AN IN VITRO STUDY OF THE MICROLEAKAGE OF A COMPOMER (POLYACID MODIFIED RESIN COMPOSITE) BONDED TO ENAMEL AND DENTINE WITH DIFFERENT BONDING SYSTEMS AND THE EFFECT OF SALIVA CONTAMINATION THERE OF.

Charlene Margaret Saayman

Thesis presented in partial fulfilment of the requirements of the degree of UNT Master of Science in Dental Sciences
at the
WESTUniversity of Stellenbosch

Study leaders: Prof SR Grobler, MSc, DSc, PhD
Dr RJ Rossouw, BSc. HOD, MMedSc, PhD

UNIVERSITY of the WESTERN CAPE

http://etd.uwc.ac.za/

DECLARATION

I, Charlene Margaret Saayman, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree.

UNIVERSITY of the WESTERN CAPE

ABSTRACT

Restorative systems classified as polyacid modified composite resins, or compomers, have appeared on the market. An example of this is Dyract AP. Dyract AP must be used with the Prime \& Bond NT bonding system. Prime \& Bond NT can be applied without any form of prior etching, or it can be applied after application of Non Rinse Conditioner, or it can be applied after etching with 36% phosphoric acid.

The purpose of the study was to determine the qualitative microleakage of Dyract AP and its bonding systems, as well as the influence of saliva contamination there of. Freshly extracted, non-carious, human premolars were randomly divided into 8 groups of 18 teeth each. Apisectomies coated with Polivar varnish and restored with amalgam were performed on all teeth. Class V type cavities of 3 mm diameter and $1,5 \mathrm{~mm}$ depth were prepared on the CEJ junction on the buccal side of all teeth. Dyract AP restorations were placed using the bonding procedures indicated: Group 1: P\&B NT (Prime \& Bond NT); group 2: acid (36\% phosphoric acid) + P\&B NT; group 3: NRC (Non Rinse Conditioner) + P\&B NT; group 4: P\&B NT + Saliva; group 5: acid + Saliva + P\&B NT; group 6: acid + P\&B NT + Saliva; group 7: NRC + Saliva + P\&B NT; group 8: NRC + P\&B NT + Saliva. Restorations were finished with Sof-Lex discs. After 24 hours storage in distilled water the teeth were removed and coated with two layers of nail varnish, except for 1 mm around the restorations. The teeth were then thermocycled in a 0.5% basic fuchsin solution for 500 complete cycles between $8^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, with a dwell time of 15 seconds. After being cleaned and
embedded in resin, the teeth were sectioned in $600 \mu \mathrm{~m}$ thick sections and examined under a microscope at X60 magnification. The microleakage was evaluated on a scale of 0 to 4 on both the enamel and dentine/ cementum margins.

The data was statistically analyzed using Kruskal-Wallis one way ANOVA on ranks (significance at p<0.05). Enamel data: Groups 1 and 4 differed significantly from all the groups except group 7. Group 7 differed significantly from all the groups except groups 1 and 4. Groups $2,3,5,6$ and 8 only differed significantly from groups 1,4 and 7 . Dentine/cementum data: Groups 6 and 8 differed significantly from groups $1,2,3,4,5$ and 7 . Group 1 differed significantly from groups $2,3,5,6,7,8$; Group 2 from 1,4,6,8; group 3 from 1,4,6,7,8; group 4 from $2,3,6,8$; group 5 from 1,6,8; group 7 from 1,3,6 and 8 .

Microleakage was not eliminated at either the enamel or the dentine/cementum margins, but it was statistically significantly reduced at the enamel margins, by etching with NRC or phosphoric acid. Saliva cöntamination did not have a significant effect on the enamel margins when accompanied with 36% phosphoric acid etching. On the dentinë/cementum side the least microleakage was obtained in the absence of etching. However, less microleakage was found if the dentine had been etched, and contamination took place between etching and Prime \& Bond NT application, than when the contamination took place after curing of the Prime \& Bond NT.

OPSOMMING

Herstelsisteme wat geklassifiseer word as polisuur gemodifiseerde komposiet harse，of kompomere，het op die mark verskyn．＇n Voorbeeld hiervan is Dyract AP．Dyract AP moet gebruik word saam met die Prime \＆Bond NT bindingsteem na aanwending van die Non Rinse Conditioner，of Prime \＆Bond NT kan gebruik word met of sonder etsing met 36% fosforsuur．

ய二円ロயロாロサ

Die doel van die studie was om die kwalitatiewe mikrolekkasie van Dyract AP en die gepaartgaande bindingsisteme te bepaal，asook die invloed van speekselkontaminasie daarop．Vars getrekte，nie karieuse， menslike premolare is lukraak ingedeel in 8 groepe van 18 tande elk： Apisektomies，wat bedek is met Polivar vernis en herstel is met amalgaam，is uitgevoer op al die tande．Klas V tipe kawiteite wat 3 mm in deursnit en $1,5 \mathrm{~mm}$ in diepte is，is voorberei op die glasuursementaleaansluiting van die bukkale kant van al die tande． Dyract AP herstellings is geplaas met die betrokke bindinsprosedures soos aangedui：Groep 1：P\＆B NT（Prime \＆Bond NT）；groep 2：suur（36\％ fosforsuur）＋P\＆B NT；groep 3：NRC（Non Rinse Conditioner）＋P\＆B NT； groep 4：P\＆B NT＋speeksel；groep 5：suur＋speeksel＋P\＆B NT；groep 6：suur＋P\＆B NT＋speeksel；groep 7：NRC＋speeksel＋P\＆B NT；groep 8：NRC＋P\＆B NT＋speeksel．Herstellings is afgewerk met Sof－Lex skyfies．Nadat die tande vir 24 uur in gedistilleerde water gestoor is，is hul verwyder en met twee lae naellak toegeverf，behalwe vir die 1 mm naasliggend aan die herstellings．Die tande is daarna blootgestel aan 500 termiese siklusse tussen $8^{\circ} \mathrm{C}$ en $50^{\circ} \mathrm{C}$ met＇ n rus tyd van 15
sekondes in ' n basiese fuchsienoplossing. Nadat die tande skoongemaak is en ingebed is in hars, is snitte van $600 \mu \mathrm{~m}$ dikte van die tande gesny en ondersoek onder ' n mikroskoop teen X 60 vergroting. Die mikrolekkasie op beide die glasuur en dentien/sementum randte is op ' n skaal van 0 to 4 evalueer.

Die data is statisties ontleed deur gebruik te maak van die Kruskal Wallis ANOVA analise (kritieke afsnypunt van $\mathrm{p}<0,05$). Glasuur data: Groepe 1 en 4 verskil beduidend van al die groepe behalwe groep 7. Groep 7 verskil beduidend van al die groepe behalwe groepe 1 en 4. Groepe $2,3,5,6$ en 8 verskil slegs beduidend van groepe 1,4 en 7 . Dentien/sementum data: Groepe 6 and 8 verskil beduidend van groepe $1,2,3,4,5$ en 7 . Groep 1 verskil beduidend van groepe 2,3,5,6,7,8; Groep 2 van 1,4,6,8; groep 3 van 1,4,6,7,8; groep 4 van 2,3,6,8; groep 5 van $1,6,8$; groep 7 van 1,3,6 en 8 .

Mikrolekkasie is nie geëlimineer op die glasuur of die
dentien/sementum kawiteitswande nie. Mikrolekkasie is statisties beduidend verminder aan die glasuurkant, indien daar vooraf geëts (NRC of fosforsuur) is. Speekselkontaminasie het nie n statisties beduidende invloed gehad op die glasuurkant nie, indien daar vooraf met 36% fosforsuur geëts is. Die minste mikrolekkasie aan die dentien/sementum kant is gevind indien daar glad nie geëts is nie. Indien die dentien geëts is, het kontaminasie tussen etsing en Prime \& Bond NT aanwending, egter minder mikrolekkasie tot gevolg gehad as wanneer die kontaminasie na die kuring van die Prime \& Bond NT plaasgevind het.

DEDICATION

リIロ II

To my late father Allan, and my mother Hilda for giving me all the opportunities in life which they never had.

UNIVERSITY of the WESTERN CAPE

ACKNOWLEDGEMENTS

I would like to thank several people for their assistance:

- Professor SR Grobler, my study leader to whom I am extremely grateful to for his knowledge, guidance, support, and tremendous patience.
- Dr RJ Rossouw for his skill and enormous help with the microleakage evaluation, as well as his enthusiasm, encouragement and expertise.
- Professor TJ Van Wyk Kotze for his statistical analysis of the results.
- Dentsply South Africa for providing the materials which made this thesis possible.

- My husband, Anton for being patient and understanding.
- My Heavenly Father, without whom nothing would have been possible.

TABLE OF CONTENTS

PAGE
DECLARATION i
ABSTRACT ii
OPSOMMING iv
DEDICATION vi
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS viii
LIST OF FIGURES xiii
LIST OF TABLES xv

1. CHAPTER 1: LITERATURE REVIEW 1
1.1 ADHESION TO ENAMEL AND DENTINE 2
1.1.1 ENAMEL 2
Composition... 2
History of adhesion to enamel 2
Beveling of enamel 5
1.1.2 DENTINE 5
Requirements of dentine bonding 5
Composition 5
Dentine - smear layer 6
Dentine - early bonding agents 6
Dentine bonding and the smear layer 6
Treatment of the smear layer 7
Dentine etching 7
1.1.2.1 Conventional etching of dentine 7
1.1.2.2 Total etch technique 9
1.1.3 THE ROLE OF WATER IN THE BONDING PROCESS 9
Working mechanism 9
Solvents used to chemically remove water 12
1.1.4 PRIMERS 14
Working mechanism 14
Self-etching/self-priming systems 15
"One-bottle" or self-priming adhesive systems 16
Self etch/prime bonding systems 16
1.1.5 DENTINE BONDING 17
Hybrid layer 17
Bonding - Inter as well as intratubular resin penetration 18
Age and depth influence on RIDL (Hybrid layer) 18
Lateral branches 19
1.1.6 BOND STRENGTH IN GENERAL 20
1.2 FROM COMPOSITE TO COMPOMER 21
1.2.1 RESIN COMPOSITE 21
1.2 2 GLASS IONOMERS 23
1.2.3 RESIN MODIFIED GLASS IONOMERS 26
intoouction 26
History and composition 26
Pretreatment 27
Adhesion 28
T/Polymerization 28
Polymerization shrinkage 29
Fluoride release 29
Advantages 30
Disadvantages 30
1.2.4 POLYACID-MODIFIED RESIN COMPOSITES OR "COMPOMERS" 31
Introduction 31
Components and constituents 32
Pretreatment, adhesion and polymerization 32
Advantages 33
Disadvantages 34
Conclusion 34
1.3 DYRACT, DYRACT AP, THEIR BONDING SYSTEMS AND NRC 35
1.3.1 HISTORY OF DYRACT AND ITS BONDING SYSTEMS 35
1.3.2 THE RESTORATIVE SYSTEMS 36
1.3.2.1. Dyract 36
Constituants: Dyract 36
1.3.2.2. Dyract AP 37
Constituents: Dyract AP 37
Setting of Dyract AP 38
Adhesion of Dyract AP to the cavity wall 38
1.3.3 THE PRIMER/BONDING SYSTEMS 39
1.3.3.1. Dyract - PSA 39
Constituents: Dyract-PSA 39
1.3.3.2 Prime 86 Bond 2.0 40
Constituents of Prime \& Bond 2.0 40
1.3.3.3. Prime \& Bond 2.1 40
Constituents of Prime \& Bond 2.1 41
1.3.3.4. Prime \& Bond NT 41
General characteristics 42
Composition of Prime \& Bond NT: Components and functions 43
Fluoride release. 43
Shear bond strength 43
Handling of Prime \& Bond NT 44
1.3.3.5. Scanning electron microscope morphology 44
Prime \& Bond NT 44
Additional SEM reports for Prime \& Bond NT and Prime \& Bond 2.1 46
SEM report for Prime \& Bond 2.1 and Prime \& Bond 2.0 46
SEM reports for self priming adhesive and self etching primer systems 48
1.3.4 NON RINSE CONDITIONER (NRC) 48
Composition of NRC: Components and their functions 48
NRC and removal of the smear layer 49
1.4 MICROLEAKAGE 50
Introduction and definition 50
Different types of microleakage studies 50
General facts about microleakage 51
Microleakage and Prime \& Bond NT 53
Factors that influence the teeth-restoration interface 54
1.4.1 Polymerization shrinkage 54
1.4.2 Modules of elasticity 56
1.4.3 Light exposure and light intensity 57
1.4.4 Hydroscopic expansion 58
1.4.5 Bond strength 59
1.4.6 The effect of acid etching 60
1.4.7 Dry $v s$ wet/moist bonding procedures 61
1.4.8 Cavity configuration and beveling 61
1.4.9 Co-efficient of thermal expansion 62
1.4.10 Masticatory stresses, thermocycling and dwell time 62
1.4.11 In vitro $v s$ in vivo microleakage studies 63
1.4.12 Saliva contamination 64
Marginal gaps and dye penetration 65
Nanoleakage 67
2. CHAPTER 2: OBJECTIVES 69
3. CHAPTER 3: MATERIALS AND METHODS 70
3.1 TEETH USED IN PROJECT 70
3.2 INITIAL TREATMENT OF THE TEETH 70
3.3 PREPARATION AND RESTORATION OF THECAVITIES AS DETERMINED BY EACH EXPERI-MENTAL GROUP71
3.3.1 Preparation of the cavities 71
3.3.2 Saliva collection 71
3.3.3 The experimental groups 72
3.3.4 Restoration of the cavities 72
3.3.5 Finishing of restorations 74
3.4. MICROLEAKAGE TESTS 77
3.5. LIST OF MANUFACTURERS 80
4. CHAPTER 4: RESULTS 81
Data 81
Statistics 85
5. CHAPTER 5: DISCUSSION 91
6. CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 102
REFERENCES 104
UNIVERSITY of the
WESTERN CAPE

LIST OF FIGURES

FIGURE 1. Prepared cavity and filled tooth 75
FIGURE 2. Prime 8% Bond NT and NRC 75
FIGURE 3. Dyract AP, gun and compules 75
FIGURE 4. Filled tooth covered in nail varnish 76
FIGURE 5. Cycling machine 76
FIGURE 6. Criteria used for microleakage 76
FIGURE 7. Microleakage in dentine tubules 78
FIGURE 8. Microleakage value of 2 78
FIGURE 9. Microleakage value of 4 78
Microleakage per group
FIGURE 10: Enamel - P\&BB NT + Dyract AP........ 82
FIGURE 11: Dentine - P\&B NT + Dyract AP 82
FIGURE 12: Enamel - PA + P\&B NT + Dyract AP 82
FIGURE 13: Dentine - PA + P\&B NT + Dyract AP 82
FIGURE 14: Enamel - NRC + P\&B NT + Dyract AP 83
FIGURE 15: Dentine - NRC + P\&B NT + Dyract AP 83
FIGURE 16: Enamel - P\&B NT + saliva + Dyract AP 83
FIGURE 17: Dentine - P\&B NT + saliva + Dyract AP 83
FIGURE 18: Enamel - PA + saliva + P\&B NT + Dyract AP 83
FIGURE 19: Dentine - PA + saliva + P\&B NT + Dyract AP83
FIGURE 20: Enamel - PA + P\&B NT + saliva + Dyract AP 84
FIGURE 21: Dentine - PA + P\&BB NT + saliva + Dyract AP 84
FIGURE 22: Enamel - NRC + saliva + P\&B NT + Dyract AP 84
FIGURE 23: Dentine - NRC + saliva + P\&B NT + Dyract AP 84
FIGURE 24: Enamel - NRC + P\&B NT + saliva + Dyract AP 84
FIGURE 25: Dentine - NRC + P\&B NT + saliva + Dyract AP 84
FIGURE 26. Summary of Means - graph. 88
FIGURE 27. Box plots - Enamel - groups 1 to 3 89
FIGURE 28. Box plots - Enamel - groups 4 to 8 89
FIGURE 29. Box plots - Dentine - groups 1 to 3 90
FIGURE 30. Box plots - Dentine - groups 4 to 8 90
UNIVERSITY of the
WESTERN CAPE

LIST OF TABLES

PAGE

TABLE 1 Experimental groups $72,85,88,93,94,96,97$
TABLE 2 Percentages of microleakage for every group: Enamel 81
TABLE 3 Percentages of microleakage for every group:
Dentine 82
TABLE 4 Summary table of means: Enamel. 85
TABLE 5 Statistical significance: Enamel. 86
TABLE 6 Summary of table of means: Dentine/Cementum 87
TABLE 7 Statistical significance: Dentine/Cementum 87
UNIVERSITY of the

CHAPTER 1

LITERATURE REVIEW

Recently several new restorative systems classified as polyacid modified composite resins (McLean, Nicholson \& Wilson, 1994), or often referred to as compomers (Vaikuntam, 1997), appeared on the market. Compomers contain both polymerizable groups of a composite and acidic groups of a glass ionomer. The compomers possess some of the aesthetic advantages of composite materials as well as fluoride leaching properties (Ferrari, Vichi, Mannocci \& Davidson, 1998). An example of the compomers is Dyract AP. Research has been done on the microleakage of bonded Dyract (Chersoni, Lorenzi, Ferrieri \& Prati, 1997; Freedman \& Goldstep, 1997; Friedl, Schmalz, Hiller \& Mortazavi, 1997; Hse \& Wei, 1997), the forerunner of Dyract AP. However, limited independent research results could be found on the microleakage of Dyract AP using this new generation bonding system (Estafan, Pines, Erakin \& Fuerst, 1999; Evancusky \& Meiers, 2000; Kugel, Perry, Hoang E, Hoang T \& Ferrari, 1998).

Most studies on the microleakage of Dyract AP were done in vitro and without saliva contamination (Dietrich, Kraemer, Losche \& Roulet, 2000; Moodley, Grobler, Rossouw, Oberholzer \& Patel, 2000).

Very few studies have been done on the influence of saliva contamination on microleakage (Dietrich, Kraemer, Losche, Wernecke \& Roulet, 2000; Evancusky \& Meiers, 2000) and none have made use of Prime \& Bond NT as bonding agent.

Although very few independent studies have been published on the microleakage of the above mentioned products, or the influence of saliva contamination, when used according to specifications, the instructions for the use of Dyract AP does not specifically advise the use of rubber dam. However, the different systems should be properly evaluated to determine the influence of saliva contamination on microleakage before any recommendations could be made.

1.1 ADHESION TO ENAMEL AND DENTINE

1.1.1 ENAMEL

Composition

According to mass, $96 \%-97 \%$ of enamel consists of inorganic material, less than 1% of organic material and the rest consists of water. According to volume, 86% of it consists of inorganic material, 2% of organic material and the remaining 12% of water. The inorganic component consists mainly of hydroxyapatite while the organic component consists of two proteins. The one protein is a soluble glycoprotein, while the other is more insoluble (Jansen van Rensburg, 1981).

Adhesion to enamel has been achieved since 1955 with the introduction of acid etching by Buonocore. He demonstrated that by etching enamel with ortho-phosphoric acid, adhesion of acrylic restorative resin to enamel could be achieved. The procedure introduced by Buonocore typically involved phosphoric acid conditioning of the enamel surface and application of a bonding resin (Buonocore, 1955). Phosphoric acids in the range of 32% to 40% have been most popular for enamel acid conditioning. Initially a sixty second acid-conditioning time was used (Silverstone, 1975), but Barkmeier, Shaffer and Gwinnett (1986) as well as Glasspoole and Erickson (1986) showed that a reduced conditioning time of fifteen
seconds yielded bond strengths equivalent to a 60-second time etch procedure.

Art-Smart, Retief and Russell (1993) reported bond strengths of between 8 and 15 MPa when enamel was etched with 10% phosphoric acid for 15 seconds and 8 to 17 MPa when the etching time was increased to 30 seconds. According to Nordenvall, Brännström and Malmgren (1980), as well as Barkmeier et al. (1986), scanning electron microscopy (SEM) studies have shown a similar etch pattern on enamel that is conditioned for either 15 or 60 seconds. The more concentrated the acid, the greater the degree of demineralization of the intertubular and intratubular dentine (Titley, Smith, Chernecky, Maric \& Chan, 1995). Etching enamel with 35\%40\% phosphoric acid usually prevents marginal leakage around composite restorations (Sidhu \& Henderson, 1992; Swift \& Le Valley, 1992). When enamel is conditioned, the inorganic component is removed, and microporosities are created (Buonocore, 1955). Enamel etching with phosphoric acid creates an etch pattern characterized by a deep uniform demineralization area (Ferrari, Mannocei, Kugel \&

It is assumed that the retentive ability of etched enamel for resin composite is a function of the increase in surface area and the increase in the wettability of etched enamel (Gwinnett, 1971; Retief, 1973). The inorganic composition of enamel results in acid etching producing interprismatic and prismatic dissolution, creating irregularities in which resin can flow and, after polymerization, create a mechanical interlocking (Gwinnett, 1976). To obtain micromechanical bonding of restorative materials, phosphoric acid is commonly used to etch enamel and remove the smear layer (Retief, 1978).

Several studies, especially those using scanning electron microscopy (SEM) revealed a range of structural changes when enamel was etched with phosphoric acid. These changes include (partly quoted from NRC Technical Manual, 1998):

- dissolution of the superficial enamel layer of about 10μ m (Retief, 1973)
- peripheral regions of prisms are dissolved creating a picket fence prism profile and correspondingly wedge-shaped channels of about $25 \mu \mathrm{~m}$ depth.
- prism cores are dissolved leaving crater-like depressions
- prismless enamel of deciduous teeth and in the cervical and fissure areas of permanent teeth are superficially dissolved, but surface roughness is much less pronounced.
Demineralization of enamel depends on the pH of the acid and the etching time (Ferrari, Mannocci, Vichi \& Davidson, 1997; Perdigão, Lopes, Lambrechts, Leitao, Van Meerbeek \& Vanherle, 1997).

A low viscosity resin, usually unfilled, is then able to penetrate into the microspaces of the etched enamel surface and interlocks mechanically upon polymerization. According to Retief (1978), mechanical bonding occurs when bonding agent is mechanically interlocked into micro-undercuts on enamel.

In 1963 Buonocore stated that a dry enamel surface is necessary to achieve good adhesion. Contamination of etched enamel prior to application of bonding agent will prevent proper bonding, because the micropores become occluded (Silverstone, 1984). A uniform frosty appearance after drying an enamel surface has been widely accepted to indicate that the enamel has been adequately etched. Several studies have shown less enamel and dentin demineralization when phosphoric acid was not used or when self-etching primers were applied (Ferrari et al., 1997a; Perdigão et al., 1997). With self-etching
primers it is difficult to judge adequate enamel etching (Miyazaki, Hirohata, Takagaki, Onose \& Moore, 1999).

Phosphoric acid has a lower pH than maleic acid, and is therefore a stronger etching agent than maleic acid, is more soluble and can create a more microporous surface on normal enamel (Windholz, 1988). Owens (1997) reported that 10% maleic acid gave the least microleakage when it was applied for 30 or 60 seconds to enamel, while a 15 second application time gave the most microleakage. Swift \& Cloe (1993) reported bond strengths of 25 MPa when etching was performed with 35% phosphoric acid for 15 seconds to enamel. With 10% maleic acid or 10% phosphoric acid, etched for 15 seconds, the bond strength declined to $13,2 \mathrm{MPa}$.

Beveling of enamel

Beveling of enamel margins results in a greater surface area of prepared enamel available for bonding. The beveling of margins followed by etching virtually eliminates microleakage (Saunders \& Muirhead, 1992). However beveling of the enamel cavity margins failed to affect the clinical results of composite restorations in longterm clinical trials by Wilson NH, Wilson MA, Wastell \& Smith (1991).

1.1.2 DENTINE

Requirements of dentine bonding

A polymerized layer of a dentine bonding system should be nonpermeable to oral fluids, seal dentinal tubules, be long lasting and durable and protect the pulp (Titley et al., 1995).

Composition

The organic content of dentine is much higher than that of enamel. It forms 18% of the mass. 93% of the organic content of dentine consists of collagen, $0,9 \%$ of citric acid, 0.2% of an insoluble protein, $0,2 \%$ of mucopolysaccharides and $0,2 \%$ of lipids. The inorganic
component comprises 70% of the mass and the rest (2%) consists of water. The inorganic component mainly consists of hydroxyapatite molecules. Calcium phosphates are also present (Jansen van Rensburg, 1981; Lee \& Lin, 1997). The high organic content and tubular structure of dentine as well as the odontoblastic processes and outward flow of fluid makes dentine bonding difficult to achieve (Vargas, Cobb \& Armstrong, 1997).

Dentine - Smear layer

Mechanically prepared dentine surfaces are covered by a film of denatured protein and ground hydroxyapatite, which is referred to as the smear layer (Eick, Wilko, Anderson \& Sorensen, 1970; Pashley, 1984). The smear layer is approximately $1-5 \mu \mathrm{~m}$ thick and extends into the dentine tubules to form plugs (Boyde, Switsur \& Steward, 1963) therefore decreasing the permeability of the dentine surface (Pashley, 1984). According to Tao and Pashley (1988) the smear layer is bonded to the dentine by a force estimated to be $5-6 \mathrm{MPa}$. In spite of this weak attachment, the smear layer cannot be easily scrubbed' or washed away with water.

Dentine - early bonding agents

Due to its different nature, the etching of and adhesion to dentine has proven to be a challenging situation (Heymann \& Bayne, 1993). Early dentine bonding systems attempted to chemically bond to dentine by ionic bonds to calcium (Eliades, Caputo \&\% Vougiouklakis, 1985). There is however little evidence for the formation of chemical bonds between resins and dentine (Spencer, Byerly, Eick \& Witt, 1992; Van Meerbeek, Mourbacher, Celis, Roos, Bream, Lambrechts \& Vanherle, 1993).

Dentine bonding and the smear layer

Early bonding agents were applied directly on smear layers and gave low bond strengths (5MPa) seeing that they did not permeate well in
dentine. It was established with SEM evaluation that the 5MPa bond strength was actually a measure of the cohesive forces holding the smear layer together (Pashley, 1991a).

Treatment of the smear layer

In order to increase bond strength of resin to dentine, one either has to remove the smear layer, or develop agents that can penetrate through the smear layer into the dentine matrix (Pashley \& Carvalho, 1997).

Removal of the smear layer provides a demineralized dentine surface with a collagen rich meshwork for monomer diffusion. Nakabayashi, Kojima and Masuhara (1982) proposed that 10\% citric acid be used to remove the smear layer and smear plugs in order to expose the collagen fibril network.

A preserved smear layer could have monomers or organic or inorganic components of the dentine incorporated into it.

A partly dissolved/modified smear layer results in a thin resinimpregnated dentine layer and a resin impregnated smear plug (Watson \& Barlett, 1994).

Dentine etching

1.1.2.1 Conventional etching of dentine

Dentine etching was first thought to cause pulpal inflammation (Retief, Mandras, Russell \& Derys, 1992; Stanley, Going \& Chuancey, 1975). Fusayama (1987) believed that inflammation was caused by bacterial penetration through the dentine into the pulp. He therefore proposed total etching of dentine to open dentinal tubules and remove the smear layer of debris caused by cutting on the detinal surface. This was done in order to promote more complete mechanical bonding of material to tooth structure.

