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ABSTRACT 

Background: Cephalometric landmark detection is important for accurate diagnosis and 

treatment planning. The most common cause of random errors, in both computer-aided 

cephalometry and manual cephalometric analysis, is inconsistency in landmark detection. 

These methods are time-consuming. As a result, attempts have been made to automate 

cephalometric analysis, to improve the accuracy and precision of landmark detection whilst 

also minimizing errors caused by clinician subjectivity. 

Aim: This mini-thesis aimed to determine the precision of two cephalometric landmark 

identification methods, namely an artificial intelligence programme (BoneFinder®) and a 

computer-assisted examination software (Dolphin ImagingTM). 

Methods: This was a retrospective quantitative cross-sectional analytical study. The dataset 

comprised of 409 cephalograms obtained from a South African population. 19 landmarks were 

selected and detected using a computer-assisted approach and an automatic approach. The x,y 

coordinates for each landmark per system was recorded and the Euclidean distance was 

calculated.   Precision was determined by calculating the standard deviation and standard error 

of the mean.  

Results: The primary researcher acted as the gold standard and was calibrated prior to data 

collection. The inter- and intra-reliability tests yielded acceptable results. There were variations 

present in several landmarks between Dolphin and BoneFinder; however, they were 

statistically insignificant. The computer-aided approach was very sensitive to several variables. 

Attempts were made to draw valid comparisons and conclusions.  

Conclusion: There was no significant difference between the artificial intelligence 

programme (BoneFinder®) and the computer-assisted human examination (Dolphin 

ImagingTM) regarding the precision of landmark detection.  
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Artificial intelligence: branch of computer science assigned to the development of computer 
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Wits Appraisal: Wits “appraisal of jaw disharmony” is a cephalometric analysis method 

whereby the severity or degree of anteroposterior jaw dysplasia is measured; it was established 
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1 

 

CHAPTER 1 : INTRODUCTION 

1.1 Background 

In orthodontics, the role of oral maxillofacial radiology is integral to both treatment planning 

and monitoring (Machado, 2015). Traditional radiographic imaging modalities have included 

panoramic views, cephalograms (cephs), occlusals, bitewings and periapicals. These two-

dimensional (2D) imaging techniques, whilst familiar to all, are not without limitations such as 

magnification, distortion and superimposition (Kapila et al., 2011; Agrawal et al., 2013; Noar 

and Pabari, 2013; Machado, 2015). Today, with the continuous advancement of imaging 

modalities; diagnosis and treatment planning has also been refined. The fairly recent 

introduction of cone-beam computed tomography (CBCT) to dentistry has transformed how 

orthodontists confirm diagnoses, develop and modify treatment plans, and monitor progress 

(Kapila et al., 2011; Machado, 2015).  

A game-changer has recently launched dental radiography into a new era. The use of artificial 

intelligence (AI) in dentistry is a concept that may border science-fiction. However, AI is a 

very genuine reality as it has now made its way from computer science through to health, 

dentistry and radiology (Durão et al., 2015; Tang et al., 2018; Tadinada, 2019).  

Despite the adolescence of AI, orthodontists and radiologists have shown keen interest in using 

AI to detect cephalometric landmarks accurately. A fresh enquiry is underway involving 

whether AI could replace the conventional method of human detection of cephalometric 

landmarks (Lindner et al., 2016; Tang et al., 2018; Park et al., 2019; Tadinada, 2019). 

1.2 Motivation 

The proposed research aimed to compare the precision of cephalometric landmark detection in 

automated systems and the conventional method of human examination. To the best of the 

researcher’s knowledge, the literature regarding the precision and accuracy of automated 

cephalometric landmark detection is limited and needs further exploration. Therefore, the 

proposed comparative study intended to explore and describe the comparison of automated 

cephalometric landmark detection with human examination within a South African context.  

According to the author’s knowledge, no studies have been done using a South African 

population. Therefore, knowledge on this topic is desirable. It is the hope that coming soon to 

orthodontic practices is fully automated cephalometric landmark detection programmes that 

will assist workflow and improve treatment planning with increased precision and accuracy.  
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CHAPTER 2 : LITERATURE REVIEW 

The following section presents the most recent literature, synthesizing the current knowledge 

and identifying the available methods with proven validity and relativity.  The most widely 

accepted definitions of key concepts of AI and cephalometric landmarks has also been 

ascertained. By reviewing the existing literature, a better understanding of AI in cephalometric 

landmark detection can be acquired.   

2.1 Field of Orthodontics 

The field of orthodontics, as defined by Houston (cited in Mitchell et al., 2011), is the “branch 

of dentistry concerned with the growth of the face, development of the dentition, and the 

prevention and correction of occlusal anomalies.” Malocclusion and craniofacial anomalies 

have a direct effect on a patient’s aesthetics, thus affecting the patient’s quality of life.  The 

field of orthodontics can either prevent or correct malocclusions to provide not only aesthetic 

advantages but can also boost self-esteem and improve function (American Academy of Oral 

and Maxillofacial Radiology, 2013).  

Comprehensive examination and records of the craniofacial complex are imperative during 

orthodontic treatment. Records that are routinely taken include impressions for plaster models, 

radiographs and photographs. Radiographic imaging in orthodontics is crucial in all phases of 

treatment, i.e. diagnosis, treatment planning, growth assessment, and progress assessment. 

Imaging is used to evaluate the occlusal relationships, the growth of the craniofacial skeleton 

and the soft tissues (American Academy of Oral and Maxillofacial Radiology, 2013). 

2.2 Cephalometry and its Applications 

The customary extra-oral radiographs that are frequently prescribed in all orthodontic cases 

have included orthopantomograms/ panoramic views and lateral cephalograms (also referred 

to as lateral skull views) (Cattaneo et al., 2008; Kapila et al., 2011; Abdelkarim, 2012; 

Machado, 2015; Pereira et al., 2015).  

Cephalometry is the study of craniofacial measurements in orthodontics and is used to assess 

the growth and development of the skull. Lateral cephalograms present the sagittal view of 

the skull, the soft tissue profile and dental structures. Traditional 2D cephalometry has been 

considered the “gold standard” diagnostic tool for evaluating craniofacial growth and skeletal 

deformities (Cattaneo et al., 2008; Kapila et al., 2011; Iannucci and Howerton, 2012).   

http://etd.uwc.ac.za/ 



 

3 

 

Cephalograms serve two functions: (1) it displays dentoalveolar and skeletal relationships that 

cannot be otherwise viewed, and (2) it enables accurate monitoring of treatment progress and 

outcomes by comparing pre-, peri- and post-operative lateral cephalograms. This substantiates 

why lateral cephalograms are required for patients who have seemingly normal dental and 

skeletal relationships.  Due to the years of usage, cephalometry in orthodontics has become 

second nature and many orthodontists have agreed that diagnosing and treating skeletal 

malocclusions devoid of cephalometric evaluation is a major blunder (Pereira et al., 2015).  

Cephalometric analyses identify specific anatomic landmarks, on both hard and soft tissues, 

that are joined to create lines and angles (de Lima Navarro et al., 2013) (Figure 2.1). 

Determining the spatial and angular relationship between these landmarks enables the 

classification of the skeletal and dentoalveolar relationship (Cattaneo et al., 2008; 

Manosudprasit et al., 2017). Many cephalometric analyses utilize anatomic landmarks such as 

nasion, sella turcica, and basion, to obtain baselines such as sella-nasion, basion-nasion, and 

porion-orbitale. Over the years, numerous studies about cephalometry in orthodontics have 

been carried out, and thus normal values for the linear and angular measurements have been 

defined and established (Sadowsky, 2006), allowing cephalometric measurements of patients 

to be compared to the normal for age, gender and population group (Sadowsky, 2006; Nervina, 

2012).  

Figure 2.1: Examples of cephalometric tracings 

The identification of specific anatomic landmarks, on both hard and soft tissues, are joined to create 

lines and angles. (A) Example of Manual tracing and (B) Digitized lateral cephalograms (de Lima 

Navarro et al., 2013) 
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2.3 Shortfalls of Human examination 

There are two ways to identify cephalometric landmarks: (1) manual approach and a (2) 

computer-aided approach (Leonardi et al., 2008; Miloro et al., 2014) (Figure 2.1). The oldest 

and most widely used method is the manual approach, involving placing a sheet of tracing 

paper over the cephalometric radiograph, tracing prominent features, identifying landmarks, 

and making linear and angular measurements between landmark locations using a ruler, 

compass, and protractor (Leonardi et al., 2008). The computerized cephalometric analysis can 

be done in two ways: (1) manual landmark detection, using a tracing of the radiograph to 

identify landmarks followed by the transfer of this tracing to a digitizer linked to a computer, 

or (2) direct digitization of the lateral cephalogram by scanning it into a computer and then 

locating landmarks on the monitor (Leonardi et al., 2008). This computer method is still 

afflicted by inconsistencies caused by possible subjectivity in landmark identification. The 

accuracy and reproducibility of landmark identification using these different methods were 

studied extensively. However, the direct digitization of radiographs is reported to be the most 

reproducible, and therefore, the most accurate method, although the difference between 

methods is small and not statistically significant (Miloro et al., 2014). 

The progression of manual cephalometry to computer assisted-cephalometric analysis is 

directed at improving the diagnostic value of cephalometric analysis by reducing any 

systematic or random errors and saving time. Random errors involve tracing, landmark 

identification and measurement errors. Identification errors are associated with landmark 

recognition. According to the literature, landmark detection is the major source of errors. The 

factors contributing to the detection error are examiner experience and subjectivity, landmark 

definition and interpretation, and the density and sharpness of the image (Ongkosuwito et al., 

2002).  

Computer-assisted cephalometric analysis eliminates the mechanical errors when drawing lines 

between landmarks as well as those made when measuring with a protractor. However, the 

variation in landmark detection is still an important source of random errors both in computer-

aided digital cephalometry and in manual cephalometric analysis. Both methods are time-

consuming, thus resulting in efforts to automate cephalometric analysis, improving the 

accuracy of landmark identification and reducing the errors due to clinicians’ subjectivity 

(Leonardi et al., 2008).  
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Inconsistent and inaccurate landmark identification may have a ripple effect potentially 

resulting in inaccurate diagnoses and treatment plans. Detection of certain anatomical 

landmarks, such as the porion (Po), condylion (Co), orbitale (Or), basion, gonion (Go), anterior 

nasal spine (ANS), posterior nasal spine (PNS), and lower inferior apex (LIA), may be more 

susceptible to error due to overlapping structures superimposed on the landmark and its 

location. Similarly, the quality of radiographic images can interfere with the identification of 

some landmarks, such as Po, Co, Or, ANS, point B, the pogonion (Pog), Go, and the glabella 

(Durão et al., 2015).  

Researchers have also proposed that the level of an examiner’s knowledge and his or her 

professional background play an important role in landmark identification (da Silveira and 

Silveira, 2006; Durão et al., 2015). As put forth by Halazonetis (1994), reducing errors related 

to landmark identification is difficult and calls for a thorough definition of the anatomic 

landmarks, detailed knowledge of radiographic anatomy and cephalograms of high quality. A 

study to compare the accuracy of orthodontists and maxillofacial radiologists in identifying 17 

commonly used cephalometric landmarks was carried out (Durão et al., 2015). Gnathion (Gn) 

point was the least reliable landmark for orthodontists, while the least reliable landmark for 

maxillofacial radiologists was orbitale (Or). The least consistent was the condylion (Co)-Gn 

plane. It was established that the most consistently identified landmark in both groups was the 

lower incisor border, while the least reliable points were Co, Gn, Or, and the anterior nasal 

spine. Overall, a lower level of reproducibility in the identification of cephalometric landmarks 

was observed among orthodontists (Durão et al., 2015). Whilst this study makes no mention of 

AI, it offers important insights into the potential use of AI in ensuring an accurate and 

reproducible method of cephalometric landmark detection.  

2.4 The Modern Solution: Artificial Intelligence in Radiology and Cephalometry 

Currently, in clinical practice, cephalometric landmarks are identified manually or semi-

automatically which can be tedious, time-consuming and prone to subjectivity within and 

across orthodontists and radiologists. Inter-examiner variations may be impacted by the levels 

of orthodontic training and experience, whilst intra-examiner consistency can be affected by 

time constraints and other commitments (Lindner et al., 2016) 

. 

Two-dimensional (2D) imaging techniques, whilst familiar to all, are not without limitations 

such as magnification, distortion and superimposition (Kapila et al., 2011; Agrawal et al., 
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2013; Machado, 2015). Yet traditional 2D cephalometry is still considered the “gold standard” 

diagnostic tool for evaluating craniofacial growth and skeletal deformities. CBCT-generated 

cephalograms have also grown in popularity and provided orthodontists with an anatomically 

representative visualization of the craniofacial complex. This is especially beneficial in 

complex cases involving clefts, craniofacial disorders, or orthognathic cases, where 

traditional 2D cephalograms are no longer considered optimum (Cattaneo et al., 2008; Kapila 

et al., 2011; Iannucci and Howerton, 2012). However, it is important to reiterate that whilst the 

radiation exposure of a CBCT scan has an advantageous lower dose than that of a multi-slice 

CT scan; it is not recommended for the common and ordinary orthodontic case (Cattaneo et al., 

2008; Kapila et al., 2011; Iannucci and Howerton, 2012). As such,  monitoring the progress of 

orthodontic treatment with CBCT would not be realistic or ethical as a large FOV (field of 

view) would be required and a greater amount of radiation exposure in comparison to the 2D 

counterpart (Scarfe and Farman, 2008; Gribel et al., 2011). In addition, de Oliveira et al. (2009) 

states that using 3D landmark identification is more time-consuming than using conventional 

2D cephalometry (cited in Shahidi et al., 2014).  

CBCT was considered the key to accurate landmark detection, but it is not viable for everyday 

orthodontic cases. Furthermore, despite the current use of CBCT scans, the ability to accurately 

identify cephalometric landmarks has not markedly improved over conventional lateral 

cephalograms (Miloro et al., 2014). What is trending now is something that orthodontists and 

radiologists could never have imagined. Today, the solution to determine accurate 

cephalometric landmark detection lies in artificial intelligence (Durão et al., 2015; Lindner et 

al., 2016; Tridandapani, 2018; Park et al., 2019; Hwang et al., 2019; Tadinada, 2019).  

2.5 An introduction to Artificial Intelligence (AI)  

AI is the “simulation of human intelligence processes by machines, especially computer 

systems”.  It has been defined as the branch of computer science involving the development of 

computer algorithms to achieve tasks conventionally associated with human intelligence 

(Deshmukh, 2018; Tang et al., 2018; Yaji et al., 2019). 

