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ABSTRACT 

 

Honeybees have evolved through the centuries to inhabit most parts of the world 

except for the extreme Polar Regions.  These insects have also been susceptible 

to pathogens and disease which has always been part of the honeybees’ ecology 

and has evolved and adapted accordingly.  However disease has spread more 

rapidly into areas where no disease existed before with the transport and moving 

of hives.  Disease has caused massive losses within the honeybee industry in 

recent history.  Using new technology available to scientists, diseases and 

parasites can be identified and this information used to prevent damage to hives, 

the livelihood of many crop farmers and beekeepers around the world.  Of these 

diseases honeybee viruses have become of some concern in recent times. 

Honeybee viruses’ black queen cell virus (BQCV) and acute bee paralysis virus 

(ABPV) were found to have genomes consisting of 8550 and 9490 nucleotides 

respectively.  The viruses have two open reading frames (ORFs) which encode a 

non structural protein at the 5’ ORF and a structural protein at the 3’ ORF.  

Sacbrood virus (SBV) has a different organisation to BQCV and ABPV where it 

has a single ORF with the structural genes at the 5’ end and the non structural 

genes at the 3’ end.  In an effort to rapidly identify honeybee viruses a multiplex 

reverse transcriptase polymerase chain reaction (RT-PCR) was developed for 

the simultaneous detection of BQCV, ABPV and SBV in a single reaction.  

Primers were designed within the 3’ open reading frame to amplify fragments of 

434bp for SBV, 900bp for ABPV and 316bp for BQCV.  RNA was extracted from 
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laboratory infected and naturally infected samples.  The PCR products were 

sequenced and found to be that of the appropriate virus.  The primers were 

tested on naturally infected samples with SBV and BQCV being detected. 

Another well characterised honeybee virus Kashmir bee virus (KBV) was initially 

added to the multiplex RT-PCR.  However inconsistencies with the multiplex 

PCR led to the sequencing of a 2 kilobase fragment of the KBV Indian (KBV-in) 

strain.  Three overlapping cDNA fragments of KBV were sequenced and aligned 

with the full length sequence of KBV and a sequenced capsid region of KBV both 

from North America.  Alignment to ABPV was also completed to observe the 

homology between KBV-in and ABPV.  The KBV-in strain was not highly 

homologous to the North American strains over the region which was sequenced 

for KBV-in.  ABPV was also not highly homologous over the entire 2 Kb region.  

However over the region where primers were designed for the RT PCR of KBV, 

ABPV was highly homologous at 80%.  This could have led to the 

inconsistencies when PCR was done. Primer design and correct strain 

characterisation is needed before primers are designed to detect more than one 

virus per reaction.  Further characterisation and sequencing of this strain is 

needed in order to make further comparisons.   

 Propagation methods for honeybee viruses have not changed since these 

viruses were discovered.  There are no suitable cell lines or cell culture 

techniques available for honeybee viruses. Honeybee viruses have to be 

manually injected with virus in order for the virus to multiply and be extracted.  

With the presence of inapparent viruses which could co-infect pupae, a method 
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for pure virus propagations needs to be found.  Recombinant baculovirus 

systems have been used extensively to produce foreign proteins from different 

viruses using vectors and recombinant technology.  In this chapter we inserted 

the capsid gene from BQCV into a transfer vector under the control of the p10 

promoter of Autographa californica.  Fractions of the sucrose gradient containing 

the virus like particles (VLPs) were seen under the electron microscope.  A 

Western blot showed the four capsid proteins at the expected sizes for BQCV 

capsid.  This study therefore has shown that a heterologous system such as 

baculovirus can be used for virus like particle production.  

Infectious virus technology has helped gain insight into how viruses work.  Using 

this technology altering honeybee viruses could be used to observe different 

functionalities of the viruses.  An attempt was made to interchange the open 

reading frames of ABPV and BQCV to observe any changes in virus assembly 

and infectivity.  A fusion PCR strategy was employed to interchange the 5’ and 3’ 

ORFs of APBV and BQCV.  The strategy however was unsuccessful.  Alternative 

strategies could improve the chances of obtaining a chimeric virus.  
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CHAPTER ONE 

 

LITERATURE REVIEW 

 

1.1 Introduction 

The history of honeybees dates back many centuries with the European 

honeybee (Apis mellifera L.) been extensively populated in many areas of the 

world by settlers.  Honeybees were introduced to the new world specifically 

America, Australia, and Siberia roughly in the 16th century (Dietz, 1992).  Today 

many centuries later beekeeping has grown into an economically important 

business for not only are honey products such as honey, wax, royal jelly, bee 

venom and pollen sold but hives are used in crop fields to pollinate various 

flowering crops (Johannesmeier & Mostert, 2001).  Honeybees visit millions of 

flowers in their lifespan gathering pollen, subsequently and inadvertently 

pollinating flowers as they go along.   

It has been estimated that bees pollinate 60-70% of all flowering plants in South 

Africa surpassing the economical monetary value of honey products 

(Johannesmeier & Mostert, 2001).  The ecological advantages of honeybees 

pollinating wild flowers, garden plants and other plant and tree species, helps to 

maintain the biodiversity of these wild or indigenous flowers.  This in turn 

provides a food source for many birds and small animals (Williams, 1994).   Also 

the pollination of important commercial crops leads to the increase in yield of the 

crop, fruit size and increases the earliness and uniformity of seed sets in crops.  
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The value of the commercial crops pollinated by honeybees has been estimated 

at 2.8 billion Rands per annum (Johannesmeier & Mostert, 2001). 

In South Africa the detection of pests and disease in apiaries has put many hives 

under increasing pressure due to a decrease in viability.  Two species of mites 

can be found in South Africa namely the tracheal mite (Acarapis woodii) and the 

varroa mite (Varroa destructor) (Buys, 1995; Allsopp et al., 1997).  The varroa 

mite in particular has been of concern in recent years in many parts of the world 

and increasingly in North America.   This mite has caused and said to be 

responsible for the loss of a large number of colonies (Kraus & Page, 1995; 

Finley et al., 1996).  Suggestive evidence has been found that the colony losses 

due to the mite are in actual fact an association between honeybee viruses and 

the varroa mite rather than the mite acting by itself (Bailey et al., 1983; Ball & 

Allen, 1988; Allen & Ball, 1996; Brødsgaard et al., 2000).  Recently a new threat 

to honeybees has surfaced in North America with entire hives dying.  The 

causative agents of the mortality of the hives are not known and the syndrome 

has been called colony collapse disorder (Cox-Foster et al., 2007). 

 

1.2 Honeybee parasites 

1.2.1 Varroa mites 

The parasite Varroa destructor (formerly jacobsoni), the most economically 

important parasite of honeybees, was discovered in the hives of the Asian bee 

Apis cerana from Java (Oudemans, 1904).  V. destructor was then reported for 

the first time to have infested Apis mellifera in 1962 (Delfinado, 1963).  The mite, 
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known as V. jacobsoni Oudamans, was taxonomically changed to Varroa 

destructor (Anderson & Trueman, 2000).  This change was made when studies 

carried out on the genetic variation of varroa lead to the observation that two out 

of eighteen genetically different mite populations have changed hosts to infest 

Apis mellifera and spread through bee populations worldwide (Anderson, 2000; 

Anderson & Trueman, 2000).  The V. destructor mites which infest Apis mellifera 

has spread over the last 50 years from eastern Asia throughout the world 

causing the mortality of millions of colonies (Anderson, 2000).  The spread of 

varroa is suggested to have taken place by commercial transport of bees and 

queens, the migratory activities of beekeepers, swarms that fly long distances, 

ships carrying hives and drifting bees (Swart et al., 2001). 

The female varroa mite is a flat oval shaped 1.1mm long and 1.5mm wide pale 

brown to reddish brown mite.  It attaches itself to the adult bee between body 

regions making them difficult to detect.  These areas that they attach to are 

where the mites have easy access to the hemolymph, which they feed on 

reducing the bees’ life expectancy (De Jong & De Jong, 1983). The mite also 

parasitises most severely on older larvae and pupae but preferring drone brood 

to worker brood because of the longer sealed stage (Ritter & Ruttner, 1980). 

Infestations of varroa has proven to be quiet difficult to control and eradicate in 

South Africa especially in populations in the wild that cannot easily be reached 

(Allsopp, 1997; Swart et al., 2001).  In Europe and America some form of varroa 

treatment is employed due to the huge losses in honeybee colonies in the 

country caused by varroatosis (disease caused by varroa) (Allsopp, 1997). 
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However varroa is not the sole cause of colony collapse, in instances where 

colonies are heavily infested with mites, the colony is further weakened by other 

diseases and pests including viruses (Swart et al., 2001).  It is then these 

complementary infections and disease that could cause total collapse of colonies 

The term “bee parasitic mite syndrome” has been used to describe the colony 

losses due to varroa and virus infection (Shimanuki et al., 1994). 

 

1.2.2 Bee parasitic mite syndrome 

The term “bee parasitic mite syndrome” is used to describe the disease complex 

in colonies which are simultaneously infected with virus and infested with mites 

and leads to the collapse of the colony (Shimanuki et al., 1994).  Varroa 

destructor has been suggested to either act as an activator of inapparent viruses 

or as a vector for the virus (Ball & Allen, 1988; Bowen Walker et al., 1999) but 

still their relationship is not fully understood.  The suggestion that mites vectored 

the virus was supported by the detection of a virus in the mite by indirect ELISA 

techniques (Allen et al., 1986).  Bowen-Walker et al. (1999) detected deformed 

wing virus (DWV) in mite populations infesting colonies succumbing to DWV 

infection and recently acute bee paralysis virus (ABPV) was detected in mite 

samples using reverse transcriptase–PCR techniques (Bakonyi et al., 2002).  

Their results showed that ABPV could be detected in mites but not all samples 

tested contained ABPV.  More conflicting results surfaced when records in Belize 

and Nicaragua showed that ABPV was detected in large amounts in dead adult 

bees where these countries are supposedly mite free (Allen & Ball, 1996).  
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Experiments carried out by Hung et al. (1996) found that colonies with bee 

parasitic mite syndrome contained dead adult bees that were virus free.  This 

lead to the suggestion that the virus and the mite are part of a complex problem 

that caused the mite infested colonies to collapse (Hung et al., 1996; Martin, 

2001). 

 

1.3 Honeybee viruses 

1.3.1 Virus classification 

There are approximately eighteen honeybee viruses that have been identified 

throughout the world (Ball & Allen, 1988; Allen & Ball, 1996).  The viruses are 

morphologically indistinguishable from each other when studied under an 

electron microscope.  Field diagnosis is unreliable because not all viruses exhibit 

visible symptoms.  Many of the viruses consist of 30nm isometrical particles and 

are all positive stranded RNA viruses except for one, which is a DNA virus.  The 

viruses where discovered in various parts of the world whether parasitic mites 

were present or not.  The complete genome sequences of eight viruses have 

been published namely acute bee paralysis virus (ABPV), black queen cell virus 

(BQCV), sacbrood virus (SBV), Kashmir bee virus (KBV), deformed wing virus 

(DWV), Israeli acute paralysis virus (IAPV), chronic bee paralysis virus (CBPV) 

and slow paralysis virus (SPV).  These viruses and others are characterised 

according to physical features and classification in Table 1.1.  
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Table 1.1 Classification of viruses isolated from honeybees which have been 
sequenced. 
 

Name    Genome         Family  Accession no.    Reference 
 
Acute bee paralysis virus      RNA        Dicistroviridae NC 002548      Govan et al., 2000 
 
Black queen cell virus           RNA        Dicistroviridae NC 003784      Leat et al., 2000 
 
Kashmir bee virus                RNA        Dicistroviridae NC 004807   de Miranda et al., 2004  
 
Deformed wing virus    RNA         Iflaviridae  NC 004830 Lanzi et al., 2006 
 
Israel acute paralysis virus   RNA        Dicistroviridae NC 009025      Maori et al., 2007 
 
Sacbrood virus                RNA         Iflaviridae   NC 002066      Ghosh et al., 1999 
 
Slow paralysis virus              RNA         Iflaviridae  EU35616         Unpublished  
 
Chronic bee paralysis virus  RNA        Unclassified EU122229/      Olivier et al., 2008  
                   EU122230 
 
  

 

1.3.2 Viral genome organisation 

Honeybee viruses resemble picornaviruses as do many other insect infecting 

RNA viruses.  The molecular and phylogenetic studies completed on the 

sequenced honeybee viruses ABPV, BQCV, SBV, KBV, DWV and other viruses 

associated with honeybees like varroa destructor virus 1 (VDV 1) has shown that 

they do not belong to the picornavirus family but are picorna-like in many ways 

(Govan et al., 2000; Leat et al., 2000; Ghosh et al., 2001; de Miranda et al., 

2004; Lanzi et al., 2006; Ongus et al., 2004).  SBV, DWV and VDV 1 are 

monocistronic viruses in this group and are said to resemble the infectious 

flacherie virus of silkworms.  Since this discovery all insect viruses including 

these three which have a single open reading frame with structural proteins at 
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the N terminal side of the virus have been grouped as Iflavirus (Christian et al., 

2002).   BQCV, ABPV and KBV and all other insect bicistronic viruses belong to 

a novel group of insect viruses, formally the cricket paralysis like viruses, and 

recently renamed family Dicistroviridae, genus Cripavirus.  The Discistroviridae 

group consists of infecting RNA viruses such as cricket paralysis virus (CrPV), 

Drosophila C virus (DCV), Plautia stali intestine virus (PSIV), Rhopalosiphum 

padi virus (RhPV) and himetobi P virus (Mayo, 2002) and the honeybee viruses 

ABPV, BQCV and KBV mentioned previously.   

The genomes of the bicistronic viruses have non structural genes encoded by the 

5’ proximal open reading frame (ORF) and structural genes encoded by the 3’ 

proximal ORF.  Figure 1.1A depicts the organisation of the genomes of the 

Discistroviridae with the helicase, 3C protease and RNA dependent RNA 

polymerase (RdRp) followed by the capsid protein, also shown are the 5’ and 3’ 

untranslated regions (UTR) and the intergenic region (IGR).  In figure 1.1B the 

genome organisation of Iflavirus is also shown. 
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(A) 

5’ UTR         IGR           3’ UTR  

 

                     ORF1        ORF2 

IRES  

(B) 

        5’ UTR               3’ UTR’ 

 

 

 ORF1 

      

Fig. 1.1  

Schematic diagrams of the genome organisation of two virus families which have 
been found in the honeybee. (A) Dicistroviridae organisation.  The open boxes 
represent the open reading frame (ORF) 1 and ORF 2.  Indicated in the diagram 
is the 5’ untranslated region (UTR) the intergenic region (IGR) between the two 
ORF’s and the 3’ untranslated region (UTR).  Also indicated is the suggested 
area for IRES activity which has been found in several of the viruses in this 
family. (B) Iflavirus organisation.  The open box represents the single open 
reading frame consistent with viruses in this family.  The genome is divided by 
the structural genes occurring in the 5’ region of the genome and the 
nonstructural in the 3’ region of the genome.  The 5’ and 3’ UTR are also 
indicated. 
 

 

Previous studies on Dicistroviridae viruses have revealed that PSIV, RhPV and 

CrPV all have internal ribosome entry sites (IRES).   Mediated initiation of both 

the 5’ and 3’ proteins in RhPV and CrPV by IRES activity have been proven 

    Heli             Rep          RdRp Capsid genes 

Capsid genes                        Hel                 Rep                 RdRp 

 

 

 

 



 9

where as IRES mediated initiation occurs for the 3’ proteins in PSIV (Woolaway 

et al., 2001; Domier et al., 2000; Wilson et al., 2000; Saski & Nakashima, 1999).  