Application of acid to dentine, results in the removal of the smear layer and smear plugs (Vargas, Cobb \& Denehy, 1997b). This opens the dentine tubules, causes the demineralization of peritubular and intertubular dentine and exposes a collagen-rich transition zone (Titley et al., 1995). The demineralization could be to a depth of approximately $2-7 \mu \mathrm{~m}$ (Nakabayashi et al., 1982). Removal of the smear layer causes a dramatic increase in surface permeability, in direct access to the pulp chamber and in wetness (Bowen, Eick \& Henderson, 1984; Gwinnett, 1984). The demineralization also results in loss of support (Pashley, Horner \& Brewer, 1992) and an inevitable degree of collapse of the collagen network, resulting in small loss of surface porosity after the initial dramatic increase (Titley et al., 1995). The open spaces between the collagen fibers that had been occupied by hydroxyapatite crystals shrink due to the collapse of the unsupported collagen mesh. Protein collagen is susceptible to hydrolysis (Kato \& Nakabayashi, 1996). Van Meerbeek, Inokoshi, Braem, Lambrechts and Vanherle (1992) found that the collagen matrix bulges out laterally after collapsing. This results in a constriction of the tubule orifices. Demineralization also results in the contamination of the surface with dentinal fluid, leading to a decrease in bond strength (Tao \& Pashley 1988). The concentration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in a dentine etchant influences the permeability of demineralized dentine and therefore the resin bond to that substrate (Kato \& Nakabayashi, 1996).

Abate, Bertacchini, Polack and Macchi (1997) reported that the use of phosphoric acid etching before primer and bonding agent placement, produced a better bond between a compomer and enamel, but was not particularly needed on dentin and cementum. In contrast Tate, You and Powers (1999) found tensile bond strengths to dentine to be higher overall when using phosphoric acid conditioning with primers and moist bonding surfaces. Ferrari et al., (1999) demonstrated by scanning electron microscopy that resin tags penetrated further into
dentine etched by 37\% phosphoric acid than into conditioned dentine where the smear layer was retained.

1.1.2.2. Total etch technique

To simplify the bonding procedure and to reduce application time, a single procedure was proposed to simultaneously etch the enamel and the dentine (Ferrari, Goracci \& Garcia-Godoy, 1997). This was termed the total etch technique (Kanca, 1992a). Phosphoric acid was the first acid to be used for this technique (Ferrari et al., 1997b). Due to its higher inorganic content in comparison to dentine enamel must be etched for a longer time than dentine. To achieve this, weaker concentrations of acid have been used, or the exposure time of the dentine to the etchant has been shortened. All-Bond (Bisco) makes use of 10% phosphoric acid, while Scotchbond Multi Purpose (3M) makes use of 15% maleic acid. However, these lower concentration acids are also applied for a shorter time, usually, 15 seconds (Ferrari et al., 1997a; Perdigão et al., 1997).

1.1.3. THE ROLE OF WATER IN THE BONDING PROCESS

Working mechanism in dentine

Acid etching results in dentine displaying hydrophobic characteristics and does not increase its surface energy to facilitate spreading of adhesive resins (Attal, Asmussen \& Degrange, 1994). Rinsing with water after etching removes the dissolved minerals and leaves a demineralized dentine surface covered with water (Pashley \& Carvalho, 1997). The water fills the spaces around the collagen fibrils and the resins must diffuse through this water to from a hybrid layer (Nakabayashi et al., 1982). Titley et al. (1995) found that hydrophilic unfilled resin monomers were unable to completely infiltrate the intertubular layer, as there was evidence of gaps, particularly at the normal dentine demineralized zone interface. A region of unprotected collagen fibers may exist if the resin does not completely infiltrate and surround the decalcified collagen fibers (Miyazaki, Sato, Onose \&

Moore, 1998). Several researchers have speculated that incomplete infiltration of the demineralized collagen network could result in a weak zone within the hybrid layer, closest to the intact dentine, and could make it susceptible to long-term degradation (Nakabayashi, Nakamura \& Yasuda, 1991; Pashley et al., 1992).

Bound water exists inside the collagen fibrils in demineralized dentine (Nomura, Hiltner, Lando \& Baer, 1997). If the water around the collagen fibrils can be completely removed and replaced by resin monomer, the bond water inside the collagen fibrils may move via osmosis and form a layer of water around the fibrils, preventing adequate contact with the resin. This could influence the degree of polymerization of the resin within the hybrid layer (Jacobsen, Ma \& Söderholm, 1994). Santini and Mitchell (1998) reported that it is the degree of collapse of collagen that cannot be assessed clinically which is of importance in microleakage. They also reported that the resin hybrid layer interface represents the intrinsic weakness in most cases.

Air-drying of dentine results in the water that was supporting the collagen network, to evaporate. This is a result of a decrease in surface tension forces. Shrinkage or collapse of the collagen fibrils takes place (Pashley \& Carvalho, 1997). Due to the water evaporation and reduced spaces between the collapsed collagen network, it in turn results in a reduction of the permeability of intertubular dentine to adhesive resins (Pashley, Sano, Oucchi, Yoshiyama \& Carvalho, 1995).

Dehydration in air also increases the modulus of elasticity of collagen (Maciel, Carvalho, Ringle, Preston, Russell \& Pashley, 1996). Dried, collapsed collagen needs water to lower the modulus of elasticity enough so that it can re-expand (Gwinnett, 1994). Water acts as a plasticizer for collagen (Jameson, Hood \& Tidmarsh, 1993; Nomura et
al., 1997). If water is not available and a non-aqueous resin primer is applied on the dentine surface, the resin will not infiltrate effectively into the demineralized zone (Pashley \& Carvalho, 1997). If the collagen fibril matrix of the demineralized dentine collapses due to air-drying, it may reduce the permeability to as little as 10% of its theoretical maximum value (Pashley, Ciucchi, Suno \& Homer, 1993).

Kanca (1992a) demonstrated that bonding to moist dentine delivered higher bond strengths than bonding to dry dentine. Other researchers also reported similar results (Abdalla \& Davidson, 1998; Gwinnett, 1992a; Kanca, 1992b; Swift \& Triolo, 1992). Tay, Gwinnett and Wei (1996a) reported on what they referred to as the "overwet phenomenon". According to them, moist dentine is desirable for bonding, but large amounts of water on the dentine surface could result in poor bonding. They reported that whenever water was trapped at the orifice of a dentinal tubule, no resin tags were observed in that particular tubule. Several resin globules were usually present in the tubule lumen. The lack of resin tags as well as the globules could result in weaker bonds. Tay, Gwinnett and Wei (1996b) reported that the displacement of moisture across the dentine surface could result in areas where tubules were completely filled with water and the excess being pooled on the dentine surface. Entrapment of the displaced water, and dispersion of excess resin from the intertubular network into the pool of displaced water, could account for the formation of blister-like spaces and resin globules along the surface of the hybrid.

Water will rapidly re-expand a collapsed collagen network, but too much water would also dilute the monomer concentration. A critical amount of water is therefore necessary on the dentine surface to prevent water from evaporating, and the resultant collapse of the collagen fibrils. At the same time however, it should be small enough to be replaced by the resin monomer and not compete with it (Pashley
\& Carvalho, 1997). If incomplete penetration occurs, water can infiltrate these spaces, producing hydrolysis of exposed collagen peptides not protected by hydroxyapatite or resin and microleakage could take place (Nakabayashi, Ashizawa \& Nakamura, 1992; Sano, Shono, Takatsu \& Hosoda, 1994). When collagen is protected by hydroxyapatite, peptide enzymes are unable to break down the collagen peptides (Van Strijp, Klont \& Ten Cate, 1992).

If dentine is not air dried, the adhesive still has to physically replace the water in order to infiltrate into the spaces between the collagen fibrils. In stead of air drying dentine, one could use water-miscible organic solvents to chemically remove the water in the demineralized zone by diffusion (Pashley \&o Carvalho, 1997).

Solvents used to chemically remove water

Acetone- or alcohol-containing dentine adhesives are particularly capable of infiltrating the spaces (Kanca \&\% Sandrik, 1998; Perdigão, Swift, Heymann \& Malek, 1998). The alcohol or acetone solvent acts as a "water-chaser", and removes the water molecules. The water diffuses from the wet dentine into the acetone, while the acetone diffuses into the demineralized dentine matrix. The acetone is in excess relative to the water, and replaces it. The primer monomers are dissolved in acetone and diffuse into the spaces previously occupied by water, increasing the depth of infiltration into the collagen network (Pashley \& Carvalho, 1997). This process also increases the modulus of elasticity of collagen, but seeing that it is a more gradual process than in the case of air-drying of dentine, there is much less shrinkage or collapse of the collagen network (Carvalho, Yoshiyama, Brewer \& Pashley, 1996). Wet bonding therefore prevents collagen fibers from collapsing (Kanca, 1992a; Saunders \& Saunders, 1996).

Kanca (1992b) reported that acetone acts as a water chaser and also reduces the surface tension of the water and allows spreading of the mixture. He also reported that when acetone-based primers were applied to moist dentine the boiling point of acetone is increased and that of water reduced. The acetone and water then evaporates, leaving the resin behind. Resin tags of greater length and numbers are then formed. The tags also show high surface details indicating intimate contact with internal structure of dentine tubules. Tags formed on air dried dentine were fewer and shorter.

Earlier dentine bonding agents were highly hydrophobic and ineffective in the presence of water, therefore water was considered as a contaminant (Pashley \& Carvalho, 1997). Bonding agents were modified and reformulated to be more hydrophilic. This resulted in an increase in bond strengths to dentine (Barkmeier \& Cooley, 1992).

Eick, Robinson, Cobb, Chappell \& Spencer (1992) reported that the addition of HEMA (hydroxy ethylmethacrylate) to bonding agents made them more hydrophilic. This enabled them to spread uniformly on hydrophilic dentine surfaces and penetrate deeper into the smear layer, thus improving the bond strength.

Hydrophilic primer monomers can fill-in the interfibrillar spaces of the collagen when they are maintained (Kanca \& Sandrik, 1998; Tay, Gwinnett \& Wei, 1996c). The addition of HEMA could prevent the collapse of the demineralized collagenous dentine surface (Sugizaki, 1991; Titley et al., 1995). Abdalla et al (1998) reported that Prime \&o Bond 2.1 produced resin tags of greater length and number when the material was applied to wet dentine rather than to air-dried dentine.

Tate et al. (1999) reported that bonding did not occur without a primer/bonding agent, regardless of the use of phosphoric acid etching or surface conditioning. The highest tensile bond strengths
were attained when phosphoric acid conditioning, primer/bonding agent and moist bonding surfaces were used. He found that acetonebased primers were more sensitive to increases in surface moisture and produced lower compomer-dentine bond strengths with phosphoric acid etching and wet surfaces than water-based primers did. The resin monomer therefore attempts to diffuse through and displace the same amount of water as that which was initially necessary to preserve the spaces between the collagen fibrils. Pashley and Carvalho (1997) reported that water presence is constantly renewed by transdentinal permeability, therefore several layers of primer could be necessary to ensure proper infiltration into the deminralized zone and dentinal tubules.

2.1.4. PRIMERS $01 \square 10 \square 00 \square 00 \square 01$

Working mechanism

An intermediary primary agent allows a hydrophobic bonding agent to bond to the wet surface of dentine (Berg, 1998). Primers posses both hydrophilic and hydrophobic groups and therefore improve the wettability of acid-etched dentine (Pashley \& Carvalho, 1997).

Nakabayashi (1991) reported that a primer is essential to achieve good wetting and penetration through a demineralized area. The hydrophilic part has an affinity for both the organic and inorganic component of dentine, and the hydrophobic part has an affinity for adhesive resin (Gordan, Vargas, Cobb \& Denehy, 1998).

Hydrophilic primer application raises collapsed collagen and keeps the porosity's open (Pashley et al., 1992; Van Meerbeek et al., 1992). Primers containing acetone as a solvent possess an affinity for water and are very compatible with the moist characteristics of acidconditioned dentine (De Goes, Pachane \& Garcia Godoy, 1997). This facilitates deeper penetration of adhesive resins into the dentine (Kanca, 1992b). Nakabayashi et al. (1991) reported that the goal of acidic primers is to obtain infiltration of resin monomer through the
smear layer while simultaneously demineralizing and infiltrating the dentine to from the hybrid layer.

The use of HEMA promotes infiltration of monomers into dentine due to its hydrophilic nature thereby preventing the collapse of demineralized dentine (Eick, Robinson, Chappell, Cobb \& Spencer, 1993; Sugizaki, 1991). Van Meerbeek et al. (1992) and level Sugizaki (1991) demonstrated that HEMA has the ability to raise the unsupported and /or collapsed collagen network to almost its original dentine surface. Primer systems with 35-50\% HEMA in water provide the maximum bond strength (Nakabayashi \& Takarada, 1992). The original surface is however not restored seeing that the resin tags form a constriction as they pass through the interdiffusion zone, before they enter the dentinal tubules. Titley et al. (1995) demonstrated that resin infiltration of the demineralized zone does not extend completely to the normal dentine interface.

Self-etching/self-priming systems

Self-etching primer systems combine the tooth surface etching and priming steps to simultaneously treat enamel and dentine with an acidic monomer (Ferrari, Cagidiaco, Kugel \& Dayidson, 1996; Gordan, Vargas, Cobb \& Denehy, 1997; Ikemura, Kouro \& Endo, 1996). A self-etching primer is an aqueous mixture of acidic functional monomers and other constituents (Miyazaki et al., 1998). It dissolves the smear layer and demineralizes the dentine (Barkmeier, Los \& Triolo, 1995; Ikemura et al., 1996), and can permeate through water-filled channels between the constituent particles of the smear layer. This self-etching/self-priming solution is not rinsed from the surface and is therefore incorporated into the hybrid layer once resin has permeated through the smear layer into the top of the underlying solid dentine (Chigira, Yukitani and Hasegawa et al., 1994; Watanabe, Nakabayashi \& Pashley, 1994).

Self-etching primer systems are applied directly to the cavity without the need for an acid-etching step (Cardoso, Placido, Francci \& Perdigão, 1999). Eick, Miller, Robinson, Bowles, Gutshall and Chappelow (1996) reported that the dentine was wetted but not penetrated with a self-etching primer system, resulting in low bond strength. Self-etching primers generally produce a shallower depth of demineralization than systems with a separate etching agent. When self-etching self-priming agents are applied to dentine covered with a smear layer, they dissolve the mineral phase from the smear layer and etch approximately $0.5-1.5 \mu \mathrm{~m}$ into the sound underlying dentine. These systems form thin hybrid layers (1-2 $\mu \mathrm{m}$) (Sano, Takatsu, Ciucchi, Horner, Matthews \& Pashley, 1995; Yoshiyama, Carvalho, Sano, Homer, Brewer \& Pashley, 1996a).

"One-bottle" or self-priming adhesives systems

Three step bonding systems are considered too time consuming and have been replaced by "one-bottle" systems (Cardoso et al., 1999). The latest generations of adhesive systems use priming solutions and adhesive resins combined in a single bottle, and recommend etching the enamel and dentine simultaneously (Ferrari et al., 1997b; Swift, Wilder, May \& Waddell, 1997).

Self-priming adhesives in "one-bottle" systems are hydrophilic solutions that are very effective in wetting the dentine surface (Miyazaki et al., 1998). The liquid penetrates the etched dentine surface and hardens after evaporation of the solvent and light exposure (Cadroy, Boj \& García-Godoy, 1997; Ferrari \& Davidson, 1996).

Self etch/prime bonding systems

Modern dentine bonding systems use high concentrations of phosphoric acid (30-38\%) to etch enamel and dentine. Acidic monomers in self-etching adhesives infiltrate the collagen fibers as
they decalcify the inorganic components. The acidic part is neutralized by calcium and phosphate ions released during demineralization, thus being self-limiting (Gordan et al., 1997). This creates hybrid layers composed of collagen and polymerized monomers (Inai, Kanemura, Tagami, Watanabe, Marshall \& Marshall (1998).

1.1.5. DENTINE BONDING

Hybrid Layer

Dentine bonding thus takes place either to a smear layer, a modified smear layer, or to a cleansed and conditioned dentinal surface. The wetting process and the depth of adhesive penetration into the dentine surface, plays a major role in determining the dentineadhesive bond strength. Little is known about the impact of collagen denaturation caused by conditioning of dentine on the final dentineadhesive bond strength (Lee \& Lin, 1997). When surface dentine is demineralized, a reduction in bond strength may take place (Okamoto, Heeley \& Dogon, 1991).

After the smear layer has been removed, the hydrophilic priming agent can infiltrate into the layer of collagen fibers. The hydrophilic resin monomers of the bonding agent infiltrates the open collagen network of the dentine to form a zone of resin impregnated dentin (Eick, Gwinnett, Pashley \& Robinson, 1997; Van Meerbeek, Dhem, Goret-Nicaise, Lambrechts \& Vanherle, 1993). Nakabayashi et al. (1982) infiltrated resin monomers into the collagen fibril network. This provided micromechanical retention of the resin to the dentine after polymerization. They called this resin infiltrated surface layer a hybrid layer. The hybrid layer therefore consists of collagen fibrils and partially dissolved hydroxyapatite encased by polymerized resin (Van Meerbeek et al., 1993b).

The morphology and role of the hybrid layer and resin tags formed in bonding to dentine, depends on several factors. Included in these are, the bonding agent used, the orientation of the dentine tubules, the presence and density of branches of dentine tubules, the different clinical conditions and the dentine depth (Ferrari et al., 1997b).

Bonding - Inter as well as intratubular resin penetration

Intertubular as well as intratubular resin penetration is important in achieving dentine bonding. Resins must penetrate in the open tubules and seal them to prevent dentine sensitivity and pulpal irritation from leakage through dentinal tubules to the pulp (Pashley \& Carvalho, 1997).

II

Age and depth influence on RIDL (Resin infiltrated dentine layer) or Hybrid layer
Ageing causes an increased type I collagen crosslink density in dentine microstructure, which may decrease penetration of primer and adhesive in dentine (Prati, Chersoni, Mongiorgi \& Pashley, 1998). Superficial dentine contains fewer tubules than deep dentine, therefore permeation of intertubular dentine will provide the most bond strength in superficial dentine, while intratubular infiltration of resin will provide the most bond strength in deep dentine (Pashley \& Carvalho, 1997).

Prati, Chersoni, Mongiorgi, Montanari \& Pashley (1999) found that the morphology of the resin-infiltrated dentine layer varied as follows. The RIDL was thicker in deep, young dentine than in superficial dentine. The RIDL in sclerotic and old dentine was generally thinner than in normal dentine and the resin tags also appeared to be shorter and fewer. Tagami, Nakajima, Shono, Takatsu \& Hosoda, 1993; Yoshiyama, Sano and Ebisu et al., 1996) also gave similar reports. Although sclerotic dentine generally exhibited a thinner RIDL, it did vary to a large extent (Prati et al., 1999). The resin tags were longer
and more numerous in young normal dentine than in old sclerotic dentine. Pashley (1991b) reported that superficial dentine has fewer, smaller tubules and few lateral branches.

Prati et al. (1998) found that in deep dentine, nearly all of the volume of the hybrid layers were occupied by resin tags and by criss-crosssed extensions of peritubular and intratubular dentine. This probably plays the most important role in adhesion of resin to deep dentine. A similar network was not seen in superficial dentine because of the paucity of tubules and lateral branches in that area. The depth of infiltrated dentine was generally thinner in superficial than in deeper dentine. Generally, the greater the thickness of the RIDL the more numerous the irregularities and more likely the presence of noninfiltrated dentine.

Burrow, Takakura, Nakajima, Inai, Tagami and Takatsu (1994) concluded that the quality of the resin-impregnated layer is more important than its thickness, the age of the tooth or the dentine depth.

Tay et al. (1996b) reported that the base of the RIDL is filled with resin monomer via radial diffusion from the tubules via lateral branches. Prati et al. (1999) found only a few resin lateral branches in sclerotic dentine, which could reduce the diffusion of bonding resin into dentine. Chappell, Cobb, Spencer and Eick (1994); Ferrari and Davidson (1996) and Ferrari et al. (1997b), demonstrated lateral branches deep in the dentine beyond the hybrid layer, while Mjör \& Nordhal (1996) hypothesized the important role of the bonding mechanism of adhesive lateral branches.

1.1.6. BOND STRENGTH IN GENERAL

Adhesives based on an acetone solution of HEMA, results in significantly higher bond strengths than adhesives based on acetone solutions of a more hydrophobic monomer such as UDMA (urethane dimethacrylate (Finger \& Fritz, 1997).

Gwinnett (1992a) commented that the resin infiltration into the collagen layer does not contribute quantitatively to the bond strength. High tensile bond strength can be achieved even though the resinimpregnated layer is very thin (Finger, Inoue $\&$ Asmussen, 1994). The quality, rather than the quantity (thickness) of the resin-impregnated layer, is more important than the creation of high bond strengths to dentine (Burrow et al., 1994).

Yoshiyama, Carvalho, Sano, Homer, Brewer and Pashley (1996) also reported that there does not seem to be any relationship between the thickness of the hybrid layer and the bond strength. Prati et al. (1998) also did not support the hypotheses that thicker RIDL produces higher bond strengths.

The resin infiltration or hybridization of the dentine tissue can contribute approximately one third of the shear bond strength of the total etch system (Gwinnett, 1993).

The presence of moisture, particularly from the pulp could be an important factor influencing high bond strengths (Burrow et al., 1994). Bond strength was not compromised with the remoistening of acid-conditioned, air-dried dentine (Gwinnett, 1994; Perdigão et al., 1998), but decreased when bonding took place to an excessively wet dentin surface (Tate et al., 1999). Lucena-Martin, GonzalezRodriquez, Ferrer-Luque, Robles-Gijon and Navajas (1999) reported a significant decrease in bond strength after 1 month of water storage.

1.2 FROM COMPOSITE TO COMPOMER

In recent years, several new restorative materials have been developed as an alternative to dental amalgam. This is partly due to the awareness of the safety of dental amalgam (Hse, Leung \& Wei 1999), as well as the demand for products with adhesive, esthetic and caries protective properties (Yap, Teoh, Hastings \& Lu, 1997). Among these materials are resin composites, glass ionomers, resin-modified glass ionomers and the polyacid-modified resin composites or compomers (Hse et al., 1999).

A brief review of these four groups of materials follows in order to understand the reasons for the development of compomers as well as their properties and reactions. It will also clearly demonstrate why compomers are more closely related to composites than to glass ionomers or resin-modified glass ionomers.

1.2.1 RESIN COMPOSITE

Resin composites and glass ionomer cements have been the materials of choice for the restoration of anterior teeth since the early 1970's (Wilson \& Prosser, 1982). Dr Bowen's invention of resin composites in the late 1960's revolutionized the field of modern day dentistry (Cortes, García-Godoy \& Boj, 1993). Previously anterior teeth were restored with silicate cement, acrylic, or other esthetically less acceptable restorations. Composite resins or resin composites are the most esthetically desirably of the four groups discussed further (Berg, 1998).

Composites have two main constituents namely the matrix and the filler. They are polymer-ceramic materials in which methacrylate and dimethacrylate monomers polymerize to form the matrix, and glasses, ceramics or glass-ceramics are incorporated as spherical fillers (Berg, 1998; Ruse, 1999; Tyas 1998).

Among the most commonly used dimethacrylate monomers are bisglycidyl dimethacrylate (BIS-GMA) or urethane dimethacrylate (UDMA) or triethyleneglycol dimethactrylate (TEGDMA). The filler particles are coated with silane-coupling agents to allow the filler particles to bond to the hydrophobic resin matrix. The quality and extent of the saline coating affects the properties of the composite (Berg, 1998, Ruse, 1999; Tyas 1998). Resin composites also contain pigments and stabilizers. A photoinitiator and radiopaquing agent may also be added if the filler itself is not radiopaque (Berg, 1998).

Several procedures are performed in order to allow resin composites to adhere to tooth structure. Phosphoric acid is commonly used to etch enamel and remove the smear layer (Retief, 1978). The inorganic composition of enamel results in acid etching producing interprismatic and prismatic dissolution, creating irregularities in which resin can flow and, after polymerization, result in mechanical interlocking (Gwinnett, 1976).

Mechanical interlocking is initiated by flowing a water-tolerant primer over the dentine surface. The primer permeates the spaces in the networked structure of the collagen, which was previously created by acid etching. Resin composite is bonded to the tooth structure by means of an intermediary bonding agent. The use of the intermediary priming agent allows a hydrophobic bonding agent to bond to the wet dentine surface. The bonding agent in turn also bonds to the hydrophobic resin composite (Berg, 1998). In the fifth-generation bonding systems the primer and bonding agents are combined in the same bottle (Ferrari et al., 1997b; Swift et al., 1997).

Setting of resin composite takes place by polymerization initiated either by self-curing or light curing (Tyas 1998). Currently available resin composites undergo polymerization shrinkage when they are polymerized (Yap, Wang, Siow \& Gan, 2000). Composites are
clinically durable, display excellent esthetics, are available in variety of shades and opacities and their colour stability has improved in recent years (Berg, 1998). The overall bond strength of resin composites to dentine is a combination of the individual bond strengths provided by surface adhesion, resin tag formation and hybrid layer formation (Gwinnett, 1993; Pashley \& Carvalho, 1997).

1.2.2 GLASS IONOMERS

Wilson and Kent introduced self-cure glass ionomer cements in 1969, as hybrids of dental silicate and zinc polycarboxylate cements (Desai \& Tyas, 1996; Wilson \& Kent, 1972). According to certain researchers the term "glass ionomer cement" (GIC) is reserved for materials consisting of a basic glass and acidic polymer that sets by means of an acid-base reaction between the two components in the presence of water (Mitra, 1991).

A glass ionomer (GI) restorative material, is a tooth coloured direct adhesive restorative material (Safar, Davis \& Overton, 1999). It has the ability to chemically bond to enamel and dentine with insignificant heat formation or shrinkage, and has a similar coefficient of thermal expansion to tooth structure (Hse et al., 1999), particularly to dentine. GI's are compatible with the pulp and periodontal tissues (Berg, 1998) and release and absorb fluoride ions and also adhere to non-precious metals and plastics (Hotz, McClean, Sced \& Wilson, 1977). Glass ionomers allow less microleakage than resin composites (El-Kalla \& García-Godoy, 1998), are more stable in water than are other dental cements (Bertacchini, Abate, Blank, Baglieto \& Macchi, 1999), and is indicated for Class V restorations in high caries risk patients and for subgingival restorations (Peutzfeldt, 1996).

The disadvantages of glass ionomers include esthetic problems, poor handling properties, a long setting time, dehydration during initial
setting, sensitivity to moisture and contamination, poor finishing qualities due to rough surfaces and low resistance to compression and tension (Cortes, Garcia, Perez L \& Perez D, 1998; Hse et al., 1999).

