
Credit Card TransactionSr Fraud

Detection, and Machine Learning:

Modelling Time with LSTM

Recurrent Neural Networks

B6nard Jacobus Wiese

A thesis submitted in fulfilment of the requirements for the degree of

Magister Scientiae

in the Department of Computer Science,

University of the Western Cape.

August 2007

Supervisor: Professor Christian W. Omlin

by

https://etd.uwc.ac.za/

Credit Card Transactions, Fraud Detection, and

Machine Learning: Modelling Time with

LSTM Recurrent Neural Networks

BdNARD JACOBUS WIESE

Keywords

Credit Card

Transaction

Fraud

Support Vector Machine

Time series

Recurrence

Vanishing gradient

Long Short-Term Memory

Receiver Operating Characteristic

Pre-Processing

https://etd.uwc.ac.za/

Abstract

In recent years, topics such as fraud detection and fraud prevention have received a

lot of attention on the research front, in particular from plastic card issuers. The

reason for this increase in research activity can be attributed to the huge annual

financial losses incurred by card issuers due to fraudulent use oftheir card products.

A successful strategy for dealing with fraud can quite literally mean millions of

dollars in savings per year on operational costs.

Artificial neural networks have come to the front as an at least partially successful

method for fraud detection. The success of neural networks in this field is, however,

limited by their underlying design - a feedforward neural network is simply a static

mapping of input vectors to output vectors, and as such is incapable of adapting to

changing shopping profiles of legitimate card holders. Thus, fraud detection systems

in use today are plagued by misclassifications and their usefulness is hampered by

high false positive rates. We address this problem by proposing the use of a dynamic

machine learning method in an attempt to model the time series inherent in sequences

of same card transactions. We believe that, instead of looking at individual

transactions; it makes more sense to look at sequences of transactions as a whole; a

technique that can model time in this context will be more robust to minor shifts in

legitimate shopping behaviour.

In order to form a clear basis for comparison, we did some investigative research on

feature selection, pre-processing, and on the selection of performance measures; the

latter will facilitate comparison of results obtained by applying machine learning

methods to the biased data sets largely associated with fraud detection. We ran

experiments on real world credit card transactional data using three machine learning

techniques: a conventional feedforward neural network (FFNN), and two innovative

ll

https://etd.uwc.ac.za/

methods, the support vector machine (SVM) and the long short-term memory

recurrent neural network (LSTM).

https://etd.uwc.ac.za/

Declaration

I declare that Credit Card Trqnsactions, Fraud Detection, and Machine Learning:

Modelling Time with LSTM Recurrent Neural Networl<s is my own work, that it has

not been submitted for any degree or examination in any other university, and that all

the sources I have used or quoted have been indicated and acknowledged by complete

references.

W
B6nard Jacobus Wiese

August 2007

IV

https://etd.uwc.ac.za/

Contents
Introduction

1.1. Motivation
I
I
J

4
4
5

5

6

7

8

8

8

1.2

1.3

1.4

1.5

Premises
Problem Statement...
Research Hypothesis
Technical Goals........

1.6. Methodology
1.7 . Contributions
1.8. Overview

Fraud and Fraud Detection.
2.1. Introduction........
2.2. Fraud
2.3. Fraud Detection..

Literature Review
Perceptrons And Neural Networks: A Brief Overview

4.1. Introduction................
4.2. The Perceptron...........

4.2.1. PerceptronTraining....
4.3. LinearSeparability
4.4. GradientDescent.....
4.5. Summary

Methodology I: Support Vector Machines...
5.1 . Introduction
5.2. The Maximum Margin Hyperplane.....
5.3. Direct Space versus Dual Space
5.4. The Soft Margin Hyperplane
5.5. Nonlinear Support Vector Machines....
5.6. Summary

Methodology II: Recurrent Neural Networks

6.2.2. Real-Time Recurrent Learning......
6.3. The Vanishing GradientProblem...........
6.4. Long Short-Term Memory

6.4.1. The Constant Error Carrousel........
6.4.2. Input and Output Gates
6.4.3. The LSTM Memory 81ock.............
6.4.4. Forward Pass with LSTM
6.4.5. Forget Gates

... I I

.......... l3

.......... l6

.......... l6
,,..,.....17
.......... l8
.......... l9
..........20
,.,.......21
,.,.,.....22

22
23

..........27

..........30

..........33

..........34

..........35
6.1. Introduction
6.2. RecurrentNeuralNetworks..

6.2.1. Backpropagation-Through-Time....38

35

36

40
.........42
.........44
.........44
.........45
.........46
.........47
.........49

6.4.6. Peephole Connections 5l

https://etd.uwc.ac.za/

6.4.7. LSTM Training - A Hybrid Approach
6.5. Summary

Evaluating Performance
7.1. Introduction.............
7.2. Mean Squared Error
l.) Receiver Operating Characteristic
7.4. Summary......

Data Sets, Feature Selection and Pre-processing
8.1. Introduction.....
8.2 Feature Selection
8.3. Nominal and Ordinal Variables
8.4. Interval and Ratio Variables...
8.5. Summary

Detecting Credit Card Fraud
9.1. Introduction................
9.2. Experiment I: Fraud Detection with FFNN and SVM

9.2.1. Experimental SetUp.............
9.2.2. Feedforward Neural Network

Network Topology, Parameters, and Training..............
Results......

9.2.3. Support Vector Machines...
Parameters and Training
Results......

9.3. Experiment II: Time Series Modelling with LSTM........
Network Topology, Parameters, and Training
Results......

9.4. Discussion
9.5. Summary

Conclusions and Future Research
10.1. Conclusion
10.2. FutureResearch........

Bibliography...

5l
55

56
56
56
58
65

66
66
67
69
70
75

76
76
78
78
79
79
8t
84
84
87
88

89
9l
95
97
98
98
99

101

vl

https://etd.uwc.ac.za/

List of Figures

Figure l-l: Losses due to plastic card fraud on UK-issued cards from 1995 to 2004 16l.
Figure 2-l: Migration of fraud patterns (fraud types) between 1994 and 2004 16). l0
Figure 4-1: The general structure ofa three-layer perceptron with its input, association, and output
response layer (illustration adapted from [24]). 17

Figure 4-2: Linear separability. (a) A linearly separable problem, i.e. the binary class can be separated
by a straight line in two dimensional space. (b) A representation of the XOR boolean function, which
is not linearly separable 20

Figure 5-1: A binary outcome decision function in 2-dimensional space (adapted from [5]). The
support vectors are shown with extra thick borders, with Hl and H2 denoting the separating
hyperplanes on which they lie. The maximum margin is denoted as M and gives the maximum
distance between the separating hyperplanes. 24
Figure 5-2: Linear separating hyperplanes for the linearly inseparable case (adapted from [5]). Data
vectors on the wrong side ofthe decision surface are compensated for by the introduction ofslack
variables, whose magnitude need to exceed unity for an error to occur........ 3l
Figure 6-l: (a) Jordan RNN and (b) Elman RNN 36
Figure 6-2: A fully recurrent neural network. 37
Figure 6-3: An example of a Jordan RNN unfolded in time. 38
Figure 6-4: An LSTM memory cell. 46

Figure 6-5: An LSTM memory cell with a forget gate. 50
Figure 7-1: Output neuron probability distributions under null and alternative hypothesis................. 60
Figu re 7-2 : Decision outcome error probabi lity.
Figure 7-3: A typical ROC curve.
Figure 8-1: A normal distribution with mean 10 and standard deviation 2.
Figure 8-2: A histogram of the transaction amount feature prior to pre-processing............................73
Figure 8-3: A histogram of the transaction amount feature after applying a simple logarithmic
compression transformation.
Figure 8-4: A histogram ofthe transaction amount feature after applying the transform in equation
(77). 75

Figure 9-l: Sequence length distributions for the training set (top) and test set (bottom)
Figure 9-2: FFNN topology for fraud detection.
Figure 9-3: 30 ROC curves measuring FFNN fraud detection performance on the training set (top) and

2

6l
63

72

81

85

87
89
9l

test set (bottom).........
Figure 9-4: Grid-search results for SVM parameter selection.
Figure 9-5: ROC curves for various SVM kernels, parameters, and cost.
Figure 9-6: LSTM network topology for fraud detection............
Figure 9-7: A hybrid LSTM with one hidden layer,
Figure 9-8: 30 ROC curves measuring LSTM fraud detection performance on the training set (top)
and test set (bottom)
Figure 9-9: ROC curves of best performing LSTM, FFNN and SVM classifiers.

