« Clay

Reservoir seal
Sandstone

Reservoir seal

Figure 4.22: Image depicting the intervals of interset and sealing points the bottom
depth of the concatenated dataset.
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4.7 Geological Prototype Analysis

To interpolate a surface between the well logs, based on their assigned clusters, and to
complete prototype development the data set was imported into both a pythonic and
GIS environment. Visualisation of the points in 3D showed that the Data optimisation
had reduced the data set to only points in well F-04. This can be attributed to three

mailn reasons:

1. The number of data points wells F-06 and F-08 contributed to the combined data
set were minimal in comparison to the number contributed to by well F-04. This
unequal distribution could have skewed what the model determined as outliers and

removed the values for wells F-06 and F-08.

2. Most of the logs used in the creation of the model (i.e. all of the logs besides
DEPTH, TNPH, SP, BS, and ITT) were not present in wells F-06 and F-08.
Therefore, these logs (GR, NPHI, RHOB, LLD, MSFL, MRES, MTEM, CALS,
DT and DTLN) had to be added as empty values (see figures 4.23, 4.24 and 4.25).
This resulted in wells F-06 and F-08 contributing to most of the null values in the
data set (see figures 4.23, 4.24 and 4.25).

3. In addition to pertinent logs being missing, their values had to be imputed to get
pseudo data for those missing entries. These imputed, model approximated values,
could have been calculated as values lower or higher than they should have been
and were thus removed - by the model - because of the its classification of them

as outliers.
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Figure 4.23: Visual representation of the null values in well F-04
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Figure 4.24: Visual representation of Figure 4.25: Visual representation of
the null values in well F-06 the null values in well F-08

Since a surface could not be interpolated from only well F-04, pseudo data had to be
generated for what well F-06 and F-08 would have been in order to generate a 3D
geological prototype. This process was achieved by duplicating the results for well F-04

and offsetting them by variable amounts.
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The prototype geomodel developed (see figure 4.26 and fig: predictions) had the un-
certainties depicted in 4.28 at the same level. These uncertainties vary but generally

increase the further away the interpolated surface gets from the well.

/ / / / /

\ \ \ \ \
/ / / / /

\ \ \ ) \

\ Ty A | p—) ,
\ \ \

Figure 4.27: Interpolated surface based on the cluster labels of the input data set (slices
taken every 1000 m)
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Figure 4.28: Uncertainties associated with the interpolated surface (slices taken every
1000 m)

Delving deeper into how well the interpolated surface is predicted, the inclination of the
prediction plot shows there is a high correlation between the points. This can be seen
in how the line fitted through the data (seen in blue and described by the equation on

the bottom of the image) is close to the 1:1 auto-correlation grey line.
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Cross validation - Scene/EmpiricalBayesianKriging3D1

Predicted | Error | Standardized Error | Normal QQ Plot | Distribution

Measured

3

2818

2636

2455

2273

2,091

1.909

1727

1545

Predicted
* Value == Reference Line == Regression Line

Regression function: 1.06135227770913 * x + -0.126265301022164

Figure 4.29: Predicted vs Measured plot

The quantiles of the difference between the predicted and measured values from a stan-
dard normal distribution can be seen in the Normal QQ Plot graph below. Here the
close correation beweten the data points and the grey line show that the errors of the

predictions, from their true values, are mostly normally distributed.

Cross validation - Scene/EmpiricalBayesianKriging3D1

Predicted | Error | Standardized Error | Normal QQ Plot | Distribution

Standardized Error
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2.999 e
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23089 | . asiememt”
3583 -2866 -2.15 -1433 0717 0 0717 1433 215 2866 3.583
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*Value = Reference Line

Figure 4.30: Normal plot
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From the statistical outputs depicted in the image below (see figure 4.31), a couple

inferences can be made about the interpolated surface:

e As the root mean squared standardised errors are greater than 1, the variability
in the predictions are being underestimated. This is also confirmed by the average

standard errors being less than the root mean squared prediction errors.

e The inside 90% interval, shows that about 89 percent of points fall within a 90

percent cross validation confidence interval.

e The inside 95% interval, shows that about 96 percent of points can be found within

a 95 percent cross validation confidence interval.

e The average Continuous Ranked Probability Score (CRPS) of all points, at about
0.2 shows that there is a deviation between the predictive cumulative distribution

function and each observed data value

Count 2940

Average CRPS 0.236261039159851
Inside 90 Percent Interval 88.8095238095238

Inside 95 Percent Interval 95.7823129251701

Mean 0.00340673478586627
Root-Mean-Square 0.448963131069368
Mean Standardized 0.0134219781584346
Root-Mean-Square 1.01106154334783