It was also shown that PSIV and RhPV IRES elements initiated translation at non 

AUG codons (Domier et al., 2000; Sasaki & Nakashima 1999).  It was later also 

suggested that the 3’ proximal ORF of BQCV was facilitated by an IRES element 

at the CCU codon since no AUG codon appears at the start of the coding region 

of this virus (Leat et al., 2000). 

 

1.3.3 Honeybee virus, Black queen cell virus 

Black queen cell virus (BQCV) was first isolated from queen pre-pupae and 

pupae found dead in their cells (Bailey & Woods, 1977).  The virus name was 

derived from the darkened areas on the walls of the cells containing the infected 

pupae.  BQCV is often detected when colonies are infested with the 

microsporidian mite Nosema apis (Allen & Ball, 1996; Bailey et al., 1983) and 

was seen to cause mortality of bees infected with this parasite in some instances. 

Studies have identified BQCV as having 30nm particles and a positive stranded 

RNA genome.  The South African isolate of BQCV was found to have a genome 

consisting of 8550 nucleotides excluding the poly (A) tail.  The genome consists 

of two ORF in line with other picorna-like viruses where the 5’ proximal ORF 

encoding a putative replicase protein and the 3’ proximal ORF encoding a capsid 

polyprotein (Leat et al., 2000).  Using multiple sequence alignments Leat et al. 

(2000) also identified three domains characteristic to helicase, 3C like cysteine 

protease and RNA dependent RNA polymerase (RdRp) which lies in the 5’ 
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proximal ORF (see fig 1.1A).  The virus contains four capsid proteins with 

molecular masses of 34, 32, 29 and 6kDa.  Evidence was found that certain 

picorna-like viruses has translation initiation facilitated by IRES elements.  It was 

then suggested that BQCV 3’ proximal ORF is facilitated by an IRES at a CCU 

codon (Leat et al., 2000).  The virus was classed as Dicistroviridae as were other 

insect viruses having the same genome organisation (Mayo, 2002). 

  

1.3.4 Acute bee paralysis virus  

Acute bee paralysis virus (ABPV) was found originally as an inapparent infection 

of honeybees (Apis mellifera) in Britain (Bailey et al., 1963).  ABPV is the only 

honeybee virus which has a natural alternate host where the virus was also 

found in infected bumblebees (Bailey & Gibbs, 1964).  ABPV spreads by way of 

the salivary gland secretions of adult bees.  The virus can also be found in the 

food stores, to which the salivary secretions are added (Ball, 1985).  ABPV has 

shown to cause colony loss in both adult bees and larvae when colonies are 

infested with the mite Varroa destructor.  The mite has been implicated as acting 

as a vector for the virus when feeding on the hemolymph of the honeybee (Scott-

Dupree & MacCarthy, 1995).  The ABPV genome consists of positive sense 

single strand RNA with the genome consisting of 9470 nucleotides.  The virus 

has two ORFS with the non-structural genes in the 5’ ORF and the 3’ ORF 

contains the structural genes.  The capsid proteins were identified and the sizes 

of the four proteins were 35, 33, 24 and 9.5kDa (Govan et al., 2000).  The virus 
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was re-classes as Dicistroviridae as it resembles other insect infecting viruses 

with the same genome organisation (Mayo, 2002). 

 

1.3.5 Kashmir bee virus 

Kashmir bee virus (KBV) was discovered in 1974 as a contaminant in a 

preparation of Apis iridescent virus from an Apis cerana hive (Bailey & Woods, 

1977).  Although suspected to have originated in A. cerana and South East Asia 

KBV was also discovered in natural populations of A. mellifera from around the 

world (Ball & Bailey, 1997; Allen & Ball, 1995).  Previous studies have suggested 

that KBV is closely related to ABPV both serologically and biologically (Allen & 

Ball, 1995; Anderson, 1991).  However evidence was found that ABPV and KBV 

differ in key areas across the genome of the viruses (de Mirande et al., 2004).   

KBV has also been implicated as being an inapparent virus and can multiply to 

high titres when extracts of apparently “healthy” bees were injected or fed to 

larvae and bees (Dall 1985).  The varroa mite has also been suggested to vector 

the virus in colonies infested with this mite (Bailey & Woods, 1977).  KBV 

consists of positive sense RNA genome containing 9524 nucleotides (de Miranda 

et al., 2004). 

 

1.3.6 Sacbrood virus 

Sacbrood virus was characterised in 1964 in honeybees.  It has been observed 

that SBV is the most common viral disease of bees found on every continent 

(Dall, 1985; Nixon 1982).  The brood of the honeybee is usually infected by SBV 
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resulting in the death of the larvae. Larvae Infected with the virus fail to pupate 

and ecdysial fluid rich in SBV can be found accumulated under the unshed 

cuticle forming the sac (Shen et al., 2005).  SBV may also infect adult bees 

without any obvious signs of disease (Allen and Ball, 1996).  The nucleotide 

sequence of SBV is available and unlike ABPV, BQCV and KBV falls within the 

Iflavirus family as described in the previous section (Ghosh et al., 1999). 

 

1.4 Virus prevalence 

The distribution of viruses throughout the world has been well documented, 

however due to the special techniques needed for virus detection the results 

could be incomplete. Many honeybee viruses persist as inapparent or latent 

viruses which lie dormant until activated causing the viruses to multiply (Allen & 

Ball, 1996).  Most honeybee viruses have no overt symptoms that can be 

observed by eye and detection can be time consuming.  Only SBV and CBPV 

can be readily diagnosed by symptoms when these viruses occur naturally in 

honeybee colonies.  Therefore the diagnosis of honeybee viruses can rarely be 

diagnosed by symptoms or electron microscopy, due to most honeybee viruses 

being morphologically indistinguishable.  There has also been evidence that two 

or more honeybee viruses can be present in the same hive at the same time and 

in some instances in the same bee (Evans, 2001; Chen et al., 2004; Topley et 

al., 2005).  Many studies carried out on virus distribution had been initiated due 

to the viruses association with the varroa mite (Ball, 1993).  The viruses which 

persist as inapparent infection often have very low viral particle numbers that 
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cannot be readily detected.  These viruses however can be easily induced by 

injecting bees or pupae with extracts from apparently healthy bees from the 

same colony which leads to the viral particles multiplying to detectable levels 

(Anderson & Gibbs 1988; Allen & Ball, 1996).  The detection of these viruses can 

be carried out by various immunodiffusion tests or molecular techniques. 

 

1.5 Detection of viruses 

There are several methods used for the detection of honeybee viruses.  These 

include enzyme linked immunosorbent assay (ELISA) immunodiffusion, 

enhanced chemiluminescent western blotting and reverse transcriptase (RT) 

PCR (Allen & Ball, 1996; Allen et al., 1986; Stoltz et al., 1995) and recently a real 

time quantitative RT-PCR for detection of viruses (Chantawannakul et al., 2006; 

Chen et al., 2005).  Still widely used today the immunodiffusion technique is 

rapid, inexpensive and specific (Allen & Ball, 1996). 

 

1.5.1 Serological methods 

The most widely used serological method for the identification of honeybee 

viruses is the ELISA test.  This entails raising antibodies to the different 

honeybee viruses which have been discovered employing the ELISA method for 

identification.  Briefly the ELISA method uses the quantitative estimation of the 

amount of virus present in a sample relevant to the colour reaction produced by 

the assay when the antibodies react with the virus (Ball, 1997).  However, 

serological methods have proven to be unreliable in certain instances where 
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these methods depend on precise antibodies being developed for each member 

of a broad family of honeybee viruses.  The antibody stock also has to remain 

current and inclusive of all possible viruses.  This continuous development of 

antibodies does seem unlikely to occur for honeybees (Evans & Hung, 2000).  

Another drawback of serological assays are the cross reactivity with other 

viruses, which has been shown to co-infect a single bee (Evans, 2001). 

In another serological method used, immunodiffusion uses agar jelly layers 

where the bee extracts are placed.  The virus antiserum is also placed on the 

jelly and both virus extracts and antisera migrate through the agar.  An insoluble 

complex forms or visible line when specific antisera and viruses meet in the agar 

(Ball, 1997).  Immunodiffusion tests are relatively insensitive because a very high 

concentration of virus is required which is not normally found in bees where 

inapparent infections are present.  The test is useful though when testing the 

cause of mortality in natural disease outbreaks (Ball, 1997). 

 

1.5.2 Molecular methods 

The use of molecular methods for detecting and identifying honeybee viruses is 

fairly common and genome sequences of honeybee viruses are being deposited 

more frequently into databases.  The use of molecular techniques such as 

polymerase chain reaction (PCR) reverse transcriptase PCR (RT-PCR), multiplex 

RT-PCR and real time PCR has become more widely used.  The RT-PCR 

technique has been used to detect KBV (Stoltz et al., 1995), BQCV and ABPV 

(Benjeddou et al., 2001) and SBV (Grabensteiner et al., 2000).  The RT-PCR has 
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proven to be reliable, specific and sensitive for the identification of honeybee 

viruses from field samples where virus titres are usually low.  Molecular methods 

require only a few nano grams of viral RNA in order to identify the virus.  A 

multiplex RT PCR system for the simultaneous detection of three or more viruses 

put into a reaction has also been developed.  The detection of three important 

viruses ABPV, BQCV and SBV in a single reaction from laboratory infected and 

naturally infected bees was observed to be sensitive in detecting these honeybee 

viruses (Topley et al., 2005).  More recently a real time quantitative RT-PCR 

method was developed which was able to detect multiple viruses in bees and 

mite samples and also quantify all the viruses present in one reaction 

(Chantawannakul et al., 2006; Chen et al., 2005). 

 

1.6 Alternative systems for virus propagation and expression  

Honeybee virus propagation has remained a time consuming task where 

honeybee pupae or adults have to be manually injected or fed virus particles 

(Bailey & Woods 1974, 1977).  These methods have been used since honeybee 

viruses were discovered and to date no cell culture method has been developed.  

The short comings of the manual infections include needles used for injecting 

virus could be contaminated or cause the activation of the virus in the case of 

inapparent viruses (Anderson & Gibbs 1988).   Therefore the injected virus as 

well as the inapparent virus will be propagated leading to a mixed infection and 

not a pure virus strain of the desired injected virus.  Mixed infections have 

occurred naturally where two or more viruses are known to inhabit the same bee 
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(Evans and Hung, 2000; Chen et al., 2004; Topley et al., 2005).  For further 

studies to be conducted on honeybee viruses the ability to harvest pure virus is 

becoming crucial to particularly molecular studies.  Pure virus for serological 

detection and genome or DNA manipulations are important as to inhibit any 

contamination from another virus.   Various technologies are available which can 

be looked at. 

There are many heterologous systems which could be considered in order to 

determine if cell culture for honeybee viruses are viable.  These include yeast 

systems, baculovirus systems and Drosophila systems.  Baculovirus vector 

systems and promoters especially have proven very reliable across many 

different viruses and all of these systems are commercially available.  

 

1.6.1 Recombinant baculovirus vector systems 

Baculoviruses are one of the largest insect virus groups known which contain 

double stranded DNA genomes and can reach in excess of 150kb in size.  There 

are two subgroups of baculoviruses with subgroup A being the nuclear 

polyhedrosis virus (NPV) and subgroup B granulosis viruses (GV).  Many 

different baculovirus genomes have been sequenced of which Autographa 

californica NPV (AcNPV) is one of the most studied (Beljelarskaya, 2001).  The 

host ranges of baculoviruses are mostly Diptera, Hymenoptera and Lepidoptera 

(Rohrmann, 2008). 

Baculovirus expression vectors have become more widely used due to the 

limitations of bacterial and yeast systems (Kitts and Possee, 1993).  The insect 
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cell lines used for baculovirus expression have many of the post translational 

modifications known to occur in mammalian systems.  These include N- and O- 

linked glycosylation, phosphorylation, acylation, proteolysis and amidation which 

occur to some extent in insect cell lines (Hegedus et al., 1997).  Recombinant 

baculovirus technology makes use of a transfer vector which contains all the 

necessary sequence including promoters, ampicillin resistance and sequence for 

homologous recombination between the vector and linearised baculovirus.  The 

promoters which are frequently used in many different studies include polyhedron 

(Ph) and P10 which are very strong constitutive promoters in baculoviruses 

(Davies, 1995).  Another promoter widely used is the immediate early (IE) group 

of promoters.  

The construction of the recombinant baculoviruses in early studies went through 

many changes to find the best suited method for recombining the transfer vector 

to the full length baculovirus.  Several procedures were proposed including direct 

enzymatic ligation of the transfer vector into the viral genome which was seen to 

be very difficult to carry out due to the baculoviruses large genomes (Davies, 

1994).  This method was not widely used with shuttle vectors and large plasmids 

also being proposed but these methods were also problematic and again not 

widely used.  The most common methods of recombination between the transfer 

vector and the virus were by homologous recombination in cell culture.  The 

process involves the wild type baculovirus being linearised and co-transfecting 

the linear virus with the transfer vector in cell culture (Beljelarskaya, 2001).  The 

sequence flanking the cleavage sites are repaired and the DNA is circularised 

 

 

 

 



 18

again (Kitts et al., 1990).  Recombination of the virus and transfer vector for the 

gene expression depends on two crucial aspects, one being the method of 

recombination in insect cells and secondly the cell culture conditions.  There are 

two main cell lines used widely, Spodoptera frugiperda (Sf) including Sf 9 and Sf 

21 cells and Trichoplusia ni.  Other valuable tools which have also been added to 

the recombinant vector systems are the selective markers which make selection 

of recombinant virus plaques easier than time consuming processes of the past.  

Selective markers used widely are the E. coli β-galactosidase gene, controlled by 

a viral promoter, which in the presence of X gal produce blue plaques which 

indicate the recombinant viruses with the Lac Z altered by the insertion of the 

foreign DNA fragment (Hegedus et al., 1998).  Another marker used for 

blue/white selection is β-glucuronidase identified in the presence of X gluc (Lerch 

& Friesen, 1993).  The green fluorescent protein (GFP) gene from Aquorea 

victoria is also widely used.  The expression of GFP fused with the expressed 

protein can easily identify recombinant plaques under UV light (Wilson et al., 

1997).  These are a few of the more widely used selective markers which are 

available commercially.   

 

1.6.1.1 Expression of virus like particles 

The baculovirus expression vector systems have been used widely for the 

expression of a variety of recombinant proteins in insect cell lines.  The proteins 

produced include cytosolic, nuclear, mitochondrial, membrane bound and 

secreted proteins.  The expression of virus like particles (VLPs) by baculovirus 
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expression vectors have been utilised increasingly.  The VLPs can be used to 

study viral assembly processes without having an infectious virus and VLPs can 

also be used for the safe production of vaccines (Kost & Conreay, 1999).   

Examples of expressing VLPs by baculovirus vector systems are extensive and 

cross many different virus families that do not have cell lines available or use 

insect cell lines due to its ease.  The capsid assembly of herpes simplex virus 

type 1 was investigated by recombinant baculovirus expression (Newcomb et al., 

1996).  Assembly of polyomavirus was studied using combinations of 

recombinant baculovirus that encoded VP1, 2 and 3.  Where VP1 alone 

produced VLPs and VP2 and VP3 alone did not (Ke et al., 1999).   Vaccines 

have also been produced using expressed VLPs.  Vaccination with purified 

rotavirus VLPs resulted in protection against a rotavirus challenge (Crawford, 

1999). 