As in any field, there is specialized vocabulary related to it. In radiology, special terms are used 

to describe findings and communicate them to others in the field. As AI technology continues 

to grow, it is now predicted to become part of clinical workflow and radiologists will be 

expected to become familiar with the terminology and underlying concepts. The hierarchy of 

AI fields is demonstrated in Figure 2.2.  

http://etd.uwc.ac.za/ 



 

7 

 

 

Figure 2.2: Diagram illustrating the hierarchy of AI fields  

(Tang et al., 2018) 

AI is a broad term that designates a variety of fields and techniques. By using large groups of 

data and a numerous amount of pre-populated clinical scenarios processed by AI, machines 

can provide diagnostic suggestions, sometimes more accurately than humans. This is possible 

because of a remarkable branch of AI called “machine learning” (Tadinada, 2019). Machine 

learning (ML) refers to the “part of research on AI that seeks to provide knowledge to 

computers through data and observations without being explicitly programmed” (Tang et al., 

2018). Machine learning utilizes algorithms that can learn and make predictions on data and in 

doing so teaches computers to do what comes naturally to humans and animals—learn from 

experience and retain memories to construct a response or reaction. This is what most 

radiologists do by creating large memory banks of cases they have seen and applying their 

knowledge of pathophysiology to arrive at a differential diagnosis. Information is directly 

learnt from data using algorithms and computational methods. Just as a radiologist’s knowledge 

improves over time and with experience, the algorithms in ML adapt and improve their 

performance as the samples available for learning increases. The diagnostic output improves 

significantly and is therefore directly proportional to the number of interactions, experiences, 

and patient scenarios (Tadinada, 2019).  

Representation learning refers to a subtype of ML in which the computer algorithm learns the 

features required to classify the provided data.  Machine learning has also expanded to “deep 

learning,” inspired largely by the way the human nervous system works, albeit on a simpler 

scale (Tadinada, 2019). Deep learning refers to “a subfield of representation learning which 

relies on multiple processing layers (hence, deep) to learn representations of data with multiple 

layers of abstraction” (Tang et al., 2018; Yaji et al., 2019). It refers to learning through the use 
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of a cascade of layers that can teach the machine to make decisions based on data 

representations, as opposed to task-specific algorithms (Tadinada, 2019).  

2.6 Radiology and AI 

Radiology is a discipline that has always been at the forefront of technology (Dreyer and Allen, 

2018; Sana, 2018; Tadinada, 2019), yet is highly dependent on visual skills, retaining 

knowledge and images and consequently the formation of an individual’s memory banks. 

Radiologists are primarily known for their image interpretation skills (Tang et al., 2018), but a 

major concern is that identification and reporting has been subjective (Leonardi et al., 2008; 

Lindner et al., 2016; Rozylo-Kalinowska, 2018). The famous quote “the eye sees only what 

the mind is prepared to comprehend” is the best description of radiology (Rozylo-Kalinowska, 

2018). Without knowledge and experience, a radiologist is limited in what they can see, 

interpret and diagnose. Over time, as knowledge increases, radiologists gain experience in 

identifying structures and reporting becomes more refined and adept. Yet along with time 

passing by, routine also takes over accompanied by fatigue, ageing, and even professional 

burnout. This may negatively influence the quality of reporting. A question is now being raised 

as to whether AI can be the solution (Tang et al., 2018; Tridandapani, 2018).  

Whilst artificial intelligence was thought to be restricted to science-fiction, it has now become 

a reality, and radiology has welcomed this new novice.  Many have considered it to be a threat 

to humans, but to others, it can be seen as an enhancement of skills. The purpose of AI in 

radiology is not to replace radiologists but rather to aid radiologists and orthodontists in their 

daily routines (Tridandapani, 2018). This technology can improve the accuracy and efficiency 

of diagnostics resulting in a better patient outcome. AI has the potential to change the landscape 

of clinical practice and scientific research. Even more advantageous, is that it can assist in 

creating faster turnaround times in radiology practices (Rozylo-Kalinowska, 2018). 

Implementation of AI in radiology is expected to considerably transform clinical workflows 

and patient care.  Thus, a radiologist must be aware of AI and its applications in their field 

(Tang et al., 2018; Yaji et al., 2019).  

2.7 Automated Cephalometric Landmark Detection 

As mentioned previously, cephalometric tracing is the standard analysis tool for orthodontic 

diagnosis and treatment planning. Having discussed the importance of cephalometry and the 
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introduction of AI into radiology, the final section of this review addresses the use of automated 

cephalometric landmark detection.  

Automated cephalometric landmark identification would greatly assist in overcoming time 

constraints and inconsistencies within and across examiners (Ongkosuwito et al., 2002; Shahidi 

et al., 2014; Durão et al., 2015; Lindner et al., 2016). Lindner et al. (2016) proposed that if a 

computerized system was able to accurately locate cephalometric landmarks then this would 

have the potential to significantly improve the clinical workflow in orthodontic treatment. In 

an investigation into this topic, Lindner et al.  (2016) set out to develop and validate a fully 

automatic landmark annotation (FALA) system (BoneFinder®) for identifying cephalometric 

landmarks in lateral cephalograms. The IEEE (Institute of Electrical and Electronics Engineers) 

International Symposium on Biomedical Imaging (ISBI) Grand Challenges organized a 

challenge on automated landmark detection in cephalograms. Preliminary results of the 

approach by Linder et al. (2016) were presented at the 2015 ISBI Grand Challenge in Dental 

X-ray Image Analysis. Their system was awarded the first prize. Their methodology achieved 

an average point-to-point error of 1.66 mm compared to errors ranging from 1.85 mm to 2.85 

mm for all other techniques, demonstrating that their method performed significantly better 

than any of the other six techniques (p < 0.0001).  

The FALA system follows a machine learning approach. Digital cephalograms of 400 subjects 

(age range: 7–76 years) were used and all cephalograms had been manually traced by two 

experienced orthodontists with 19 cephalometric landmarks, and eight clinical parameters had 

been calculated for each subject. The system was evaluated via comparison to the manual 

tracings. The system achieved an average point-to-point error of 1.2 mm, and 84.7% of 

landmarks were located within the clinically accepted precision range of 2.0 mm. It is important 

to note that some researchers have suggested that landmark detection errors of less than 1 mm 

are clinically acceptable. It has also been proposed that errors of less than 2° or 2 mm would 

most likely not affect treatment (Miloro et al., 2014; Durão et al., 2015). 

The automatic landmark localization performance was within the inter-examiner variability 

between two clinical experts. The automatic classification achieved an average classification 

accuracy of 83.4% which was comparable to an experienced orthodontist. It was concluded 

that the FALA system accurately identifies cephalometric landmarks in lateral cephalograms, 

and has the potential to significantly improve the clinical workflow in orthodontic treatment 

(Lindner et al., 2016).  
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The newest deep learning technique based on the You-Only-Look-Once version 3 algorithm 

(YOLOv3) recently recognized 80 landmarks in the field of automated cephalometric landmark 

recognition, resulting in not only more accurate but also faster detecting performance (Park et 

al., 2019). The You-Only-Look-Once version 3 (YOLOv3) and Single Shot Multibox Detector 

(SSD) techniques were used to evaluate the accuracy and computational efficiency of two of 

the most recent deep-learning algorithms for automatic detection of cephalometric landmarks. 

Following the results, of this study, Hwang et al. (2019) set out to compare detection patterns 

of 80 cephalometric landmarks identified by an automated identification system (AI) based on 

a recently proposed deep-learning method, the You-Only-Look-Once version 3 (YOLOv3) 

with those identified by human examiners. With custom modifications, the YOLOv3 algorithm 

was executed and trained on 1028 cephalograms. A total of 80 landmarks, consisting of two 

vertical reference points and 46 hard tissue and 32 soft tissue landmarks, were identified. On 

the 283 test images, the same 80 landmarks were detected by human examiners and AI twice. 

Statistical analyses were performed to detect whether any significant differences between AI 

and human examiners existed. AI consistently recognized identical positions on each landmark 

in repeated testing, but human intra-examiner variability of repeated manual detections 

revealed a detection error of 0.97 -1.03 mm. Between AI and humans, the mean detection error 

was 1.46 - 2.97 mm. Human examiners had a mean difference of 1.50 - 1.48 mm. The detection 

errors of AI and human examiners were often less than 0.9 mm, which did not appear to be 

clinically significant. It was concluded that AI was comparably accurate in the identification 

of cephalometric landmarks. The AI system always detected identical positions, upon repeated 

trials. This holds the promise that AI might be a more reliable option for repeatedly identifying 

multiple cephalometric landmarks (Hwang et al., 2019). 

Without question, AI appears to have a bright future ahead as a potentially “game-changing” 

tool in healthcare. Whilst some fear still exists regarding this overwhelming, the trajectory at 

which AI is changing the field of radiology now warrants more research and insight. This has 

led to the Radiology Society of North America (RSNA) Congress in the USA to introduce a 

new journal called “Radiology: Artificial Intelligence”. It appears almost inevitable that AI will 

be introduced not only to the diagnostic side of radiology but also to assist in triaging 

radiological investigations. It is likely in the near future, AI will be introduced into radiology 

practice and included in radiology training curricula (Pakdemirli, 2019). 
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What these studies provide is an exciting opportunity to advance our knowledge in automated 

cephalometric detection. The findings of the proposed research could assist in more precise 

location of landmarks and making sure that automated cephalometric systems make their way 

into orthodontic and radiology practices very soon.  

2.8 Conclusion  

Radiology has always been at the forefront of technology (Dreyer and Allen, 2018; Sana, 2018; 

Tadinada, 2019): not only has this discipline mastered the digitization of medical imaging and 

picture archiving and communications systems (PACS), it has also made what may have 

seemed impossible 30 years ago a reality. Many radiologists have not seen film radiographs in 

over a decade, and there are those being trained who may wonder what that is. Today, studies 

with hundreds of images can be easily transmitted across a hospital, a city, a country, or across 

the world within seconds. According to Tridandapani (2018), if PACS was our end goal, then 

we have arrived, and there are no more evolutionary hurdles to cross in radiology. However, 

Tridandapani (2018)  reminds us that we should always be asking ourselves: “What do we do? 

How do we do it? Why do we do it? And how can we do it better?” The answer to these 

questions lies within AI. And it seems radiologists have opened our arms to this exciting tool 

(Sana, 2018; Tridandapani, 2018). It is time for orthodontists to do the same.  It is hoped that 

the profession will take an interest in and embrace the potential of AI (Sana, 2018). The 

literature on artificial intelligence in healthcare and particularly radiology has only just begun 

and the future of AI in this field looks promising. Whether it is for locating landmarks or 

detecting lesions, AI has the potential to detect what the human grayscale cannot discern 

(Tadinada, 2019). 

In the current section, the use of AI in cephalometric landmark detection was reviewed. The 

scope of the proposed research intends to provide a means for easy and precise detection of 

cephalometric landmarks within a South African context. This is to substantiate the benefit of 

implementing fully automated cephalometric landmark detection programmes in orthodontic 

practices that will ultimately assist with workflow and improve treatment planning with 

increased precision. The next chapter will discuss the aims and objectives of the study.  
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CHAPTER 3 : AIMS AND OBJECTIVES 

In the previous section, studies were compared showing cephalometric landmark detection 

methods and were found to be limited. This next section provides an overview of the aims and 

objectives of the current study.  

3.1 Aim 

This study aimed to determine the precision of two cephalometric landmark identification 

methods, namely an artificial intelligence programme (BoneFinder®) and a computer-assisted 

human examination software (Dolphin ImagingTM).  

3.2 Objectives 

1. To calibrate the main researcher by obtaining cephalometric landmark consensus from two 

experienced observers using Dolphin ImagingTM software  

2. To determine x, y coordinates for 19 cephalometric landmarks for the entire sample using 

computer-assisted human examination approach with Dolphin ImagingTM  

3. To determine x, y coordinates for the 19 cephalometric landmarks for the entire sample 

using artificial intelligence software (BoneFinder®) 

4. To calculate and compare the Euclidean distance between the computer-assisted/human 

plot and artificial intelligence plot thereby determining the precision  

5. To suggest an opinion on the use of AI in cephalometric analysis. 

3.3 Research Question 

What is the difference in precision between cephalometric landmark detection in artificial 

intelligence and computer-assisted human examination?  

3.4 Null Hypothesis 

There is no significant difference between the artificial intelligence programme (BoneFinder®) 

and the computer-assisted human examination (Dolphin ImagingTM) regarding the precision of 

landmark detection. 
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CHAPTER 4 : MATERIALS AND METHODS 

This chapter encompasses the methodology that was utilized in the current study. The 

programmes used for landmark detection were selected based on availability and cost.  

4.1 Research Design 

This was a retrospective quantitative cross- sectional analytical study.  

4.2 Study Population  

The study population consisted of retrospective cephalograms of patients who required 

orthodontic treatment and presented at the Diagnostics and Radiology Department of the 

Faculty of Dentistry, Tygerberg Oral Health Centre, University of the Western Cape, Cape Town, 

South Africa.  

4.3 Sample selection process and size 

Cephalograms were retrieved from current records (the study starting date – 03 April 2020) 

and were backdated until the study sample was reached. The sample size was confirmed by 

the statistician after a sample determination test was carried out. An initial search within the 

database resulted in a convenient sample frame total of 1818 cephalograms, obtained from 

January 2016 to March 2020. Only a single time point cephalogram (i.e., pre-operative) was 

selected from each patient, resulting in the exclusion of repeat cephalograms. The preliminary 

refinement resulted in the exclusion of 517 cephalograms. A second refinement led to a final 

sample size of 409 cephalograms, after strict adherence to the inclusion and exclusion criteria 

set below.  Since this was a retrospective study, no new cephalograms were specifically taken 

for the study and no patient was exposed to unnecessary radiation to fulfil the sample size 

requirements relating to the study. 

Utilizing systematic random sampling techniques, cephalograms were selected for the inter- 

and intra- reliability tests. With a final sample size of 409 (N), the required cohort for the 

inter-rater reliability tests was 10 (n). The interval size was calculated as N/n = 409/ 10 = 40. 

Therefore, every 40th cephalogram was selected to obtain the required 10 cephalograms for 

the inter-rater reliability tests. The inter-observer agreement was carried out by the primary 

researcher, an experienced chief radiologist and an experienced orthodontist. The chief 

radiologist was a dentist with a MSc degree in Oral and Maxillofacial Radiology and the Head 

of the Oral and Maxillofacial Radiology Department. An MSc degree in Oral and 
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Maxillofacial Radiology is the highest qualification in South Africa.  Both the chief 

radiologist and orthodontist had over 10 years of experience at the time of this study.  

The intra-reliability test was carried out on 40 randomly selected cephalograms. This was 

calculated by using 10% of the overall sample. In this case, every 10th cephalogram was 

selected (N/n = 409/10 = 40).  

4.4 Inclusion and Exclusion Criteria 

The criteria for selecting the cephalograms are summarized in Figure 4.1 and described below.  

4.4.1 Inclusion Criteria  

1. Cephalograms of patients requiring orthodontic treatment, but no evidence of current 

orthodontic treatment 

2. Cephalograms of patients with no missing permanent incisors or first molars 

3. Cephalograms of patients in occlusion  

4. High-resolution cephalograms of adequate diagnostic quality (sharp and free of 

distortion).  