92
96

vll

74

77

https://etd.uwc.ac.za/

List of Tables

Table 7-l: The outcome probability table [4].........
Table 7-2t A simplified outcome/decision matrix..
Table 9-l: Summary of training and test results for FFNN
Table 9-2: Full list oftraining and test results for FFNN...
Table 9-3: Summary of training and test results for LSTM.
Table 9-4: Full list of training and test results for LSTM
Table 9-5: Comparison of SVM, FFNN and LSTM

58
59
82
83

93

94
95

vlll

https://etd.uwc.ac.za/

Chapter I

INTRODUCTION
The aim of this chapter is to give a broad overview of the thesis. It starts off with the

motivation behind the research conducted here, the premises on which the research

was based, and a general problem statement. This is followed by the research

hypothesis, technical goals, research methodology, and this thesis's contributions

toward the fraud research community. Finally, a chapter by chapter overview of the

thesis is given to form a bird's eye view of what lies ahead.

I I Motivation

"Card companies continue to increase the ffictiveness and sophistication of

customer-profiling neural network systems that can identify at o very early stage

unusual spending patterns and potentially fraudulent transactions 16l" .

There are several different factors that make card fraud research worthwhile. The

most obvious advantage of having a proper fraud detection system in place is the

restriction and control of potential monetary loss due to fraudulent activity. Annually,

card issuers suffer huge financial losses due to card fraud and, consequently, large

sums of money can be saved if successful and effective fraud detection techniques are

applied. While card fraud losses against total turnover have actually declined in the

past decade or so - undoubtedly due to card issuers actively fighting fraud - the total

monetary loss due to card fraud has increased sharply during the same time due to an

increase in the total number of cards issued and the resulting increase in card usage.

Figure 1-l shows that, during 2004 alone, an estimated f504.8 million were lost on

UK-issued cards due to fraudulent activity, a staggering increase of 20%o over the

https://etd.uwc.ac.za/

Chapter I Introduction

preceding year. In addition to this, newer fraud methods are emerging as fraud

detection increases and chip cards become more widely used. These include money

laundering on card transactions, identity or application fraud to obtain cards and

hacking of card numbers from card processors.

Figure l-1: Losses due to plastic card fraud on UK-issued cards from 1995 to 2004 16)

Ultimately, card transaction fraud detection deals with customer behaviour profiling

in the sense that each card holder exhibits an ever evolving shopping pattern; it is up

to the fraud detection system to detect evident deviations from these patterns. Fraud

detection is therefore a dynamic pattern recognition problem as opposed to an

ordinary static binary classification problem.

The data sets involved in card fraud detection are not only extremely large, but also

quite complex. Fraud detection systems rely heavily on fast and complicated pre-

processors to massage the data into formats compatible with machine learning

algorithms. Older fraud detection systems lacked the ability to dynamically adapt to

changing shopping behaviour, both in pre-processing and classification; more often

2

Plostic card fraud loases on UK-iaeued carda '1995 - 2004

lffi 1m ts7 1m8 rcs axlo ax)l N2 2ffi1 aD4

'r ,gLr'r d0,,Aba : L,rr Irial dsBtl€O rn a?ru FrE!J ilE Fd A -':r!

5011 -

.loLi -

:]04 -

o
c.i
e\a

100 -
1'-
O)

0-

600B

E

200
c?
(f)
@ o

rri
cr,

sl
cd6

q

c!,

q
rs

q
<l(\
<l

.T

ao
N
rf,

q
sfo
lJ)

https://etd.uwc.ac.za/

Chopter I Introduction

than not, the large amount of data involved makes it computationally infeasible to use

older systems for online transaction classification.

Because of the stigma associated with fraud, a successful fraud detection system or

strategy is seen as an important advantage in the card issuing industry. Banks and

card issuers are heavily engaged in research on this topic; however, the results are

seldom published in the public domain which in turn only serves to hamper overall

progress in card fraud research.

This thesis addresses some of the problems associated with detecting card fraud, and

at least publishes comparative results on different neural network based machine

learning methods. All in all, the combination of a dynamic pattern recognition

problem on a complex, skewed, and immense data set makes for a very interesting

research problem.

1.2. Premises

The data used in this study is real. It contains transaction sequences of real card

holders generated through the use of real cards at real merchants. The data set is

therefore naturally heavily biased towards the legitimate transaction class and

contains relatively few fraudulent transactions - less than l% of the data set is fraud.

Since the data set is real, it also has significant noise. This has serious ramifications

on fraud detection systems since these outliers have to be modelled in such a way that

outliers due to noise are not mistaken for outliers due to fraud. A classifier that is

incapable of making this distinction is useless because, although such a classifier

might exhibit a high probability of fraud detection, it will simultaneously be plagued

by a high false alarm rate. The data set used here is also quite large - more than 800

000 transactions in total, making data selection, feature selection and pre-processing

all the more important.

J

https://etd.uwc.ac.za/

Chapter I Introduction

1.3. Problem Statement

Given a sequence of transactions, can a classifier be used to model the time series

inherent in the sequence to such an extent that deviations in card holder shopping

behaviour can be detected regardless of the skewness and noise inherent in the data?

In addition our classifier must exhibit both a high probability of detection and a low

false alarm rate during generalisation; otherwise, it will be practically useless. Since

we are ultimately dealing with a dynamic problem here, the question also arises

whether a dynamic neural network machine learning technique will outperform a

static one. It can also be noted that the retraining of static networks to deal with

changing shopping behaviour can have the effect that certain fraud patterns, that have

not occurred in quite some time, cannot be detected by the retrained network when

they do reoccur. A network that can learn when to forget information can be

beneficial in such cases.

This study aims at answering these questions by providing a comparative analysis on

the use of static feedforward neural networks, support vector machines and long

short-term memory neural networks for card fraud detection.

1.4. Research Hypothesis

Our research hypothesis is that, given lists of sequential transactions to which proper

feature selection and pre-processing techniques were applied, a long short-term

memory recurrent neural network will outperform static machine learning methods

such as feedforward neural networks and support vector machines by modelling the

time series inherent in sequences pertaining to the same card as opposed to

classifying individual transactions.

Our hypothesis leads to a number of research questions that we aim to answer in this

thesis:

4

https://etd.uwc.ac.za/

Chapter I Introduction

l. What features and pre-processing techniques are relevant for fraud detection ?

2. Can sequences of transactions reveal fraudulent use that remains unnoticed

when looking at individual transactions ?

3. How can we model long sequences using machine learning methods ?

4. How can we deal with biased data sets ?

5. How good a performance can be achieved, and what is a good measure of

performance when dealing with biased data sets ?

1.5. Technical Goals

To answer the questions resulting from our hypothesis, a number of technical goals

first need to be achieved. First, we have to decide what features will be relevant for

fraud detection. Second, and one of the most important steps, is to implement a pre-

processor to process the features into some useable form. An insufficient pre-

processor will ultimately lead to weak results. After pre-processing, a model needs to

be constructed with which sequences of transactions can be encapsulated allowing the

discrimination of legitimate from fraudulent transactions. Here, we have to bear in

mind that these sequences are of variable length and that the data set will be

necessarily heavily biased towards the legal transaction class; our model needs to

account for this. Next, a measure of performance needs to be chosen that is applicable

to measuring generalisation performance on biased data, which will allow

comparative analysis on the performance of different classification techniques.

