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Abstract

This MSc project entails a study of astrophysically relevant states in 24Al,

that are important for a better understanding of the 23Mg(p,γ)24Al nuclear

reaction rate in classical novae. This is a crucial breakout reaction that links

the NeNa and MgAl cycles and offers an understanding of the nucleosynthesis

of elements between Neon and Aluminium. In this work the K = 600 mag-

netic spectrometer at iThemba LABS was used together with a silicon detec-

tor array to measure proton branching ratios for the relevant states in 24Al

using the 24Mg(3He,t) charge-exchange reaction. Our experiment yields the

first direct measurement of the relative proton branching ratios from these

states. We used our measured observables and theoretical estimates of par-

tial gamma widths of unbound states in 24Al, to indirectly determine the

total 23Mg(p,γ) reaction rate at nova temperatures.
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Chapter 1

Introduction

We’re made of star stuff. We are a way for the

Cosmos to know itself.

Carl Sagan

The success of the big bang model of the Universe can be attributed to an explanation of the observed

helium abundance and the 2.76 K relic radiation from a hot and dense early Universe [1]. It was pro-

posed by Gamow and others that the lighter elements such as 2H, 3He and 4He, were produced during

the early expansion of the Universe through the processing of nucleons formed from coalescing quarks at

low temperatures [2]. Nucleosynthesis of these light elements drive the early evolution of stars up to the

spectacular astrophysical events observed with both terrestrial and space-based telescopes. Some aspects of

stellar nucleosynthesis pertinent for this work are discussed below.

1.1 Stellar evolution

When appreciable amounts of hydrogen and helium form a molecular cloud that is stable, star formation is

triggered by a compression of this interstellar medium. The gravitational instability of the cloud leads to

fragments or protostars in free-fall motion that convert gravitational potential energy into thermal energy.

During this early stage of gravitational collapse, a protostar is highly transparent and most of the thermal

energy escapes. Nonetheless, the continued collapse of a protostar leads to an increase in its opacity. Even-

tually, the temperature and density conditions in the core are sufficient to support hydrogen burning. This

marks the birth of hydrogen burning stars located on the main sequence of the Hertzsprung-Russell diagram

shown in Fig. 1.1. The sequences of nuclear reactions that synthesize helium and produce energy in stars

are called proton-proton (pp) chains. The generated energy eventually reaches the surface of a star through

radiation, conduction and convection processes [3].

1
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Figure 1.1: A comparison of luminosities relative to solar, for hydrogen burning stars on the main sequence

and their surface temperature. Figure taken from Ref. [2].

1.1.1 Hydrogen & advanced burning cycles

Even for stars with appreciable amounts of hydrogen, the probability of four protons simultaneously fusing

into a 4He nucleus is extremely small and does not account for the observed luminosities. It was found that

sequences of nuclear reactions with two nuclei in the entrance channel are more favorable to effectively fuse

hydrogen into helium. The pp chains describing light element creation in the early stage of stellar evolution

are illustrated in Fig. 1.2.

During hydrostatic equilibrium, the gravitational collapse of a star is temporarily halted as the gravita-

tional force is counteracted by the gas and radiation pressures due to thermonuclear reactions that occur in

the core. This balance is maintained until hydrogen burning can no longer sustain the gravitational weight

and a resulting contraction of the core leads to the helium ashes being fused into carbon and oxygen 1. The

interplay between the inward and outward directed forces therefore regulate the contraction of the core and

the expansion of the outer regions of the gas throughout the various burning cycles. The heavier elements

that are produced settle in the core, with hydrogen and subsequent fuel burning in a spherical shell around

it. This layered onion-like structure is shown in Fig. 1.3.

1The former is through the famous 3α resonance through the Hoyle state in 12C.

2
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Figure 1.2: A schematic representation of the reactions of the pp chains where chain 1 is the dominant mode of

nuclear processing. The loss percentages shown are due to escaping neutrinos. Figure adapted from Ref. [1].

Figure 1.3: A schematic view of an onion-like internal structure of a star, with the heaviest elements located

at the core. Figure taken from Ref. [2].

1.1.2 Core collapse supernovae

For situations where the mass of the protostar exceeds the Chandrasekhar limit (around 1.4 M�), the star

becomes unstable against core collapse [4]. At later stages of stellar evolution, the immense gravitational force

overcomes the radiative and electron degeneracy pressure within the star. This triggers gravitational collapse,

which drives the temperature and density of the iron core up to nuclear densities ∼ 2× 1014 g cm−3 [5].

At these extreme densities, the strong repulsive nuclear force dramatically stiffens the equation-of-state

(EOS) of the iron core and generates a shock wave that propagates outward. The shock wave prompts a

photo-dissociation of iron-peak nuclei. Further electron capture decays lead to a reduction in the electron

degeneracy pressure and a removal of energy via neutrino emission. This energy loss leads to a collapse of the

iron core that leads to an enormous explosion of the outer envelope of the star. The elements in the regions

that envelop the core collide with the shock wave and are violently ejected into the interstellar medium in

3
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this supernova event (SNII). Alternatively, for medium-mass stars with masses < 1.4 M�, the gravitational

weight of the star is supported by the electron degeneracy pressure. The endpoint of stellar evolution in such

a scenario is characterized by a degenerate white dwarf. We will now be concerned with the gravitational

interaction of such compact objects with hydrogen-rich, main-sequence stars, to form binary systems.

1.2 Classical novae

The co-evolution of binary members are determined by transfer of mass from the hydrogen-rich companion

via Roche lobe overflow as it expands into a red giant. The matter from the red giant flows into an accretion

disk, spiraling onto the surface of the white dwarf. The high density of the compact star causes an accretion

of material at very high velocities, which leads to a rapid thermonuclear runaway. This is characterized by

a violent release of energy that ejects synthesized material into interstellar space. Such nova outbursts on

the surface of white dwarfs are observationally characterized by a rapid increase in the luminosity of a star,

shown pictorially in Fig. 1.4.

Figure 1.4: Pictorial representation of a nova outburst produced by a closely orbiting red giant star and a

white dwarf [6].

An important class of classical nova explosions are oxygen-neon (ONe) novae, classified by the oxygen-

neon composition of the white dwarf core. In nova explosions, hydrogen burning occurs via the hot CNO

cycle which is dominated by (p, γ) type reactions. This is an important mode of nucleosynthesis reach-

ing peak temperatures around 0.3 − 0.4 GK, with the heavier nuclei participating as catalysts for further

nucleosynthetic reactions [7]. The complexity of the CNO cycle is captured in Fig. 1.5.

4
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Figure 1.5: The CNO cycle shown together with reactions to the NeNa cycle, which opens up the path to

the synthesis of heavier elements. Figure taken from Ref. [8].

As shown above, catalytic material can leak from the hot CNO cycle to produce 20Ne, which forms the

basis of the NeNa cycle. The reaction flow through the NeNa cycle can then be altered to the MgAl cycles,

through the 23Mg(p, γ) breakout reaction. This is a critical reaction that links the NeNa and MgAl cycles,

shown in Fig. 1.6.

Figure 1.6: The NeNa and MgAl cycles with the crucial 23Mg(p, γ) link between the cycles, highlighted by

the rectangular box. Figure adapted from Ref. [9].

5
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Although the sequences of reactions in these cycles are relatively unimportant as a source of energy

production in stars (due to the high Coulomb barriers involved), these cycles are important for the nu-

cleosynthesis of elements between 20Ne and 27Al [1]. In this context, an improved understanding of the

observed elemental abundances requires an accurate measurement of the 23Mg(p, γ) reaction rate, which

remains a critical input in ONe nova models. The reaction rate is dominated by both non-resonant and

resonant components, which I describe below.

1.3 Stellar reaction rates

The relative velocity v of the pairs of interacting nuclei Na and Nb in degenerate stellar matter is described

by the Maxwell-Boltzmann distribution

φ(v) = 4πv2
( µ

2πkT

)3/2

exp

(
− µv

2

2kT

)
, (1.1)

where T is temperature of the gas, k is the Boltzmann constant and µ = m1m2/(m1 + m2) is the reduced

mass of the interacting nuclei [1]. This expression must be folded with the cross section for a nuclear reaction

to arrive at the reaction rate per particle pair

〈σv〉 =

∫ ∞
0

φ(v)vσ(v)dv, (1.2)

averaged over the velocity distribution.

1.3.1 Nonresonant reaction mechanism

The interaction of nuclei with positive charges Z1 and Z2, separated by a distance r is described by the

Coulomb potential

VC =
Z1Z2e

2

r
. (1.3)

This Coulomb barrier significantly inhibits nuclear reactions at low energies E � EC , where EC is the

effective height of the combined nuclear and Coulomb potential, shown in Fig. 1.7. The probability of

tunneling through the barrier is small, given by the ratio of |ψ(Rn)|2/|ψ(RC)|2, where Rn is the sum of the

radii for projectile and target nuclei and RC is the classical turning point. At low energies E � EC , this

penetrability is given by

P = exp(−2πη), (1.4)

where the Sommerfeld parameter is η = Z1Z2e
2

h̄v .
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Figure 1.7: The combined potential, for nuclear and Coulomb terms. The effective barrier has height Ec.

Picture taken from Ref. [10].