5. Cephalograms of patients with no unerupted or supernumerary teeth overlying areas of 

interest 

6. Cephalograms with correct cephalostat placement 

4.4.2 Exclusion Criteria 

1. Cephalograms of patients with gross skeletal asymmetries and genetic anomalies in the 

area of study  

2. Cephalograms with distortion, artefacts and superimposed metal objects in the area of 

study 

3. Cephalograms without a cephalostat 
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Records identified through database 

searching:  

Cephalograms of patients between 

January 2016 to March 2020 

Assessed for eligibility N = 1818 

Excluded/Ineligible: n = 1409 

• Repeat cephalograms (only single time points 

cephalograms were included, i.e., pre-operative) 

• Patients with fixed orthodontic appliances 

• Magnification error 

• Patient positioning errors 

• Impacted teeth overlying ANS 

• Displaced central incisors 

• Missing mandibular 6’s 

• Patient not in occlusion 

• Surgical screws and plates overlying landmarks 

• Absence of cephalostat 

• Broken cephalostat 

 

 

Total eligible cephalograms: 

Final sample: N = 409 

 

Intra-rater Reliability Sample (10% of sample) 

10% of 409 = 40.9 ≈ 40 

N/n = 409 /10 = 40 

*Every 10th cephalogram was selected. 

Inter-rater Reliability Sample: 10 cephalograms 

N/n = 409 /40 = 10 

*Every 40th cephalogram was selected. 
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Figure 4.1: Flow Diagram depicting sample selection 

4.5 Instruments and machines 

All cephalograms were acquired in DICOM format with the Orthophos XG 5 machine 

(Dentsply Sirona, Germany) using Sidexis software (version 4.3). The image resolution was 

1280 x 1024 pixels. The retrospective cephalograms were acquired by positioning the patients 

in a cephalostat in a natural head position. The cephalometric modality has a left-sided arm 

with a digital line sensor with CCD technology. The active sensor area is 2.30 – 6.48 mm. The 

pixel size is 0.027 mm and the focus-sensor distance is 1 714 mm. The retrospective 

cephalograms were taken by either experienced and trained radiographers or undergraduate 

students at UWC Dental Faculty, Tygerberg, with compliance to the manufacturer's 

instructions. The radiographs were taken under routine daily conditions and the head positions 

were standardized with conventional cephalogram techniques using a cephalostat.  

The software used to conduct the computer-assisted human examination of cephalometric 

landmarks was Dolphin ImagingTM 11.95 Service Pack 2 (Patterson Dental Supply, 

Chatsworth, California, USA) (Appendix A).  

The artificial intelligence software, BoneFinder® (University of Manchester, England) is freely 

available online for research purposes and was downloaded from: 

https://www.click2go.umip.com/i/s_w/Biomedical_Software/Bonefinder.html. The license 

was activated on 4 October 2019. It was provided under licence no: MAN_002-3494548-v2-

UMIP Annual Research Licence C2G final 1.00. The licence was valid for 12 months and 

expired on 4 October 2020. Each cephalogram was uploaded to the programme, after which 

the landmarks were automatically determined. 

The landmark detection and inter- and intra- examiner reliability tests were accomplished using 

a Dell® Inspiron 3580 8th Generation laptop comprising of an Intel Core i7-8565U CPU @ 

1.80GHhz, 16GB RAM, 256GB Ultra-Fast SSD and 1TB Hard Drive, with a 15.6" FHD 1920 

x 1080 anti-glare display monitor, 64-bit operating system, x64-based processor, running 

Windows® 10 Home, © 2019 Microsoft Corporation. 

4.6 Data Collection 

The radiology database was reviewed and cephalograms meeting the inclusion criteria were 

selected for the analysis. Patient demographic information was recorded as part of the data 

collecting process with retrieval of cephalograms in DICOM and JPEG format.  

http://etd.uwc.ac.za/ 
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This study evaluated 19 landmarks chosen to represent common structures in cephalometric 

analyses like the Steiner Analysis and Wits Appraisal (Appendix B, C, D) (Lindner et al., 2016; 

Meric and Naoumova, 2020). Instructions to examiners were also provided (Appendix E).  

Cephalometric landmarks were identified on the conventional 2D digital cephalogram using 

human examination on computer-aided cephalometric analysis software, Dolphin ImagingTM, 

and the artificial intelligence programme, BoneFinder®.  

To prevent operator bias, the 19 landmarks were first identified on the conventional 2D digital 

cephalograms using the computer-aided cephalometric analysis software Dolphin ImagingTM.  

Technical support and training were provided to the researcher by a Dolphin ImagingTM 

technician.  

4.7 Landmark Detection  

This section explains how landmarks were detected using Dolphin ImagingTM and 

BoneFinder®
. The methods used in Dolphin ImagingTM (Appendix F) is presented first, 

followed by BoneFinder® (Appendix G).  

4.7.1 Landmark Detection using Dolphin ImagingTM 

The primary researcher uploaded the entire sample of cephalograms to Dolphin ImagingTM   

prior to landmark detection. A customized cephalometric analysis (named “19 Landmarks”) 

was created by the primary researcher to include the study’s intended landmarks (Appendix F). 

The ruler length was set at 30mm, to represent the real distance length of the fixed corner points 

of the nasion-guiding rod. This was done as there was no ruler used during the acquisition of 

the cephalograms.  

The mouse-driven cursor was used to detect landmarks. Its location was indicated by a red dot 

displayed on the monitor. The placement of the landmark could be adjusted until the operator 

was satisfied. To better visualize structures of interest, the researcher and inter-examiners could 

utilize any of the software's image-enhancing capabilities (e.g. magnifying glass). The 

definitions described in this study were used and not those that automatically appear in 

DolphinTM. When bilateral structures were involved, landmarks on the patients’ right side was 

only identified.  The right side was chosen because the right and left sides would be a repetitive 

estimate of a single landmark. All landmark identification sessions were conducted in a darkly 

lit room, with no interruptions, for as long as each examiner required. To ensure 
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standardization, the same operator (i.e. the primary researcher) detected all landmarks for the 

human approach. After being calibrated, the recordings made by the primary researcher were 

taken as the manual ground truth. 

4.7.2 Landmark Detection using BoneFinder® 

The above process, described in section 4.7.1, was repeated with the BoneFinder® software 

(Appendix G). The cephalogram was imported into the programme and the search button was 

selected to automatically detect the landmark points. Since automatic detection systems are 

deterministic i.e., the same image will yield the same result every time, the landmarks attained 

by BoneFinder® were then compared to the manual ground truth 

 

The x and y coordinates were extracted from each cephalogram from each programme (Dolphin 

ImagingTM and BoneFinder® and saved into an Excel sheet (Microsoft, Seattle, WA) (Appendix 

H and I). The coordinates were saved in millimetres (mm).  

4.8 Data Analysis 

The next section describes how the data was analysed and includes a description of validation 

and describes the statistical analysis.  

4.8.1 Criteria for Validation 

According to Hwang et al. (2019) “when it comes to a reliability measure when identifying a 

certain cephalometric landmark, there is no firm ‘ground truth’ or gold standard that can 

provide validation as to where the true location of the landmark is”.  

The landmarks were calibrated after inter- and intra-reliability tests were conducted, to reach a 

consensus landmark for each point. Using the Dolphin ImagingTM software for 2D 

cephalometric images, the same three examiners digitally identified the same landmarks.  This 

was conducted by the primary researcher (1st examiner), the chief radiologist (2nd examiner) 

and an experienced orthodontist (3rd examiner).  

The inter-examiner reliability tests were conducted using 10 random cephalograms. The intra-

reliability test was carried out on 40 randomly selected cephalograms. Both inter- and intra-

reliability tests were done at two intervals, 2 weeks apart.  

4.8.2 Statistical Analysis 

Data analysis was discussed with a statistician. Statistical tests were performed per the study 

by Katkar et al. (2013).  
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The Euclidean distance is “the square root of the sum of squared coordinate differences 

between the two selected landmark positions.” The Euclidean distance was calculated for each 

pair of observations (either the duplicate measures made by a single observer or the measures 

of the same landmark by the three different observers). The Euclidean distance is defined by 

                              

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥2 − 𝑥1)2 +(𝑦2 − 𝑦1)2,                               4.1  

where (x1, y1) and (x2, y2) are the coordinates of the two selected landmarks from each 

program. 

 

Descriptive statistics were determined for these Euclidean differences, and the differences in 

the distribution of Euclidean differences between the two software programs were evaluated 

using the Wilcoxon rank-sum test. R Core Team (2013) was used to compare the two methods 

(BoneFinder® and computer-assisted human examination with Dolphin ImagingTM) for each 

measurement. For the inter and intra-class correlation tests, the ICC reliability Calculator was 

used (Mangold International Germany, LabSuite version 2015, Program version 1.5.) All 

measurements were recorded onto a Microsoft Excel spreadsheet (Appendix H and I). 

The mean, standard deviation, minimum and maximum of the detection errors from AI and 

differences between the human examiners was determined. The mean difference between AI 

and human examination was also determined. Differences were considered significant at P < 

0.05.  

4.9 Ethical Considerations 

Permission was obtained from the Dean of the Faculty of Dentistry, and the Head of the 

Department of Diagnostics and Radiology to analyze and use the cephalograms taken at the 

faculty. Permission to access these records was requested via a letter to the Dean’s office and 

Head of the Department of Diagnostics and Radiology (Appendix J - L).  

 

The anonymity of all patients was ensured by allocating record numbers to the cephalograms 

and data files were deidentified by use of specialty software. Demographic data and file numbers 

were captured on a Microsoft Excel spreadsheet (Appendix M). This data will be kept by the 

primary researcher in a secured location via a password protected PC. The electronic data will 

be stored for 5 years and thereafter deleted. The results obtained from the study will be used 

for educational and research purposes only. No conflict of interest has been reported.  
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A record number was assigned to the file number as well as other personally identifiable patient 

information (names, dates of birth, gender, etc.). On the data collection form, only the former 

was noted. The data identifying the record number of a patient remained anonymous. This 

number was used for record purposes only and was only kept for the duration of the study. 

Patient records were stored on a password-protected computer and printed information was 

stored in a locked office. Cephalograms investigated in this study were de-identified and did 

not jeopardise patient identity. Backup of the data was conducted periodically using the 

primary researcher’s student account on Google Drive and a portable external hard drive, WD 

Elements Portable 4TB USB 3.0. 

 

This mini-thesis proposal was presented to the Faculty of Dentistry of the University of the Western 

Cape Research Committee and was approved by the Senate Research Ethics Committee (approval 

number:  BM19/10/3) of the University of the Western Cape (Appendix N). 

 

4.10 Budget 

This was a self-funded research project. 

  

4.11 Research Deliverables 

The proposed research intended to provide a means for easy and precise detection of 

cephalometric landmarks within a South African context. This was to substantiate the benefit 

of implementing fully automated cephalometric landmark detection programmes in 

orthodontic practices that will ultimately assist with workflow and improve treatment 

planning with increased precision. 

4.12 Summary 

This chapter summarized the methodology that was utilized in the current study. The computer-

assisted human examination approach was carried out using Dolphin ImagingTM software. The 

AI program used was BoneFinder®.  The next section displays the results attained during the 

study.  
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CHAPTER 5 : RESULTS 

Having described the methodology of the study, the results are now presented in the sections 

below.  

5.1 Demographic Data 

Of the final cohort, 57.94% (n = 237) were female and 42.05%  (n = 172) were male. The mean 

age of the patients was 15.78 years; with the minimum age being 7 years and the maximum 

age being 40 years. The median age was 14 years (Table 5.1).  

The race of the patients was as follows: 0.49% were Asians, 9.78% were Black, 59.66% were 

Coloured/ Mixed race; 2.68% were Indians, 16.14% were Caucasian. 11.24% of cases did not 

have the race specified on the medical record data (Table 5.2).  

 

Table 5.1: Study Population Characteristics 

Maximum Age 40 

Minimum Age 7 

Mean Age 15.78 

Median Age 14 

Gender Ratio (Male: Female) 1: 1.38 

*Age in years 

 

Table 5.2: Study Demographics 

 

5.2 Intra-examiner Assessment 

To ensure the reliability of the measurements, the primary researcher carried out intra-

reliability tests twice with a two-week interval. No more than 20 cephalograms were examined 

in a single session to minimize errors due to examiner fatigue. 10 cephalograms were viewed 

 No of records Percentage (%) Race No of Females No of Males 

 2 0.49 Asians 1 1 

 40 9.78 Black 25 15 

 244 59.66 Coloured 124 120 

 11 2.68 Indians 10 1 

 66 16.14 Caucasian 49 17 

 46 11.24 Not specified 28 18 

Total 409 100 - 237 172 
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in the morning and 10 in the afternoon resulting in two sessions a day. Therefore, landmarking 

using the computer-assisted human examination approach with Dolphin was carried out in 

twenty-one sessions. These results were assessed with Pearson's product-moment correlation r 

two-sided, true correlation ≠0 (non-zero) with their p-values to test for association between the 

paired samples for each landmark from interval 1 versus interval 2.  The results are summarized 

in Table 5.3. 

Table 5.3: Intra-examiner tests - Interval 1 versus Interval 2 

Landmark X co-ordinate Y co-ordinate 

1 r= 0.973360 

p-value: 2.88 

r= 0.944142 

p-value: 2.00 

2 r= 0.931418 

p-value: 7.99 

r= 0.985348 

p-value: 5.01 

3 r= 0.877407 

p-value: 2.32 

r= 0.955702 

p-value: 3.02 

4 r= 0.914413 

p-value: 4.15 

r= 0.800422 

p-value: 9.59 

5 r= 0.899096 

p-value: 7.65 

r= 0.951787 

p-value: 1.40 

6 r= 0.960221 

p-value: 4.29 

r= 0.934161 

p-value: 3.84 

7 r= 0.969004 

p-value: 4.57 

r= 0.914998 

p-value: 3.68 

8 r= 0.970427 

p-value: 1.94 

r= 0.921161 

p-value: 9.64 

9 r= 0.971155 

p-value: 1.23 

r= 0.923846 

p-value: 5.19 

10 r= 0.965452 

p-value: 3.30 

r= 0.839113 

p-value: 2.5 

11 r= 0.954903 

p-value: 4.18 

r= 0.947352 

p-value: 6.87 

12 r= 0.954973 

p-value: 4.06 

r= 0.952481 

p-value: 1.07 

13 r= 0.925082 

p-value: 3.88 

r= 0.931686 

p-value: 7.45 

14 r= 0.936034 

p-value: 2.29 

r= 0.942169 

p-value: 3.73 

15 r= 0.924609 

p-value: 4.34 

r= 0.963968 

p-value: 7.10 

16 r= 0.966329 

p-value: 2.06 

r= 0.930671 

p-value: 9.70 

17 r= 0.939087 

p-value: 9.51 

r= 0.884146 

p-value: 8.65 

18 r= 0.875362 

p-value: 3.09 

r= 0.962968 

p-value: 1.16 

19 r= 0.975206 

p-value: 7.75 

r= 0.873159 

p-value: 4.20 
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5.3 Inter-examiner Assessment  

To control for bias and adequate calibration of the primary researcher (examiner 1), landmark 

detection was carried out by two other individuals: (1) the chief radiologist (examiner 2) and 

(2) an experienced orthodontist (examiner 3) (Figure 5.1 and 5.2).  

 

 

 

 

Figure 5.2: Superimposition of 3 cephalograms  

Left - Superimposed cephalograms with all 3 observers’ landmarks for the same patient. Red- primary observer, 

green – chief radiologist, blue – orthodontist, yellow -coinciding landmarks.  Zoomed in image depicting 

proximity of landmarks. 

Figure 5.1: Example of identical cephalogram used for the inter-examiner reliabilty test. 

