Throughput of UWC students who did at least one semester of third-year Statistics

 by

A minithesis submitted in partial fulfillment of the requirements for the degree of Magister Scientiae in the Department of Statistics, Faculty of Science, University of the

Western Cape.

Supervisor: Prof. R. Blignaut RIR CND

Co-supervisor: Prof. D. Kotze

October 2005

UNIVERSITY of the WESTERN CAPE

THES
UNMERSMEIT VAN WES-KAAPLAND BIBLIOTEEK
519.50711 LAT

LTBRARY
UNIVERATY OF THE WESTERN CAPE

Throughput of UWC students who did at least one

semester of third-year Statistics

Keywords

Education

Throughput rate
Statistics
Completion rate
Pass rate
Undergraduate
University studies
First time entrants
Graduation

Abstract

 Throughput of UWC students who did at least one

 Throughput of UWC students who did at least one

 semester of third-year Statistics

 semester of third-year Statistics}

The study explores the completion rates (the number of years a student takes to complete a degree) of graduates at the University of the Western Cape (UWC) in South Africa. The graduates in the study all did at least one semester of statistics in their final year of study. The students' completion will be described with respect to school results and socio-demographics. Differences between students who finished their studies in the prescribed time of three years and those who took longer than the prescribed time will be highlighted.

Factors that aid or hinder students from successfully completing their studies in the prescribed time will be analyzed. An entry selection model will be developed to screen the students. This will assist with an enrolment strategy.

The most significant result found was that the political environment played the most significant role in throughput. The next significant result from the study showed that the grade 12 aggregate played a significant role in throughput. It is suggested that UWC be proactive in developing alternative methods of selecting students, since the
new Further Education Training (FET) school system, which will be implemented in 2006, will omit the grade 12 aggregate.

October 2005

Declaration

I declare that Throughput of UWC students who did at least one semester of thirdyear Statistics is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references.

List of tables

Table 2.1 Throughput and completion rate results of Cairncross's study 7
Table 2.2 Throughput rate at HEIs nationwide 9
Table 2.3 Scoring system used by the University of Pretoria 11
Table 2.4 First-year level result versus Grade 12 mathematics grade of diploma course students in Veterinary Nursing 12
Table 3.1 Table of variable names 26
Table 4.1 List of home languages. 28
Table 4.2 Grade 12 aggregates. 30
Table 4.3 Mathematics symbols 31
Table 4.4 Common scale symbols 31
Table 4.5 Throughput versus predictor associations. 35
Table 4.6 Probability of throughput given predictor 36
Table 4.7 Predictor associations 40
Table 4.8 Throughput logistic regression models for the seven predictors 51
Table 4.9 Evaluations of predictive abilities of models 54

List of figures

Figure 4.1: Throughput of UWC students who did at least one semester of third-year Statistics 31
Figure 4.2 Grade 12 aggregate distribution 33
Figure 4.3 Decision tree aggregate model 55

UNIVERSITY of the WESTERN CAPE

Abbreviations

ASCII	American Standard Code for Information Interchange
CESM	Classification of Educational Subject Matter
CHE	Christian Higher Education
DoE	Department of Education
DVN	Diploma in Veterinary Nursing
EXCEL	Microsoft spreadsheet
FET	Further Education Training
HDI	Historically Disadvantaged Institutions
HE	Higher Education
HEIs	Higher Education Institutions
HWI	Historically White Institutions
ICS	Information and Communication Services
MPM	Mean percentage mark
PoE	Place-on-exam
PRN	Print file format
SAPSE	South African Post-Secondary Education
SAS	Statistical Analysis Systems
SAUVCA	South African Universities' Vice Chancellors' Association
SPSS	Statistical Package for Social Science
UWC	University of the Western Cape

Acknowledgements

I would like to thank my parents, my wife (Shaheema), my supervisors (Professor R.
Blignaut and Professor D. Kotze), the Madsens from USA and colleagues for their patience and support. Lastly I thank the Almighty for giving me the strength and health to finish this thesis.

UNIVERSITY of the WESTERN

Contents

Title page
Keywords ii
Abstract iii
Declaration v
List of tables vi
List of figures vii
Abbreviations viii
Acknowledgements ix
Contents x
Chapter 1: Introduction 1
1.1 Background to the study 1
1.2 Statement of the problem 2
1.3 Purpose of the study 3
1.4 Aim of the study 3
1.5 Research questions of the study 3
1.6 Importance of the study 4
1.7 Outline of the study 5
Chapter 2: Literature review 6
2.1 Demographic background 8
2.2 School background 11
2.3 Political environment 14
Chapter 3: Research design and methodology 15
3.1 Statement of the problem 15
3.2 Aim of the study 15
3.3 Objectives of the study 15
3.4 Hypotheses 16
3.5 Study design 17
3.6 Study population 17
3.7 Sample size 19
3.8 Data collection 19
3.9 Measurements 21
3.10 Limitations of study 25
3.11 Data analysis 27
Chapter 4: Analyses and results 28
4.1 Demographic background of students 28
4.2 Third-year Statistics course 29
4.3 Number of years to complete studies 29
4.4 Grade 12 results 29
4.4.1 Aggregate 29
4.4.2 Mathematics 30
4.5 Response variable 31
4.6 Predictor variables 32
4.7 Throughput associations 33
4.7.1 Gender 33
4.7.2 African 33
4.7.3 English 34
4.7.4 Aggregate 34
4.7.5 Mathematics 34
4.7.6 Immediately 35
4.7.7 Year covariate 35
4.8 Predictor associations 37
4.8.1 Gender 37
4.8.2 African 38
4.8.3 English 39
4.8.4 Aggregate and mathematics 39
4.8.5 Immediately and year covariate 40
4.9 Logistic regression of throughput - single predictors 41
4.9.1 Gender model 41
4.9.2 African mode 42
4.9.3 English model 44
4.9.4 Aggregate model 45
4.9.5 Mathematics model 46
4.9.6 Immediately model 48
4.9.7 Year covariate model 49
4.10 Logistic regression of throughput - many predictors 52
4.10.1 Full logistic regression model 52
4.10.2 Full logistic regression model without year covariate 53
4.10.3 Stepwise logistic regression model 53
4.11 Decision tree analysis 54
4.11.1 Aggregate decision tree model 54
4.12 Conclusion 55
Chapter 5: Conclusion and recommendations 56
5.1 Discussion of findings 56
5.1.1 Gender factor 56
5.1.2 Race factor 56
5.1.3 Home language factor 56
5.1.4 Grade 12 aggregate factor 57
5.1.5 Grade 12 mathematics factor 57
5.1.6 Entering UWC immediately after school factor 57
5.1.7 Political environment (year covariate) factor 58
5.2 Relevance of study 59
5.3 Recommendation 59
5.4 Limitation of study 60
5.5 Further research 60
Bibliography 61
Appendices 64
Appendix A A1 Frequencies of variables 64
A2 Throughput associations 70
A3 Predictor associations 77
Appendix B B1 Gender logistic regression model 98
B2 African logistic regression model 101
B3 English logistic regression model 103
B4 Aggregate logistic regression model 105
B5 Mathematics logistic regression model 107
B6 Immediately logistic regression model 109
B7 Year covariate logistic regression model 111
Appendix C C1 Full logistic regression model with all predictors 113
Appendix D D1 Full logistic regression model without year covariate 116
Appendix E E1 Logistic regression - stepwise selection model 119

Chapter 1

Introduction

1.1 Background to the study

The Department of Education (DoE) restructured the higher education (HE) system in 2000 (Asmal, 1999). The restructuring caused universities to re-align themselves with the priorities of the Department of Education. In 2001 the Department of Education introduced its new five-year national plan for higher education. One of the priorities in the national plan was to increase undergraduate output to ensure that the current demand for high-level managerial and professional skills be met (Department of Education, 2001a).

This priority to increase undergraduate output (also known as undergraduate throughput) initiated the study described in this mini-thesis. This study explores the throughput rate of UWC students who did at least one semester of third-year level Statistics. Throughput is the number of undergraduates who complete their studies in the prescribed time (Cairncross, 1999). The throughput is one of the factors that the government uses for funding a university (Department of Education, 2001b).

The Department of Education has introduced a new funding formula which is applicable to all higher education institutions (HEIs). This new formula takes undergraduate output as a factor in determining the funding that a university will
receive (Department of Education, 2001b). The previous South African post-secondary education (SAPSE) formula was based on four criteria:

1. Student numbers - the overall number of students.
2. Area of study - for example humanities/science.
3. Student throughput - the pass rate.
4. Level of studies - honour's level is equal to two times the undergraduate level, master's level is three times the undergraduate level and doctoral level is equal to four times the undergraduate level.

The South Africa post-secondary education (SAPSE) funding formula favoured the historically-white institutions (HWI) more than the historically-disadvantaged institutions (HDI), which had high failure rates, few science students and low postgraduate student numbers (The Mail and Guardian, 1999).

1.2 Statement of the problem

The study will investigate the throughput of students who did at least one semester of third-year level Statistics in the Department of Statistics at the University of the Western Cape (UWC). Completion of undergraduate studies by a student in three consecutive years will be defined as successful throughput. The study explores factors that could contribute to students successfully completing their studies in the prescribed amount of time.

1.3 Purpose of the study

The school system under-prepares students for higher learning (Nair, 2002). This is worsened when they enter into higher institutions. In other words, it leads to low throughput rates. O' Connell (2004) indicated that UWC's throughput rate is 17% for the whole university. This study will describe the throughput rate of a subset of students from UWC and explore some factors that might contribute to throughput.

1.4 Aim of the study

The aim of the study was to explore the throughput rate of third-year Statistics students in the Department of Statistics and to model the probability of successful throughput with certain factors or predictor variables. The following factors were explored: gender, race, home language, Grade 12 aggregate, Grade 12 mathematics results, entering university directly after school and student registration before and after the 1994 elections in South Africa (first democratic election).

UNIVERSITY of the
 \subsection*{1.5 Research questions of the study}

The goal was to identify what factors influence successful throughput. Various modelling techniques were used to identify the factors that significantly predict successful throughput. Logistic regression and decision trees were used. The aim was, furthermore, to establish if the change in the political arena, specifically the change after the democratic elections in 1994, had an influence on successful throughput.

1.6 Importance of the study

By improving throughput, more skilled students will become quality scientists and employees. The benefits of increasing undergraduate output are:

1. More successful students will enter into the job market and promote UWC in their company profiles (as alumni).
2. More undergraduate students will be available from whom to recruit for postgraduate studies.
3. If students complete their studies in the prescribed time, they will save on tuition fees. The university will gain by earning its subsidy more quickly.
4. More funds will be forthcoming for research and postgraduate studies.

The information from this study can aid in improving enrolment strategies at UWC.

1.7 Outline of the study

The following topics will be dealt with in each chapter:
Chapter 2 is a literature review. In this chapter, the views of other researchers on throughput and the factors that contribute to it are expressed.

Chapter 3 describes the methodology: How the sample was collected, what population was of interest and what objectives were defined.

Chapter 4 presents the findings of the analysis. First, descriptive results are shown, followed by univariate and multivariate logistic regression analysis. Decision-tree results are summarized.

Chapter 5 discusses and interprets the findings. This chapter concludes with suggestions and recommendations.

UNIVERSITY of the

The next chapter will deal with the views of some scholars on the topic of throughput.

Chapter 2

Literature review

In the previous chapter, background information as to how the study evolved was described. In this chapter, literature on how others view the problem of throughput and what factors they believe contribute towards throughput will be shown. Different studies investigated different factors within specific programmes. To make the literature comparable, emphasis is placed on those factors that are important to this study. The chapter deals with the demographic background (gender, race and home language), school background (aggregate and mathematics) and the political environment under which the students studied.

Fraser and Killen (2003) use the term academic success to indicate that students are able to meet the assessment requirement of the programme in which they enroll; if these requirements can be met in the minimum time, that represents greater success than if subjects have to be repeated. Bitzer and Troskie-De Bruin (2004) argue that throughput and completion rates should not be seen as the only criteria of quality or the hallmark of high standards.

Cairncross (1999) investigated the fourth/final-year level Human Ecology students' throughput rates and completion rates. She defines throughput rate as "the number of students who pass through a period in the allocated time period" (p. 2). The throughput in the case of the Human Ecology students is the number of students who completed their studies in four years. She also defines completion rate as "the number of students
who complete their studies" (p. 3). She mentions that, historically, Grade 12 results are used to categorise students into those who qualify for degree courses and those who qualify for diploma courses. She refers to a student who leaves a course as a "dropout" (p. 2). She does recommend that dropout students be referred to as "early exits" (p. 2). Table 2.1 below summarises her findings in terms of the following categories - the overall findings (all the students together), the Human Ecology student registration for the years 1994 to 1996, the Human Ecology degree course and the Human Ecology diploma course.

Table 2.1 Throughput and completion rate results of Cairncross's study

	$\underline{\text { Overall }}$	$\underline{1994}$	$\underline{1995}$	$\underline{1996}$	Degree	Diploma
Throughput rate	$37(33.9 \%)$	$9(25.7 \%)$	$12(32.4 \%)$	$16(42.2 \%)$	38.8%	16.7%
Completion rate	$18(16.5 \%)$	$7(20 \%)$	$11(29.7 \%)$	$0(0 \%)$	17.6%	12.5%
Dropout rate	$54(49.54 \%)$	$19(54.3 \%)$	$14(37.8 \%)$	$21(56.8 \%)$	43.5%	70.8%

(Source: Cairncross, 1999)

Since the entrance requirements are different for a degree and a diploma, it can be seen that the throughput rates are higher for the degree course compared to the diploma course in Human Ecology. For the individual years of registration from 1994 to 1996, the throughput rates increased. In 1996 more than half of the students dropped out of the Human Ecology course. This means that all the students who remained in the course completed it in the prescribed amount of time. For the degree course (Grade 12 exemption) the throughput rates were more than double those of the diploma course. The dropout rate for the diploma course was higher than that observed for the degree course.