The energy dependent cross section σ(E) ∝ πň2 ∝ 1/E, where ň is the reduced de Broglie wavelength,

and σ(E) ∝ exp(−2πη). One can then define [1]

σ(E) =
1

E
exp(−2πη)S(E), (1.5)

where S(E) is the astrophysical S-factor that contains all the nuclear physics related information for the

reaction [1]. Using the non-relativistic relation p = (2mpEp)
1/2 and p = h̄k where k is the wave number, we

obtain the reduced de Broglie wavelength as

ň =
h̄√

2mpEp
, (1.6)

where mp and Ep are the mass and the kinetic energy of the projectile, respectively.

Using Eq. (1.2) and writing out separately the Maxwellian velocity distributions of the two interacting

nuclei in terms of the center-of-mass velocity V and the relative velocity v, the reaction rate per particle

pair simplifies to

〈σv〉 =

∫ ∞
0

∫ ∞
0

φ(V )φ(v)σ(v)vdV dv. (1.7)

One can further integrate this expression over V to obtain

〈σv〉 = 4π
( µ

2πkT

)3/2
∫ ∞

0

v3σ(v) exp

(
− µv

2

2kT

)
dv, (1.8)

which together with the relation E = 1
2µv

2 such that, v3dv =
(

2E
µ2

)
dE gives
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〈σv〉 =

(
8

πµ

)1/2
1

(kT )
3/2

∫ ∞
0

σ(E)E exp

(
− E

kT

)
dE. (1.9)

This, together with Eq. (1.5) and assuming that the S-factor is a slowly varying function (for non-resonant

reactions) around the effective burning energy E0 leads to

〈σv〉 =

(
8

πµ

)1/2
1

(kT )
3/2

S(E0)

∫ ∞
0

exp

(
− E

kT
− 2πη

)
dE. (1.10)

The penetrability through the Coulomb barrier can be described in terms of a term b = (2µ)
1/2

πe2Z1Z2/h̄ [1],

such that

2πη =
b√
E
. (1.11)

This leads to [1]

〈σv〉 =

(
8

πµ

)1/2
1

(kT )
3/2

S(E0)

∫ ∞
0

exp

[
− E

kT
− b√

E

]
dE. (1.12)

The convolution of the dominant energy-dependent functions in Eq. (1.12) give rise to the Gamow peak,

with a sufficiently high probability for the reaction to occur near E0, as shown in Fig. 1.8.

Figure 1.8: The Gamow peak for the nuclear reaction rate in a star results from the convolution of the

Maxwell-Boltzmann distribution and the tunneling probability through the Coulomb barrier. Figure taken

from Ref. [11].

Therefore, at a given temperature T , nuclear reactions occur in a narrow energy window around the

effective burning energy E0, where the integrand in Eq. (1.12) has a maximum value. One obtains E0 to be
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E0 =

(
bkT

2

)2/3

. (1.13)

By substituting Eq. (1.13) into Eq. (1.12) and evaluating the integral, we obtain for the maximum value for

the integrand

Imax = exp

(
−E0

kT
− b√

E0

)
= exp

(
−3E0

kT

)
.

(1.14)

The effective width of the Gamow peak can be determined by approximating the exponential term in

Eq. (1.12) with a Gaussian function [1, 4]

exp

(
− E

kT
− b√

E

)
= Imax exp

[
−
(
E − E0

∆/2

)2
]
, (1.15)

where

∆ =
4

31/2
(E0kT )

1/2
. (1.16)

This approximation results in the final form of the nuclear reaction rate per particle pair for non-resonant

reactions

〈σv〉 =

(
2

µ

)1/2
∆

(kT )
3/2

S(E0) exp

(
−3E0

kT

)
. (1.17)

1.3.2 Resonant reaction mechanism

Compared to non-resonant reactions that show a smoothly varying cross section as a function of energy,

resonant reactions are characterized by a significant increase in the cross section at resonant energies. This

occurs when the energy in the incoming channel Q+ ECM
p (with ECM

p being the energy of the projectile in

the center of mass) matches the excitation energy of a state in the compound nucleus that is formed by the

reaction. Such a resonant reaction is shown pictorially in Fig. 1.9.

Cross sections for resonant nuclear reactions can be determined by assuming

σ(E) ∝ ΓaΓb
(E − Er)2 + Γ2/4

, (1.18)

where Γa and Γb are the partial widths of the resonant level, and characterize the probability of forming an

excited state and its subsequent decays. The total width of the resonance is Γ = Γa + Γb, which is related

to the lifetime of the state through Γτ = h̄. The above relations are better understood using the following

arguments. Any excited level has to exponentially decay, following the radioactive decay law
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Figure 1.9: A schematic representation of a two-step or resonant capture reaction and the subsequent γ-ray

emission of the compound nucleus formed by the reaction. Figure taken from Ref. [1].

N(t) = N0e
−λt. (1.19)

Such exponential decay is only possible if the time dependent wave function describing the state is described

as

ψ(t) = ψ(0) exp

(
−
i(Er − 1

2 iΓ)t

h̄

)
, (1.20)

where Er is the energy level of interest. The complex energy Er − 1
2 iΓ is a damping factor added to the

stationary state solutions that results in exponential decays. This yields a time evolution

|ψ(t)|2= |ψ(0)|2exp

(
−Γt

h̄

)
. (1.21)

Comparing Eqs. (1.19) and (1.21), it is easy to see that if 1
τ = λ, where τ is the lifetime of the state, then

Γτ = h̄. This relation clearly shows that states that decay need a finite width in energy. One can apply a

Fourier transform to ψ(t) to take it to the energy domain, so that

ψ(ω) = (2π)−1/2

∫ +∞

−∞
ψ(t) exp(+iωt)dt. (1.22)

Substitution of ψ(t) into Eq. (1.22), results in the following expressions
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ψ(ω) =
ψ(0)√

2π

∫ +∞

0

exp

(
− iErt

h̄

)
exp

(
−Γt

2h̄

)
exp(iωt)dt

=

∫ +∞

0

exp

[
i

h̄

(
h̄ω − Er +

iΓ

2

)
t

]
dt.

(1.23)

Since the probability of the particle having energy E is ∝ |ψ(ω)|2, the above expression shows that the

energy distribution of an excited nuclear level is

P (E) ∝ Γ

(E − Er)2 + Γ2/4
, (1.24)

where Γ is its Lorentzian or Breit-Wigner width. As shown in Fig. 1.9, a resonant nuclear reaction involves

the population of an excited state in the compound nucleus through a two-step process that involves the

formation of the state and its decay. It is therefore understandable that the cross section for γ-ray emission

(Fig. 1.9) is

σγ ∝ ΓaΓb, (1.25)

where Γa and Γb are the partial widths of the compound nuclear (resonant) state. This (together with

Eq. (1.24)) justifies Eq. (1.18). For particles with spin, one requires an additional statistical factor ω,

ω =
2J + 1

(2Ja + 1)(2Jb + 1)
, (1.26)

where ja, jb and J are the spins of the projectile, the target and the resonance, respectively. For narrow

resonances with Γ� Er, the above formalism leads to

〈σv〉 =

(
8

πµ

)1/2
1

(kT )
3/2

Er exp

(
−Er
kT

)
ωΓaΓb

∫ ∞
0

πň2

(E − Er)2 + Γ2/4
dE. (1.27)

This expression further simplifies to

〈σv〉 =

(
8

πµ

)1/2
1

(kT )
3/2

Er exp

(
−Er
kT

)
ωΓaΓb

h̄2

2µEr

∫ ∞
0

1

(E − Er)2 + Γ2/4
dE. (1.28)

The value of the integral above is equal to 2π/Γ [1, 12]. Substituting this value and defining the resonance

strength (ωγ)r as the product of the statistical factor ω and the width ratio γ = ΓaΓb/Γ, one obtains the

total resonant rate per particle pair

〈σv〉 =

(
2π

µkT

)3/2

h̄2
∑
r

(ωγ)r e
−Er/kT , (1.29)

where the summation is over all isolated and narrow resonances r. The nuclear physics input that enter into

the calculation of a resonant reaction rate are the location of the resonance Er and the resonance strength

ωγ. For the rate of the 23Mg(p, γ)24Al resonance reaction of interest, we have Γa = Γp and Γb = Γγ that

determine the resonance strength for each resonance. Below is a brief discussion on such partial proton and

gamma widths.
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1.3.2.1 Partial widths

The observed resonances of nuclear states are solutions to the Schrödinger equation where the total nuclear

wave function is characterized by a rapid variation with energy in the vicinity of a resonance. Such resonance

phenomena occur when the interior and the exterior wave functions χin and χout match at the nuclear surface

of the compound nucleus [4]. This continuity condition is expressed by the logarithmic derivative f , which

has the same value for the radial wave functions and their derivatives at the surface and is defined by [4]

f = R

(
1

χ(r)

dχ(r)

dr

)
r=R

. (1.30)

An equivalent expression for f in the terms of quantities of the nuclear exterior, the shift factor S and the

penetration factor P , is given by [4]

f ≡ S + iP. (1.31)