Recombinant baculovirus expression vectors can be used successfully to 

express VLPs of many different viruses.  These studies have elucidated many 

different characteristics of the necessary components for capsid assembly.  

Much can still be learned about viruses using these systems. 

 

1.7 Molecular manipulation of honeybee viruses 

1.7.1 Reverse genetics technology for RNA viruses 

Analysis and modification of DNA has allowed insight into the organisation and 

expression systems of the organism being studied. Following DNA modifications, 
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RNA viruses because of their small size make them perfect volunteers for 

recombinant technology (Boyer & Haenni, 1994).  

Infectious virus clone technology is a modern and direct approach for the 

analysis and modification of virus genomes at the molecular level (Gritsun & 

Gould, 1995).  The infectious clones are useful in studies which focus on genetic 

expression, replication, functioning of viral proteins and recombination of RNA 

viruses.  The development of new viral vectors and vaccines is another useful 

implementation of this technology (Meulenberg et al., 1998; Boyer & Haenni, 

1994).   

Using this technology infectious viruses usually start out as reverse transcribed 

into cDNA either as full length clones or cDNA libraries within vectors.  Full length 

cDNA clones of viruses that led to successful infectious viruses include tobacco 

mosaic virus (TMV) (Meshi et al., 1986; Dawson et al., 1986; Holt & Beachy, 

1991), turnip yellow mosaic virus (TYMV) (Weiland & Dreher, 1989; Skotnicki et 

al., 1992; Boyer et al., 1994) and black queen cell virus (BQCV) (Benjeddou et 

al., 2002).  Variations on the cDNA technology have been used including 

improved vector primed strategies (Petty et al., 1988) and synthetic DNA 

cassettes (Rizzo & Palukaitis, 1990).  The development of reverse transcriptase’s 

and DNA polymerases with increased fidelity and increases on the length that 

can be amplified has greatly benefited the development of infectious RNA clones 

(Boyer & Haenni, 1994).  A very important aspect is the promoter sequences 

from which the infectious RNA is expected for in vitro or in vivo transcription 

because it directly affects the yield of transcripts (Boyer & Haenni, 1994).  There 

 

 

 

 



 21

are several promoters which have been used from E. coli, for example Pm and 

promoters of bacteriophage SP6, T3 and T7.  However obtaining full length 

cDNA clones or transcripts does not ensure biological activity in all cases.  The 

infectivity of infectious clones is difficult to compare since results vary by multiple 

authors and also various methods used.  For successful infection the viral 

transcripts have to mimic that of the virion RNA as closely as possible (Gritsun & 

Gould 1995).  

More recently PCR has been the preferred choice in obtaining infectious clones 

of RNA viruses.  These either include or exclude the use of vectors.  Gritsun & 

Gould, (1995) used reverse transcribed cDNA from tick borne encephalitis virus 

(TBEV) and Benjeddou et al. (2002) for BQCV used PCR to amplify two halves of 

the genome namely the 5' half (non structural genes) and the 3' half (structural 

genes) using primers designed to these regions.  The halves of the viruses were 

either ligated together or fused by fusion PCR to join the 5' half and the 3' half to 

obtain a full length clone of TBEV and BQCV respectively.  With both of these 

methods point mutations can be included to introduce restriction enzymes sites 

for ligation or mutating the virus for identification purposes from the wild type.  

Infectious clone technology has been used to greatly advance the study of 

viruses.  A step further is the development of chimeric viruses or genetically 

altered infectious viruses to help further the research of these viruses. 

 

 

 

 

 

 

 



 22

1.7.2 Chimeric viruses 

Since infectious clone technology has become routine in molecular biology many 

other techniques have been used based on infectious clone technology.  Also 

with rapid PCR technology and cloning, chimeric viruses can be obtained within 

days followed by the testing of the virus.  Chimeric organisms have come about 

by researchers substituting genome regions across different viral genomes within 

the same family or different families of viruses (Dekker et al., 2000).  These 

substitutions give rise to chimeric recombinant viruses which have many different 

uses in molecular biology and other aspects of biology.  Chimeric viruses are 

constructed by exchanging or substituting parts of viral genomes from one virus 

to another and observing if these newly formed viruses are viable (Pletnev & 

Men, 1998; Pletnev et al., 1992; Kuhn et al., 1996; Chambers et al., 1999; 

Spielhofer et al., 1998).  Chimeric viruses have been used to better understand 

and also define specific functions of viral genomes, their contributions of different 

components to viral growth and virulence (Kuhn et al., 1996; Powers et al., 

2000).  Most importantly these viruses can be used to develop vaccines against 

the parental viruses (Pletnev et al., 1992; Spielhofer et al., 1998; Chambers et 

al., 1999).  Many studies have shown that virus activity being it virulence or 

replication can decrease by altering the virus.  Kuhn et al. (1991) interchanged 3’ 

and 5’ non translated regions (NTRs) of a Sindbis (SIN) and Ross River virus 

(RRV).  It resulted in the virus being attenuated.  Furthermore the exchange of 

entire structural and non structural genes between SIN and RR virus resulted in 

 

 

 

 



 23

these chimeric viruses growing more poorly than parental viruses (Kuhn et al., 

1996). 

Pletnev & Men, (1998) attempted to reduce the neurovirulence and abolish the 

neuro-invasiveness of the most virulent flavivirus, dengue virus (DEN) type 4.  

This was done by substituting structural and non structural regions from DEN 

type 4 to another flavivirus, tick borne, Langat virus (LGT).  It was observed that 

the chimeras were 5000 times less neurovirulent than the parental LGT in mice.  

The results from this study were confirmed when the chimera appeared to be 

attenuated in monkeys and failed to infect permissive mosquito hosts.  It was 

suggested that these chimeras were a promising vaccine candidate (Pletnev et 

al., 2002). 

Altering viruses at the genome level in order to study the impact of these viruses 

have been used with success.  The ability to alter genomes of viruses has come 

about by years of research and now occurs routinely.  The use of chimeric 

viruses to find vaccine candidates has great potential. 
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CHAPTER TWO 
 
 

Detection of three honeybee viruses simultaneously by a single  
 

Multiplex Reverse Transcriptase PCR 
 
 
 
 
2.1 Abstract 
 
 
A single multiplex reverse transcriptase (RT) PCR polymerase chain reaction 

(PCR) assay was developed for the simultaneous detection of three honeybee 

viruses: acute bee paralysis virus (ABPV), sacbrood virus (SBV) and black queen 

cell virus (BQCV).  Unique primers were designed from the complete genome 

sequence to amplify fragments of 900bp from ABPV, 434bp from SBV and 316 

bp from BQCV.  Individual bee pupae crude homogenates or total RNA extracted 

from the crude extracts was used in the RT-PCR amplification.  Sequence 

analysis of the fragments amplified revealed nucleotide sequence identities 

between 97 and 98% for each virus against its reference strain.  In a blind test, 

samples containing various combinations of ABPV, SBV and BQCV were 

successfully identified.  Field samples of apparently healthy pupae were 

screened for viral infections and evidence of inapparent virus infection and virus 

co-infections were found. 

 

This chapter has been published as: 
Topley, E.L., Davison, S., Leat, N. & Benjeddou, M. (2005). Detection of three honeybee viruses 
simultaneously by a single multiplex reverse transcriptase PCR. African Journal of Biotechnology 4, 763-767 
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2.2 Introduction 
 
The study of viral diseases of honeybees has become increasingly important to 

honeybee keepers and all related agricultural industries.  Distributed worldwide 

these viruses together with pollution and the use of insecticides has resulted in 

high honeybee mortality rates which pose a real threat to these industries (Morse 

& Calderone, 2000; Spira, 2001).  Currently there are 18 different honeybee 

viruses which have been identified and characterised with many of them 

persisting as inapparent infections, which cause sub-lethal infections in 

apparently healthy bees (Allen & Ball, 1996; Bailey et al., 1983; Ball & Allen, 

1988).  Inapparent infections make viral diagnosis difficult due to the lack of 

gross symptoms visible to the eye (Bailey, 1965).  The parasitic mite Varroa 

destructor (formerly named Varroa jacobsoni) has been suggested to play a 

pivotal role in honeybee mortality (Allen & Ball 1996; Bailey et al., 1983; Ball & 

Allen, 1988; Brødsgaard et al., 2000).  Yet the relationship between the mite 

infestations and virus infections is not clearly understood although the mite has 

been demonstrated to act as a vector (Ball & Allen, 1988; Bowen-Walker et al., 

1999) or activator (Ball & Allen, 1988; Brødsgaard et al., 2000) of the inapparent 

viruses found in bees.  

To date the genomes of six viruses have been completely sequenced, namely 

acute bee paralysis virus (ABPV), sacbrood virus (SBV) and black queen cell 

virus (BQCV) (Govan et al., 2000; Ghosh et al., 1999; Leat et al., 2000), Kashmir 

bee virus (KBV) (de Miranda et al., 2005), deformed wing virus (DWV) (GenBank 

accession no.: NC_004830).  These viruses have been referred to as picorna-like 

viruses due to their physical features, although ABPV and BQCV have been 
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seen to differ from mammalian picornaviruses (Govan et al., 2000; Leat et al., 

2000).  All of these viruses are single stranded RNA viruses having 30 nm 

isometrical particles, and they are morphologically indistinguishable from each 

other (Allen & Ball, 1996). ABPV was first discovered as an inapparent infection 

during laboratory experiments (Bailey et al., 1963), and is spread by way of 

salivary gland secretions of adult bees, which are infected and in turn 

contaminate brood food stores (Ball, 1985).  ABPV infections are known to be 

widespread if the colonies are infested with Varroa destructor (Allen & Ball, 1996; 

Ball & Allen, 1988).  ABPV has a single positive strand RNA genome consisting 

of 9470 nucleotides excluding the poly (A) tail (Govan et al., 2000).  BQCV was 

originally detected in dead queen larvae and pupae (Bailey & Woods, 1977) and 

is also very often detected when colonies are infested with the microsporidian 

mite Nosema apis (Allen & Ball, 1996; Bailey et al., 1983).  N. apis may be 

implicated in the mortality of honeybees when infected with the parasite (Bailey 

et al., 1983).   BQCV has a single positive strand RNA genome consisting of 

8550 nucleotides excluding the poly (A) tail (Leat et al., 2000).  SBV was first 

described in 1917 but later isolated by Bailey et al. (1964).  The virus was so 

called due to the sac like appearance of the diseased larvae (Allen & Ball, 1996).  

SBV mainly infects honeybee larvae causing very discernable symptoms (Bailey, 

1969), but can also multiply in young adult bees without causing any symptoms, 

this enables the virus to persist in colonies from one year to another (Bailey & 

Fernando, 1972).  SBV has a single positive strand RNA genome consisting of 

8832 nucleotides (Ghosh et al., 1999). 
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Methods that are used to detect honeybee viruses include immunodiffusion 

techniques (Allen & Ball, 1996), enzyme linked immunosorbent assay, enhanced 

chemiluminescent western blotting (Allen et al., 1986) and reverse transcriptase 

(RT) PCR (Benjeddou et al., 2001; Grabensteiner et al., 2000; Stoltz et al., 

1995).  The most common technique still used is the immunodiffusion test 

because it is rapid, relatively inexpensive and specific (Allen & Ball, 1996).  

However serological methods used have drawbacks when antiserum is raised to 

samples that contain virus mixtures.  Evans (2001) found evidence that ABPV 

and Kashmir bee virus (KBV) can co-infect the same bee at one time.  Therefore 

when inapparent viruses are present in the preparation of the virus of interest, 

antisera is raised to all the viruses present in that sample.  Serological methods 

are also limited to laboratories that can produce large amounts of pure virus and 

then raise the suitable antisera to those viruses.  RT PCR, however, has shown 

to be a simple and rapid technique for detecting viruses.  A variety of RNA 

viruses have been detected by RT PCR including, rhinoviruses (Steininger et al., 

2000), human herpes virus 6 (Norton et al., 1999) and viruses found in plants 

and aphids (Singh, 1998).  RT PCR has also been developed for honeybee 

viruses such as KBV (Evans, 2001; Hung & Shimanuki, 1999), SBV 

(Grabensteiner et al., 2000, BQCV and ABPV (Benjeddou et al., 2001, Evans & 

Hung, 2000).  An advantage of RT PCR detection of honeybee viruses is the 

genetic comparison and classification of different virus strains that can be rapidly 

carried out by sequencing the PCR products (Grabensteiner et al., 2000).  

Multiplex RT PCR (M-RT-PCR) for the simultaneous detection of different viruses 
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has been proposed for numerous viruses. These include fish viruses (Williams et 

al., 1999), Parainfluenza viruses (Aguilar et al., 2000; Echevarría et al., 1998), 

viruses of olive trees (Bertolini et al., 2001), viruses found in the environment 

(Tsai et al., 1994) and food samples (Rosenfield & Jaykus, 1999), sugar beet 

viruses (Meunier et al., 2003) and potato viruses (Nie & Singh, 2000). M-RT-PCR 

reduces time and costs of reagents and has been proven to be specific and 

reliable (Singh et al., 2000).  In order to overcome inhibitory components in the 

PCR there have been many RNA extraction methods developed or modified to 

remove these inhibitors (Singh, 1998). 

The aim of this study was to develop an M-RT-PCR assay for the simultaneous 

detection of ABPV, SBV and BQCV.  

 
 
2.3 Materials and methods 

2.3.1 Virus propagation and purification 

Apparently healthy bee pupae were collected from hives in the Stellenbosch area 

of the Western Cape, South Africa.  The three viruses were propagated by 

injecting apparently healthy white to pink-eyed pupae with 2 µl of viral 

preparations. The pupae were then incubated for 6 to 7 days at 30°C. The 

viruses were purified as described by Leat et al. (2000).  

 

2.3.2 RNA purification 

Total RNA extraction was performed by adding 1 volume of 2% SDS (sodium 

dodecyl sulphate) (w/v) in 1 X TE (Tris EDTA) to 100 µl extracted virus and 
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heated at 65°C for 5 min. This was followed by phenol extraction and ethanol 

precipitation. Care was taken to ensure that phenol and ethanol was completely 

removed before continuing with the M-RT-PCR. The samples were stored at       

–70°C. RNA concentration was quantified by a UV spectrophotometer 

(Sambrook et al., 1989).  

 

2.3.3 Bee crude extract 

Homogenates of honeybee pupae were also prepared by homogenising 

individual bee pupae in 200 µl of 0.01 M phosphate buffer providing a crude 

extract. This homogenate was stored at –20°C for later use.  The homogenates 

were centrifuged at 14 000 rpm for one minute and an aliquot of the supernatant 

was heated at 90°C for 5 min before adding to the RT-PCR mix.  

 

2.3.4 Oligonucleotide primers 

The PCR primers were designed within a 1 kb region from the 3’ end of each of 

the individual virus genomes (Table 1).  The primers were designed based on the 

complete genome sequence of ABPV (accession number AF150629), BQCV 

(SA) (accession number AF183905) and SBV (accession number AF092924).  