By definition a glass ionomer is a salt which is formed by the reaction between a polyalkenoic acid and an aluminium-containing glass. Aluminium, a constituent element in the glass, is critical for the glass ionomer reaction to occur (Berg, 1998). As mentioned before glass ionomers set via an acid base reaction in an aqueous environment (Ruse, 1999). The acid (liquid) component is a homopolymer or copolymer of alkenoic acid. Usually it is a mixture of polyacrylic acid and itaconic acid copolymer in water. The base (powder) component is a calcium alumino-silicate glass containing fluoride (Peutzfeldt, 1996). Tartaric acid (10%) is incorporated into the liquid of GIC's to prolong the working time and increase the setting rate (Hse et al., 1999).

In the acid/base reaction, the acidic polymer attacks the aluminosilicate glass particles (Mount, 1991). Calcium, aluminium, sodium, fluoride and silicate ions are released from the acid-soluble glass. A silicagel layer rich in fluoride surrounds the unreacted glass particles within the cement and improves its strength. Water sorption-desorption facilitates an ion exchange between hydroxyl $\left(\mathrm{OH}^{-}\right)$and fluoride (F^{-}) ions. As a result fluoride can be released from a set GI into the surrounding environment (Ruse, 1999). The fluoride in the glass material is released over time (Berg, 1998).

Calcium and aluminium, from the ion-leachable glass, crosslink the acrylic-maleic-itaconic copolymer chains with ionic bonds, leading to the setting of GI's. The carboxylic groups of the polyalkenoic chains (of the acid) can chelate the calcium of the hydroxyapatite on the tooth surface to bond the cement to mineralized hard-tooth tissue
(Ruse, 1999). Polyalkenoic chains also displace phosphate ions from the tooth surface. An ion-enriched layer is developed between the material and the tooth structure by the calcium and phosphate ions so that the glass ionomer can firmly adhere to both enamel and dentine without signs of marginal leakage. (Hse et al., 1999; Swift, Pawlus \& Vargas, 1995). Mount (1991) proposed that, the ion-rich layer, forms the primary mechanism bonding the glass-ionomer to enamel and dentine.

Conventional glass ionomer cements adhere physiochemically to tooth structure, therefore they were initially placed directly into the cut cavity (Cacciafesta, Jost-Brinkmann, Sussenberger \& Miethke, 1998). Since then, pretreating the cavity walls with acid solutions (e.g. polyacrylic acid) became routine before restoring a glass ionomer in order to remove the smear layer which covers the cut dental surfaces (Pereira, Yamada, Tei \& Tagami, 1997). This improves clinical retention and shear bond strength (Tao \& Pashley, 1988). GIC bonds to enamel with strengths of around 5 MPa and to dentine with strengths of around 3 MPa (Peutzfeldt, 1996).

Polyacrylic acids are weak, but their high molecular mass and chain entanglement makes it difficult for them to penetrate through the dentinal tubules. As a result dentine is an excellent buffer and the polyacrylic acids are precipitated by the calcium ions in the tubules (Hse et al., 1999).

A 10 year evaluation of cervical lesions restored with traditional glass ionomers or with a composite system revealed that for glass ionomers the retention rate was 76% at 10 years, whereas the retention rate of the composite system was much lower namely 17\% (Ferrari et al., 1998). The strength of traditional glass ionomers was increased with the introduction of high powder-to-liquid ration glass ionomer materials. These materials have a "condensable" feel. They were
originally developed to be used in areas of the world where atraumatic restorative treatment (ART) is used. Electricity and thus light curing is often unavailable in these areas (Berg, 1998).

1.2.3 RESIN MODIFIED GLASS IONOMERS

Introduction

The physical properties of conventional GIC's deteriorate due to moisture contamination and dehydration during setting. To overcome these problems as well as poor aesthetics, low mechanical properties, and delayed setting reaction, Mathis and Ferracane (1989) introduced a group of materials known as resin-modified glass ionomer cements (RMGIC's)

910 $01 \square 01 \square 10 \square 00$
 History and composition

Resin-modified glass ionomer (RMGI) restorative materials are hybrids of conventional glass-ionomer cements and visible lightactivated composite resins (Swift et al., 1995). They were first introduced as light-hardened Type I resin-modified glass ionomer liner/base materials (Attin, Buchalla, Kielbassa \& Helwig, 1995). In 1987 Vitrabond (3M Dental Products, USA) was introduced as a base and liner (Mitra, 1991) and in 1992 Croll and Killian introduced Type II resin-modified glass ionomers for restoration of Class I, III and V cavities (Attin et al., 1995). The resin comoponent cures on command by means of light-initiated curing (Berg, 1998). RMGI's consist roughly of 20% light cured resin and up to 80% glass ionomer cement (Vaikuntam, 1997). Depending on the powder : liquid ratio of the mixture, $4-5 \%$ of the final cement mass can be regarded as extra resins (Lim, Neo \& Yap, 1999). According to Sidhu, Sherriff and Watson (1999), a true RMGIC is a two-part system which is characterized by an acid-base reaction critical to its cure, a diffusionbased adhesion between the tooth surface and the cement, and continual fluoride release.

RMGIC's are marketed in a liquid-powder form which when mixed can be light-cured to a maximum of 2 mm . Renewed mixing is therefore necessary when the material is used in deeper cavities (Andersson-Wenckert, Folkesson \& van Dijken, 1997). RMGIC's contain the same acid (liquid) and base (powder) as GIC (Berg, 1998). The powder component is primarily composed of a radiopaque fluoroaluminisilicate glass (Mitra, 1991). The glass can be salanized to allow adherence within the resin matrix. Also included are the necessary initiators for the self-cured resin reaction (Berg, 1998). The liquid component is an aqueous solution of a modified polyalkenoic acid with pendant light sensitive side-chains that can cross-link and thus polymerize (Tyas, 1998), as well as a hydrophilic methacrylate resin such as (HEMA) or Bis-GMA, and water (Bertacchini et al., 1999; Sidhu \& Watson, 1995). Camphorquinone is often used as the photoinitiator (Van Dijken, 1996).

Two subgroups of RMGIC's can be recognized. In one group, e.g. Fuji II LC (GC Newport Pagnell, UK), polymerizable monomers like HEMA are blended with the polyalkenoic acid liquid. In the other group e.g. Vitremer (3M Dental Products, St Paul USA)- the above mentioned process takes place and the polyaklenoic acid itself is also modified by the attachment of polymerizable methacrylate side groups (Gladys, Van Meerbeek, Braem, Lambrechts \& Vanherle, 1997). The unsaturated carbon-carbon bonds on the polyalkanoate backbone enables the covalent crosslinking of the matrix via free radical polymerization reactions (chemically or light activated). A covalently crosslinked matrix significantly improves the mechnical properties of the set cements (Ruse, 1999).

Pretreatment

Conventional GIC's can adhere physiochemically to tooth structure without any prior surface treatment (Pashley, 1984). The smear layer, which covers the cut dental surfaces, may break cohesively and fail
during polymerization shrinkage (Tao \& Pashley, 1988). It was reported that shear bond strength to dentine could be improved by removing the smear layer (Powis, Folleras, Merson \& Wilson, 1982). As a result pre-treating the cavity walls with acid solutions became a routine procedure before restoring with a GI or a RMGIC. Polyacrylic acid is an effective pre-treatment agent. The pre-treatment removes the smear layer and demineralizes the superficial dentine layer, allowing the HEMA in the RMGIC's to penetrate the exposed collagen network (Friedl, Powers \& Hiller, 1995; Titley, Smith \& Chernecky, 1996).

Adhesion

The improved adhesion to dentine compared to GIC's is probably due to the establishment of a hybrid zone and by molecular bond formation (Peutzfeldt, 1996). RMGIC's bond to tooth tissue by means of the carboxylic group of the polyalkenoate component (Rusz, Antonucci, Eichmiller \& Anderson, 1992; Sidhu \& Watson, 1995). Traditional GIC's as well as RMGI restoratives are water-based materials. They will therefore bond better to dentine surfaces that are not completely dehydrated as is the case with the new hydrophilic dentine bonding systems according to Kanca (1992b). According to Lin, McIntyre and Davidson (1992) light-activated glass ionomer penetrates through the smear layer into the dentinal tubules to a greater depth than chemical-cure glass ionomer. More mechanical interlocking with the substrate therefore takes place. Ion exchange occurs between glass ionomer and dentine at their interface.

Polymerization

Resin-modified glass ionomer cements harden by two reactions: (i) a slow acid-base reaction between the glass powder and organic acid, and (ii) an immediate photochemically induced polymerization of the resin component (Wilson, 1990). According to McLean, Nicholson and Wilson (1994) RMGIC's retain a significant acid-base reaction as part
of their overall curing process. In the absence of photoactivation, their properties depend on the strength of the glass ionomer setting reaction or chemically initiated free-radical methacrylate resin cure (Mitra, 1991). It has been reported that the acid-base reactions continue for weeks in the RMGIC's (Detrey, 1994). Curing takes place in 30 to 60 seconds by visible light exposure (Morabito \& Defabianis 1997). Polymerization may be generated by either photoinitiators or by chemical initiators or by both. If chemical initiators are included, polymerization will begin on mixing (Hse et al., 1999).

GIC's and RMGIC's must be mixed from a two-component system. The GIC and the self-cured resin elements must be kept separate to prevent reaction until it is needed (Berg, 1998)

Polymerization shrinkage

Due to polymerization shrinkage, higher bond strength is needed to prevent the material from pulling away from the margins and walls of the cavity during polymerization (Berg, 1998; Peutzfeldt, 1996). Lightcure glass ionomer liner-base formulations shrink 3,28 to $4,78 \%$ within 5 minutes after light exposure and the shrinkage continues for 12 hours. The shrinkage progresses with increased light activation time (Crim, 1993). Incremental placement techniques should therefore be used to limit polymerization shrinkage. According to Watson (1990), shrinkage can be reduced, by increasing the powder/liquid ratio.

Fluoride release

In resin modified ionomers, fluoride release is related to the type and amount of resin that is incorporated (Momoi \& McCabe, 1993). Fluoride release levels off at between 30 and 90 days (Forsten, 1991). The levels of fluoride release of the RMGIC's are similar to that of the tradtional GIC's (Peutzfeldt, 1996).

Advantages

RMGIC's provide better handling properties, reduced handling and setting time, more acceptable aesthetics and higher bond strength to dentine than conventional glass ionmers (Croll, 1992; Swift et al., 1995). They have good sealing ability after thermocycling. Davidson and Abdalla (1994) reported that Fiji II LC RMGIC showed less microleakage than a conventional GIC even after load cycling. This agrees with the findings of Hallett and Garcia-Godoy (1993) which indicates that cavities filled with glass ionomer/resin cement have significantly less leakage than similar cavities filled with glass ionomer cement. According to McCrary, Powers and Ladd (1994) RMGIC's possess higher mechanical properties than the conventional GIC's. Set RMGIC has improved tensile strength, compressive strength and elastic modulus when compared to conventional GIG's. The resin component makes it tougher and less brittle (Mathis \& Ferracane, 1989; Uno, Finger \& Fritz, 1996). The amount of resin in the material will therefore determine the physical and clinical behavior of the material (Berg, 1998). RMGIC'S exhibit a coefficient of thermal expansion similar to that of tooth structure. Fluoride ions are released from the hardened cement (Croll, 1998). RMGI's are less water-sensitive than conventional glass ionomers (Swift et al., 1995) and light curing seams to solve the delayed setting reaction problem (Cho, Kopel \& White, 1995). Curing can be done immediately if desired (Berg, 1998). RMGI's can bond directly to composite due to the production of a catalyst rich air-inhibited layer that can polymerize with a composite. They are also highly biocompatible with the pulp (Hse et al., 1999).

Disadvantages

RMGI's are more difficult to use and less esthetic than resin composites, but better than GIC's. They must still be mixed and begin to set thereafter. Due to the resin content of the mixture, the potential of polymerization shrinkage begins with this material (Berg,
1998). RMGI cements do not have sufficient strengths to serve as complete crown restoration or in Class IV restorations (Croll, 1998).

1.2.4 POLYACID-MODIFIED RESIN COMPOSITES OR "COMPOMERS"

Introduction

In order to overcome the technique sensitivity and disadvantages of the RMGIC's, new materials containing acid-decomposable glass and acidic polymerizable monomers substituting the polyalkenoic acid polymer were developed. These materials became known as polyacidmodified resin composites or are generally referred to as "compomers" (El-Kalla \& García-Godoy, 1998; García-Godoy \& Hosoya, 1998;
McLean et al., 1994) and were introduced in the early 1990's (Andersson-Wenckert et al., 1997).

McLean et al (1994) offered a nomenclature categorization to distinguish RMGIC's from polyacid-modified resin composites. The name "Compomer" is a hybridization of COMPosite and Glass IonOMER (Berg, 1998). Although the term compomer has been criticized, it is widely used to describe water-free, single-component, light-cured composites consisting of an acid-soluable radiopaque fluoro-silicate glass in a matrix of acidic polymerizable monomers but in insufficient amounts to promote and acid-base reaction (Blunck, 1995; McLean et al., 1994).

Dyract (De Trey Dentsply, Konstanz, Germany) and Compoglass (Ivoclar, Schaan, Liechtenstein) were the first two commercial compomers to appear on the market (Nicholson \& Alsarheed, 1998). According to Croll (1998) other examples of compomers are Hytac (ESPE Dental Products, Loughborough, Great Britain), F2000 (3M Dental Products, St Paul USA), élan (Kerr GmbH, Karlsruhe, Germany).

Compomers combine the characteristics of both composites (resin component) and glass ionomers (polyalkenoic acid and glass filler component). The dental profession has rapidly accepted these new materials, largely due to their ease of use (He et al., 1999), particularly in dentistry for children (Peters, Roeters \& Frankenmolen, 1996). As a result of the rapid evolution in dental technology and the high turnover of new restorative materials, adhesive materials are today commercialized without sufficient proof of their clinical performance being provided (Maneenut \& Teas, 1995).

Components and constituents

All compomers have the following characteristics in common: They are single paste light-curing materials with fluoroaluminosilicate glass particles as fillers and at least two different resins for the matrix. The resins usually including a light-curable monomer like urethane dimethacrylate (UDMA) or Bis-GMA (Bisphenol-A-glycidylmethacrylate) as well as a methacrylate resin with carboxyl groups (Hie et al., 1999).

The acidic polymerizable monomers substitute the polyalkenoic acid polymers of the RMGIC's (Van Dijken, 1996). Due to the absence of water, the ion-leachable glass is partially silanized to ensure some bonding with the matrix (Ruse, 1999). The absence of water also prevents the material from setting in the container (He \& Wei, 1997).

Pretreatment, adhesion and polymerization

Compomers were initially developed with the idea to build adhesiveness into the system at such a level that acid etching could be eliminated. However several compomers now do advise the use of acid etching for certain cavities. As in the case of composites, different concentrations of acids are used to etch enamel and remove the smear layer, creating irregularities in which resin can flow and,
after polymerization, result in mechanical interlocking (Gwinnett, 1976).

Different primer/adhesive systems have been developed for the different compomer restorative materials, by different product manufacturers. Syntac Single-component is used with Compoglass while F2000 primer/adhesive is used with F2000 (Hse et al., 1999). Dyract AP makes use of Prime \& Bond NT (Dyract AP Technical Manual, 1999). The composition of the different primer/adhesives makes them hydrophilic in nature and therefore more suitable for use on moist dentine surfaces. Once again mechanical interlocking is initiated by a water-tolerant primer permeating the spaces in the networked structure of the collagen, which was previously or simultaneously created by acid etching. In the fifth-generation bonding systems the primer and bonding agents are combined in the same bottle (Ferrari et al., 1997a; Swift et al., 1997). The compomer is initially bonded to the tooth structure by means of an intermediary bonding agent (Hse et al., 1999).

The polymerizable methacrylate groups enable a free radical polymerization by light curing and an acid-base reaction if water is present. In the presence of water, the acid groups are expected to ionize and to interact with the basic glass components to produce a glass ionomer core analog with anticariogenic properties due to fluoride release (Eliades, Kakaboura \& Palaghias, 1998). The acidbase reaction only takes place once the material is set and is in a water-containing environment (Abate, Polack \& Macchi, 1997). Compomers do not have the ability to bond to hard tooth tissues directly (Martin, Paul, Luthy \& Scharer, 1997).

Advantages

Compomers are esthetic, strong, are polymerized by light and release fluoride. They appear radiopaque on x-rays and are available in a
wide range of shades. Compomers are handled easily and require no mixing (Hse et al., 1999).

Disadvantages

As is the case with composites, polymerization shrinkage still takes place. Due to lack in strength, compomers cannot be used in large stress bearing restorations and in general, are less resistant to wear and show more marginal discolouration than composites (Hse et al., 1999).

Conclusion

Due to their chemical composition and setting reaction, compomers are linked more closely to composite resin materials than to glass ionomer cements (Marks, van Amerogen, Kreulen, Weerheijm \& Martens, 1999). The resin component appears to be more responsible for the adhesion pattern of polyacid-modified composites attached with an acid etching technique than the glass ionomer component. Attin, Buchalla and Hellwig (1996) suggested that their adhesion is the result of micromechanical interlocking instead of a chemical bond to enamel.

$$
\begin{aligned}
& \text { UNIVERSITY of the } \\
& \text { WESTERN CAPE }
\end{aligned}
$$

1.3 DYRACT, DYRACT AP, THEIR BONDING SYSTEMS, AND NRC

1.3.1. HISTORY OF DYRACT AND ITS BONDING SYSTEMS

Dyract was introduced in 1993 as the first Compomer (Mass, Gordon \& Fuks, 1999). It was developed with the objective to build adhesiveness into the system at a level sufficiently high to make acid etching unnecessary (Hse et al., 1999).

Dyract-PSA (Dentsply/De Trey, Konstanz Germany) Primer/Adhesive was introduced with Dyract in 1993 (Dyract Technical Manual, 1994). This system was later introduced in the United States as Prime \& Bond (Dentsply/Caulk, Milford, DE). Dyract-PSA was the first effective "one bottle bond." This combined the separate primer and adhesive that were conventional at the time into one solution.

Continued research, development and improvements resulted in the introduction of Prime \& Bond 2.0, Prime \& Bond 2.1 and Prime \& Bond NT. In 1995 Prime \& Bond 2.0 (Dentsply/De-Trey) was introduced in Europe and Asia (Hse et al., 1999), while Prime \& Bond 2.1 (Dentsply/Caulk \& Dentsply/De Trey) was introduced in 1996 (Prime \& Bond 2.1 Technical Manual, 1996).

Dyract AP was introduced in 1997. At this stage it still made use of Prime \& Bond 2.1 as bonding agent. Prime and Bond NT was introduced in 1998 as a self-priming bonding agent for amongst other things, composite restorations and Dyract compomer materials (Dyract AP Technical Manual, 1999; Prime \& Bond NT Technical Manual 1998).

A conventional acid conditioning procedure was previously advised for occlusal stress-bearing class I, II and IV restorations. With the introduction of Prime and Bond NT, a second innovation, namely

NRC, was also introduced. This second innovation provides us with a new simplified technique of conditioning (NRC Technical Manual, 1998).

1.3.2. THE RESTORATIVE SYSTEMS

1.3.2.1. Dyract

Constituents: Dyract

- The matrix ($\pm 28 \%$) of the final paste consists of two resins, namely 18\% UDMA (urethanedimethacrylate) and 9\% TCB (tetra-butanecarboxylic acid), (Eliades et al., 1998; Friedl et al., 1997; Gladys, Van Meerbeeck, Lambrechts \& Vanherle, 1998; Hse et al., 1999; Salama \& El-Mallakh, 1997).

II
UDMA is highly biocompatible, while TCB is made up of a butane tetracarboxylic acid backbone with a polymerizable hydroxyethylmethacrylate (HEMA) side chain. The resultant new monomer contains two methacrylate groups as well as two carboxyl groups. The methacrylate groups can cross-link with other methacrylate terminated resins when initiated through radical polymerization while the carboxyl groups can undergo acid-base reactions to form a salt with metal ions and water (Hse et al., 1999; Tyas, 1998).

- The filler (72%) is radiopaque $\mathrm{SrAlFSiO}_{4}$ (Strontium fluoroaluminumsilicate glass) (Eliades et al., 1998; Fritz, Finger \& Uno, 1996; Salama \& El-Mallakh, 1997; Tyas, 1998).

The finely milled reactive silicate glass filler (with a mean particle size of $2,5 \mu \mathrm{~m})$, accounts for $72 \%(\mathrm{~m} / \mathrm{m})$ of the composition. It also contains $13 \%(\mathrm{~m} / \mathrm{m})$ of fluoride, which is responsible for the fluoride release of Dyract (Hse et al., 1999; Megid \& Salama, 1997; Tyas, 1998).

- Initiators, stablizers and pigments make up the remainder of the composition (Eliades et al., 1998).

1.3.2.2 Dyract AP

The ingredients of Dyract AP are basically similar to the original Dyract. The organic matrix of the restorative has been modified by adding a small amount of a highly cross-linking monomer, that brings an enormous increase in hardness and strength of the matrix, almost equal to that of a hybrid resin composite, and considerably higher than the original Dyract. Dyract AP had its strontium-flourosilicate glass filler's particle size reduced to $0,8 \mu \mathrm{~m}$ and loading of about 73% by mass. The photoinitiator system was optimized on order to obtain further increases in strength. According to it's manufacturer, Dyract AP is indicated for all cavity classes in anterior and posterior teeth, provided the width of class I and II cavities in posterior teeth are less than $2 / 3$ of the intercuspal distance (Dyract AP Technical Manual, 1999).

Constituents: Dyract AP

In summary Dyract AP contains the following (Evancusky \& Meiers, 2000; Gladys et al., 1998; Salama \& el Mallakh, 1997; Dyract AP

- Polymerizable resins e.g PENTA (dipentaerythritol penta acrylate monophosphate), UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol dimethacrylate)
- TCB resin (tetra-butane-carboxylic acid)
- Strontium-fluoro-silicate glass
- Strontium fluoride
- Photo initiators
- Stablilzers

Setting of Dyract AP

Dyract AP can only be hardened through photopolymerization. The setting reaction consists of two stages. The first stage is that of dominant free radical polymerization. Upon light-curing the polymerizable molecules of UDMA and the TCB resins are interconnected into a three dimensional network which is reinforced by means of the enclosed filler particles (Hse et al., 1999; Megid \& Salama, 1997). Dyract AP is an anhydrous formulation and therefore no ion exchange takes place at this stage. After the initial polymerization the Dyract AP begins to absorb water in the moist environment of the mouth. An ionic acid-base reaction as in glass ionomers can now take place. During the second stage of setting, the acidic conditions created by the carboxyl groups on the TCB molecules of Dyract AP, cause metal cations to be liberated from the reactive silicate glass which leads to the formation of hydrogels in the resin structure of the compomer (Hse et al., 1999). The extent of this reaction is very limited due to the present rigidity of the material, but results in further cross-linkages of the matrix (McCabe, 1996). Water absorption can continue for months depending on the size of the restoration. The maximum level of water content is estimated at three per cent of water $(\mathrm{m} / \mathrm{m})$ at the most in Dyract (Dyract AP Technical Manual, 1999). The resulting volumetric change is considered to be low and insignificant (Attin et al., 1995).

Adhesion of Dyract AP to the cavity wall

Theoretically Dyract AP therefore bonds to the cavity walls by means of two different mechanisms. One is the self-adhesive property of the restorative itself where the functional carboxyl $(-\mathrm{COOH})$ groups of the TCB monomer can form ionic bonds with the calcium ions of the tooth surface. The second mechanism is adhesion to the tooth surface through the primer/adhesive system. Ionic bonds will form between the hydrophilic phosphate group of the PENTA resin and the calcium ions of the hydroxyapatite. The three methacrylate-based
resins in the adhesive will undergo free radical polymerization when light-cured (Hse et al., 1999; Megid \& Salama, 1997).

1.3.3. THE PRIMER/BONDING SYSTEMS

1.3.3.1. Dyract-PSA

As mentioned before, Dyract-PSA was introduced in 1993 (Barkmeier, Hammesfahr \& Latta, 1999) as an adhesive consisting of a combination primer and bonding agent in one bottle. In its first version Dyract was marketed with Dyract-PSA to be directly applied on dentine and on enamel surface to increase adhesion. Dyract-PSA prime/adhesive liquid was developed with the stipulation that no etching of the tooth surface was to be necessary prior to application

Constituents: Dyract-PSA

In summary Dyract-PSA contains the following (Abate et al., 1997a; Attin et al., 1996; Gladys et al., 1998; Perdigao, Lambrechts \& Van Meerbeek et al., Braem, Yildiz, Yucel \& Vanherle, 1996; Swift et al., 1997; Tulunoglu, Ayhan, Olmez \& Bodur, 1998):

- PENTA (a hydrophili monomer) I I of the
- TEGDMA (a hydrophobic monomer)
- Elastomeric urethane-modified Bis-GMA resin (a hydrophobic monomer)
- Fluoride
- Acetone (organic solvent)
- Photoinitiator (amine-campherquinone)
- Stabilizers

PENTA contains an acidic monomer made up of phosphoric acid with a polymerizable methacrylate group attached. It conditions the tooth structure and is responsible for the formation of ionic bonds to the inorganic part (calcium) of the tooth (Hse et al., 1999). TEGDMA and
an elastomeric resin determine the level of cross-linking among the different monomers and the resilience (elasticity) of the cured PSA prime/adhesive. Elastomeric resins consist of rigid and elastomeric molecules that are highly cross-linked. This forms a network that can tolerate stress and in this way bonding and marginal seal is accomplished. The acetone acts as a solvent and carries the resins and helps to wet the enamel and penetrate the dentine surface (Abdalla \& Davidson, 1998).

1.3.3.2. Prime \& Bond 2.0

Prime \& Bond 2.0 (Dentsply/De Trey) was introduced as a dentinenamel bonding agent for composites (Hse et al., 1999). For this material the total-etch technique was proposed.

Constituents: Prime 8\% Bond 2.0

- PENTA
- Two additional unrevealed dimethacrylate resins
- Elastomeric urethane-modified Bis-GMA resin
- Acetone
- Photoinitiator
- Stabilizers

1.3.3.3. Prime \& Bond 2.1

Prime \& Bond 2.1 (Dentsply/Caulk \& Dentsply/De Trey) was introduced worldwide as primer/bonding agent for composites and Dyract compomers. The application directions were changed with the introduction of Prime $\&$ Bond 2.1. The first application time was reduced from thirty to twenty seconds and the curing of the second application was eliminated. Prime \& Bond 2.1 uses the elastomeric resin of Prime $\&$ Bond 2.0 plus the addition of cetylamine hydrofluoride, which provides release of fluoride ions. Once again the total-etch technique was proposed for stress-bearing class I, II and IV
restorations (Prime \& Bond 2.1 Technical Manual, 1996; Barkmeier et al., 1999).