To estimate the proton partial width, we consider one open nucleon channel and assume the existence of a

well-defined spherical surface at R, and that the projectile and target nuclei have no interaction outside of

this radius. The proton partial width Γp can then be determined from the proton decay probability of the

compound state λp through

Γp = λph̄, (1.32)

where λp is given by the product of the probability of the protons at the nuclear surface and their flux. This

product is characterized by the current density given by [4, 13]

j =
h̄

2µi

[
χ(r)∗

dχ(r)

dr
− dχ(r)∗

dr
χ(r)

]
, (1.33)

that can be integrated through a sphere of radius r → ∞ over the full solid angle dΩ to obtain λp. Using

χ(r) = Y (θ, φ)χc

r where Y (θ, φ) is the spherical harmonic that contains the angular part of the wave function

and χc is the radial wave function of the compound state, we obtain

λp =

∫
dΩ

R2jdΩ

=
h̄

2µi

∫
dΩ

R2

[
χ(r)∗

dχ(r)

dr
− dχ(r)∗

dr
χ(r)

]
r=R

dΩ

=
h̄

2µi

(
χ∗c
dχc
dr
− dχ∗c

dr
χc

)
,

(1.34)

since
∫
dΩ
|Y (θ, φ)|2dΩ = 1. In the compound nucleus description, the observed resonances can be described

as a linear combination of the single-particle states p of the interacting nucleons that form the compound

state [4].
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This is given by

χc =
∑
p

Aspχsp, (1.35)

where χsp is the wave function of a nucleon in the single-particle potential. At a resonance r, the compound

state is then described as

χc ≈ Aspχsp, (1.36)

since Asp mainly contributes to the wave function of the compound state. Rearranging Eq. (1.30) so that

(
dχ(r)

dr

)
r=R

=
χf

R
, (1.37)

and using Eq. (1.36), the decay probability becomes (see Eq. (1.34))

λp =
h̄

2µiR
(χ∗cχcf − f∗χ∗cχc)

=
h̄|χsp|2

2µiR
A2
sp (f − f∗) .

(1.38)

Together with Eq. (1.32) and Eq. (1.31), this results in an expression for the proton width

Γp =
h̄2|χsp|2

2µiR
A2
sp [(S + iP )− (S − iP )]

=
h̄2

µR
A2
sp|χsp|2P.

(1.39)

By introducing the single-particle partial width given by [4]

Γsp =
2h̄2

µR2
Pθ2

p, (1.40)

where θ2
p = R

2 |χsp|
2 is a dimensionless single-particle reduced width and making the substitution C2S = A2

sp

for the spectroscopic factor (that characterizes the probability of the nucleons arranging themselves into a

particular configuration), the proton partial width can be defined as

Γp = (C2S)Γsp, (1.41)

where C is a Clebsch-Gordan coefficient. For the situation where the compound nucleus can decay by emitting

a γ-ray with energy Eγ , the additional decay channel characterized by a width Γγ must be considered. The

energy-dependence of this width is given by

Γγ = αLE
2L+1
γ , (1.42)

where αL is a constant and L refers to the multipolarity of the emitted radiation [1].
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An estimate of the energy-dependent proton width described above can be obtained from a nuclear

shell model calculation by assuming that the proton capture proceeds directly to a single-particle orbit,

characterized by the quantum numbers {n, li, lf}. Here n is the principal quantum number of the single-

particle orbit with orbital angular momentum lf , and li is the orbital angular momentum of the scattering

wave function [14]. The measured and calculated direct capture cross sections are related through

σexp
DC = C2S

∑
li

σcalc
DC (n, li, lf ). (1.43)

The bound state wave function can be generated using a potential that includes a Coulomb term and a

Woods-Saxon term with depth V0, which reproduce the binding energies of the final state. The scattering

wave function can be generated using a suitable scattering potential. In some cases, the same potential

model is used to generate both wave functions. As mentioned previously, the spectroscopic factor allows

an estimate of the proton width by evaluating the single-particle width (see Eq. (1.40)) using the relevant

potential parameters. One can also obtain an estimate of γ-ray partial widths using similar arguments and

therefore obtain an estimate of the resonance strength (ωγ)r.

This concludes our discussion of the nuclear physics input for the astrophysically relevant 23Mg(p, γ)24Al

reaction. In the absence of direct measurements, accurate determinations of partial widths and lifetimes

for the resonant levels play an important role towards a better understanding of astrophysically relevant

reaction rates. For the 23Mg(p, γ)24Al reaction, the lowest-lying resonance in 24Al has stimulated several

experimental efforts to measure its energy and strength, as this resonance dominates the total reaction rate

at nova temperatures. In the following section I provide the current status of the reaction rate by surveying

previous work done in this context.

1.4 Previous work

A direct measurement of the lowest-lying 23Mg(p, γ) resonance presents an experimental challenge due to

the extremely small reaction cross section at astrophysical energies. The earliest work by Wallace et al. [15]

considers a single resonance at Er = 510 keV, with Ex = 2380 keV obtained from tabulated nuclear data [16].

Due to a lack of spectroscopic information regarding this state, the resonance strength was estimated by

assuming C2S = 0.1, to obtain Γp = 230 eV and further assuming Γγ = 0.01 eV from a systematic study of

neighboring nuclei in the mass region. These estimates yielded a resonance strength of ≈ 10 meV. However,

in order to obtain a more reliable determination of the reaction rate, more than one resonance must be consid-

ered in addition to the direct capture cross section that is significant at lower temperatures (T < 2 GK). Such

an analysis was performed by Wiescher et al. [17]. Later on, Greenfield et al. [18] used the 24Mg(3He, t)24Al

reaction to obtain Ex = 2369(4) keV for the lowest resonance.
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However, this work could not unambiguously determine the spin of this state, which led to a large

uncertainty in the extracted reaction rate. Furthermore, an independent measurement using the same re-

action [19] obtained a much lower value of Ex = 2328(10) keV, that corresponds to a resonance energy

of 458(10) keV. Its spin-parity value was determined to be Jπ = 3+ from the angular distributions of

the tritons. Herndl. et al. [20] attempted to resolve the discrepant level energies above by using all avail-

able experimental information for 24Al together with the isobaric multiplet mass equation (IMME) [21,22].

They assumed Jπ = 3+ for the resonance and extracted a lower precision value for the excitation energy

Ex = 2349(20) keV, which agreed with both Refs. [18, 19]. Consequently, the determined resonance energy

had a large uncertainty, with Er = 478(20) keV, which can be explained by the inconsistent measured values

for the excitation energies [23]. Furthermore, Ref. [20] obtained the partial widths of the unbound states

from shell model calculations, with Γp = 0.185 eV and Γγ = 0.033 eV. This results in a calculated resonance

strength ωγ = 25 meV.

More recently, a 24Mg(3He, t)24Al study by Visser et al. [23] obtained Ex = 2346(6) keV, which agreed

with the value quoted by Ref. [20]. This leads to a more precise value for the resonance energy, Er = 474(6) keV,

which reduced the uncertainty in the reaction rate by about a factor of 3 [23]. An independent study by

Lotay et al. [24], using γ-ray spectroscopy now yields the most precisely determined value for the 3+ state

at Ex = 2345.1(14) keV, in agreement with the values obtained by Refs. [20, 23].

The only direct measurement of the resonance strength was performed at TRIUMF [9], with a radioactive

23Mg beam incident on a gas target. The recoils from the reaction were focused on the focal plane of the

DRAGON spectrometer and used to directly determine the reaction rate [9]. However, this experiment was

plagued by beam contamination and other experimental challenges associated with the use of gas targets.

Hence, the resonance strength could only be determined with a large uncertainty, with ωγ = 37.8+20.5
−15.4 meV.

It is clear from the above that more work needs to be done to better constrain the 23Mg(p, γ)24Al reaction

rate. The work in this thesis is mainly aimed at obtaining a precise measurement of the proton branch of the

lowest-lying unbound state in 24Al. In the next chapter I describe the equipment used for the measurement,

using the 24Mg(3He, t)24Al charge-exchange reaction.
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Chapter 2

Experimental facility

The 24Mg(3He, t)24Al experiment was performed at the iThemba LABS accelerator facility, shown in Fig. 2.1.

Figure 2.1: A schematic diagram of the cyclotron facility located at iThemba LABS, South Africa. Figure

taken from Ref. [25].

We produced excited states in 24Al by bombarding a ∼ 200 µg/cm2 thick MgF2 target with a 50 MeV

3He2+ beam provided by the Separated Sector Cyclotron (SSC) after pre-accelerating the positive ions

produced at an Electron Cyclotron Resonance (ECR) ion source. An oscillatory field was provided by a RF

power supply, so that the ions traversed the cyclotron with a revolution frequency [1]

f =
qB

2πm
, (2.1)

where q is the charge state of the ion with mass m, in a magnetic field B [1].
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For an ion bunch traversing the acceleration gap N -times, the extracted ions had beam energy E = NqV ,

where V is the potential difference between the dee electrodes of the SSC accelerating structure. The emerging

ions were then directed onto the target placed in the scattering chamber, where the reaction products were

momentum analyzed with the K = 600 magnetic spectrometer [25], shown in Fig. 2.2.

Figure 2.2: A schematic diagram of the K = 600 QDD magnetic spectrometer at iThemba LABS. Figure

reproduced from Ref. [25].

In the following sections I briefly describe the active elements of the magnetic spectrometer, its focal plane

detectors and a silicon detector array, placed upstream of the target to perform coincidence spectroscopy of

the unbound protons from 24Al.