ABPV primers were used previously in Benjeddou et al. (2001). Due to slight 

variations in the genome sequences of different strains of ABPV, SBV and BQCV 

deoxyinosine residues (denoted as I) were incorporated at the 3’ end of each 

primer.  This ensured that the primer annealed to the template even if a strain 

specific mismatch occurred. Primer specificities were checked by using the 
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basic local alignment tool (BLAST (Altschul et al., 1990) from the national centre 

for biotechnology information (NCBI) as well as being compared to all the 

honeybee virus sequences available in the database.  The maximum percentage 

of sequence identity between primer and non corresponding genome sequences 

was 65% (data not shown).   PCR conditions were optimised after extensive trails 

with primer ratios and annealing temperatures to enhance the amplification of 

each virus.  Initially a primer pair was designed to amplify Kashmir bee virus 

(KBV) in the same genome region as the other viruses but due to primer 

interactions between ABPV and KBV RNA in the multiplex RT-PCR, KBV was 

subsequently removed from the RNA pools added to the multiplex reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31

Primer                Sequence                                       Amplicon size      Position 

 

ABPVF* 5’ TTATGTGTCCAGAGACTGTATCCA I 3’      900bp           8460-8484  

ABPVR*5’ GCTCCTATTGCTCGGTTTTTCGGT I 3’                            9336-9360 

 

BQCVF 5’ GGAGATGTATGCGCTTTATCGAG I 3’        316bp            7882-7904 

BQCVR 5’ CACCAACCGCATAATAGCGATTG I 3’                              8176-8198 

 

SBVF   5’ GTGGCGCGCCCATTACTGTAGTG I 3’        434bp            8169-8191 

SBVR   5’ CTCGACAATTCTCCCTAGTAGCC I 3’                                8581-8603  

* Primers used by Benjeddou et al (2001) 

Table 2.1 Multiplex primers for detection of the three honeybee viruses 
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2.3.5 Reverse transcription and PCR amplification 

Amplification was carried out in a total volume of 25 µl with the master mix 

containing 0.2 mM of each deoxynucleotide triphosphate.  Both the extracted 

RNA and the bee homogenate extract were used in the Titan RT-PCR system 

(Roche Diagnostics Gmb Roche Biochemicals Manneheim Germany) following 

the manufacturers recommendations except as otherwise stated.  The primer 

concentrations were as follows, ABPVR 0.08 µM and ABPVF 0.064 µM, SBVR 

0.16 µM and SBVF 0.73 µM, BQCVR 0.24 µM and BQCVF 0.8 µM.   The master 

mix also contained 4.8 mM dTT, 5 µl of 5X RT PCR buffer, 1 µl of template RNA 

with 0.4 µl Titan polymerase mix.  Reverse transcription and amplification was 

completed with a continuous RT-PCR method in a GeneAmp Perkin Elmer 2400 

thermocycler. The cycle stages were: RT 58°C for 30min followed by 

denaturation at 94°C for 2 min.  This was followed by 10 cycles of 94°C for 30s, 

63°C for 30s and 68°C for 1 min.  Then followed 25 cycles of 94°C for 30s, 63°C 

for 30s and 68°C for 1 min plus 5s each cycle thereafter this was followed by a 

final extension of 68°C for 7 min. The PCR products were visualised on a 3% 

agarose gel containing ethidium bromide.  

 

2.3.6 Nucleotide sequencing and analysis 

Single bands were excised from the gel and purified using the High Pure PCR 

product purification kit (Roche).  Purified PCR products were then sequenced in 

both directions with the prime pairs and analysed on an ABI Prism 3100 genetic 
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analyser.  The sequence analysis results of ABPV, SBV and BQCV amplicons 

were aligned with the published full-length sequences in the NCBI databases.  

 

2.3.7 Blind tests and natural infections 

Forty samples of laboratory-infected bees with various combinations of ABPV, 

SBV and BQCV were prepared and blind tested; to investigate whether this 

method will correctly identify virus infections.  A further 40 field samples of 

apparently healthy honeybee pupae were also screened for viral infections using 

this M-RT-PCR. In both instances crude extracts of individual bees were used in 

these tests. 

 

2.4 Results 

Total RNA and extracted crude bee homogenate were used in the M-RT- PCR as 

described earlier.  When using total RNA, ABPV, SBV and BQCV primers 

amplified each virus in uniplex at the predicted molecular weight of ABPV 900bp, 

SBV 434bp and BQCV 316bp.  A cocktail of all primer pairs also correctly 

amplified ABPV, SBV and BQCV as a multiplex.  The primers failed to amplify 

any secondary viruses, which could have been present (Figure 2.2).  
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Figure 2.2  
Reverse transcriptase (RT) PCR amplification of ABPV, SBV and BQCV in 
honeybees in a uniplex PCR and by Multiplex-RT-PCR.  Extracted RNA from 
laboratory infected bee pupae were used with the corresponding primers for the 
particular virus for the uniplex PCR and a combination of primers for Multiplex-
RT-PCR of the primer sets for ABPV, SBV and BQCV.  Lane M, 100bp marker 
(Promega), lane 1, APBV-infected bee pupae, lane 2, SBV–infected bee pupae, 
lane 3, BQCV-infected bee pupae, lane 4, multiplex of ABPV plus SBV plus 
BQCV-infected bee pupae, lane 5, water (negative control). 
 

 

The results of the sequencing and BLAST searches of the PCR products showed 

that they belong to the corresponding ABPV, SBV or BQCV, with 97 to 98% 

identities to the particular reference strains contained in the GenBank database. 

To further test the primers, total RNA and bee homogenates were used in a M-

RT-PCR to detect ABPV, SBV and BQCV in various combinations (Figure 2.3 

lanes 1 through 12). The positive controls were carried out with ABPV, SBV and 

BQCV RNA stocks and samples in lane 5 through 12 used extracted bee 

homogenates.  The primer sets only amplified the desired product of the 

particular virus or viruses in each reaction.  
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Figure 2.3  
Reverse transcription (RT) PCR detection of ABPV, SBV, and BQCV in a uniplex 
PCR and as a Multiplex-RT-PCR to test the specificity of the primers sets for the 
three viruses. The specificity of the primers were tested on ABPV, SBV and 
BQCV virus stocks (positive controls) and laboratory infected pupae using a 
cocktail of primers in the M-RT-PCR.  Lane M, 100bp marker (Promega), lane 1 
water (negative control), lane 2 ABPV virus stock (positive control), lane 3, SBV 
virus stock (positive control), lane 4 BQCV virus stock (positive control), lane 5 
ABPV (infected pupae), lane 6 SBV (infected pupae), lane 7 BQCV (infected 
pupae), lane 8 ABPV plus BQCV (infected pupae), lane 9 ABPV plus SBV 
(infected pupae), lane 10 SBV plus BQCV (infected pupae), lane 11, ABPV plus 
SBV plus BQCV (infected pupae). 
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A blind test was also carried out on forty samples of bees infected with ABPV, 

SBV, BQCV and apparently healthy bees.  M-RT-PCR successfully identified the 

samples containing ABPV, SBV and BQCV in all instances.   

This assay was further tested against field samples, to find out whether it would 

identify viruses present in bees under natural conditions.  Forty field samples of 

randomly selected honeybee pupae, from the same colony were screened for 

viral infections, using this assay.  Crude extracts of individual bee pupae were 

collected and used in the M-RT-PCR test.  Of the samples thirty-four samples 

were negative, five samples tested positive for SBV and one sample tested 

positive for both BQCV and SBV. 

 

2.5 Discussion 

The assay tested in this chapter demonstrates the feasibility of M-RT-PCR using 

specific primers for the positive identification of several honeybee viruses in a 

single step reaction.  The presented assay saves costs and time in comparison 

to individual PCR assays which have been performed (Benjeddou et al., 2001; 

Evans, 2001; Grabensteiner et al., 2000; Hung & Shimanuki, 1999).  It also has 

the potential to be used to study inapparent virus infections.  

 In the absence of a standard method to quantify virus concentrations, due to the 

lack of a culture system for honeybees, the assay was optimised to a point where 

it could detect lower levels of virus in inapparently infected bees showing no 

signs of symptoms.  However, field samples tested by this assay contained, what 

appeared to be apparently healthy honeybee pupae that were collected from a 
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colony that was previously infested with varroa to increase the chances of finding 

virus infections. The crude extracts of the individual bee pupae that were 

randomly selected from the same colony used in the M-RT-PCR, showed 

simultaneous and single infections as well as no infections.  Of the forty samples 

tested thirty four samples presented negative results, in the remaining samples 

five tested positive for SBV and one sample was positive for both BQCV and 

SBV.  It has been shown that the simultaneous detection of BQCV and SBV is 

not unusual and that the sample from which BQCV was first isolated was a mixed 

preparation that also contained SBV (Bailey & Woods 1977).  It was suggested to 

be due to the presence of apparently healthy but SBV infected bee pupae used 

in the propagation of BQCV.  However, Leat and co workers (Leat et al., 2000) 

argued that the simultaneous infection of these two viruses does exist and it is 

due to the viruses’ wide distribution rather than there being a specific relationship 

between the two viruses.  Dall (1985) also found no evidence of mixed infections 

in the case of KBV and SBV.  Working on BQCV, KBV and SBV inapparent 

infections, Anderson & Gibbs (1988), also found no pupae infected with more 

than one virus.  However, they suggested that pupae were inapparently infected 

with more than one virus, but that only one virus can be activated and multiply to 

detectable concentrations. The activated replicating virus would suppress the 

activation of any other viruses in the honeybee (Anderson & Gibbs 1988).  In 

agreement with these arguments Evans (2001) presented evidence that ABPV 

and KBV could infect the same honeybee simultaneously and further noted that 

KBV levels appeared lower than ABPV.  
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The assay presented in this chapter can be further optimised and improved upon 

by adding more bee viruses as the genome sequences become available.  It can 

prove to be a useful tool in studying inapparent viral infections as well as 

investigating suppression between viruses in the case of simultaneous infections.  

This M-RT-PCR assay can also be a rapid identification tool to be used to identify 

any viral infections in hives for the honeybee industry.  
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CHAPTER THREE 

 
 

Partial sequence of Kashmir bee virus (Indian strain) capsid 

coding region and interactions during PCR  

 

 
 
3.1 Abstract 
 
Honeybee virus Kashmir bee virus (KBV) occurs worldwide with many different 

strains from these areas.  A strain from India was used during the development 

of a multiplex reverse transcriptase (RT) PCR assay. The results which were 

obtained were inconsistent with regard to the amplification of virus templates that 

were expected.  An attempt was made to determine the cause of the 

inconsistencies and also characterise the virus cDNA which was synthesised 

from the viral RNA.  A 2 kilobase (kb) length of the capsid gene in the 3’ region of 

this KBV India (KBV-in) strain was sequenced.  The KBV-in strain was compared 

to the full length KBV reference strain sequenced in a database and also partial 

KBV sequences.  The 2 kb sequence of KBV was also aligned with the full length 

ABPV sequence to determine the homology between these two viruses.  

Sequence attained from the KBV-in strain was compared to other KBV strains 

and was seen to be 72% homologous to the full and partial KBV strains over the 

specific region. The possible interaction of KBV to ABPV virus in a multiplex RT 

PCR showed that the primers designed for the RT-PCR were 87% homologous 
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to ABPV respectively.  It was also concluded that the primer design for PCR 

assays detecting honeybee viruses is critical to prevent false positive 

amplification using this rapid screening method.   
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3.2 Introduction 
 
The honeybee Apis mellifera L. is a very important insect that assists with the 

pollination of approximately 60-70% of flowering plants in South Africa 

(Johannesmeier & Mostert 2001).  Honeybees are however, attacked by many 

different parasites and pathogens including viruses and bacteria.  Kashmir bee 

virus (KBV) is thought to persist as an inapparent infection and was first thought 

to have been detected in Apis cerana colonies in Kashmir India (Bailey & Woods, 

1977).  However KBV has also been found in other parts of the world in A. 

mellifera and has made the initial finding of the virus difficult to prove (de Miranda 

et al., 2004). Complete sequence analysis exists for a KBV strain from 

Pennsylvania USA which was seen to have 9524 nucleotides (de Miranda et al., 

2004); many other KBV strains from different parts of the world have partial 

sequences deposited into databases.  A closely related virus both serologically 

and biologically to KBV is acute bee paralysis virus (ABPV) (Allen & Ball, 1995; 

Anderson, 1991).  ABPV was first discovered during laboratory experiments on 

chronic paralysis virus and was found to be extremely virulent in adults and 

larvae when injected (Bailey et al., 1963).  The ABPV genome has been 

sequenced and was seen to have 9494 bp (Govan et al., 2000).  KBV and ABPV 

were said to be very closely related and it was even suggested that KBV was a 

strain of ABPV.  However it was later found that these two viruses are not 

identical in the VP4 proteins and therefore suggested to be serologically distinct 

(Stoltz et al., 1995).  It was also found by capsid protein profiles and serology 

that KBV is more variable than ABPV (Bailey et al., 1979; Allen & Ball, 1995).  
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Both viruses have also been detected in the same colony (Hung et al., 1996) and 

also in the same bee (Evans, 2001); what this relationship is indicative of is still 

unknown. 

Many of these honeybee viruses persist as inapparent infections that are 

activated by some or other stimuli.  The Varroa destructor mites and virus 

infections have been associated with colony collapse (Ball, 1985; Allen et al., 

1986).  The mites have also been suggested to act as vectors (Ball & Allen, 

1988; Bowen Walker et al., 1999) or stimuli for the virus to start multiplying (Ball 

& Allen, 1988; Brødsgaard et al., 2000).   

In the study completed in chapter two a multiplex RT PCR was designed to 

identify three viruses infecting honeybees.  Initially KBV was included but due to 

primer interactions with ABPV RNA the primers were removed.  The primers 

used for ABPV amplification were also changed at a later stage during the 

development of the multiplex PCR to the primer sequence as described in 

chapter two.  Stoltz et al. (1995) and Evans, (2001) have both shown that KBV 

and ABPV can readily be distinguished by reverse transcriptase (RT) PCR in 

separate reactions with primers designed within the RNA dependant RNA 

polymerase (RdRp) gene of these viruses.  Our strategy was to design the 

primers for the multiplex PCR within the capsid coding region of all of the viruses 

included in the PCR.    The strain of KBV used in the multiplex PCR had not been 

sequenced to date, therefore it was decided to sequence a region of the virus to 

determine its homology with other KBV strains and also ABPV with which it 

interacted in the PCR.   A 2 kilobase fragment of KBV was sequenced within the 
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capsid coding region.  This chapter will determine the homology of KBV-in with 

other KBV strains.  It will also consider whether the homology between this KBV 

strain and ABPV is high enough to cause the primer and template interactions 

seen during the previous study. 