 

Landmark detection by the primary researcher (red); chief radiologist (green) and an orthodontist (blue) using 

DolphinTM software. 
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The inter-reliability tests were carried out on 10 cephalograms twice with a two-week interval. 

The primary researcher acted as the control value for the inter-class correlation. The ICC was 

calculated by Equation 5.1. 

 

                                     𝑰𝑪𝑪 =   
𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕

𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕 + 𝒖𝒏𝒘𝒂𝒏𝒕𝒆𝒅 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆
                                                    𝟓. 1  

 

For each coordinate (x and y) of each landmark, 2 mm was taken to be acceptable to represent 

concurrence of examiner 2 (chief radiologist) and 3 (orthodontist) with the primary researcher. 

When the ICC was determined with 4mm, the ICC had an agreement level of 1 (good) for all 

x and y coordinates across all landmarks.  

The results of the inter-examiner correlation tests are summarized in tables 5.4 and 5.5: 

Table 5.4: Inter-examiner correlation at Interval 1 

Interval 1 

Landmark X co-ordinate Y-co-ordinate 

1 0.9 0.8 

2 0.76 0.93 

3 0.66 0.8 

4 0.83 0.66 

5 0.7 0.7 

6 0.8 0.63 

7 0.73 0.63 

8 0.63 0.6 

9 0.66 0.66 

10 0.86 0.56 

11 0.7 0.63 

12 0.66 0.7 

13 0.66 0.6 

14 0.7 0.63 

15 0.7 0.66 

16 0.6 0.6 

17 0.66 0.56 

18 0.66 0.73 

19 0.9 0.73 

Average  0.72 0.67 
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Table 5.5: Inter-examiner correlation at Interval 2 

Interval 2 

Landmark X co-ordinate Y-co-ordinate 

1 0.9 0.86 

2 0.86 0.9 

3 0.76 0.76 

4 0.73 0.7 

5 0.86 0.53 

6 0.7 0.6 

7 0.8 0.56 

8 0.63 0.7 

9 0.76 0.53 

10 0.7 0.6 

11 0.6 0.66 

12 0.66 0.53 

13 0.66 0.76 

14 0.66 0.6 

15 0.63 0.76 

16 0.7 0.5 

17 0.73 0.73 

18 0.7 0.66 

19 0.93 0.53 

Average  0.73 0.65 

 

The agreement of the examiners between interval 1 and 2 was determined as well with the ICC 

and represented in Table 5.6, which indicates that between interval 1 and 2 the mean x and y 

values for the cephalogram as a whole was essentially the same. This indicates that the 

examiners 2 and 3 between the two intervals were reliable in their assessment of the landmarks 

in relation to the primary researcher with a moderate agreement for the Y value and a good 

agreement for value x. 

Table 5.6: Agreement between examiner at Interval 1 and 2 

Interval X value Y value 

1 0.72 0.67 

2 0.73 0.65 

 Good Moderate 

 

5.4 Euclidean distance measurements 

 

19 landmarks were identified in each of the 409 cephalograms by the primary researcher using 

two methods [(409 cephalograms x 19 landmarks) x 2 methods = 15542 landmarks]. Each 
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landmark generated two coordinate values (x,y), thus a total of 31084 values were generated 

(15 542 x 2). 

The mean value of the 409 cephalogram records was determined with the Standard Deviation 

(SD) for each landmark (L1 - L19) (Table 5.7). The literature states that if a landmark is within 

a distance of 2-4mm from the “control landmark” then the method is acceptable (Katkar et al., 

2013; Lindner et al., 2016; Wang et al., 2016; Park et al., 2019; Moon et al., 2020). However, 

a surprisingly large discrepancy was noted. This was concerning as visually the landmarks’ 

locations between the two systems were in close approximation (Figure 5.3). Overall, the 

greatest Euclidean distances were observed for L18 (anterior nasal spine) (the highest being 

92.43mm). The next largest Euclidean distance was observed for L16 (soft tissue pognion) 

(87.63) followed by L2 (nasion) (52.36). The smallest Euclidean distance was observed for 

L15 (subnasale). The minimum range of Euclidean distances was 2.34mm and the maximum 

range was 76.01mm.  

Table 5.7: Mean value of the Euclidean distances for the various Cephalometric landmarks 

Landmark Mean ±SD ±SEM Min Max 

L1 6.19 2.02 0.0998 1,99 17,9 

L2 8.75 3.76 0.1859 0,58 52,36 

L3 9.64 3.16 0.1562 1,46 21,39 

L4 8.98 3.41 0.1686 0,57 23,37 

L5 10.57 3.75 0.1854 1,92 24,24 

L6 10.84 4.15 0.2052 1,11 29,92 

L7 10.43 4.09 0.2022 2,07 29,23 

L8 11.29 4.38 0.2165 1,05 29,08 

L9 11.28 4.25 0.2101 1,96 28,87 

L10 10.43 5.81 0.2872 0,42 31,22 

L11 10.2 3.93 0.1943 1,76 24,93 

L12 10.59 4.08 0.2017 1,14 26,92 

L13 9.65 4.1 0.2027 1,61 27,28 

L14 11.09 4.69 0.2319 0,81 42,3 

L15 9.6 4.62 0.2284 0,22 54,47 

L16 10.66 5.4 0.2670 2,56 87,63 

L17 7.66 3.71 0.1834 0,50 50,06 

L18 8.88 5.55 0.2744 1,09 92,43 

L19 7.10 2.65 0.1310 0,54 16,42 

SD = Standard Deviation; SEM = Standard error of the mean  
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Figure 5.3: Superimposed image comparing the landmarks detected by BoneFinder® (green) and human 

examination using DolphinTM (red) 

 

Precision is usually expressed in terms of standard deviation or standard error of 

a range (difference between the highest and the lowest result) (ISO, 1998; Menditto, Patriarca 

and Magnusson, 2007). Less precision is reflected by a larger standard deviation. This 

investigation was carried out using repeatability conditions, where independent test results 

were obtained with the same method on identical test items in the same location by the same 

operator using the same within short intervals of time (ISO, 1998). According to Juneja et al., 

(2021), to quantitatively assess the results of the different landmark identification techniques, 

two important metrics must be used in the literature; namely, mean error and standard deviation 

of mean error.   The Standard Deviation (SD) represents the difference ±value from the mean 
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Euclidean value of each landmark of the 409 cephalograms. The standard error of the mean 

(SEM) values from the Euclidean distances is represented in Table 5.7.  The SEM represents 

the precision of how close the value is to the whole sample size of 409 cephs for each landmark. 

The small values of the SEM illustrate that the SEM is closely related with a narrow distribution 

to the SD. A small value of mean error represents acceptable landmark detection results in the 

case of cephalometric analysis. 

Table 5.8: Standard Deviation and Standard Error of the Mean for xy coordinates for each method 

Landmark BoneFinder® 

x 

DolphinTM 

x 

BoneFinder® 

y 

DolphinTM 

y  
SD SEM SD SEM SD SEM SD SEM 

1 5.6 0.2769 5.5 0.2720 6.11 0.3021 5.72 0.2828 

2 7.86 0.3887 7.35 0.3634 9.67 0.4782 9.2 0.4549 

3 5.97 0.2952 6.19 0.3061 8.17 0.4040 7.93 0.3921 

4 5.66 0.2799 3.77 0.1864 6.63 0.3278 5.22 0.2581 

5 6.77 0.3348 7.16 0.3540 9.08 0.4490 8.9 0.4401 

6 9.12 0.4510 8.91 0.4406 9.88 0.4885 10.22 0.5053 

7 10.4 0.5142 10.04 0.4964 10.49 0.5187 10.53 0.5207 

8 10.83 0.5355 10.17 0.5029 10.29 0.5088 10.37 0.5128 

9 10.69 0.5286 10.22 0.5053 10.48 0.5182 10.54 0.5212 

10 8.72 0.4312 6.52 0.3224 9.09 0.4495 6.9 0.3412 

11 8.25 0.4079 8.45 0.4178 9.54 0.4717 9.68 0.4786 

12 8.48 0.4193 8.63 0.4267 9.71 0.4801 9.88 0.4885 

13 7.81 0.3862 8.13 0.4020 10.5 0.5192 10.57 0.5227 

14 8.78 0.4341 8.9 0.4401 10.46 0.5172 10.53 0.5207 

15 7.36 0.3639 7.96 0.3936 9.96 0.4925 10.52 0.5202 

16 9.98 0.4935 10.49 0.5187 10.97 0.5424 10.95 0.5414 

17 5.68 0.2809 6.12 0.3026 6.31 0.3120 6.2 0.3066 

18 6.62 0.3273 8.34 0.4124 9.27 0.4584 9.25 0.4574 

19 5.99 0.2962 4.74 0.2344 6.32 0.3125 5.23 0.2586 
SD = standard deviation; SEM = standard error of the mean 

 

5.5 Wilcoxon Rank Test and Bland-Altman Plots 

Dolphin ImagingTM versus BoneFinder® landmark statistical analysis was calculated at a 95% 

confidence interval with the Wilcoxon-signed rank test. It was conducted with continuity 

correction for x, y coordinates and the Euclidean distance of the 409 cephalograms.  

The Wilcoxon-signed rank test is applied in situations of paired data when the paired data 

samples come from a population that cannot be assumed to be normally distributed due to the 
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variation of facial profiles and anatomical variation. Since the Wilcoxon sign test is a non-para-

continuous-level test, it does not require a special distribution of the dependent variable in the 

analysis (von Fraunhofer, 2010). 

The p-value represents a significant difference that BoneFinder® is different from DolphinTM 

if p < 0.05. If p > 0.05 then there is no significant difference. Indicating the truth of the null 

hypothesis, there was no significant difference between BoneFinder® and DolphinTM (Table 

5.9).  

The y coordinate of L2 (Nasion) in BoneFinder® was presented with a significant difference 

(p = 0.000031) concerning the y-values obtained in DolphinTM (Table 5.9). There was no 

significant difference between the x nor y-values of BoneFinder® compared to DolphinTM  

(p > 0.05). 

Some cephalometric landmarks are more reliable in either the vertical or horizontal plane (Chen 

et al., 2000). Large variations of the x-coordinates and y-coordinates occurred. L8 (Menton)  

and L5 (Point A) were the most reliable landmarks in the horizontal plane (p-value of  9.19 and 

8.08 respectively). L9 (Orbitale) was the most reliable in the vertical plane (p-value of 8.66). 

L2 in the vertical dimension (y-value) presented with the significant difference (p = 0.000031).  

Table 5.9: Comparison between vertical and horizontal planes for both Dolphin ImagingTM and BoneFinder® 

Landmark X value for DolphinTM vs  

BoneFinder® 

Y value for DolphinTM vs  

BoneFinder® 

L1 p-value : 4.64 p-value : 7.21 

L2 p-value : 1.11 p-value : 0.000031 

L3 p-value : 1.03 p-value : 8.51 

L4 p-value : 1.04 p-value : 3.50 

L5 p-value : 8.08 p-value : 7.28 

L6 p-value : 4.73 p-value : 1.92 

L7 p-value : 4.00 p-value : 2.66 

L8 p-value : 9.19 p-value : 6.46 

L9 p-value : 4.46 p-value : 8.66 

L10 p-value : 2.11 p-value : 5.71 

L11 p-value : 5.72 p-value : 3.73 

L12 p-value : 4.24 p-value : 2.97 

L13 p-value : 4.39 p-value : 1.49 

L14 p-value : 7.07 p-value : 2.56 

L15 p-value : 1.65 p-value : 2.61 

L16 p-value : 1.18 p-value : 2.86 

L17 p-value : 8.47 p-value : 4.18 

L18 p-value : 1.21 p-value : 3.42 

L19 p-value : 1.07 p-value : 5.73 
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The difficulty in locating the landmarks Orbitale, Porion, and Articulare and Gonion may be 

the result of a blurred image due to the superimposition of adjacent or bilateral structures 

(McClure et al., 2005). The landmark Orbitale was more inaccurate in the horizontal plane, 

most likely the result of the left and right images of the orbits being more closely aligned 

vertically than anteroposteriorly (p-value of the x-axis = 1.03, p-value for the y-axis = 8.51). 

Alternatively, Articulare was more imprecise vertically (p-value of the x-axis = 1.07, p-value 

for the y-axis = 5.73) since this landmark is defined as the most posterior point on the neck of 

the vertically oriented condyle. The convoluted route of the ear canals creates multiple 

vertically overlapping radiolucent structures, which was likely a contributory factor in the 

imprecision of identification of Porion in the vertical direction (p-value of the x-axis = 1.04, p-

value for the y-axis = 3.50). The uncertainty in the detection of Gonion may result from the 

difficulty of establishing this landmark’s position along a curved anatomical structure (SD = 

5.81).  

5.6 Bland Altman 

The Bland-Altman analysis was carried out on L2 (Nasion) due to the y-value statistical 

analysis with the Wilcoxon showing a significant difference between DolphinTM and 

BoneFinder®. L16 (Soft tissue pogonion) was also analysed for comparison. 

The interpretation of the Bland Altman was limited to Landmarks 1 (Sella), 2 (Nasion) and 16 

(Soft tissue pogonion) (Figures 5.4 – 5.6). These landmarks were identified based on the 

smallest Euclidean distance of Landmark 1 that was the smallest (6.19), and landmark 16 a soft 

tissue landmark (10.66), where the Wilcoxon statistical significance for the y-coordinates of 

Landmark 2 was determined to be p = 0.000031. 
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Figure 5.4: Bland-Altman graph for Landmark 1, x value 

 

 

Figure 5.5: Bland-Altman graph for Landmark 1, y value 
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Figure 5.6: Bland-Altman graph for Landmark x value 

 

 

 

Figure 5.7: Bland-Altman graph for Landmark 2, y value 
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Figure 5.8: Bland-Altman graph for Landmark 1, x value 

 

 

Figure 5.9: Bland-Altman graph for Landmark 1, y value 
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The comparison and interpretation of the Bland Altman graphs provided insight to why 

Landmark 2; y-values presented with a significant difference. As per Table 5.9, the number of 

y-coordinates above the Upper Limit of Agreement is 99. This large number of coordinates 

resulted in the statistical significance noted for the y-coordinate for Landmark 2. The ULOA 

(upper limit of agreement) was 6.402 and the difference in the coordinates between 

BoneFinder® and DolphinTM was up to 28.98. BoneFinder® had much larger y-coordinates for 

Landmark 2, resulting in the result that there is a significant difference with the Wilcoxon test 

for the BoneFinder® coordinates in relation to DolphinTM.  

Table 5.10: The distribution of the difference values for the various landmarks,   

based on the x and y coordinates 

 

 

When looking at the race of a sample of 10 cephalograms that were around the bias, and the 

large values above the ULOA respectively; the majority was of mixed ethnicity. L2 (Nasion) 

is usually a reliable landmark as it is situated at a well-defined anatomic point at the intersection 

of frontal and nasal bones. This region was dark and on our sample of radiographs. 

Furthermore, patient tilting also resulted in the landmark requiring interpretation.  