Standardized
Average Standard Error 0.445190299193575

Figure 4.31: Interpolated surface summary statistics
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5 Conclusion

5.1 Introduction

3D visualisation in well log interpretation has only been around for a comparatively short
period of time in the history of the field, and it was only through major technological
advancements that it became a possibility. The relative infancy of the domain means
that it is a quickly becoming a burgeoning field of research with endless possibilities. To
contribute to knowledge in the field, this dissertation set out to build a 3D geological
prototype from well logs. The developed prototype had to apply well log interpretation
theory as well as vision and perception theory to promote user understanding and aes-
thetic appeal. These outcomes were achieved by investigating the study area, well logs,

unsupervised learning as well as GIS and the cartographic design process.

5.2 Application of the Research

The findings of this investigation detail the versatility and practicality of 3D well log
interpretation, which are tools that can be transferred to other fields and industries that

require data processing, classification and visualisation.

5.3 Implications of the Research

e The viewer focused prototype development (in terms of understanding and appeal)
could promote greater examination of the influence of design on perception and

appeal.

e The outcomes of this investigation highlights the applicability of machine learning

in geological data processing and visualisation.
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5.4

Recommendations and Future Work

Future research directions may focus on the following:

The application of pseudo-labelling in the clustering of well logs. By applying
this recommendation, the accuracy of the geological prototype would be improved

upon as the build is based on pseudo-labels of a certain degree of confidence.

The incorporation of a web component to both the processing and visualisation
of subsurface environments. This web component could consist of an interactive
website that supports users in carrying out machine learning processes on their

own data before displaying the rendered geological maps.

The development of this investigation’s machine learning workflow into a tool that
allows for parameter tuning in addition to well log and machine learning algorithm

selection.

Comparison of the different machine learning algorithms (as well as their hyper

parameters) on the clustering and visualisation of well logs.

The extension of the research to other subsurface datasets in the development
of a 3D geological prototype. Datasets such as seismic, fault and temperature

isosurface recordings.

100

http://etd.uwc.ac.za/



Bibliography

Albon, C. (2018), Machine learning with python cookbook: Practical solutions from pre-
processing to deep learning, " O’Reilly Media, Inc.".

Bailey, T. C. and Gatrell, A. C. (1995), Interactive spatial data analysis, Vol. 413,

Longman Scientific & Technical Essex.
Beyeler, M. (2017), Machine Learning for OpenCV, Packt Publishing Ltd.

Broad, D. (1990), Petroleum geology of gamtoos and algoa basins, in ‘Geological Society
of South Africa’, pp. 60-63.

Bronshtein, A. (2017), ‘Train/test split and cross validation in python’, Understanding

Machine Learning .

Brown, L. F. et al. (1995), Sequence Stratigraphy in Offshore South African Divergent
Basins: An Atlas on Ezploration for Cretaceous Lowstand Traps by Soekor (Pty) Ltd,
AAPG Studies in Geology 41, AAPG.

Bychkovskiy, V., Megerian, S., Estrin, D. and Potkonjak, M. (2003), A collaborative
approach to in-place sensor calibration, in ‘Information processing in sensor networks’,

Springer, pp. 301-316.

Chopra, R., England, A. and Alaudeen, M. (2019), Data Science with Python: Combine
Python with machine learning principles to discover hidden patterns in raw data, Packt

Publishing.
URL: https://books.google.co.za/books?id=RYmkDwAAQBAJ

Crampton, J. W. and Krygier, J. (2005), ‘An introduction to critical cartography’,
ACME: An International Journal for Critical Geographies 4(1), 11-33.

101

http://etd.uwc.ac.za/



Chapter 5 : BIBLIOGRAPHY

Delfiner, P., Peyret, O., Serra, O. et al. (1987), ‘Automatic determination of lithology
from well logs’, SPE formation evaluation 2(03), 303-310.

Dent, B., Torguson, J. and Hodler, T. (2009), Cartography: Thematic Map Design,
MecGraw-Hill Higher Education.
URL: https://books.google.co.za/books?id=HGounQAACAAJ

Developers, S. L. (2007), ‘Choosing the right estimator’, Awvailable at: https://scikit-

learn. org/stable/tutorial/machine_learning map .

Duda, R. O., Hart, P. E. and Stork, D. G. (2012), Pattern classification, John Wiley &

Sons.