 

3.3 Materials and Methods 

3.3.1 Virus propagation and isolation 

KBV (Indian strain) was kindly provided by Brenda Ball (Hamstead UK) and was 

used for the propagation and isolation of virus particles and RNA.  KBV virus was 

injected into apparently healthy white eyed to pink eyed honeybee worker pupae 

collected from hives and left to incubate for 5 to 6 days in total at 30°C.  The 

pupae were homogenised in batches of 10 in a mortar and pestle with 10 ml 

0.01M phosphate buffer pH 7.  The homogenate was mixed with carbon 

tetrachloride and diethyl ether and centrifuged for 10 min at 8000 rpm.  The 

supernatant was then subjected to differential centrifugation.  A sucrose gradient 

to isolate the virus particles was completed by layering onto a 10-40% (w/v) 

sucrose gradient and centrifuged in a SW 80 swing bucket rotor.  The virus was 

isolated from the 30% sucrose band and centrifuged at 47 000 rpm.  The virus 

particles were resuspended in 0.01M phosphate buffer pH 7 and stored at -80°C 

until used.   
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3.3.2 RNA extraction and cDNA synthesis 

Total RNA was extracted by standard methods and precipitated by ethanol 

(Sambrook et al., 1989).  The extracted RNA was run on a 0.8% gel and 

quantified before continuing with cDNA synthesis using the Universal Riboclone 

cDNA synthesis kit (Promega).  The poly T primer provided with the kit was used 

following manufacturers instructions to complete the synthesis reaction.  RNA at 

a concentration of 0.5 mg/ml was used in the reaction with 0.5 mg/ml poly (T)15  

primer in order to synthesise cDNA.  A total of three cDNA clones ranging from 

400 bp to 1 kb were all cloned into pBluescript vectors (Stratagene) and 

transformed into competent JM109 E. coli cells.  Primer walking was employed to 

obtain the three overlapping cDNA clones.   

 

3.3.3 Reverse transcription PCR reactions 

The PCR was carried out by adding the reagents to ABPV RNA with the primers 

designed to amplify from the KBV genome.  The primer sequence was KBVF 5’ 

ACT GTG GCA GCC ATC TTT GGA TG I 3’, KBVR 5’ TCA GTC GTT TTC CAG 

GTG AGG AC I.  The second reaction contained KBV RNA with the primers to 

amplify the ABPV genome.  The primer sequence for ABPV was ABPVF 5’ GTA 

GCA TCT ACA ACC GAC AAA GG I 3’, ABPVR 5’ GAG GGT ATG TCT GTC 

CTC TAA AG I 3’.  The I at the end of the primers sequences denotes an added 

inosine.  PCR conditions used were described in chapter two.  The PCR products 

were run on a 3% agarose gel.  A 247 bp fragment was expected using the KBV 

primers and 200 bp fragment for the ABPV primers. 
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3.3.4 Sequence alignments 

All of the nucleotide sequences obtained from Genbank were used in alignments.  

The following accession numbers were used for KBV from Canada (KBV-can 

AY452696), KBV from Pennsylvania (KBV-penn AY275710) and ABPV from the 

United Kingdom (ABPV-uk AF150629).  The alignments were completed using 

MAFFT sequence analysis tool with the European bioinformatics institute at 

(www.ebi.ac.uk) from there the alignments were entered into a boxshade 

program at the Swiss institute of bioinformatics (www.ch.embnet.org). 

 

3.4 Results 

3.4.1 Sequence alignments of KBV-in with other KBV strains 

A 2 kb partial sequence of the KBV-in strain was determined by sequencing.  The 

sequence was within the capsid coding region of the virus.  Alignments of the 

sequenced KBV-in strain were completed against full genome KBV-penn and full 

capsid region KBV-ca.  It has been reported that KBV has a wide diversity in 

homology between KBV isolates from different geographical regions (de Mirande 

et al., 2004).  This has impacted on the homology between the strains.  The 

homology between KBV-ca and KBV-penn was higher than 95% at the 

nucleotide level.  The KBV-in strain was seen to have an average of 72% 

homology over the 2 kb region when compared to KBV-ca and KBV-penn at the 

nucleotide level.  In figure 3.1 the protein sequences are aligned to show the 

homology at this level. 
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KBV-penn  112 VLKAGGKAQKLANFKYLRCDVQVKIVLNANPFIAGRLYLAYSPYDDKVAPERRIIYTSRA 
KBV-ca      1 ------------NFKYLRCDVQVKIVLNANPFIAGRLYLAYSPYDDKVAPERRIIYTSRA 
ABPV-uk   121 VLSAGGKGQKLANFKYLRCDVKVKIVLNANPFIAGRLYLAYSPYDDRVDPARSILNTSRA 
KBV-in      1 ------------NFKYLRCDIQVKIVVNANPFVAGRMYVAYSPYDDKVDPSRGVLRTSRA 
 
 
KBV-penn  172 GVTGYPGVELDFQLDNSVEMTIPYASFQEAYDLVSGNEDFVQLYLFTIAPVLGPSAESAN 
KBV-ca     49 GVTGYPGVELDFQLDNSVEMTIPYASFQEAYDLVSGTEDFVQLYLFTITPVLGPSAESAN 
ABPV-uk   181 GVTGYPGIEIDFQLDNSVEMTIPYASFQEAYDLVTGTEDFVKLYLFTITPILSPTSTSAS 
KBV-in     49 GVTGYPGVELDFQLDNSVEMTIPYASFQEAYDLVKGTEDFVQLYLFPITPVLGPSSQTAQ 
 
 
KBV-penn  232 SKVDLSVYMWLDNISLVIPTYRLN----PNLPTGQTLTRIVQNSDSDKLKEALKIAKSKN 
KBV-ca    109 SKVDLSVYMWLDNISLVIPTYRLN----PNLPTGQTLTRIVQNSDSDKLKEALKIAKSKN 
ABPV-uk   241 SKVDLSVYMWLDNISLVIPTYRVNTSIVPNVGTVVQTVQNMTTRDSETIRKAMVALRKNN 
KBV-in    109 SKVDISVYMWLSNISLVIPTYRIN-SDIVKMATDPNINSVCWSSCRCKVYNRRSENPERK 
 
 
KBV-penn  288 PSGYKYIMGVLEQYNPSVKQVSMQIATPNKSKS-------------TKPTSENPKIGPIS 
KBV-ca    165 PSGYKYIMGVLEQYNPSVKQVSMQIATPNKSKS-------------TKPTSENPKIGPIS 
ABPV-uk   301 KSTYDYIVQALSSAVPEVKNVTMQINSKKNNSNKMATPVKEKTKNIPKPKTENPKIGPIS 
KBV-in    168 SIWYQIYYECLDRLCTRSERMPMQVNARNAKTTKP-------VQKSTKPTSENPKIGPIS 
 
 
KBV-penn  335 EVASGVKTAANGIERIPVLGEIAKPVTAAVKWFADIVGGVAAIFGWSKPRNQNQVMPYQN 
KBV-ca    212 EVASGVKTAANGIERIPVLGEIAKPVTAAVKWFADIVGGVAAIFGWSKPRNQNQVMPYQN 
ABPV-uk   361 ELATGVNKVANGIERIPVIGEMAKPVTSTIKWVADKIGSVAAIFGWSKPRNLEQVNLYQN 
KBV-in    221 EVASGVKTAANGMNVSQWVKLQSQ---------QPLSGLLMLSELWQPSLDGPNPVIKIK 
 
 
KBV-penn  395 VPGWGYSLYKGIDMSVPLAYDPNNELGDLRDVFPSAVDEMAIGYVCGNPAIKHVLTWSTT 
KBV-ca    272 VPGWGYSLYKGIDMSVPLAYDPNNELGDLRDVFPSAVDEMAIGYVCGNPAIKHVLTWNTT 
ABPV-uk   421 VPGWGYSLYKGIDNSVPLAFDPNNELGDLRDVFPSGVDEMAIGYVCGNPAVKHVLSWNTT 
KBV-in    272 CHIKMFLDGDILSIRELIAFHLTTLIMNLVTMMYFLQVLTKWLVMFAAILLSNMSSPGKR 
 
 
KBV-penn  455 DVVQNPISNGDDWGGVIPVGMPCYSKTIRAVKGATSTSKTEVMDPAPCEYVANLFSYWRA 
KBV-ca    332 DAVQNPISNGDDWGGVIPVGMPCYSKTIRAVKGDTSTSKTEVMDPAPCEYVANLFSYWRA 
ABPV-uk   481 DKVQAPISNGDDWGGVIPVGMPCYSKIIRTTENDTTRTNTEIMDPAPCEYVCNMFSYWRA 
KBV-in    332 LILQKPIANGDDWGGVIPVGMPCYSKHG------SQWDASPPWNMLPNKFFILACQTHWC 
 
 
KBV-penn  515 TMCYRITVVKTAFHTGRLEIFFEPGSIPTVRTADNLGPDQTQLNGTIAPSDNNYKYILDL 
KBV-ca    392 TMCYRITVVKTAFHTGRLEIFFEPGSIPTVRTADNLGPDQTQLNGTVAPSDNNYKYILDL 
ABPV-uk   541 TMCYRIAIVKTAFHTGRLGIFFGPGKIPITTTKDNISPDLTQLDGIKAPSDNNYKYILDL 
KBV-in    386 LSEFTVGWKNSVSILADFEIFFVNPGDIPVKSHCQLALNQDALTG---------RWLLPI 
 
 
KBV-penn  575 TNDTEVTIKVPYVSNKMFMKTVGIYGAHDEDNWNFDESFTGFLCIRPITKLMAPDTVSQK 
KBV-ca    452 TNDTEVTIKVPYVSNKMFMKTVGIYGANDENNWDFDESFTGFLCIRPITKLMAPDTVSQK 
ABPV-uk   601 TNDTEITIRVPFVSNKMFMKSTGIYGGNSENNWDFSESFTGFLCIRPITKFMCPETVSNN 
KBV-in    437 IIISTFWIRMILRQLEFPMYQIRCFSR------------------LLVSMVLIVKITGTF 
 
 
KBV-penn  635 VSIVVWKWAEDVVVVEPKPLTSGPTQVYNPPAVARDLVKQIDVSMQINLSNKTDENTISF 
KBV-ca    512 VSIVVWKWAEDVVVVEPKPLTSGPTQVYNPPAVARDQVKQIDVSMQINLSNKTDENTISF 
ABPV-uk   661 VSIVVWKWAEDVVVVEPKPLLSGPTQVFQPPVTSADSINTIDASMQINLANKADENVVTF 
KBV-in    479 KNPLVDSFVDQLLNWLPKPCLT-------------------------------------- 
 

Figure 3.1  
Protein sequence alignments of different KBV strains and ABPV covering the 
capsid coding region of these viruses.   The protein sequence of the capsid 
regions of KBV-penn, KBV-ca, KBV-in and ABPV were aligned to show 
homology between these regions of different strains of KBV and related virus 
ABPV.  The line under the sequence indicates the conserved picorna-like virus 
capsid protein domains 1 and 2. 
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3.4.2 Sequence alignments of KBV with ABPV and primers designed 
 
With the sequencing of the full genome of KBV-penn it was observed that KBV 

exhibits elements that are different to ABPV in certain areas (de Mirande et al., 

2004).  Therefore the suggestion that KBV and ABPV is the same virus cannot 

be supported.  However there are regions within KBV and ABPV genomes which 

are highly homologous.  Primers were designed previously to amplify KBV and 

ABPV in a multiplex RT PCR (chapter two).  KBV was subsequently removed 

from the primer pool used in the multiplex PCR.  The removal of KBV was 

prompted by KBV and ABPV primers amplifying products from incorrect 

templates.  To investigate the reasons for this the primers designed for KBV and 

ABPV were aligned.  Figure 3.2 shows that the KBV primer and ABPV primer are 

highly homologous to the other sequence.  The primers are approximately 81% 

homologous.  The high homology was not initially observed when primers were 

designed.  Primers used in the multiplex RT PCR as described in chapter two fell 

outside of the 2 kb region of KBV-in which was sequenced and therefore was not 

included in the alignment. 
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KBV-in   755 CGCTGTAAAGTGGTTTGCTGATGTTGTCGGAACTGTGGCAGCCATCTTTGGATGGTCCAA 
ABPV-uk 7672 AACAATTAAATGGGTTGCTGACAAGATTGGATCTGTGGCAGCAATTTTTGGATGGTCGAA 
 
                                                KBVF primer 
KBV-in   815 ACCCCGTAATCAAAATCAAGTAATGCCATATCAAAATGTTCCTGGATGGGGATATTCTCT 
ABPV-uk 7732 ACCCAGAAATCTAGAACAAGTTAATTTATATCAGAATGTTCCTGGATGGGGTTATTCACT 
 
 
KBV-in   875 CTATAAGGGAATTGATATGAGCGTTCCATTAGCTTACGACCCTAATAATGAACTTGGTGA 
ABPV-uk 7792 CTATAAGGGAATAGATAATAGTGTGCCATTGGCTTTTGACCCCAATAACGAACTAGGTGA 
 
 
KBV-in   935 CCTGAATGATGTATTTCCTTCAGGTGTTGACGAAATGGCTATAGGTTATGTTTGCGGCAA 
ABPV-uk 7852 TTTGAGAGATGTATTTCCTTCTGGAGTTGATGAAATGGCGATAGGATATGTTTGTGGCAA 
                                   KBVR primer 
 
KBV-in   995 TCCTGCTGTCAAACATGTCCTCACCTGGAAAACGACTGAT--ATTACAAAAACCAATAGC 
ABPV-uk 7912 TCCTGCTGTTAAACATGTGCTATCTTGGAATACTACGGATAAAGTTCAAGCACCAATAAG 
 
 
KBV-in  1053 TAATGGTGATGATTGGGGGGGAGTTATACCAGTTGGAATGCCTTGTTACTCTAAA----- 
ABPV-uk 7972 TAATGGAGATGACTGGGGAGGAGTGATACCTGTTGGTATGCCATGTTATTCTAAAATCAT 
 
 

Figure 3.2 
Nucleotide sequence alignments of the structural protein of ABPV-uk and various 
strains of KBV showing the position of the KBV primers.  The area shown 
between the arrows is the 247bp fragment amplified with KBVF and KBVR 
primers designed to amplify KBV which instead amplified ABPV.  The high 
homology between the viruses in this area are shown. 
 

 

3.4.3 RT PCR reactions 

RT PCR reactions were completed to demonstrate the interaction between the 

primers and templates added to the PCR.  As described in material and methods 

the KBV primers were added to the ABPV template and the ABPV primers to the 

KBV template.  In figure 3.3 it can be seen that the primers amplified the 

template present even though it was not the corresponding template RNA.  The 

products were amplified at the correct fragment sizes for each reaction.  The 

products were not however sequenced. 
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Figure 3.3 

Detection of viruses with primers in laboratory infected honeybees.  The primers 
interacted causing amplification of the incorrect genome as indicated by amplicon 
sizes shown.   Lane 1, ABPV RNA amplified with KBV primers. Lane 2, KBV 
RNA amplified with ABPV primers.  Lane M, 100 bp marker (Promega). 
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3.5 Discussion 

Many studies have been conducted on KBV and ABPV because of their close 

relationship (de Mirande et al., 2004, Allen & Ball 1995).  Previously only short 

sequences of the KBV genome were available for alignments and phylogenetic 

analysis.  Until recently when a strain from Pennsylvania USA was completely 

sequenced as was the coat protein gene from a KBV strain from Canada.  The 

areas of homology between ABPV and KBV across the entire genome were 

shown and also the differences in very critical areas of the genomes (de Mirande 

et al., 2004).   

In this study a 2 kb cDNA fragment was cloned and sequenced.  The sequence 

was from the 3’ end, or capsid coding region of the virus.  Alignments with other 

KBV sequences available showed homology in conserved areas of the capsid 

region.  Geographically diverse strains were not highly homologous over the area 

that was concentrated upon.  However strains from the same areas are more 

highly homologous than those found in other regions (de Mirande et al., 2004).  

At both the nucleotide and protein level the virus strains displayed variability in 

areas which are not conserved.  Further study into the variance in genomes of 

KBV strains found in different areas would be beneficial. 