5.7 Incidental Findings 

Attempts to explain the large discrepancy in the Euclidean distances were actively sought but 

were not the primary reason for the study. These attempts included: 

Landmark 

and co-

ordinate 

Below 

LLOA 

Between 

LLOA and 

ULOA 

Above 

ULOA 

Around the 

bias line not 

crossing any 

limits – 

Above Bias 

line 

Around the 

bias line not 

crossing any 

limits – 

Below Bias 

line 

L1 X-Value 409 4 0 188 218 

L2 X-Value 376 29 4 119 257 

L16 X-Value 409 0 0 185 224 

      

L1 Y-Value 135 273 1 193 80 

L2 Y-Value 128 182 99 116 66 

L16 Y-Value 392 17 0 178 214 
*ULOA = Upper limit of agreement, LLOA = Lower limit of agreement  
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5.7.1 Comparison of different file inputs (i.e. DICOM versus DICOM, DICOM versus 

JPEG) 

With BoneFinder®, DICOM files export coordinates in millimetres automatically, and JPEG 

files exported coordinates in pixels. As a result, DICOM files were used to compare DolphinTM 

and BoneFinder® and this resulted in large discrepancies in the Euclidean distance.  

Using DolphinTM, the same patient’s cephalogram was used in a DICOM format, followed by 

JPEG format. This comparison of JPEG files in DolphinTM with DICOM in BoneFinder® 

revealed more ‘agreeable’ Euclidean distance results. When comparing Dolphin TM coordinates 

from the JPEG file to the DICOM file, it differed significantly (Table 5.11).  

In the table below, there are important things to note. It can be seen that BoneFinder® provides 

deterministic results, i.e. the coordinates output would be the same, no matter how many times 

the same image is imported into the software. When a JPEG image was imported into 

DolphinTM, it yielded different coordinates than that of the DICOM file. The mean Euclidean 

distance of DolphinTM JPEG and BoneFinder DICOM was within the accepted range of 

2.15mm, whereas the mean Euclidean distance of DolphinTM DICOM and BoneFinder® 

DICOM was 8.49mm. 

Table 5.11: A comparison of DICOM and JPEG files with Dolphin ImagingTM and DICOM files with 

BoneFinder® and their respective Euclidean Distances 

BoneFinder®  

DICOM 

DolphinTM 

JPEG 

Euclidean 

Distance 
DolphinTM 

DICOM 

BoneFinder® 

DICOM 

Euclidean 

Distance 
X Y X Y  X Y X Y  

56.0692 84.7893 53.8 -86.0 2,57 51.4 -83.1 56.0692 84.7893 2,57 
124.513 57.8378 124.0 -58.7 1 116.8 -57.1 124.513 57.8378 7,75 
116.972 92.6589 114.4 -92.7 2,57 103.9 -92.4 116.972 92.6589 13,07 
39.4534 107.933 32.8 -102.5 8,59 33.2 -103.4 39.4534 107.933 7,72 
138.273 121.236 137.1 -120.5 1,38 130.9 -117.5 138.273 121.236 8,27 
141.43 159.992 139.8 -159.7 1,66 134.0 -153.5 141.43 159.992 9,87 
147.175 176.163 145.7 -175.5 1,62 139.5 -169.3 147.175 176.163 10,3 
142.089 183.857 141.3 -183.1 1,09 135.2 -177.2 142.089 183.857 9,58 
146.032 180.966 145.0 -180.2 1,29 138.8 -173.8 146.032 180.966 10,18 
67.9345 169.588 65.8 -171.6 2,93 60.9 -165.0 67.9345 169.588 8,4 
143.968 143.858 142.8 -144.7 1,44 136.4 -139.7 143.968 143.858 8,64 
146.584 144.692 145.0 -144.4 1,61 139.2 -139.2 146.584 144.692 9,2 
160.239 128.198 160.8 -130.6 2,47 154.1 -127.5 160.239 128.198 6,18 
158.483 148.165 157.1 -147.9 1,41 151.7 -140.9 158.483 148.165 9,94 
155.459 116.939 155.1 -116.1 0,91 148.1 -112.7 155.459 116.939 8,49 
162.005 172.31 160.3 -175.5 3,62 153.8 -172.6 162.005 172.31 8,21 

84.5971 126.213 86.6 -126.9 2,12 79.5 -122.0 84.5971 126.213 6,61 

142.189 114.68 140.8 -114.1 1,51 134.7 -110.8 142.189 114.68 8,43 

48.8331 123.398 47.8 -123.7 1,08 43.0 -118.0 48.8331 123.398 7,95 
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5.7.2. Comparison: Adjusting the Dolphin ImagingTM ruler calibration 

As described in the methodology (Appendix F; Figure 9.9), a ruler length of 30mm was used. 

This is in accordance with the real length of the corner points of the nasion-positioning rod. 

This was needed for image calibration since there was no calibration ruler was included during 

the acquisition of the image.  

When re-evaluating the DolphinTM parameters, it was apparent that changes to the calibration 

ruler significantly changed the results. The possibility of inaccurate measurement of the nasion-

positioning rod was explored. Table 5.12 shows that when this distance was changed to 31mm, 

it considerably altered the Euclidean distance.  

Table 5.12: Changes of ruler calibration resulting in changes of cartesian coordinates 

Landmarks 

DolphinTM 

BoneFinder® 
E1 E2 

30mm 

calibration 

31mm 

calibration 

X Y X Y X Y 

1 57.8 75.4 58,5 75,8 59.3796 79.0643 3,99 3,38 

2 131.9 70.5 133,5 71,2 132.361 70.1415 0,58 1,55 

3 112.8 99.3 115,4 100,5 120.138 100.923 7,52 4,76 

4 28.0 93.5 27,1 92,4 33.0467 99.824 8,09 9,51 

5 129.3 132.1 131,3 133,5 131.298 137.655 5,9 4,16 

6 117.9 174.7 119,8 176,5 126.251 182.461 11,4 8,78 

7 118.4 192.3 120,1 195,4 125.675 198.117 9,31 6,2 

8 110.7 198.8 112,3 201,7 117.724 204.58 9,1 6,14 

9 116.0 197.6 116,4 200,7 123.112 202.761 8,79 7,02 

10 39.4 161.9 42,3 166 48.1837 165.141 9,36 5,95 

11 123.7 157.0 126 159,7 135.644 160.908 12,57 9,72 

12 129.3 159.9 130,8 161,9 138.028 162.627 9,14 7,26 

13 146.9 145.9 147,7 146,5 151.633 148.325 5,32 4,34 

14 138.0 168.1 138,7 169,9 147.621 177.573 13,5 11,77 

15 150.3 131.2 154,6 131,1 145.338 135.312 6,44 10,17 

16 131.9 191.8 133,8 191,9 139.775 196.754 9,3 7,7 

17 74.4 125.4 77 125,9 81.2463 128.275 7,43 4,87 

18 136.8 128.5 138,7 130,1 134.155 130.224 3,16 4,55 

19 35.8 113.3 36,2 116,1 42.5032 115.531 7,06 6,33 
*E1 = Euclidean Distance (DolphinTM Original calibration of 30mm and BoneFinder®), *E2 = Euclidean Distance (DolphinTM New 
calibration of 31mm and BoneFinder®), Record number 10 was used.  
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5.7.3 Comparison: Image alignment on Dolphin ImagingTM 

As described in the methodology (Appendix F, Figure 9.4 and 9.5), the cephalogram was 

dragged into the image box. The automatic alignment of the image was used for this study 

(Figure 5.10) (scenario 1). To assess whether the alignment changed the coordinate outputs, 

the image was then re-aligned so that the cephalogram image border and the boundary box 

corresponded (Figure 5.11) (scenario 2). The coordinates from both the first scenario and 

second scenario were exported and as anticipated the coordinates did indeed differ. 

Furthermore, the Euclidean distance discrepancy still existed (Table 5.13).  

Figure 5.10: Scenario 1 

The automatic alignment places the cephalogram image border OUTSIDE the black boundary (dotted border 

lies outside the black solid line) 
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Figure 5.11: Scenario 2 

The image was aligned so that the cephalogram image border and the boundary box corresponded (dotted 

line). 
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Table 5.13: Comparison of the Euclidean Distance with changes of the alignment 

Landmarks DolphinTM Auto-

Aligned  

DolphinTM Manually 

aligned 

BoneFinder® Original E1 E2 

 
X Y X Y X Y 

  

1 57.8 -75.4 57.8 -73.2 59.3796 79.0643 3.99 6.07 

2 131.9 -70.5 129.3 -68.0 132.361 70.1415 0.58 3.74 

3 112.8 -99.3 112.0 -96.6 120.138 100.923 7.52 9.21 

4 28.0 -93.5 28.3 -86.0 33.0467 99.824 8.09 14.62 

5 129.3 -132.1 128.4 -127.4 131.298 137.655 5.9 10.66 

6 117.9 -174.7 116.7 -169.1 126.251 182.461 11.4 16.42 

7 118.4 -192.3 116.9 -186.4 125.675 198.117 9.31 14.64 

8 110.7 -198.8 109.9 -193.4 117.724 204.58 9.1 13.65 

9 116.0 -197.6 114.6 -191.5 123.112 202.761 8.79 14.12 

10 39.4 -161.9 40.7 -156.9 48.1837 165.141 9.36 11.13 

11 123.7 -157.0 122.1 -152.9 135.644 160.908 12.57 15.73 

12 129.3 -159.9 127.5 -155.7 138.028 162.627 9.14 12.6 

13 146.9 -145.9 143.8 -139.8 151.633 148.325 5.32 11.58 

14 138.0 -168.1 134.7 -163.7 147.621 177.573 13.5 18.96 

15 150.3 -131.2 150.9 -124.9 145.338 135.312 6.44 11.8 

16 131.9 -191.8 130.5 -184.3 139.775 196.754 9.3 15.53 

17 74.4 -125.4 75.3 -120.4 81.2463 128.275 7.43 9.87 

18 136.8 -128.5 135.0 -124.4 134.155 130.224 3.16 5.88 

19 35.8 -113.3 36.3 -111.3 42.5032 115.531 7.06 7.51 
*E1 = Euclidean Distance (DolphinTM Original calibration of 30mm and BoneFinder®), *E2 = Euclidean Distance (DolphinTM New calibration 

of 31mm and BoneFinder®), Record number 10 was used. 
 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 



 

40 

 

CHAPTER 6 : DISCUSSION 

This study aimed to determine the precision of two cephalometric landmark identification 

methods, namely an artificial intelligence programme (BoneFinder®) and a computer-assisted 

human examination software (Dolphin ImagingTM). To preserve clarity an overview of each 

topic is discussed. This section is organized as a sequential review and this study will now be 

compared to the findings of previous work.  

6.1 Demographic Data 

Overall, this study did not set out to compare differences between males and females and the 

different racial groups. However, the primary researcher notes that patients of mixed ancestry 

can present with different skeletal patterns contributing to different landmark norms.  

A large component of this study sample comprised of Coloured/Mixed race individuals  

(n = 244, 59.66%) and Blacks (n = 40, 9.78%). Seedat (1983) noted that patients of mixed 

ancestry may have skeletal differences and as a result landmark detection in these individuals 

may fluctuate. The literature on South African cephalometric norms appears sparse. Seedat’s 

1983 study, which aimed to determine clinical cephalometric values applicable to the Cape 

Coloured community, is the only comparative study performed to date. According to Tobias 

(1953) (cited in Seedat, 1983), the Cape Coloureds “are a community resident in the Western 

Cape, South Africa whose origin stems from an admixture of Caucasoids, Negroids and 

Mongoloid races.” No comparative cephalometric studies have been performed on the South 

African Cape Coloured community (which comprised the majority of the current study).   

Seedat’s conclusions found that the cephalometric and dental norms of this “Coloured group” 

showed significant differences in the majority of parameters when compared to Steiner values. 

While Seedat’s study did not directly investigate landmark detection, the values obtained in 

cephalometry first arise from accurate landmark detection and therefore need to be studied 

concertedly.  

Furthermore, an evaluation of the mean cephalometric values for black South African adults 

(mean age of 24.5 years) in the Western Cape region of South Africa was last conducted in 

1997 by Naidoo and Miles (1997). Their studies indicated that both the hard and soft tissue 

profiles for black South Africans differ from the North American Caucasians and African-

American people. As such treatment planning for these individuals would be more accurate if 
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based on a diagnosis that includes measurements for specific populations groups. This should 

replace the standard Caucasian norms.     

Barter et al., (1995) also conducted a cephalometric study on 50 male and 54 females of Sotho-

Tswana children 11- 16 years of age in South Africa. Various analyses such as Steiner, Wits 

and McNamara were used. This present study agrees with the observations made by Barter et 

al. that Black and Coloured patients are now presenting in increasing numbers for orthodontic 

treatment.  Cotton et al. (1951), Altemus  (1960) and Jacobsen et al. (1977) (cited in Barter et 

al., 1995) also stated that the norms and standards of one group cannot be used, without 

modification, in orthodontic treatment planning for another racial group. Kula and Ghoneima 

(2018) also have compiled literature from Cotton et al. (1951) and Altemus (1960) highlighting 

the central theme that each continent or country will have differences in cephalometric values 

among various ethnic groups. In South Africa, particularly, years of integration of ethnic 

groups has taken place leading to difficulties in characterizing those groups based on the norms. 

It can be seen that literature on the South African population groups is outdated. The findings 

of this current study motivate the development of cephalometric norms to provide a closer 

approximation of the profiles of the South African population. 

It is also important to note that the AI program, BoneFinder® was trained on an unknown 

population group. Marked differences may have occurred due to this. This will be discussed in 

more detail in Chapter 7.  

6.2 Intra-examiner and Inter-examiner Reliability 

Agreement is defined as “how well an observation produces the same value on repeated 

measurements in the same patient”. The intraclass correlation coefficient was used to assess 

reliability for continuous data. According to the literature, an intraclass correlation coefficient 

greater than 0.70 is considered acceptable (Anvari, et al., 2015).  An important consideration 

with regards to the evaluation of a method of measurement is the agreement over a range of 

patients and a range of observers. Since there is no “true” value in cephalometry (Hwang et al., 

2019), precision was measured – i.e. how close the observers’ measurements were to each other 

(Jones, et al., 2011).  
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6.2.1 Intra-examiner reliability 

All the data from interval 1 versus interval 2 with regard to the intra-reliability of examiner 1 

had a positive correlation coefficient and the p-values were above 1. An r value above +0.70 

indicated a strong uphill (positive) linear relationship. All the r values were greater than +0.70. 

A p-value of 1 implied that a linear equation describes the relationship between the data of 

interval 1 and interval 2 perfectly, with all data points lying on a line for which Interval 2 

increases as interval 1 increases. The primary researcher remained consistent.  

6.2.2 Inter-examiner reliability 

According to Hwang et al. (2019) “when it comes to a reliability measure when identifying a 

certain cephalometric landmark, there is no firm ‘ground truth’ or gold standard that can 

provide validation as to where the true location of the landmark is”. 

Therefore, to achieve the first objective of this study, the primary researcher was calibrated by 

comparing her to two experienced observers using Dolphin ImagingTM software.  

Chen et al. (2000) found that inter-observer error presents greater values than intra-observer 

error. This also accords with the results found by Durão et al., (2014), which confirmed that 

there was a higher rate of inter-observer error. Meric and Naoumova (2020) also recently 

reported that inter-operator error is greater than intra-operator error. Therefore, to prevent such 

errors, the landmark detection in this study was carried out by the primary researcher. The 

primary researcher remained consistent and was therefore calibrated. 