1.6. Methodology

First, an appropriate toolset needs to be obtained which can be used to achieve the

above mentioned technical goals. This toolset should include a pre-processor, a

feedforward neural network (FFNN), a long short-term memory recurrent neural

5

https://etd.uwc.ac.za/

Chapter I Introduction

network (LSTM), a support vector machine (SVM), and finally an algorithm to

measure performance. Apart from the performance measure and SVM algorithm, all

other tools used in this thesis will be bespoke implementations.

Since the data set is large, a more manageable subset of data has to be extracted

which exhibits a predetermined class distribution - a ratio of roughly 99:1 between

legitimate and fraudulent transactions. The pre-processor will be run on the resulting

data set and the data will be split into equally sized training and test sets. No further

processing such as noise correction or outlier removal will be done on the training or

test data.

We will then run a series of experiments on the data sets using FFNN, LSTM and

SVM, during which the resulting performances of each algorithm will be computed

using the chosen performance measure. These results can then be analytically

compared to see how the three algorithms compare to each other when applied to a

non-trivial real world problem. This will either prove or disprove our original

hypothesis.

1.7. Contributions

Since very few publications on card fraud detection exist in the public domain, this

thesis should at least in pan remedy that. It can be a reference for a complete

overview of card fraud detection with neural network based machine learning

methods. Results of research in other domains show that LSTM neural networks

promise good results when applied to problems with an intrinsic dynamic nature; to

our knowledge, this is the first time LSTM was applied in the card fraud detection

domain.

6

https://etd.uwc.ac.za/

Chapter I Introduction

Our results will show that it is worthwhile investigating time series modelling for

fraud detection and that it might be a solution to the high false alarm rates that plaque

similar systems today.

1.8. Overview

This section gives a short overview of the remainder of this thesis. In Chapter 2, the

definition of card fraud and the problem of fraud detection is introduced and

discussed. Chapter 3 contains a brief literature review of publications relevant to the

thesis topic. Chapter 4 is a short introduction to neural networks, and sets the scene

for the introduction of the two main methodologies used, namely support vector

machines in Chapter 5 followed by recurrent neural networks (and more specifically

long short-term memory) in Chapter 6. The performance measure used in this thesis

is introduced in Chapter 7, along with a discussion on why we believe it is the most

appropriate measure. Chapter 8 deals with all data related topics such as feature

selection and pre-processing. Experiments with FFNN, SVM, and LSTM are

conducted and results recorded and discussed in Chapter 9. Finally, our research

conclusions are presented in Chapter 10 through a critical discussion of the

experimental results, followed by a discussion of possible future research directions.

7

https://etd.uwc.ac.za/

Chapter 2

FRAUD AND FRAUD
DETECTION

2.1. Introduction

This chapter gives a short overview of fraud and its detection in the context of

financial transactions initiated with the use of credit or charge cards. The first

subsection starts with a definition of fraud followed by its discussion in the context of

the card issuer industry. The second subsection deals with the detection of fraud and

the importance of a successful fraud detection strategy.

2.2. Fraud

In the context of the card issuer industry, fraud can be defined as the actions

undertaken by undesired elements to reap undeserved rewards, resulting in a direct

monetary loss to the financial services industry. Here, we deal with the attempts by

fraudsters to use stolen credit card and identity information to embezzle money,

goods or services.

With card issuers constantly aiming to expand their operations by launching

aggressive campaigns to gain bigger portions of the market share, the use of

technology has become increasingly more prevalent in making it easier for people to

transact and spend. This increase in ease of spending through the use of technology

has, unfortunately, also provided a platform for increases in fraudulent activity. Fraud

https://etd.uwc.ac.za/

Chapter 3 Literature Review

levels have consequently sharply risen since the 1990's, and the increase in credit

card fraud is costing the card issuer industry literally billions of dollars annually. This

has prompted the industry to come up with progressively more effective mechanisms

to combat credit card fraud. A machine learner that encapsulates expert systems is an

example of such a mechanism.

More recently, the issuing industry has taken a stance to prevent fraud rather than to

put mechanisms in place to minimise its effects once it takes place, and major

markets have therefore taken considerable steps towards becoming EMV (Europay-

Mastercard-Visa) enabled. The idea behind EMV is to use chip cards and personal

identification numbers (PIN) at point of sale devices rather than authorising

transactions through the use of magnetic stripes and card holder signatures.

Magstriped cards have the weakness that magnetic stripes can be easily copied and

reprinted on fake cards - called card skimming - and card issuers believe that chip

cards, being difficult to replicate, will limit loss due to card skimming. The question

now is whether the necessity of fraud detection in the card issuing industry still

exists. To answer this, one has to look at the effect that EMV enablement might have

on fraud patterns globally.

With the shift to EMV, fraud liability will shift from the card issuers to non EMV-

compliant merchants. With the onus on service establishments to ensure proper use of

credit cards in their shops, a shift in fraud patterns is likely to occur. Chip and PIN,

however, will by no means spellthe end of credit card fraud. It is expected that "card-

not-present" fraud will increase significantly because of chip and PIN. Card-not-

present transactions take place when the physical card and card holder signature do

not form part of the authorisation process, such as telephone and online purchases.

Most major banks also expect ATM fraud to increase because of PIN exchange and

handling in insecure environments. Card skim fraud, on the other hand, will probably

migrate into countries which have not opted for EMV, such as the USA that shares

borders with markets which are already EMV enabled, i.e. Canada and Mexico.

9

https://etd.uwc.ac.za/

Chapter 3 Literature Review 10

Fallback fraud is reportedly already on the increase in EMV enabled markets.

Fallback happens when the chip on an EMV card is damaged and systems have to fall

back on magstripe in an attempt to authorise the transaction. Some people claim that

up to 45o/o of ATM transactions in EMV enabled markets have to fall back on

magstripe, while other banks report absurd fallback figures of close to 100% in some

cases. Fallback fraud has now become such a major problem to the extent that a

certain global card issuer has indicated that they are considering banning fallback

transactions entirely worldwide. These problems are obviously due to the relative

immature state of EMV as it currently stands and will probably be solved in due time;

however, any expectation that this type of fraud prevention will be enough to curb

credit card fraud is overly optimistic, to say the least.

One cannot underestimate the determination of the fraudster; where there is a will,

there is a way. Credit card fraud detection is therefore, at least for now, likely to stay.

t9s4

tt 3%

to%
23%

309r

1 3Ca

t4%

7T

26q6

! Lostrstolen

ldentity theft

r Marl non-recerpt

I Card-not-present

I coJnterfeit

2004

Figure 2-1: Migration of fraud patterns (fraud types) between 1994 and2004 16)

https://etd.uwc.ac.za/

Chapter 3 Literature Review l1

2.3. Fraud Detection

So, exactly what does fraud detection entail ? Quite simply put, fraud detection is the

act of identifying fraudulent behaviour as soon as it occurs [2], which differs from

fraud prevention where methods are deployed to make it increasingly more difficult

for people to commit fraud in the first place. One would think that the principle of

prevention is better than cure would also prevail here; but as discussed in the

previous subsection, prevention is not always effective enough to curb the high fraud

rate that plagues the credit card industry thus motivating the deployment of fraud

detection mechanisms. As processing power increases, fraud detection itself might

even become a prevention strategy in the future.

The fact that credit cards are used in uncontrolled environments, and because

legitimate card holders may only realise that they have been taken advantage of

weeks after the actual fraud event, makes credit cards an easy and preferred target for

fraud. A lot of money can be stolen in a very short time, leaving virtually no trace of

the fraudster. Detecting fraud as soon as possible after it occurs is therefore important

to give the card issuer a chance to at least limit the damage. As soon as a transaction

is flagged as a possible fraud, the card holder can be phoned to establish whether the

transaction was legitimate or not and the card blocked if necessary. Fraud

investigation and the chargeback process are costly and put a lot of strain on

resources.