The KBV-in strain was also aligned with ABPV over the genome area where the 

primers were designed to amplify KBV in a multiplex RT PCR. This was done 

due to the primers amplifying a product even in the absence of KBV RNA.  The 

area used to design primers for KBV in a multiplex RT PCR was highly 

homologous to ABPV which lead to the primers amplifying ABPV instead of the 
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target virus being KBV.  The KBV RNA and primers were later removed from the 

assay. The primer selection used for typical assays like RT PCR are thus 

critically important for specificity of the PCR assay, observed in this study and in 

a similar study by Chen et al. (2004). 

In this chapter and chapter two, laboratory infected pupae were used to optimise 

a multiplex RT-PCR before being tested on field samples which could have 

multiple inapparent viruses.  Chen et al., (2004) only used naturally infected field 

samples with the result that ABPV primers were removed from the primer pool in 

this study.   The reason ABPV was removed in this study was that no ABPV was 

amplified in any of the samples.  Whether this was due to ABPV not being 

present, which seems unlikely, in these samples or that the primers did not 

perform sufficiently within the multiplex used directly on field samples was not 

answered by this study.   

This chapter has shown that the KBV–in strain is not highly homologous at the 

protein level to KBV-penn and KBV-ca which could be due to geographical 

variance.  Also KBV-in is highly homologous to APBV in a region which was used 

to design primers for a multiplex RT PCR.  Further sequencing of this strain could 

show the extent of the variance with other KBV strains from around the world.  

Also further sequencing of strains from other parts of the world would assist in 

the development of further detection systems. 
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CHAPTER FOUR 

 

Expression of Virus like particles of honeybee virus Black 

Queen Cell Virus, by a heterologous baculovirus expression 

system 

 

 

4.1 Abstract 

Black queen cell virus (BQCV), a member of the virus family Dicistroviridae, was 

identified as having four coat proteins in the second open reading frame of the 

virus genome.  A PCR product of the structural genes was cloned under the 

control of a baculovirus P10 promoter in a transfer vector pAcAB4.   Expression 

of the coat proteins by a heterologous baculovirus expression system in 

Spodotera frugiperda (Sf 21) cell culture produced virus like particles (VLPs) of 

BQCV.  The VLPs were isolated from a 10% sucrose gradient after 

ultracentrifugation of the cell suspension.  Electron microscopy showed that the 

proteins had self assemble into 30nm particles which were structurally similar to 

the wildtype BQCV virus.  The expression of BQCV VLPs proteins was verified 

by polyacrylamide gel electrophoresis and was compared to the wildtype BQCV 

coat proteins.  Finally confirmation by western blot analysis was completed with 

antibodies raised to BQCV.  
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4.2 Introduction 

The recently named virus family Dicistroviridae (genus Cripavirus) is composed 

of positive sense single stranded RNA viruses that infect a wide range of different 

insect hosts.  These viruses were previously classed as cricket paralysis like-

virus (Mayo, 2002).  Honeybee virus, black queen cell virus (BQCV) previously 

classed as cricket paralysis-like virus has been included into this new family 

based on its biophysical features and genome properties (Leat et al., 2000; 

Mayo, 2002).  These viruses consist of two open reading frames which contain 

the non structural genes at the 5’ end and structural genes at the 3’ end of the 

virus. 

BQCV was first isolated from queen larvae and pupae of honeybees by Bailey & 

Woods (1974).  It was found to infect adults and pupae of honeybees producing 

symptoms where bee pupae darkened (Scott-Dupree & McCarthy, 1995).  This 

virus is often present in bees that are infested with the microsporidian mite 

Nosema apis.   The mite has been implicated in the mortality of bees infected 

with the virus and parasite simultaneously (Allen & Ball, 1996; Bailey et al., 

1983).  The BQCV genome consists of single stranded RNA consisting of 8550 

nucleotides and two open reading frames (ORFs).  As with other viruses in this 

family, BQCV has been suggested, to have an internal ribosome entry site 

(IRES) starting at a CCU codon (Leat et al., 2000).   

Honeybee viruses were discovered some 30 years ago and to date only a few of 

the 18 known viruses have been sequenced.  Restricted molecular based 

experimentation has been done on bee viruses because the virus cannot be 
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propagated in a suitable cell culture system.  The traditional or manual 

propagation methods of honeybee viruses are all time consuming and labour 

intensive.  Adult bees have to be collected and virus laden food is fed to adults. 

Alternatively pupae are collected and manually injected with virus preparations 

(Bailey & Woods, 1974, 1977).  Due to inapparant viruses, which persist in the 

bee, there are uncertainties about whether the virus which was injected will be 

the virus that is propagated.  It has been found in many cases that mixed 

infections occur when viruses are propagated in bees by traditional methods and 

have been reported previously (Evans, 2001). There has been no alternative host 

or cell line found for propagating honeybee viruses to date.  Until now honeybee 

viruses have been detected by immunoblots, ELISA and more recently PCR 

based detection of viruses (Anderson, 1984; Anderson & Gibbs, 1988; Stoltz et 

al., 1995; Benjeddou et al., 2001; Chen et al., 2004; Topley et al., 2005).  

Previous tests which included antibodies were important for virus detection at the 

time, however due to the presence of mixed infections which we now know 

occurs, the antibodies used to detect and identify particular viruses are 

questionable. 

The sequencing of BQCV indicated that the viral capsid proteins consists of four 

proteins in the second ORF with sizes of 34, 32, 29 and 6kDa for CP1 to CP4 

respectively, which makes up the isometric 30nm particle virus (Leat et al., 

2000).  Recently an infectious virus of BQCV was developed by Benjeddou et al. 

(2002), which was found to be as infectious as the wild type virus, however 
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having a cell culture system would have increased the potential and ease for 

further study using this infectious virus. 

Many RNA viruses lacking tissue culture systems have used recombinant 

baculovirus technology because of its convenience and proven output in 

expression of various protein products.  The advancement in gene manipulation 

and also at expressing foreign genes in heterologous systems has proven 

indispensable (Belyaev & Roy, 1993).  Compared to the prokaryotic systems 

used in the past, baculovirus expression systems allow for the synthesis of 

various proteins, posttranslational proteolytic processing and cleavage of signal 

peptides which would be performed naturally in the host (Beljelarskaya, 2002).  

Autographa californica nuclear polyhedrosis virus (AcNPV) polyhedron (ph), P10 

and immediate early 1 (IE1) promoters have been widely used in the 

development of many different vector systems (Pullen & Friesen, 1994; Huynh & 

Zieler, 1999; Belyaev & Roy, 1993).  These three constitutive promoters are 

advantageous in that they produce large amounts of foreign gene products 

during infections (Jarvis et al., 1996).  Baculovirus systems have been used to 

express virus like particles (VLPs) of many different viruses including blue tongue 

virus (Belyaev and Roy 1993), cowpea mosaic virus (Shanks & Lomonossof, 

2000), African horsesickness virus (Maree et al., 1998), SARS coronalike virus 

particles (Mortola & Roy, 2004) and Norwalk virus (Jiang et al., 1992).  The 

promoters have also shown to have a wide range of compatibility within other 

host cells other than the traditional Spodoptera frugiperda (Sf) 9 or Sf 21 cells.  

This was shown when hepatitis C virus expressed in hepatocyte derived cell lines 
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(McCormick et al., 2002) and various proteins in mosquito cell lines using 

baculovirus promoters (Huynh & Zieler, 1999).  The expression of proteins by 

these systems has allowed for the further understanding of virus capsid proteins, 

how they assemble and also the expression of other proteins.   

The capsid structure of BQCV and other honeybee viruses have not yet been 

characterised in detail and not much is known about virus interaction or capsid 

construction.  To date no honeybee virus has been used in a heterologous 

system to express VLPs to our knowledge.  Therefore the aims of this study are 

to observe whether BQCV capsid proteins are able to assemble into virus like 

particles using a heterologous baculovirus system expressed in insect cell 

culture.   

  

4.3 Materials and Methods 

4.3.1 BQCV propagation and cDNA synthesis 

BQCV was propagated as described by Leat et al., (2000) (chapter 2) and virus 

isolation was stopped after the sucrose gradient step.  RNA was extracted from 

the isolated virus using the SV Total RNA isolation kit (Promega) as described by 

the manufacturers.  cDNA was synthesised by using the Universal RiboClone 

cDNA synthesis kit (Promega).  The reverse transcription reaction was carried 

out in a total volume of 25µl which included viral RNA (2 µg) with 5 µg/ml of gene 

specific primer FCDNA 5’ TTTTTTTTTTTTTGCAAC 3’ (Benjeddou et al., 2002).  

The cDNA reaction was completed as per manufacturer’s recommendation 

except that the incubation of first strand cDNA was 4 hours at 42°C and the 
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synthesis was stopped after the first strand.  Following this 1 µl of RNase H (2 

units/µl) was added and the reaction incubated for 20 min at 37°C (Benjeddou et 

al., 2002). 

 

4.3.2 PCR of capsid gene 

Primers were designed to the entire capsid coding region from the start to the 

stop codon for the capsid gene.  The primers used to amplify the capsid gene 

were designed from the sequence in the NCBI database accession number 

AF183905, CAPF 5’ GGG TAT AGA TCT ATG CCT GCT GAA CAA ATT AAT 

GAA 3’ (position 5834-5853) and CAPR 5’ GGG TAT AGA TCT TCA CAA CAA 

ATC GCT ATC C 3’ (position 8376-8395). The underlined sequence represents 

the Bgl II restriction sites and the bold represents the start codon incorporated 

into the sequence by PCR for transcription initiation.  The PCR was carried out in 

a total volume of 50µl with 2µl of cDNA as template using the Expand high fidelity 

PCR system (Roche) as recommended by the manufacturer. The resulting PCR 

fragment was gel purified using the High pure PCR purification kit (Roche) and 

ligated into the pGem T vector (Promega) resulting in pGemCAP.  The amplified 

capsid gene was then sequenced to ensure the capsid protein and restriction 

sites were correct before proceeding with further subcloning.  The baculovirus 

transfer vector pAcAB4 (Pharmingen) was digested with Bgl II as well as 

pGemCAP.  The resulting Bgl II digested pAcAB4 and PCR excised gel fragment 

were purified by using the High pure PCR purification kit (Roche).  The capsid 
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gene was then subcloned into the Bgl II site of the pAcAB4 plasmid under the 

control of the p10 promoter resulting in the transfer vector pAcCAP. 

 

4.3.3 Recombinant baculovirus production and VLP expression 

Sf 21 cells were grown up in TC-100 insect media (Sigma) and maintained at 

27°C.   The calcium phosphate mediated co-transfection method was used to co-

transfect pAcCap with the BD baculo gold linear DNA (Pharmingen).  Once the 

cells reach 50-70% confluence 0.5 µg linear DNA and 2.5 µg pAcCAP was 

added to the cells as per the recommendations of the manufacturer. A negative 

control consisted of Sf 21 infected with baculovirus only and left to incubate for 2 

days.  After 2 days incubation at 27°C the recombined virus was infected into 

fresh Sf 21 cells to further increase the number of recombinant virus and grown 

for a further 48 hours. 

  

4.3.4 SDS polyacrylamide gel electrophoresis  

The supernatant from the cell suspension containing the VLPs were incubated in 

lysis buffer 0.5 M Tris-HCL pH 6.8, 1% β-mercaptoethanol, 10% sodium dodecyl 

sulfate (SDS), 20% glycerol and 1% bromophenol blue and incubated at 95°C for 

5 min.  The proteins were resolved on a 12% SDS polyacrylamide gel with the 

stacking gel run at a voltage of 80V/m and the resolving gel at 100V/m.  

Prestained protein molecular marker (Fermentas) was used to determine the 

sizes of the proteins.   To visualise the proteins the gel was stained with Page 

Blue protein staining solution (Fermentas). 
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4.3.5 Western blot analysis 

A separate SDS PAGE was run for the western blot with the Benchmark pre-

stained protein ladder (Invitrogen).   The proteins were transferred onto PVDF 

western blot membrane (Roche) which was pre-soaked in methanol for 4 

seconds and then rinsed in sterile distilled water for 1-2 min.  The proteins were 

transferred at 300mA for 2 hours in 1X transfer buffer (10X Tris borate EDTA and 

20% methanol [v/v]).  The BQCV capsid proteins were identified by probing with 

rabbit polyclonal antibodies against purified BQCV at a ratio of 1:2000 in 3% skim 

milk as a primary detection at 4°C overnight.    The blot was then washed three 

times with Tween PBS (Tween 20, 1X PBS).  The secondary detection was 

completed at a ratio of 1:2000 with goat anti-rabbit antibodies in 3% skim milk for 

1 hour at room temperature.  The blot was washed in Tween PBS three times 

and positive signals were visualised with 3, 3’, 5, 5’-tetramethylbenzidine (TMB) 

membrane peroxidase substrate (KPL). 

 

4.3.6 Electron microscopy 

The expressed VLPs in the cell suspension was centrifuged on a discontinuous 

sucrose gradient of 10-40% (w/v) in 0.01M phosphate buffer at 27 000 rpm for 2 

hours in a SW80 swing out bucket rotor.  Fractions were collected at the 10, 20 

and 30% interface.  The VLPs were then absorbed onto carbon coated copper 

mesh and washed with distilled water.  The particles were stained with 2% uranyl 

acetate and examined by transmission electron microscope.   
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4.4 Results 

4.4.1 Construction of transfer vector 

The full length single stranded cDNA synthesised from BQCV RNA was used 

unpurified in a PCR with the CAPF and CAPR primers.  The amplified product 

was run on a 0.8 % agarose gel to confirm the amplicon size (figure 4.1).   It was 

then cloned into pGem T and sequenced to ensure that the entire capsid gene 

had been amplified, that the restriction sites were incorporated and that the 

initiation codon was present with no nucleotide changes.  To insert the BQCV 

capsid gene into the genome of AcNPV the PCR product which included Bgl II 

restriction sites on the 5’ and 3’ ends of the PCR product was cloned into a 

transfer vector pAcAB4 (Pharmingen).  The subcloning was completed by 

digesting the pGemCap and pAcAB4 with Bgl II (figure 4.2).  pAcCAP was 

recombined with linearised BD baculo gold DNA (as described in methods).   
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Figure 4.1  
Amplification of the BQCV capsid gene with full length single stranded (ss) 
cDNA.  Primers CAPF and CAPR introduced an ATG for initiation of replication in 
cell culture.  M Pst lambda DNA marker; lane 1 BQCV capsid PCR product. 
 