The quality and characteristics of students at different universities were investigated by Taylor and Harris (2002). They derived their data from the South African postsecondary education (SAPSE) information system. Those universities whose South African post-secondary education (SAPSE) databases were incomplete were excluded from their study; therefore, they could only include ten universities in their study. The ten universities are the University of Cape Town, the University of Durban-Westville, the University of the Orange Free State, the University of Port Elizabeth, Potchefstroom University for CHE, the University of Pretoria, Rand Afrikaans University, Rhodes University, the University of Stellenbosch, and the University of Zululand. Taylor and Harris (2002) define a university to be efficient if it complies with the following definition of efficiency: "Efficiency involves minimizing the inputs required to produce a given output or, conversely, maximizing the output from given inputs" (p. 184). The input measure for a university includes students, personnel and financial resources. The output is graduates and research production. Dawes P., Yeld N. and Smith M.J. (1999) state that the national enrolment goals will be linked to funding in future. Graduate output was a factor in the old funding system (SAPSE) and it will also be a factor in the new funding system.

2.1 Demographic background

Dawes et al. (1999) express the need to increase the participation rate of black Africans in higher education (HE). They mention that black Africans are being disadvantaged in the selection system for higher education because of unequal schooling (study under unfavourable and disadvantaged conditions). They mention that access and admission to higher education will become more difficult for black

Africans because more black Africans will enter with low aggregates. They encourage the investigation of race and gender to see if there is an increase in enrolment.

Nair (2002) defines throughput rate as "number of years used by many students to complete a degree or diploma" (p.98). Nair relates low throughput to underpreparedness due to the inadequate schooling system. Nair gives the national average of the throughput rate in HEIs in Table 2.2 as follows:

Table 2.2 Throughput rate at HEIs nationwide

Throughput rate (\%) for population groups		
African students	8	
White students	25	
	Throughput rate (\%) in key subject areas for African students	
Engineering	3	
Medicine	9	
Natural Science	12	

(Source: Frank Meintjies: Deloitte Consulting, taken from Nair, 2002)

Lourens and Smit (2003) built a predictive model to predict the success of students in their first-year level of studies. Lourens and Smit (2003) used the following demographic background predictors - age of student, province of matriculation, Grade 12 aggregate, Grade 12 English symbol (defined as adequate or inadequate), ethnic group, gender, campus of study (Pretoria campuses versus satellite campuses), method of study (full-time versus part-time), financial aid (yes or no), marital status, type of accommodation (resident student or not) and classification of educational subject matter (CESM), i.e. major field of study, to describe the type of students entering Technikon Pretoria. Lourens and Smit (2003) divided the English grade symbols into two groups, namely, the "adequate" group - higher grade D symbols or better, the
standard grade - C symbols or better and the lower grade - B symbols or better. The rest were in the "inadequate" group. They made use of stepwise logistic regression to find the model with the most significant predictors. Lourens and Smit (2003) confirmed a relationship between school aggregate and first-year success rate. Lourens and Smit (2003) also found that a relationship does not exist for second and third-year successes. They used eight significant independent variables in the study to build two models. The first model consisted of all eight variables and the other model only consisted of the CESM category and the Grade 12 aggregate. They then compared the performance of the two models. They concluded that both models have more than a 70% predictive accuracy and that the Grade 12 aggregate and major field of study play an important role in terms of students' first-year success at Technikon Pretoria.

Van Rooyen (2001) found that English as a home language was a significant predictor of the bridging-year mean percentage mark (MPM). Agar (1991) confirmed that disadvantaged students found it difficult to express themselves in English. He found that 75.3% of students in a bridging programme at the University of the Witwatersrand attribute the difficulties of academic actualization to language barriers. Howie (2003) confirms these views, showing that pupils' English proficiency was a strong predictor of success in mathematics.

2.2 School background

Nair (2002) states that the government loses millions on students who fail at higher education institutions (HEIs) and also spends millions on a schooling system which produces school leavers who are under-prepared for higher education and the job market. Keeping this in mind, Botha A.E., McCrindle C.M.E. and Owen J.H. (2003) state:
"In the South African education system, students write a standardized, independently set, matriculation examination at the end of their school career (Grade 12). The results of this examination are used as the main criteria for admission to tertiary educational institutions. Subjects may be taken on two levels -higher grade and standard grade. A proposed new matriculation curriculum, however, will eliminate the difference between the standard and higher grades" (p. 132).

The Diploma in Veterinary Nursing (DVN) programme uses Grade 12 mathematics with its grades as a selection criterion (Botha et al., 2003).

Table 2.3 Scoring system used by the University of Pretoria

Matriculation symbol	Higher grade	Standard grade
A (more than $80 \%)$		
B $(70-79 \%)$	5	4
C $(60-69 \%)$	4	3
D $(50-59 \%)$	3	2
E $(40-49 \%)$	2	1
	1	0

(Source: Botha, McCrindle \& Owen, 2003).

Botha et al. (2003) define the adjusted mark as "standard grade minus 10% " (see Table 2.3) and set the minimum of 40% of the adjusted mark for both higher grade and
standard grade. They used the Mann-Whitney non-parametric test to test for the difference between groups $(p$-value $=0.0097)$ and found that a statistically significant difference does exist in the adjusted mark obtained for Grade 12 mathematics between the groups that passed and failed the first-year veterinary nursing course. This means Grade 12 mathematics is related to success or failure of veterinary nursing students at tertiary level. They recommend that students with Grade 12 mathematics marks higher than 57% be given preference for admission to veterinary nursing courses. Therefore mathematics can be used as an admission criterion for enrolment for a veterinary nursing course.

Table 2.4 First-year level result versus Grade 12 mathematics grade of diploma course students in Veterinary Nursing

Result	Higher grade	Standard grade
Pass	12	
Fail	48	26

(Source: Botha, McCrindle \& Owen, 2003)

Botha et al. (2003) found that no statistically significant relationship (Table 2.4 gives a Chi-square p-value $=0.1196$) exists between the grade of mathematics at matriculation level and the success or failure in the first-year level of study.

The following people oppose the view that Grade 12 mathematics is a significant factor in successful completion of tertiary education. Mitchell (1988) says that there is no significant difference between those students who did Grade 12 mathematics and those who did not do Grade 12 mathematics, with respect to an accounting degree,
excluding the quantitative courses. Bargate (1999) also found that Grade 12 mathematics did not play a significant role in overall academic performance.

Dawes et al. (1999), in their study, used the aggregate school score, which is the raw total of all the marks for all a student's school subjects. They then define a place-onexam (PoE) indicator by taking the individual aggregate school score for all the students at a particular school and assigning the indicator to that rank score. They give three reasons for the advantage of using the place-on-exam. Firstly, scores are compared within the same school, so students will not become victims of circumstances. Secondly, it can be used as a measure of relative merit for students without it being influenced by the examination system or internal assessments at the school. Thirdly, it is easy to use and interpret (Dawes et al., 1999). Dawes et al. (1999) say that in a study done by Stoker D.J., Engelbrecht C.S., Crowther N.A.S., Du Toit S.H.C. and Herbst A. (1986), it was found that aggregate score was the strongest single predictor of success at university. Dawes et al. (1999) also state that other South African studies done by Skuy M., Zolessi S., Mentis M., Fridjhon P. and Cockcroft K. (1996); Badenhorst F.D., Foster D.H. and Lea S.J. (1990) and Shochet (1985) support Stoker et al. (1986)s' findings, but they did not focus on race or gender. In some studies (Badenhorst et al., 1990; Shochet, 1985) in which race was investigated, the sample of Blacks was too small to deduce information regarding race as predictor. Where the sample size was large, the results between school examination and success at university were too complex to understand (Dawes et al., 1999).

Lourens and Smit (2003) found, in their study, that Grade 12 aggregate and major field of study were the most important predictors for the success of students in their firstyear level of study. They found, in their study, that only 20.96% (1016 out of 4848) of first-years passed all their subjects first time around.

2.3 Political environment

Taylor and Harris (2002) investigated the efficiency of the following universities: the University of Cape Town, the University of Durban-Westville, the University of the Orange Free State, the University of Port Elizabeth, Potchefstroom University for CHE, the University of Pretoria, Rand Afrikaans University, Rhodes University, the University of Stellenbosch, and the University of Zululand. Taylor and Harris (2002) found that the student numbers increased, from 1994 to 1997 for the ten universities, by an average of 4.7% (compound rate) per annum. They state that a university with high student numbers is generally associated with improved university efficiency. But the academic successes of students have no relationship to the efficiency of a university (Taylor \& Harris, 2002).

In the next chapter, the research design and methodology will be discussed.

Chapter 3

Research design and methodology

3.1 Statement of the problem

Completion of undergraduate studies by a student in three consecutive years will be defined as successful throughput in this study. The study explores factors or predictor variables that could contribute to students successfully completing their studies in the prescribed amount of time.

3.2 Aim of the study

The aim of the study was to model the probability of successful throughput with certain factors. The following factors were explored: gender, race, home language, Grade 12 aggregate, Grade 12 mathematics results, entering university directly after school and student registration before and after the 1994 elections in South Africa (first democratic election).

3.3 Objectives of the study

The objective of the study was to investigate the relationship between the factors (mentioned below) and successful throughput. The factors considered were: gender, race, home language, Grade 12 aggregate, Grade 12 mathematics results and time between school and university. Afterwards various modelling techniques (logistic regression and decision trees) were used to identify the factors that significantly predict successful throughput. The aim was, furthermore, to establish if the change in
the political arena, specifically the change after the democratic elections in 1994, had an influence on successful throughput.

3.4 Hypotheses

The following hypotheses were tested:

1. Females were more likely to complete their studies in the prescribed time than males.
2. African students were less likely to complete their studies in the prescribed time than non-African students.
3. Students who speak English as a home language were more likely to complete their studies in the prescribed time than non-English home language speaking students.
4. The throughput rate of students with Grade 12 aggregate symbols less than 60% was lower than those with Grade 12 aggregate symbols of 60% and above.
5. The throughput rate of students with Grade 12 mathematics symbols less than 60% was lower than those with Grade 12 mathematics symbols of 60% and above.
6. A relationship exists between throughput and a break between school and university studies.

3.5 Study design

The study design was a historical cohort (retrospective) study because historical student records were used. The cohorts under consideration were those who completed their studies within three years versus those who took longer than three years. The events like registration and completion of academic studies occurred prior to the start of the study.

3.6 Study population

The population for this study consisted of all students who had completed at least one semester of either Mathematical Statistics or Applied Statistics at the third-year level in the Department of Statistics at the University of the Western Cape. It did not matter if the student had failed the semester or repeated the semester in the next academic year. Students who registered for both semesters and obtained zero for both semesters were omitted from the study. The students who obtained zero for both semesters either did not deregister for the course or stopped attending lectures and completed no assignments, tests or exams. All transfer students from other institutions where omitted from the study. Transfer students, are students who have finished some of their subjects or academic year levels at an institution other than UWC, and then come and registered at UWC to continue their studies.

The entrance requirements for students to study Statistics at UWC are:

1. A matriculation exemption certificate issued by the Matriculation Board of the South African Universities' Vice Chancellors' Association (SAUVCA);
2. A pass of at least 40% in the higher grade or 50% in the standard grade examination for Mathematics; and
3. A pass of at least 40% in the higher grade or 50% in the standard grade examination for either Biology or Physical Science; or
4. An examination recognized by the Joint Matriculation Board for this purpose.

The duration of a B.Sc. degree in the Science Faculty at UWC is three years, with a time limit of five years for full-time study. Furthermore, the student has to obtain a minimum of 360 credits to obtain the degree. To major in Statistics, a student either starts in his/her first-year level with Statistics and then follows it through to third-year level, or starts in the second-year level and continues to third-year level. The option of starting from second-year level depends on the student passing first-year level university Mathematics (Science Faculty, 2004).

WESTERN CAPE
In 1987 and 1990, UWC introduced Mathematical Statistics and Applied Statistics up to a third-year level, respectively. Both courses were divided into two semesters. Students should pass both semesters of Mathematical Statistics or Applied Statistics at third-year level to major in Statistics. The Applied Statistics course contained theoretical elements with its application, but less emphasis is placed on mathematical ability. In 2002, the two courses were combined for various reasons, none of which are
relevant for the purpose of this study. Data were collected for these two courses from 1975 to 2004.

3.7 Sample size

Data on all students who completed at least one semester of third-year Statistics were collected. In total, 409 students met the criteria for inclusion.

3.8 Data collection

Data for this study were historic (retrospective) and were collected from the university records. The data were extracted internally from the UWC's mainframe database (secondary source) without the need for a research instrument. The database is maintained by UWC's Information and Communication Services (ICS). All student data generated during the normal academic enrolment, such as registration, student marks, year of completion, year of graduation, et cetera, were captured. The data were then stored in an ORACLE mainframe student database. With the permission of ICS, any academic staff member can request information regarding his or her students for research purposes.

Requested data can either be in paper or electronic format. The data were electronically mailed as an attachment in a print file format (PRN). The data were then imported into EXCEL. The variable names were assigned in EXCEL; for example, the variable name studnum was assigned to the student numbers in all the EXCEL files. The data in the EXCEL files were then imported into SAS.

The subject code 381311 for the first semester and subject code 381321 for the second semester were used for the Mathematical Statistics course. The subject codes 172315 and 381315 for the first semester, and subject codes 172325 and 381325 for the second semester were used for the Applied Statistics course. The reason why Applied Statistics had two codes for each semester was that subject codes 172315 and 172325 were used from 1990 until 1996. After 1996, the subject codes were changed from 172315 and 172325 to 381315 and 381325 respectively. The following information was requested on students who did the above subjects: student number, student surname, student initials, third-year academic year, third-year Statistics exam mark, third-year Statistics supplementary exam mark, third-year Statistics exam comment and third-year Statistics supplementary exam comment.

The Grade 12 data for all the students who did at least one semester of third-year Statistics were requested as follows: year matriculated, Grade 12 exemption, Grade 12 aggregate (average), Grade 12 mathematics grades, Grade 12 mathematics symbols. The following academic year-level results were requested: final undergraduate academic year at UWC, degree code, degree name, academic year-level results. For these students, the following personal data were requested: sex of the student, race of the student, home language of the student and date of birth in yyyymmdd format. The year of first enrolment (variable name begyear) was extracted from the student number.

3.9 Measurements

In the study, the outcome of interest was successful throughput. Successful throughput meant that the student should have completed his/her undergraduate studies in three consecutive years from the year of first-time enrolment. Students who took more than three years to complete their studies or dropped out were considered as unsuccessful throughput students.