The quicker fraud can be detected the better; but the large amount of data involved -

sometimes thousands of transactions per second - makes real-time detection difficult

and sometimes even infeasible. Many banks attempt to detect fraud as soon as

possible after it happened, as opposed to detecting it in realtime, because fraud

detection can slow down an authorisation request to such an extent that it times out.

https://etd.uwc.ac.za/

Chapter 3 Literature Review t2

The development of new fraud detection systems is hampered by the fact that the

exchange of ideas pertaining to this subject is severely limited, simply because it does

not make sense to describe fraud detection and prevention techniques in great detail

in the public domain [2]. Making details of fraud detection techniques public will

give fraudsters exactly what they need to devise strategies to beat these systems.

Fraud, especially in the context of the financial services industry, is seen as a very

sensitive topic because of the stigma attached to potential monetary loss. Card issuers

are therefore usually very hesitant to report annual fraud figures and better fraud

detection strategies or systems than those of the competition are therefore

advantageous; this gives even more reason for issuers to keep internal research results

on fraud detection away from the public domain.

Banks add to the problem because their local banking authorities or local cultures

make them reluctant to issue fraud figures on the premise that this will scare their

customers into believing that banking systems are unsafe and not secure. Data sets

and results are therefore rarely made public, making it difficult to assess the

effectiveness ofnew fraud detection strategies and techniques.

Most fraud detection systems today are awkward to use and become ineffective with

time because of changing shopping behaviour and migrating fraud patterns. During

the holiday seasons, for example, shopping profiles change significantly and fraud

detection systems cannot deal with changing behaviour because of their static nature

and inability to dynamically adapt to changes in patterns. Thus, fraud detection

systems suffer from unacceptable false alarm rates, making the probability of

annoying legitimate customers much higher than that of actually detecting fraud.

Systems based on Hidden Markov Models promise better results, but are useless for

real-time use when transaction volumes become too high. tn this thesis, we will

investigate the use of a technique that is neural network based and therefore promises

relative quick classification times, and also dynamic because it auempts to learn the

underlying time series present in series of same card holder transactions.

https://etd.uwc.ac.za/

Chapter 3 Literature Review 13

Chapter 3

LITERATURE REVIEW

Published articles dealing with the method of and results on credit card fraud are few

and far in between. Compared to the volume of publicly available research papers on

fraud in other areas, such as telecommunications fraud and computer intrusion

detection for instance, the number of papers available on card fraud is almost

negligible. The possible reasons for this were already discussed in Chapter 2. The

little available literature on this topic, however, forms the basis for a good starting

point into credit card fraud research.

Bolton and Hand [2] gives a good overview on the fraud problem in general and the

difficulties faced with fraud detection, including sections specifically dealing with

credit card fraud. Brause et al 14) takes a hybrid approach by applying a combined

rule-based and neural network system to credit card fraud detection. Their paper also

gives a good description of what the goal of fraud detection should be and includes a

section on how to possibly model the data generated by card transactions.Maes et al

[21] analyse the card fraud problem by comparing results obtained from Bayesian

belief networks with that of artificial neural networks. They also offer a thorough

discussion on some of the problems associated with credit card fraud detection. Card

fraud statistics are available from websites such as that of the Association for

Payment Clearing Services (APACS). It remains difficult to analytically compare

results from the different techniques used in the above mentioned papers because they

use different data sets and mostly only publish summary statistics as opposed to

actual results.

https://etd.uwc.ac.za/

Chapter 3 Literature Review

One of the most important steps in building a successful classifier for fraud detection

is ensuring that the data is properly pre-processed after feature selection. Equally

important is selecting an appropriate technique for measuring a classifier's

performance during generalisation testing. While feature selection greatly depends on

the whim of each researcher, some publications do offer rough guidelines on data

preparation and performance measurement. Masters [22] gives a detailed description

of data input preparation through discussions on different variable types, scaling and

transformations, while Mena [23] gives some indications into data selection and

preparation methodology and a case study of a real-time fraud detection system. As

usual, Press, Teukolsky et al l25l contains helpful information on mean and standard

deviation calculations which forms the basis of many a pre-processing technique.

Most of the papers on fraud mentioned above have sections dealing with the problem

of performance measurement on skewed and biased data sets. Sections specific to the

receiver operating characteristic can be found in Masters l22l and Harvey [3].

Literature on support vector machines is quite common. Vapnik et al l3l discuss the

theory and practicalities behind the optimal margin classifier for separable training

data - a discussion which is extended to the non-separable case by Cortes and Vapnik

[9]. Kroon and Omlin [9] gives a good overview of support vector machine theory

and application, including discussions on the kernel trick used to generalise the SVM

to high-dimensional feature space in an attempt to transform non-separable data into

separable data. Their paper on SVM application [18] is also useful to get a jump start

in using the popular libSVM [8] toolkit. Burges [5] gives a very detailed and

complete tutorial on support vector machines used for pattern recognition, and gives a

more in depth account of the theory involved. The work of Keerthi and Lin [7] is

useful for investigating what happens when an SVM displays tendencies towards

asymptotic behaviour, for example when the separating hyper planes take on very

large or small values. This helps in understanding how to prevent an SVM from

overfitting or underfitting the training data. Lee et al [20] tackles the task of

t4

https://etd.uwc.ac.za/

Chapter 3 Literature Review l5

extending SVMs to multi-category problems, i.e. problems where the data set can be

divided into more than two classes. Hsu e/ al [15] gives important information on

successfully using SVMs in practice. They also discuss the cross-validation technique

and propose a grid-search method for obtaining the most appropriate kernel

parameters for a new classification problem.

Publications on feedforward and recurrent neural networks are also widespread.

Mitchell [24] provides a good overview of the theory behind neural networks,

showing how the normal perceptron of Acton [] can be extended into a network to

ultimately handle non-separable data. Robinson and Fallside [26] show how to adapt

static neural networks to deal with dynamic patterns, i.e. recurrent neural networks.

Williams and Zipser [27] give a more complete overview of recurrent neural

networks including in-depth discussions on the two most common recurrent neural

network training algorithms: backpropagation through time and real-time recurrent

learning. Hochreiter and Schmidhuber [14] discuss the vanishing gradient problem

which limits a recurrent neural network's ability to learn long-term dependencies in

patterns, and propose a novel technique to address this problem: the long short-term

memory recurrent neural network (LSTM). Gers, Schmidhuber et al ll1] and Gers,

Schraudolph et al [2] extend the LSTM network's capabilities by introducing forget

gates and peephole connections, respectively.

https://etd.uwc.ac.za/

Chapter 4

PERCEPTRONS AND NEURAL
NETWORKS: A BRIEF
OVERVIEW

4.1. Introduction

The artificial neural network machine leaming method has always been applied with

great success to a wide variety of leaming problems. Artificial neural networks

represent one of the more common approaches to implementing humanlike

perception, thought and behaviour. They are called artificial neural networks because

their general topology is based on the densely interconnected network of neurons that

make up the human brain, and like human brain activity as explained by

neurobiology, an artifrcial neural network functions by exciting certain chains of

neurons depending on the inputs it receives.

This chapter is not intended to give an in-depth discussion on the workings of

feedforward neural networks but rather a brief overview of neural networks at the

hand of examining the perceptron and its use in multi-layer networks. This is done

because both machine learning methodologies used later in this thesis are derived

directly from the perceptron.

https://etd.uwc.ac.za/

Chapter 4 Perceptrons and Neural Networks: A Brief Overttiew t7

4.2. The Perceptron

The perceptron was the first attempt by Rosenblatt (1958) to model a neural network

122] and forms the basic building block of the more advanced multi-layer neural

network. In its simplest form, the perceptron is a structure consisting of three layers:

1. an input layer for presenting input to the perceptron,

2. an association unit layer that acts as a feature detector, and

3. an output response layer.