Constituents: Prime \& Bond 2.1

- PENTA
- Dimethacrylate resins
- Elastomeric urethane-modified Bis-GMA resin
- Acetone
- Photoinitiator
- Stabilizers
- Cetylamine hydrofluoride
(El-Kalla, 1999a; El-Kalla, 1999b; Evancusky \& Meiers, 2000; Gordan, Boyer \& Soderholm, 1998; Vargas et al., 1997)

1.3.3.4. Prime \& Bond NT

Prime \& Bond NT is the successor of Prime \& Bond 2.1. Prime \& Bond NT nano-technology was introduced to adhesive dentistry in 1998 (Prime \& Bond NT Technical Manual, 1998). The manufacturer has added the following (Perdigao, Baratieri \& Lopes, 1999):

- nanofiller particles of average size of $0.007 \mu \mathrm{~m}$
- a cross-linking agent
- a small resin moleclule

The overall resin concentration of Prime \& Bond NT has been raised in comparison to that of Prime \& Bond 2.1. The higher resin concentration ensures saturation of the tooth surface, making the bonding agent less technique sensitive (Ferrari et al., 1999).

A small resin (D-resin) has been added. The small resin molecule provides for better infiltration of the porous dentine structure, guaranteeing extremely high bond strengths (Perdigão et al., 1999).

A crosslinking agent (T-Resin) leads to a denser network of the resin matrix, which could make the bonding agent tougher (Ferrari et al., 1999).

The particle size of $0.007 \mu \mathrm{~m}$ of Prime $\&$ Bond NT nanofiller is $\pm 1 / 100$ th of the size of the Dyract AP filler particle. The size of a conventional filler of Dyract AP is $1 \mu \mathrm{~m}(1 \mu \mathrm{~m}=1000 \mathrm{~nm})$. Fillers are incorporated in composites or compomers to increase strength. Nanofillers allow an adhesive to be reinforced by tiny particles, while maintaining essential properties of high performance bonding such as low viscosity and good penetration properties. A nanofiller also increases the strength and toughness of a dental material. The nanofiller in Prime \& Bond NT is nanoscale silica (Aerosil, Degussa Corp., Ridgefield, New Jersey) which has been functionalized by a special silanization process (Ferrari et al., 1999; Perdigão et al., 1999; Prime \& Bond NT Technical Manual, 1998).

General characteristics

The manufacturer claims the following about Prime \& Bond NT
(Prime \& Bond NT Technical Manual, 1998):

- it is suitable for etched and unetched dentine and enamel
- long stability of bonds
- releases fluoride
- increased adhesive strength to both enamel and dentine
- increased marginal integrity
- sufficient film thickness for one-coat, one-cure technique
- it looks transparent seeing that the filler is too small to be visible

Composition of Prime \& Bond NT: Components and functions
(Perdigão et al., 1999; Prime \& Bond NT Technical Manual, 1998)

- Di and Trimethacrylate resins:

UDMA resin - resin molecule of intermediate elasticity when cured

Resin R5-62-1 - elastomeric element in the cured network
T-Resin - small, crosslinking molecule
D-Resin - small, mobile resin molecule for good dentine infiltration

- PENTA:
- adhesion promoter, wetting aid and crosslinker
- Nanofiller: - functionalised amorphous silica nanoscale filler for increased strength and
- Photoinitiators: - initiate the light-curing reaction
- Stablilser: - stabilizes material during storage
- Cetylamine Hydrofluoride: - fluoride source
- Acetone: - solvent and carrier for the resins; water
Univetres ity of the

Fluoride release

Prime \& Bond 2.1 displays an initial burst of fluoride release, but it decreases in the first 10 weeks to below 0.1 microgram $/ \mathrm{cm}^{2}$. Prime $\&$ Bond NT has a more gradual fluoride release which decreases after 5 weeks to below $1 \mathrm{mg} / \mathrm{cm}^{2}$, but at 22 weeks it is still well above $0.1 \mathrm{mg} / \mathrm{cm}^{2}$ (Prime \& Bond NT Technical Manual, 1998).

Shear bond strength

Perdigão et al. (1999) reported that the shear bond strength of Prime \& Bond NT was not statistically different from that of Prime \& Bond 2.1. However for each adhesive system individually, the shear bond
strengths to enamel was significantly higher than the shear bond strength to dentine.

Handling of Prime \& Bond NT

According to its manufacturer (Prime \& Bond NT Technical Manual, 1998), Prime \& Bond NT can be used in three different ways:

- without conditioning the enamel and dentine
- in combination with phosphoric acid
- with a self-priming, non-rinse conditioner, namely NRC

The choice of procedure depends on the clinical conditions, e.g. the class of cavity (Ferrari et al., 1999). As mentioned Prime \& Bond NT contains a self-etching primer which is used as a coupling agent, and PENTA, an ester of phosphoric acid and adhesion promoting monomers in an acetone solvent. The primer conditions the tooth tissues and penetrates the enamel and dentine. The decalcified smear layer is not rinsed away, and a hybrid layer is formed, creating a micromechanical bond to tooth tissue. The manufacturer claims that adhesion is also obtained through ionic bonds between the hydrophilic phosphate groups of the PENTA and the calcium of the hydroxyapatite. Adhesion is also thought to be achieved through the hydrophilic TCB monomer (tetra-butane-carboxylic acid) present in the restorative (Andersson-Wenckert et al., 1997).

1.3.3.5 Scanning electron microscope morphology

Prime \& Bond NT

Ferrari et al., (1999) reported the following scanning electron microscope morphology of the resin tags when Prime \& Bond NT was applied in the three mentioned different ways:

- Without conditioning of the dental substrates:

The dentine samples did not clearly show hybrid layer formation.
Resin tags were seldom observed, seeing that the primer/adhesive
material was only able to penetrate the smear layer in a few areas. The shape of the resin tags was narrow and their surfaces were smooth. Many areas did not show resin tag formation and the tubules were still plugged with smear plugs. The resin tags did not seal the tubular orifices completely. Adhesive lateral branches were not observed.

The enamel samples showed no resin tags and the characteristic etched pattern of enamel was not observed.

- In combination with $\mathbf{3 6 \%}$ phosphoric acid:

The dentine samples showed a hybrid layer between resin and dentine interfaces of $3-5 \mu \mathrm{~m}$ thickness. Resin tags of $10-30 \mu \mathrm{~m}$ length and adhesive lateral branches were also observed. The characteristic reverse cone-shape of resin tags was noted at higher magnification (x5000).

Characteristic uniform etch patterns were observed in the resin samples of the enamel group as well as resin tags penetrating the demineralized enamel surface.

- In combination NRC pretreatment:

The dentine samples presented a hybrid layer of between 1 and $2 \mu \mathrm{~m}$ thickness. Resin tags with adhesive lateral branches in some areas were also detected. The density of the resin tags was less evident than that observed in the phosphoric acid pretreated group. The resin tags were also shorter and narrower.

The enamel samples showed an etch pattern shallower and less uniform than that observed in the phosphoric acid pretreated group. Resin tag formation at the resin-enamel interface was observed.

Additional SEM reports for Prime \& Bond NT as well as reports for Prine \& Bond 2.1

Li, Tyas and Burrow (1999) reported a hybrid layer with a thickness of 1-2 $\mu \mathrm{m}$, when Prime and Bond NT was applied to dentine after the application of NRC. Moodley et al. (2000) reported a hybrid layer of 2 $\mu \mathrm{m}$ and resin tags of $20 \mu \mathrm{~m}$ under the same conditions. Scanning electron microscopy reports by Perdigão et al. (1999), reported that phosphoric acid gel (Conditioner 36) demineralized intertubular dentine to a depth of 3.0 to $4.1 \mu \mathrm{~m}$ and that Prime \& Bond NT as well as 2.1 gave hybrid layers 3.0 to $4.5 \mu \mathrm{~m}$ thick. Both adhesives resulted in a fully infiltrated hybrid layer. They also reported that the nanofiller of Prime \& Bond NT penetrated the dentine tubules. The filler was also observed within the hybrid layer. Filled adhesives are designed to provide stress relief between the tooth and restorative material (Van Meerbeek, Willems and Celis et al., 1993).

SEM reports for Prime \& Bond 2.1 and Prime \& Bond 2.0

Hybrid layer and resin tag length results obtained by Ferrari et al. (1997b) for Prime \& Bond 2.1 were as follows:

In conditioned dentine a hybrid layer was formed between the resin and dentine interfaces. The thickness of the hybrid layer was $2-6 \mu \mathrm{~m}$, and varied between samples and also at different sites of the same specimen. Resin tags of $10-30 \mu \mathrm{~m}$ length and adhesive lateral branches were observed.

In unconditioned dentine no hybrid layer was formed. A residual smear layer between the resin and dentine was observed. Resin tags were seldom observed.

El-Kalla (1999a) reported that Prime \& Bond 2.1 showed heavy and deep infiltration of the dentine tubules, with much lateral branching
in etched cavities. In non-etched cavities there was no consistent hybrid layer and some dentine tubules exhibited shallow penetration, while others appeared empty. El-Kalla (1999b) also reported that the resin penetrated and formed resin tags to a mean depth of $62 \mu \mathrm{~m}$, while the hybrid layer had a mean thickness of $5.4 \mu \mathrm{~m}$.

Prati et al., (1998) gave the following results for Prime \& Bond 2.0 and Prime \& Bond 2.1:

RIDL thickness:

Kälin, Paul, Schärer, Düggelin, Mathys and Guggenheim (1998) reported that when you apply two layers of Prime \& Bond 2.1 after acid etching, the surface of the dentine appeared to be partially covered with liquid and showed "lake-like" areas of adhesive after the first application. Only superficial penetration into the collagen network appeared. Application of a second layer of Prime \& Bond 2.1 resulted in a consolidation of the adhesive layer. The adhesive layer increased in thickness and was free of voids in many areas. However numerous internal voids were found in other areas.

SEM reports for self-priming adhesives and self-etching primer

 systemsMiyazaki et al. (1998) reported that the thickness of the resin-dentine interdiffusion zone was between $4-5 \mu \mathrm{~m}$ for self-priming adhesive systems, while a thin hybrid layer (1-1,25 $\mu \mathrm{m}$) was observed for selfetching primer systems.

1.3.4. NON RINSE CONDITIONER (NRC)

As mentioned before, a conventional acid conditioning procedure was previously advised for occlusal stress-bearing class I, II and IV restorations. NRC was developed as a new simplified technique of conditioning. As the name of the product indicates, NRC (Non Rinse Conditioner) remains on the tooth surface after application and does not require rinsing. This simplifies the application and gives better control of the working field. NRC contains organic acids in an aqueous solution (Ferrari et al., 1999; NRC Technical Manual, 1998).

Composition of Non Rinse Conditioner: Components and their functions:

Component	Functions
Itaconic acid	This organic acid primes the tooth surface. It copolymerizes with Prime \& Bond NT. The carboxylic groups adhere to the calcium of the tooth surface.
Maleic acid	It conditions and cleans the tooth surface.
Water	Acts as a solvent

The maleic and itaconic acids contain polymerizable double bonds. The double bonds enable the NRC to copolymerize with the Prime \& Bond NT matrix. As Prime \& Bond NT has a low viscosity and is acetone based, it deeply penetrates the tooth surface and completely covers the NRC remnants as well as the debris (dissolved smear layer) on the tooth surface. The NRC remnants and "debris" gets
incorporated as filler particles. The functions of the NRC components indicate that it can be regarded as both conditioner and primer (Tanumiharja, Burrow \& Tayas, 2000). It functions mainly as a conditioner to demineralize and expose collagen fibers on the dentine surface, but also contains priming components (Ferrari et al., 1999; NRC Technical Manual, 1998).

NRC and removal of the smear layer

de Wet, van der Vyver, Eick and Dusevich (2000) evaluated the effect of different treatments on the smear layer using a field emission environmental scanning electron microscope. Phosphoric acid gel and liquid removed the smear layer. The gel demineralized the dentine for approximately $8 \mu \mathrm{~m}$, while the liquid demineralized the dentine for approximately $6.5 \mu \mathrm{~m}$. NRC penetrated the smear layer and modified it to a lesser degree. A demineralized zone of approximately $1.6 \mu \mathrm{~m}$ was formed. When the NRC treated surface was washed, it resulted in removal of part of the smear layer and opened up more dentinal tubules. The thickness of the demineralized zone was approximately $2 \mu \mathrm{~m}$.

$$
\begin{aligned}
& \text { UNIVERSITY of the } \\
& \text { WESTERN CAPE }
\end{aligned}
$$

1.4 MICROLEAKAGE

Introduction and definition

According to Kidd (1976), microleakage can be defined as the movement of bacteria, fluids, molecules or ions, or even air between the prepared cavity wall and the applied restorative.

Bergenholtz, Cox, Loesche and Syed (1982) as well as Brännström (1987) clearly documented the effects of bacterial leakage upon the dental pulp. Microleakage has a sensory component (Cox, 1992) as well as a pathological component (Bergenholtz et al., 1982). The hydrodynamic fluid movement into patent dentinal tubules through the smear layer, results in hypersensitivity to thermal and osmotic stimuli and is referred to as the sensory component of microleakage (Cox, 1992; Pashely \& Pashley, 1991c). Bacteria which have penetrated gaps along the axiopulpal floor as well as their metabolic products results in recurrent caries and pulpal pathoses and thus accounts for the pathologic component of microleakage (Bergenholtz et al., 1982).

Besides pulpal irritation and recurrent caries, microleakage also results in tooth discolouration (Going, 1972). The ability of a material to prevent penetration can be evaluated by using a number of microleakage techniques reported in the literature (Yu, Davis, Joynt \& Wieczkowski, 1992).

Different types of microleakage studies

Many different techniques have been used to demonstrate microleakage. Colour producing microorganisms (Seltzer, 1955); radioactive isotopes, such as Ca^{45} (Armstrong \& Simon, 1951; Swartz \& Phillips, 1961); fluorescent dyes, such as fluorescein (O'Brien, Espinoza, Leinfelder, Krainik \& Krainik, 1971) and non-fluorescent dyes such as aniline blue (Hirsch \& Weinreb, 1958), silver nitrate
(Eakle \& Nakamoto, 1989) and basic fuchsin (Retief, O'Brien, Smith \& Marchman, 1988) have all been used to demonstrate microleakage. Going (1972) reported that these microleakage studies are examples of qualitative microleakage studies.

Dye penetration studies are amongst the most popular techniques currently used to study in vitro microleakage (Yap, Ho \& Wong, 1998). The silver-staining method has been used extensively in microleakage studies and is often referred to as the silver nitrate test (Wu, Cobb, Derman \& Rupp, 1983). Microleakage studies normally quantify the movement of tracer molecules through gaps between the restorative material and the cavity wall (Sano et al,, 1995a).

Examples of quantative microleakage studies includes the air pressure method, neutron activation analysis and a volumetric dyerecovery method (Kidd, 1976). Ferrari, Yamamoto, Vichi and Finger (1994) reported that in vitro microleakage tests performed offered results very similar to in vivo test results.

General facts about microleakage

Barnes, McDonald, Thompson, Blank and Shried (1994) found no statistically significant difference in microleakage between facial and lingual tooth enamel. Tay, Pang, Gwinnett and Wei (1995) confirmed that the extent of microleakage is not uniform along a restoration margin. Most microleakage studies do not take the density of the leakage into account, demonstrating only a two-dimensional picture of a three-dimensional leakage pattern (Mandras, Retief \& Russell, 1993). Gale, Darvell and Cheung (1994) reported that microleakage is a three-dimensional phenomenon and different locations and angles of sectioning might result in completely different penetration scores.

Newer generation adhesives create a hybrid layer (resin-impregnated dentine) between resin and dentine with the use of a dentine/enamel
conditioner, a primer and a bonding resin (Inokoshi, Hosoda, Harnirattisai \& Shimada, 1993). This results in an increase in the number of interfaces between the restoration and the tooth itself. Tay, Gwinnett, Pang and Wei (1995) hypothesized that systems using a total-etch technique to remove the smear layer completely and partially demineralize the underlying dentine, could have microleakage in any or a combination of at least eight regions within the dentine-restorative junction. Prati, Nucci, Davidson and Montanari (1990) reported that the time immediately after placement of a restoration is critical, since microleakage may occur during the first minute after placement. Cox (1994) emphasized the correlation between pulpal response and material biocompatibility in the absence of bacterial microleakage. Gwinnett, Tay, Pang and Wei (1995) reported that more extensive leakage occurred near the end surfaces of restorations and that a single longitudinal section through the center of a restoration appeared to underestimate the full extent of microleakage. Wieczkowski, Yu, Davis and Joynt (1992) reported that the ability of a restorative material/adhesive to seal the interface with tooth structure is the most significant factor in the prevention of the formation of future caries,

According to Owens, Halter and Brown (1998) as well as Fukushima, Nakamata, Okabe, Yamaga, Sunada and Iwaku (1991), microleakage occurs with all dental adhesives and restorative materials, even when using the new generation dentine adhesive systems with gingival margins on dentine/cementum. Retief DH (1994) reported that the ability to render a non-leaking composite restoration below the cemento-enamel junction still depended on the performance of the adhesive in resisting polymerization contraction and thermal, and occlusal loading stresses. Cardoso et al., (1999) reported that a perfect seal still remains one of the most important and challenging features to consider when choosing an adhesive material.

Although new materials are often subjected to rigorous testing of bond strengths, no dental material is completely exempt from microleakage. However, the information is useful for comparative assessment of different materials (Morabito \& Defabianis, 1997). Furthermore, microleakage can lead to staining, sensitivity or caries (Yap, Lim \& Neo, 1995).

Microleakage and Prime \& Bond NT

A few studies have been published dealing specifically with the microleakage associated with Prime \& Bond NT.

The study of Cardoso et al. (1999) evaluated the microleakage of Prime 8% Bond NT without the influence of saliva contamination. The enamel margins were beveled and a cotton pellet was used to blot dry the cavity after etching. Prime \& Bond NT was only able to eliminate microleakage at the enamel margins.

Moodley et al. (2000) compared the shear bond strength and microleakage of Dyract AP/NRC/Prime \& Bond NT to Scotchbond Multi-Purpose Plus and F2000, Microleakage was evaluated with the use of a confocal scanning laser microscope. In the Prime \& Bond NT specimens microleakage was found on the dentine side in 13 of the 15 specimens examined, while on the enamel side 2 of the 15 specimens showed microleakage.

A study performed by Tung, Estafan and Scherer (2000a) evaluated microleakage in which 36% phosphoric acid and Prime \& Bond NT was used to prepare the cavities before Surefil resin composite was placed. Etchant was rinsed from the preparations with water after which the preparations were dried with an air syringe for 20 seconds. Of the 15 specimens, 3 of the specimens exhibited microleakage in enamel and 2 in dentine/cementum. Tung, Estafan and Scherer (2000b) investigated amongst others the microleakage of class V
lesions restored with a compomer material using Prime \& Bond NT as the adhesive. The enamel cavosurface was beveled. A 20 second airwater spray was used to rinse off the etchant gel. One or 2 quick bursts of dry air was applied to obtain a moist dentine surface. No leakage was obtained on the enamel side. Leakage did occur on the dentine side, but the leakage on the enamel and dentine sides did not differ significantly from each other.

Factors that influence the tooth-restoration interface

The integrity of the tooth-restoration interface is dependent upon several factors. These factors include polymerization shrinkage on curing (Kaplan, Mincer, Harris \& Cloyd, 1992); water sorption after curing; the difference between the linear coefficients of thermal expansion of the tooth and restorative material (Yap et al., 1998); the adhesive bond strength (Davidson, de Gee \& Feilzer, 1984); the cavity configuration, as well as thermal and masticatory stresses (Gwinnett et al., 1995).

1.4.1. Polymerization shrinkage

Composite restorative resins undergo shrinkage during polymerization (Bowen, Rapson \& Dickson, 1982). The difference in the coefficient of thermal expansion of tooth structure and resorative material, as well as polymerization shrinkage, produces stress within the adhesive layer (Asmussen, 1975; Hansen \& Asmussen, 1985; Kemp-Scholte \& Davidson; 1990a). This in turn introduces stress at the tooth/restorative interface (Bowen et al., 1982; Davidson et al, 1984b) and can lead to breakdown or gap formation in the adhesive bond between the restoration and the cavity walls. This could result in loss of marginal integrity if it is not resisted (Carvalho, Pereira, Yoshiyama \& Pashley, 1996; Davidson, 1986; Feilzer, de Gee \& Davidson, 1990a; Katoma \& Winkler, 1994).

Wieczkowski, Joynt, Davis, Yu and Cleary (1992) found that polymerization shrinkage in hybrids is stronger than the chemical bond between glass ionomer cement and dentine, therefore opening a pathway for microleakage in glass-ionomer based resin restorations. Prati, Chersoni, Cretti and Mongiorgi (1997) reported that the shrinkage of resin composites and glass ionomer cements are sufficient to create open and permanent damage to margins which may lead to microleakage especially along dentine margins. They found in SEM studies that enamel margins were characterized by prism fractures around restorations. Dentine margins showed gaps along the dentine bonding agents and fractures in the bonding agent/composite interface. Several more authors also reported enamel microfractures, as a consequence of composite polymerization shrinkage (Staninec, Mochizuki, Tanizaki, Jukuda \& Tsuchitani, 1986; Watson, Billington \& Williams, 1991). Attin et al. (1995) reported that the resin content of compomers and light-cured glass ionomers, which varies among available products, produces polymerization shrinkage which is not evident in conventional glass ionomers. This could adversely affect marginal adaptation.

Feilzer, de Gee and Davidson (1990b) as well as Willems, Lambrechts, Braem and Vanherle (1993) reported that the hybrid layer is not able to sufficiently withstand the shrinkage stress of a high modulus composite e.g. Z100. Retief, Mandras and Russell (1994) suggested that shear bond strength of $\pm 21 \mathrm{MPa}$ to dentine may reduce microleakage to near zero.

Two factors have a major influence on the results of comparative dye penetration studies. Firstly, the inorganic filler volume percentage which influences the polymerization shrinkage (Lai \& Johnson, 1993) and secondly the elasticity which limits the residual shrinkage stresses (Feilzer, de Gee \& Davidson, 1987).

1.4.2. Modulus of elasticity

Young's modulus or the modulus of elasticity, describes the rigidity or stiffness of a material (Phillips, 1991). According to Van Meerbeek, Willems and Celis et al. (1993) the resin-dentine interdiffusion zone or hybrid layer has a relatively low Young's modulus and may therefore also relieve polymerization contraction stresses.

The modulus of elasticity could influence the sealing ability of a material. If a material has a high modulus of elasticity, it is stiffer and has more internal stress. A low modulus of elasticity results in a greater elastic ability and more capacity to reduce contraction stress. The higher the degree of filler, the more stress is exerted on the bonding resin during polymerization. Resins with a higher filler content have a lower volumetric contraction, because of the higher filler content relative to the lower resin content, but they have a higher Young's modulus of elasticity. The higher stiffness of the high-modulus composites generally leads to higher shrinkage stresses during polymerization, which may tend to destroy the bond to the tooth structure, thereby increasing the chance of leakage. In turn, while a low-modulus material may shrink more than a high modulus material, its lower stiffness leads to a higher elasticity and thus a lower remaining contraction stress which can affect the resindentine interface (Schwartz, Summit \& Robbins, 1996).

Kanca (1989) reported that microfills tend to exhibit less leakage than hybrids. Intermediate resins could be used to act as "elastic buffers" to relieve the polymerization contraction stresses within resin containing restorations (Swift, Triolo, Barkmeier, Bird \& Bounds, 1996; Van Meerbeek et al., 1993c). Dual-cure systems could relieve stress more effectively due to incorporation of air bubbles during mixing. Porosities have been shown to increase the elasticity of resin materials (Alster, Feilzer, de Gee, Mol \& Davidson, 1992).
Polymerization stress could also be reduced by a materials inherent
ability to undergo plastic deformation or flow, due to the ability of the molecules to slip into new positions and orientations, allowing the maintenance of the adhesive bond (Feilzer et al., 1990b).

Tay et al. (1995a) reported that the presence of silver staining along the resin-hybrid layer interface suggests that contractional stresses during polymerization of the resin composite already created a separation of margins.

1.4.3. Light exposure and light intensity

Miyazaki, Fukuishi and Onose (1999b) reported that volumetric change of a compomer is amongst other things influenced by the duration of light exposure, light intensity and the environmental conditions to which the mateials are exposed. Uno and Asmussen (1991) recommended using low light intensity, to allow the resulting reduced polymerization rate and the relaxation of the contraction stress, to get good marginal adaptation.

Miyazaki et al. (1999b) reported that the volumetric shrinkage for Dyract after 160 seconds was 2,7\%. Increased light intensity as well as increased irradiation time resulted in increasing volumetric shrinkage. The polymerization shrinkage of compomers ranged from 2,1 to $2,7 \%$ (volumetrically). Davidson and de Gee (1984b) reported that polymerization shrinkage is greatest in the early stages of setting. Berg (1998) concluded that the shrinkage of composites ranged from 2 to $3,5 \%$. Shrinkage of a composite, which is bonded circumferentially to the cavity walls, causes it to pull towards the centre of its mass (Berg, 1998). Versluis, Tantbirojn and Douglas (1998) concluded that composites do not shrink toward the light, but that the direction is predominantly determined by cavity shape and bond quality.

1.4.4. Hydroscopic expansion

The hydroscopic expansion of a restoration, when exposed to the oral fluids, partly counteracts the polymerization shrinkage (Fan, Edahl, Leung \& Stanford, 1985), but does not necessarily compensate for it (Hansen \& Asmussen, 1985). The water uptake and expansion will not re-establish the failed bonds that resulted from polymerization shrinkage (Rigsby, Retief, Russell \& Denys, 1990).

Attin et al. (1995) reported that Fuji II LC glass ionomer cement expanded after curing and immersion in water, while Dyract (compomer) and Vitremer (glass ionomer) cement revealed a total volumetric loss. They concluded that water expansion is a factor that attributes to the reduction in microleakage.

Feilzer, Kakaboura, de Gee and Davidson (1995) reported that the better performance of marginal adaptation after twelve months compared to six months in compomers could be explained by water sorption and expansion of the material. Allen, Retief, Russell and Denys (1994) found that quantitative microleakage recorded after different storage periods was not significantly different. Although exposure to the oral environment resulted in a reduction or elimination of the dimensions of the marginal gaps caused by polymerization shrinkage at the tooth restoration interface, the adhesive bonds that were broken by polymerization shrinkage will not be re-established by hygroscopic expansion.

Toledano, Osorio, Osorio and Garcia-Godoy (1999) reported that resin modified glass ionomers show less or similar microleakage to Dyract. Curing contraction is often restricted by the cavity preparation resulting in polymerization contraction stress (Feilzer, de Gee $\&$ Davidson, 1988).

Perdigão et al. (1996) reported that one-bottle dentine bonding agents do not seem able to prevent gap formation (i.e. they cannot withstand shrinkage forces generated during the polymerization of resins).

Holderegger, Paul, Luthy and Scharer (1997) concluded that bond strength values superior to the forces generated during the polymerization of composite luting resins are only obtained after dual application of two or three-step dentine bonding agents.

Hansen (1986); Vargas and Swift (1994); Wieczkowski et al. (1992a) all suggested to apply thin incremental layers of composite into a cavity in order to minimize resin composite polymerization shrinkage.