The throughput response indicator variable was called through. The categorical random variable through is a nominal scale measurement with discrete data. A ' $\mathbf{1}$ ' indicates that a student successfully completed his/her studies in three consecutive years, and a ' 0 ' indicates that a student did not complete his/her studies in three consecutive years. The category labels for the variable through were defined as $1=$ "THROUGHPUT" and $0=$ "NON-THROUGHPUT".

The following variables were needed to determine the throughput response variable: the variable endyear indicated one of the following events - the final year the student completed his/her undergraduate study at UWC or the year the student dropped out at UWC or the student is still currently in the system at UWC in 2004. All years were recorded as four digits, for example, 1997, in the study. The variable begyear indicated the year the student first enrolled at UWC. A new variable, compl, was computed by subtracting begyear from endyear. This new variable, compl, gives the number of years a student studied at UWC. The values for compl are discrete. If the value in compl was equal to ' 3 ', then the student finished his/her studies in the prescribed time of three years.

The demographic variables which describe the students in the population were the variable gender, indicating the sex of the students, and the variable race, indicating which race group a student belonged to. The categories were: 'COLOURED', 'AFRICAN', 'INDIAN' and 'WHITE'. The variable homelang indicated the language the student spoke at home. The categories were 'AFRIKAANS', 'ENG \& AFR', 'ENGLISH', 'NORTH SOTHO', 'SOUTH SOTHO', 'SWATI', 'TSONGA', 'TSWANA', 'VENDA', 'XHOSA', 'ZULU' and 'OTHER'. A category was created for people who spoke both English and Afrikaans at home since Afrikaans was one of the two official languages during apartheid and both languages were spoken in many homes. It was assumed that the Africans only spoke their African languages at home and not a mixture of, for example, Xhosa and English.

School background information, such as Grade 12 aggregate and Grade 12 mathematics, was used in the study. The variable agg_sym indicated the Grade 12 aggregate (average) symbol. The categories were: 'A', 'B', 'C', 'D', 'E' and 'F'. The variable math $_$grd indicated the Grade 12 mathematics grade category of higher grade or standard grade. The categories were: 'H' for higher grade and ' \mathbf{S} ' for standard grade. The variable math_sym indicated the Grade 12 mathematics symbol. The categories were: 'A', 'B', 'C', 'D', 'E' and 'F'. As the Grade 12 mathematics symbols are related to higher grade and standard grade, a common scale was needed for comparison purposes. The variable commonl was used to transform the Grade 12 mathematics grades and Grade 12 mathematics symbols to a common scale, namely, that an ' \mathbf{A} ' on standard grade is equivalent to a ' \mathbf{B} ' on higher grade; a ' \mathbf{B} ' on standard
grade is equivalent to a ' \mathbf{C} ' on higher grade, and so forth. The categories were: ' \mathbf{A} ', ${ }^{\prime} \mathbf{B}$ ', ' \mathbf{C} ', 'D', 'E', 'F' and 'G'.

A logistic regression model was built using the following predictor variables. The variable gender was included. The variable race was categorized as follows: all the African students were grouped into a category "AFRICAN" and the Coloured, White and Indian students were categorized as "NON-AFRICAN", which formed the new predictor variable african. The category labels were: $1=$ "AFRICAN" and $0=$ "NONAFRICAN". This categorical random variable african is a nominal scaled measurement which was included in the modelling procedure.

The predictor variable english was created with all the English home language speaking students and the English and Afrikaans (speaking both languages) home language speaking students in one group versus all the other home language speaking students into the alternative group. The category labels were: $1=$ "ENGLISH" and $0=$ "NON-ENGLISH". The categorical random variable english is a nominal scaled measurement.

The predictor variable agg_grp was created using the academic background of a student entering UWC. The student either had a Grade 12 aggregate symbol of 60% and above (that is C and above) or below 60% (D and below). The category labels were: $1=" 60 \%$ AND ABOVE" (A, B and C) and $0=" B E L O W$ 60\%" (D, E and F). The categorical random variable agg_grp is an ordinal scaled measurement.

The predictor variable math grp was created using the commonl variable, which was divided into two groups. The student either had a Grade 12 mathematics symbol of 60% and above (that is C and above) or below 60% (D and below). The category labels were: $1=" 60 \%$ AND ABOVE" (A, B and C) and $0=$ "BELOW 60\%" (D, E, F and G). The categorical random variable math $g r p$ is an ordinal scaled measurement.

The predictor variable immediate indicated that the student had either enrolled at UWC immediately after leaving school (if the variable imed yrs is equal to one or zero) or after some years (if the variable imed yrs is more than one). The variable imed yrs was the number of years between school and entrance into university. If imed_yrs was equal to zero, it meant that the student had matriculated in the same year he/she enrolled at UWC. For example, the student had failed a subject in Grade 12, written a supplementary exam the following year, and then matriculated while enrolled at UWC in that same year. The variable imed yrs was calculated by subtracting the year the student matriculated (variable matyear) from the year the student enrolled for the first time (variable begyear). The values of variable imed yrs are discrete. In the variable imed_yrs, ' 1 ' meant a student had entered UWC immediately after school; ' $\mathbf{2}$ ' meant a student had entered university after one year, and so on. The categories of variable immediate were: 1= "DIRECTLY AFTER SCHOOL" and 0= "NOT DIRECTLY AFTER SCHOOL". The categorical random variable immediate is a nominal scaled measurement.

The years of first registration were grouped into two groups, namely: pre-democratic versus post-democratic election years. In this study, the pre-democratic election years were from 1975 to 1994, and the post-democratic election years were from 1995 to 2001.The predictor variable year_cov indicates pre-democratic election years and postdemocratic election years. The categorical labels were: 1="POST-ELECTION YEARS" and $0=$ "PRE-ELECTION YEARS". The categorical random variable year_cov is an ordinal scaled measurement which was included in the modelling procedure as a covariate. See Table 3.1 for an overview of the variables in the study.

3.10 Limitations of the study

All academic years follow a calendar year. A student who finished in three and half years was recorded as finishing in four years. If a student repeated a subject, the highest mark obtained over all the years the student repeated the subject was recorded. Students who registered for both semesters but did not attend class, did not write examinations, and had no course mark for either semester were excluded from the study. Verification of the data was not required as it was requested from the UWC student database, which is assumed to be correct. There are cases where the information concerning Grade 12 results are missing, for example the Grade 12 aggregate. The study does not investigate the throughput of students who major in Statistics because the sample would then become too small for modelling purposes.

Table 3.1 Table of variable names

University of the
Western Cape

Library

(WH (IIIRRAR)

Website: http://www.uwc.ac.za/library

Monday, Tuesday and Thursday: UN O8h20-22h00f the WESTERN CAPE

Wednesday:
09h20-22h00
Friday:
08h20-16h30
Saturday:
09h00-17h00

Extended hours during Exam times and vacation periods

> Private Bag X17,
> Bellville, 7535
> Cape Town, SA
> Tel: 0219592209
> Fax: 0219592659

Services and Collections:

LEVEL 1
Auditorium LEVEL 2
Study Hall LEVEL 4
Interlibrary Loan LEVEL 5 Circulation desk

Reserve Collection

Photocopying LEVEL 6 Information Services
(Faculty Librarians) Theses, Indexes and

Abstracts LEVEL 7
Multimedia Centre
Open Shelves LEVEL 8
Open Shelves LEVEL 9
Law Collection LEVEL 10 Periodicals Ha LEVELTITMIM

Government publications
UWC publications
WES LEVEL 33 CAPE
Postgraduate Resource Centre LEVEL 14
Open Shelves
Electronic Resources
The Library provides access, via its website,
to online databases, ejournals and other
web resources
http://www.uwc.ac.za/library
Library Information Literacy Programme The Library offers the following user education for students and staff:

- Databases Training
- Basic Search Skills Training
- Workshops for Postgraduates
- Workshops for Academic Staff
- Introduction to eResources.
and lots more!
You may contact a Faculty Librarian or the eResources and Training Librarian to book a place in one of our sessions.

Watch the library's website and
notice boards for more information.

3.11 Data analysis

The data requested were imported from a text file into Microsoft EXCEL. The SAS software was used to transform data into a format ready for analysis. The data were analyzed using descriptive statistics, frequencies and cross tabulations. Associations between nominal scaled variables were tested using Chi-Square or Fisher's Exact Tests. Models were built using logistic regression and decision trees.

In the next chapter, the analysis of the results will be reported.

Chapter 4

Analyses and results

4.1 Demographic background of students

The study consisted of 409 students who enrolled from 1975 to 2001 and who completed at least one semester of Statistics at third-year level (see Table A7, Appendix A). The study was comprised of 117 males (43.28%) and 232 females (56.72\%) (see Table A1 in Appendix A). There were 230 African students (56.23\%), 156 Coloured students (38.14\%), 22 Indian students (5.38\%) and one White student (0.24\%) (see Table A2 in Appendix A). The most common home language spoken by students was Xhosa (32.52\%), followed by English and Afrikaans (22.49 + 8.56= $31.05 \%)$. The following languages were spoken the least, in decreasing order - Venda (1.96\%), Tonga (1.47\%) and Swati (1.22\%) (see Table 4.1 and Table A3 in Appendix A).

Table 4.1 List of home languages

Home language	Frequency	Percentage
Xhosa	133	32.52
English	92	22.49
Afrikaans	51	12.47
English and Afrikaans (both)	35	8.56
Tswana	30	7.33
South Sotho	17	4.16
Zulu	12	2.93
North Sotho	12	2.93
Other	8	1.96
Venda	8	1.96
Tsonga	6	1.47
Swati	5	1.22

4.2 Third-year Statistics course

In the study, $205(50.12 \%)$ students registered for the Mathematical Statistics course and 204 (49.88\%) for the Applied Statistics course (see Table A21 in Appendix A). Of the 409 students, 361 (88.26%) passed both semesters and majored in Statistics (see Table A23 in Appendix A). The students who did not major in Statistics (11.74\%) either failed both semesters (3.18\%) or passed only one semester of third-year Statistics (8.56\%) (see Table A22 in Appendix A).

4.3 Number of years to complete studies

More than 50% of the students $(29.83+24.45=54.28 \%)$ took between four and five years to complete their studies (see Table A9 in Appendix A). The average number of years they took to complete their studies was five years; the median was four years (see Table A10 in Appendix A).

4.4 Grade 12 results

4.4.1 Aggregate

Most students entered UWC with a ' D ' aggregate (46.53\%) (see Table 4.2 and Table A12 in Appendix A). Of 404 students, 134 (33.18\%) students achieved an aggregate of 60% and above. From Table 4.2, it can be seen that 82 (20.3\%) students entered UWC with an aggregate below a D (less than 50%).

Table 4.2 Grade 12 aggregates

Symbol	Frequency	Percentage
A	2	0.50
B	26	6.44
C	106	26.24
D	188	46.53
E	78	19.31
F	4	0.99

Note: Five missing values.

4.4.2 Mathematics

In the study, 198 students (48.89%) had taken mathematics on the higher grade, and 207 students (51.11\%) had completed Grade 12 mathematics on the standard grade (note: four missing values) (see Table A14 in Appendix A). The majority of students entered UWC with an ' E ' symbol in mathematics on the higher grade or a ' D ' symbol on the standard grade (see Table 4.3). There were 32 students who entered UWC with symbols less than the requirement stipulated in the Science Faculty yearbook. Only 4 students had an 'A' symbol on the higher grade (see Table 4.3). The common scale was created for comparison purposes between the higher grade and the standard grade. An ' A ' on the standard grade was set equivalent to a ' B ' on the higher grade. There were 27 students who had an 'A' on the standard grade. These 27 students plus the 17 students with ' B ' symbols on the higher grade add up to 44 students on the common scale. From Table 4.4, we can see that the majority of students (38.71\%) had an ' E ' symbol on the common scale.

Table 4.3 Mathematics symbols

Symbol	Higher grade count	Standard grade count
A	4	27
B	17	38
C	26	45
D	58	64
E	92	24
F	0	8

Note: Six missing values.

4.5 Response variable

In the study of 409 students, 86 students (21.03\%) finished their studies successfully in the prescribed time of three years (see Table A11 in Appendix A). The other 323 students (78.97%) either took more than three years to finish their studies or dropped out or are still currently registered (see Figure 4.1).

Figure 4.1

4.6 Predictor variables

In this section, the distribution of the predictors will be described (see Table 4.5). The predictor variable african had 230 African students (56.23\%) and 179 non-African students (43.77\%) (see Table A4 in Appendix A). There were 127 English home language speaking students (31.05%) and 282 non-English home language speaking students (68.95\%) (see Table A5 in Appendix A). From Figure 4.2, it can be seen there were 134 students (33.17%) who had a Grade 12 aggregate of 60% and above, and 270 students (66.83%) who had a Grade 12 aggregate below 60% (note: 5 missing values) (see Table A13 in Appendix A). There were 112 students (27.79\%) who had a common-scale Grade 12 mathematics symbol of 60% and above, and 291 students (72.21\%) who had a Grade 12 mathematics symbol below 60% (note: 6 missing values) (see Table A18 in Appendix A). There were 238 students (58.19\%) who entered UWC immediately after school, and 171 students (41.81\%) who had a break of some years before they enrolled at UWC (see Table A20 in Appendix A). There were 213 students (52.08\%) who enrolled at UWC for the first time after the 1994 democratic election, and 196 students (47.92\%) who were enrolled for the first time before the 1994 democratic election (see Table A8 in Appendix A).

Figure 4.2

II LI II A II C II II
4.7 Throughput associations (refer to Table 4.6)

4.7.1 Gender

The rate of successful throughput, given it was a female, was $30 / 177$ (16.95\%) compared to the rate of successful throughput, given that it was a male, was 56/232
(24.14\%). The throughput among gender did not differ at a 5% level of significance (Chi-square test, $\chi^{2}=3.1246 ; p$-value $=0.0771$) (see Table A24 in Appendix A).

4.7.2 African

The probability of successful throughput, given an African, was $40 / 230$ (17.39\%), and the probability of successful throughput, given a non-African, was 46/179 (25.70\%). Non-African students had a significantly higher throughput rate compared to African students (Chi-square test, $\chi^{2}=4.1831 ; p$-value $=0.0408$) (see Table A25 in Appendix A).