2.1 The QDD spectrometer

The scattering chamber at the turning axis of the spectrometer hosts a ladder with six target positions and

an array of Double Sided Silicon Strip Detectors (DSSSD) mounted upstream of the target, in a ‘lampshade’

configuration. Following a nuclear reaction in the scattering chamber, the ejectiles were momentum analyzed

and detected through coincidences between the drift chambers and plastic scintillator detectors at the focal

plane. The quadrupole magnet at the entrance of the spectrometer focused these ejectiles, with their dis-

persion in momentum (∆p/p) set adjusted by the fields of the dipole magnets D1 and D2. Further focusing

is aided by trim coils located inside these dipole magnets.
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The experiment was performed with the spectrometer operating in zero-degree mode [25, 26], with the

spectrometer acceptance angle set at 3.5 msr. During the experiment, we optimized the spectrometer for

the 24Mg(3He, t) channel to detect tritons corresponding to states in 24Al. Nevertheless, other reaction

products are inevitably produced and make it to the focal plane of the spectrometer. We can discriminate

between the various ejectiles that are detected by comparing their energy loss characteristics through particle

identification spectra measured by the drift chambers and the plastic scintillator detectors. The latter

provided event trigger signals for the data acquisition. For such events, the position-sensitive drift chambers

measure the position µfp and angle ϑfp of the ejectiles by reconstructing their ionized tracks, while the

plastic scintillator detectors measure the energy deposited by these ejectiles. I briefly describe the operation

of the drift chambers and the plastic scintillator detectors in the following sections.

2.1.1 The drift chambers

We used two multi-wire vertical drift chambers (VDCs) filled with a gas mixture of Ar and CO2 (90%/10%),

with 25 µm-thick mylar windows. As shown in the figure below, the VDCs are divided in an ‘U-X’ config-

uration that has 20 µm-thick cathode planes, with the U- and X-signal wire planes mounted at an angle

of 50◦ and perpendicular to the scattering plane respectively [25]. The cathode planes are maintained at a

high voltage of −3.5 kV for triton detection. Tritons that traverse through the drift chambers ionize atoms

of the gaseous medium and produce electron-ion pairs, where the ionized electrons are drifted toward a

signal wire that creates an electric field gradient. At sufficiently high energies, secondary ionization liberates

additional electrons that eventually lead to an electron-avalanche [27]. We can use these electrical signals to

re-construct the ionized track and extract directional information for tritons detected, as shown in Fig. 2.3.

Figure 2.3: A cross-sectional top view of a multi-wire drift chamber (MWDC) where the X-wire plane is made

up of 198 gold-plated tungsten signal wires interspersed with 199 field-shaping wires of the same material.

The U-wire plane, mounted at angle of 50◦ relative to the scattering plane, is similarly made up of 143 signal

wires and 144 guard wires [25]. The Ni-Cr guard wires at the periphery are used to reduce leakage currents

by suppressing the spontaneous discharge of electrons.
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2.1.2 The scintillator detectors

The ions that emerge from the VDC are incident on two rectangular plastic scintillator detectors that measure

the energy of the ejectiles by converting its kinetic energy into detectable scintillation light, as illustrated

in Fig. 2.4.

Figure 2.4: A scintillator detector coupled to a photomultiplier tube by a light-guide. The PMT converts

the energy of incident radiation into a pulse through a series of dynodes that multiply the electrons ejected

from the surface of the photocathode.

The ions deposit their energy in the active volume of the scintillator detector, exciting the atoms of the

scintillation material. The excited atoms dissipate this excitation energy through electromagnetic radiation,

with the photons guided onto a photocathode at the interface of the scintillator and the photomultiplier

tube (PMT). Each photon has a finite probability of ejecting an electron from the surface of the photocath-

ode which are then multiplied through a series of dynodes. These secondary electrons are then collected

by the anode to form an output pulse whose amplitude is proportional to the energy of the incident radiation.

With the trigger signals generated by the scintillator detectors, coincidences between one drift chamber

and one scintillator detector permit the identification of the reaction products from their energy loss char-

acteristics provided by the scintillator (EScint2 −∆EScint1) and their relative time-of-flight (tof) through the

spectrometer. The tof refers to the time difference between the trigger signal and the next RF pulse from

the cyclotron [26]. A picture of the drift chambers and the focal plane detectors with the accompanying

cables are shown in Fig. 2.5. We can use the events registered by the focal plane detector to obtain the

triton singles yield for the 24Mg(3He, t)24Al reaction over a live time trun, using

N t =
Na
t
·Xatoms

(
dσ

dΩ

)
·∆Ω · trun · εfp, (2.2)

where Na

t is the number of incident projectiles per unit time, Xatoms is the areal number density of the

target,
(
dσ
dΩ

)
is the reaction cross section, ∆Ω is the acceptance solid angle of the spectrometer (∼ 2.5 msr),

and εfp is the intrinsic efficiency of the focal plane detector.
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Figure 2.5: Position-sensitive drift chambers, with the plastic scintillator paddles at the focal plane of the

K = 600 spectrometer. Figure taken from Ref. [28].

2.2 The silicon detector array

States above the proton separation energy Sp of the recoiling nucleus can decay via proton emission or

γ-radiation. As mentioned previously, the decay amplitudes are described by the partial widths Γp and Γγ ,

with Γ = Γp + Γγ . We used a DSSSD array to detect such proton events, with the proton-triton (p − t)

coincidence yield for each unbound state

N tp =
Na
t
·Xatoms

(
dσ

dΩ

)
·∆Ω · trun · εfp ·Bp · εp, (2.3)

where Bp is the proton branching ratio for a specific unbound state in 24Al and εp is the proton detection

efficiency. We can thus obtain the proton branching ratios of each state from Eqs. (2.2) and (2.3), so that

Bp =
N tp

εpN t
. (2.4)

A schematic of the array (called CAKE, Coincidence Array for K = 600 Experiments, [26]) used to detect

the proton events is shown in Fig. 2.6. The CAKE array comprises five DSSSDs of the MMM design that

are 400 µm thick with each detector covering ≈ 5 % of the solid angle [26, 29]. It has an energy resolution

of ∼ 100 keV covering an angular range of θlab = 115◦ − 165◦. An advantage of the CAKE array is offered

by its efficiency and ring-sector design, as shown for one detector in Fig. 2.7.
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Figure 2.6: Left : The geometry of the CAKE array mounted upstream of the target ladder in the scattering

chamber with the beam entering from the right. Right : The backward facing silicon detector array with a

total efficiency ≈ 25 % [26].

Figure 2.7: A schematic representation of a DSSSD of the MMM design with 16 ring channels on the junction

side and 8 sector channels on the ohmic side. Figure taken from Ref. [26].

The junction and ohmic sides of the detectors can be leveraged to impose an energy condition so that

the accidental coincidences with focal plane events are reduced, since the front and back energies should

approximately be the same. This condition is based on the equal number of electron-hole pairs created in

the front and back of the detectors and was imposed via software so that only events with

∣∣∣∣∣∣
16∑
i=1

Ei −
8∑
j=1

Ej

∣∣∣∣∣∣ < 300 keV, (2.5)

were accepted for the final analysis. In the following chapter I discuss more details on the analysis of the

data obtained with these equipment.
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Chapter 3

Data & Analysis

In this chapter I describe the analysis methods used to obtain the relative proton intensities of astrophysically

important states in 24Al. As mentioned previously, these states were produced using the 24Mg(3He,t)24Al

reaction at 50 MeV. We acquired around 60 hours of data with ∼10 pnA beam incident on target.

3.1 Targets used

A majority of the 24Mg(3He,t)24Al data that were collected using a 200 µg/cm2 thick MgF2 target, evaporated

on a 180 µg/cm2 carbon backing. Additional data were also taken with a 700 µg/cm2 thick 24Mg target and

a Li2CO3 target. The latter was used to mainly identify peaks from oxygen and carbon contamination in

the MgF2 targets, while the former was used for an initial energy calibration of the triton peaks. An empty

target frame was also used to identify beam-induced background events.

3.2 Particle Identification

The predominant 24Mg(3He,d) and 24Mg(3He,t) reaction channels excite states in 25,24Al, respectively. We

leveraged the large difference in the Q-values of these channels to discriminate between the triton and

deuteron ejectiles observed at the focal plane [30]. This is shown in Fig. 3.1, which plots the energy (∆E)

deposited in the scintillator detector versus the time-of-flight (tof) of the ejectiles through the spectrometer.

Although the spectrometer was optimized for the (3He,t) channel, fluctuations in experimental condi-

tions (predominantly from dispersion in the beam) become significant during different time periods of beam

delivery. This is reflected by the measured properties of the reaction products {∆Escint, tof, µ}, µ being the

focal plane position. Such systematic effects needed to be accounted for, in order to obtain position-aligned

spectra for a large number of runs.
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Figure 3.1: Left panel: The particle identification (PID) spectrum for our entire data set, with the thinner

MgF2 target. The triton and deuteron groups are highlighted. Right panel: An enhanced view of the PID

gate on the triton group, used for the final data analysis.
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Figure 3.2: Top: The position spectra for two labeled 1 hour runs without correction. Bottom: Aligned

position spectra for these runs, because of the offset correction. The inset accentuates the reasonably good

alignment that was obtained with this simple correction.