1.4.5. Bond strength

Several factors influence the quality of the bond e.g. the thickness of the smear layer, the degree of etching, wetness and polymerization contraction (Pashley \& Carvalho, 1997). Monteira, Sigurjons, Swartz, Phillips and Rhodes (1986) reported that bond strength is more predictive of a material's retentive potential than its sealing ability. Kanca (1989) reported that there was no statistically significant correlation between bond strength and microleakage, Borem and Feigal (1994) reported that although it may seem logical for bond strength and microleakage to have an inverse relationship, leakage could take place around cluster areas or foci of adhesion.

According to Retief, Mandras and Russell (1994) bond strength of 20 to 24 MPa is thought necessary to resist three-dimensional stresses resulting from polymerization shrinkage of resin composite and prevent microleakage at the dentine-resin interface.

Titley, Chernecky, Rossouw and Kulkarni (1998) as well as Retief, Wendt, Bradley and Denys (1989) reported that storage of teeth in $0,1 \%$ thymol solution resulted in significantly lower shear bond strengths. However, Haller, Hofmann, Klaiber and Bloching (1993)
reported that there was not a significant difference in microleakage between freshly extracted teeth and teeth stored in thymol. Haller also reported that teeth stored in 1% chloramine gave results comparable to those of freshly extracted teeth.

1.4.6 The effect of acid etching

Conditioning of a cavity with acid increases the dentinal permeability. There is great individual variation in the permeability of teeth following acid conditioning of dentine (Youngson, Jones, Fox, Smith, Wood \& Gale, 1999). Microleakage at the enamel margins of restorations etched with phosphoric acid has been eliminated (Fusayama \& Kohno, 1989).

IIT II

The ability of the dentine or cementum-material bond to resist microleakage is still controversial (Manhart, Chen, Mehl, Weber \& Hickel, 2001). Sano, Yoshiyama and Ebisu et al (1995b) reported that bonding systems that etch deeper in dentine are more likely to show higher degrees of microleakage. Sano et al. (1995a) reported that strong adhesion heavily relies on the diffusion and curing of adhesive resins through demineralized dentine. They also reported that the adhesive resins could have difficulty diffusing through demineralized dentine as a result of the presence of water around collagen fibers, the depth of the demineralized zone and nonuniform distribution of monomers.

The presence of a layer of resin-infiltrated enamel is demonstrated by Tay et al. (1995a), this confirms the hybridization concept that was originally observed and described in enamel by Gwinnett and Matsui 1967. Perdigão et al. (1996) demonstrated that etched and bonded enamel produces a more consistent hermetic seal compared with dentine. Fusayama (1992) reported that the total-etching technique is more effective than etching of the occlusal enamel alone in reducing
microleakage along the cervical wall of Class V resin composite restorations.

1.4.7. Dry $v s$ wet or moist bonding procedures

Tay et al. (1995a) demonstrated severe microleakage along the resindentine interface when water was not completely removed from the primer solvent. Resin globules formed along the surface of the hybrid layer instead of a continuous resin layer, preventing complete seal of the dentine tubules. Vargas and Swift (1994) found no differences in microleakage between the dry or moist bonding technique while Saunders and Saunders (1996) reported microleakage at both the enamel and dentine margins, but less microleakage at the gingival margin in the groups where acetone-based bonding agents and wet bonding were used.

1.4.8. Cavity configuration and bevelling

Dietrich et al. (2000a) found that beveled enamel margins showed significantly less enamel microcracks compared to unbeveled enamel margins regardless of the conditioner used. There were no significant differences in microleakage between butt-joint and beveled enamel margins of Dyract AP restorations. When enamel was conditioned with the non-rinse conditioner, Dyract AP total-bond restorations in beveled cavities showed significantly more perfect margins compared to butt-joint cavities. No differences between beveled and butt-joint cavity preparations with respect to perfect margins were observed when the enamel was conditioned with 36% phosphoric acid.

Hilton and Ferracane (1999) reported that vertical cavity walls without bevels exhibited pronounced leakage. Saunders and Muirhead (1992) reported that beveling of enamel followed by etching virtually eliminates microleakage in enamel.

Dentine tubules run parallel to enamel rods, therefore beveling of dentine should expose opened tubules for efficient attachment of adhesive resins (Owens et al., 1998). He also reported that beveling dentine (gingival margins) allows greater microleakage when currentgeneration adhesive systems are used.

Gwinnett et al. (1995) reported more severe microleakage along the end (embrasure) regions than along the center of the cervical margin when using Scotchbond 2 and P-50 as restorative material. Mixson, Eick, Chappell, Tira and Moore (1991), who made use of wedgeshaped cavity preparations, achieved similar results. Uno, Finger and Fritz (1997) concluded that cavity design had little influence on the microleakage of Dyract.

1.4.9. Co-efficient of thermal expansion

Phillips (1982) defined the linear coefficient of thermal expansion, as the change in length per unit length of the material when its temperature is raised or lowered by one degree. An ideal dental restorative material should have the same coefficient of thermal expansion as tooth structure seeing that it could facilitate microleakage (Sorensen, Dixit, White \& Avera, 1991).

1.4.10. Masticatory stresses, thermocycling and dwell time

Yap (1998b) reported that thermocycling, load cycling and 3 months storage, with and without thermal load cycling, had no significant influence on microleakage at the enamel cement interface.

Microleakage at the dentine-cement interface was significantly greater for thermocycling, load cycling and long-term storage in artificial saliva. Doerr, Hilton and Hermesch (1996) found that thermocycling had no effect on the microleakage of a conventional glass ionomer or that of resin modified glass ionomers.

Rossomando and Wendt Jr (1995) found that the need for thermocycling is dependent upon the extent a restorative is thermally conductive in relation to its mass. They further found that the dwell time should be clinically relevant, e.g. 10 seconds, and that it is only important if the restorative is thermally conductive. A wide range of dwell times have been proposed. Retief et al. (1988) reported and ideal dwell time of 15 seconds, while Wendt, McInnes and Dickenson (1992) justified an ideal dwell time in each bath of 15 seconds. Burger, Cooley and García-Godoy (1992) demonstrated that thermocycling time is not a significant variable.

1.4.11. In vitro vs in vivo microleakage studies

Microleakage studies have been carried out both in vivo and in vitro, but in vitro studies are more common (Taylor \& Lynch, 1992). Several studies have concluded that higher values of microleakage occurred in in vitro restorations than in in vivo restorations (Barnes, Thompson, Blank \& McDonald (1993).

Several studies (Jacobsen \& Finger, 1993; Gwinnett \& Kanka, 1992) have revealed similarity between in vivo and in vitro morphology concerning the relationship between resin and dentine. Ferrari et al. (1996a) evaluated the formation of the hybrid layer, resin tags and adhesive lateral branches in vivo and in vitro. All of the tested adhesive materials created a hybrid layer between conditioned dentine and the resin system, both under in vivo and in vitro conditions. They also found no essential differences in the morphology between the hybrid layers and the resin tag formation of the in vitro versus the in vivo samples, when the substrate conditions were kept wet. He concluded that in vitro tests could predict the results of in vivo clinical tests with respect to hybrid layer, resin tags and adhesive lateral branch formation.

1.4.12. Saliva Contamination

Until August 2001 no references could be found on the influence of saliva contamination on Prime \& Bond NT specifically. However, several studies have been performed on the influence of saliva contamination on the different generations of Prime \& Bond. Abdalla and Davidson (1998) as well as El Kalla and García-Godoy (1997) investigated the influence of saliva contamination on the shear bond strength of Prime \& Bond 2.1 to enamel and dentine, if contamination took place just after etching and before adhesive application. Abdalla and Davidson (1998) found no significant influence. They gently airdried the contaminated area before adhesive application. El Kalla and Garcia-Godoy (1997) also found no significant influence whether the saliva was washed by water or just removed by blotting with cotton pellets.

El Kalla et al. (1999b) investigated the effect of saliva contamination on the resin tag formation of Prime \& Bond 2.1. They found that hybrid layer formation and resin tag penetration was not influenced. The influence of saliva contamination on microleakage where Prime \& Bond 2.1 had been used was included in a study by Evancusky and Meiers (2000). They found no significant effect on enamel, but found that microleakage was significantly increased on the dentine side of the restorations.

In a study performed by Fritz, Finger and Stean (1998), they investigated the effect of salivary contamination of enamel and dentine on the bonding efficacy of an experimental one-bottle resin adhesive. This experimental one-bottle resin adhesive (ARX) was a solution of UDMA, HEMA, and 4-META dissolved in acetone at equal weight parts that must be light- cured. The evaluation parameters were shear bond strength and marginal gap width. On the enamel side they found that ARX was relatively insensitive to salivary contamination, if the contamination occurred prior to light curing of
the adhesive and the contaminated area was carefully rinsed and blot dried. If the saliva was removed by an air blast the shear bond strength was significantly lower. On the dentine side, salivacontaminated and air-dried dentine as well as the groups where the cured adhesive was contaminated with saliva, showed significantly lower mean bond strengths than the groups where the moist bonding technique was used and where saliva contamination was rinsed and blot dried.

Marginal gaps and dye penetration

Alterations of the materials due to all the factors mentioned could result in gaps at the tooth-restoration interface (Reeves, Fitchie, Hembree \& Puchett, 1995). Miroleakage occurs in these gaps between the restorative material and tooth structure and does not involve dentine permeability directly (Pashley \& Carvalho, 1997).

Gwinnett and Kanka (1992) reported the absence of gap formation when a dentine adhesive system was used to create a hybrid layer between the resin and the dentine. The above mentioned adhesive systems made use of the total-etch technique (Bertolotti, 1990; Fusayama, 1992) together with the application of acetone-or alcoholcontaining primer resins on a wet dentine substrate (Gwinnett, 1992; Gwinnett \& Kanka, 1992). Several authors reported that a gap-free bond could be created with the use of an elastic intermediate layer of resin between the composite and adhesive resin. This may absorb the contraction stress of the composite during polymerization (KempScholte \& Davidson, 1990b).

In 1995 Sano et al. (1995a) reported that penetration of silver nitrate along the dentinal wall was observed with or without gap formation in all specimens they tested. Sano et al. (1995b) reported similar results. Tay et al. (1995a) confirmed the earlier reports that gap-free restorations can be produced with the use of a total-etch technique
and acetone-containing dentine adhesives. They further reported that failure of the primer solvent to evaporate completely results in interfacial defects that are detectable under the SEM microscope.

Marginal gaps big enough to allow the leakage of bacteria would have to be in the region of 0.5-1.0 $\mu \mathrm{m}$ or larger (Dietrich et al., 2000a). Sano et al. (1995a) attributed the absence of gap formation in their '95 study in part to the elasticity of the adhesive layer, reduction of polymerization shrinkage of the composite, and the use of an intermediate low-viscosity resin. They further reported that the intermittent penetration of silver into the hybrid layer on cut dentine surfaces, indicated that the hybrid layer produced by the bonding systems used were not uniform. They presumed that regions of excellent adhesion between resin and collagen existed between areas where little bonding occurred. They therefore confirmed the presence of submicron spaces at the base of the hybrid layers that might allow water penetration.

Tay et al. (1995a) reported that the failure of the primer solvent to evaporate results in movement of fluid and bacteria through the interface into the tubules, and could later manifest as post-operative sensitivity and recurrent caries. Several authors reported that microleakage appeared to be initiated from the bonding resin-hybrid layer interface (Sano et al., 1995a; Tay et al., 1995a). Gwinnett et al., (1995) reported that although leakage sites appear to be disconnected in individual sections, they are interconnected and originate from the cavosurface margins. Sano et al. (1995a) reported that leakage occurred within the acid-resistant hybrid layer when using All-Bond adhesive. Tay et al. (1995a) reported that under different handling conditions the site of microleakage initiation originated from the interface between the bonding resin and hybrid layer.

Pashley and Matthews (1993) reported that dentinal penetration depends on the concentration of the tracer and its diffusion coefficient, the thickness of the dentine and the surface area of the dentine available for diffusion. Christen and Mitchell (1966) showed that different concentrations of two dyes can vary between 5 minutes and 1 hour in penetration time. Fusayama and Terachima (1972) as well as Kidd, Joyston-Bechal, Smith, Allan, Howe and Smith (1989) reported that basic fuchsin solution, one of the most frequently used dyes in penetration studies, has a tendency to preferentially bind with carious dentine.

Tracers used to access microleakage e.g. silver ions, are much smaller in magnitude. Dye penetration is therefore a severe test of microleakage (Douglas, 1989). Taylor and Lynch (1992) reported that marginal gaps allowing leakage of bacteria are expected to be in the region of 0.5-1.0 $\mu \mathrm{m}$ or larger. Microleakage studies making use of bacterial penetration therefore do not take gaps smaller than the above mentioned into account. Although bacterial penetration does not take place, these gaps allow toxins and other bacterial products, which could harm the tooth, to penetrate, They further reported that it is impractical to use dye particles with a diameter greater than that of the internal diameter of dentinal tubules $(1-4 \mu \mathrm{~m})$, seeing that it would not be able to penetrate.

Nanoleakage

Sano et al. (1994) reported that silver had penetrated into submicronsized spaces beneath the bonded dentine surface. This penetration reveals the lack of a perfect seal, but it is not microleakage in the classical sense. To distinguish this form of leakage from typical microleakage, he suggested in 1995 that it should be referred to as nanoleakage (Sano et al., 1995a; Sano et al., 1995b).

If the etched dentine is dried too much, the collagen fibers may collapse, obstructing resin penetration and therefore hybrid layer formation. A space can therefore remain between undermineralized dentine and resin (Ferrari et al., 1997b). The spaces that Sano et al. (1995a) referred to at the base of the hybrid layer are of the order of 20-100 nm in width. They therefore called the leakage that occurs within the hybrid layer, in the absence of gap formation, nanoleakage.

Sano et al. (1995b) demonstrated the nanoleakage of the hybrid layer using a silver nitrate staining technique and demonstrated silver accumulation within the hybrid layers. They speculated that leakage occurred in areas of demineralized dentine that was not completely filled by resin. This pathway may allow the penetration of bacterial products and oral fluids along the interface, with subsequent breakdown of the unprotected collagen (Li et al., 1999).

It appears that bonding systems that etch deeper in dentine are more likely to show higher degrees of nanoleakage (Sano et al., 1995a). Li et al. (1999) reported silver penetration throughout the entire thickness of the hybrid layer formed by the use of Prime and Bond NT after the application of NRC. Nanoleakage in the thermocycled species were essentially the same as in the non-thermocycled specimens. Nanoleakage identifies the exact location of the microleakage, e.g. within, above or below the hybrid layer; between the hybrid layer and the bonding agent; between the bonding agent and the resin composite.

CHAPTER 2

OBJECTIVES

The literature review emphasised the lack of studies specifically concentrating on the microleakage of compomers, as well as the effect of saliva contamination on the microleakage. Most studies on microleakage were done either in vitro, without saliva contamination or performed clinically with the use of rubber dam. The instructions for the use of Dyract AP and its bonding systems does not specifically advise the use of rubber dam.

The objective of this experiment was therefore, firstly, to determine and compare the qualitative microleakage of class V preparations restored with the above-mentioned compomer, bonded by the different systems, and secondly, to determine and compare the influence of saliva contamination on the microleakage when the different systems were used.

CHAPTER 3

MATERIALS AND METHODS

3.1 TEETH USED IN PROJECT.

One hundred and forty-four freshly extracted, non-carious, human premolars were used in this study. The teeth had all been extracted for orthodontic or periodontal reasons at the department of Maxillo-facial and Oral Surgery of the University of Stellenbosch. After extraction the teeth were immediately placed in physiological saline (distilled water + $9 \% \mathrm{NaCl}$) containing 1% thymol and stored at $4^{\circ} \mathrm{C}$. The teeth were firstly scraped clean of gross debris with a no 15 blade ${ }^{\text {a }}$, after which each tooth was polished as a whole with flour of pumice with a polishing wheel ${ }^{\text {b }}$ at low speed. After being rinsed under tap water the teeth were once again placed in physiological saline containing thymol and stored at $4^{\circ} \mathrm{C}$. From the time of extraction to the finish of each batch of experiments no teeth were stored for a period longer than two months.

3.2. INITIAL TREATMENT OF THE TEETH.

All teeth were treated in the following manner:

- The teeth were randomly divided into eight groups of 18 teeth each.
- The apical 2 mm of each root was removed with a model trimmer ${ }^{c}$ using water as a coolant. A cavity was prepared at the cut root apices with an inverted cone carbide bur (ISO 006) ${ }^{d}$ with a slowspeed handpiece ${ }^{e}$. Each cavity was rinsed with water, dried with air and two layers of Polyvar ${ }^{f}$ cavity liner was applied. The cavities were then filled with Permite C^{g} amalgam; the amalgam was condensed with a small round
amalgam plugger and the restoration was finished with a ball burnisher.
- The teeth were then placed back in the physiological saline containing thymol and stored at $4^{\circ} \mathrm{C}$.

3.3 PREPARATION AND RESTORATION OF THE CAVITIES AS DETERMINED BY EACH EXPERIMENTAL GROUP.

3.3.1 Preparation of the cavities

Cavities were prepared in the following manner in all eight groups of teeth just before the restorations were placed:

A class V cylindrical cavity was prepared on the buccal side of each tooth on the cemento-enamel junction. Each cavity was $1,5 \mathrm{~mm}$ deep and 3 mm (Figure 1a) in diameter and was prepared partly in enamel and partly in dentine. A cylindrical round diamond bur (ISO 012)d was used in a highspeed Kavo hand-pieceh with water cooling. A new bur was used for each group of experiments. After preparation the cavities were washed with water and dried with a single blast of filtered air from a triple syringē held 2 cm away from the cavity. Oil free compressed air was obtained by filtering the air through a Wilkerson filter attached to a laboratory air linei. $S T E R R N$ CNDE

3.3.2 Saliva collection

Fresh saliva samples were collected prior to every group of experiments. Saliva was obtained before breakfast from 4 donors and mixed to minimize individual characteristics. The saliva was kept at room temperature in a sterile container and used in the experimental groups within 4 hours of collection.

3.3.3 The experimental groups.

In order to compare the different bonding systems and determine the influence of saliva contamination on microleakage at different application stages, the eight experimental groups were as follows:

Table 1. Experimental groups ($\mathrm{LC}=$ Light-cured)

Group 1	Prime \& Bond NTj + LC + Dyract APj + LC
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract $\mathrm{AP}+\mathrm{LC}$
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

3.3.4 Restoration of the cavities

Restoration of the cavities is summarized in Table 1. The application techniques of the materials and saliva contamination were as follows:

Application of De Trey Conditioner 36j gel (36\% phosphoric acid) After each cavity was dried in groups 2, 5 and 6, De Trey Conditioner 36 gel (Lot no. 9607146, Expiry date 2001-07) was applied starting at the enamel margins after which it was spread to the rest of the cavity. The enamel was conditioned for 15 seconds while the dentine was
conditioned for 10 seconds. The gel was removed by rinsing the cavity with water for 15 seconds. The cavity was once again dried with a single burst of air from a triple syringe held 2 cm away from the cavity.

Application of Non-Rinse Conditioner

NRC (Figure 2a), (Lot no. 9806000156, Expiry date 2001-04) was dispensed into a dappen dish and applied with an applicator tip ${ }^{\mathrm{h}}$ in sufficient amounts to the enamel and dentine of groups 3, 7 and 8 . It was left undisturbed for 20 seconds after which the excess NRC was blown away with a single burst of air from a triple syringe held 2 cm away from the cavity.

 Application of Prime \& Bond NT and curing

One layer of Prime \& Bond NT (Figure 2b), (Lot no. 9806000602, Expiry date 2000-05) was applied in the following manner. The Prime 8 Bond NT was dispensed into a dappen dish. The dappen dish was kept covered to prevent evaporation of the acetone and a fresh drop was dispensed for every third cavity. An applicator tip was used to flood the entire cavity with Prime \& Bond NT. It was left undisturbed in the cavity for 30 seconds after which the excess was blown away with air from a triple syringe for 5 sēconds. The Prime \& Bond NT was then light-cured for 20 seconds. The curing-light was held 5 mm away from the cavity. A new bulb was placed in the curing-light at the start of each group of experiments. The output of the curing-light was also measured before each group of experiments with a Cure Rite Visible Curing Light Meterk to ensure exposure of $350 \pm 50 \mathrm{~mW} / \mathrm{cm}^{2}$. An Optilux 150 curing-light was used for all light-curing required ${ }^{l}$.

Application of Dyract AP

Dyract AP (Figure 3), (Lot no. 9806001203, Expiry date 2000-05) was placed immediately after the application and curing of the Prime \& Bond

NT. The Dyract AP was dispensed directly into the prepared cavity. All cavities were filled in three increments. The first two increments were placed obliquely against the occlusal and gingival walls of the cavity and the third increment was used to slightly overfill the cavity. Each increment was condensed in the cavity with a teflon flat plastic instrument. Each increment was cured individually. The first two increments were light-cured for 40 seconds each while the third increment was cured for 50 seconds. The curing-light was held 5 mm away from the filling. The entire cavity was exposed to the light.

Saliva contamination

The saliva was dispensed into the cavity with an applicator tip. The cavity was flooded with saliva.

In groups 4, 6 and 8 the cavities were contaminated immediately after the Prime \& Bond NT had been light cured. A single burst of air from a triple syringe was used to remove the excess saliva from the cavities.

In group 5 each cävity was contaminated with saliva after the acid etch had been washed out and the cavity had been dried. In group 7 the contamination was done after the excess NRC had been blown away. The excess saliva was blown away in both groups 5 and 7 with a single burst of air.

3.3.5 Finishing of restorations

The teeth were immersed in distilled water after each restoration was placed. When all 18 cavities in each group had been restored, the final finishing of the restorations (Figure 1 b) was done with a series of SofLex discs ${ }^{m}$, to ensure that all overhangs had been removed. On completion, the teeth were once again stored in distilled water at room temperature for 24 hours.

Figure 1.
(a) Tooth with prepared cavity and (b) tooth with filling

Figure 2.

Figure 3. Dyract AP compules, applicator gun and shade guide

Figure 4.
Filled tooth covered in nail varnish except for filling and 1 mm surrounding filling.

Figure 5.
Cycling machine used to thermocycle filled teeth in basic fuchsin solution.

UNIVERSITY of the

Figure 6.
Criteria used for microleakage evaluation (micro-leakage = 1 in example)

3.4 MICROLEAKAGE TESTS

After 24 hours the restored teeth were removed from storage and coated with two layers of nail varnish ${ }^{\mathrm{n}}$. The tooth surfaces were all covered except for 1 mm around the restorations (Figure 4), which were left free of varnish. The groups of teeth were then thermocycled (Figure 5), in a 0.5\% basic fuchsin ${ }^{\circ}$ (Lot 7350420P; Expiry date 200304) solution for 500 complete cycles, in a temperature cycling machine between $8^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ and with a dwell time of 15 seconds.

The teeth were removed from the thermocycling machine; the gross nail varnish was scraped off with a no 15 blade and the teeth were polished with flour of pumice and rinsed with tap water to remove all the remaining nail polish and pumice. The teeth were embedded in casting resinp and allowed to cure overnight. Vertical sections were cut in a bucco-lingual plane through the restorations using a watercooled Minitom circular sawd. On average four sections of $600 \mu \mathrm{~m}$ thickness were cut of each restoration. The maximum amount of sections was cut of each restoration. The cut sections were gently rubbed on grit P600r waterproof sandpaper to smooth them.

UNIVERSITY of the

The extent of microleakage was scored separately on both the enamel and dentine/cementum margins on both sides of each section, according to the citeria listed below (Figure 6). Scoring was done immediately after sectioning. The sections were placed on a glass slide and examined under a Wild light microscopes at X60 magnification to evaluate microleakage (Figure 7). Criteria:
$0=$ no leakage
1 = dye penetration up to one-third cavity depth
$2=$ dye penetration to two-thirds cavity depth (Figure 8)
$3=$ dye penetration to full depth of cavity
4 = dye penetration extending along the floor of the cavity
(Figure 9)

Figure 7. X60 Enlargement of micro-leakage in dentine tubules.

Figure 8.
Microleakage value of 2 extending more than one third of the cavity depth.

Figure 9.
Microleakage value of 4.

For the sake of consistency, scoring procedures were immediately performed on all sections cut, by two independent investigators who previously had synchronized their technique. The same two investigators were used for all eight groups of experiments. The percentage of each score in each group was calculated by the investigators.

The original scores for each section of both investigators were supplied to the statistician. The data was then statistically analyzed using Kruskal-Wallis one way ANOVA on ranks (significance at $\mathrm{p}<0.05$).

UNIVERSITY of the WESTERN CAPE

3.5 LIST OF MANUFACTURERS

a. Swann Morton LTD. Sheffield, England
b. Denta Olymp. Herm. Metzdorff, Dortmund, Germany-Allemagne
c. C.H. Wilhelm Wassermann, Feinwerk, Hamburg, Germany
d. Komet, GEBR. BRASSELER GmbH \& Co. KG, Lemgo, Germany
e. Microo-Mega, Besancon, France
f. Lorvic Corporation, St. Louis, USA Southern Dental Industries, Australia
g. Oral-B Laboratories, Sandton, South Africa
h. Kavo, Kaltenbrecht \& Voigt, Germany
i. Johnson Controls, Inc., Milwaukee, USA
j. Dentsply DeTrey, Konstanz, Germany
k. Dentsply, Caulk, Milford, USA $10 \square 10 \square 10$

1. Demetron/Kerr, Danbury, USA
m. 3M Dental Products, St. Paul, France
n. Xpress Finish, Maybelline, New York, USA
o. BDH Laboratory Supplies, Poole, England
p. Fobroglas, Foukes Bros. (PTY) LTD, Cape Town, South Africa
q. Minitom, Struers, Copenhagen, Denmark
r. 3M, Johannesburg, South Africa
s. WILD HEERBRUGG, Switzerland

CHAPTER 4

RESULTS

DATA

The percentage of each score in each group was calculated and is represented in Table 2 for enamel and in Table 3 for dentine.

Table 2. Percentages of microleakage for every group: EMAMEL

Criteria Depth of dye penetra- tion in cavity $0=$ none 1=one- third 2=two- thirds 3=full depth	Group 1 Bond NT + Dyract AP	Group 2 Phosp horic acid + Prime \& Bond NT + Dyract AP	Group 3 Non Rinse Conditi oner (NRC) \& Bond NT + Dyract $A P$	 Bond NT + Saliva Dyract AP	Group 5 Phosp horic acid + Saliva + Prime \& Bond NT + Dyract AP 7	Group 6 Phosp horic acid + Prime \& Bond NT + Saliva Dyract AP [1]	Group 7 Non Rinse Conditi oner (NRC) Saliva + Prime \& Bond NT + Dyract AP	Group 8 Non Rinse Conditi oner (NRC) + Prime \& Bond NT + Saliva $+$ Dyract AP
4=along floor	\%	\%	\%	\%	\%	\%	\%	\%
0	6	16	39	0	14	28	2	20
1	48	68	42	28	50	48	21	39
2	34	16	3	33	25	8	43	18
3	3	0	8	33	11	8	29	18
4	9	0	8	6	0	8	5	5

Table 3. Percentages of microleakage for every group: DENTINE

Criteria Depth of dye penetra- tion in cavity $0=$ none 1=one- third 2=two- thirds $3=$ full depth	Group 1 Bond NT + Dyract AP	Group 2 Phosp horic acid + Bond NT + Dyract AP	Group 3 Non Rinse Conditi oner (NRC) + Prime \& Bond NT + Dyract AP	Group 4 Bond NT + Saliva $+$ Dyract AP	Group 5 Phosp horic acid + Saliva + Prime \& Bond NT + Dyract AP	Group 6 Phosp horic acid + Bond NT + Saliva + Dyract AP	Group 7 Non Rinse Conditi oner (NRC) Saliva + Prime \& Bond NT + Dyract AP	Group 8 Non Rinse Conditi oner (NRC) + Prime \& Bond NT + Saliva Dyract AP
4=along floor	\%	\%	\%	\%	\%	\%	\%	\%
0	37	24	29	27	22	0	15	5
1	23	26	-3	28	28	3	37	0
2	10	3	11	17	11	-11	12	5
3	10	8	8	0	3	3	12	5
4	20	39	49	28	36	83	24	85

The percentages were also graphically illustrated with pie charts (Figures 10 to 25).