4.7.3 English

Only 36 of 127 English-speaking students (28.35\%) were successful in completing their studies in the prescribed time of three years, compared to 50 of 282 non-Englishspeaking students (17.73%) who had completed their studies in the prescribed time of three years. The English-speaking students had a significantly higher throughput rate compared to the non-English students $\left(\right.$ Chi-square test, $\chi^{2}=5.9428 ; p$-value $\left.=0.0148\right)$ (see Table A26 in Appendix A).

4.7.4 Aggregate

The probability of successful throughput, given the students' aggregate symbol was 60% and above, was $43 / 134(32.09 \%)$ versus the probability of successful throughput, given the students' symbol was below 60%, was $43 / 270$ (15.93%). The students with an aggregate symbol of 60% and above had a significantly higher throughput rate than those students who had an aggregate symbol below 60% (Chi-square test, $\chi^{2}=$ 13.9637; p-value $=0.0002$) (see Table A27 in Appendix A).

4.7.5 Mathematics

In the 60%-and-above group for mathematics, the rate of successful throughput was 32/112 (28.57\%) and the rate for the below-60\% group was 53/291 (18.21\%). The throughput rate of students whose symbols were 60% and above for mathematics was significantly higher than those who had below 60% for mathematics on a common scale (Chi-square test, $\chi^{2}=5.2138 ; p$-value $\left.=0.0224\right)$ (see Table A28 in Appendix A).

4.7.6 Immediately

The rate of successful throughput of the student who entered UWC immediately after school was 44 out of 238 (18.49%) compared to the rate of successful throughput of those who did not enter UWC immediately after school, which was 42 out of 171 (24.56%). The break between school and university did not significantly influence the throughput rate (Chi-square test, $\chi^{2}=2.2108 ; \mathrm{p}$-value $=0.1370$) (see Table A29 in Appendix A).

4.7.7 Year covariate

The probability of successful throughput of those who registered after the 1994 election was $61 / 213$ (28.64%) compared to the probability before the 1994 election, which was $25 / 196(12.76 \%)$. The throughput rate increased significantly after the 1994 elections (Chi-square test, $\chi^{2}=15.5076 ;$ p-value $=<0.0001$) (see Table A30 in Appendix A).

Table 4.5 Throughput versus predictor associations

Predictor	Chi-square p-value	Conclusion
Year covariate	<0.0001	Significant
Aggregate	0.0002	Significant
English	0.0148	Significant
Mathematics	0.0224	Significant
African	0.0408	Significant
Gender	0.0771	Non-significant
Immediately	0.1370	Non-significant

Note: The conclusion column is based upon a significance level of 5%.

Table 4.5 is a summary of the Chi-square p-values of all the predictors. As can be seen, the highest significant predictor with successful throughput was the Year
covariate, followed by the Aggregate predictor. The predictors Gender and Immediately were not significantly related to successful throughput. The table below gives a global view of throughput cross tabulated with all the predictors.

Table 4.6 Probability of throughput given predictor
(refer to Tables A24 to Table A30 in Appendix A)

Note: 1. All the percentages in brackets are row percentages.
2. * Significant at a 5% level.
3. ** Significant at a 1% level.

4.8 Predictor associations

4.8.1 Gender

The Gender predictor variable was highly significant with the African predictor variable (Chi-square test, $\chi^{2}=10.9705 ; p$-value $=0.0009$) (see Table A31 in Appendix A). From Table A31, it can be seen that there were more black female students.

A significant association exists between Gender and Aggregate (Chi-square test, $\chi^{2}=$ 4.5884; p-value $=0.0322$) (see Table A33 in Appendix A). There were 143 males (62.45\%) and 127 female (72.57%) who had an aggregate below 60%. There were 86 males (37.55\%) and 48 females (27.43%) who had an aggregate of 60% and above.

Gender with the Mathematics predictor was highly significantly associated (Chi-square test, $\chi^{2}=11.1790 ; p$-value $=0.0008$) (see Table A34 in Appendix A). In the category of 60% and above, there were more males (34.36\%) than females (19.32\%).

The gender difference between those who entered UWC immediately after school and those who did not was significant (Chi-square test, $\chi^{2}=9.2142 ; \mathrm{p}$-value $=0.0024$) (see Table A35 in Appendix A). More females (66.67\%) than males (51.72\%) enrolled at UWC directly after school.

4.8.2 African

A highly significant difference between the African and the non-African who speak the English language at home can be seen (Chi-square test, $\chi^{2}=223.605$; p-value $=<0.0001$). (see Table A37 in Appendix A). There are only two non-Africans who speak English at home.

The Aggregate and African predictors are highly significantly associated with each other (Chi-square test, $\chi^{2}=94.2142 ; \mathrm{p}$-value $=<0.0001$) (see Table A38 in Appendix A). Most of the African students in the study attained an aggregate below 60\% (196 out 404 students). There were 105 non-African students who had an aggregate of 60% and above compared to only 29 African students.

Mathematics was also significantly associated with the African predictor (Chi-square test, $\chi^{2}=45.5008 ; \mathrm{p}$-value $=<0.0001$) (see Table A39 in Appendix A). The majority of African students (194 out of 403 students) had a mathematics result on the common scale below 60%.

The difference between African and non-African students entering UWC immediately after school was highly significant (Chi-square test, $\chi^{2}=12.9939 ; p$-value $=0.0003$) (see Table A40 in Appendix A). More African students (49.57\%) than non-African students (31.84%) did not enter UWC directly after school. Sixty-eight percent of nonAfrican and 50.43\% African students entered UWC immediately after school.

4.8.3 English

The English predictor with Aggregate was highly significantly associated (Chi-square test, $\chi^{2}=40.2588 ; \mathrm{p}$-value $=<0.0001$) (see Table A42 in Appendix A). More nonEnglish home language speaking students (213 out of 404 students) entered UWC with an aggregate below 60%.

The difference between English and non-English home language speaking students, when comparing their mathematics results on a common scale, was significant (Chisquare test, $\chi^{2}=8.2615 ; p$-value $=0.0040$) (see Table A43 in Appendix A). More nonEnglish home language speaking students (212 out of 403) had results below 60% for mathematics on the common scale.

4.8.4 Aggregate and mathematics

The Aggregate and Mathematics predictors were highly significantly related to each other (Chi-square test, $\chi^{2}=55.6667 ; p$-value $=<0.0001$) (see Table A46 in Appendix A). More than fifty percent (222 out of 398) of the students in the study had an aggregate below 60% and were in the below- 60% group for mathematics. In the below- 60% aggregate group, there were five times more students who had below 60% for mathematics compared to the students who had 60% and above on the common scale for mathematics. In the 60%-and-above aggregate group, there was not much difference between those who had a mathematics result below 60% compared to those who had 60% and above.

4.8.5 Immediately and Year covariate

The association between the predictor Immediate and the Year covariate was significant (Chi-square test, $\chi^{2}=4.0702 ; \mathrm{p}$-value $=0.0436$) (see Table A51 in Appendix A). In the era after the 1994 elections, 134 students enrolled directly after school at UWC, compared to the 104 students who entered in the era before the 1994 elections. The enrolment of students not entering UWC directly after school, dropped from 92 students (in the era before 1994) to 79 students (in the era after 1994). Table 4.7 is a summary of all the predictor associations.

Table 4.7 Predictor associations
(refer to Table A31 to Table A51 in Appendix A)

Chi-square p-value	Gender	African	English	Aggregate	Mathematics	Immediately	Year covariate
Gender		$0.0009^{* *}$	0.1333	0.0322^{*}	$0.0008^{* *}$	$0.0024^{* *}$	0.0780
African			$<0.0001^{* *}$	$<0.0001^{* *}$	$<0.0001^{* *}$	$0.0003^{* *}$	0.1010
English				$<0.0001^{* *}$	$0.0040^{* *}$	0.0487	0.5019
Aggregate					$<0.0001^{* *}$	0.6095	0.4781
Mathematics					0.1994	0.1089	
Immediately					0.0436^{*}		
Year covariate							

Note: 1. * Significant at a 5% level.
2. ${ }^{* *}$ Significant at a 1% level.

Table 4.7 is a summary of Chi-square p-values of the predictor associations. The predictor Gender was significantly associated with the predictors African, Aggregate, Mathematics and Immediately. The predictor African was significantly associated with the predictors English, Aggregate, Mathematics and Immediately. The predictor English was significantly associated with the predictors Aggregate, Mathematics and Immediately. The predictor Aggregate was highly significantly associated with Mathematics. The predictor Immediately and the Year covariate were highly significantly associated with each other.

4.9 Logistic regressions of throughput - single predictors

In the next section, a logistic regression model for each predictor variable was built. Each model was evaluated by the percentage observations correctly predicted by the model. All models were evaluated at a probability threshold of 0.22 for comparison purposes.

4.9.1 Gender model (refer to Table 4.8 and Table B1 in Appendix B)

The logistic regression model for throughput using Gender as a predictor was:
\ln [odds of throughput given Gender] $=\ln \left[\frac{p}{1-p}\right]$

$$
=-1.3671-0.2220 * \text { gender }
$$

Taking the exponential both sides in the above equation, we get the odds:
$\frac{p}{1-p}=\mathrm{e}^{(-1.3671-0.2220 * \text { gender })}=\mathrm{e}^{(-1.3671)} * \mathrm{e}^{(-0.2220 * \text { gender })}$.
The odds of successful throughput, given it was a female (gender $=1$), was $\mathrm{e}^{(-1.3671)} * \mathrm{e}^{(-0.2220 * 1)}=0.2548 * 0.8009=0.204$ (i.e. $30 / 147$ from Table 4.8), and the odds of successful throughput, given that it was male (gender $=-1$), was $\mathrm{e}^{(-1.3671)} * \mathrm{e}^{(-0.2220 *-1)}=0.2548 * 1.2486=0.318$ (i.e. $56 / 176$ from Table 4.8).

Comparing the above two odds, we see that the odds of successful throughput, given a male, was higher.

Making p the subject of the formula, we get the estimated probability $p=\left(1+\mathrm{e}^{-(-1.3671-0.2220 * \text { gender })}\right)^{-1}$. Thus, the estimated probability of successful throughput, given it was a female (gender $=1$), was
$\left(1+\mathrm{e}^{-(-1.3671-0.2220 * 1)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.5891)}\right)^{-1}=(1+4.8993)^{-1}=(5.8993)^{-1}=0.1695$,
and the estimated probability of successful throughput, given it was a male (gender $=-1$), was
$\left(1+\mathrm{e}^{-\left(-1.3671-0.2220^{*-1}\right)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.1451)}\right)^{-1}=(1+3.1426)^{-1}=(4.1428)^{-1}=0.2414$

The above two estimated probabilities correspond to the row percentages in Table 4.6. Comparing the above two estimated probabilities, we see the estimated probability of successful throughput for a male was higher.

The Gender model correctly predicted 49.6% of the observations at a probability level of 0.22 . For a probability level of 0.16 , the model correctly predicted only 21% of the observations.

4.9.2 African model (refer to Table 4.8 and Table B2 in Appendix B)

The logistic regression model for throughput using African as a predictor was:
\ln [odds of throughput given African] $=\ln \left[\frac{p}{1-p}\right]$

$$
\text { WAV } \mathrm{F} \subset T \mathrm{C}=-1.0616-0.4964 * \text { african. }
$$

Taking the exponential both sides in the above equation we get the odds:

$$
\frac{p}{1-p}=\mathrm{e}^{(-1.0616-0.4964 * \text { african })}=\mathrm{e}^{(-1.0616) *} \mathrm{e}^{(-0.4964 * \text { african })}
$$

The odds of successful throughput, given it was an African (african = 1), was $\mathrm{e}^{(-1.0616) *} \mathrm{e}^{\left(-0.4964 *^{1}\right)}=0.3459 * 0.6087=0.211$ (i.e. $40 / 190$ from Table 4.8) and the odds of successful throughput, given that it was non-African (african $=0$), was $\mathrm{e}^{(-1.0616)} * \mathrm{e}^{(-0.4964 * 0)}=0.3459$ (i.e. $46 / 133$ from Table 4.8).

Comparing the above two odds, we see that the odds of successful throughput, given a non-African, was higher.

Making p the subject of the formula, we get the estimated probability

$$
p=\left(1+\mathrm{e}^{-(-1.0616-0.4964 * \text { african })}\right)^{-1} .
$$

Thus, the estimated probability of successful throughput, given it was an African (african =1), was
$\left(1+\mathrm{e}^{-(-1.0616-0.4964 * 1)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.5584)}\right)^{-1}=(1+4.7512)^{-1}=(5.7512)^{-1}$ $=0.1739$
and the estimated probability of successful throughput, given it was a non-African (african $=0$), was
$\left(1+\mathrm{e}^{-(-1.0616-0.4964 * 0)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.0617)}\right)^{-1}=(1+2.8913)^{-1}=(3.8913)^{-1}$ $=0.2570$.

The above two estimated probabilities correspond to the row percentages in Table 4.6. Comparing the above two estimated probabilities, we see the estimated probability of successful throughput for a non-African student was higher.

The African model correctly predicted 57.7% of the observations at a probability level of 0.22 . For a probability level of 0.16 , the model correctly predicted only 21% of the observations.

4.9.3 English model (refer to Table 4.8 and Table B3 in Appendix B)

The logistic regression model for throughput using English as a predictor was:
$\begin{aligned} \ln \text { [odds of throughput given English] } & =\ln \left[\frac{p}{1-p}\right] \\ & =-1.5347+0.6074 * \text { english } .\end{aligned}$
Taking the exponential both sides in the above equation, we get the odds:

$$
\frac{p}{1-p}=\mathrm{e}^{(-1.5347+0.6074 * \text { english })}=\mathrm{e}^{(-1.5347)} * \mathrm{e}^{(0.6074 * \text { english })}
$$

The odds of successful throughput, given it was an English (english=1), was
$\mathrm{e}^{(-1.5347)} * \mathrm{e}^{(0.6074 * 1)}=0.2155 * 1.8357=0.396$ (i.e. $36 / 91$ from Table 4.8), and the odds of successful throughput, given that it was a non-English (english=0), was $\mathrm{e}^{(-1.5347)} * \mathrm{e}^{(0.6074 * 1)}=0.2155$ (i.e. $50 / 232$ from Table 4.8). Comparing the above two odds, we see that the odds of successful throughput for an English speaking student was higher.