Typically the focal plane position drift in the K600 spectrometer is characterized by a single offset

parameter that aligns focal plane spectra from different runs. This is shown as an example in Fig. 3.2.
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A further correction is required [25] to account for the scattering introduced by the 2◦ opening of the

collimator that sets the angular acceptance of the spectrometer. We calibrated the measured focal plane

angle ϑfp to obtain the scattering angle of the tritons ϑscatfp , by implementing a set of conversion parameters

in the sorting of the raw data. A successful calibration of ϑfp is characterized by the rectangular box in the

2D spectrum shown in Fig. 3.3. This completes the corrections required to produce position-aligned spectra

for the entire data set 1.

Figure 3.3: A 2D spectrum of the scattering angle ϑscatfp versus focal plane position µ, measured by the drift

chambers for the entire data set. The narrow vertical loci indicate the improved position resolution obtained

through the imposed corrections. The black rectangle selects the astrophysically important state of interest

in 24Al at ∼ 2345 keV.

Finally, it may be noted that the calibration of the triton spectrum must account for energy straggling

effects for the tritons that traverse through the target material. We therefore use a lineshape defined by

a Gaussian distribution convoluted with a low-energy exponential tail [21] on a flat background to fit the

triton peaks. A sample fit is shown in Fig. 3.4. Fits to the other peaks can be found in Appendix A. The

triton spectrum for the entire data set, with labeled2 peaks from states below the proton separation energy

(Sp) shown in Fig. 3.5.

1As a test of our corrections, we note that the position resolution obtained for the entire data set is not appreciably worse

than those from a single run.
2We defer a discussion on peaks above Sp to the next chapter.
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Figure 3.4: Sample triton lineshape fit to a triton peak, accounting for a low-energy tail because of straggling

of the tritons. A description of the lineshape function can be found in Ref. [21].
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3.3 Energy calibration

The calibration of the triton spectrum is based on the conservation of the total energy ET and total linear

momentum −→p of the interacting nuclei, illustrated in Fig. 3.6.

Figure 3.6: A pictorial representation of a binary reaction in the lab and the CM coordinate systems, where

a and A represent the 3He projectile and the 24Mg target nucleus, and b and B represent the triton ejectile

and 24Al recoil, respectively.

An important equation that connects the total energy, mass and momentum of a particle is given by

E2 = p2c2 +m2c4, (3.1)

where the motion-dependent part is given by pc and the independent part is given by the rest energy of

the particle mc2 [31]. The kinematic relationships describing such two-body interactions yield the scattered

energy of the light ejectile, provided that the total energy of the system, the rest mass of the interacting

nuclei and the scattering angle of the ejectile are known. The following equations summarize the kinematic

calculations carried out to obtain the energy of the ejectile, as described in Ref. [32].

On setting c = 1, Eq. (3.1) reduces to

E2 = p2 +m2. (3.2)
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The Q-value for the reaction is defined by

Q = ma +mA −mb −mB , (3.3)

which yields the threshold kinetic energy

WTH =
−Q
2mA

(ma +mA +mb +mB) (3.4)

for the projectile to produce the outgoing particles. Using the minimum total energy of the

projectile Emina = WTh +ma, we obtain

pmina =
[(
Emina

)2 −m2
a

]1/2
(3.5)

for the minimum momentum of the projectile. We analyze the reaction in the center-of-mass coordinate

system (i.e.,
∑
i

−→
p′i = 0, shown in the right panel of Fig. 3.6) to simplify the calculation of the scattered

energy of the light ejectile E′b, and use primed symbols to denote quantities in this system. The total energy

of the system and momentum of the projectile is

E′T = (ma +mA + 2mAEa)1/2, (3.6)

and

p′a = p′A =
pamA

E′T
. (3.7)

With E′T known, the total energy of the interacting nuclei in the entrance channel are given by

E′a =
m2
a +mAEa
E′T

(3.8)

and

E′A =
m2
A +mAEA
E′T

, (3.9)

whereas the total energy for the outgoing nuclei are given by

E′b =
E′2T +m2

b −m2
B

2E′T
(3.10)

and

E′B =
E′2T +m2

B −m2
b

2E′T
. (3.11)

With these relations for the interacting nuclei, with the light ejectile observed at θb, we can express the total

energy of the ejectile in terms of the total energy ET of the system and the masses of the interacting nuclei

through [32]
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(3.12)

Eb =
1

E2
T − p2

a cos2 θb

ET
(
mAEa +

m2
a +m2

A +m2
b −m2

B

2

)

± pa cos θb

[(
mAEa +

m2
a +m2

A −m2
b +m2

B

2

)2

−m2
bm

2
B − p2

am
2
b sin2 θb

]1/2
 .

We next define a quantity α to clear up the ambiguity of the ± sign, so that

α =
pa
ET

(
1 +

m2
b −m2

B

E′2T

){[
1−

(
mb +mB

E′T

)2
][

1−
(
mb −mB

E′T

)2
]}−1/2

. (3.13)

Then, for α > 1 there exist two solutions for the scattering angle θb, and one solution for α < 1, with

the positive sign chosen for a physically meaningful solution. Having obtained this expression for the total

energy of the scattered ejectile, the excitation energy of the recoiling nucleus can be obtained using energy

conservation. Finally, the scattering angle of the ejectile in the center-of-mass system θ′b can also be obtained

through

sin θ′b =
pb
p′b

sin θb (3.14)

and

cos θ′b =
ET
E′T p

′
b

(
pb cos θb −

paEb
ET

)
. (3.15)

We implemented the above kinematic equations in a C++ routine to carry out a momentum calibration of the

tritons along the focal plane using the known excited states of 24Al [23,24,33,34]. Similarly, by shifting the

input energies by one standard deviation ∆Ex one can estimate the associated momentum uncertainties ∆pt.

Momentum values for isolated and strongly populated peaks µt were used to calibrate the triton spectrum

through calibration coefficients obtained from a quadratic fit to (µt,pt). The calibrated momentum values

were then fed back into the kinematics code to yield the excitation energies Ex. The above procedure also

takes into account the uncertainties in the ground state masses of the interacting nuclei. Adding all these

contributions in quadrature then yields the total uncertainties for the extracted excitation energies. Fig. 3.7

compares the excitation energies obtained in this work to previously reported values. Evidently, a reasonable

agreement is obtained with previous measurements. Further discussions are presented in the next chapter.
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Figure 3.7: 24Al excitation energies obtained in this work, relative to the values reported in the

literature [23,24,33,34]. We use Sp = 1864 keV, from measured atomic masses [35].
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3.4 Coincidence analysis

In the following sections I briefly describe the analysis methods used to obtain proton-triton coincidence

data, using the CAKE Si detector array.

3.4.1 Energy calibration of CAKE

Prior to beam acquisition, we used a 226Ra source to calibrate each ADC channel of the CAKE array by

identifying the α peaks from 226Ra decay [36–38], shown in Fig. 3.8. We obtained the peak centroids C(i)

in the raw spectra for each ADC channel with a C++ program that uses the TSpectrum class of ROOT. The

relationship between the uncalibrated (i.e., ADC value C) and the calibrated spectra was assumed to be in

the linear form

Eα(i) = a+ bC(i), (3.16)

where a and b are the offset and gain coefficients respectively for each detector channel. These coefficients

were determined through a χ2 minimization of a straight line fit to the peak centroids using the TMinuit

library in ROOT. The projected spectrum of the 2D calibrated channels was used to validate our energy

calibration of the CAKE array, with the identified α groups clearly resolved, as shown in Fig. 3.9.

Figure 3.8: α decay chain for the 226Ra source.

From this assessment, we can be confident that the MMM detectors were calibrated well enough to add

the spectra from each MMM detector. The individual and summed spectra are shown in Fig. 3.10. It

was also evident, after performing these energy calibrations, that the five MMM detectors were counting at

roughly the same rate (see Table. 3.1).
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Figure 3.9: Left panel: Uncalibrated ring and sector channels of CAKE for the 226Ra source data.

Right panel: Energy-aligned spectra obtained after the calibrations were performed.
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Figure 3.10: The calibrated spectra for each MMM detector, compared with the gain-matched spectrum of

the total CAKE array.
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Table 3.1: Areas obtained from a fit to the α peak around 6000 keV for each MMM detector and its

contribution to the gain-matched spectrum of the total CAKE array.

MMM Area (∆A) Contribution (%)

1 57243 ± 244 18.23 ± 0.08

2 59318 ± 247 18.90 ± 0.09

3 72285 ± 275 23.03 ± 0.10

4 67345 ± 266 21.45 ± 0.09

5 58530 ± 250 18.64 ± 0.09

3.4.2 Timing characteristics of CAKE

In order to obtain true coincidence data, with minimal random coincidences, the distribution of the values

of the TDC channels of CAKE must be centered around zero. This permits the use of a narrow time gate

for final data analysis. However, this is clearly not the case, as shown in Fig. 3.11.

Figure 3.11: Left panel: The TDC channel versus its value for the experimental data with coincidences

highlighted by the dashed vertical lines. Right panel: The timing distribution with a FWHM ≈ 72 channels.