Percentages of microleakage for group 1:

Figure 10: Enamel Figure 11: Dentine

Percentages of microleakage for group 2:
Figure 12: Enamel
Figure 13: Dentine

Phosphoric acid + Prime\&Bond NT + Dyract AP - Enamel

Phosphoric acid + Prime\&Bond NT + Dyract AP - Dentine

Microleakage

Percentages of microleakage for group 3:

Figure 14: Enamel
Figure 15: Dentine

Percentages of microleakage for group 4:
Figure 16: Enamel Figure 17: Dentine

Percentages of microleakage for group 5:

Figure 18: Enamel

Figure 19: Dentine

Percentages of microleakage for group 6: Figure 20: Enamel

Percentages of microleakage for group 7:
Figure 22: Enamel Figure 23: Dentine

Percentages of microleakage for group 8:

Figure 24: Enamel

Figure 25: Dentine

STATISTICS

The data was statistically analyzed using Kruskal-Wallis one way ANOVA on ranks (significance at $\mathrm{p}<0.05$). A summary of the means, number of sections scored, the standard deviation, the median as well as the values at the 25% and 75% levels for enamel microleakage is represented in Table 4.

Table 4. Summary of means, number of sections scored, standard deviation, median, 25\% and 75\% levels for microleakage on the enamel side.

ENAMEL							
Smallest N for any variable: 505							
	ENS	ENS		ENS	ENS		
	Means	N		Std.Dev.	Q25		
	Median	Q75					
G_1:1	1.276786	56	0.738054		1	1	
G_2:2	0.737705	61	0.616486		0	1.5	
G_3:3	0.766129	62	1.144186		0	1	

UNIVERSITY of the

Table 1. Experimental groups ($\mathrm{LC}=$ Light-cured)

Group 1	Prime \& Bond NTj + LC + Dyract APj + LC
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

Table 5 presents the statistically significant differences at a 95\% confidence level for microleakage on the enamel side. It was found that Groups 1 and 4 differed significantly from all the groups except group 7. They also differed significantly from each other. Group 7 differed significantly from all the groups except groups 1 and 4. Groups 2,3,5,6 and 8 only differed significantly from groups 1,4 and 7.

Table 5. Statistically significant differences ($\mathbf{p}<0.05$) - Enamel side. Shaded areas indicate areas of significance.

LSD Test; Variable: ENS								
	\{1\}	\{2\}		$\{4\}$	\{5\}	\{6\}	\{7\}	\{8\}
	$\mathrm{M}=1.2768$	$\mathrm{M}=.73770$	$\mathrm{M}=.76613$	$\mathrm{M}=1.6724$	$\mathrm{M}=.92188$	$\mathrm{M}=.75362$	$\mathrm{M}=1.3833$	$\mathrm{M}=.89610$
G_1:1	1	0.001203	0.002065	0.018605	0.030583	0.001223	0.521724	0.015726
\{1\}								
$\begin{aligned} & \mathrm{G}=2: 2 \\ & \{2\} \end{aligned}$		\%	0.860189	2.07E-08	0.250377	0.919376	8.24E-05	0.302
$\begin{aligned} & \frac{1}{G} 3: 3 \\ & \{3\} \end{aligned}$				4.72E-08	0.328938	0.936346	0.000156	0.394814
$\begin{aligned} & \mathbf{G}^{G} 4: 4 \\ & \{4\} \end{aligned}$					4.7E-06	1.42E-08	0.079831	8.26E-07
						0.278899	0:004263	0.864808
$\begin{aligned} & \frac{1}{G}=6: 6 \\ & \{6\} \end{aligned}$							7.64E-05	0.337021
$\begin{aligned} & \text { G_7:7 } \\ & \{7\} \end{aligned}$						170		0.001654
$\begin{aligned} & \frac{1}{G} 8: 8 \\ & \{8\} \end{aligned}$								

Table 6 presents the means, number of sections scored, the standard deviation, the median as well as the values at the 25% and 75% levels for microleakage on the dentine/cementum side.

It was found that Groups 6 and 8 differed significantly from groups $1,2,3,4,5$ and 7 . Group 1 differed significantly from groups $2,3,5,6,7,8$; Group 2 from 1,4,6,8; group 3 from 1,4,6,7,8; group 4 from 2,3,6,8; group 5 from 1,6,8; group 7 from 1,3,6 and 8 .

Table 6. Summary of means, number of sections scored, standard deviation, median, 25\% and 75\% levels for microleakage on the dentine/cementum side

DENTINE/CEMENTUM											
Smallest N for any variable: 505											
	DES	DES	DES	DES	DES	DES					
	Means	N		Std.Dev.	Q25	Median					
Q75											
G_1:1	1.018868	53	1.414085	0	0	2					
G_2:2	1.862903	62	1.68204	0	1	4					
G_3:3	2.104839	62	1.746512	0	2.5	4					
G_4:4	1.192982	57	1.469191	0	1	2					
G_5:5	1.6875	64	1.684429	0	1	4					
G_6:6	3.376812	69	1.21995	4	4	4					
G_7:7	1.575	60	1.564503	0	1	3.25					
G_8:8	3.596154	78	1.050843	4	4	4					
All Grps	2.146535	505	1.735859	0	2.5	4					

Table 7 again presents the statistically significant differences between the groups ($\mathrm{p}<0.05$).

Table 7. Statistically significant differences ($\mathrm{p}<0.05$) -
Dentine/Cementum side. Shaded areas indicate areas of significance.

LSD Test; Variable: DES								
	\{1\}	\{2\}	\{3\}	\{4\}	\{5\}	\{6\}	[7]	\{8\}
	$\mathrm{M}=1.0189$	$\mathrm{M}=1.8629$	$\mathrm{M}=2.1048$	$\mathrm{M}=1.1930$	$\mathrm{M}=1.6875$	$\mathrm{M}=3.3768$	$\mathrm{M}=1.5750$	$\mathrm{M}=3.5962$
$\begin{aligned} & \hline \text { G_1:1 } \\ & \{1\} \end{aligned}$	V	C 0.00247	0.000103	0.538625	0.015546	$4.68 \mathrm{E}-17$	0.047196	1.02E-20
$\begin{aligned} & G_{1} 2: 2 \\ & \{2\} \end{aligned}$			0.364118	0.014159	0.507138	9.76E-09	0.284207	1.93E-11
$\begin{aligned} & -1 \\ & \{3\} \\ & \{3\} \end{aligned}$				0.000867	0.114894	1.29E-06	0.049052	6.34E-09
$\begin{aligned} & G_{G}=4: 4 \\ & \{4\} \end{aligned}$					0.06769	$1.68 \mathrm{E}-15$	0.164302	4.45E-19
$\begin{aligned} & \text { G-5:5 } \\ & \{5\} \end{aligned}$						$1.32 \mathrm{E}-10$	0.673079	1.19E-13
$\begin{aligned} & \mathrm{G} 6: 6 \\ & \{6\} \end{aligned}$							1.77E-11	0.371221
$\begin{aligned} & \mathrm{G}_{1} 7: 7 \\ & \{7\} \end{aligned}$								1.38E-14
$\begin{aligned} & \mathcal{G}_{1} 8: 8 \\ & \{8\} \end{aligned}$								

A summary of the means of both enamel and dentine/cementum microleakage is graphically represented in Figure 26. The summary of the experimental groups is given in table 1.

Figure 26. Summary of the means of both enamel and dentine/cementum microleakage.

Table 1. Experimental groups ($\mathrm{LC}=$ Light-cured)

Group 1	Prime \& Bond NTj + LC + Dyract AP + LC
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

BOX PLOT SECTION

Box plot diagrams were also compiled which graphically show the average microleakage of the different experimental groups in enamel as well as in dentine/cementum. The line dividing each rectangle indicates the median for each experimental group, while the top and the bottom of each rectangle indicates the top 75% and bottom 25% of the values respectively while the blue lines indicate the 10% and 90% values respectively. Abnormally high or low readings are indicated by single blue dots.

Figure 27. Box Plot diagram showing the average microleakage of Groups 1 to 3 in Enamel

Kruskal-Wallis One-Way Anova on Ranks

Figure 28. Box Plot diagram showing the average microleakage of Groups 4 to 8 in Enamel
Kruskal-Wallis One-Way Anova on Ranks

Figure 29. Box Plot diagram showing the average microleakage of

Groups 1 to 3 in Dentine/Cementum

Kruskal-Wallis One-Way Anova on Ranks

Figure 30. Box Plot diagram showing the average microleakage of Groups 4 to 8 in Dentine/Cementum
Kruskal-Wallis One-Way Anova on Ranks

CHAPTER 5

DISCUSSION

Contamination by blood and/or saliva is a major clinical problem during restorative dental treatment. Restorative materials must possess sufficient marginal sealing ability to avoid microleakage. The only way to ensure that saliva contamination does not take place is by using a rubber dam. However, virtually none of the manufacturers of compomers advocate the use of a rubber dam in their instructions. Marshall and Page (1990) found that very few private practitioners make use of a rubber dam at all. This study was stimulated by the idea of what effect contamination could have on the sealing ability of compomer restorations and therefore on the microleakage and longevity of them.

In order to simulate the clinical situation as close as possible, the study was designed in a specific manner. To ensure the worst case scenario, it was decided upon an in vitro study, due to the tendency of in vitro studies to result in higher microleakage values (Barnes et al., 1993) than in vivo studies. There were no differences found in the morphology of the hybrid layers and resin tag formation of in vitro versus in vivo samples in a study by Ferrari et al. (1996a). Dye penetration studies such as those with basic fuchsin are amongst the most popular techniques used to study in vitro microleakage (Yap et al, 1998a).

A cylindrical diamond bur was used to prepare the cavities seeing that diamond burs are mainly used for cavity preparation in modern day dental surgeries. Uno et al. (1997) concluded that cavity design
had little influence on the microleakage of Dyract. Dietrich et al., (2000a) found no differences between beveled and butt-joint cavity preparations with respect to perfect margins when enamel was conditioned with 36% phosphoric acid. In this experiment the cavity margins were therefore not beveled.

Several authors (Kanca, 1992a; Kanca, 1992b; Gwinnett, 1992) all demonstrated that bonding to moist dentine delivered higher bond strengths than bonding to dry dentine. Tay et al. (1996a) reported that large amounts of water on the dentine surface could result in poor bonding. A critical amount of water is therefore necessary on the dentine surface to prevent water from evaporating and the resultant collapse of the collagen fibrils. At the time that these experiments were performed, the Dentsply Company did advocate the moist bonding technique for Dyract AP. However, it was not clearly indicated how to practically achieve the instruction of "gently air dry". Cavities were therefore dried with a single blast of air instead of the traditional 15 second drying time.

The fillings in this experiment were placed in three increments and each was individually light-cured to minimize polymerization shrinkage (Linden $\&$ Swift, 1994). The reason being that amongst other things, light intensity and the duration of light exposure influences volumetric change (Miyazaki et al., 1999b). Uno \& Asmussen (1991) recommended using low light intensity to allow a reduced polymerization rate and relaxation of the contraction stress. Attin et al. (1995) reported that the resin content in compomers, which varies among available products, contributes to polymerization shrinkage, and this could adversely affect marginal adaptation. To keep microleakage to a minimum an ideal dental restorative material should have the same co-efficient of thermal expansion as tooth structure. The difference in the co-efficient of thermal expansion of tooth structure and restorative material, as well as polymerization
shrinkage, produces stress within the adhesive layer (Hansen \& Asmussen, 1985; Kemp-Scholte et al.1990a). This introduces stress at the tooth/restorative interface that could result in loss of marginal integrity (Carvalho et al., 1996b; Katoma et al., 1994).

Expansion of a restoration due to water absorption partly counteracts the polymerization shrinkage (Fan et al., 1985).
However, it does not necessarily compensate for it (Hansen \& Asmussen, 1985) seeing that the water uptake and expansion will not re-establish the bonds which failed due to polymerization shrinkage (Rigsby et al., 1990). Teeth were therefore only stored for 24 hours before thermocycling.

Rossomando and Wendt (1995) reported that thermocycling is dependent upon the extent a restorative is thermally conductive in relation to its mass, while a dwell time of 15 seconds was justified by Retief et al. (1988). Yap (1998b) reported a significant difference in microleakage on the dentine-cementum interface after thermocycling. Therefore, the filled teeth were thermocycled for 500 complete cycles with a dwell time of 15 seconds.

In this experiment it was hypothesised that results on the enamel side, from the worst microleakage to the least microleakage could be in the following sequence: Group: $4 ; 1 ; 7 ; 5 ; 8 ; 3 ; 6 ; 2$ (detail of groups in table 1) based on the reasons discussed following Table 1.

Table 1. Experimental groups ($\mathrm{LC}=$ Light-cured)

Group 1	Prime \& Bond NT $~+~ L C ~+~ D y r a c t ~ A P j ~+~ L C ~$
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

Ferrari et al. (1999) demonstrated with scanning electron microscope reports that when enamel was etched with 36% phosphoric acid, a deeper etch pattern was formed than when etching was performed with NRC. Resin tags were produced in both cases with the application of Prime \& Bond NT. When no form of etching was applied to enamel, no resin tags were formed with the application of Prime $\&$ Bond NT and the characteristic etched pattern of enamel was not observed. It would be expected that a deeper etch pattern on the enamel side would result in better resin penetration and in turn in less microleakage. Saliva proteins could clog an already etched enamel surface and decrease adhesive penetration and in turn result in more microleakage.

However the analysis of the present study indicated microleakage from the worst leakage to the least leakage on the enamel side in the following sequence:
Group: $4 ; 7 ; 1 ; 5 ; 8 ; 3 ; 6 ; 2$ (detail in table 1)

Table 1. Experimental groups ($L C=$ Light-cured $)$

Group 1	Prime \& Bond NTj + LC + Dyract APj + LC
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

The only unexpected result was therefore that group 7 resulted in more microleakage than group 1. However, statistically their results did not differ significantly.

Other studies involving microleakage and Prime \& Bont NT have shown that it is possible to eliminate microleakage on the enamel side (Tung et al., 2000a; Tung et al., 2000b; Moodley et al., 2000; Cardoso et al., 1999) if some form of etching had taken place during
cavity preparation. None of the studies were able to totally eliminate microleakage on the dentine side even if the cavity had been blot dried with a cotton pellet or extremely gently air-dried to ensure that the dentine still remains moist. Currently no studies are available on the influence of saliva contamination of Prime \& Bond NT, but Evancusky and Meiers (2000) found that saliva contamination had no significant effect on the microleakage on the enamel side of Prime \& Bond 2.1.

In the present study, etching followed by curing of the bonding agent and in turn followed by saliva contamination (groups 6 and 8), resulted in statistically significantly less microleakage on the enamel side than when no form of etching was performed and no saliva contamination had taken (group 1). When saliva contamination took place immediately after etching with 36% phosphoric acid and before Prime \& Bond NT was applied (group 5) this also produced statistically significantly less microleakage than when no form of etching was applied and no saliva contamination had taken place a's in group 1. Microleakage was therefore only significantly influenced if no form of etching was applied or if a week form of etching was applied and saliva contamination took place before curing of the bonding agent. These results support the fact that with no form of etching no characteristic etch pattern of enamel and no resin tags are produced. On the enamel side the results correspond to those achieved by Evancusky \& Meiers (2000). Etching therefore seems to be crucial in order to eliminate microleakage at the enamel margin, even in the absence of saliva contamination. Manufactures however do not routinely advise etching and often only advocate it in large cavities or stress bearing areas (Dyract AP Technical Manual, 1999).

In this experiment it was also expected that microleakage at the dentine margin would be ranked from worst microleakage to least microleakage as follows: Group: $4 ; 8 ; 6 ; 1 ; 7 ; 5 ; 3 ; 2$ (details of groups in table 1).

Table 1. Experimental groups (LC = Light-cured)

Group 1	Prime \& Bond NTi + LC + Dyract AP + LC
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

The reasons for this are probably that mechanical preparation results in the surfaces being covered by a film of denatured protein and ground hydroxyapatite, which is referred to as the smear layer. The smear layer extends into the dentine tubules to form plugs (Pashley, 1984) and could be incorporated into the hybrid layer or modified or removed by acid etching (Pashley et al., 1997). Removal of the smear layer by acid etching causes an increase in surface permeability (Bowen et al., 1984). Stronger etchants remove the smear layer more thoroughly and therefore unplug the dentinal tubules more effectively. Ferrari et al. (1999) reported that etching with 36% phosphoric acid followed by Prime \& Bond NT application, produced a hybrid layer and dense resin tags of $10-30 \mu \mathrm{~m}$ length. NRC etching produced a thinner hybrid layer and less dense resin tags while no etching did not result in clear hybrid layer formation and the resin tags did not completely seal the tubular orifices.

Water fills the spaces around the collagen fibrils and the resins must diffuse through this water to form a hybrid layer (Nakabayashi et al., 1982). Mechanical interlocking is initiated by a water tolerant primer permeating the spaces in the networked structure of the collagen, created by acid etching. As a result of a decrease in surface tension,
air-drying results in the water that was supporting the collagen network to evaporate and this in turn also results in shrinkage or collapse of the collagen fibrils (Pashley \& Carvalho, 1997). A region of unprotected collagen fibers may exist if the resin does not completely infiltrate and surround the decalcified collagen fibers (Miyazaki et al., 1998). Acetone solvents act as "water chasers" (Abdalla \& Davidson, 1998) and remove the water molecules by dissolving it. The primer monomers are dissolved in acetone and diffuse into the spaces previously occupied by water. (Pashley \& Carvalho, 1997). Wet bonding therefore prevents collagen fibers from collapsing (Kanca, 1992a; Saunders \& Saunders, 1996). If dentine is dried too much the resulting collapse of the collagen fibers around the tubules before primer application could cause a decrease in resin penetration.

The analysis of the present study indicated microleakage from the worst microleakage to the least microleakage on the dentine/cementum side in the following sequence:
Group: $8 ; 6 ; 3 ; 2 ; 5 ; 7 ; 4 ; 1$ (details of groups in table 1).

Table 1. Experimental groups ($\mathrm{LC}=$ Light-cured)

Group 1	Prime \& Bond NTJ + LC + Dyract APj + LC
Group 2	Phosphoric acid + Prime \& Bond NT + LC + Dyract AP + LC
Group 3	Non Rinse Conditionerj (NRC) + Prime \& Bond NT + LC Dyract AP + LC
Group 4	Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 5	Phosphoric acid + Saliva + Prime \& Bond NT + LC + Dyract AP + LC
Group 6	Phosphoric acid + Prime \& Bond NT + LC + Saliva + Dyract AP + LC
Group 7	Non Rinse Conditioner (NRC) + Saliva + Prime \& Bond NT + + LC + Dyract AP + LC
Group 8	Non Rinse Conditioner (NRC) + Prime \& Bond NT + LC + Saliva + Dyract AP + LC

Unexpected results were therefore found in groups 1, 2, 3 and 4 on the dentine side. This could possibly be explained as follows:

In the present experiment cavities were dried after rinsing or saliva contamination with a single gust of air. In the literature review we can clearly see the importance that the dentine must be kept moist (Kanca, 1992a; Kanca, 1992b) in order to prevent the collagen fibers
from collapsing and in turn to ensure that the hydrophilic monomers penetrate deep into the demineralized collagen network. Due to the deeper demineralization of the collagen network produced with stronger etchants it is more prone to collapsing if too much water is removed. The utmost importance of understanding what the manufacturers imply with "moist dentine", and how to achieve it, becomes clear seeing that 3 seconds of air drying resulted in significantly lower bond strengths than blotting dry a cavity (De Goes ne, et al., 1997).

The fact that etching causes deeper demineralization and that the collagen network is more susceptible to collapse in these cases, if the dentine is not dried in the correct manner, could explain the performance of groups 1 and 4. It is speculated that saliva contamination immediately after etching could "overwet" the demineralised area and therefore compensate for water loss if "overdrying" had taken place in combination with deeper demineralization. This could also explain why groups 5 and 7 gave statistically better results than groups 2 and 3 . Although group 7 performed better than group 5 there was no statistical difference between their results.

Groups 6 and 8 were etched, and the Prime $\&$ Bond NT cured before saliva contamination. Seeing that the resin was already cured, the "wetting" action of the saliva was probably not able to compensate for the "overdrying" of the dentine. Further, the saliva proteins could have clogged the remaining demineralized tubules and formed a film between the Prime \& Bond NT and the Dyract AP, thus allowing microleakage. The above mentioned facts combined with deep demineralzation possibly resulted in the significantly more microleakage in groups 6 and 8 than in all the other groups.

The fact that group 4 performed statistically better than groups 6 and 8 indicates that the etching of groups 6 and 8 played a bigger part in the microleakage. Not only was the demineralization of the collagen network and its possible collapse due to "overdrying" much worse in groups 6 and 8, but one layer of Prime $\&$ Bond NT is possibly not enough to infiltrate all the deminerlized dentinal tubules. Platt, Almeida, Gonzalez-Cabezas, Rhodes and Moore (2001) reported that a double layer of Prime \& Bond NT gave significantly better results.

No studies are currently available on the influence of saliva contamination of Prime \& Bond NT. Abdalla and Davidson (1998) and El Kalla and García-Godoy (1997) investigated the influence of saliva contamination on the shear bond strength of Prime \& Bond 2.1 if contamination took place just after etching and before adhesive application. No significant influence was found provided that the saliva was washed by water and extremely gently dried or just removed by blotting with cotton pellets. Saliva contamination did not influence hybrid layer formation and resin tag penetration of Prime \& Bond 2.1 (El-Kalla et al., 1999b). It was found to have no significant effect on the microleakage on the enamel side, but significantly increased microlekage on the dentine side of the restorations (Evancusky \& Meiers., 2000).

There are also other factors that could contribute to microleakage on the dentine side. If the Prime $\&$ Bond NT is dispensed long before use or if the bottle of Prime $\&$ Bond NT is not properly closed, the acetone could evaporate, resulting in the concentration of acetone decreasing, which in turn could limit the ability of the adhesive to penetrate the collagen network. Saliva proteins could also clog up the dentinal tubules therefore preventing penetration. The deeper the demineralization, the more saliva proteins could adhere to the dentinal tubules.

Prime \& Bond NT contains nanofillers which are absent in Prime \& Bond 2.1 (Ferrari et al., 1999). Although Prime \& Bond NT is a filled adhesive, it has a low viscosity because of its nanofiller composition (Perdigão et al., 1999). Tay, Moulding and Pashley (1999) found that nanofillers from Prime \& Bond NT were congested around patent tubular orifices but were not found within the interfibrillar spaces of the hybrid layer. They concluded that aggregation of the nanofillers within the adhesive resulted in filler clusters that are too large to infiltrate the interfibrillar spaces of the hybrid layer. They also concluded that retention of ground substance within the demineralized intertubular collagen matrix may also have prevented the infiltration of the nanofillers. Although Li, Burrow and Tyas (2000) found that the nanofillers did penetrate the hybrid layer, they also found silver nitrate infiltration and therefore microleakage throughout the hybrid layer.

Although we would expect Prime \& Bond NT to penetrate deeper into more demineralized dentine, form longer resin tags as well as a thicker hybrid layer and have less microleakage, the contrasting results achieved in this study corresponds to results achieved by Sano et al. (1995b). They reported a higher degree of microleakage when deeper demineralization of dentine had been produced. They referred to the leakage that occurs within the hybrid layer as nanoleakage.

Hashimoto, Ohno, Endo, Kaga, Sano and Oguchi (2000a) reported that after prolonged acid conditioning, there was an increase in the demineralized dentine zone without resin impregnation, within the hybrid layer. This resulted in lower bond strengths. The increase in the demineralized dentine zone without resin impregnation, can be the reason for the increased microleakage in etched dentine achieved in this study.

Research by Hashimoto, Ohno, Kaga, Endo, Sano and Oguchi (2000b) on the degradation of the resin-dentine bond over a period of 3 years in the oral cavity, revealed degradation of the hybrid layer over the 3 years. This degradation could contribute to nanoleakage and microleakage along the dentine margins. However, the above mentioned did not have an influence on the present study due to the short storage period of the filled teeth.

The results of the experiment shows that the dentine could have been dried too much, and therefore differs from results obtained by Evancusky and Meiers (2000) on the dentine margin. However, it underlines the absolute technique sensitivity of these materials. This once again highlights the fact that enamel and dentine/cementum are two completely different entities that should be treated in two completely different ways. By trying to treat them simultaneously by the total etch technique and by applying one-bottle adhesives to them, we are most probably increasing the risk of technique sensitivity and decreasing the durability of our restorations.

Although no studies currently exist which corresponds 100% to the present study, microleakage studies on Prime $\&$ Bond NT (Cardoso et al., 1999; Moodley et al., 2000) and studies on the influence of saliva contamination of Prime \&\& Bond 2.1 (Evancusky \& Meiers, 2000) partly support the results.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- The current experiments with Dyract AP and Prime \& Bond NT could not eliminate microleakage at either the enamel or the dentine/cementum margins of the restorations.
- Microleakage was statistically significantly reduced on the enamel side by acid etching with NRC or with 36% phosphoric acid.
- Saliva contamination did not significantly increase microleakage on the enamel side when 36% phosphoric acid was used to etch the enamel.
- The absence of etching resulted in the least microleakage on the dentine side.
- If saliva contamination took place after etching and prior to Prime \& Bond NT application, it resulted in less microleakage on the dentine side than when the contamination took place after curing of the Prime \& Bond NT.

RECOMMENDATIONS

- Enamel should always be etched in order to eliminate microleakage.
- Manufacturers should be emphasizing the "wet bonding" technique more and clearly indicate in their instructions how this can be achieved, preferably by dabbing the cavity with a moist cotton pellet.
- More time and money should be spent on the improvement of materials that do not emphasise the difference between enamel and
dentine and the effects of the same pre-treatment on them so severely. RMGI's could be such an example.
- The influence of the nanofillers in Prime \& Bond NT and the ability of Prime \& Bond NT to seal dentinal tubules against microleakage must be more thoroughly researched.