 
 
      

 
 
Figure 4.2 
Plasmid DNA isolation and restriction digest of pGemT containing the BQCV 
capsid gene.  The resulting pGemCAP plasmid was digested with Bgl II.  Lane M, 
Pst lambda DNA marker; lane 1 pGem vector (3000bp) and BQCV capsid gene 
(2539bp);  
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4.4.2 Expression of BQCV virus-like particles in baculovirus 

The baculovirus transfer vector pAcCAP and linear baculovirus DNA was co-

infected in the insect cell line Sf 21.  The insect cells infected with the 

recombined baculovirus containing the BQCV capsid protein was incubated at 

27ºC for two days.  The BQCV VLPs were expressed by the infected cells and 

released into the surrounding insect media.  The medium and cells were 

harvested after the two days.  The supernatant was separated from the cells by 

centrifugation and the expressed VLPs in the supernatant were collected.  The 

VLPs were subjected to SDS PAGE and the four capsid proteins of the BQCV 

virus were present as indicated in Figure 4.3.  Further more western blot analysis 

of the coat proteins detected with antibodies raised against BQCV showed they 

were indeed BQCV particles due to the sizes of the proteins detected and when 

compared to the BQCV wildtype virus (Fig 4.4).   
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     M             1                  2                   3 

 
 
 
 
Figure 4.3  
 

SDS-PAGE analysis of BQCV VLPs expressed by heterologous baculovirus 
expression.  Virus like particles (VLPs) were obtained by expressing BQCV 
capsid genes under the p10 promoter of pAcAB4 vector in a Sf 21 cell line.  Lane 
M, Pre-stained protein molecular weight marker (Fermentas); lane 1, negative 
control of cells infected with baculovirus only; lane 2, BQCV wild type virus; lane 
3, shows the four expressed capsid proteins produced by heterologous 
baculovirus expression.  The, 34, 32 and 29kDa bands appear as a triplet in the 
top band. 
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       M          1          2         3 

 
 
Figure 4.4 
 

Western blot analysis of the wild type capsid proteins of BQCV and heterologous 
expressed virus like particles (VLPs) of BQCV virus.  Wild type virus and VLPs 
expressed by recombinant baculovirus were detected with antibodies raised to 
BQCV.  The wild type virus and VLPs were separated on a sucrose cushion and 
concentrated by ultra centrifugation.  Lane M, Invitrogen bench mark prestained 
protein marker; lane 1, insect cells infected with baculovirus only (negative 
control); lane 2, BQCV wild type virus capsid proteins (positive control); lane 3, 
shows the four capsid proteins produced by heterologous baculovirus expression 
which make up the VLP.  
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4.4.3 Electron microscopy of VLPs 

The insect media supernatants were examined using transmission electron 

microscopy to determine if VLPs were produced by heterologous expression.  

wtBQCV capsids were compared to the VLPs produced by the recombinant 

baculovirus.  Figure 4.5A shows the wildtype (wt) BQCV capsids containing 

nucleic acid.  This was compared to the capsids produced by the recombinant 

baculovirus expressing VLPs of BQCV in cell culture in figure 4.5B.  The buoyant 

density of the empty capsids in the sucrose gradient also differed to the capsids 

containing RNA in that the empty capsids were isolated at the 10% gradient 

compared to 30% for the wtBQCV capsids. 
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A 

 
 

B 

 
Figure 4.5  
 
Transmission electron micrographs of BQCV virus particles. Bee pupae were 
injected with BQCV virus as described in methods for the wild type controls and 
BCQV virus like particles (VLPs) were produced by heterologous expression of 
the capsid gene in baculovirus cell culture. (A) wild type BQCV recovered from 
honeybee pupae injected with virus for propagation showing full capsids. (B) 
empty capsid shells composed of the four coat proteins of BQCV expressed in 
insect cells infected with the pAcCAP vector. 
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4.5 Discussion 

A PCR product of the capsid coding region of honeybee virus BQCV was cloned 

into a baculovirus transfer vector pAcAB4 under the control of the P10 promoter.  

Previous sequence analysis and protein sequencing showed that the structural 

genes cleaved to produce four coat proteins that form the capsid of the BQCV 

virus (Leat et al., 2000).  The coat proteins were expressed by the transfer vector 

in an insect cell line Sf 21 to form the VLPs.  After centrifugation on a sucrose 

cushion the VLPs were found to be in the 10% sucrose layer.  This is in contrast 

to the previously propagated virus capsids which were usually isolated from the 

30% sucrose layer.  The VLPs observed by electron microscopy appeared to be 

structurally similar to the wtBQCV capsid proteins when compared (fig 4.5B).  

Expression of VLPs for a honeybee virus in a heterologous system has not to our 

knowledge been carried out previously and no examples exist to compare our 

findings.  Similar results were seen however when the virus Thosea asigna was 

expressed in a baculovirus expression system where the capsids were also 

structurally similar to the wild type virus (Pringle et al., 2001).  Confirmation of the 

expressed proteins which forms the VLPs was done by SDS-PAGE and western 

blots which showed the relevant proteins representing the four capsid proteins of 

the BQCV virus.   

Heterologous systems for expression of foreign genes have been widely used 

with baculoviruses having been proven to be an excellent system in which to 

express foreign genes (Huynh & Zieler 1999; McCormick et al., 2002; Medin et 

al., 1990; Mortola & Roy, 2004).  Baculovirus systems have been used to 
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express widely different species of virus proteins many of which do not have cell 

cultures available and the proteins have been expressed successfully.  Using the 

baculovirus expression systems more studies could be conducted on viruses 

than without a cell culture system.  Such studies would include defining exactly 

how capsid expression takes place, which proteins are involved in capsid 

formation and how to prohibit the formation of capsids in viruses (Pringle et al., 

2001; Maree et al., 1998; Shanks & Lommossoff 2000).  Having a pure culture of 

a particular honeybee virus can improve immune diagnostics used to identify 

honeybee viruses and raise specific antibodies to pure expressed and infectious 

viruses.  With a cell culture system many extra preliminary steps in experiments 

carried out on honeybee viruses could be improved (Benjeddou et al., 2002).  

The production of potential recombinant vaccines lacking infectious RNA can 

also be an alternative (Roosien et al., 1990).  

With naturally infected, inapparent or apparently healthy bees RT PCR methods 

have been used successfully to identify and detect viruses in bees that appeared 

to be infected or apparently healthy at even very low infection doses (Hung & 

Shimanuki, 1999; Stoltz et al., 1995; Benjeddou et al., 2001; Chen et al., 2004; 

Topley et al., 2005).  Traditional methods used in the past and still being used to 

identify and also propagate viruses have their disadvantages.  When propagation 

of the virus becomes necessary inapparent viruses has been shown to be 

present (Evans et al., 2001; Anderson & Gibbs 1988). This could hinder 

experimental work in some cases to be completed with the propagated virus as it 

could be an impure virus isolate.  Many identification methods for honeybee 
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viruses were based on antibody derived methods and having a mixed infected 

isolate could be of significance to the experiment.   

In nature honeybee populations are being devastated due to colony collapse 

disorder by acute viral infections in many states within the US (Cox-Foster et al., 

2007). Therefore a propagation method for new or emerging viruses will have to 

be investigated to prevent further colony collapse in future.  Production of pure 

and infectious virus by cell culture can therefore be used to raise antibodies to 

reliably detect specific viruses. 

This heterologous baculovirus expression system produced VLPs of honeybee 

virus BQCV in Sf 21 insect cells.  This system could be used in future to study 

the capsid assembly of BQCV or other honeybee virus more closely and 

furthermore BQCV could also be used as a model for honeybee viruses.  The 

baculovirus system could also be used to produce pure infectious honeybee 

viruses as many commercial vectors have multiple cloning sites with promoters 

for three or four genes.  This makes the possibility of expressing genes in 

combinations, entire viruses and even altered viruses very good. 
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CHAPTER FIVE 
 
 

Construction of a chimeric honeybee virus 

  

 

 
5.1 Abstract 
 
Black queen cell virus (BQCV) and acute bee paralysis virus (ABPV) were used 

in an attempt to fuse opposite open reading frames (ORFs) of these two viruses 

to produce a chimeric virus.  The nonstructural genes in the 5’ ORF of BQCV 

were to be exchanged with the structural genes in the 3’ ORF of ABPV and vice 

versa.  Full length single stranded cDNA was used in PCR reactions to amplify 

the specific ORFs.  A fusion PCR strategy was then employed to join the halves 

of the viruses to form a chimeric honeybee virus.  The chimeric virus would have 

been useful in observing any changes in virus infectivity and assembly.  The non 

nonstructural genes in the 5’ open reading frame (ORF) and the structural genes 

in the 3’ ORF were successfully amplified from both viruses.  However the fusion 

PCR strategy used to join the genome halves was unsuccessful.  Alternative 

strategies are suggested that could see better results in future. 
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5.2 Introduction 

Black queen cell virus (BQCV) and acute bee paralysis virus (ABPV) are viruses 

that infect honeybees.  These viruses can both cause decreases in colony size 

and on occasion death of these colonies.  Many viruses have been isolated 

which infect honeybees but only a few cause high mortality rates.  BQCV was 

first isolated from queen larvae and pupae of honeybees found dead in their cells 

(Bailey & Woods, 1974).  The virus causes the cells containing the infected 

larvae to darken.  It was observed that BQCV is often present in bees infested 

with the microsporidian parasite Nosema apis in UK hives.  The relationship 

between virus and parasite is implicated in the mortality of bees infected with this 

parasite (Allen & Ball, 1996, Bailey et al., 1983).   

ABPV was discovered during infection experiments in the laboratory (Bailey et 

al., 1963).  The virus can be present as an inapparent infection when associated 

with colonies infected with the parasitic mite Varroa destructor (Allen & Ball, 

1996; Ball, 1989; Ball & Allen, 1988).  ABPV spreads by way of salivary gland 

secretions of adult bees.  The virus makes its way into the broods’ food stores 

and so the virus is spread throughout the colony (Ball, 1985).  Many honeybee 

viruses persist as inapparent viruses and increasing knowledge in the 

relationship between the honeybee virus and the parasitic mite V. destructor has 

lead to many suggestions that these mites may be involved in honeybee mortality 

(Bailey et al., 1983; Ball & Allen 1988; Allen & Ball, 1996; Brødsgaard et al., 
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2000).  The term bee parasitic mite syndrome has been used when a diseased 

complex exists in a colony where mites and viruses are present and there is a 

high mortality rate (Shimanuki et al., 1994). 

BQCV and ABPV are both 30nm particle viruses and have single stranded 

positive RNA genomes. The South African isolate of BQCV has an 8550 

nucleotide genome and ABPV was found to have 9470 nucleotides excluding the 

poly (A) tails (Leat et al., 2000, Govan et al., 2000).  The molecular masses of 

the four capsid proteins for each virus are; BQCV 34, 32, 29 and 6kDa (Leat et 

al., 2000) and ABPV are 35, 33, 24 and 9.4kDa for VP1-VP4 (Govan et al., 

2000).  Both BQCV and ABPV contain two open reading frames (ORFs) 

containing a 5’ ORF encoding a putative replicase protein and a 3’ ORF encoding 

a capsid polyprotein.  Due to this orientation BQCV and ABPV had been added 

to the cricket paralysis-like or picorna-like virus group (Leat et al., 2000, Govan et 

al., 2000).  This novel group of insect infecting viruses included Cricket paralysis 

virus (CrPV), Drosophila C virus (DCV), Plautia stali intestine virus (PSIV), 

Rhopalosiphum padi virus (RhPV) and Himetobi P virus (HiPV) (van 

Regenmortel et al., 2000).  Recently all of these viruses have been re-classed as 

Dicistroviridae and genus Cripavirus (Mayo, 2002).   This group of viruses has 

the same orientation of the replicase polyprotein and the capsid polyprotein as 

the two honeybee viruses.  CrPV, DCV, PSIV, RhPV and HiPV are all 

monopartite bicistronic viruses.  In the case of PSIV the initiation of translation in 

the proximal ORF has been demonstrated to be dependent on an internal 

ribosome entry site (IRES) starting at a non AUG site (Sasaki & Nakasima, 
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1999).  Like PSIV it has also been suggested that BQCV translation initiation is 

facilitated by an IRES element at a CCU codon (Leat et al., 2000).   

Recently a stable infectious virus copy of BQCV was developed.  The infectious 

virus was fully functional and able to infect honeybee pupae when injected and   

the virus could not be distinguished from the wild type virus by electron 

microscopy.  The infectious virus was mutated to clearly distinguish it between 

the viral particles recovered from experiments originating from the infectious 

transcripts and not from an inapparent infection or wild type virus (Benjeddou et 

al., 2002).  The mutation in the infectious virus was introduced by fusion PCR 

that was a combination of methods used by Gritsun & Gould (1995) and Rebel et 

al. (2000).  The principle of fusion PCR has also been employed in producing a 

chimeric virus, though not a method widely used, it has been shown however to 

be a simple technique to join two halves of two specific viruses to produce a 

chimeric virus (Dekker et al., 2000).   

Chimeric viruses are viruses that have been altered at the gene level by 

substituting different or corresponding regions between two or more viruses.  The 

chimeric viruses have been shown to be very useful in the study of specific 

functions of viral components by interchanging or swopping regions (Kuhn et al., 

1996; Powers et al., 2000). Chimeras have also been extensively used in vaccine 

studies to create possible vaccines from altered viruses (Pletnev & Men, 1998; 

Pletnev et al., 1992; Igarashi et al., 1997).  In the vaccine studies the chimeric 

viruses were observed to be either more virulent or avirulent compared to the 
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parental virus strain and in many cases the results have been important in virus 

research. 

In this study it was planned to construct a chimeric virus where portions of the 

genome were derived from one honeybee virus (BQCV) and the remainder of the 

genome derived from the second honeybee virus (ABPV).  If the components 

from the two viruses could interact with one another a functional infectious virus 

would be obtained and the infectious ability of the virus could be studied.  If this 

did not occur the chimeric construct was attenuated or nonviable.  A chimeric 

honeybee virus would also better define the different contributions of viral 

components to virus growth and virulence.    

 

5.3 Materials and Methods 

5.3.1 Propagation  

ABPV and BQCV were propagated in apparently healthy white and pink eyed 

honeybee pupae.  The pupae were injected with a viral suspension of either 

BQCV or ABPV as described in chapter two and incubated for 6 to 7 days at 30 

to 35°C.  The viruses were extracted and purified as described by Leat et al. 

(2000).   

 

5.3.2 RNA purification 

RNA was extracted from 100 µl virus suspension by using the SV total RNA 

isolation kit (Promega) following the manufacturers instructions.  The RNA was 

eluted into 40µl of nuclease free water and the concentration was quantified by a 

 

 

 

 



 75

UV spectrophotometer and used immediately in the synthesis of first strand 

cDNA for both BQCV and ABPV. 

 

5.3.3 Primers 

Primers were designed on the basis of the nucleotide sequence of BQCV SA 

accession number AF 183905 and ABPV accession number AF 150629 (Table 

1).  Primers were designed for production of full length single stranded (ss) cDNA 

of both viruses, the PCR amplification of the specific 5’ and 3’ halves of the 

respective genomes and full chimeric viruses.  The SP6 promoter and restriction 

enzymes Not I and Kpn I sequences were introduced into certain primers to allow 

for subsequent cloning steps (see Table 1).  
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Table 5.1. Sequence of primers used for the amplification of full length cDNA and 

genome halves of ABPV and BQCV 

Primer name RE site    Nucleotide sequence                   Genome position 

 1  5’ TTTTTTTAATTTACTAATTC 3      9462-9477 

 2*  5’ TTTTTTTTTTTTTGCAAC 3’        8546-8563 

 3  5’ GGGTAACCATGTTGTGTTGCGATTCCCAAA    6322-6355 
   CTACTCATAACCTGAAAGGCCAAGAGCAATC 3’    5595-5628 
 

 4  5’ GATTGCTCTTGGCCTTTCAGGTTATGAGTAGTT    5595-5628 
   TGGGAATCGCAACACAACATGGTTACCC 3’     6322-6355 
 

5* KpnI 5’ GGGTATGGTACC(T)25GCAACAAGAAGAAACGT     8529-8575 
   AAACC 3’ 
 
 6 NotI 5’ GGGTATGCGGCCGC (T)40 AATTTACTAATTCG    9445-9531 
   AAATTTTGACGC 3’ 
 

 7 NotI 5’ GGGTATGCGGCCGCATTTAGGTGACACTATAGA    1-26 
   ATACCCGTCAAAATAACAACTTATAACAC 3’ 

 8  5’ GCTCAGGAGAGATTCCTAAATTACTACTTGTAA     6239-6328 
   TTTCTTGACTTCTCTTAAAACCAACAATG 3’      5627-5655 

 9  5’ AAGATCACATTGTTGGTTTTAAGAGAAGTCAAGA     5627-5662 
   AATTACAAGTAGTAATTTAGGAATCTC 3’      6301-6328 
 
 10* NotI 5’ GGGTATGCGGCCGCATTTAGGTGACACTATAGA      1-26 
   ATACGCAAAATTGCGTATAGTATATAAAT 3’ 
 

* Primers taken from Benjeddou et al. 2002 

Restriction sites in bold, SP6 promoter in italics and overlapping regions underlined 
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5.3.4 Reverse transcription of viral RNA and amplification of genome 

The extracted RNA was reversed transcribed using the Universal RiboClone 

cDNA synthesis system (Promega) with primer 2 for BQCV and primer 1 for 

APBV to synthesise full length single stranded (ss) cDNA.  The reaction was 

carried out as described by Benjeddou et al. (2002).   