Making p the subject of the formula, we get the estimated probability

$$
p=\left(1+\mathrm{e}^{-(-1.5347+0.6074 * \text { english })}\right)^{-1} .
$$

Thus, the estimated probability of successful throughput, given it was an English (english=1), was

$$
\begin{aligned}
& \left(1+\mathrm{e}^{-(-1.5347+0.6074 * 1)}\right)^{-1}=\left(1+\mathrm{e}^{-(-0.9273)}\right)^{-1}=(1+2.5277)^{-1}=(3.5277)^{-1} \\
& =0.2835,
\end{aligned}
$$

and the estimated probability of successful throughput, given that it was a non-English (english=0), was

$$
\left(1+\mathrm{e}^{-(-1.5347+0.6074 * 0)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.5347)}\right)^{-1}=(1+4.64)^{-1}=(5.64)^{-1}=0.1773 .
$$

The above two estimated probabilities correspond to the row percentages in Table 4.6. Comparing the above two estimated probabilities, we see the estimated probability of successful throughput for an English speaking student was higher.

The English model correctly predicted 65.5% of the observations at a probability level of 0.22 . For a probability level of 0.16 , the model correctly predicted only 21% of the observations.

4.9.4 Aggregate model (refer to Table 4.8 and Table B4 in Appendix B)

The logistic regression model for throughput using Aggregate as a predictor was:
\ln [odds of throughput given Aggregate] $=\ln \left[\frac{p}{1-p}\right]$

$$
=-1.6637+0.9141 * \text { agg_grp }
$$

Taking the exponential both sides in the above equation we get the odds:

$$
\left.\frac{p}{1-p}=\mathrm{e}^{\left(-1.6637+0.9141 * \text { agg } _g r p\right)}=\mathrm{e}^{(-1.6637}\right) * \mathrm{e}^{\left(0.9141 * \text { agg } _g r p\right)}
$$

The odds of successful throughput, given an aggregate of 60% and above (agg_grp $=$ 1), was $\mathrm{e}^{(-1.6637)} * \mathrm{e}^{(0.9141 * 1)}=0.1894 * 2.4945=0.473$ (i.e. $43 / 91$ from Table 4.8), and the odds of successful throughput, given an aggregate below 60\% (agg_grp $=0$), was $\mathrm{e}^{(-1.6637)} * \mathrm{e}^{(0.9141 * 0)}=0.1894$ (i.e. $43 / 227$ from Table 4.8).

Comparing the above two odds, we see that the odds of successful throughput, given that the Aggregate was 60% and above, was higher.

Making p the subject of the formula, we get the estimated probability

$$
p=\left(1+\mathrm{e}^{-(-1.6637+0.9141 * \text { agg } g r p)}\right)^{-1} .
$$

Thus, the estimated probability of successful throughput, given an aggregate of 60% and above (agg $g r p=1$), was
$\left(1+\mathrm{e}^{-\left(-1.6637+0.9141^{* 1}\right)}\right)^{-1}=\left(1+\mathrm{e}^{-(-0.7497)}\right)^{-1}=(1+2.1164)^{-1}=(3.1164)^{-1}=0.3209$, and the estimated probability of successful throughput, given an aggregate below 60% (agg_grp $=0$), was
$\left(1+\mathrm{e}^{-(-1.6637+0.9141 * 0)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.6637)}\right)^{-1}=(1+5.2788)^{-1}=(6.2788)^{-1}$ $=0.1593$.

The above two estimated probabilities correspond to the row percentages in Table 4.6. Comparing the above two estimated probabilities, we observed that the estimated probability of successful throughput for an aggregate of 60% and above was higher.

The Aggregate model correctly predicted 66.8% of the observations at a probability level of 0.22 . For a probability level of 0.14 , the model correctly predicted only 21.3% of the observations.

4.9.5 Mathematics model (refer to Table 4.8 and Table B5 in Appendix B)

The logistic regression model for throughput using Mathematics as a predictor was:
\ln [odds of throughput given Mathematics] $=\ln \left[\frac{p}{1-p}\right]$

$$
=-1.5020+0.5857 * \text { math_grp } .
$$

Taking the exponential both sides in the above equation, we get the odds:

$$
\frac{p}{1-p}=\mathrm{e}^{\left(-1.5020+0.58577^{\text {math_grp })}\right.}=\mathrm{e}^{(-1.5020)} * \mathrm{e}^{(0.5857 * \text { math_grp })} .
$$

The odds of successful throughput, given mathematics was 60% and above, (math grp $=1)$ was $\mathrm{e}^{(-1.5020)} * \mathrm{e}^{(0.5857 * 1)}=0.2227 * 1.7962=0.4$ (i.e. $32 / 80$ from Table 4.8), and the odds of successful throughput, given mathematics was below 60% (math $g r p=0$), was $\mathrm{e}^{(-1.5020)} * \mathrm{e}^{\left(0.5857^{*} 0\right)}=0.2227$ (i.e. $53 / 238$ from Table 4.8). Comparing the above two odds, we see that the odds of successful throughput, given mathematics was 60% and above, was higher.

Making p the subject of the formula, we get the estimated probability $p=\left(1+\mathrm{e}^{-\left(-1.5020+0.5857 \text { * math }^{\text {grp }}\right)}\right)^{-1}$.

Thus, the estimated probability of successful throughput, given mathematics was 60% and above (math_grp $=1$), was
$\left(1+\mathrm{e}^{-\left(-1.5020+0.5857{ }^{*} 1\right)}\right)^{-1}$
$=\left(1+\mathrm{e}^{-(-0.9163)}\right)^{-1}=(1+2.5)^{-1}=(3.5)^{-1}=0.2857$,
and the estimated probability of successful throughput, given mathematics was below 60% (math $g r p=0$), was
$\left(1+\mathrm{e}^{-(-1.5020+0.5857 * 0)}\right)^{-1}$
$=\left(1+\mathrm{e}^{-(-1.5020)}\right)^{-1}=(1+4.4907)^{-1}=(5.4907)^{-1}=0.1821$
The above two estimated probabilities correspond to the row percentages in Table 4.6.
Comparing the above two estimated probabilities, we observed that the estimated probability of successful throughput for mathematics at 60% and above was higher.

The Mathematics model correctly predicted 67% of the observations at a probability level of 0.22 . For a probability level of 0.16 , the model correctly predicted only 21.1% of the observations.

4.9.6 Immediately model (refer to Table 4.8 and Table B6 in Appendix B)

The logistic regression model for throughput using Immediately as a predictor was:
\ln [odds of throughput given Immediately] $=\ln \left[\frac{p}{1-p}\right]$

$$
=-1.1221-0.3615 * \text { immediate } .
$$

Taking the exponential both sides in the above equation, we get the odds:
$\frac{p}{1-p}=\mathrm{e}^{(-1.1221-0.3615 * \text { immediate })}=\mathrm{e}^{(-1.1221) * \mathrm{e}^{(-0.3615 * \text { immediate })} .}$

The odds of successful throughput given entering UWC directly after school $($ immediate $=1)$ was $\mathrm{e}^{(-1.1221)} * \mathrm{e}^{(-0.3615 * 1)}=0.3256 * 0.6966=0.227$ (i.e. $44 / 194$ from

Table 4.8), and the odds of successful throughput, given not entering UWC directly after school (immediate $=0$), was $\mathrm{e}^{(-1.1221)} * \mathrm{e}^{(-0.3615 * 0)}=0.3256$ (i.e. $42 / 129$ from Table 4.8). Comparing the above two odds, we see that the odds of successful throughput, given not entering UWC directly after school, was higher.

Making p the subject of the formula, we get the estimated probability $p=\left(1+\mathrm{e}^{-(-1.1221-0.3615 * \text { immediate })}\right)^{-1}$

Thus, the estimated probability of successful throughput, given entering UWC directly after school (immediate $=1$), was $\left(1+\mathrm{e}^{-\left(-1.1221-0.3615^{*} 1\right)}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.4837)}\right)^{-1}=(1+4.4092)^{-1}=(5.4092)^{-1}$ $=0.1849$,
and the estimated probability of successful throughput, given not entering UWC directly after school (immediate $=0$), was

$$
\begin{aligned}
& \left(1+\mathrm{e}^{-\left(-1.1221-0.3615^{*} 0\right.}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.1221)}\right)^{-1}=(1+3.0713)^{-1}=(4.0713)^{-1} \\
& =0.2456
\end{aligned}
$$

The above two estimated probabilities correspond to the row percentages in Table 4.6. Comparing the above two estimated probabilities, we see the estimated probability of successful throughput for not entering UWC directly after school was higher.

The Immediately model correctly predicted 57.7% of the observations at a probability level of 0.22 . For a probability level of 0.18 , the model correctly predicted only 21% of the observations.

4.9.7 Year covariate model (refer to Table 4.8 and Table B7 in Appendix B)

The logistic regression model for throughput using the Year covariate as a predictor was: \ln [odds of throughput given Year covariate $]=\ln \left[\frac{p}{1-p}\right]$
WESTERN =-1.9228+1.0098* year_cov

Taking the exponential both sides in the above equation, we get the odds:

$$
\frac{p}{1-p}=\mathrm{e}^{\left(-1.9228+1.0098 * \text { year } r_{-} \text {cov }\right)}=\mathrm{e}^{(-1.9228)} * \mathrm{e}^{(1.0098 * \text { year_cov })}
$$

The odds of successful throughput for enrolments after the 1994 election (year_cov $=1$) was
$\mathrm{e}^{(-1.9228)} * \mathrm{e}^{(1.0098 * 1)}=0.1462 * 2.7451=0.401$ (i.e. $61 / 152$ from Table 4.8), and the odds of successful throughput for enrolments before 1994 election (year_cov $=0$) was
$\mathrm{e}^{(-1.9228)} * \mathrm{e}^{(1.0098 * 0)}=0.1462$ (i.e. $25 / 171$ from Table 4.8). Comparing the above two odds, we see that the odds of successful throughput, given post-election, was higher. Making p the subject of the formula, we get the estimated probability $p=\left(1+\mathrm{e}^{-(-1.9228}\right.$ $+1.0098 *$ year_cov $\left._{-}\right)^{-1}$

Thus, the estimated probability of successful throughput for enrolments after 1994 election (year_cov $=1$) was $\left(1+\mathrm{e}^{-(-1.9228+1.0098 * 1)}\right)^{-1}=\left(1+\mathrm{e}^{-(-0.9130)}\right)^{-1}$ $=(1+2.4918)^{-1}=(3.4918)^{-1}=0.2864$,
and the estimated probability of successful throughput for enrolments before the 1994 election (year_cov $=0$) was
$\left(1+\mathrm{e}^{-(-1.9228+1.0098 * 0}\right)^{-1}=\left(1+\mathrm{e}^{-(-1.9228)}\right)^{-1}=(1+6.8401)^{-1}=(7.8401)^{-1}=0.1275$
The above two estimated probabilities correspond to the row percentages in Table 4.6. Comparing the above two estimated probabilities, we observed that the estimated probability of successful throughput for enrolments after the 1994 election was higher.

The Year covariate model correctly predicted 56.7% of the observations at a probability level of 0.22 . For a probability level of 0.12 , the model correctly predicted only 21% of the observations. Table 4.8 for gives a summary of all the single predictor variables.

Table 4.8 Throughput logistic regression models for the seven predictors
(refer to Table B1 to Table B7 in Appendix B)

Note: 1. Males are equal to -1 because the variable gender is a string variable.
2. Odds Ratio (OR) is Odds of throughput divided by Odds of nonthroughput.

After having evaluated the individual predictor models, the next step was to use either all or some of the predictors in one model. Three models were evaluated: the full model with all predictor variables, the full model without the Year covariate and the stepwise selection model.

4.10 Logistic regression of throughput - many predictors

4.10.1 Full logistic regression model

\ln [odds of throughput given all the predictors] $=\ln \left[\frac{p}{1-p}\right]$
$=-2.5021-0.1942 *$ gender $+0.2054 *$ african $+0.5922 *$ english +
$0.68869 *$ agg_grp $+0.4032 *$ math_grp $-0.4343 *$ immediate $+1.1449 *$ year_cov

From the p-values of the parameters, it was seen that only the intercept
(<0.0001), the aggregate (0.0256) and the year_cov (<0.0001) were significant in the full model (see Table C1 Appendix C).
University of the

The full model correctly predicted 68.3% of the observations at a probability level of 0.22 . For a probability level of 0.04 , the model correctly predicted only 21.4% of the observations (see Table C1 in Appendix C). In the next model, the Year covariate was removed to evaluate the effect it had on the full model.

4.10.2 Full logistic regression model without the year covariate

\ln [odds of throughput given all predictors without the Year covariate] $=\ln \left[\frac{p}{1-p}\right]$
$=-1.9869-0.186 *$ gender $+0.3801 *$ african $+0.6022 *$ english +
0.8117 * agg_grp $+0.2545 *$ math $g r p-0.2899 *$ immediate.

From the p-values of the parameters, it was seen that only the intercept (<0.0001) and Aggregate (0.0071) were significant in the model (see Table D1 Appendix D).

The model correctly predicted 64.1% of the observations at a probability level of 0.22 .
For a probability level of 0.06 , the model correctly predicted only 21.4% of the observations (see Table D1 in Appendix D). In the next model, the stepwise selection method was applied to select the best variables for the model.

4.10.3 Stepwise logistic regression model

\ln [odds of throughput given aggregate and year_cov predictors] $=\ln \left[\frac{p}{1-p}\right]$
$=-2.2755+0.9374 *$ agg_grp $+0.9964 *$ year_cov

The model correctly predicted 76.1% of the observations at a probability level of 0.22 . For a probability level of 0.08 , the model correctly predicted only 21.4% of the observations (see Table E1 in Appendix E).

Table 4.9 Evaluations of predictive abilities of models

Model	\% Correctly predicted
Stepwise selection model (with only Year covariate and Aggregate)	76.1
Full model	68.3
Mathematics	67
Aggregate	66.8
Year covariate	56.7
English	65.5
Full model without Year covariate	64.1
African	57.7
Immediately	57.7
Gender	49.6

Note: All models evaluated at probability threshold of 0.22

Table 4.9 gives a summary of all the models. The model with only the Year covariate and the Aggregate was the best model to predict throughput. In the following section, the decision tree analysis technique was applied as an alternative way of determining which predictors to include in the model to predict successful throughput.