A perceptron's task is quite simple: to produce an output by applying a threshold to

the weighted sum of its inputs. Thus, it takes a real-valued input vector, calculates a

linear combination of these inputs and then outputs a I if the result is greater than

some threshold, or -l otherwisepal. Figure 4-l illustrates the general structure of a

perceptron.

__..{'
-

xl r0: I
lrrl

{:;

Tifluxi>0
i4outPttt =

x: ur: cthenrri se

I

L
LO

]4fii

r

Figure 4-1: The general structure ofa three-layer perceptron with its input, association, and output
response layer (illustration adapted from [2a]).

In the above figure the symbolS .r7 to x,, represent the components of a real-valued

input vector, while w 1 to wn represent the weights associated with each of the n

dimensions of the input vector. Weight wp is associated with a constant input (xp) of

https://etd.uwc.ac.za/

Chapter 4 Perceptrons and Neural Networks: A Brief Overview l8

value l. The quantity (-wfi istherefore abias which the weighted sum of the input

vector components must exceed in order for the perceptron to achieve activation. A

perceptron's output is therefore computed using Equation (l).

o ={*l
w1x1l-w2x2 + "'+wnxn) -wo

1.- I otherwise (l)

4.2.1. Perceptron Training

So how does a perceptron learn to classify a set of inputs ? Since the values of the

input variables x7 to xn are the input data, and the output of the perceptron depends on

Equation (l), the only variables left that can be updated during perceptron training are

the weights. The training process consists of iteratively applying the perceptron to

each training example in the training set, and then updating the weight vector

whenever a training example is misclassified. Small random values are used to first

initialise the weights before training begins. Weights are updated using the perceptron

training rule 124] which updates weight w; associated with input x; according to the

rules in Equation (2) and (3).

wi <- wi + Lw,

Lr, =r7(a-o)*,

In Equation (3) the symbol d represents the target class or desired output of the

training example while o represents the output generated by the perceptron after

feeding it with the training example. The learning rate is represented by 11 and is

normally set to a small, positive value which can be forced to decay as training

progresses in order to limit the of effects local minima on training.

(2)

(3)

https://etd.uwc.ac.za/

Chapter 4 Perceptrons and Neural Nerworl<s: A Brief Overview l9

4.3. Linear Separability

The perceptron and its training rule as described in the previous section have one

serious shortcoming: a perceptron can only be used for classification problems with

linearly separable data; linear separability guarantees convergence of the training

process.

So what then is linear separability ? A classification problem is linearly separable if
the positive and negative exemplars in its data set can be completely separated with a

hyperplane in n-dimensional space, where n is one less than the number of inputs to

the perceptron, given that the constant unity bias input is counted as one of the

dimensions. Consider the illustrations in Figure 4-2 which shows the decision

surfaces of a two-input (.16 and x7) perceptron applied to two different classification

problems. Example (a) is linearly separable since the positive target class (+) can be

separated from the negative target class (-) by means of a straight line in two-

dimensional space. Example (b) shows the decision surface of the infamous XOR

problem. No straight line in two-dimensional space can separate its positive class

from its negative class, and therefore the XOR problem is not linearly separable. A

single perceptron will not be able to solve the XOR problem and neither will the

perceptron training rule be guaranteed to converge to an overall solution.

https://etd.uwc.ac.za/

Chapter 4 Perceptrons and Neural Networks: A Brief Overview

Xj X6

20

a
o+.'

a +
+ + ,

Xr Xr

++
a

o
o

o
ot-

(a) (b)

Figure 4-22 Linear separability. (a) A linearly separable problem, i.e. the binary class can be separated
by a straight line in two dimensional space. (b) A representation of the XOR boolean function, which
is not linearly separable.

4.4. Gradient Descent

A second training rule that was designed for linearly inseparable data sets is the delta

rule. In cases where the data is inseparable, the delta rule uses gradient descent to

converge to a best-fit approximation of the target function [2\. The delta rule and

gradient descent forms the basis for the most common training algorithm for multi-

layer neural networks, the backpropagation algorithm. Multi-layer networks are

formed by organising multiple perceptrons into several layers to form a forward

connected network. The most common networks usually consist of an input layer, a

hidden layer and an output layer. A lot of literature is available on multi-layer

networks and backpropagation and we will therefore not go into more detail on these

two topics here.

+

a
o

a
o

+

https://etd.uwc.ac.za/

Chopter 4 Perceptrons and Neural Networks: A Brief Overview 21

4.5. Summary

This chapter briefly touched on the perceptron and its use in multi-layer neural

networks. The perceptron forms the basis for more advanced network based machine

learning methods, including support vector machines and recurrent neural networks.

These two novel learning methods are still relatively new compared to the perceptron,

but, at the same time, both these methods are propositioned to deliver extremely

powerful classifiers by addressing some of the fundamental problems associated with

multi-layer neural network training. The following two chapters deal with support

vector machines and recurrent neural networks in detail.

https://etd.uwc.ac.za/

Chapter 5

METHODOLOGY I: SUPPORT
VECTORMACHINES

5.1. Introduction

ln 1992, Boser, Guyon and Vapnik proposed a training algorithm for optimal margin

classifiers in which they showed that maximising the margin between training

examples and class boundary amounts to minimising the maximum loss with regards

to the generalisation performance of the classifier [3]. This idea was initially explored

for two reasons:

1. binary class optimal margin classifiers achieve errorless separation of the

training data, given that separation is possible;

2. outliers are easily identified by these types of classifiers and therefore do not

affect the generalisation performance as is mostly the case in other classifiers,

where performances are based on minimising the mean squared or other type

ofaverage error.

The first investigations into this type of algorithm were based on separable data sets,

but, in 1995, Cortes and Vapnik extended the algorithm to account for linearly

inseparable data [9]; attempts soon followed to also extend the results to multi-class

classification problems. This type of learning machine was later dubbed the support

vector machine (SVM).

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 23

As can be seen in this chapter, the SVM is a machine learning technique with a strong

and sound theoretical basis. It is interesting to note that, in most cases, researchers

claim that SVMs match or outperform neural networks in classification problems. In

this thesis we will put these claims to the test on a non-trivial, real world problem.

The introduction to SVMs starts in Section 5.2by first investigating the notion of an

optimum margin as explained at the hand of the maximum margin hyperplane.

Section 5.3 deals with direct and dual space representations of an arbitrary hyperplane

while Section 5.4 introduces the concept of soft margins to handle linear

inseparability. The nonlinear SVM is discussed in Section 5.5, and in conclusion a

brief summary is presented in Section 5.6.

For the sake of simplicity and because the practical classification problem this thesis

addresses is dichotomous in nature, we will limit our discussion to binary

classifi cation problems.

5.2. The Maximum Margin Hyperplane

During the supervised training process of a classifier, training vectors or patterns of

the form (xy), where x is a set of input parameters or features and y denotes class

membership, are repeatedly presented to the classifier in an attempt to learn a

decision function D(x), which can later be used to make classification decisions on

previously unseen data. In the case of the optimal margin training algorithm, these

decision functions have to be linear in their parameters, but are not restricted to linear

dependencies in their input components x, and can also be expressed in either direct

or dual space [3].

https://etd.uwc.ac.za/

Chapter 5 Methodolog,, I: Support Vector Machines 24

In direct space, the decision function has the following form:

N

D(x):lwie1$)+b (4)
i=l

This is identical to the perceptron decision function as discussed in Section 4.2 and

shown in Equation (l), with the bias represented by b instead of wo and p; some

function of x. In Equation (1), gi is simply the identity function.

ln the case of a binary outcome decision function applied to linearly separable data,

the function can be represented in 2-dimensional space as a straight line splitting the

input vectors into the two classes they might possibly belong to, as demonstrated in

Figure 5-1.

o
\$OC

A
C

o

o
Figure 5-l: A binary outcome decision function in 2-dimensional space (adapted from [5]). The
support vectors are shown with extra thick borders, with Hl and H2 denoting the separating
hyperplanes on which they lie. The maximum margin is denoted as M and gives the maximum
distance between the separating hyperplanes.

b'

b.o
o

B
o

oo

o
o

c

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 25

In its simplest form, the SVM algorithm will construct a hyperplane that completely

separates (at least in the linear separable case) the data in such a way that w.x + 6 > 0

for all points belonging to one class, and w.x + 6 < 0 for all points in the other class

[9]. In other words, for D(x) > 0 pattern x belongs to class A and for D(x) < 0

pattern x belongs to class B. In this context, D(x) is referred to as the decision surface

or separating hyperplane and all points x which lie on this decision surface satisfy the

equation w'x * b:0.