Some landmarks also show a wider variation in localization than others. Landmarks such as 

Gonion, Porion, Orbitale, and the lower incisor apex may be difficult to identify due to its 

superimposition between bilateral anatomical structures (Durão et al., 2014). Gonion, porion 

and orbitale also showed variation in this study’s inter-examiner tests. 

The discrepancies that occur amongst observers are well-documented in the literature 

(Ongkosuwito et al., 2002; Durão et al., 2014). Variation can occur due to inconsistent 

landmark detection relating to several random errors such as superimposition of the structures, 

image resolution, radiograph quality, anatomical complexity, examiner experience and 

observer subjectivity (Anuwongnukroh et al., 2018). The primary researcher had 3 years of 

experience within the Oral and Maxillofacial Radiology department. Other factors that could 

have affected intra-examiner agreement included orthodontic experience and day-to-day 

activities that led to time constraints.  
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Errors can also be induced by anatomical variations. We can explain this by using interval 2, 

landmark 17 (PNS) y-co-ordinate as an example (Figure 6.1), which had an interclass 

correlation of 0.56. Due to the maxillary third molars that are commonly unerupted, they can 

obscure the detection of PNS. As a result, the location of this landmark moves from 

“identifiable” or clearly recognizable to requiring interpretation – subjectivity and experience 

play a big role here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is apparent from this, that variations can still exist within a single examiner and between 

different examiners. As mentioned in the literature review, this substantiates the need for an 

objective AI programme.   

6.3 Accuracy versus Precision  

Many studies regarding cephalometric landmark detection with AI can be found in the literature. 

However, to the author’s current knowledge, no studies have been performed using the 

Figure 6.1: Comparison of PNS landmark detection. 

The unerupted third molar superimposed on the landmark region renders the PNS indifferentiable. 

Top: All examiners detected PNS at varying points - the primary researcher (red); chief radiologist 

(green) and an orthodontist (blue) using DolphinTM software.  

Below: Superimposed and zoomed in image depicting proximity of landmarks cephalograms with 

all 3 observers’ landmarks for the same patient. 
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aforementioned programs nor using a South African population. With the underlying aim of 

determining the precision of two cephalometric landmark identification methods, a comparison 

between an artificial intelligence programme (BoneFinder®) and a computer-assisted human 

examination software (Dolphin ImagingTM) was done.  

Accuracy and precision are commonly used synonymously (Wilson and Hernandez-Hall, 

2015), but there is a fine semantic distinction between the term accuracy and precision 

(Stallings and Gillmore, 1971). Both terms denote a reference to correctness.  However, 

accuracy refers to how close a sample estimate is to a gold standard or a true (or accepted) 

value, i.e. how nearly correct it is. The term accuracy refers to the “trueness" or the closeness 

of the analytical result to an accepted reference value.  An accurate determination, therefore, 

produces a "true" quantitative value, i.e. it is free of bias (ISO, 1998; Menditto, et al., 2007; 

Dunn, 2019). However, with cephalometric landmark detection, the true location of the 

landmark cannot be validated (Hwang et al. 2019). In fact, Schwendicke et al. (2021) stated 

that a major difficulty in AI studies is the construction of the reference test in the absence of a 

hard “gold standard”. Researchers in dentistry, are sometimes compelled to use multiple human 

examiners to independently label data, thereby creating a “fuzzy” gold standard (e.g. in this 

study, a pool of cephalograms were labelled by two experienced examiners, who may not 

always agree on their verdict). 

Precision refers to how close the sample estimates from different samples are likely to be to 

each other, i.e. the “spread” of the measurements or how close they are together (Wilson and 

Hernandez-Hall, 2015; Dunn, 2019). Like reliability, precision refers to consistency. Simply 

put, this study aimed to compare if BoneFinder® and DolphinTM were comparable at locating 

landmarks.  

A useful analogy is that of the dartboard. The more precise a group of measurements, the closer 

together they are. However, a large degree of precision does not necessarily imply accuracy, 

as illustrated in Figure 6.2.  Based on the small SEM values, both DolphinTM and BoneFinder® 

by themselves as a tool for the determination of the 19 landmarks were consistent in their 

respective findings. This is similar to a dart player that never hits the bull’s eye but is 

consistently hitting the exact same spot with the dart board; round after round.  

http://etd.uwc.ac.za/ 



 

45 

 

 

6.4. Errors 

It is important to note that obtaining greater accuracy for an experimental value is dependent 

on minimizing systematic errors. To obtain greater precision random errors must be 

minimized (Wilson and Hernandez-Hall, 2015). There is always an inherent discrepancy in any 

measurement taken. This is referred to as “experimental error”. This does not infer 

incompetence of the researcher, but rather infer that the measuring tools are merely 

approximated. A measurement, whether digital or physical, is never exact as the tool used or 

the skill of the observer always bears limitations (Coan, 2006).   

For example, multiple measurements may have variations in answers. This variation is called 

random error. As previously mentioned in the literature review, the progression of manual 

cephalometry to computer assisted-cephalometric analysis and automatic landmark detection 

is directed at improving the diagnostic value of cephalometric analysis by reducing any 

systematic or random errors and saving time (Ongkosuwito et al., 2002).  

Inconsistency in landmark identification is the most central source of random errors both in 

computer-aided digital cephalometry and in manual cephalometric analysis (Leonardi et al., 

2008). Both methods are time-consuming, thus resulting in efforts to automate cephalometric 

analysis, improving the accuracy of landmark identification and reducing the errors due to 

clinicians’ subjectivity (Ongkosuwito et al., 2002; Leonardi et al., 2008). 

Many factors can induce random error, including the quality of the radiographic image, the 

precision of landmark definition, the reproducibility of the landmark location, the operator 

Figure 6.2: Accuracy and precision 

The true value in this analogy is the bull’s eye. The degree of scattering is an indication of precision—the closer 

together a dart grouping, the greater the precision. A group (or symmetric grouping with an average) lose to the 

true value represents accuracy (Wilson and Hernandez-Hall, 2015) 
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experience, and the recording procedure (Anuwongnukroh et al., 2018; Kula and Ghoneima, 

2018). 

Efforts to minimize random error were made by ensuring there was minimal subjectivity, 

therefore only one examiner performed the landmark detections. The main researcher was also 

calibrated to ensure consistency and reliability. Aksakalli et al. (2017) also ensured that their 

measurements were performed by the same single investigator. Aksakalli et al. also echo the 

observation found generally throughout the literature on this topic, that uncertainty in the 

landmark identification is the main source of error – which is highly dependent on the 

examiner’s experience. To minimize any sources of errors, DolphinTM software enables the 

operator to zoom in, zoom out, move the pointer and reposition the image to choose the ideal 

location of the landmark.  

It has been reiterated that the main source of error in cephalometry is landmark identification, 

therefore it is vital to ascertain whether the use of automated detection is reliable (Meric and 

Naoumova, 2020; Juneja et al., 2021).  

Measurements may display good precision but yet be very inaccurate. The most surprising 

aspect to emerge from the data was the large Euclidean distances, where it was greater than 

4mm. These measurements were consistently too high. The largest value was calculated to be 

92.43 for L18 (ANS) and the minimum value was 0.22 for L15 (subnasale) (Table 5.6). 

Contrary to the Euclidean distance data, this study did not find a statistically significant 

difference between BoneFinder® and DolphinTM.   

These results are both revealing and unrevealing in several ways. First, the large Euclidean 

distance was concerning. However, it wasn’t apparent as to why.  There are several possible 

explanations for these results.  Systematic errors are often difficult to detect and usually 

requires an understanding of the measurement tools or programs. This leads us to the technical 

parameters of BoneFinder® and DolphinTM.  

6.5 Dolphin ImagingTM 

In both clinical and research contexts, Dolphin ImagingTM 11.0 has been used to reliably 

diagnose, plan, monitor and evaluate orthodontic treatment. Several studies have been cited in 

testing the Dolphin’s reliability and reproducibility  (Paixão et al., 2010; Mosleh et al., 2016; 

Aksakalli et al., 2017; Wanjau et al., 2019).  
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When taking measurements, the goal should always be to reduce as many sources of error as 

possible and to keep track of those errors that cannot be eliminated. The types of error that 

could have been incurred during this study are briefly mentioned here: (1) unclear landmark 

definitions, landmark definitions subject to bias/interpretation/observer experience, (2) 

environmental factors such as distractions, lighting, (3) personal errors such as operator fatigue 

and (4) calibration errors. 

Calibration is an important source of systematic error (Albarakati et al., 2012). Before 

gathering data, an instrument's calibration should be verified. If a calibration standard is not 

available, the instrument's accuracy should be verified by comparing it to another instrument 

of similar precision or reviewing the manufacturer's technical data. One of the major drawbacks 

in this study was sensitivity to ruler calibration. Calibration was carried out according to the 

manufacturer’s instructions. Since no ruler was used during the acquisition of the images, the 

calibration of the actual size of each image in millimetres was based on the measurement of 

the known distance (30 mm) between the two fixed corner points of the nasion-guiding rod on 

the screen. This calibration standardized all images. However, this also could have introduced 

random error as the placement of the mouse-driven cursor was highly sensitive.  The actual 

process of the calibration was also not perfectly repeatable; therefore uncertainty was 

introduced through the calibration process (Muelaner, 2018).   

In this study, we saw large differences in the Euclidean distance. The literature has stated a 2-

4 mm difference is diagnostically acceptable (Katkar et al., 2013; Lindner et al., 2016; Wang 

et al., 2016; Park et al., 2019; Moon et al., 2020). However, our results yielded far greater 

differences. This was concerning as visually the landmarks’ locations between the two systems 

were in close approximation (Figure 5.3). Unfortunately, changing the measuring technique 

(i.e. the software parameters) was not possible and therefore we cannot be sure as to what 

systematic error could be present. A suggested contributing factor could be the reference frame 

used in DolphinTM. A reference frame refers to the coordinate system used whereby the origin, 

orientation and scale are defined by a set of reference points (Lindner et al., 2016). Very little 

was found in the literature on the question of reference frames concerning cephalometric 

studies. Protection of this proprietary information resulted in this factor being unknown. 

Condylion was not identified at its true anatomical position but was selected arbitrarily to be 

used as the centre of origin to determine the x, y coordinates of the other landmarks (Appendix 

F, Figure 9.10). This also may have introduced a calibration error. Again, this process was not 

http://etd.uwc.ac.za/ 



 

48 

 

perfectly repeatable and was highly subjective, and this may have also contributed to the 

uncertainty.   

It is important to note that DolphinTM is used more often than other digital cephalometric 

software programs (Aksakalli et al., 2017), and its many references in the literature account for 

its validity. The discrepancies that have been identified do not reflect uncertainties of 

functionality but rather variations in comparison. Using a ruler analogy (shown in Figures 6.3 

and 6.4) we can describe this observation simply. Both methods of landmark detection can be 

likened to comparing two rulers. No one has questioned testing two rulers, as we assume the 

measurements will be the same. In the same vein, when we compared the two landmark 

detection methods, we assumed they would be in agreement. When one uses a ruler, it can 

produce random errors as the user may not consistently get the ruler’s zero line aligned exactly 

with the measured object’s border. Furthermore using a tool with a different resolution can also 

impact the precision of readings. In addition, the alignment of rulers can also significantly 

impact measurements (Figure 6.3). Another inconsistency that may have occurred is the 

scenario in which inherent scaling of DolphinTM software was applied, which may have added 

to the existing discrepancies.  

 

 

 Figure 6.3: Effect of ruler alignment 

If a ruler is not accurately aligned with the object you are measuring, differences may occur (adapted from 

Wilson and Hernandez-Hall, 2015). 
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According to the author’s knowledge, no study has compared DolphinTM with an AI program 

and no studies exist in relation to a South African demographic. The discrepancies found do 

not warrant cessation of the use of DolphinTM, but rather advocate the need for further research 

into this field.  The aim of this study was not to verify and validate the use of 

 DolphinTM, but to investigate the application of AI cephalometric landmark detection.  

6.6 BoneFinder®  

Automatic cephalometric analysis has been a topic of interest during the past years. Due to the 

increasing number of computer-assisted cephalometric programs and apps, there is a need for 

comparative studies to enable informed decision making amongst practitioners and researchers 

(Meric and Naoumova, 2020). The enticement is that AI can be a replacement for sufficient 

landmark detection. As previously stated random error can occur due to observer bias and 

experience (Durão et al., 2015). Using DolphinTM, landmark detection and extraction was 

carried out to the best of the primary researcher’s ability, ensuring consistent parameters were 

applied. However, an automated approach removes all subjectivity. Furthermore, BoneFinder 

did not require any calibration.  

BoneFinder® was developed at the University of Manchester and is currently being used for 

research purposes. In contrast, to the computer-assisted human examination approach, AI 

offers objectivity. Like most AI programs (Meric and Naoumova, 2020), BoneFinder® is 

deterministic, i.e. the same image will give the same result every time (Lindner et al., 2016). 

BoneFinder®  is a full-automated landmark annotation (FALA) system based on the machine 

Figure 6.4: Effect of ruler resolution 

By using an instrument with a higher resolution and reading it to the smallest reading possible will reduce the 

uncertainty in results. Ruler 2 will give a more precise reading, than ruler 1. Ruler 3 will give the most precise 

reading. BoneFinder® provided millimeters to up to 4 decimal places, whereas DolphinTM provide measurement 

with 2 decimal places (adapted from Wilson and Hernandez-Hall, 2015). 
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learning approach. Mitchell (1997) provided a comprehensive definition of machine learning: 

“A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E.”  With reference to this study, BoneFinder® learnt to detect landmarks and will 

improve its performance (precision) as measured by its ability to detect landmarks through 

experiences obtained by the training data set. Simply put, the landmark detection (T), as 

measured with precision (P), would improve with BoneFinder® training set (E). However, the 

training data set was limited. BoneFinder® was trained on only 400 digital cephalograms. AI is 

only as smart as the dataset it was trained on. A study by Moon et al. (2020) set out to determine 

the optimal quantity of learning data needed to develop artificial intelligence (AI) that can 

automatically identify cephalometric landmarks. As expected, the greater the quantity of 

learning data, the better the accuracy of AI. It was approximated that at least 2300 learning data 

sets, would be required to develop accurate and clinically applicable AI in orthodontics (Moon 

et al., 2020).  

Since the number of studies involving AI is rapidly growing, and suffer from many limitations  

(Juneja et al., 2021; Schwendicke et al., 2021); Schwendicke et al., (2021) developed a 

checklist on planning, conduction and reporting of AI studies for researchers.  When reviewing 

this; it was found that the study by Lindner et al. (2016) and their development of BoneFinder®  

had one downfall: they had not provided details of the source of the data (inclusion and 

exclusion criteria, the sampling framework and the target population). However, they did 

briefly discuss their limitations namely that the performance of their system was dependent on 

(1) the quality of the training data; (2) the size of the training dataset; and (3) the shape and 

appearance variation exhibited in the training data (e.g. age, type and degree of malformations).  