UNIVERSITY of the

4.11 Decision Tree Analysis

4.11.1 Aggregate Decision Tree model

The throughput of a student who had an aggregate of 60% and above was 38.8% for the training model and 20.4% for the validation data set, compared to the throughput of a student who had an aggregate of below 60%, which was 13.4% for training data and 21.6% for the validated data set. The validations' modelling throughput for the predictor Aggregate was similar for both validation datasets. The huge difference between the validation and training data sets indicates the instability of the model. The reason for the instability was too few data observations. However, it is interesting to
note that the Aggregate predictor was selected although the model is unstable and no statistical interpretation can be inferred from it (see Figure 4.3).

Figure 4.3 Decision tree aggregate model

4.12 Conclusion

The decision tree analysis and the stepwise logistic regression both selected the Aggregate predictor as a factor that affected successful throughput. In the following chapter, the findings of Chapter 4 will be discussed and interpreted.

Chapter 5

Discussion and Recommendation

5.1 Discussions of findings

In this thesis, an investigation into how certain factors influence throughput was undertaken. Throughput is the number of students who complete their university studies in the prescribed time. This thesis does not explore the financial and social influences on throughput. The thesis looks at factors like gender, race, home language, Grade 12 aggregate, Grade 12 mathematics, entering UWC immediately after school and the political environment prior and after 1994.

5.1.1 Gender factor

Gender does not play a significant role when investigating throughput. In the study, a significant increase in the number of African female students who enrolled for Statistics was observed.

5.1.2 Race factor

Race is a factor that influences throughput. More non-African students than African students are finishing their studies in the prescribed time.

5.1.3 Home language factor

Home language influences throughput. More non-English students are not finishing their studies in the prescribed time. This shows that if the medium of instruction is
different from the students' home language, it can play a role in influencing how long students take to finish their studies.

5.1.4 Grade 12 aggregate factor

The Grade 12 aggregate is the most significant factor influencing throughput. This finding is also confirmed in a study conducted by Lourens and Smit (2003). The aggregate is a factor that should be considered when selecting students, as a higher aggregate relates to better throughput.

5.1. 5 Grade 12 mathematics factor

Mathematics should be made a prerequisite for subjects where calculation and abstract thinking is necessary. The issue is: at what level should students have passed mathematics to be selected for a science subject? This also has enrolment implications in that if the mathematics prerequisite is set too high, the student enrolment in science will drop significantly. If the mathematics prerequisite is set too low, more students with low grades will apply to study in the Science Faculty. Students with low grades in Grade 12 mathematics will take longer to grasp concepts, which will influence the time they take to finish their studies.

5.1.6 Entering UWC immediately after school factor

The impact on throughput of students in the study enrolling at UWC directly after Grade 12 was also investigated. It was found that a short break between school completion and university enrolment does not influence the throughput. In fact, the
throughput was better for students who did not enter university immediately after school. The reason could be that older students are more serious about their studies.

5.1.7 Political environment (year covariate) factor

The political environment is one factor which is not often considered in academic studies. It was found that the political change of 1994 did have an impact on throughput. The throughput rate doubled after the 1994 election. However, the intake of students who did at least one semester of third-year Statistics only increased by 17 students after the 1994 election until 2001. The throughput rate doubled most probably because students saw a post-Grade 12 qualification as a means to a brighter future in South Africa.

A logistic regression model was built using the abovementioned factors. It was found that the Grade 12 aggregate and the political environment were the most significant variables to distinguish between students completing their studies in the prescribed time and students taking more that three years. The students in this study were categorized into two groups: those with a Grade 12 aggregate of 60% and above, and those with a Grade 12 aggregate below 60%. The students who had an aggregate of 60% and above had a significantly improved throughput rate compared to those with an aggregate below 60%. The goal is to enroll more students with aggregates higher than 60% so that the throughput rate can be increased.

5.2 Relevance of study

In the study, a model was developed that took into account certain factors that influence university throughput. The model and factors could assist with university policies regarding student selection. Furthermore, minimizing study years would result in students entering the workforce quicker and becoming economically active at an earlier stage. Students could also start sooner with postgraduate studies after successful completion of undergraduate studies.

5.3 Recommendation

As aggregate is an important measure of success at university, it should possibly be retained in the Further Education Training (FET) school system to be implemented in 2006. The new FET system measures a student's performance per subject on a scale of one to five, without an aggregate. Universities should be proactive in formulating new selection criteria systems. A new selection process should be put in place to determine if learners are capable of studying at higher education institutions (HEIs). The entrance requirement for mathematics should also be more strictly enforced to select the best students. It sounds unfair to those students who obtained low grades due to the specific school environment, but higher education institutions cannot repeat the work that the school system should have covered. The responsibility rests on the school teachers and the learners to ensure that learners who want to enroll at university be informed of their choices and how to achieve their goals.

5.4 Limitations of study

The sample was not representative of all the students at UWC as the study was limited to students majoring in Statistics. Historical data was used which was limited to what was on the UWC database. No data were available on students' socio-economic factors, such as financial constraints, mode of transport to university, adequate place to study, and so forth.

5.5 Further research

The study could be replicated to include all students at UWC. Future research could possibly investigate how financial, social and academic factors influence throughput. An interesting question to ask would be: Is South Africa producing enough graduates to meet the labour market demands in terms of specific skills?

In other words, are the targets set by the Department of Education met in terms of graduate output for the new century?

$$
\begin{aligned}
& \text { UNIVERSITY of the } \\
& \text { WESTERN CAPE }
\end{aligned}
$$

Bibliography

Agar D.L. (1991). Academic support and academic progress: English-SecondLanguage speakers in a Faculty of Commerce at a university in South Africa. Journal of Negro Education Vol. 60(1) : 62-77.

Asmal K. (1999). Call to action: nine priorities of the Minister of Education. Pretoria, Department of Education.

Badenhorst F.D., Foster D.H. and Lea S.J. (1990). Factors affecting academic performance in the first-year psychology at the University of Cape Town. South African Journal of Higher Education (SAJHE) Vol. 4(1) : 39-45.

Bargate K. (1999). Mathematics as an indicator of success in first year Accounting programmes at Technicon Natal.
South African Journal of Higher Education (SAJHE)
Vol. 13(1): 139-143.
Bitzer E. and Troskie-De Bruin C. (2004). The effect of factors related to prior schooling on student persistence in higher education. South African Journal of Education Vol. 24(2) : 119-125.

Botha A.E., McCrindle C.M.E. and Owen J.H. (2003). Mathematics at matriculation level as an indicator of success or failure in the $1^{s t}$ year of the Veterinary Nursing Diploma at the Faculty of Veterinary Science, University of Pretoria. Journal of the South African Veterinary Association Vol. 74(4) : 132-134.

Cairncross A. (1999). Progression of students through the Human Ecology Programme (1994-1999). Department of Human Ecology and Dietetics, UWC. Bellville.

Dawes P., Yeld N. and Smith M.J. (1999). Access, selection and admission to higher education: maximizing the use of the school-leaving examination. South African Journal of Higher Education (SAJHE) Vol. 13(3) : $97-104$.

Department of Education (2001a). National Plan for Higher Education (NPHE). Ministry of Education, Pretoria, February 2001.

Department of Education (2001b). Funding of Public Higher Education: A New Framework. Ministry of Education, Pretoria, March 2001.

Fraser W.J. and Killen R. (2003). Factors influencing academic success or failure of first-year and senior university students: do education students and lectures perceive things differently? South African Journal of Higher Education (SAJHE) Vol. 23(4) : $254-260$.

Howie S.J. (2003). Language and other background factors affecting pupils' performance in mathematics in South Africa. African Journal of Research in SMT Education Vol. 7:1-20.

Lourens A. and Smit I.P.J. (2003). Retention: predicting first-year success. South African Journal of Higher Education (SAJHE) Vol. 17(2) : 169-176.

Mitchell F. (1988). High school accounting and students' performance in the first level university accounting course: a UK study. Journal of Accounting Education Vol. 6:279-291.

Nair P.A.P. (2002). A theoretical framework for an access programme encompassing further education training: remedy for educational wastage. South African Journal of Higher Education (SAJHE) Vol. 16 (2) : 94-103.

O' Connell B. (2004). Recapitalisation. Internal discussion at UWC by Rector, August 2004.

Science Faculty (2004). UWC Faculty of Science, Undergraduate year book. UWC.

Skuy M., Zolessi S., Mentis M., Fridjhon P. and Cockcroft K. (1996). Selection of advantaged and disadvantaged South African students for university admission. South African Journal of Higher Education (SAJHE) Vol. 10(1) : 110 - 118.

Shochet I. (1985). University Admission: Can we measure potential? Paper presented at Academic Support Programme Annual Conference, University of the Witwatersrand.

Stoker D.J., Engelbrecht C.S., Crowther N.A.S., Du Toit S.H.C. and Herbst A. (1986). Investigation into differential entrance requirement for tertiary educational institutions: an abridged version of Report Ws-31. Report Number WS-32. Pretoria: Human Science Research Council.

Taylor B. and Harris G. (2002). The efficiency of South African universities: a study based on the analytical technique. South African Journal of Higher Education (SAJHE) Vol. 16(2) : 183-192.

The Mail and Guardian (1999). Tertiary state subsidies to change.
24 November 1999.
Van Rooyen E. (2001). Die voorspelling van die akademiese prestasie van studente in'n universiteitsoorbruggings- program. South African Journal of Higher Education (SAJHE) Vol. 15(1) : 180 - 189.

APPENDIX A

A1 Frequencies of variables

Table A9	compl	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	3	87	21.27	87	21.27
	4	122	29.83	209	51.10
	5	100	24.45	309	75.55
	6	42	10.27	351	85.82
	7	20	4.89	371	90.71
	8	14	3.42	385	94.13
	9	8	1.96	393	96.09
	10	6	1.47	399	97.56
	11	3	0.73	402	98.29
	12	2	0.49	404	98.78
	14	1	0.24	405	99.02
	17	2	0.49	407	99.51
	18	1	0.24	408	99.76
	26	1	0.24	409	100.00

Note: Student 2005379 studied three years but did not complete his studies. He repeated his second year and was refused re-entry. Thus 87-1 = 86 students who completed their studies.

AGG_SYM

AGG_SYM	Frequency	Percent	Cumulative Frequency	Cumulative Percent
A	2	0.50	2	0.50
B	26	6.44	28	6.93
C	106	26.24	134	33.17
D	188	46.53	322	79.70
E	78	19.31	400	99.01
F	4	0.99	404	100.00

MATH_GRD (MATH_GRD)		MATH_SYM (MATH_SYM)					
Frequency Percent Row Pct Col Pct	A	B	C	D	E	F	Total
H	4	17	26	58	92	0	197
	0.99	4.22	6.45	14.39	22.83	0.00	48.88
	2.03	8.63	13.20	29.44	46.70	0.00	
	12.90	30.91	36.62	47.54	79.31	0.00	
S	27	38	45	64	24	8	206
	6.70	9.43	11.17	15.88	5.96	1.99	51.12
	13.11	18.45	21.84	31.07	11.65	3.88	
	87.10	69.09	63.38	52.46	20.69	100.00	
Total	31	55	71	122	116	8	403
	7.69	13.65	17.62	30.27	28.78	1.99	100.00

Table A19	imed_yrs	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	0	238	58.19	238	58.19
	1	75	18.34	313	76.53
	2	30	7.33	343	83.86
	3	30	7.33	373	91.20
	4	15	3.67	388	94.87
	5	7	1.71	395	96.58
	6	5	1.22	400	97.80
	7	2	0.49	402	98.29
	8	2	0.49	404	98.78
	10	2	0.49	406	99.27
	14	1	0.24	407	99.51
	15	1	0.24	408	99.76
	70	1	0.24	409	100.00

A2 Throughput associations

Table A24

Association of Throughput by GENDER

Cell (1,1) Frequency (F)	133
Left-sided Pr <= F	0.0275
Right-sided Pr >= F	0.9847
Table Probability (P)	0.0122
Two-sided Pr <= P	0.0501
Sample Size $=409$	

Throughput agg_grp

Frequency			
Percent			
Row Pct			
Col Pct	$\begin{aligned} & \text { BELOW } 60 \\ & \% \end{aligned}$	$\begin{aligned} & 60 \% \text { AND } \\ & \text { ABOVE } \end{aligned}$	Total
NON - THROUGHPUT	227	91	318
	56.19	22.52	78.71
	71.38	28.62	
	84.07	67.91	
THROUGHPUT	43	43	86
	10.64	10.64	21.29
	50.00	50.00	
	15.93	32.09	
$\begin{array}{llll}\text { Total } & 270 & 134 & 404\end{array}$			
	66.83	33.17	100.00

Statistics for Association of Throughput by agg_grp Statistic DF Value Prob				
	Chi-Square	1	13.9637	0.0002
	Likelihood Ratio Chi-Square	1	13.3920	0.0003
	Continuity Adj. Chi-Square	1	13.0157	0.0003
	Mantel-Haenszel Chi-Square		13.9292	0.0002
Phi Coefficient0.1859				
Contingency Coefficient 0.1828 Cramer's V 0.1859				
Fisher's Exact Test				
Cell (1,1) Frequency (F) 227 Left-sided Pr <= F 0.9999				
Table Probability (P) 1.244E-04				
Two-sided $\mathrm{Pr}<=\mathrm{P}$ 2.801E-04				
Effective Sample Size $=404$				

A3 Predictor associations

Table A31

Association of GENDER by african

GENDER (GENDER) african

GENDER(GENDER) english

Frequency Percent Row Pct Col Pct	NON-ENGL ISH	ENGLISH	Total
FEMALE	129	48	177
	31.54	11.74	43.28
	72.88	27.12	
	45.74	37.80	
MALE	153	79	232
	37.41	19.32	56.72
	65.95	34.05	
	54.26	62.20	
Total	282	127	409
	68.95	31.05	100.00