UNIVERSITY of the WESTERN CAPE

REFERENCES

- Abate PF, Bertacchini SM, Polack MA \& Macchi RL (1997a). Adhesion of a compomer to dental structures. Quint Int; 28(8): 509-512.
- Abate PF, Polack MA \& Macchi RL (1997b). Barcoll hardness of resin-modified glass-ionomer cements and a compomer. Quint Int; 28: 345-348.
- Abdalla AI \& Davidson CL (1998). Bonding efficiency and interfacial morphology of one-bottle adhesives to contaminated dentin surfaces. Am J Dent; 11(6): 281-285.
- Allen WR, Retief DH, Russell CM \& Denys FR (1994). Laboratory evaluation of the XR Bond Dentin/Enamel Bonding System. J Dent Assoc S Afr, 49(7): 331-337.
- Alster D, Feilzer AJ, De Gee AJ, Mol A \& Davidson CL (1992). The dependence of shrinkage stress reduction on porosity concentration in thin resin layers. J Dent Res; 71: 1619-1622.
- Andersson-Wenckert IE, Folkesson UH \& van Dijken JWV (1997). Durability of a polyacid-modified composite resin (compomer) in primary molars. A multicenter study. Acta Odontol Scand; 55(4): 255-260.
- Armstrong WD \& Simon HA (1951). Penetration of radio-calcium at the margins of filling materials: A preliminary report. J Am Dent Assoc; 43: 648-686.
- Art-Smart K, Retief DH \& Russell CM (1993). Bond strength of AllBond 2 Universal Adhesive System to enamel. J Dent Res; 72(SI): Abstr 2274.
- Asmussen E (1975). Composite restorative resin. Composition versus wall-to-wall polymerization contraction. Acta Odontol Scand; 33: 337-344.
- Attal JP, Asmussen E \& Degrange M (1994). Effects of surface treatment on the free surface of dentin. Dent Mater; 10: 259-264.
- Attin T, Buchalla W \& Hellwig E (1996). Influence of enamel conditioning on bond strength of resin-modified glass ionomer restorative materials and polyacid-modified composites. J Prosthet Dent; 76(1): 29-33.
- Attin T, Buchalla W, Kielbassa AM \& Helwig E (1995). Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent Mater, 11(6): 359-362.
- Barkmeier WW \& Cooley RL (1992). Laboratory evaluation of adhesive systems. Oper Dent; Suppl 5: 50-61.
- Barkmeier WW, Hammesfahr PD \& Latta MA (1999). Bond strength of composite to enamel and dentin using Prime \& Bond 2.1. Oper Dent; 24: 51-56.
- Barkmeier WW, Los SA \& Triolo PT Jr (1995). Bond strengths and SEM evaluation of Clearfil Liner Bond 2. Am J Dent; 8: 289-293.
- Barkmeier WW, Shaffer SE \& 'Gwinnett AJ (1986). Effects of 15 vs 60 second enamel and acid conditioning on adhesion and morphology. Oper Dent; 11:111-116.
- Barnes DM, McDonald NJ, Thompson VP, Blank LW \& Shried PJ (1994). Microleakage in facial and lingual Class 5 composite restorations: a comparison. Oper Dent; 19(4): 133-137.
- Barnes DM, Thompson VP, Blank LW \& McDonald NJ (1993). Microleakage of class 5 composite restorations: a Comparison between in vivo and in vitro. Oper Dent; 18: 237-245.
- Berg JH (1998). The continuum of restorative materials in pediatric dentistry a review for the clinician. Pediatr Dent; 20(2): 93-100.
- Bergenholtz G, Cox CF, Loesche WJ \& Syed SA (1982). Bacterial leakage around dental restorations: its effect on the dental pulp. J Oral Pathol; 11: 439-450.
- Bertacchini SM, Abate PF, Blank A, Baglieto MF \& Macchi RL (1999). Solubility and fluoride release in ionomers and compomers. Quint Int; 30(3): 193-197.
- Bertolotti RL (1990). Acid etching of dentin. Quint Int; 21: 77-88.
- Blunck U (1995). Dentinhaftmittel und Kompomere. Quint Int; 47: 19-35.
- Borem LM \& Feigal RJ (1994). Reducing microleakage of sealants under salivary contamination: digital-image analysis evaluation. Quint Int; 25(4): 283-289
- Bowen RL, Eick JD \& Henderson DA (1984). Smear layer: removal and bonding considerations. Oper Dent; 9(Suppl. 3): 30-34.
- Bowen RL, Rapson JE \& Dickson G (1982). Hardening shrinkage and hygroscopic expansion of composite resins. JDent Res; 61: 654-658.
- Boyde A, Switsur VR \& Steward ADG (1963). An assessment of two new physical methods applied to the study of dental tissue. In Advances in Fluoride Research and Dental Caries Prevention, p185. Pergamon Press Ltd, Oxford.
- Brännström M (1987). Infection beneath composite resin restorations: can it be avioded? Oper Dent; 12: 158-163.
- Buonocore MG (1955). A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res; 34: 849-853.
- Buonocore MG (1963). Principles of adhesive retention and adhesive restorative materials. J Am Dent Assoc; 67: 383-391.
- Burger KM, Cooley RL \& García-Godoy F (1992). Effect of thermocycling times on dentin bond strength. J Esthet Dent; 4: 197-198.
- Burrow MF, Takakura H, Nakajima M, Inai N, Tagami J \& Takatsu T (1994). The influence of age and depth of dentin on bonding. Dent Mater; 10(4): 241-246.
- Cacciafesta V, Jost-Brinkmann PG, Sussenberger U \& Miethke RR (1998). Effects of saliva and water contamination on the enamel shear bond strength of a light-cured glass ionomer cement. Am J Orthod Dentofacial Orthop; 113(4): 402-407.
- Cadroy I, Boj JR \& García-Godoy F (1997). Bond strength and interfacial morphology of adhesives to primary teeth dentin. Am J Dent; 10: 242-246.
- Cardoso PEC, Placido E, Francci CE \& Perdigão J (1999). Microleakage of Class V resin-based composite restorations using five simplified adhesive systems. Am J Dent; 12: 291-294.
- Carvalho RM, Yoshiyama M, Brewer PD \& Pashley DH (1996a). Dimensional changes of demineralized human dentine during preparation for SEM. Arch Oral Biol; 41: 379-386.
- Carvalho RM, Pereira JC, Yoshiyama M \& Pashley DH (1996b). A review of polymerization contraction: The influence of stress development versus stress relief. Oper Dent; 21: 17-24.
- Chappell RP, Cobb CM, Spencer P \& Eick JD (1994). Dentinal tubule anastomosis: A potential factor in adhesive bonding? J Prosthet Dent; 72: 183-188.
- Chersoni S, Lorenzi R, Ferrieri P \& Prati C (1997). Laboratory evaluation of compomers in Class V restorations. Am J Dent; 10: 147-151.
- Chigira H, Yukitani W \& Hasegawa T, Manabe A, Itoh K, Hayakawa T, Debari K, Wakumoto S \& Hisamitsu H (1994). Selfetching dentin primers containing Phenyl-P. J Dent Res; 73: 10881095.
- Christen AG \& Mitchell DF (1966). A flourescent dye method for demonstrating leakage around dental restorations. J Dent Res; 45: 1485-1492.
- Cho E, Kopel H \& White SN (1995). Moisture susceptibility of resin-modified glass-ionomer materials. Quint Int; 26: 351-358.
- Cortes O, Garcia C, Perez L \& Perez D (1998). Marginal microleakage around enamel and cementum surfaces of two compomers. J Clin Pediatr Dent; 22(4): 307-315.
- Cortes O, García-Godoy F \& Boj JR (1993). Bond strength of resin-reinforced glass ionomer cements after enamel etching. Am J Dent; 6: 299-301.
- Cox CF (1992). Microleakage related to restorative procedures. Proc Finn Dent Soc; 88(Suppl):83-93.
- Cox CF (1994). Evaluation and treatment of bacterial microleakage. Am J Dent; 7: 293-295.
- Crim GA (1993). Marginal leakage of visible light-cured glass ionomer restorative materials. J Prosthet Dent; 69: 561-563.
- Croll TP \& Killian CM (1992). Visible light-hardened glass-ionomer-resin cement restorations for primary teeth: New developments. Quint Inter; 23: 679-682.
- Croll TP (1992). Glass ionomers and esthetic dentistry: what the new properties mean to dentistry. J Am Dent Ass; 123: 51-54.
- Croll TP (1998). Alternatives to silver amalgam and resin composite in pediatric dentistry. Quint Int; 29: 697-703.
- Davidson CL (1986). Resisting the curing contraction with adhesive composites. J Prosthet Dent; 55: 446-447.
- Davidson CL \& Abdalla AI (1994). Effect of occlusal load cycling on the marginal integrity of adhesive Class V restorations. Am J Dent; 7: 111-114.
- Davidson CL, de Gee AJ \& Feilzer AJ (1984a). The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res; 63: 1396-1399.
- Davidson CL \& de Gee AJ (1984b). Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res; 63: 146-148.
- De Goes MF, Pachane GC \& García-Godoy F (1997). Resin bond strength with different methods to remove excess water from the dentin. Am J Dent; 10(6): 298-301.
- Detrey (1994). Dyract. A Single-component Compomer. The technology behind it;p6. Dentsply product information handbook.
- de Wet FA, van der Vyver PJ, Eick JD \& Dusevich VM (2000). Environmental scanning electron microscopy of hydrated conditioned/etched dentine. SA Dent J; 55(11): 603-609.
- Desai M \& Tyas MJ (1996). Adhesion to enamel of light-cured poly-acid dental materials. Aust Dent $J ; 41$ (6): 393-397.
- Dietrich T, Kraemer M, Losche GM \& Roulet JF (2000a). Marginal integrity of large Compomer Class II restorations with cervical margins in dentine. J Dent; 28(6): 399-405.
- Dietrich T, Kraemer M, Losche GM, Wernecke KD \& Roulet JF (2000b). Influence of dentin conditioning and contamination on the marginal integrity of sandwich Class II restorations. Oper Dent; 25(5): 401-410.
- Doerr CL, Hilton TJ \& Hermesch CB (1996). Effect of thermocycling on the microleakage of conventional and resinmidified glass ionomers. Am J Dent; 9(1): 19-21.
- Douglas WH (1989). Clinical status of dentine bonding agents. J Dent; 17: 209-215.
- Dyract Technical Manual, Dentsply, Dentsply De Trey Gmbh, 1994.
- Dyract AP Technical Manual, Dentsply, Dentsply De Trey Gmbh, 1999.
- Eakle WS \& Nakamoto DK (1989). Microleakage in MOD resin composite with three dentin bonding agents. Dent Mater, 5: 361364.
- Eick JB, Robinson SJ, Cobb CM, Chappell RP \& Spencer P (1992). The dentinal surface: Its influence on dentinal adhesion. Part II. Quint Int; 23: 43-51.
- Eick JD, Gwinnett AJ, Pashley DH \& Robinson SJ (1997). Current concepts on adhesion to dentine. Crit Rev Oral Biol Med; 8: 306335.
- Eick JD, Miller RG, Robinson SJ, Bowles CQ, Gutshall PL \& Chappelow CC (1996). Quantative analysis of the dentin adhesive interface by Auger spectroscopy. J Dent Res; 75:1027-1033.
- Eick JD, Robinson SJ, Chappell RP, Cobb CM \& Spencer P (1993). The dentinal surface: Its influence on dentinal adhesion. Part III. Quint Int; 24:571-582.
- Eick JD, Wilko RA, Anderson CH \& Sorensen SE (1970). Scanning electron microscopy of cut tooth surfaces and identification of debris by use of the electron microprobe. J Dent Res; 49:13591368.
- El-Kalla IH \& Garcia-Godoy F (1997). Salivá contamination and bond strength of single-bottle adhesives to enamel and dentin. Am J Dent; 10(2): 83-87.
- El-Kalla IH \& Garcia-Godoy F (1998). Bond strength and interfacial micromorphology of compomers in primary and permanent teeth. Int J Paediatr Dent; 8(2): 103-114.
- El-Kalla IH (1999a). Marginal adaptation of compomers in Class I and V cavities in primary molars. Am J Dent; 12(1): 37-43.
- El-Kalla IH (1999b). Saliva contamination and resin micromorphological adaptation to cavity walls using single-bottle adhesives. Am J Dent; 12:172-176.
- Eliades G, Kakaboura A \& Palaghias G (1998). Acid-base reaction and flouride release profiles in visible light-cured polyacid-
modified composite restoratives (compomers). Dent Mater; 14(1): 57-63.
- Eliades GC, Caputo AA \& Vougiouklakis GJ (1985). Composition, wetting properties and bond strength with dentin of six new dentin adhesives. Dent Mater; 1: 170-176.
- Estafan D, Pines MS, Erakin C \& Fuerst PF (1999). Microleakage of Class V restorations using two different compomer systems: an in vitro study. J Clin Dent; 10(4): 124-126.
- Evancusky JW \& Meiers JC (2000). Microleakage of Compoglass-F and Dyract AP compomers in Class V preparations after salivary contamination. Pediatr Dent; 22(1): 39-42.
- Fan PL, Edahl A, Leung RL \& Stanford JW (1985). Alternative interpretations of water sorption values of composite resins. J Dent Res; 64(1): 78-80.
- Feilzer AJ, de Gee AJ \& Davidson CL (1987). Setting stress in composite resin in relation to configuration of the restoration. J Dent Res; 66(11): 1636-1639.
- FeilzerAJ, de Gee AJ \& Davidson CL (1988). Curing contraction of composite and glass ionomer cement. J Prosthet Dent; 59: 298300.
- Feilzer AJ, de Gee AJ \& Davidson CL (1990a). Relaxation of polymerization contraction shear stress by hygroscopic expansion. J Dent Res; 69: 36-39.
- Feilzer AJ, de Gee AJ \& Davidson CL (1990b). Quantitative determination of stress reduction by flow in composite restorations. Dent Mater, 6: 167-171.
- Feilzer AJ, Kakaboura AI, de Gee AJ \& Davidson CL (1995). The influence of water sorption on the development of the setting shrinkage stress in traditional and resin modified glass ionomer cements. Dent Mater; 11: 186-190.
- Ferrari M, Cagidiaco MC, Kugel G \& Davidson CL (1996a). Dentin infiltration by three adhesive systems in clinical and laboratory conditions. Am J Dent 9(6): 240-244.
- Ferrari M \& Davidson CL (1996b). In vivo resin-dentin interdiffusion and tag formation with lateral branches of two adhesive systems. J Prosthet Dent; 76: 250-253.
- Ferrari M, Mannocci F, Vichi A \& Davidson CL (1997a). Effect of two etching times on the sealing ability of Clearfil Liner Bond 2 in Class V restorations. Am J Dent; 10:66-70.
- Ferrari M, Goracci G \& García-Godoy F (1997b). Bonding mechanism of three "one-bottle" systems to conditioned and unconditioned enamel and dentin. Am J Dent; 10(5): 224-230.
- Ferrari M, Mannocci F, Kugel G \& García-Godoy F (1999). Standardized microscopic evaluation of the bonding mechanism of NRC/Prime \& Bond NT. Am J Dent; 12(2): 77-83.
- Ferrari M, Vichi A, Mannocci F \& Davidson CL (1998). Sealing ability of two "compomers" applied with and without phosphoric acid treatment for class V restorations in vivo. J of Prosthetic Dent; 79: 131-135.
- Ferrari M, Yamamoto K, Vichi A \& Finger WJ (1994). Clinical and laboratory evaluation of adhesive restorative systems. Am J Dent; 7(4): 217-219.
- Finger WJ \& Fritz UB (1997). Resin bonding to enamel and dentin with one-component UDMA/HEMA adhesives. Eur J Oral Sci; 105(2): 183-186.
- Finger WJ, Inoue M \& Asmussen E (1994). Effect of wettability of adhesive resins on bonding to dentin. Am J Dent; 7: 35-38.
- Forsten L (1991). Fluoride release and uptake by glass ionomers. Scand J Dent Res; 99: 241-245.
- Freedman G \& Goldstep F (1997). Fifth generation bonding systems: State of the art in adhesive dentistry. J Can Dent Asso; 63: 439-443.
- Friedl KH, Powers JM \& Hiller KA (1995). Influence of different factors on bond strength of hybrid ionomers. Oper Dent; 20: 7480.
- Friedl KH, Schmalz G, Hiller KA \& Mortazavi F (1997). Marginal adaptation of composite restorations versus hybrid ionomer/ composite sandwich restorations. Oper Dent; 22: 21-29.
- Fritz UB, Finger WJ \& Stean H (1998). Salivary contamination during bonding procedures with a one-bottle adhesive system. Quint Int; 29(9): 567-572.
- Fritz UB, Finger WJ \& Uno S (1996). Resin-modified glass ionomer cements: bonding to enamel and dentin. Dent Mater; 12(3): 161-166.
- Fukushima M, Nakamata T, Okabe T, Yamaga M, Sunada S \& Iwaku M (1991). Mikroleakage of various dentin adhesive systems on root surface caries. Adh Dent; 9: 9-23.
- Fusayama A \& Kohno A (1989). Marginal closure of composite restorations with the gingival wall in cementum/dentin. J Prosthet Dent; 61:293-296.
- Fusayama T \& Terachima S (1972). Differentiation of two layers of carious dentine by staining. J Dent Res; 51:866.
- Fusayama-T (1987). Factors and prevention of pulp irritation by adhesive composite resin restorations. Quint Int; 18: 633-640.
- Fusayama T (1992). Total etch technique and cavity isolation. J Esthet Dent; 4: 105-109.
- Gale MS, Darvell BW \& Cheung GSP (1994). Three-dimensional reconstruction of microleakage pattern using a sequential grinding technique. J Dent; 22: 370-375.
- Gallo JR, Comeaux R, Haines B, Xu X \& Burgess JO (2001). Shear bond strength of four filled dentin bonding systems. Oper Dent; 26(1): 44-47.
- García-Godoy F \& Hosoya Y (1998). Bonding mechanism of Compoglass to dentin in primary teeth. J Clin Pediatr Dent; 22: 217-220.
- Gladys S, Van Meerbeeck B, Lambrechts P \& Vanherle G (1998). Marginal adaptation and retention of a glass-ionomer, resinmodified glass-ionomers and a polyacid-modified resin composite in cervical Class-V lesions. Dent Mater; 14(4): 294-306.
- Gladys S, Van Meerbeek B, Braem M, Lambrechts P \& Vanherle G (1997). Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite resotrative materials. J Dent Res; 76(4): 883-894.
- Glasspoole EA \& Erickson RL (1986). Effect of acid etching and rinsing times on composite to enamel bond strengths. J Dent Res; 65: 285; Abstr 1046.
- Going RE (1972). Microleakage around dental restorations: A summarizing review. J Am Dent Assoc; 84: 1349-1357.
- Gordan VV, Boyer D \& Soderholm KJ (1998). Enamel and dentine shear bond strength of two resin modified glass ionomers and two resin based adhesives. J of Dentistry; 26: 497-503.
- Gordan VV, Vargas MA, Cobb DS \& Denehy GE (1997). Evaluation of adhesive systems using acidic primers, Am J Dent: 10:219-223.
- Gordan VV, Vargas MA, Cobb DS \& Denehy GE (1998). Evaluation of acidic primers in microleakage of Class 5 composite resin restorations. Oper Dent; 23(5): 244-249.
- Gwinnett AJ \& Kanka J (1992). Micromorphological relationship between resin and dentin in vivo and in vitro. Am J Dent; 5: 19-23.
- Gwinnett AJ \& Matsui A (1967). A study of enamel adhesives. The physical relationship between enamel and adhesive. Arch Oral Biol; 12: 1615-1618.
- Gwinnett AJ (1971). Histologic changes in human enamel following treatment with acidic adhesive conditioning agents. Archives Oral Biol; 16: 731-738.
- Gwinnett AJ (1976). The scientific basis of the sealant procedure. J Prev Dent; 3: 15-28.
- Gwinnett AJ (1984). Smear layer: morphological considerations. Oper Dent; 9(Suppl. 3): 3-12.
- Gwinnett AJ (1992). Moist versus dry dentin: It's effect on shear bond strength. Am J Dent; 5:127-129.
- Gwinnett AJ (1993). Qualitative contribution of resin infiltration/hybridization to dentin bonding. Am J Dent; 6: 7-9.
- Gwinnett AJ (1994). Dentine bond strength after air drying and rewetting. Am J Dent; 7:144-148.
- Gwinnett AJ, Tay FR, Pang KM \& Wei SHY (1995). Comparison of three methods of critical evaluation of microleakage along restorative interfaces. J Prosthet Dent; 74(6): 575-585.
- Haller B, Hofmann N, Klaiber B \& Bloching U (1993). Effect of storage media on microleakage of five dentin bonding agents. Dent Mater; 9(3): 191-197,
- Hallett KB \& García-Godoy F (1993). Microleakage of resinmodified glass ionomer cement restorations: an in vitro study. Dent Mater; 9(5): 306-311.
- Hansen EK \& Asmussen EA (1985). A comparative study of dentin adhesives. Scan J Dent Res; 93: 280-287.
- Hansen EK (1986). Effect of cavity depth and application technique on marginal adaptation of resins in dentin cavities. J Dent Res; 65; 1319-1321.
- Hashimoto M, Ohno H, Endo K, Kaga M, Sano H \& Oguchi H (2000a). The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer. Dent Mater; 16(6): 406-411.
- Hashimoto M, Ohno H, Endo K, Kaga M, Sano H \& Oguchi H (2000b). In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res; 79(6): 1385-1391.
- Heymann HO \& Bayne SC (1993). Current concepts in dentine bonding: Focusing on dentinal adhesion factors. J Am Dent Assoc; 124: 26-36.
- Hilton TJ \& Ferracane JL (1999). Cavity preparation factors and microleakage of Class II composite restorations filled at intraoral temperatures. Am J Dent; 11: 123-130.
- Hirsch L \& Weinreb MM (1958). Marginal fit of direct acrylic restorations. J Am Dent Assoc; 56: 13-21.
- Holderegger C, Paul SJ, Luthy H \& Scharer P (1997). Bond strength of one-bottle dentin bonding agents on human dentin. Am J Dent; 10(2): 71-76.
- Hotz P, McClean JW, Sced I \& Wilson AD (1977). The bonding of glass ionomer cements to metal and tooth substrates. Br Dent J; 142: 41-47.
- Hse KMY \& Wei SHY (1997). Clinical evaluation of compomer in primary teeth: 1- year results. J Am Dent Assoc; 128(8): 1088-1096.
- Hse KMY, Leung SK \& Wei SHY (1999). Resin-ionomer restorative materials for children: A review. Aust Dent J; 44(1): 1-11.
- Ikemura K, Kouro Y \& Endo T (1996). Effect of 4acryloxyethyltrimellitic acid in a self-etching primer on bonding to ground dentine. Dent Mater J; 15:132-143.
- Inai N, Kanemura N. Tagami J, Watanabe LG, Marshall SJ \& Marshall GW (1998). Adhesion between collagen depleted dentin and dentin adhesives. Am J Dent; 11:123-127.
- Inokoshi S, Hosoda H, Harnirattisai C \& Shimada Y (1993). Interfacial structure between dentin and seven dentin bonding systems revealed using argon ion beam etching. Oper Dent; 18: 816.
- Jacobsen R, Ma R \& Söderholm KJ (1994). Dentin bonding through interpenetrating network formation. Trans Acad Dent Mater; 7: 45-52.
- Jacobsen T \& Finger WJ (1993). Morphology of coupling sites between bonding agents and dentine in vivo and in vitro. J Dent; 21: 150-157.
- Jameson MW, Hood JA \& Tidmarsh BG (1993). The effects of dehydration and rehydration on some mechanical properties of human dentine. J Biomech; 26:1055-1065.
- Jansen van Rensburg BG (1981). Mondbiologie; Juta en Kie, Bpk.
- Kälin C, Paul SJ, Schärer P, Düggelin M, Mathys D \& Guggenheim R (1998). Evaluation of the interface between onebottle bonding agents and dentin by cryopreparation and lowtemperature scanning electron microscopy (LTSEM). A pilot study on perfused dentinal samples. Jof Dent; 26: 511-520.
- Kanca J (1989). Microleakage of five dentin bonding systems. Dental Mater; 5: 415-416.
- Kanca J(1992a). Resin bonding to wet substrate. I. Bonding to dentine. Quint Int; 23:39-41.
- Kanca J (1992b). Effect of resin primer solvents and surface wetness on resin composite bond strength to dentin, Am J Dent; 5:213-215.
- Kanca J \& Sandrik J (1998). Bonding to dentine. Clues to the mechanism of adhesion. Am J Dent; 11: 154-159.
- Kaplan I, Mincer HH, Harris EF \& Cloyd JS (1992). Microleakage of composite resin and glass ionomer cement restorations in retentive and nonretentive cervical cavity preparations. J Prosthet Dent; 68: 616-623.
- Kato G \& Nakabayashi N (1996). Effect of phosphoric acid concentration on wet-bonding to etched dentin. Dent Mater; 12(4): 250-255.
- Katoma TR \& Winkler MM (1994). Stress analysis of a bulk-filled class V light-cured composite restoration. J Dent Res; 73: 14701477.
- Kanca J \& Sandrik J (1998). Bonding to dentine. Clues to the mechanism of adhesion. Am J Dent; 11: 154-159.
- Kemp-Scholte CM \& Davidson CL (1990a). Marginal integrity related to bond strength and strain capacity of composite resin restorative systems. J Prosthet Dent; 60: 658-663.
- Kemp-Scholte CM \& Davidson CL (1990b). Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J Dent Res; 69: 1240-1243.
- Kidd EAM (1976). Microleakage: A review. J Dent; 4: 199-205.
- Kidd EAM, Joyston-Bechal S, Smith MM, Allan R, Howe L \& Smith SR (1989). The use of caries detector dye in cavity preparation. Br Dent J; 167: 132-134.
- Kugel G, Perry RD, Hoang E, Hoang T \& Ferrari M (1998). Dyract compomer: comparison of total etch vs. no etch technique. Gen Dent; 46(6): 604-606.
- Lai JH \& Johnson AE (1993). Measuring polymerization shrinkage of photo-activated restorative materials by a water-filled dilometer. Dent Mater; 9(2): 139-143.
- Lee SY \& Lin CT (1997). Storage effect on dentine structure and on resultant composite bond strengths. J of Oral Rehabil; 24: 823834.
- Li H, Burrow MF \& Tyas MJ (2000). Nanoleakage patterns of four dentin bonding systems. Dent Mater; 16(1): 48-56.
- Li H, Tyas MJ \& Burrow MF (1999). Nanoleakage of four dentine adhesive systems. Austr Dent J ADRF; (Suppl) 44:4:s8-s9.
- Lim CC, Neo J \& Yap A (1999). The influence of finishing time on the marginal seal of a resin-modified glass-ionomer and polyacidmodified resin composite. J Oral Rehabil; 26(1): 48-52.
- Lin A, McIntyre NS \& Davidson RD (1992). Studies on the adhesion of glass-ionomer cements to dentin. J Dent Res; 71: 1836-1841.
- Linden JJ \& Swift EJ Jr (1994). Microleakage of two new dentin adhesives. Am J Dent; 7(1): 31-34.
- Lou Y, Lo EC, Fang DT \& Wei SH (2000). Clinical evaluation of polyacid-modified resin composite posterior restorations: Oneyear results. Quint Int; 31(9): 630-636.
- Lucena-Martin C, Gonzalez-Rodriquez MP, Ferrer-Luque CM, Robles-Gijon V \& Navajas JM (1999). Study of the shear bond strength of five one-component adhesives under simulated pulpal pressure. Oper Dent; 24(2): 73-80.
- Maciel KT, Carvalho RM, Ringle RD, Preston CD, Russell CM \& Pashley DH (1996). The effects of acetone, ethanol, HEMA, and air on the stiffness of human decalcified dentine matrix. J Dent Res; 75:1851-1858.
- Mandras RS, Retief DH \& Russell CM (1993). Quantitative microleakage of six dentin bonding systems. Am J Dent; 6(3): 119122.
- Maneenut C \& Tyas MJ (1995). Clinical evaluation of resinmodified glass-ionomer restorative cements in cervical "abrasion" lesions: One-year results. Quint Int; 26: 739-743.
- Manhart J, Chen HY, Mehl A, Weber K \& Hickel R (2001). Marginal quality and microleakage of adhesive class V restorations. J Dent; 29(2): 123-130.
- Marks LAM, van Amerogen WE, Kreulen CM, Weerheijm KL \& Martens LC (1999). Conservative interproximal box-only polyacid modified composite restorations in primary molars, twelve-month clinical results. ASDC J Dent Child; 66(1) 23-29.
- Marshall K \& Page J (1990). The use of rubber dam in the UK. A survey. Br Dent J; 169(9): 286-91.
- Martin R, Paul SJ, Luthy H \& Scharer P (1997). Dentin bond strength of Dyract Cem. Am J Dent; 10: 27-31.
- Mass E, Gordon M \& Fuks AB (1999). Assessment of compomer proximal restorations in primary molars: a retrospective study in children. ASDC J Dent Child; 66(2): 93-97.
- Mathis RS \& Ferracane JL (1989). Properties of a glass ionomer/resin-composite hybrid material. Dent Mater; 5: 355-358.
- McCrary BR, Powers JM \& Ladd GD (1994). Mechanical properties of light and dark cured hybrid ionomer. J Dent Res; 73: 219; Abstr 219.
- McCabe JF (1996). Resin-modified glass-ionomers. Abstracts: $1^{\text {st }}$ European Union Conference on Glass-ionomers. Coventry: University of Warwick; p24-28.
- McLean JW, Nicholson JW \& Wilson AD (1994). Proposed nomenclature of glass ionmer dental materials and related materials. Quint Int; 9: 587-589.
- Megid FYA \& Salama FS (1997). Shear bond strength of Dyract comopomer material to dentin of primary molars. J Clin Pediatr Dent; 21(4): 305-310.
- Mitra SB (1991). Adhesion to dentin and physical properties of a light-cured glass-ionomer liner/base. J Dent Res; 70: 72-74.
- Mixson J, Eich JD, Chappell RP, Tira DE \& Moore DL (1991). Comparison of two surface and multiple-surface scoring methodologies for in vitro microleakage studies. Dent Mater; 7: 191-196.
- Miyazaki M, Hirohata N, Takagaki K, Onose H \& Moore BK (1999a). Influence of self-etching primer drying time on enamel bond strength of resin composites. J Dent; 27(3): 203-207.
- Miyazaki M, Fukuishi K \& Onose H (1999b). Influence of light irradiation on the volumetric change of polyacid-modified resin composites. J of Dentistry; 27(2): 149-153.
- Miyazaki M, Sato M, Onose H \& Moore BK (1998). Influence of thermal cycling on dentin bond strength of two-step bonding systems. Am J Dent; 11(3): 118-122.
- Mjör IA \& Nordhal I (1996). The density and branching of dental tubules in human teeth. J Dent Res; 75: 346; Abstr 2628.
- Momoi Y \& McCabe JF (1993). Fluoride release from lightactivated glass ionomer restorative cements. Dent Mater; 9: 151154.
- Monteira S, Sigurjons H, Swartz ML, Phillips RW \& Rhodes BF (1986). Evaluation of materials and techniques for restoration of erosion areas. J Prosthet Dent; 55: 434-442.
- Moodley D, Grobler SR, Rossouw RJ, Oberholzer TG \& Patel N (2000). In vitro evaluation of two adhesive systems used with compomer filling materials. Int Dent J; 50(6): 400-406.
- Morabito A \& Defabianis P (1997). The marginal seal of various restorative materials in primary molars. J Clin Pediatr Dent; 22(1): 51-54.
- Mount GJ(1991). Adhesion of glass-ionomer cement in the clinical environment, Oper Dent; 16; 141-148.
- Nakabayashi N (1991a). Dentinal bonding mechanisms. Quint Int; 22:73-74
- Nakabayashi N, Nakamura M \& Yasuda N (1991b). Hybrid layer as a dentin-bonding mechanism. J Esthet Dent 3:133-138.
- Nakabayashi N \& Takarada K (1992a). Effect of HEMA on bonding to dentine. Dent Mater; 8: 125-130.
- Nakabayashi N, Ashizawa M \& Nakamura M (1992b). Identification of a resin-dentin hybrid layer in vital human dentin created in vivo: Durable bonding to dentin. Quint Int; 23:135-141.
- Nakabayashi N, Kojima K \& Masuhara E (1982). Promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res; 16: 265-273.
- Nicholson JW \& Alsarheed M (1998); Changes on storage of polyacid-modified composite resins. J Oral Rehab; 25: 616-620.
- Nomura S, Hiltner A, Lando JB \& Baer E (1997). Interaction of water with native collagen. Biopolymers; 16:231-246.
- Nordenvall K-J, Brännström M \& Malmgren O (1980). Etching of deciduous teeth and young and old permanent teeth. A comparison between 15 and 60 seconds of etching. Am J Ortho; 78: 99-108.
- NRC Technical Manual, Dentsply, Dentsply De Trey Gmbh, 1998.
- O'Brien WJ, Espinoza RJ, Leinfelder KF, Krainik D \& Krainik E (1971). Animal study of adhesion and leakage of a carboxylate cement. J Dent Res; 50: 774.
- Okamoto Y, Heeley JD \& Dogon IL (1991). Effects of phosphoric acid and tannic acid on dentine collagen. J Oral Rehab; 18: 507512.
- Owens BM (1997). Microleakage of cervical restorations etched with a weak organic acid. J Can Dent Assoc; 63(6): 445-447.
- Owens BM, Halter TK \& Brown DM (1998). Microleakage of toothcolored restorations with a beveled gingival margin. Quint Int; 29(6): 356-361.
- Pashley DH (1991a). Dentine bonding: overview of the substrate with respect to adhesive material. J Esthet Dent; 3: 46-50.
- Pashley DH (1991b). Clinical correlations of dentin structure and function. J Pros Dent; 66: 777-781.
- Pashely DH \& Pashley EL (1991c). Dentin permeability and restorative dentistry: a status report for the American Journal of Dentistry. Am J Dent; 4: 5-9.
- Pashley DH \& Carvalho RM (1997). Review. Dentine permeability and dentine adhesion. J Dent; 25(5): 355-372.
- Pashley DH \& Matthews WG (1993a). The effects of outward forced convective flow on inward diffusion in human dentine in vitro. Arch Oral Biol; 38: 577-582.
- Pashley DH, Ciucchi B, Suno H \& Homer JA (1993b). Review. Permeability of dentin to adhesive agents. Quint Int; 24: 618-631.
- Pashley DH (1984). The smear layer: physiological considerations. Oper Dent; 9(Suppl):13-29.
- Pashley DH, Horner JA \& Brewer PD (1992). Interactions of conditioners on the dentine surface. Oper Dent; 17: Suppl 5: 137150.
- Pashley DH, Sano H, Oucchi B, Yoshiyama M \& Carvalho RM (1995). Adhesion testing of dentine bonding agents. Dent Mater; 11: 117-125.
- Perdigão J, Baratieri LN \& Lopes M (1999). Laboratory evaluation and clinical application of a new one-bottle adhesive. J Esthet Dent; 11(1) 23-35.
- Perdigão J, Lambrechts P, Van Meerbeek B, Braem M, Yildiz E, Yücel T \& Vanherle G (1996). The interaction of adhesive systems with human dentin. Am J Dent; 9(4): 167-173.
- Perdigão J, Lopes L, Lambrechts P, Leitao J, Van Meerbeek B \& Vanherle G (1997). Effects of a self-etching primer on enamel shear bond strengths and SEM morphology. Am J Dent; 10:141-146.
- Perdigão J, Swift EJ Jr, Heymann HO \& Malek MA (1998). Effect of a re-wetting agent on the performance of acetone-based dentin adhesives. Am J Dent; 11(5): 207-213.
- Pereira PNR, Yamada T, Tei R \& Tagami J (1997). Bond strength and interface micromorphology of an improved resin-modified glass ionomer cement. Am J Dent; 10(3): 128-132.
- Peters TCRB, Roeters JJM \& Frankenmolen FWA (1996). Clinical evaluation of Dyract in primary molars: 1-year results. Am J Dent; 9(2): 83-88.
- Peutzfeldt A (1996). Compomers and glass ionomers: bond strength to dentin and mechanical properties. Am J Dent; 9(6): 259-263.
- Phillips RW (1982). In Skinner's Science of Dental Mateials, 8 ${ }^{\text {th }}$ ed., p.54. W.B. Saunders Co., Philadelphia, PA.
- Phillips RW (1991). In Science of Dental Materials. 9th ed., p34. W.B. Saunders Co., Philadelphia, PA.
- Platt JA, Almeida J, Gonzalez-Cabezas C, Rhodes B \& Moore BK (2001). The effect of double adhesive application on the shear bond strength to dentin of compomers using three one-bottle adhesive systems. Oper Dent; 26(3): 313-317.
- Powis DR, Folleras T, Merson SA \& Wilson AD (1982). Improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res; 61: 1416-1422.
- Prati C, Chersoni D, Cretti L \& Mongiorgi R (1997). Marginal morphology of Class V composite restorations. Am J Dent; 10(5): 231-231.
- Prati C, Chersoni S, Mongiorgi R, Montanari G \& Pashley DH (1999). Thickness and morphology of resin-infiltrated dentin layer in young, old, and sclerotic dentin. Oper Dent; 24(2): 66-72.
- Prati C, Chersoni S, Mongiorgi R \& Pashley DH (1998). Resininfiltrated dentin layer formation of new bonding systems. Oper Dent; 23: 185-194.
- Prati C, Nucci C, Davidson CL \& Montanari G (1990). Early marginal leakage and shear bond strength of adhesive restorative systems. Dent Mater, 6: 195-200.
- Prime \& Bond 2.1 Technical Manual, Dentsply, Dentsply De Trey Gmbh, 1996.
- Prime \& Bond NT Technical Manual, Dentsply, Dentsply De Trey Gmbh, 1998.
- Reeves GW, Fitchie JG, Hembree JH \& Puchett AD (1995). Microleakage of new dentin bonding systems using human and bovine teeth. Oper Dent; 20: 230-235.
- Retief DH (1973). Effect of conditioning the enamel surface with phosphoric acid. J Dent Res; 51: 333-341.
- Retief DH (1978). The mechanical bond. Int Dent J; 28: 18-27.
- Retief DH (1994). Do adhesives prevent microleakage? Int Dent J; 44: 19-26.
- Retief DH, Mandras RS \& Russell CM (1994): Shear bond strength required to prevent microleakage at the dentin/ restoration interface. Am J Dent; 7: 43-46.
- Retief DH, Mandras RS, Russell CM \& Derys FR (1992). Phosphoric acid as a dentin etchant. Am J Dent; 5:24-28.
- Retief DH, O'Brien JA, Smith LA \& Marchman JL (1988). In vitro investigation and evaluation of dentin bonding agents. Am J Dent; 1: 176-183.
- Retief DH, Wendt SL, Bradley EL \& Denys FR (1989). The effect of storage media and duration of storage of extracted teeth on the shear bond strength of Scotchbond $2 /$ Silux to dentin. Am J Dent; 2: 269-273.
- Rigsby DF, Retief DH, Russell CM \& Denys FR (1990). Marginal leakage and marginal gap dimensions of three dentinal bonding systems. Am J Dent; 3: 289-294.
- Rosa BT \& Perdigão J (2000). Bond strengths of non-rinsing adhesives. Quint Int; 31(5): 353-358.
- Rossomando KJ \& Wendt SL Jr (1995). Thermocycling and swell times in microleakage evaluation for bonded restorations. Dent Mater, 11(1): 47-51.
- Ruse ND (1999). What is a "Compomer"? J Can Dent Assoc; 65: 500-504.
- Rusz JE, Antonucci JM, Eichmiller F \& Anderson MH (1992). Adhesive properties of modified glass-ionomer cements. Dent Mater; 8: 31-36.
- Safar JA, Davis RD \& Overton JD (1999). Effect of saliva contamination on the bond of dentin to resin-modified glassionomer cement. Oper Dent; 24: 351-357.
- Salama FS \& El-Mallakh BF (1997). An in vitro comparison of four surface preparation techniques for veneering a compomer to stainless steel. Pediatr Dent; 19(4): 267-272.
- Sano H, Shono T, Takatsu T \& Hosoda H (1994). Microporous dentin zone beneath resin-impregnated layer. Oper Dent; 19: 5964.
- Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG \& Pashley DH (1995a). Nanoleakage: leakage within the hybrid layer. Oper Dent; 20(1): 18-25.
- Sano H, Yoshiyama H, Ebisu S, Burrow MF, Takatsu T, Cuicchi B, Carvalho R \& Pashley DH (1995b). Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper Dent; 20: 160-167.
- Santini A \& Mitchell S (1998). Effect of wet and dry bonding techniques on marginal leakage. $A m J$ Dent; 11:219-224.
- Saunders WP \& Muirhead JM (1992). Microleakage of composite restorations with Syntac Bond and Denthesive. Am J Dent; 5:255257.
- Saunders WP \& Saunders EM (1996). Microleakage of bonding agents with wet and dry bonding techniques. Am J Dent; 9(1): 3436.
- Schwartz RS, Summit JB \& Robbins JW (1996). In Fundamentals of operative dentistry. A contemporary approach; p141-186. Chicago: Quintessence.
- Seltzer S (1955). Penetration of microorganisms between the tooth and direct resin fillings. J Am Dent Assoc; 51: 560-566.
- Sidhu AK \& Watson TF (1995). Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry. Am J Dent; 8: 59-67.
- Sidhu SK \& Henderson LJ (1992). In vitro marginal leakage of cervical composite restorations lined with a light-cured glass ionomer. Oper Dent; 17: 7-12.
- Sidhu SK, Sherriff M \& Watson TF (1999). Failure of resinmodified glass-ionomers subjected to shear loading. J Dent; 27(5): 373-381.
- Silverstone LM (1975). The acid eteh technique: in vitro studies with special reference to the enamel surface and the enamel-resin interface. In Proceedings of an International Symposium on the Acid Etch Technique; p13-39. St Paul, MN: North Central Publishing CO.
- Silverstone LM (1984). State of the art on sealant research and priorities for further research. JDent Educ; 48(suppl): 107-118.
- Sorensen JA, Dixit NV, White SN \& Avera, SP (1991). In vitro microleakage of dentin adhesives. Int J Prosthodont; 4: 213-218.
- Spencer P, Byerly-TJ, Eick JD \& Witt JD (1992). Chemical characterization of the dentine/adhesive interface by fourier transform infrared photoacoustic spectroscopy. Dent Mater; 8: 1015.
- Staninec M, Mochizuki A, Tanizaki K, Jukuda K \& Tsuchitani Y (1986). Interfacial space, marginal leakage and enamel cracks around composite resins. Oper Dent; 11: 14-24.
- Stanley HR, Going RE \& Chuancey HH (1975). Human pulp response to acid pretreatment of dentin and to composite restoration. JAm Dent Assoc; 91: 817-824.
- Sugizaki J (1991). The effect of various primers on the dentin adhesion of resin composites. J Conserv Dent; 34: 228-265.
- Swartz ML \& Phillips RW (1961). In vitro studies on the marginal leakage of restorative materials. J Am Dent Assoc; 62: 141-151.
- Swift EJ \& Triolo PT Jr (1992a). Bond strength of Scotchbond Multi-Purpose to moist dentin and enamel. Am J Dent; 5:318-320.
- Swift EJ Jr \& Le Valley BD (1992b). Microleakage of etched-dentin composite resin restorations. Quint Int; 23: 505-508.
- Swift EJ Jr $\&$ Cloe BC (1993). Shear bond strengths of new enamel etchants. Am J Dent; 6(3): 162-164.
- Swift EJ Jr, Pawlus MA \& Vargas MA (1995). Shear bond strengths of resin-modified glass-ionomer restorative materials. Oper Dent; 20(4): 138-143.
- Swift EJ Jr, Triolo PT Jr, Barkmeier WW, Bird JL \& Bounds SJ (1996). Effect of low-viscosity resins on the performance of dental adhesives. Am J Dent; 9(3): 100-104.
- Swift EJ Jr, Wilder AD Jr, May KN Jr \& Waddell SL (1997). Shear bond strengths of one-bottle dentin adhesives using multiple applications. Oper Dent; 22: 194-199.
- Tagami J, Nakajima M, Shono T, Takatsu T \& Hosoda H (1993). Effect of aging on dentin bonding. Am J Dent; 6:145-147.
- Tanumiharja M, Burrow MF \& Tyas MJ (2000). Microtensile bond strengths of seven dentin adhesive systems. Dent Mater; 16:180187.
- Tao L \& Pashley DH (1988). Shear bond strengths to dentin: effects of surface treatments, depth and position. Dent Mater; 4: 371-378.
- Tate WH, You C \& Powers JM (1999). Bond strength of compomers to dentin using acidic primers. Am J Dent; 12: 235242.
- Tay FR, Gwinnett AJ, Pang KM \& Wei SH (1995a). Variability in microleakage observed in a total-etch wet-bonding technique under different handling conditions. J Dent Res; 74(5): 11681178.
- Tay FR, Pang KM, Gwinnett AJ \& Wei SHY (1995b). A method for microleakage evaluation along the dentin/restorative interface. Am J Dent; 8(2): 105-108.
- Tay FR, Gwinnett AJ \& Wei SHY (1996a). The overwet phenomenon: an optical, micromorphological study of surface moisture in the acid-conditioned, resin-dentin interface. Am J Dent; 9:43-48.
- Tay FR, Gwinnett AJ \& Wei SHY (1996b). Micromorphological spectrum from overdrying to overwetting acid-conditioned dentin in water-free acetone-based, single-bottle primer/adhesives. Dent Mater; 12:236-244.
- Tay FR, Gwinnett AJ, \& Wei SHY (1996c). The overwet phenomenon: A scanning electron microscopic study of surface moisture in the acid-conditioned, dentin-resin interface. Am J Dent; 9:109-114.
- Tay FR, Moulding KM \& Pashley DJ (1999). Distribution of nanofillers from a simplified-step adhesive in acid-conditioned dentin. J Adhes Dent; 1(2): 103-107.