We therefore implemented a set of offset and gain coefficients for the TDC channels of CAKE in the

sorting code to obtain a sharper timing signal that is centered around zero. As shown in Fig 3.12, the

improved FWHM value for the timing distribution validates the corrective procedure. By taking all the

above corrections into account, we obtain the p − t coincidence data shown in Fig. 3.13. An overlay of the

coincident calibrated triton spectrum with triton singles is shown in Fig. 3.14.
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Figure 3.12: Left panel: TDC channels versus the corrected TDC values of the CAKE array. Right panel:

The corresponding timing distribution that is centered around zero, with a FWHM ≈ 43 channels.

Figure 3.13: The p − t coincidence data, with the proton decay modes of the 24Al nucleus captured by the

diagonal bands, where the upper (p0) and lower (p1) bands are from transitions to the ground and first

excited states in 23Mg, respectively. The ellipse around the p0 proton group around 2400 keV highlights the

lowest 23Mg(p,γ) resonance.

33

http://etd.uwc.ac.za/ 



1000 1500 2000 2500 3000 3500
Excitation energy (keV)

1

10

100

1000

10000
E

v
e
n

ts
/k

e
V 2
3

4
8

2
5

2
1 2794 2876

2981
S

p

Figure 3.14: The singles triton energy spectrum of 24Al, overlaid with coincidence data that correspond to

the p0 proton decay mode. We obtain Ex = 2348(4) keV for the first state above Sp = 1864 keV.

Following the 24Mg(3He,t) reaction, the 24Al recoils predominantly decay via proton emission in flight. I

briefly discuss considerations of this aspect of the data analysis below.

3.4.3 Energies of the proton emitting recoils

As mentioned previously, we acquired data with the K600 spectrometer configured in 0◦ mode. The kinematic

loci for both the tritons and the 24Al recoils from the reaction are shown in Fig. 3.15. Assuming that only

tritons emitted at an angular acceptance ±2◦ were detected at the focal plane, the reaction kinematics yield

a 24Al recoil energy ER ≈ 210 keV, with an energy spread ∆ER ∼ 7 keV. Such a small initial recoil energy

simplifies our analysis, as this results in β = v/c ≈ 4× 10−3 and

γ =
1√

1− β2
≈ 1.0, (3.17)

for recoils corresponding to Ex ≈ 2348 keV3. Although the relativistic corrections to our analysis were

negligible as shown above, for completeness, we performed an energy loss correction for the recoils. Because

the 24Al recoils lose energy through interactions with MgF2 target atoms prior to proton emission, we

need to account for this energy loss to determine the average recoil energy at the time of proton emission.

This was obtained using the stopping powers
(
dE
dx

)
for the 24Al within the MgF2 target, obtained from

SRIM [39, 40]. We used the MgF2 target density (ρ = 1.3196 g/cm3) to convert the 200 µg/cm2 target

thickness to ≈ 154 µm in dimensions of length. This thickness was divided into N infinitesimally thin slices

of thickness ∆x = 154
N µm, with N = 106.

3In fact, such small corrections were applicable to the data from all the 24Al proton-unbound states described in this work.
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Figure 3.15: The angle and energy of 24Al recoils for a range of triton angles in the lab frame. The shaded

region indicates these variables at forward angles, up to ∼ 10◦. The inset highlights this region.

Each 24Al recoiling nucleus approaches the first slice with initial energy ER = 210 keV. After traveling a

linear distance ∆x, the energy loss of the recoil is given by the product
(
dE
dx

)
ER

∆x. This essentially yields

the reduced energy of the recoil for the first slice ERred, with vR '
(
2ERred/m

)1/2
, assumed to be a constant

over the infinitesimal slice. We can use this velocity to approximate the time of travel over that particular

slice, using t = ∆x/vR. The calculation is then repeated for the subsequent slice, with the initial energy

of the recoil being the reduced energy obtained for the previous slice and so on. This was generalized for i

slices so that

ERred = ER −
∑
i

(
dE

dx

)
i

∆xi, (3.18)

with the
(
dE
dx

)
value for each slice obtained from a polynomial fit to stopping power data obtained from

SRIM, over a range of energies from 100 keV to 2000 keV. A third order fit shows reasonable agreement

with the SRIM results, on assuming a 10% relative uncertainty in the stopping powers. The coefficients

obtained from this fit, shown in Fig. 3.16, allow an energy-loss determination for arbitrary recoil energies.

The infinitesimal nature of the slicing also allows one to safely assume that the stopping powers remain

constant over each slice. We used estimates of the proton widths to obtain the lifetimes of individual states,

using the relation, τp = h̄/Γp. Since the proton width for the lowest-unbound state in 24Al is calculated to

be Γp = 185 meV [20], that yields τp ≈ 3 fs. With the above equations implemented in a C++ program,

we obtained a total energy loss ∆ER ≈ 0.03 keV for this state, with τp = 3 fs imposed as a condition

on the incremented time intervals
∑
i ti. This negligible correction showed that energy-loss effects were
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Figure 3.16: A third order polynomial fit to stopping powers versus recoil energies from SRIM, with both

nuclear and electronic contributions summed. We used a conservative estimate of 10% relative uncertainty

in the stopping powers from SRIM.

insignificant. The energy-loss corrections for the higher-lying states are much smaller, due to their shorter

lifetimes. Details on the C++ program used to determine these corrections can be found in Appendix. B.1.

For a 24Al recoil that emits a proton leaving the residual 23Mg nucleus in its ground state (i.e. a p0 decay),

the proton energy in the center of mass would be E′p = Er, the resonance energy. However, the energy in

the lab frame depends on the velocity of the recoil. Since we already showed that the velocity of the recoils

are small for this particular reaction, the energy of the protons in the lab can be approximated to

Ep ≈

[
∆
(

23Mg
)

∆ (23Mg) + ∆ (1H)

]
E′p. (3.19)

For the lowest-lying resonance at Er = 484 keV, this yields Ep ≈ 463 keV in the lab. In addition, the particle

emission of recoils in flight require an additional relativistic correction for the angles at which the particles

are detected. This is illustrated in Fig. 3.17. Resolving the momentum of the proton into its transverse v⊥p

and longitudinal v
‖
p components

v′p sinϑ′p = vp sinϑp (3.20a)

v′p cosϑ′p + β′ = vp cosϑp, (3.20b)

the relationship between ϑ′p and ϑp is given by [41]

tanϑ′p =
sinϑp

γ (cosϑp − β′/β)
, (3.21)
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where β′ = v′

c in the center of mass system. For the purposes of our analysis since β′ � 1 and γ is close to

unity, we assume that ϑ′p ' ϑp.

Figure 3.17: A pictorial representation of the in-flight proton decay of the recoil, moving with velocity

β′ = VCM/c.

3.5 Angular distribution of the protons

Since the total CAKE array subtends a fraction of the full solid angle, if the protons were emitted isotropically,

one can obtain the proton branch from a ratio of t− p coincidences to triton singles using the expression

Bp =
1

Nt

16∑
i=1

(
N tp
i

εi

)
, (3.22)

where N tp
i represents the coincidences, N t are the total registered triton singles and εi is the efficiency for

each ring in CAKE. However, the protons carry orbital angular momentum. Assuming that the quantization

axis is along the beam and ignoring higher order terms, the measured angular distributions of the protons

are described by

W (ϑ) =
2∑
k=0

AkPk(cosϑ), (3.23)

where the Pk’s are Legendre polynomials. The Ak coefficients are parameters that describe the anisotropy of

the proton angular distributions. An algebraic treatment [42] of the form of the expected angular distribution

shows that the m-state population of a state characterized by |Jπ〉 is greatly restricted for tritons accepted

along the axis of cylindrical symmetry at ∼ 0◦. Taking these aspects into consideration, the ring-sector design

of the CAKE array allows accurate angular distributions to be extracted from the coincidence data obtained.
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Furthermore, since the DSSSD rings for CAKE cover the azimuthal angle ϕ in the interval ϕ ∈ [0, 2π],

we can obtain the proton branches from a fit to the measured angular distributions that incorporates the

detection efficiency of each ring. Then the total branch is simply

Bp =

∫ 1

−1

W (ϑ)d(cosϑ). (3.24)

As W (ϑ) is an even function, the only parameter that survives the integration in Eq. (3.24) is A0. The

proton branching ratio is therefore determined from the measured A0.

3.5.1 Contamination in the triton spectrum

To obtain the proton branching ratios using the above procedure, it is essential that there is no contamination

in our spectra. Inspection of the triton data obtained with the Li2CO3 target showed a peak at the same

focal plane position as the triton peak that corresponds to the 2348 keV state in 24Al. This is shown in

Fig. 3.18, which overlays the triton singles spectrum from the Li2CO3 target with the spectrum obtained

with the MgF2 target. Peaks A′, B′ and C ′ are from 16O(3He,t) reactions and correspond to excited states in

16F at 721 keV, 424 keV and the ground state respectively. Peak A in the 24Mg(3He,t) spectrum corresponds

to the relevant excited state in 24Al at 2348 keV. Since there are multiple contaminant peaks, their relative

areas allow a correction for the contamination contribution to peak A.
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Figure 3.18: The triton spectra obtained for the MgF2 and Li2CO3 targets. Triton peaks in the former are

labeled by A and B. The contamination in the triton spectrum for the MgF2 target are due to excited states

in 16F at 721 and 424 keV labeled by A′ and B′, with the ground state labeled by C ′ [43].
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We define the ratio of the triton peak areas A′ and B′ for the Li2CO3 target as

λ′ =
A′363

B′398

. (3.25)

The triton peak area for the MgF2 target with focal plane position ∼ 363 mm includes triton peak contam-

ination from the excited state in 16F at 721 keV, which is given by Acont = λ′Bpeak
398 . This allows one to

obtain the contaminant subtracted triton peak area for the state of interest using

Areal = Apeak
363 −Acont, (3.26)

with the associated uncertainty ∆Areal obtained by adding the uncertainties of the triton peak areas ∆Apeak
363

and ∆Acont in quadrature.