Statistics for Association of GENDER by english

| Statistic | DF | Value | Prob |
| :--- | :--- | :--- | :--- | :--- |
| Chi-Square | 1 | 2.2542 | 0.1333 |
| Likelihood Ratio Chi-Square | 1 | 2.2704 | 0.1319 |
| Continuity Adj. Chi-Square | 1 | 1.9420 | 0.1635 |
| Mantel-Haenszel Chi-Square | 1 | 2.2486 | 0.1337 |
| Phi Coefficient | 0.0742 | | |
| Contingency Coefficient | 0.0740 | | |
| Cramer's V | | 0.0742 | |
| | | | |

Cell (1,1) Frequency (F)	129
Left-sided Pr <= F	0.9466
Right-sided Pr >= F	0.0814
Table Probability (P)	0.0280
Two-sided Pr <= P	0.1608

 Sample Size \(=409\)
 | agg_grp | GENDER (GENDER) | | |
| :---: | :---: | :---: | :---: |
| Frequency | | | |
| Percent | | | |
| Row Pct | | | |
| Col Pct | FEMALE | MALE | Total |
| BELOW 60\% | 127 | 143 | 270 |
| | 31.44 | 35.40 | 66.83 |
| | 47.04 | 52.96 | |
| | 72.57 | 62.45 | |
| 60\% AND ABOVE | 48 | 86 | 134 |
| | 11.88 | 21.29 | 33.17 |
| | 35.82 | 64.18 | |
| | 27.43 | 37.55 | |
| Total | 175 | 229 | 404 |
| | 43.32 | 56.68 | 100.00 |

Effective Sample Size $=404$
Frequency Missing $=5$

math_grp	GENDER(GENDER)				
Frequency Percent					
Row Pct					
Col Pct				\quad FEMALE	Total
:---					
BELOW 60\%					

immediate	GENDER (GENDER)		
Frequency			
Percent			
Row Pct			
Col Pct	FEMALE	MALE	Total
NOT DIRECTLY AFT	59	112	171
ER SCHOOL	14.43	27.38	41.81
	34.50	65.50	
	33.33	48.28	
DIRECTLY AFTER S	118	120	238
CHOOL	28.85	29.34	58.19
	49.58	50.42	
	66.67	51.72	
Total	177	232	409
	43.28	56.72	100.00

	The FREQ Procedure			
	Statistics for Association Statistic	of	iate by Value	NDER Prob
	Chi-Square	1	9.2142	0.0024
	Likelihood Ratio Chi-Square	1	9.2988	0.0023
	Continuity Adj. Chi-Square	1	8.6103	0.0033
	Mantel-Haenszel Chi-Square	1	9.1917	0.0024
	Phi Coefficient		-0.1501	
Contingency Coefficient 0.1484				
	Cramer's V		-0.1501	

Fisher's Exact Test

Cell (1,1) Frequency (F)	59
Left-sided Pr <= F	0.0016
Right-sided Pr >= F	0.9992
Table Probability (P)	$7.959 E-04$
Two-sided Pr <= P	0.0025

Association of year_cov by GENDER

year_cov	GENDER (GENDER)		
Frequency Percent Row Pct Col Pct	FEMALE	MALE	Total
PRE-ELECTION YEA	76	120	196
RS	18.58	29.34	47.92
	38.78	61.22	
	42.94	51.72	
POST-ELECTION YE	101	112	213
ARS	24.69	27.38	52.08
	47.42	52.58	
	57.06	48.28	
Total	177	232	409
	43.28	56.72	00.00

Cell (1,1) Frequency (F)	76
Left-sided Pr <= F	0.0481
Right-sided Pr >= F	0.9688
Table Probability (P)	0.0169
Two-sided Pr <= P	0.0896

Cell (1,1) Frequency (F)	54	
Left-sided Pr <= F	$1.448 \mathrm{E}-58$	
Right-sided Pr >= F	1.0000	
Table Probability (P)	$1.443 \mathrm{E}-58$	
Two-sided Pr <= P	$1.448 \mathrm{E}-58$	
Sample Size $=409$		

Fisher's Exact Test	
Cell (1,1) Frequency (F)	97
Left-sided Pr <= F	$1.344 \mathrm{E}-11$
Right-sided Pr >= F	1.0000
Table Probability (P)	$1.072 \mathrm{E}-11$
Two-sided Pr <= P	$1.734 \mathrm{E}-11$
Effective Sample Size $=403$	
Frequency Missing $=6$	

year_cov	african		
Frequency			Total
Percent			
Row Pct			
Col Pct	$\begin{aligned} & \text { NON-AFRI } \\ & \text { CAN } \end{aligned}$	AFRICAN	
PRE-ELECTION YEA	94	102	196
RS	22.98	24.94	47.92
	47.96	52.04	
	52.51	44.35	
POST-ELECTION YE	85	128	213
ARS	20.78	31.30	52.08
	39.91	60.09	
	47.49	55.65	
Total	179	230	409
	43.77	56.23	100.00

Cell (1,1) Frequency (F)	94
Left-sided Pr <= F	0.9591
Right-sided Pr >= F	0.0617
Table Probability (P)	0.0208
Two-sided Pr <= P	0.1109

Sample Size $=409$

Fisher's Exact Test		
Cell (1,1) Frequency (F)	213	
Left-sided Pr <= F	1.0000	
Right-sided Pr >= F	$3.876 \mathrm{E}-10$	
Table Probability (P)	$2.960 \mathrm{E}-10$	
Two-sided Pr <= P	$4.708 \mathrm{E}-10$	
Effective Sample Size $=404$		
Frequency Missing $=5$		

Fisher's Exact Test	
Cell (1,1) Frequency (F)	212
Left-sided Pr <= F	0.9984
Right-sided Pr >= F	0.0033
Table Probability (P)	0.0017
Two-sided Pr <= P	0.0056
Effective Sample Size $=403$	
Frequency Missing $=6$	

WEST

Cell (1, 1) Frequency (F)	127
Left-sided Pr <= F	0.9817
Right-sided Pr >= F	0.0307
Table Probability (P)	0.0124
Two-sided Pr <= P	0.0518

Sample Size $=409$

agg_grp year_cov					
$\left.$Frequency Percent Row Pct Col Pct \quadPRE-ELEC\right\rvert\, TION YEST-ELE CTION YE\quad Tot					
BELOW 60\% 131 139 32.43 34.41 48.52 51.48 68.59 65.26					
60% 60 74 134 14.85 18.32 33. 44.78 55.22 31.41 34.74					
Total $191 \quad 213 \quad 404$					
$47.28 \quad 52.72 \quad 100.00$ Frequency Missing $=5$ The FREQ Procedure Statistics for Association of agg_grp by year_cov Statistic DF Value Prob					
$\begin{array}{llll}\text { Chi-Square } & 1 & 0.5032 & 0.4781 \\ \text { Likelihood Ratio Chi-Square } & 1 & 0.5038 & 0.4778\end{array}$					
	Continuity Adj. Chi-S	quare			0.5462
Mantel-Haenszel Chi-Square 1 0.5020 0.4786 Phi Coefficient 0.0353 Contingency Coefficient 0.0353 Cramer's V 0.0353					
Fisher's Exact Test					
Cell (1,1) Frequency (F) 131 Left-sided Pr <= F 0.7924 Right-sided Pr >= F 0.2733					
Table Probability (P) 0.0657 Two-sided $\mathrm{Pr}<=\mathrm{P}$ 0.5258					
```Effective Sample Size = 404 Frequency Missing = 5```					



math_grp year_cov					
Frequency   Percent    Row Pct    Col Pct $\quad$       PRE-ELEC POST-ELE Tot    TION YEA CTION YE    RS ARS					
BELOW 60\% 130 161 291    32.26 39.95 72.21    44.67 55.33     68.42 75.59					
$60 \%$ AND ABOVE 60 52 112    14.89 12.90 27.79    53.57 46.43     31.58 24.41					
  Total 190 213					
$47.15 \quad 52.85 \quad 100.00$   Frequency Missing $=6$   The FREQ Procedure   Statistics for Association of math_grp by year_cov   Statistic   DF   Value   Prob					
$\begin{array}{llll}\text { Chi-Square } & 1 & 2.5695 & 0.1089\end{array}$					
Likelihood Ratio Chi-Square $1 \quad 2.5672 \quad 0.1091$					
	Continuity Adj. Chi-S		2.	249	0.1358
Mantel-Haenszel Chi-Square 1 2.5632 0.1094   Phi Coefficient -0.0799     Contingency Coefficient  0.0796    Cramer's V -0.0799					
Fisher's Exact Test					
Cell (1,1) Frequency (F) 130					
Left-sided Pr <= F 0.0680					
Right-sided Pr >= F 0.9567					
Table Probability (P) 0.0247					
Two-sided Pr <= P 0.1195					
```Effective Sample Size = 403 Frequency Missing = 6```					


Appendix B

B1 Gender logistic regression model

Table B1

GENDER
The LOGISTIC Procedure

Model Information

Data Set	COM.ALL
Response Variable	through
Number of Response Levels	2
Number of Observations	409
Model	binary logit
Optimization Technique	Fisher's scoring

Model Fit Statistics

	Intercept Only	Intercept and Covariates
Criterion	422.708	421.534
AIC	426.722	429.562
SC	420.708	417.534

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	3.1735	1	0.0748
Score	3.1246	1	0.0771
Wald	3.0960	1	0.0785

Type III Analysis of Effects
Wald

Effect	DF	Chi-Square	Pr > ChiSq
GENDER	1	3.0960	0.0785

Association of Predicted Probabilities and Observed Responses

29.6 Somers' D 0.106

Percent Discordant 19.0 Gamma 0.218
Percent Tied $\quad 51.4 \quad$ Tau-a $\quad 0.035$
Pairs
27778
0.553

Wald Confidence Interval for Adjusted Odds Ratios

Effect	Unit	Estimate	95\% Confidence Limits	
GENDER FEMALE vs MALE	1.0000	0.641	0.391	1.052

The LOGISTIC Procedure

Classification Table

ProbLevel	Correct		Incorrect		Percentages				
		Non-		Non-		Sensi-	Speci-	False	False
	Event	Event	Event	Event	Correct	tivity	ficity	POS	NEG
0.160	86	0	323	0	21.0	100.0	0.0	79.0	.
0.180	56	147	176	30	49.6	65.1	45.5	75.9	16.9
0.200	56	147	176	30	49.6	65.1	45.5	75.9	16.9
0.220	56	147	176	30	49.6	65.1	45.5	75.9	16.9
0.240	0	147	176	86	35.9	0.0	45.5	100.0	36.9
0.260	0	323	0	86	79.0	0.0	100.0	.	21.0

B2 African logistic regression model

Table B2
AFRICAN
The LOGISTIC Procedure

Model Information

Data Set
Response Variable
Number of Response Levels
Number of Observations Model
Optimization Technique

COM. ALL
through
2
409
binary logit
Fisher's scoring

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	4.1546	1	0.0415
Score	4.1831	1	0.0408
Wald	4.1409	1	0.0419

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

	DF	Estimate	Standard Error	Chi-Square	Pr $>$ ChiSq
Parameter	DF				
Intercept	1	-1.0616	0.1710	38.5221	$<.0001$
african	1	-0.4964	0.2440	4.1409	0.0419

	Odds Ratio Estimates		
	Point	95\% Wald	
Effect	Estimate	Confidence Limits	
african	0.609	0.377	0.982

Association of Predicted Probabilities and Observed Responses

B3 English logistic regression model

Table B3

ENGLISH
The LOGISTIC Procedure

Model Information

Data Set
Response Variable
Number of Response Levels
Number of Observations
Model
Optimization Technique

Response Profile

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	5.7270	1	0.0167
Score	5.9428	1	0.0148
Wald	5.8484	1	0.0156

Analysis of Maximum Likelihood Estimates

Association of Predicted Probabilities and Observed Responses

B4 Aggregate logistic regression model

```
Table B4
    AGGREAGTE
The LOGISTIC Procedure
Model Information
\begin{tabular}{ll} 
Data Set & COM.ALL \\
Response Variable & through \\
Number of Response Levels & 2 \\
Number of Observations & 404 \\
Model & binary logit \\
Optimization Technique & Fisher's scoring
\end{tabular}
\begin{tabular}{ccr} 
& Response Profile \\
Ordered & & \\
Value & through & Total \\
1 & THROUGHPUT & Frequency \\
2 & NON-THROUGHPUT & 318 \\
Probability modeled is through='THROUGHPUT ' .
\end{tabular}
```

NOTE: 5 observations were deleted due to missing values for the response or explanatory variables

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	13.3920	1	0.0003
Score	13.9637	1	0.0002
Wald	13.4973	1	0.0002

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Association of Predicted Probabilities and Observed Responses

B5 Mathematics logistic regression model

Table B5

MATHEMATICS
The LOGISTIC Procedure

Model Information

Data Set
Response Variable
Number of Response Levels
Number of Observations
Model
Optimization Technique

COM.ALL
through
2
403
binary logit
Fisher's scoring

Response Profile

NOTE: 6 observations were deleted due to missing values for the response or explanatory variables

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	4.9927	1	0.0255
Score	5.2138	1	0.0224
Wald	5.1337	1	0.0235

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

| | | | Standard
 Error | Chi-Square |
| :--- | ---: | ---: | ---: | ---: | ---: | Pr > ChiSq

Odds Ratio Estimates

Point
Effect
Estimate
95\% Wald
Confidence Limits
$\begin{array}{llll}\text { math_grp } & 1.796 & 1.082 & 2.981\end{array}$

Association of Predicted Probabilities and Observed Responses

Percent Concordant	28.2	Somers' D	0.125
Percent Discordant	15.7	Gamma	0.285
Percent Tied	56.1	Tau-a	0.042
Pairs	27030	c	0.562
Wald Confidence Interval for Adjusted Odds Ratios			
Effect	Unit	Estimate	95% Confidence Limits
math_grp	1.0000	1.796	1.082

Classification Table

Prob		Non-		Non-		Sensi-	Speci.	False	False
Level	Event	Event	Event	Event	Correct	tivity	ficity	POS	NEG
0.160	85	0	318	0	21.1	100.0	0.0	78.9	.
0.180	32	0	318	53	7.9	37.6	0.0	90.9	100.0
0.200	32	238	80	53	67.0	37.6	74.8	71.4	18.2
0.220	32	238	80	53	67.0	37.6	74.8	71.4	18.2
0.240	32	238	80	53	67.0	37.6	74.8	71.4	18.2
0.260	32	238	80	53	67.0	37.6	74.8	71.4	18.2
0.280	0	238	80	85	59.1	0.0	74.8	100.0	26.3
0.300	0	318	0	85	78.9	0.0	100.0		21.1