- Taylor MJ \& Lynch E (1992). Review Microleakage. J Dent; 20: 310.
- Titley KC, Chernecky R, Rossouw PW \& Kulkarni GV (1998). The effect of various storage methods and media on shear-bond strengths of dental composite resin to bovine dentine. Arch Oral Biol; 43(4): 305-311.
- Titley KC, Smith DC \& Chernecky R (1996). SEM observations of the reactions of components of a light-activated glass polyalkenoate (ionomer) cement on bovine dentine. J Dent; 24: 411-416.
- Titley KC, Smith DC, Chernecky R, Maric B \& Chan A (1995). An SEM examination of etched dentine and the structure of the hybrid layer. J Can Dent Assoc; 61(10): 887-894.
- Toledano M, Osorio E, Osorio R \& García-Godoy F (1999). Microleakage of Class V resin-modified glass ionomer and compomer restorations. J Prosthet Dent; 81(5): 610-615.
- Tulunoglu O, Ayhan H, Olmez A \& Bodur H (1998). The effect of cavity disinfectants on microleakage in dentin bonding systems. J Clin Pediatr Dent; 22(4): 299-305.
- Tung FF, Estafan D \& Scherer W (2000a). Microleakage of a condensable resin composite: an in vitro investigation. Quint Int; 31(6): 430-434.
- Tung FF, Estafan D \& Scherer W (2000b). Use of compomer in Class V restoration: a microleakage study. Quint Int; 31(9): 668672.
- Tyas MJ (1998). Clinical evaluation of a polyacid-modified resin composite (Compomer). Oper Dent; 23(2): 77-80.
- Uno S \& Asmussen E (1991). Marginal adaptation of a restorative resin polymerized at reduced rate. Scand J Dent Res ; 99: 440444.
- Uno S, Finger WJ \& Fritz U (1996). Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater: 12: 64-69.
- Uno S, Finger WJ \& Fritz UB (1997). Effect of cavity design on microleakage of resin-modified glass ionomer restorations. $A m J$ Dent; 10(1): 32-35.
- Vaikuntam J (1997). Resin-modified glass ionomer cements (RMGICs): Implications for use in pediatric dentistry. J of Dent for Children; March-April: 131-134.
- Van Dijken JWV (1996). 3-year clinical evaluation of a compomer, a resin-modified glass ionomer and a resin composite in Class III restorations. Am J Dent; 9(5): 195-198.
- Van Meerbeek B, Inokoshi S, Braem M, Lambrechts P \& Vanherle G (1992). Morphological aspects of the resin-dentin interdiffusion zone with different adhesive systems. J Dent Res; 71:1530-1540.
- Van Meerbeek B, Mourbacher M, Celis JP, Roos JR, Bream M, Lambrechts P \& Vanherle G (1993a). Chemical characterization of the resin-dentin interface by micro-Raman spectroscopy. J Dent Res; 72:1423-1428.
- Van Meerbeek B, Dhem A, Goret-Nicaise M, Lambrechts P \& Van Herle G (1993b). Comparative SEM and TEM examination of the ultrastructure of the resin-dentin interdiffusion zone. J Dent Res; 72: 495-501.
- Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P \& Vanherle G (1993c). Assessment by nanoindentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res; 72: 1434-1442.
- Van Strijp A, Klont B \& Ten Cate J (1992). Solubilization of dentin matrix collagen in situ. J Dent Res; 71: 1498-1502.
- Vargas MA \& Swift EJ Jr (1994). Microleakage of resin composites with wet versus dry bonding. Am J Dent; 7(4): 187-189.
- Vargas MA, Cobb DS \& Armstrong SR (1997a). Resin-dentin shear bond strength and interfacial ultrastructure with and without a hybrid layer. Oper Dent; 22:159-166.
- Vargas MA, Cobb DS \& Denehy GE (1997b). Interfacial micromorphology and shear bond strength of single-bottle primer/adhesives. Dent Mater; 13: 316-324.
- Versluis A, Tantbirojn D \& Douglas WH (1998). Do dental composites always shrink toward the light? J Dent Res; 77(6): 1435-1445.
- Watanabe I, Nakabayashi N \& Pashley DH (1994). Bonding to ground dentin using a self-etching Phenyl-P primers. J Dent Res; 73:1212-1220.
- Watson TF, Billington RW \& Williams JA (1991). The interfacial region of the tooth/glass ionomer restorations: A confocal optical microscope study. Am J Dent; 4: 303-310.
- Watson TF (1990). A confocal microscopic study of some factors affecting the adaptation of a light-cured glass ionomer to tooth tissue. J Dent Res; 69: 1531-1538.
- WatsonTF \& Barlett DW (1994). Adhesive Systems: Composites, dentin bonding agents and glass ionomers. Br Dent J; 164: 227231.
- Wendt SL Jr, McInnes PM \& Dickenson GL (1992). The effect of thermocycling in microleakage analysis. Dent Mater, 8: 181-184.
- Wieczkowski G, Yu XY, Davis EL \&oJoynt RB (1992a).

Microleakage in various dentin bonding agent/composite resin systems; Oper Dent; 17(suppl 5):62-67.

- Wieczkowski G, Joynt RB, Davis EL, Yu XY \& Cleary K (1992b). Leakage patterns associated with glass-ionomer based resin restorations. Oper Dent; 17(1): 21-25.
- Willems G, Lambrechts P, Braem M \& \& Vanherle G (1993). Composite resins in the $21^{\text {st }}$ century, Quint Int; 24: 641-658.
- Wilson AD \& Kent BE (1972).'A new translucent cement for dentistry. The glass ionomer cement. Br Dent J; 132(4): 133-135.
- Wilson AD \& Prosser HJ (1982). Aluminosilicate dental cements. CRC Press Series in Biocompatibility; 3: 41-77.
- Wilson AD (1990). Resin-modified glass-ionomer cements. Inter J Prost; 3: 425-429.
- Wilson NH, Wilson MA, Wastell DG \& Smith GA (1991). Performance of occlusin in butt-joint and bevel-edged preparations: five-year results. Dental Materials; 7:92-98.
- Windholz M (1988). In An Encyclopedia of Chemicals and Drugs ed. 9; Merck \& Co Inc.; Rahway.
- Wu W, Cobb EN, Derman K \& Rupp NW. (1983). Detecting marginal leakage of dental composite restorations. J Biomed Mater Res; 17: 37-43.
- Yap AUJ, Ho KS \& Wong KM (1998a). Comparison of marginal sealing ability of new generation bonding systems. J Oral Rehabil; 25(9): 666-671.
- Yap AUJ (1998b). Effects of storage, thermal and load cycling on a new reinforced glass-ionomer cement. J Oral Rehabil; 25(1): 4044.
- Yap AUJ, Lim CC \& Neo JCL (1995). Marginal sealing ability of three cervical restorative systems. Quint Int; 26(11): 817-820.
- Yap AUJ, Wang HB, Siow KS \& Gan LM (2000). Polymerization shrinkage of visible-light-cured composites. Oper Dent; 25(2): 98103.
- Yap AUJ, Teoh SH, Hastings GW \& Lu CS (1997). Comparative wear ranking of dental restorative materials utilizing different wear simulation models. J Oral Rehabil; 24: 574-580.
- Yoshiyama M, Carvalho RM, Sano H, Homer JA, Brewer PD \& Pashley DH (1996a). Comparison of interfacial morphology and strength of bonds made to superficial and deep dentin. Am J Dent; 8:297-302.
- Yoshiyama M, Carvalho RM, Sano H, Homer JA, Brewer PD \& Pashley DH (1996b). Regional bond strengths of resins to human root dentine. J Dent; 24:435-442.
- Yoshiyama M, Sano H, Ebisu S, Tagami J, Ciucchi B, Carvalho RM, Johnson MH \& Pashley DH (1996c). Regional strengths of bonding agents to cervical sclerotic root dentin. J Dent Res; 75:1404-1413.
- Youngson CC, Jones JC, Fox K, Smith IS, Wood DJ \& Gale M (1999). A fluid filtration and clearing technique to assess microleakage associated with three dentin bonding systems. J of Dent, 27(3): 223-233.
- Yu XY, Davis EL, Joynt RB \& Wieczkowski G Jr (1992).

Origination and progression of microleakage in a restoration with a smear-layer mediated dentinal bonding agent. Quint Int; 23: 551-555.

UNIVERSITY of the WESTERN CAPE