Consider that the two possible classes to which an arbitrary pattern can belong are

identified by labelsy;, where yi e {-l,l}. Furtherrnore, define d*(d-) to be the shortest

distance between the separating hyperplane and the closest positive (negative) pattern

in the training set. We can then define the margin (denoted Min Figure 5-l) to be (d*

+ d-), a quantity that the support vector algorithm will attempt to maximise during

training. In the linear separable case, all training data will adhere to the following two

constraints:

w.x,+b2+l

w.x,+b<-l
(for y, = all

(for y, = -1;

(s)

(6)

A vector w and scalar D therefore exist such that

./,(w . x, + b) - I > 0, i e{1,...,1\ (7)

The points for which the equalities in Equations (5) and (6) hold lie on two separate

hyperplanes parallel to the separating hyperplane, but on different sides as shown by

H1 and H2 in Figure 5-1. These hyperplanes can be defined as H1:w . xr + b = 7 and

Hz: w.xi+b=-l, where w is normal to the hyperplanes in both cases. The

perpendicular distance between Ht and the origin and H2 and the origin is therefore

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 26

lt-al
ll*ll

and , respectively, and it then follows from this that d+: d-: I

Fi-I
and

marsin M: Z ."ll*ll
A support vector can now be defined as a training pattern which lies on either H1 or

H2, and whose removal might change the size of the maximum margin. In Figure 5-1,

the support vectors are shown as circles or squares with extra thick borders. We can

find the set of hyperplanes F{ and H2that gives the maximum margin by maximising

the quantity
ffi f". likewise minimisins f tn tt'1. This is equivalent to solving the"2"

quadratic problem

rnin ll*ll' (8)

under the constraints in (7).

Although the quadratic problem in (8) can be solved directly with numerical

techniques, this approach becomes impractical when the dimensionality of the g-

space becomes large; furthermore, no information about the support vectors is gained

when solving the problem in direct space [3]. These problems are addressed by

transforming the problem in (8) from direct space into dual space.

l-r-al
ll*ll

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 27

5.3. Direct Space versus Dual Space

We use a Lagrangian formulation to transform the problem in Equation (8) from

direct space into dual space. There are two main reasons for doing this:

1. The constraints in (7) are replaced by constraints on the Lagrangian

multipliers themselves, which are a lot easier to handle;

2. In the Lagrangian formulation, the training exemplars will appear in the form

of dot products between vectors, which allow us to generalise the training and

test procedures to the nonlinear case.

In order to obtain the primal Lagrangian, we introduce a vector of Lagrange

multipliers a = (a,,...,dr) > 0 to handle the constraints given in (7). The constraint

equations are multiplied by these positive Lagrange multipliers and subtracted from

the objective function to form the primal Lagrangian:

,, =f,ll*ll'-to,r,(x,'w +q+fa, (e)

It follows from optimisation theory that the solution to the problem in (8) lies at the

saddle point of the Lagrangian function Zp. To obtain the saddle point, we need to

minimise Zp with respect to w and b and at the same time ensure that the derivatives

of Zp with respect to all thea,'s vanish, subject toa,> 0. The factor 112 in (9) is

included for cosmetic reasons since we will be taking derivates. We minimise Zp by

taking partial derivates with respect to w and b and setting them to zero to ensure that

the gradient vanishes:

Olr(w,b,a) '--# =\ry-la,y,x, =o (lo)aw j=r

olp(Y'b'a)
= -i dili =o (1r)

ab i=l

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 28

Substituting Equations (10) and (ll) back into the primal Lagrangian yields the dual

Lagrangian (denoted by subscript D as opposed to P in Equation (9)):

L, =Ld,-lZo,o,litixi.x, (12)
, - r,J

The Lagrangians in Equations (9) and (12) arise from the same objective function but

under different constraints, and the solution is found by either minimising Lp or

maximising Lo.The formulation of the problem as given in (12) is called the Wolfe

dual problem. It can be seen in Lpthat there is aLagrange multiplier a, for every

training point x,. The training points for which ai>}satisfyy,(w.x, +b)-l =0.

These points lie on either H1 or H2 and are called the support vectors of the solution.

All other training points have a, = 0 and lie either on one of the hyperplanes (H1, H2)

such that the equality in (7) holds, or on that side of Ht or l1z such that the strict

inequality in (7) holds [5].

Lo is a quadratic form with all constraints linear in the ai s and thus solving Lp is a

standard quadratic programming problem solvable by numerous computing packages.

Converting from direct space to dual space is analogous to changing the problem into

an optimisation problem where the constraints are considerably easier to handle.

Notice that by finding a solution for Lp, we can also find the w,'s by using equation

(10). The only unknown parameter now remaining from the original optimisation

problem is the threshold quantity 6.

In order to calculate b we need to use the Karush-Kuhn-Tucker (KKT)

complementarity conditions that play an important role in both the theory and

practice of constrained optimisation. For the problem at hand, the relevant KKT

complementarity conditions are I I 9]

ai{yi(w.x, +b)-1} =0, ie {1,...,1} (13)

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 29

For a complete list of all KKT conditions for this particular problem the reader can

consult [5]. In the context of the SVM training algorithm, the KKT conditions are

necessary and sufficient for w, b and a tobe a solution.

Now let us define an ao which maximises Zp subject to its constraints, and

parameters w0 and 60 as theparameters of the corresponding optimal hyperplane. It

follows from (10) that w0 =foly,r, [19]. In this case, a0 will be nonzero and
l=l

using the KKT complementary conditions in (13) we can therefore have

y,(wo.x, +Do; = 1

so that

bo = l, - *o -x, (14)

I
sincey, =*l-1. In order to obtain a more representative and numerically stable

li

value for b0 , it is usually taken to be the mean of the values resulting from

calculating Equation (14) for all i e (1,...,/).

Once all the above mentioned values have been calculated, we can use the newly

calculated separating hyperplane to classify a new training example, x,, by

calculating on what side of the hyperplane it lies by using

sgn(wo .x, +bo)

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines 30

5.4. The Soft Margin Hyperplane

The main assumption under which all of the equations in the previous sections are

derived is that the training data is linearly separable. This is, however, a severe

oversimplification of real world data sets and the SVM algorithm will have little to no

practical value if not extended to handle linearly inseparable problems. In

feedforward neural networks, inseparable training sets with high dimensionality are

normally sufficiently handled by minimising some training error in the context of

some predefined error measure. The same principle can be applied to SVMs by

introducing positive variables €,>0, i=1,...,1 so that we have the following

constraints

!,(w.x, +b)21-€,, ie{7,...,1\ (15)

€ >0, vi (16)

The positive variables (, in (15) and (16) are called slack variables; they allow for

some margin of error (i.e. slack) when deciding on which side of the optimal

hyperplane a training exemplar lies. In fact, {, must exceed unity for an error to

occur and \,(,represents an upper bound on the number of training errors t9]t5].

The introduction of slack variables relaxes the original constraints in (7) somewhat.