Ford, J., Burke, H., Royse, K. and Mathers, S. (2008), ‘The 3d geology of london and
the thames gateway: a modern approach to geological surveying and its relevance in

the urban environment’.

Graham, L. (2008), ‘Gestalt theory in interactive media design’, Journal of Humanities
& Social Sciences 2(1).

Grinderud, K. (2009), GIS: The geographic language of our age, Tapir Academic Press.

Haeberling, C. (2005), Cartographic design principles for 3d maps—a contribution to
cartographic theory, in ‘Proceedings of ICA Congress Mapping Approaches into a
Changing World’.

Hubel, D. H. and Wiesel, T. N. (1979), ‘Brain mechanisms of vision’, Scientific American
241(3), 150-163.

Hunt, R. W. G. and Pointer, M. R. (2011), Measuring colour, John Wiley & Sons.

Hyne, N. (2014), Dictionary of petroleum exploration, drilling & production, PennWell

Corporation.

Ile, C. O. K. (2018), Cartographic designs for 3d maps: Enhancing affect. [Unpublished

honours dissertation].

Jahn, F., Cook, M. and Graham, M. (2008), Hydrocarbon exploration and production,

Elsevier.

102

http://etd.uwc.ac.za/



Chapter 5 : BIBLIOGRAPHY

Jones, R., McCalffrey, K., Clegg, P., Wilson, R., Holliman, N. S., Holdsworth, R., Imber,
J. and Waggott, S. (2009), ‘Integration of regional to outcrop digital data: 3d visual-

isation of multi-scale geological models’, Computers €& Geosciences 35(1), 4-18.

Jovanovi¢, V. (2016), ‘The application of gis and its components in tourism’, Yugoslav

Journal of Operations Research 18(2).

Judd, D. and G, W. (1975), Color in Business, Science, and Industry, John Wiley and

Sons.
Keates, J. S. (2014), Understanding maps, Routledge.

Kent, A. J. and Vujakovic, P. (2017), The Routledge Handbook of Mapping and Cartog-
raphy, Routledge.

Khana, S. and Dillay, G. (1986), ‘Seychelles: Petroleum potential of this indian ocean
paradise’, Oil Gas J.;(United States) 84(12).

Kraak, M.-J. (1993), ‘Three-dimensional map design’, The Cartographic Journal
30(2), 188-194.

Lidwell, W., Holden, K. and Butler, J. (2010), Universal principles of design, revised and
updated: 125 ways to enhance usability, influence perception, increase appeal, make

better design decisions, and teach through design, Rockport Pub.

Luthi, S. (2001), Geological well logs: Their use in reservoir modeling, Springer Science
& Business Media.

Malolepszy, Z. (2005), Three-dimensional geological maps, in ‘The Current Role of Ge-
ological Mapping in Geosciences’, Springer, pp. 215-224.

Masindi, R. (2016), ‘A review of a small production gas field in central bredasdorp basin,

based on new seismic, integrated with core and log data.’.

MecMillan, I., Brink, G., Broad, D. and Maier, J. (1997), Late mesozoic sedimentary
basins off the south coast of south africa, in ‘Sedimentary Basins of the World’, Vol. 3,
Elsevier, pp. 319-376.

Mennan, A. (2017), ‘Well log interpretation and 3d reservoir property modeling of maui-

b field, taranaki basin, new zealand’.

103

http://etd.uwc.ac.za/



Chapter 5 : BIBLIOGRAPHY

Monmonier, M. (2018), How to lie with maps, University of Chicago Press.

Muehlenhaus, I. (2013), Web cartography: map design for interactive and mobile devices,
CRC Press.

Miiller, A. C., Guido, S. et al. (2016), Introduction to machine learning with Python: a
quide for data scientists, " O'Reilly Media, Inc.".

Parsiegla, N., Stankiewicz, J., Gohl, K., Ryberg, T. and Uenzelmann-Neben, G. (2009),
‘Southern african continental margin: Dynamic processes of a transform margin’,

Geochemistry, Geophysics, Geosystems 10(3).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), ‘Scikit-learn: Machine learning
in Python’, Journal of Machine Learning Research 12, 2825—-2830.

Petroleum Agency of South Africa, P. (2003), South African exploration opportunities,

Information brochure. South African Agency for Promotion of Petroleum.

Petroleum Agency of South Africa, P. (2012), South African exploration opportunities,

Information brochure. South African Agency for Promotion of Petroleum.