3.5.2 Detection efficiency of CAKE

A calculation of the detection efficiency of each ring gives the measured proton yield as a function of ϑ

(including only the active elements of the detector for each ϑ). During the course of the experiment we

observed that one ring and sector in MMM1 and MMM2 were not functional and yielded negligible events.

This is shown in Fig. 3.19. We next used a Geant4 Monte Carlo calculation [27] to obtain the efficiency of

each active ring element. The simulations determined the detection efficiency

εϑ =
events registered

total number of events
, (3.27)

where the total number of events were emitted by an isotropic source placed at the center of the target. The

simulations generated a sequence of random numbers for ϑ and ϕ distributed according to

ϑ = cos−1 (2r1 − 1)

ϕ = 2πr2,
(3.28)

where r1 and r2 are random numbers uniformly distributed in [0, 1]. The above defined the polar and

azimuthal directions for the protons, to yield an isotropic distribution for protons from the center of the

target. For the dominant low-lying resonance, the source emitted around 106 monoenergetic protons with

Ep = 463 keV. We imposed an energy condition (Ep > 400 keV) in the simulations, so that only events

corresponding to proton energies in excess of this threshold energy were accepted. The accepted proton

events are shown in Fig. 3.20.

The distributions of cosϑ and ϕ for the registered events from a sample simulation are shown in Fig. 3.21.

We note that the flat nature of these distributions reflect the isotropy of the protons generated. We obtained a

detection efficiency of ∼ 26% for the total CAKE array, which is consistent with a previous measurement [26].
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Figure 3.19: An upstream view of the experimental data for the CAKE array. Note that the CAKE array is

not partitioned into the five MMM detectors in this visualization of the data.

Figure 3.20: A downstream view of the Geant4 simulated data of the CAKE array with the five MMM

detectors partitioned, where the sectors in each MMM detector are clearly visible. The components of CAKE

that were not active in the actual experiment were rendered inactive within the simulations. They are shown

in this picture with dark boundaries.
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Figure 3.21: Isotropic polar (ϑ) and azimuthal (φ) distributions for the registered events, with the five

activated detectors of the CAKE array labeled.
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Figure 3.22: The detection efficiency of the rings at backward angles, obtained from a Monte Carlo simulation

in Geant4. Not surprisingly, the innermost ring at ϑ ' 165◦ has the lowest detection efficiency.
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Finally, to correctly extract proton angular distributions from the coincidence data, it is crucial to map

the proton intensities measured by each ring of CAKE to the appropriate ring detection efficiency. The latter

was determined from events registered by each ring at angle ϑ, with the ring efficiencies shown in Fig. 3.22.

The innermost ring at ϑ ' 165◦ has the smallest surface area and thus expectedly has the lowest detection

efficiency.

This concludes our discussion on the analysis methods used to obtain proton branching ratios for unbound

states in 24Al. In the next chapter I the discuss the results obtained in this work, and present a revised

23Mg(p,γ) reaction rate.
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Chapter 4

Results & Discussion

In this chapter I present the results obtained in this work, with emphasis placed on the first state above the

proton separation energy in 24Al. This is followed by an estimation of the total 23Mg(p,γ) reaction rate at

nova temperatures.

4.0.1 Level energies of 24Al

With the focal plane position of the triton peaks carefully measured, the calibration of the triton momentum

along the focal plane yield accurate excitation energies. The calibration procedure has already been discussed

in Section 3.3. The final calibrated spectrum is shown in Fig. 4.1. The FWHMs of the peaks shown in this

figure were ≤ 40 keV.
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Figure 4.1: The calibrated spectrum of 24Al up to Ex ∼ 3.5 MeV. The prominent peaks in 24Al and

contamination from the 724 keV state in 16F are labeled.
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The average FWHM value for each peak obtained for the summed aligned-spectra for all runs was found

to be comparable to that of a single run. We used Er = Ex − Qpγ to determine the resonance energies

corresponding to the excitation energies obtained in this work, where Qpγ is the Q-value of the 23Mg(p, γ)

reaction. We compare our extracted excitation energies and corresponding resonance energies to previous

measurements in Table. 4.1.

We note that the difference between the resonance energies obtained from the present analysis and

previously determined values are mainly due to the ∼ 6 − 8 keV difference in the Q-values, as we rely

on a more recent evaluation of the measured masses to determine Qpγ [35]. The calculated value for the

resonance energy of the lowest-lying unbound state is in agreement with the adjusted values reported by

Erikson et. al [9], which is also based on a similar Qpγ-value.

4.1 Proton branching ratio measurements

The proton angular distribution of the lowest-lying resonance is shown in Fig. 4.2, and the distributions for

the higher-lying resonances shown in Fig. 4.3. As previously discussed in Section 3.5, we can obtain the

proton branching ratio from a Legendre polynomial fit to the measured angular distributions. We used a

Gauss-Jordan minimization routine to perform this part of the analysis. The total width of each proton

unbound state Γ ∝ N t, and it characterizes the probability of forming the state of interest in 24Al. Its decay

via proton emission is characterized by the partial width Γp, so that Γp ∝ N tp. Since the proportional-

ity constants here are equal, we can express the proton branching ratio in terms of these widths through

Bp = Γp/Γ (see Eq. (3.22) in Section 3.5).

Our proton branches can then be used together with knowledge of the partial gamma widths to yield

the resonance strength using ωγ = ω
(

Γp

Γ

)
Γγ . We relied on shell model calculations of the partial gamma

widths (ΓSM
γ ) of unbound states in 24Al by Herndl [20] to obtain the resonance strengths, as these widths

are difficult to measure directly. Following the prescription of Ref. [44], we assume a 50% uncertainty in

the calculated ΓSM
γ . Our extracted values are shown in Table. 4.2, alongside shell-model calculated partial

gamma widths and resonance strengths [19, 20]. These resonance strengths were then used to calculate the

total 23Mg(p,γ) reaction rate.
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Figure 4.2: A Legendre polynomial fit to the angular distribution of the decaying protons that correspond to

the first resonance in 24Al. The anisotropy is characterized by the parameters A2 and A4. The uncertainties

in the coefficients are extracted from the fitting routine, which is based on the Gauss-Jordan elimination

technique and also takes into account off-diagonal terms in the covariance matrix.
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Figure 4.3: Legendre polynomial fits to the measured angular distributions of the decaying protons that

correspond to the higher-lying resonances in 24Al, labeled by a: Er = 657(4) keV, b Er = 930(4) keV,

c: Er = 1012(4) keV and d: Er = 1117(4) keV.
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Table 4.2: The proton branching ratios and resonance strengths obtained in this work, together with shell

model calculated values of the partial gamma widths and resonance strengths.

Erikson. et. al [9] Kubono. et. al [19] Herndl. et. al [20] Present data

ωγ (meV) Γγ (meV)a ωγ (meV) Γγ (meV)b ωγ (meV) Γp/Γ ωγ (meV)c

38+21
−15 47 26.8 33 25 0.83± 0.11 23.97± 12.39

. . . 160 128.7 53 58 0.58± 0.13 34.58± 18.95

. . . 13 11.4 83 52 0.61± 0.04 31.64± 15.96

. . . > 26 16.3 14 12 0.69± 0.03 8.45± 4.24

aAdopted from the observed lifetimes for the analog states in 24Na.

bObtained using the OXBASH shell model calculation.

cΓγ taken from Ref. [20].

4.1.1 The 23Mg(p,γ)24Al stellar reaction rate

We used the RatesMC code [44] that is based on Monte Carlo techniques to estimate the total 23Mg(p,γ)

reaction rate in a statistically rigorous way. This approach allows an estimation of uncertainty bands in the

reaction rates obtained. We already presented the formalism of the total reaction rate in Section 1.3, with

the same approach employed in RatesMC to calculate the total reaction rate. This is summarized below.