The genome halves 5’ BQCV and 3’ ABPV were amplified using the Expand 

20kbPLUS PCR system (Roche Diagnostics) with the PCR being performed in 

0.2ml thin wall PCR tubes using a Perkin Elmer 9600 thermocycler.   

The sscDNA from the reverse transcription (RT) reaction was used directly 

without purification as the template.  The 5’ half of the BQCV genome was 

completed in a PCR reaction with a total volume of 50 µl.  Each reaction 

contained 2 µl template, 0.5 mM of each deoxynucleotide triphosphate, 0.3 µM 

forward primer 10 and 0.3 µM reverse primer 3, 5 µl 10 X PCR buffer and 0.75 

mM MgCl2.  The 3’ half of the ABPV genome was also completed in the same 

way as for the 5’ half with forward and reverse primers 4 and 6.  The PCR profile 

for the 5’ half of BQCV was started with an initial denaturation stage at 94°C for 2 

min followed by one cycle of 93°C for 15s, 59°C for 30s and 68°C for 6 min.  The 

following 29 cycles were at 92°C for 10s, 71°C for 30s, 68°C for 6 min with the 

final elongation performed at 68°C for 10 min.  The profile for the 3’ ABPV half 

was identical to that of the 5’ half except that the annealing temperature was 

61°C in the first cycle and 70°C in the following 29 cycles with elongation times of 

3 min.  Both of the PCR products were gel purified using the High Pure PCR 
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purification kit (Roche Diagnostics) to ensure that the DNA had been purified and 

no carry over contamination occurred in the following steps. 

The PCR for the opposite orientation of the chimeric virus was identical to the 

above except with the 5’ ABPV genome half being amplified with primers 7 and 9 

and the 3’ BQCV genome half with primers 4 and 5.  The same reaction volumes 

and concentration in the reaction mixture was used for the 5’ BQCV and 3’ ABPV 

halves as mentioned previously.  The cycle temperatures were identical except 

that the annealing temperature for 5’ ABPV was 59°C for 6 min in the first cycle 

and 71°C in the following 29 cycles.  For the 3’ BQCV PCR the annealing 

temperatures were 61°C for the first cycle followed by 70°C in the subsequent 29 

cycles with elongation times of 2.5 minutes. 

 

5.3.5 Fusion PCR 

The fusion PCR reaction mixture was exactly the same as for the amplification of 

the two genome halves except that a mixture of DNA starting at 70 ng of the 5’ 

BQCV half and 50 ng of the ABPV half was used as template and the same 

concentrations were used for the opposite orientation.  The reaction mix 

excluding the primers were heated to 94°C for 2 min after which primer number 

10 and 5 for the BQCV/ABPV chimera or 7 and 6 for the ABPV/BQCV chimera 

was added.  One cycle of 92°C for 10s and 80°C for 30s and 68°C for 9 min was 

used to extend the templates over the entire genome.  The primers were then 

added at 92°C at the beginning of the third stage, which consisted of 29 cycles of 
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92°C for 10s, 70°C for 30s and 68°C for 9 min. The final extension was 

performed at 68°C for 20 min.   
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Reverse transcription and fusion PCR strategy for 5’ BQCV and 3’ ABPV orientation 

 
A 
 
 
 
   

       
 

 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
D 
 
 
 
 
 

Figure 5.1  
 
Polymerase chain reaction strategy for the development of the honeybee chimeric virus, 
adapted from Gritsun and Gould (1995) and Benjeddou et al. (2002). The 5’ genome half 
of BQCV and the 3’ genome half of ABPV both honeybee viruses were used for 
construction of the chimera.  A. represents the first step of reverse transcription of the 
RNA to synthesise full length BQCV and ABPV using extracted RNA to produce full 
length sscDNA.  B. represents the amplification of the 5’ half of BQCV and 3’ half of 
ABPV with overlaps introduced by the primers represented by hashed squares.  C. 
represents the fusion PCR using the genome halves with the overlapping areas acting 
as primers in the first cycle of the PCR and finally, D, the full fusion product being 
amplified using primers 10 and 5 in following cycles to produce the BQCV/ABPV 
chimeric virus. 
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5.4 Results  

The strategy followed to produce the chimeric virus was one used by Gritsun & 

Gould (1995) to produce infectious viruses and also used by Benjeddou et al. 

(2002).  See figure 5.1 for a diagram of the strategy used to attempt the chimeric 

honeybee virus.   

The primers used in this study were designed from the BQCV and ABPV 

sequence data entered on the NCBI database.  The primers amplified the entire 

ORF1 including the stop codon when the 5’ half was amplified.  This ensured that 

the entire 5’ ORF encoding the non structural genes would be amplified from 

both viruses.  Primers for the 3’ ORF were designed to include the intergenic 

region (IGR) between the 5’ and 3’ ORF of the virus when amplifying the 3’ half 

of the genome.  This would ensure the entire 3’ORF including the IGR of the 

second virus would be present when the two components were to be fused.  

Therefore the full ORF of each virus would be present and be potentially 

functional if any internal ribosome entry sites were present.  The primers for the 

PCR strategy were also designed so that an overlapping area of 30 bp were 

present complementary to the other virus within the IGR.  The 30 bp overlap 

would act as the primer in the first cycle of the fusion PCR demonstrated by 

Gritsun & Gould (1995) and Benjeddou et al. (2002).  

 

The full length genomes of both the BQCV and ABPV genomes were 

synthesised by reverse transcription using the RNA of each virus and the 

corresponding primers BQCV primer 2 and ABPV primer 1 as detailed in the 
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materials and methods section.  The sscDNA was then directly used for the 

amplification of the 5’ genome half of BQCV and the 3’ genome half of ABPV with 

the corresponding primers (Fig 5.2).  The two amplicons of the genomes halves 

were then used at different DNA concentration ratios in a fusion PCR with the 

correct primers.  The fusion PCR was attempted with differing DNA concentration 

ratios between the 5’ and 3’ halves due to the template size differences.  The 

differences in amplicon sizes would cause favouring during the PCR reactions 

with primer and template competition to obtain the full length product.  The fusion 

PCR product of the chimeric virus which would contain the 5’ half of BQCV and 3’ 

half of ABPV was unsuccessful at every attempt.  After these attempts primers 

were designed to amplify the 5’ genome half of ABPV and the 3’ half of BQCV to 

determine if the chimera would be successful in this orientation.  In this 

orientation the two genome halves were once again amplified with the correct 

primers.  Different DNA template concentration ranges were also implemented, 

however the fusion PCR product again failed to amplify the full chimeric virus of 

ABPV and BQCV. 
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 M        1      M   1        2       3 

    

    M     1      2    

     

Figure 5.2 
 
PCR amplification of the genomes halves from single stranded (ss) cDNA. The 
specific primers produced overlaps to enable the subsequent fusion PCR to take 
place.  Genome halves were all successfully amplified from sscDNA at the 
appropriate amplification sizes.  A, lane 1, 5’ BQCV, B lane1 and 2 negative 
controls, lane 3, 3’ ABPV, C, lane 1 negative control, lane 2, 5’ ABPV, D, lane 1, 
3’BQCV.  Lane M in A, B, C and D Lambda Pst molecular weight marker. 
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5.5 Discussion  
 
With the development recently of a reverse genetics system for BQCV which   

showed the ease of manipulation of this genome (Benjeddou et al., 2002) a 

unique opportunity arose to use the same strategy to investigate the potential of 

producing a chimeric virus with viral components of BQCV and another 

honeybee virus ABPV.  The correctly fused chimeric virus containing BQCV and 

ABPV viral components could be useful to observe whether the chimeras as one 

complete virus would be functional and or infectious.  It would also be used to 

observe the compatibility between structural and non structural genes of the two 

viruses.  Previously no other research has attempted to fuse different ORFs from 

two honeybee viruses to study the effect or possibility of a chimeric honeybee 

virus.   

Few other chimeric viruses have been produced using fusion PCR, however in 

the case of swine vesticular virus (Dekker et al., 2000) a similar strategy was 

followed to produce eight chimeric viruses by substituting different regions of the 

P1 region of the parent strains with that of different isolates of this virus.  Other 

strategies used unique restriction sites either already present in the genome or 

introduced to facilitate the joining of the substituted parts of a virus (Kuhn et al., 

1996, Pletnev & Men, 1998).  Chimeric virus constructs are usually between 

viruses in the same family or different strains of the same virus (Dekker et al., 

2000).  
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The failure to obtain chimeric viruses in either orientation of the proposed 

chimeric virus could be due to various factors.  One such factor could be the 

primers designed which introduced the overlapping base pairs to accommodate 

the fusion PCR.  The number of nucleotides in these primers totalled 60 bp which 

could have impacted on the PCR reactions where the primers, especially those 

introducing the overlap, could have been too long or too short.  Dekker et al. 

(2000) used overlapping regions of 75-90 bp excluding the specific primers in 

their fusion PCR. Yao et al. (1996) only used a 14 bp overlap however it was the 

same gene in a different alphavirus being substituted and was highly 

homologous.  Benjeddou et al. (2002) only used a 6 bp overlap which introduced 

a mutation in the same virus.  Therefore the length of the overlaps can vary and 

optimising the area in which the overlap was designed and length could possibly 

directly impact the PCR amplification.    

Another factor which could have impacted on the amplification was that the 5’ 

and 3’ genomes halves were approximately 6 Kb and 3 Kb respectively.  This 

difference in size could not be overcome by differing the DNA concentration 

ratios of the genome halves as the optimum ratio between the two halves could 

not be found.  Benjeddou et al. 2002 successfully used a ratio of 50:45 ng of the 

5’ half and 3’ half respectively, however the DNA fragment sizes were not as vast 

as in this study.  Gritsun & Gould (1995) also used a ratio of 30 to 50 ng of DNA, 

however once again the sizes of the two halves were almost identical where the 

5’ half was 500 base pairs longer than the 3’ half.  
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 The joining of two DNA strands of varying lengths has been demonstrated 

(Shevchuk et al., 2004) however in this case the fusion of the two halves was not 

possible.   The strategy used to produce the chimera will therefore have to be 

adapted.  A strategy more widely used to produce chimeric viruses can also be 

looked at. 

Another possibility would be to use two viruses which are more closely related 

such as ABPV and KBV.   At the outset of the study BQCV was chosen since 

previous work had obtained a successful infectious virus with fusion PCR. 

Although the chimeric fusion PCR was not possible, with new possibilities of 

using multiple gene cloning baculovirus vectors and cell culture could improve 

the chances of creating chimeric honeybee viruses.  This could be achieved by 

cloning the structural and non structural genome halves of the virus and 

expressing it at the same time in a multiple expression vector in cell culture and 

observing if fully functional virus particles are being produced.  Having a cell 

culture system has many advantages for the further study and characterisation of 

honeybee viruses in the future. 
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CHAPTER SIX 
 
 

CONCLUSIONS 
 

As emphasised with this work honeybees are very important insects not only 

environmentally but economically as well.  With concerns growing everyday 

about honeybee colony collapse disorders and factors such as climate change 

influencing honeybee populations worldwide a dire need for research has been 

acknowledged.  Research and developing new methods to combat disease and 

colony collapse due to pests should get the attention it deserves in order to 

protect the honeybee.  Molecular techniques, as used in this work, has greatly 

increased the knowledge about honeybee viruses and will continue to do so with 

on going research.   

The detection of three honeybee viruses is an attempt to shorten the time 

needed to diagnose viruses within a colony or hive.  With more viruses being 

found and their genomes sequenced primers can be designed in order to detect 

these viruses by PCR methods.  A multiplex PCR is unique in that many viruses 

can be detected simultaneously in one reaction.  Therefore with more research 

this method has the potential to detect many different viruses within a colony. 

Sequencing of the honeybee virus genomes has assisted with methods for 

detection of the viruses.  KBV is a virus which has caused high mortality in many 

countries.  With the sequencing of a strain of KBV from North America it could be 

used to compare a KBV virus strain from India.  The KBV Indian strain was used 

in the multiplex RT-PCR however was removed due to primer interactions.  The 

KBV strains were seen to differ in the region looked at due possibly to 
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geographical strain differences.  The KBV Indian strain was however highly 

homologous to ABPV within the region of the primers being designed.  Therefore 

correct design and alignments are crucial to ensure that this detection method is 

used to its full potential. 

Heterologous baculovirus expression of the BQCV capsid gene in insect cell 

lines was shown.  The morphology of the viral capsid was similar to that of the 

wildtype virus as seen by electron microscopy of the expressed VLPs. This 

expression system has the potential to be used to express the entire BQCV virus.  

Traditional propagation methods are tedious therefore a cell culture method to 

propagate honeybee viruses would be an improvement.  Cell culture propagation 

would ensure that the virus being propagated was pure and that any inapparent 

or contaminating viruses would be excluded.   With many commercial vectors 

available for multiple gene cloning capabilities using heterologous baculovirus 

expression, with further study, can be used in the near future for the propagation 

of honeybee viruses.  The studies which could be conducted with these systems 

and viruses may possibly be used to elucidate how these viruses work and infect. 

Chimeric viruses have been used in many studies to observe the infectivity and 

virulence of these altered viruses.  Developing chimeric viruses between highly 

virulent and disease causing viruses of the same family have led to candidate 

vaccine production and attenuating the virulence of the viruses.  The same can 

be done for honeybee viruses which are causing huge losses within this industry.  

If an attenuated honeybee virus could be developed this would attempt to find a 

possible vaccine for the diseases.  A chimeric honeybee virus was attempted 
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between ABPV and BQCV however the strategy followed failed to fuse the two 

components of the virus.  Further optimisation of the study and using methods 

such as heterologous expression in baculovirus culture could see the 

development of a chimeric virus.  The resultant virus could be used in many 

studies in which to help researchers find ways of inhibiting viral transfer and 

infection in honeybees.   

Improvements on methods used for research is ongoing and honeybee virus 

research is no different.  Propagating pure viruses with which to conduct studies 

is important and the methods to do so has to be considered.  Looking more 

closely at these viruses by using new methods of propagation will assist in the 

research to save the honeybee. 
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