Schwendicke et al., (2021) also utilized the STROBE (Strengthening the Reporting of 

Observational Studies in Epidemiology) guidelines in their checklist. Reporting of 

observational research is often not detailed and clear enough to assess the strengths and 

weaknesses of the investigation. To improve the reporting of observational research, 

Vandenbroucke et al. (2007) developed a checklist of items that should be addressed: the 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement 

(Appendix O). Research should be reported transparently.  This enables readers to have a full 

understanding of the methodology, results and conclusion (von Elm et al., 2014). This current 

study followed these guidelines.  
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BoneFinder®’s training set consisted of cephalograms of patients between the ages of 7-76. No 

inclusion and exclusion criteria were specified in the study by  Wang et al., (2016) and (Lindner 

et al., 2016). Furthermore, the demographics (race) was not specified.  If a European or Asian 

dataset was utilized, it may have influenced the training data set.  As noted earlier, craniofacial 

patterns differ with patients of mixed ethnicities (Kula and Ghoneima, 2018). This was the first 

time BoneFinder® was used on a South African population, and this may have also been 

attributed to the discrepancies observed.  

Furthermore, the BoneFinder® system may have also inherited some of the inaccuracies from 

the manual training data.  Similar remarks were made by the creators of BoneFinder®  (Lindner 

et al., 2016). AI aims to be objective, but to identify landmarks, training needs to be annotated 

by humans. This in turn can be subjective, depending on the level of experience and knowledge 

of the examiners.   

AI also offers other advantages apart from objectivity. The faster results can assist with 

workflow (Lindner et al., 2016; Tang et al., 2018; Yaji et al., 2019). However, when using 

BoneFinder, a minor latency was experienced. A comparison between the time taken to conduct 

the detection and exportation of landmarks was not an objective in this study. This minor 

latency experienced is still negligible in comparison to the time taken for manual or computer-

assisted landmark detection.  

6.7 Landmarks and Case Examples 

In this dataset, there were two kinds of landmarks: (a) anatomic or identifiable landmarks and 

(b) derived or interpreted landmarks (Figures 6.5-6.13). The former landmarks refer to 

anatomic structures that were clearly recognized and the latter are derived from neighbouring 

anatomic structures and require interpretation which may be subjective (Perillo et al., 2000; 

Kwon et al., 2021). Automated methods also suffered from inaccurate localization. The 

difficulty in the localization of L10 (Gonion) (one of the bilateral landmarks of the mandible) 

has been reported by Lindner et al. (2016) and Wang et al. (2016). This is usually caused by 

the asymmetry of the mandible (Kwon et al., 2021). In this study, Gonion also showed the 

greatest standard deviation (SD=5.81).  

Factors influencing landmark detection include image resolution, anatomical complexity, 

superimposition of the structures, the experience of the observers when locating a landmark, 

and manual measurement errors. As a rule for bilateral structures, when overlapping of the 

right and left anatomical structure such as the inferior border of the mandible, condyle, porion, 
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orbitale, and teeth occurred, the observer “traced” the average part of bilateral structures before 

locating the landmark on the tracing line (Anuwongnukroh et al., 2018).  

According to McClure et al. (2005), the reliability of cephalometric landmarks is dependent on 

whether their dimensions are horizontal or vertical. The causes of these discrepancies in the 

distribution of landmark identification errors are usually linked to the definitions of the 

landmarks. This is frequently due to the landmark's anatomical variation. A landmark location 

linked with a more gradual curve, such as Gonion, Gnathion, Pogonion, and Menton, for 

example, would have less detection error than a sharp incisal edge. The vertical or horizontal 

orientation of the curve might impact errors in the former. Errors involving Gonion, Gnathion, 

Pogonion, and Menton can be influenced by the vertical or horizontal orientation of the curve. 

For example, landmarks such as Me, Go, ANS, and PNS are likely to have more x-axis error 

than y-axis error.  

This study would be incomplete without addressing and relating the clinical implications of the 

differences at each landmark with the importance of the landmark identification error.  Since 

cephalometric landmarks are used in conjunction with others to assess linear and angular 

measurements, error at each landmark site is of great clinical significance. Both the magnitude 

as well as the distribution of the landmark identification error is of importance when selecting 

a cephalometric analysis to arrive at diagnostic conclusions and treatment planning decisions 

(McClure et al., 2005). The importance of the distribution of error for a given landmark is 

determined by the use of that landmark in various cephalometric analyses. If a landmark is to 

be used to determine the magnitude of a horizontal discrepancy of the jaws relative to one 

another in an angular measure such as SNA, SNB, and ANB, then the error of the landmarks 

A point and B point along the horizontal axis would be of greater significance than the error of 

these landmarks along the vertical axis (McClure et al., 2005; Durão et al., 2014; Tam and Lee, 

2015). 

Errors can also be induced by anatomical variations. As previously mentioned; unerupted 

maxillary third molars can obscure PNS (Figure 6.1). In Figure 6.5, the discrepancy between 

the soft tissue pogonion determined by the researcher (shown in red) and the automatically 

detected pogonion (green) locations are displayed. The disparity is most commonly produced 

by abnormal lip tension in individuals with forcefully corrected lip incompetence, which 

distorts the chin profile and causes it to deviate from the template, resulting in the detection 

discrepancy (Tam and Lee, 2015).  
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Some landmarks suffer from a combination of poor definition due to superimposition and 

uncertain interpretation. For example, Articulare (Figure 43) is composed of three independent 

bones: the inferior surface of the cranial base, and the posterior outlines of the mandibular rami 

and condyles. As per the bilateral rule; the observer “traced” the average part of bilateral 

structures before locating the landmark on the midpoint of the tracing line. 

 

 

Figure 6.6: Differences of the automatically detected ANS and A point.   

Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images.    

Figure 6.5: Effect of improper lip tension 

Improper lip tension shifts landmark soft tissue pogonion to a position midway (green) between the human- 

detected pogonion (red) and the lower lip. 

Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images. 
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Figure 6.7: Effect of crowded anterior teeth 

BoneFinder® did not select the most inferior aspect of the incisal tip of the most labially places maxillary 

incisor. Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images.   

 

 

Figure 6.8: Gonion landmark 

A discrepancy was noted between the human-detected landmark and the automatically detected landmark. Right 

– landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – Superimposed 

images 

 

Figure 6.9: Bilateral rule for detecting gonion 

Right – landmark detection using DolphinTM; Middle – landmark detetcion with BoneFinder®, Left- 

Superimposed images.  Using the bilateral rule, Gonion is detected on the most inferior and posterior border 

(white dashed line) of the mandible.  
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Figure 6.10: Detection of Orbitale 

Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images. Discrepancy noted in detecting orbitale.   

Figure 6.11: Detection of nasion 

Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images. Fronto-nasal suture is not easily detectable in this case. Discrepancy of human detected 

landmark for nasion, and automatically detected landmark. 
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Figure 6.12: Detecction of nasion 

Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images. Fronto-nasal suture is easily detectable in this case. Close proximity of human detected 

landmark for nasion, and automatically detected landmark. 

 

Figure 6.13: Detection of articulare 

Right – landmark detection with DolphinTM; Middle – landmark detection with BoneFinder®; Left – 

Superimposed images. Interpretation required to determine location of articulare. BoneFinder® did not utilize 

the bilateral rule 
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6.8 Incidental Findings 

According to Ells and Thombs (2014), incidental findings are becoming directly proportional 

to the advancement of medical technologies used in clinical treatment and research. These 

potentially important discoveries fall outside the scope of conducting a study or clinical test. 

In this study, unanticipated findings were detected. These were findings that were unknown to 

the researcher to be associated with the investigation, leading to heuristic results. As mentioned 

above, the explanations for the large discrepancy in the Euclidean distances were actively 

sought but were not the primary motive for the study.  

BoneFinder® provided coordinates in millimetres if the file input was in DICOM format. JPEG 

files produced coordinates in pixels. In view of this and the consensus that DICOM files have 

the highest image quality (Graham, et al., 2005; Faccioli et al., 2009; Varma, 2012; Burgess, 

2015), DICOM files were used in both methods.  

An incidental finding revealed that if one compared the same cephalogram using BoneFinder® 

coordinates (using a DICOM file) with the DolphinTM coordinates (JPEG file), the results were 

more comparable to those in the literature, i.e. within the accepted 2mm range (Wang et al., 

2016; Juneja et al., 2021). The Euclidean distances also appeared more comparable to studies 

in the literature (the mean Euclidean distance was 2.15mm). Interestingly, when comparing 

DolphinTM with itself, the coordinates extracted from the DICOM and the JPEG files differed. 

This was contradictory to the results of Saez et al., (2016) and Saghaie and Ghaffari (2014) 

where they evaluated the influence of DICOM and JPEG formats on cephalometric landmarks 

detection and found  JPEG file formats to be reliable.  

When re-evaluating DolphinTM’s parameters, it was apparent that changes to the calibration 

ruler significantly changed the results. The possibility of inaccurate measurement of the nasion-

positioning rod was explored. Table 5.12 shows that when this distance was changed to 31mm, 

it considerably altered the output. As mentioned previously, calibration is important. In this 

study, the lack of a ruler during the acquisition stage meant that calibration needed to be 

performed using two fixed points. This measurement of a known distance (30 mm) between 

the two fixed corner points of the nasion-guiding rod on the screen was chosen. However, this 

also could have introduced random error as the placement of the mouse-driven cursor was 

highly sensitive.  The actual process of the calibration was also not perfectly repeatable; 

therefore, uncertainty was introduced through the calibration process.  In Table 12, a change 

http://etd.uwc.ac.za/ 



 

58 

 

of 1mm increased the Euclidean distance, further showing the sensitivity of DolphinTM’s 

parameters.  

Overall, it was difficult to draw a robust comparison, as DolphinTM was very sensitive to 

parameters leading to fluctuating results. Together these results provide important insights as 

well as raises more questions into AI and computer-assisted approaches. 

6.9 Opinion of AI in Cephalometric Analysis: 

The first attempt at automated landmarking of cephalograms was made by Cohen in 1984.  

Computer-assisted cephalometric analysis eliminates the mechanical errors that occur during 

manual tracing i.e. identifying landmarks, drawing lines between landmarks, reading 

measurements off a  protractor. However, inconsistency in landmark identification is still an 

important source of random errors both in computer-assisted digital cephalometry and in 

manual cephalometric analysis (Leonardi et al., 2008). According to  Leonardi et al. (2008), 

variability in landmark detection has been determined to be five times greater than 

measurement variability, with both methods open to considerable subjectivity. Although to a 

different extent, both manual and computer-assisted cephalometry methods are time-

consuming. Computer-assisted cephalometry can be likened to a manual digital system, i.e. 

although the landmarks are detected digitally on-screen, they still must be manually pinpointed 

using a mouse-driven cursor. 

Entering the arena, to alleviate such problems is AI which offers objective, quick and 

deterministic values.  Overall, these random errors resulting from uncertainty may be 

eliminated by automated programs (Tam and Lee, 2015). 

Some researchers have been infatuated with the thought that all the conclusions drawn from AI 

studies are much more optimistic than reality, allowing readers to think that automatic 

cephalometric analysis will be available very shortly (Leonardi et al., 2008). This is not wrong, 

but a cautious approach needs to be taken. In fact, Anuwongnukroh et al. (2018) used 

Carestream Dental, Version 6.14, which is a fully automatic cephalometric analysis program, 

to determine and compare the reliability of a fully automatic cephalometric analysis software 

with manual cephalometric tracing. They concluded that automated programs should only be 

used to support a diagnosis and not as a diagnostic tool. Recommendations included that the 

operator must review, check and change all landmarks that are inaccurately identified by the 

software before completion of cephalometric analysis. Pauwels (2020) agrees with  

Anuwongnukroh et al. (2018) and suggests that AI could even be an option as a ‘first pass’ 
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analysis to save time, by highlighting potential outliers that warrant further evaluation from the 

orthodontist.  

The use of automated software may reduce the errors that occur during computer-assisted 

approaches. Some landmarks, particularly those involving crowded maxillary and mandibular 

incisors, are difficult to identify; hence, such structures have been shown to have low reliability 

in digital tracings, despite the possibility of using filtering and zooming (Meric and Naoumova, 

2020).  

Inconsistency in landmark detection is specific to each landmark and can be affected by the 

experience and training of the observers, individual anatomical variations and image quality 

such as radiographic film magnification (Chen et al., 2000; Tam and Lee, 2015). Many efforts 

have been developed to automate computerized identification of cephalometric landmarks. One 

needs to remember that two cephalometric points are needed to trace a reference plane or line, 

the resulting special position of the line will be affected by the errors of two points, not a single 

one, and thus the error will be increased (Leonardi et al., 2008). This emphasizes the 

importance of landmark detection. By creating an objective AI program, all uncertainty is 

removed.  

Skeletal classification is only possible by assessing the vertical and anteroposterior locations 

of the jaws in the cephalograms. This is a crucial aspect of orthodontic diagnosis and treatment 

planning. As a result, successful treatment is directly related to proper landmark identification 

and analysis which in turn contributes to an accurate diagnosis. It can thus be seen that accurate 

landmark detection is the most critical and sensitive procedure in cephalometric analysis, but 

is highly time-consuming with the potential for errors and variability. By eliminating the 

landmark identification process as a whole, the diagnostic process is expected to be expedited 

with better accuracy (Yu et al., 2020).  

It is worth noting that with machine learning, algorithms are only as good as the training sets 

used to train the system (Ahuja, 2019). As shown in Hwang’s (2019) study, an AI model could 

reach or even surpass the performance of human observers (Pauwels, 2020). Hwang et al. 

(2019) also set out to compare landmark detection patterns of 80 cephalometric landmarks 

identified by an automated identification system. Their system was trained on 1028 

cephalograms. Their study was more relevant and clinically applicable to clinicians as it tested 

whether this new AI method was better and more reliable than clinically experienced human 

experts. In general, comparisons in the detection errors between AI and human examiners were 
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less than 0.9 mm, which did not seem to be clinically significant. It was found that the AI 

system always detected identical positions, upon repeated trials.  

Despite the flaws that still exist within AI, the benefits far outweigh these faults. AI holds the 

promise that it may be a more reliable option for repeatedly identifying multiple cephalometric 

landmarks.  
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CHAPTER 7 : CONCLUDING REMARKS 

Several interesting findings were discovered during this study. Having discussed the 

differences between Dolphin ImagingTM and BoneFinder®, the final section of this thesis 

addresses the limitations, recommendations and conclusion of this study.  

7.1 Limitations  

Several limitations need to be considered. First, as previously mentioned, “when it comes to a 

reliability measure when identifying a certain cephalometric landmark, there is no firm ‘ground 

truth’ or gold standard that can provide validation as to where the true location of the landmark 

is” (Hwang et al. 2019). As a result, no “gold standard” was used; however, the primary 

researcher was calibrated to conform to manual ground truth.  

The sample size was also relatively small due to the lack of records that complied with the 

inclusion and exclusion criteria. It is also worth noting that 147 cephalograms were excluded 

due to errors related to ruler placement or the absence thereof. Furthermore, 128 cephalograms 

were also excluded due to incorrect head positioning and movement. It would aid future studies 

utilizing cephalograms if the cephalograms taken could be standardized. The majority of 

cephalograms at the institution were performed by undergraduate dental and oral hygiene 

students; although images were diagnostically acceptable, they may not always be optimal.  