For the nonresonant mechanism that dominates the total reaction rate at low temperatures, the total

S-factor can be approximated by a polynomial

S(E) ≈ S(0) + S′(0)E +
1

2
S′′(0)E2, (4.1)

where the primed quantities refer to derivatives with respect to E. This yields the nonresonant reaction rate

given by [44]

NA〈σv〉nr =
4.339× 108

Z0Z1
µ01Seff exp−τ τ2, (4.2)

where

τ = 4.2487

(
Z2

0Z
2
1µ01

1

T9

)1/3

(4.3)

and

Seff = S(0)

[
1 +

5

12τ
+
S′(0)

S(0)

(
E0 +

35

36
kT

)
+

1

2

S′′(0)

S(0)

(
E2

0 +
89

36
E0kT

)]
. (4.4)

In Eq. (4.2), µ01 refers to the reduced mass of the projectile and target in the reaction and NA denotes the

Avogadro constant. Furthermore, a cutoff factor fcutoff ≈ e−T9/T
cuttoff
9 that multiplies the reaction rate is

introduced to account for temperatures at which the expansion of the S-factor becomes inaccurate [44]. In

comparison, reaction rates for narrow resonances are obtained from the relation
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NA〈σv〉r =
1.5399× 1011

T
3/2
9

µ3/2
∑
i

(ωγ)ie
−11.605Ei/T9 , (4.5)

where the incoherent sum is over all resonance energies Ei and resonance strengths (ωγ)i. The total reaction

rate is then given by the sum of the nonresonant and resonant reaction rates above.

In RatesMC, a probability density function is associated to each parameter that enters in the calculation

of the total reaction rate. These include a Gaussian distribution for the resonance energy and lognormal

distributions [44] for partial widths, resonance strengths and nonresonant S-factors. For the former distri-

bution, negative random values are treated as subthreshold resonances in the Monte Carlo calculation. By

drawing random samples from these distributions, one can obtain a set of randomly sampled reaction rates

defined by a normalized lognormal distribution [44]

f(x) =
1

σ
√

2π

1

x
exp

[
− (lnx− µ)2

2σ2

]
. (4.6)

The cumulative probability function (CDF) for the above is simply

F (x) =

∫ x

−∞
f(x′)dx′. (4.7)

Using this method one can obtain a recommended reaction rate, given by the median value x1/2. The un-

certainty bands are determined by the ‘low’ and ‘high’ rates, coinciding with the 0.16 and 0.84 percentiles.

This assures that the total reaction rate has a coverage probability of 68% [44].

We used our extracted resonance energies and resonance strengths as input to the RatesMC code to

calculate the total 23Mg(p,γ) reaction rate. Our adopted uncertainty in ΓSM
γ is supported by a systematic

comparison of partial widths [44]. A further description on the nuclear physics input used to compute the

total reaction rate can be found in Ref. [47]. The output for the total reaction rate is shown in Fig. 4.4, with

the contributions of the nonresonant (direct capture, DC) and resonant components to the total reaction

rate shown in Fig. 4.5. Finally, we compare our revised estimate of the total 23Mg(p,γ) reaction rate with

the evaluation by Herndl [20], shown in Fig. 4.6.
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Figure 4.6: A comparison of the total 23Mg(p,γ) reaction rate obtained in this work with a previous estimate

by Herndl [20], over a range of temperatures from 0.05 GK to 2.5 GK.

This concludes our discussion of the results obtained in this work. We note that we obtain reasonable

agreement with previous measurements [9, 20, 23]. This is the first direct measurement of relative proton

branching ratios from 24Al to estimate 23Mg(p,γ) resonance strengths to astrophysically relevant states. Our

extracted value for the resonance strength for the 3+ state at 2348 keV is in agreement with the direct

measurement by Erikson et. al [9]. However, the uncertainty in our value is dominated by the 50% relative

uncertainty assumed for the calculated gamma width of this state.

4.2 Conclusions

This work focused on measurements of the proton branches for the unbound states in 24Al. We obtain the

excitation energy of the first proton-unbound Jπ = 3+ state in 24Al to be Ex = 2348(4) keV. Together with

our measured proton branching ratio, this allows us to obtain the resonance strength of this dominant reso-

nance in the astrophysically relevant 23Mg(p, γ)24Al reaction. Our extracted value of the resonance energy

for this state is Er = 484(4) keV.

An analysis of the angular distribution of the decaying protons from the lowest-lying unbound state

yields a proton branching ratio, Bp = 83 ± 11%. This proton branch and the shell model estimate of the

partial gamma width of this state gives the resonance strength, ωγ = 24.0± 12.4 meV. We considered four

resonances and the direct capture mechanism to obtain a revised total 23Mg(p, γ)24Al reaction rate. It is

anticipated that our results will form part of a useful input to ONe nova models for stellar nucleosynthesis.

Future measurements of the Γγ widths for these states will be useful in this regard.
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Appendix A

Focal plane position centroids

A fit to the triton focal plane positions (µt) using the lineshape function previously described are shown

below, with the resulting position centroids and areas collected in Table. A.1.
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Table A.1: The measured position centroids and areas for the triton events at the focal plane.

µt (mm) FWHM (mm) Area (Counts) χ2
ν

662.98 ± 0.10 4.00 ± 0.22 668 ± 28 0.56

606.99 ± 0.05 4.42 ± 0.07 2946 ± 60 0.95

597.34 ± 0.04 4.42 ± 0.07 3439 ± 63 0.95

522.85 ± 0.01 3.98 ± 0.02 45822 ± 215 1.38

501.01 ± 0.05 3.98 ± 0.02 2288 ± 51 1.38

463.59 ± 0.07 4.39 ± 0.06 9781 ± 104 1.67

454.58 ± 0.07 4.39 ± 0.06 40442 ± 205 1.67

361.64 ± 0.08 4.89 ± 0.15 3695 ± 70 0.91

339.29 ± 0.08 3.81 ± 0.20 1134 ± 43 0.91

304.06 ± 0.05 4.63 ± 0.06 10674 ± 228 1.98

293.53 ± 0.04 4.63 ± 0.06 31973 ± 502 1.98

279.88 ± 0.23 5.46 ± 0.26 20060 ± 612 1.98

242.44 ± 0.20 9.47 ± 0.14 11606 ± 176 2.06

232.44 ± 0.23 4.22 ± 0.22 9345 ± 132 2.06

93.28 ± 0.05 7.47 ± 0.11 24474 ± 343 1.46
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Appendix B

Energy loss of the recoil in the target

The program used for the energy loss calculation of the 24Al recoils within a MgF2 target is shown in

Listing. B.1.

Listing B.1: A program that calculates the energy loss of an ion within a target.

#include <iostream >

#include <fstream >

#include <iomanip >

#include <cmath >

#include <math.h>

using namespace std;

const double light_speed = 3.E+08*1E-09; // Unit: um/fs

// Function prototype :

double Eloss_pol(double dx, double fit_pars[], double Erec);

int main()

{

// Input parameters :

ifstream fin1;

fin1.open("fit_pars.dat");

int RES;

cout << "\nSpecify resonance: " << endl;

cin >> RES;

ofstream fout;
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fout.open("Eloss_RES.dat");

// ===== T a r g e t I n f o r m a t i o n =====

double MgF2_aden = 200.; // Arial density ug/cm^2

double MgF2_den = 1.31960*1E+06; // Density ug/cm^3

// Obtain thickness in um from above:

double MgF2_thick;

MgF2_thick = (MgF2_aden/MgF2_den)*1E+04; //in um

cout << "MgF2_thick (um) = " << MgF2_thick << endl;

// Fit parameters from a polynomial fit to dE/dx versus Erec: Initialization

double fit_pars [5], fit_pars_err [5];

for (int i=0; i<4; i++)

{

fin1 >> fit_pars[i] >> fit_pars_err[i];

}

// Kinetic energy and velocity (v/c):

double Erec [4] = {0.21018948 ,0.21528569 ,0.22345638 ,0.22593103}; //in keV

double Vrec [4] = {0.0043367865 ,0.0043890292 ,0.0044715147 ,0.0044961981};

// Calculated Energy loss:

double Elost , Eold , Enew;

// Initialize recoil energy:

Eold = Erec[RES -1];

// Number of slices:

long int Nr_slice = 1E+6;

// Slice Thickness :

double dx;

dx = (MgF2_thick/Nr_slice); //in um

fout << "dx (um) = " << dx << endl;

fout << "Ereduced \t Vrec \t t_i = " << endl;

double t_old = 0., t_new = 0.;

double t_lifetime [4] = {3.0192661 ,0.25781434 ,6.9278158E -04 ,0.019350856};
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int Slice_ctr = 0;

do

{

Enew = Eold - Eloss_pol(dx,fit_pars ,Eold);

// Recoil velocity from kinetic energy:

Vrec[RES -1] = sqrt (2* Enew /(22349.166*1E+03))*light_speed; //um/fs

t_new = (t_old + (dx/(Vrec[RES -1])));

cout << Enew << "\t" << Vrec[RES -1] << "\t" << t_new << endl;

// Update energy and increment time:

Eold = Enew;

t_old = t_new;

Slice_ctr ++;

}

while(t_new <t_lifetime[RES -1]);

// Range (um):

fout << "Slice_ctr = " << Slice_ctr << "\t" << "Range (micron) = " << dx*Slice_ctr <<

endl;

cout << "\nNumber of slices = " << Slice_ctr << endl;

double Del_E;

Del_E = Erec[RES -1] - Eold;

fout << "Total energy loss in lifetime of the state: Delta_E (keV) = " << Del_E << endl;

return 0;

}

// Eloss function:

double Eloss_pol(double dx, double fit_pars[], double Erec)

{

double Elost = 0.0;

Elost = (fit_pars [0] + fit_pars [1]* Erec + fit_pars [2]* pow(Erec ,2) + fit_pars [3]* pow(Erec

,3))*dx;

return Elost;

}
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