Petroleum Agency of South Africa, P. (2013), ‘What is petroleum agency sa?’, Available

at: hitps://www.petroleumagencysa.com/ .

Peveraro, R. (2006), ‘Well log interpretation’, Petroskills-OGCI, Course Notes, Tulsa,
OK .

Rhind, D. W. and Taylor, D. F. (2013), Cartography Past, Present and Future: A
Festschrift for F.JJ Ormeling, Elsevier.

Roth, I. and Bruce, V. (1995), Perception and representation: Current issues, Sociology

and Social Change.

Rutledge, K., Ramroop, T., Boudreau, D., McDaniel, M., Teng, S., Sprout, E., Costa,
H., Hall, H. and Hunt, J. (2011), ‘basin’.
URL: https://www.nationalgeographic.orq/encyclopedia/basin/

Sarkar, T. (2020), ‘Clustering metrics better than the elbow method - kdnuggets’.
URL: https://www.kdnuggets.com/2019/10/ clustering-metrics-better-elbow-
method.html

104

http://etd.uwc.ac.za/



Chapter A5 : BIBLIOGRAPHY

Snowden, R., Snowden, R. J., Thompson, P. and Troscianko, T. (2012), Basic vision:

an introduction to visual perception, Oxford University Press.

Song, R., Qin, X., Tao, Y., Wang, X., Yin, B., Wang, Y. and Li, W. (2019), ‘A semi-
automatic method for 3d modeling and visualizing complex geological bodies’, Bulletin
of Engineering Geology and the Environment 78(3), 1371-1383.

Stevens, J., Smith, J. and Bianchetti, R. (2012), ‘Mapping our changing world’,
MacFachren AM, Peuquet DJ. Department of Geography, The Pennsylvania State

University, University Park .

Tankard, A. J., Martin, M., Eriksson, K., Hobday, D., Hunter, D. and Minter, W.
(2012), Crustal evolution of southern Africa: 3.8 billion years of earth history, Springer

Science & Business Media.
Tyner, J. A. (2010), ‘Principles of map design. new york’.

Van der Meulen, M., Doornenbal, J., Gunnink, J., Stafleu, J., Schokker, J., Vernes, R.,
Van Geer, F., Van Gessel, S., Van Heteren, S., Van Leeuwen, R. et al. (2013), ‘3d
geology in a 2d country: perspectives for geological surveying in the netherlands’,
Netherlands Journal of Geosciences 92(4), 217-241.

Van Rossum, G. et al. (2007), Python programming language., in ‘USENIX annual

technical conference’, Vol. 41, p. 36.

Worboys, M. and Duckham, M. (2004), GIS: A Computing Perspective, Second FEdition,
Taylor & Francis.
URL: https://books.google.co.za/books?id=x4e2IVV0u9qC

Zhu, L., Zhang, C., Li, M., Pan, X. and Sun, J. (2012), ‘Building 3d solid models of
sedimentary stratigraphic systems from borehole data: an automatic method and case

studies’, Engineering Geology 127, 1-13.

105

http://etd.uwc.ac.za/



	Declaration
	Acknowledgements
	Abstract
	List of figures
	List of tables
	Nomenclature
	Introduction
	Background
	Statement of the Problem
	Rationale of the Study
	Study Objectives
	Concept Clarification
	Scope
	Outline of Chapters

	Literature Review
	Introduction
	The Geological Setting
	Well Logs
	Spontaneous Potential
	Gamma Ray
	Resistivity
	Calipers
	Porosity

	Machine Learning
	Machine Learning Approaches
	Unsupervised Learning

	Cartographic Design Cycle
	Colour
	Eye Brain System
	Gestalt
	Thematic Maps
	Geographical Information Systems


	Method
	Introduction
	Research Approach
	Data Desrciption
	Data Pre-Processing
	Data Conversion
	Data Exploration
	Feature Selection
	Data Integration
	Data Cleaning
	Data Scaling

	Clustering
	Train/Test Split
	Data Correlation
	Principle Component Analysis
	KMeans clustering

	Data Post-Processing
	Data Conversion
	GIS prototyping

	Methodological Framework

	Results and Analysis
	Introduction
	3D Geological Prototype Process Outline
	Data Optimisation Results
	PCA Optimal Parameter Derivation
	Principal Component Interpretation
	Derivation and Interpretation of the Optimal KMeans Parameters
	Geological Prototype Analysis

	Conclusion
	Introduction
	Application of the Research
	Implications of the Research
	Recommendations and Future Work