As recommended by Durão et al. (2015), precise landmark location requires a sufficiently high-

quality digital cephalometric image for landmark identification, with the ruler visible on the 

film, allowing image calibration in the cephalometric analysis software program. Since these 

cephalograms did not have a ruler, calibration may have been affected. The re-exposure of 

patients for the sole purpose of obtaining data for a study would be unethical, as a result, the 

cephalograms lacking the ruler were utilized and efforts to calibrate the image were made.  

 

According to the literature, landmark identification is the main source of errors. The factors 

contributing to the identification error are examiner experience (the primary researcher had 3 

years of experience in the Oral and Maxillofacial Radiology Department), landmark definition, 

and the density and sharpness of the image. Furthermore, operator fatigue and subjectivity may 

also have contributed to discrepancies in landmark detection.  

 

BoneFinder® is freely available for non-commercial research purposes, and this software also 

exhibited several limitations, namely: the quality of the data set that this programme was 
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trained on, (2) the size that it was trained on (400) and (3) the shape and appearance variation 

exhibited in the training data (e.g. age, type and extent of malformations). This was the first 

time that BoneFinder® was used on a sample of a South African population, and changes in 

bone structure and may have contributed to outliers.  

 

Such limitations mean that these findings need to be interpreted with caution.  The current 

study only examined the DICOM images and did not compare the two methods with JPEG 

images. Furthermore, the study was not designed to evaluate factors related to reference frames 

used by both modalities.  

 

The study was also limited by the lack of literature available on the topic. According to the 

primary researcher’s current knowledge and the literature reviewed; no similar study was 

found. The nearest latest and relevant references were based on findings of studies on automatic 

landmark detection using both deep learning and machine learning approaches.  

7.2 Recommendations  

The proposed research intended to provide a means for precise detection of cephalometric 

landmarks within a South African context. This was to substantiate the benefit of 

implementing fully automated cephalometric landmark detection programmes in orthodontic 

practices that will ultimately assist with workflow and improve treatment planning with 

increased precision. The results in this study were very sensitive to several variables. 

Therefore, several questions remain unanswered at present. However, there is abundant room 

for further progress in determining whether AI can replace computer-assisted landmark 

detection approaches.  

A number of possible future studies using the same experimental setup are apparent: (1) a study 

similar to this one should be carried out with correctly calibrated cephalometric images to 

explore BoneFinder®’s reliability within a South African context, (2) the dataset used by 

Lindner et al. (2016) in their development of BoneFinder® could be used to compare the 

precision to DolphinTM. It is also suggested that the association of reference frames is 

investigated studies.  

There is also a lack of robustness of available training datasets and this is influenced by the 

inaccessibility of standard datasets (Juneja et al., 2021). It would be beneficial to create an 

open standard South African dataset with the ground truth marked and validated by 
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experienced clinicians for future research into automated landmark detection. Due to the 

significant variation in anatomical features among different ethnic groups, the datasets would 

also need to be representative of each ethnic group. 

It would be interesting to create an automated landmark detection system that is trained on an 

African dataset.  Data sets are usually trained according to inclusion and exclusion criteria, 

however, distortion to the skull caused by diseases etc need to also be included. This will 

enable an AI system to detect landmarks on anomalous skulls. A comprehensive medical 

history should also be included during the acquisition of the training set.    

Before AI can be fully adopted in a clinical setting in South Africa,  further studies determining 

South African cephalometric norms should be carried out. A better understanding of this would 

also contribute to a South African data set of cephalograms. 

Two-dimensional (2D) cephalograms are questionable due to several limitations, such as the 

superimposition, magnification and distortion, and the influence of head position during image 

acquisition (De Oliveira Lisboa et al., 2014). The Faculty of Dentistry, Tygerberg, is a  training 

institution for dental and oral hygiene students, and as a result, special attention should be paid 

to ensure the students are taking their radiographs correctly and that is not only of acceptable 

diagnostic quality but also so that standardization is ensured.   

According to Tam and Lee (2015) to improve image quality, it is recommended that in 

addition to using ear position rods for head stabilization, additional stabilizing points are 

required to position the head with optimal symmetry. Patients must also be instructed to raise 

their heads when cephalograms are captured so that the mandibular rami appear distinct from 

the vertebrae. Due to the indistinct demarcation between neighbouring landmarks, to improve 

the accuracy of results, high-resolution images in the data sets must also be included. 

7.3 Conclusion  

In conclusion, and within the limitations outlined above, the null hypothesis was accepted – 

there was no significant difference between the artificial intelligence programme 

(BoneFinder®) and the computer-assisted human examination (Dolphin ImagingTM) regarding 

the precision of landmark detection. Whilst this study did not confirm that AI is superior to 

computer-assisted human examination, it did partially substantiate the use of AI in radiology 

and orthodontics. AI should not be seen as a replacement, but rather an aid. Taken together, 

these findings suggest a promising role for the future of AI in cephalometry. 
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CHAPTER 9 : APPENDICES 

Appendix A: Memorandum of Understanding (Dolphin ImagingTM) 
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Appendix B: Table showing cephalometric landmarks and their description (Lindner et 

al., 2016) 
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Appendix C: Table with Landmarks Key 

 

Landmarks Key: 

Label: Landmark: 

L1 Sella 

L2 Nasion 

L3 Orbitale 

L4 Porion 

L5 Subspinale (Point A) 

L6 Supramentale (Point B) 

L7 Pogonion 

L8 Menton 

L9 Gnathion 

L10 Gonion 

L11 Incision inferius 

L12 Incision superious 

L13 Upper lip 

L14 Lower Lip 

L15 Subnasale 

L16 Soft tissue pogonion 

L17 Posterior Nasal spine 

L18 Anterior Nasal Spine 

L19 Articulare 
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Appendix D: Cephalometric Landmarks 

 

Figure 9.1: Cephalometric landmarks used in this study. 

 L1 = Sella, L2 = Nasion, L3 = Orbitale, L4 = Porion, L5 = Subspinale (Point A), L6 = 

Supramentale (Point B), L7 = Pogonion, L8 = Menton, L9 = Gnathion, L10 = Gonion, L11 = 

Incision inferius, L12 = Incision superious, L13 = Upper lip, L14 = Lower Lip, L15 = Subnasale, 

L16 = Soft tissue pogonion, L17 = Posterior Nasal spine, L18 = Anterior Nasal Spine, L19 = 

Articulare. 
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Appendix E: Instructions for Examiners 
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Appendix F: Demonstration of Landmark Detection using Dolphin ImagingTM 

The following example is a demonstration of how the coordinates were captured from Dolphin 

ImagingTM (Figures 9.2-9.14).  

1. Dolphin ImagingTM: Capture of Cephalograms 

 

 

 

Figure 9.2: Step 1 

Tthe primary researcher captured the entire sample of cephalograms prior to landmark detection. This was done 

by clicking capture (red box).   

Figure 9.2: Step 1 
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Figure 9.3: Step 2 

The Capture setup was enabled by first selecting the timepoint, the images to be captured, and the input. The 

input was the device storage on the primary researcher’s desktop. “Start capture” (red box) was selected to 

complete the setup. 

Figure 9.4: Step 3 

The DICOM file was selected by browsing through the folder for the intended record number. 
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Figure 9.5: Step 4 

Once the intended cephalogram was displaced in the display box, it was dragged using the mouse-cursor to the 

lateral cephalogram box. 

Figure 9.6: Step 5 

 Once the cephalogram was displayed in the box (a), the image capture was saved (b). 
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2. Dolphin ImagingTM: Landmark Detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7: Step 6 

Patients were selected via the record number, example R040 (red block). 

Figure 9.8: Step 7 

Timepoints served as tabs to organize data collection; for example: primary data (a). The ‘Digitize’ tab was 

selected to open the setup page 
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Figure 9.9: Step 8 

The settings (a-e) were selected to adhere to the customized landmarks. A customized ceph analysis (named “19 

Landmarks”) was created by the primary researcher to include the study’s intended landmarks. The ruler length 

was set at 30mm, to represent the real distance length of the fixed corner points of the nasion-guiding rod. This 

was done as there was no ruler used during acquisition of the cephalograms. 
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Table 9.1: Landmarks that were created in the custom list. Additional points were added for calibration (ruler 

points 1 and 2). Condylion was not identified at its true anatomical position but was selected arbitrarily to be 

used as the centre of origin to determine the x, y coordinates of the other landmarks. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landmarks Key: 

No: Landmark:  

1.  Sella  

 

 

 

 

 

 

 

LANDMARKS 

FOR STUDY 

2.  Nasion 

3.  Orbitale 

4.  Porion 

5.  Subspinale (Point A) 

6.  Supramentale (Point B) 

7.  Pogonion 

8.  Menton 

9.  Gnathion 

10.  Gonion 

11.  Incision inferius 

12.  Incision superious 

13.  Upper lip 

14.  Lower Lip 

15.  Subnasale 

16.  Soft tissue pogonion 

17.  Posterior Nasal spine 

18.  Anterior Nasal Spine 

19.  Articulare 

20.  Ruler point 1 ADDITIONAL 

POINTS 21.  Ruler point 2 

22.  Condylion (centre of origin) 
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Figure 9.10: Step 9 

Identification of landmarks. After recording a landmark with the mouse, a red dot on the monitor-displayed 

image indicated its position. The landmark location could be corrected until the operator was satisfied. The 

magnifying glass was also used to locate landmarks. The study’s definitions of landmarks were used and not 

those that automatically appear in Dolphin (a) Locations for condylion, (b) Locations for ruler point 1 and 2 – 

this was used for calibration by digitizing the two ruler points (30mm). 
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Figure 9.11: Step 10 

The “Superimpose” tab was selected (a) to open the tracing superimpositions setup page (b) 

Figure 9.12: Step 11 

The intended ceph was selected. 
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Figure 9.13: Step 12 

The icon  was clicked (a) to view the tracing differences analysis dialog. Condylion was selected as the 

coordinates centre (b). The generated coordinates (c) was exported to the Excel Data Capture sheet (d). 

 

Figure 9.14: Step 13 

The generate coordinates were copied to the Excel Capture Sheet. 
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Appendix G: Demonstration of Landmark Detection using BoneFinder®  

The following example is a demonstration of how the coordinates were captured from 

BoneFinder® (Figures 9.15 – 9.24).   

1. BoneFinder® - Landmark Detection 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.15: Step 1 

Open BoneFinder®. 

Figure 9.16: Step 2 

On start of BoneFinder® a number of models need to be loaded. The “load full searcher model” was selected. 
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Figure 9.17: Step 3 

The Full Searcher GLBS file was opened. 

Figure 9.18: Step 4 

The next step is to load an image using File/Open image. 
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Figure 9.19: Step 5 

The folder containing the DICOM files was opened, and the required cephalogram opened via the record 

number e.g., R040. 

Figure 9.20: Step 6 

The fully automatic search can be run on the displayed image using the search button. 

After a few seconds, the tool will display the annotation result 
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Figure 9.21: Step 7 

All landmarks are indicated by light blue markers. The coordinates were saved to a text 

file using File/Save points as.  Note that by default every loaded image is histogram 

equalised to improve the contrast of the image for visualisation and search. This was 

turned off using “Data/Always normalise image on opening” for the purpose of this 

demonstration. 

Figure 9.22: Step 8 

Coordinates were saved as Points files and exported to the Excel Capture Sheet 
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Calculate the Euclidean Distance 

 

 

Figure 9.23: Step 9 

The generated coordinates were copied to the Excel Capture Sheet. 

Figure 9.24: Step 1 

: The Euclidean distances were calculated for each landmark of each cephalogram. The red box indicates the 

equation used on Excel. 
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Appendix H: Data Capture table for BoneFinder® and Dolphin ImagingTM Landmarks 

      
 

Ceph 

Landmarks: L1 L2 L3 L4 L5 

 

L6-L19 

Ceph No:           … 

1           … 

2           … 

3           … 

4           … 

5           … 

6           … 

7           … 

8           … 

9           … 

10           … 

11           … 

12           … 

13           … 

14           … 

15           … 

…           … 
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Appendix I: Data Capture table for computer-assisted landmark detection (Dolphin 

ImagingTM) 

 

Ceph 

Landmarks: L1 L2 

 

L3-L19 

Examiner: 1 2 3 1 2 3 … 

Ceph No:             … 

1             … 

2             … 

3             … 

4             … 

5             … 

6             … 

7             … 

8             … 

9             … 

10             … 

11             … 

12             … 

13             … 

14             … 

15             … 

…             … 
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Appendix J: Letter to Dean of Faculty of Dentistry  

 

 

 

 

          25 October 2019 

Dear Prof Osman 

RE: Request for permission to use cephalometric records from the Department of Oral and 

Maxillofacial Radiology, Faculty of Dentistry, University of the Western Cape 

I am writing this to request permission from the Dean’s office to analyze and use the 

cephalograms of patients who meet the inclusion criteria of my study. The purpose is to 

complete my mini-thesis that is in partial fulfilment of my requirements for the degree of a 

Masters in Oral and Maxillofacial Radiology. 

All ethical considerations will be adhered to as set out in my protocol presentation 

(11/10/2019). 

Thank you for your consideration.  

Kind regards,  

 

Dr Suvarna Indermun 

1st Year MSc Student 

Department of Oral and Maxillofacial Radiology 

University of the Western Cape 
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Appendix K: Letter to Head of Department of Oral and Maxillofacial Radiology  

 

 

 

 

          25 October 2019 

Dear Dr Shaik 

RE: Request for permission to use cephalometric records from the Department of Oral and 

Maxillofacial Radiology, Faculty of Dentistry, University of the Western Cape 

I am writing this to request your permission to analyze and use the cephalograms of patients 

who meet the inclusion criteria of my study. The purpose is to complete my mini-thesis that is 

in partial fulfilment of my requirements for the degree of a Masters in Oral and Maxillofacial 

Radiology. 

All ethical considerations will be adhered to as set out in my protocol presentation 

(11/10/2019). 

Thank you for your consideration. 

 

Kind regards,  

 

Dr Suvarna Indermun 

1st Year MSc Student 

Department of Oral and Maxillofacial Radiology 

University of the Western Cape 
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Appendix L: Letter from Head of Department of Oral and Maxillofacial Radiology  

 

 

 

 

          28 October 2019 

To Whom It May Concern 

RE: Permission to use cephalometric records from the Department of Oral and Maxillofacial 

Radiology, Faculty of Dentistry, University of the Western Cape 

I hereby grant permission to Dr Suvarna Indermun to analyze and use the cephalograms from 

the Department of Radiology. The purpose is to complete her mini-thesis that is in partial 

fulfilment of her requirements for the degree of a Masters in Oral and Maxillofacial Radiology. 

All ethical considerations will be adhered to as set out in her protocol presentation 

(11/10/2019). 

Thank you. 

 

Kind regards,  

 

Dr Shoayeb Shaik 

HOD 

Department of Oral and Maxillofacial Radiology 

University of the Western Cape 
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Appendix M: Capture Sheet with patient demographics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEMOGRAPHICS 

Ceph No:  OHC No: Age: Gender: 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       

11       

12       

13       

14       

15       

…       
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Appendix N: Ethical Clearance Letter 
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Appendix O: STROBE Guidelines 

Checklist of items that should be included in reports of cross-sectional studies  
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