During training, we would like the separation error (and hence the {,'s) to be as

small as possible and we therefore introduce a penalty on the objective function by

changing it to

1,, t2 I

;ll*ll'+c>.4, 07)

where C eB is a cost parameter that represents the cost of making an elTor, or the

extent to which violations of the original constraints (7) should be penalised [19].

Figure 5-2 depicts the use of slack variables.

https://etd.uwc.ac.za/

Chopter 5 Methodologt I: Support Vector Machines 31

o

o

o

o

o
Figure 5-2: Linear separating hyperplanes for the linearly inseparable case (adapted from [5]). Data
vectors on the wrong side of the decision surface are compensated for by the introduction of slack
variables, whose magnitude need to exceed unity for an error to occur.

There is no straightforward method for selecting the value of the cost parameter C,

but a number of techniques exist; the most popular method being grid-search [5]

using cross-validation [9].

Equation (17) once again leads to a quadratic programming problem. An additional

feature of the formulation in (17) is that the slack variables and their Lagrangians

vanish in the Wolfe dual formulation t5]. In order to derive the quadratic

programming problem, we once again introduce the constraints d,) 0, and the

Lagrange multipliers U=(1r,...,Ut)20 to enforce the constraint (>0. The primal

Lagrangian in this case is

Z" =+lhnll' +CZ€,-Zo,{y,(w.x, +b) -1+€,)-Lry,€, (18)t2u',,'t/t

o

o
c

o
o

o
o

c

https://etd.uwc.ac.za/

Chapter 5 Methodolog I: Support Vector Machines 32

Following the same path as in Section 5.3, we take partial derivates with respectto w,

b and (,, and setting them to zero we obtain the same two constraints as with the

original optimal margin SVM,

I
w =la,y,x, (19)

and

Lo,y, = o (20)
t=l

along with a new constraint

C = d,, l-r7, (21)

Using the constraints in (19), (20) and (21), we derive the Wolfe dual

(22)

Equation (22) shows that the introduction of the slack variables has absolutely no

effect on the dual objective function. The slack variables, however, change the

constraints somewhat, which now becomes

O<a,<C (23)

and

\ol'=o (24)

The difference between (23) and the original constraint on a is that the a,'s now

also have an upper bound C. The introduction of slack variables therefore limits the

search space of a ll9l. As in Section 5.3, the KKT conditions for the primal problem

can be used to obtain a value for the threshold 6. A complete list of the KKT

conditions for the primal Lagrangian of the linear inseparable problem can be found

in Is].

L r= to, - ; ?=,a,d
i / i! ix i' x t

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines JJ

5.5. Nonlinear Support Vector Machines

Another method for dealing with SVMs with decision functions that are nonlinear

functions of their input vectors, and consequently deal with inseparable input data, is

to transform the inseparable data in input space to a higher-dimensional feature space.

The reason behind this transformation is based on Cover's theorem, which states that

in cases where data is inseparable in a low-dimensional space, transformation of the

data to a higher-dimensional feature space often yields linear separability I I 9].

The transformation of data points to a higher-dimensional feature space can yield an

optimisation problem that is computationally infeasible to solve. Luckily, a technique

called the kernel trick exists that can be used in such cases. The kernel trick allows us

to solve the optimisation problem (i.e. calculate b and specify the hyperplanes in

feature space to obtain a decision function), without ever having to directly transform

the data points to feature space. Those that are interested in the details of the kernel

trick can consult [19] which gives a good overview of the technique, the theorems it

is based on, and its application to SVMs.

https://etd.uwc.ac.za/

Chapter 5 Methodologt I: Support Vector Machines

5.6. Summary

The aim of this chapter was to give a concise overview of the support vector machine

classifier method. It is a relatively simple technique with a strong theoretical and

mathematical basis, and most researchers claim that it exhibits above average

performance when compared to neural network methods t3lt5lt9l. Some of the

SVM's strengths can be summarised as follows:

f . it always achieves an errorless (complete) separation of the training data,

given that the training set is linearly separable;

2. outliers or meaningless patterns are easily identified and eliminated;

3. the solution found by the SVM training algorithm is always a global

minimum, unlike most neural network techniques that are plagued by

problems with local minima.

On the other hand, the SVM algorithm does exhibit a number of weaknesses:

1. the SVM algorithm is not easily extendable to multi-class problems,

which is still in large part an unsolved problem - especially in the context

of the computational burden that a multi-class approach introduces [20];

2. the SVM has severe limitations in speed and size in both training and test

phases [5]. Training on large datasets with millions of support vectors is

also still an unsolved problem;

3. a lot has been written about the choice of the kernel function, and most

researchers see it as a huge limitation since once it is chosen, only the

error penalty C is left as a user-definable parameter.

In this thesis we will empirically compare the SVM to another novel machine

learning technique, the long short-term memory recurrent neural network, discussed

in the next chapter.

34

https://etd.uwc.ac.za/

Chapter 6

METHODOLOGY II:
RECURRENT NEURAL
NETWORKS

6.1. Introduction

While feedforward neural networks can solve a vast range of classification problems

with relative ease, they can fail miserably when applied to problems with an

underlying temporal nature. This is quite simply because they represent a static

mapping of an input to an output vector and can therefore not learn to represent the

dynamically changing states that are necessary to successfully model temporal

problems. A good example of a problem with an underlying temporal nature is fraud

detection, where it helps to take the past shopping behaviour of a card holder into

account when deciding whether or not a new transaction belongs to the fraud domain.

These problems are sometimes also referred to as sequence classification problems,

where the input to a network is a sequence of feature vectors and the desired output is

the correct classification 1271.

Sequence classification problems also introduce the notion of time, where the

presentation to the network of each input vector of a particular sequence takes place

during separate and distinct time steps. It is this underlying time or temporal structure

in sequence classification problems that necessitates the replacement of the static

feedforward neural network with a classification tool that exhibits nonlinear

dynamical behaviour. The recurrent neural network is such a tool.

https://etd.uwc.ac.za/

Chopter 6 Methodologt II: Recuruent Neural Networks 36

6.2. Recurrent Neural Networks

As mentioned in the previous section, a recurrent neural network (RNN) is a

classification tool that exhibits highly nonlinear dynamical behaviour and has some

intemal state at each time step of a classification. RNNs can be divided into three

different architecture types, two of which are partially recurrent neural networks

called Jordan or Elman RNNs, and the third is the fully recurrent neural network.

Figure 6-l (a) shows the Jordan RNN, proposed by Jordan in 1986 [6], where the

output layer feeds back into a type of input element called a context unit. Figure 6-1

(b) shows a typical Elman RNN, proposed by Elman in 1990 [0], where the hidden

layer neurons have feedback connections to context unit input elements.

v(t) y(t)

\
t
I

,
I
I

I I
I
I

\
t
I
,
,
I
I

x(t-1) x(t-1)

(a) (b)

Figure 6-1: (a) Jordan RNN and (b) Elman RNN

Figure 6-2 shows a fully recurrent neural network, in which every unit has feedback

connections to all units within the same layer and all preceding units. The feedback

connections that are present in all these RNN network types are what ultimately

makes it possible for RNNs to build memory of time series events that took place an

arbitrary number of time steps earlier in during sequence classification.

I

https://etd.uwc.ac.za/

Chapter 6 Methodolog,, II: Recurrent Neural Networks

v(t)

37

I
I
I

ltt

lt
,f

\\

I
I

t
t
\

\
I

I
,

$
t\
yl

I I

t
4

l1
l1
t

Ia\

I

x(t-1)

Figure 6-22 A fully recurrent neural network.

In most cases, partially recurrent networks are preferred over fully recurrent ones,

simply because they are much easier to deal with in terms of time and space

complexity. Architecture selection ultimately depends on the problem at hand. Elman

RNNs, for instance, will perform better on certain problems than Jordan RNNs

because, since it does not contain any feedback connections in its hidden layer, the

latter cannot build up a memory of inputs that are not directly reflected in the output.