B6 Immediately logistic regression model

IMMEDIATELY
The LOGISTIC Procedure

Model Information

Data Set	COM.ALL
Response Variable	through
Number of Response Levels	2
Number of Observations	409
Model	binary logit
Optimization Technique	Fisher's scoring

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	2.1916	1	0.1388
Score	2.2108	1	0.1370
Wald	2.1990	1	0.1381

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

			Standard Error	Chi-Square	Pr $>$ ChiSq
Parameter	DF	Estimate			
Intercept	1	-1.1221	0.1777	39.8951	$<.0001$
immediate	1	-0.3615	0.2438	2.1990	0.1381

	Odds Ratio Estimates	
	Point	95\% Wald
Effect	Estimate	Confidence Limits
immediate	0.697	0.432

Association of Predicted Probabilities and Observed Responses

Percent Concordant	29.3	Somers' D	0.089	
Percent Discordant	20.4	Gamma	0.179	
Percent Tied	50.2	Tau-a	0.030	
Pairs	27778	c	0.544	
Wald Confidence Interval for Adjusted Odds Ratios				
Effect	Unit	Estimate	95% Confidence Limits	
immediate	1.0000	0.697	0.432	1.123

Classification Table

B7 Year covariate logistic regression model

Table B7

YEAR COVARIATE
The LOGISTIC Procedure

Model Information

Data Set
Response Variable
Number of Response Levels
Number of Observations
Model
Optimization Technique

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	15.9555	1	$<.0001$
Score	15.5076	1	$<.0001$
Wald	14.8161	1	0.0001

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

| | | | Standard
 Error | Chi-Square |
| :--- | ---: | ---: | ---: | ---: | ---: | Pr > ChiSq

	Odds Ratio Estimates		
	Point	95\% Wald	
Effect	Estimate	Confidence Limits	
year_cov	2.745	1.641	4.590

Association of Predicted Probabilities and Observed Responses

$\begin{aligned} & \text { Prob } \\ & \text { Level } \end{aligned}$	Correct\qquad NonEvent Event		Incorrect Non-		Percentages i- Speci-			False	False
			Event	Event	Correct	tivity	ficity	POS	NEG
0.120	86	0	323	0	21.0	100.0	0.0	79.0	
0.140	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.160	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.180	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.200	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.220	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.240	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.260	61	171	152	25	56.7	70.9	52.9	71.4	12.8
0.280	61	171	152	25	56.7	70.9	52.9	71.4	12.8
. 300	0	323	0	86	9.	0.0	00.0		

Appendix C

C1 Full logistic regression model with all predictors

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	38.7262	7	$<.0001$
Score	38.1826	7	$<.0001$
Wald	34.0935	7	$<.0001$

Type III Analysis of Effects

Wald

Odds Ratio Estimates

	Point Estimate	95% Wald Confidence Limits	
Effect	FEMALE vs MALE	0.678	0.393

The LOGISTIC Procedure

Association of Predicted Probabilities and Observed Responses

Percent Concordant	69.4	Somers' D	0.417
Percent Discordant	27.7	Gamma	0.429
Percent Tied	2.9	Tau-a	0.140
Pairs	26605	c	0.708
Wald Confidence Interval for Adjusted Odds	Ratios		

Effect	Unit	Estimate	95% Confidence Limits	
GENDER	FEMALE vs MALE	1.0000	0.678	0.393
african	1.0000	1.228	0.515	2.169
english	1.0000	1.808	0.816	4.008
agg_grp	1.0000	1.987	1.087	3.632
math_grp	1.0000	1.497	0.827	2.710
immediate	1.0000	0.648	0.378	1.109
year_cov	1.0000	3.142	1.806	5.466

Prob Level		Correct		Incorrect		Percentages				
		Non-		Non-		Sensi-	Speci-	False	False	
	Event	Event	Event	Event	Correct	tivity	ficity	POS	NEG	
	0.040	85	0	313	0	21.4	100.0	0.0	78.6	
	0.060	85	16	297	0	25.4	100.0	5.1	77.7	0.0
	0.080	78	56	257	7	33.7	91.8	17.9	76.7	11.1
	0.100	77	61	252	8	34.7	90.6	19.5	76.6	11.6
	0.120	73	105	208	12	44.7	85.9	33.5	74.0	10.3
	0.140	67	114	199	18	45.5	78.8	36.4	74.8	13.6
	0.160	66	158	155	19	56.3	77.6	50.5	70.1	10.7
	0.180	63	169	144	22	58.3	74.1	54.0	69.6	11.5
	0.200	53	173	140	32	56.8	62.4	55.3	72.5	15.6
	0.220	51	221	92	34	68.3	60.0	70.6	64.3	13.3
	0.240	49	224	89	36	68.6	57.6	71.6	64.5	13.8
	0.260	44	228	85	41	68.3	51.8	72.8	65.9	15.2
	0.280	36	249	64	49	71.6	42.4	79.6	64.0	16.4
	0.300	36	265	48	49	75.6	42.4	84.7	57.1	15.6
	0.320	30	266	47	55	74.4	35.3	85.0	61.0	17.1
	0.340	27	272	41	58	75.1	31.8	86.9	60.3	17.6
	0.360	19	280	33	66	75.1	22.4	89.5	63.5	19.1
	0.380	18	285	28	67	76.1	21.2	91.1	60.9	19.0
	0.400	17	286	27	68	76.1	20.0	91.4	61.4	19.2
	0.420	12	288	25	73	75.4	14.1	92.0	67.6	20.2
	0.440	12	298	15	73	77.9	14.1	95.2	55.6	19.7
	0.460	11	302	11	74	78.6	12.9	96.5	50.0	19.7
	0.480	11	302	11	74	78.6	12.9	96.5	50.0	19.7
	0.500	11	303	10	74	78.9	12.9	96.8	47.6	19.6
	0.520	5	305	8	80	77.9	5.9	97.4	61.5	20.8
	0.540	5	307	6	80	78.4	5.9	98.1	54.5	20.7
	0.560	5	312	1	80	79.6	5.9	99.7	16.7	20.4
	0.580	5	312	1	80	79.6	5.9	99.7	16.7	20.4
	0.600	5	312	1	80	79.6	5.9	99.7	16.7	20.4
	0.620	0	312	1	85	78.4	0.0	99.7	100.0	21.4
	0.640	0	312	1	85	78.4	0.0	99.7	100.0	21.4
	0.660	0	313	0	85	78.6	0.0	100.0	.	21.4

Appendix D

D1 Full logistic regression model without year covariate

NOTE: 11 observations were deleted due to missing values for the response or explanatory
variables
Data Set
Response Variable
Number of Response Levels
Number of Observations
Model
Optimization Technique
COM. ALL
through
2
398
binary logit
Fisher's scoring

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	20.7879	6	0.0020
Score	21.5206	6	0.0015
Wald	20.2251	6	0.0025

Type III Analysis of Effects

Wald

Effect	DF	Chi-Square	Pr > ChiSq
GENDER	1	1.8955	0.1686
african	1	0.7634	0.3823
english	1	2.3136	0.1282
agg_grp	1	7.2464	0.0071
math_grp	1	0.7415	0.3892
immediate	1	1.2009	0.2731

Analysis of Maximum Likelihood Estimates

Parameter	Analysis of Maximum Likelihood Estimates					Pr > ChiSq	
	FEMALE						
		DF	Estimate	Standard Error	Chi-Square		
Intercept		1	-1.9869	0.4812	17.0510		<. 0001
GENDER		1	-0.1860	0.1351	1.8955		0.1686
african		1	0.3801	0.4350	0.7634		0.3823
english		1	0.6022	0.3959	2.3136		0.1282
agg_grp		1	0.8117	0.3015	7.2464		0.0071
math_grp		1	0.2545	0.2955	0.7415		0.3892
immediate		1	-0.2899	0.2645	1.2009		0.2731

	Point Estimate	95\% Wald	
Effect		Confide	Limits
GENDER FEMALE vs MALE	0.689	0.406	1.171
african	1.462	0.623	3.431
english	1.826	0.840	3.968
agg_grp	2.252	1.247	4.066
math_grp	1.290	0.723	2.302
immediate	0.748	0.446	1.257

The LOGISTIC Procedure

Association of Predicted Probabilities and Observed Responses

Percent Concordant	63.0	Somers' D	0.308
Percent Discordant	32.2	Gamma	0.323
Percent Tied	4.8	Tau-a	0.104
Pairs	26605	c	0.654

Wald Confidence Interval for Adjusted Odds Ratios

Effect	Unit	Estimate	95% Confidence Limits	
GENDER	FEMALE vs MALE	1.0000		
african		0.689	0.406	1.171
english	1.0000	1.462	0.623	3.431
agg_grp	1.0000	1.826	0.840	3.968
math_grp	1.0000	2.252	1.247	4.066
immediate	1.0000	1.290	0.723	2.302
lin	1.0000	0.748	0.446	1.257

Classification Table

	Correct		Incorrect			Percentages			
$\begin{array}{r} \text { Prob } \\ \text { Level } \end{array}$	Event	NonEvent	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	$\begin{aligned} & \text { False } \\ & \text { POS } \end{aligned}$	False NEG
0.060	85	0	313	0	21.4	100.0	0.0	78.6	
0.080	85	4	309	0	22.4	100.0	1.3	78.4	0.0
0.100	85	4	309	0	22.4	100.0	1.3	78.4	0.0
0.120	80	53	260	5	33.4	94.1	16.9	76.5	8.6
0.140	67	62	251	18	32.4	78.8	19.8	78.9	22.5
0.160	63	138	175	22	50.5	74.1	44.1	73.5	13.8
0.180	56	149	164	29	51.5	65.9	47.6	74.5	16.3
0.200	46	210	103	39	64.3	54.1	67.1	69.1	15.7
0.220	42	213	100	43	64.1	49.4	68.1	70.4	16.8
0.240	40	229	84	45	67.6	47.1	73.2	67.7	16.4
0.260	29	233	80	56	65.8	34.1	74.4	73.4	19.4
0.280	27	253	60	58	70.4	31.8	80.8	69.0	18.6
0.300	25	264	49	60	72.6	29.4	84.3	66.2	18.5
0.320	22	268	45	63	72.9	25.9	85.6	67.2	19.0
0.340	16	275	38	69	73.1	18.8	87.9	70.4	20.1
0.360	15	284	29	70	75.1	17.6	90.7	65.9	19.8
0.380	15	289	24	70	76.4	17.6	92.3	61.5	19.5
0.400	8	293	20	77	75.6	9.4	93.6	71.4	20.8
0.420	8	305	8	77	78.6	9.4	97.4	50.0	20.2
0.440	8	307	6	77	79.1	9.4	98.1	42.9	20.1
0.460	0	307	6	85	77.1	0.0	98.1	100.0	21.7
0.480	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.500	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.520	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.540	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.560	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.580	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.600	0	312	1	85	78.4	0.0	99.7	100.0	21.4
0.620	0	313	0	85	78.6	0.0	100.0	.	21.4

Appendix E

E1 Logistic regression - stepwise selection model

Table E1
STEPWISE SELECTION MODEL The LOGISTIC Procedure

Model Information

Data Set	COM.ALL
Response Variable	through
Number of Response Levels	2
Number of Observations	398
Model	binary logit
Optimization Technique	Fisher's scoring

NOTE: 11 observations were deleted due to missing values for the response or explanatory
variables

Stepwise Selection Procedure

Step 0. Intercept entered:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

| | DF | Estimate | Standard
 Error | Wald
 Chi-Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Intercept | 1 | -1.3036 | 0.1223 | 113.5892 | $<.0001$ |

Residual Chi-Square Test

Chi-Square	DF	Pr $>$ ChiSq
38.1826	7	$<.0001$

Analysis of Effects Not in the Model

Step 1. Effect year_cov entered:

Model Convergence Status

Model Fit Statistics

	Intercept and	
Criterion	Only	Covariates
		414.842

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	14.9448	1	0.0001
Score	14.4664	1	0.0001
Wald	13.8429	1	0.0002

Type III Analysis of Effects

Wald

Effect	DF	Chi-Square	Pr > ChiSq
year_cov	1	13.8429	0.0002

Residual Chi-Square Test

Chi-Square	DF	Pr > ChiSq
24.4097	6	0.0004

The LOGISTIC Procedure

Analysis of Effects in Model

	Wald		
Effect	DF	Chi-Square	Pr > ChiSq
year_cov	1	13.8429	0.0002

Analysis of Effects Not in the Model

	Score		
Effect	DF	Chi-Square	Pr > ChiSq
GENDER	1	5.5714	0.0183
african	1	6.1982	0.0128
english	1	6.9592	0.0083
agg_grp	1	13.9054	0.0002
math_grp	1	6.8947	0.0086
immediate	1	3.1519	0.0758

Step
2. Effect agg_grp entered:

Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	28.3427	2	$<.0001$
Score	27.9470	2	$<.0001$
Wald	25.8763	2	$<.0001$

The LOGISTIC Procedure

Type III Analysis of Effects

	Wald		
Effect	DF	Chi-Square	Pr > ChiSq
agg_grp	1	13.4390	0.0002
year_cov	1	13.5511	0.0002

Parameter	Analysis of Maximum Likelihood Estimates				
	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-2.2755	0.2530	80.9047	<. 0001
agg_grp	1	0.9374	0.2557	13.4390	0.0002
year_cov	1	0.9964	0.2707	13.5511	0.0002

Odds Ratio Estimates

Analysis of Effects in Model

	Wald		
Effect	DF	Chi-Square	Pr > ChiSq
agg_grp	1	13.4390	0.0002
year_cov	1	13.5511	0.0002

The LOGISTIC Procedure

Analysis of Effects Not in the Model

Effect	DF	Score Chi-Square	Pr > ChiSq
GENDER	1	3.8083	0.0510
african	1	0.6413	0.4233
english	1	2.3402	0.1261
math_grp	1	1.8141	0.1780
immediate	1	3.3946	0.0654

NOTE: No (additional) effects met the 0.05 significance level for entry into the model.