In this thesis, we will use some type of RNN architecture to perform a supervised

temporal leaming task. So, how do one train recurrent neural networks ? The next

two subsections briefly explore two widely used and documented recurrent neural

network learning techniques, namely backpropagation-through-time and real-time

recurrent learning.

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networks 38

6.2.1. Backpropagation-Through-Time

Backpropagation-through-time (BPTT) is a simple extension of the standard

backpropagation learning algorithm for feedforward neural networks, which aims at

computing error gradient information in order to do gradient descent. The BPTT

algorithm can easily be explained at the hand of a recurrent neural network unfolded

in time.

x(t-1)

x(t-2)

x(t.3)

v(t-1)

v(t-2)

Y(t-3) = O

Figure 6-3: An example of a Jordan RNN unfolded in time.

Figure 6-3 shows a simple Jordan RNN unfolded over three time steps. Unfolding an

RNN over time leads to a conceptual static feedforward neural network, with external

inputs flowing into the network at each time step while the initial input is propagated

forward through the network. In other words, at each time step of a sequence

classification, a copy of the network is made and linked to the copy of the previous

time step through the feedback connection(s). At the end of the sequence, an elror

signal can be computed and weight deltas calculated by propagating the error

backwards through the unfolded network. After calculating weight deltas for all time

steps (i.e. copies of the network), each weight in the original network is updated with

the sum of the weight's deltas in all copies of the network.

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networks

As is the case for conventional static feedforward neural networks (Chapter 4), the

activation or output value of non-input unit i in a recurrent network is given by

y,(t)= f,(net,(t)), (25)

wheref is unit i's differentiable squashing function and

net,(t)=Lwu!t (/-1), (26)
l

is the network's weighted input to unit i at time step /.

Suppose we use conventional mean squared error as the recurrent network's

performance measure, and suppose output unit i's target at time t is d;(t) while its

actual output is n(r), then unit l's error signal at time r is

5,(t) = f,' (net,(t))(d,(t) - y,(r)) , (27)

And the backpropagated error signal for some non-output unitT is given by

6 j(t) = .f'1@"t,(t))T w,06,(r + l).. (28)

The total contribution of unit / to the update of weight w;r, which connects unit / to

unit7, is then a6 1Q)! r(r - l) , where a is the learning rate 1271.

In short, the BPTT algorithm can be summarised as follows:

l. An input sequence is fed into the network and the network unfolded over

time, with the error being calculated according to some chosen error measure

at each time step.

2. At the end of an input sequence, the error is injected back into the network,

and the delta for each weight at each time step is consequently calculated.

3. Each weight is updated with the sum of its deltas over all time steps.

4. The initial state of the network is reset and the above process repeated for

each training exemplar.

39

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networlts 40

(2e)

(30)

(3 1)

In order to use BPTT to train a network, we need to store a copy of the network's

weights at each time step, which amounts to storing a total of wh numbers for a

network with w weights unfolded over h time steps.

6.2.2. Real-TimeRecurrentLearning

An alternative approach to propagating error information backwards over time, is to

propagate activity gradient information forward [27]. This leads to a learning

algorithm called real-time recurrent learning (RTRL) where the gradient information

is computed on the fly as inputs are presented to the network.

By adding time to Equation (1) we can define the input to a recurrent network unit as

yrG) = fo(lwrx,(t))
leUwl

where U denotes the set of indices ft such that 4 is the output of a unit in the network,

1 the set of indices k for which x1 is an external input, and fp represents unit ft's

squashing function.

As in [27], we can define the error of an arbitrary output unit ft in a recurrent network

AS

e r(t) =
doQ)- yoQ) if k eT(t)
0 otherwise

where T(t) denotes the set of indices at time r for which a teacher signal (i.e. output

unit target value) exists.

The negativel of the total network error at time I can then be defined as

E(t1= -! >,rc0(r))' .

2ftu

' Rs in 1ZZ1 the training objective is changed from minimising the overall network error to maximising

the negative of the overall network error in order to get rid of the minus sign in equation (33), which
makes subsequent derivations easier to deal with..

https://etd.uwc.ac.za/

Let us now define a quantity that measures the sensitivity of the output value of unit ft

at time I to a small increase in the value of weightwir,

t fu*Q)
f 4Q) = *, . (32)

Differentiating Equation (31) with regards to w, using Equation (30), and substituting

(32) yields

ryL=-z,o4)l-q"el =Zet,'ap! . (33)
M, kerr \ MU) neu

Chapter 6 Methodologt II: Recurrent Neural Networks

Furthermore, differentiating Equation (25) using Equation (29) gives

n!,Q +t1 - o

*ii

=.fr1*Q) Lro,
0x,(t).
awi

= -ftrOtQ) w*tpL1fi + 6,0x,(t)

4l

(34)

('r(P,*'.""))

leU
ZYr,(t)
lEIt ow4

using the Kronecker delta 6;a to simplify the equation in the last step. Here, the

summation is only done for indices in U since units pertaining to indices in 1do not

have inputs themselves.

Since it is normally assumed that the initial state of a network has no functional

dependence on its weights [27], we have

t.)yr(to)_,",
PyQi = -a*; =, (35)

for the first time step /p.

Equations (34) and (35) can be used to compute the quantity pi@ ateach time step,

and combining this with the error vector through Equation (33) yields the negative

error gradient. The negative error gradient information can in turn be used to update

I
leU

https://etd.uwc.ac.za/

Chapter 6 Methodolog II: Recurrent Neurol Networks 42

(36)

the weights in the network in realtime because the l!1Q)values are available at each

time step.

All the nlQ)values need to be stored and updated, but the space requirements do not

grow with each time step as with BPTT

6.3. The Vanishing Gradient Problem

The current state in a recurrent network depends on all previous time steps of a

particular classification attempt. Most RNN learning algorithms fail on problems with

long minimum time lags between input signals and their resulting error signals. When

an error signal is injected back into a network - and hence flowing back in time - it

tends to either blow up or vanish. An error that blows up leads to oscillating weights

and unpredicted network behaviour, while a vanishing error will quite obviously

cause training to slow down or completely stop during a network's attempts to learn

to bridge long time lags.

To gain a better understanding of why the error tends to suffer from exponential

decay over long time lags, it is worthwhile to take a look at Hochreiter's analysis

[14]. Apply BPTT to a fully recurrent network whose non-input indices range from 1

to r. The error signal computed at an arbitrary unit a attime step r is propagated back

through time for q time steps to arbitrary unit b, causing the error to be scaled by the

factor

06u(t - q)
=

05,(t)

fu@etuQ -1
o6'

fu(net uQ - d)i wib
06.(r)

Setting io : a and in : 6, one can derive the following equation through proof by

))*ot
(r-q+1) Q =7

q>l
l=l

induction:

https://etd.uwc.ac.za/

Chapter 6 Methodolog,t II: Recurrent Neural Networks 43

06u(t - q) _
06o(t) h=l iq=r j=1

nnTT
q

II .fi,tn t, (t - i))wiii,-, (37)

where the sum of the ne-l terrns, ll'1rf,,,(net, (t- i))wi,i,_,, represents the total

error flowing back from unit a to unit b.

It then follows that, if

.fi,(neti Q - j))w, , -, >l (38)

for all 7, then the product term in Equation (37) will grow exponentially with

increasing q. In other words the error will blow up and conflicting error signals

arriving at unit b can lead to oscillating weights and unstable learning [4]

On the other hand, if

.f i,(neti Q - i))w, , -, <l (39)

for all7, then the product term will decrease exponentially with q and the enor will

vanish, making it impossible for the network to learn anything or slowing learning

down to an unacceptable speed.

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recutent Neural Networks

6.4. Long Short-Term Memory

So how do we avoid vanishing error signals in recurrent neural networks ? The most

obvious approach would be to ensure constant error flow through each unit in the

network. The implementation of such a learning method, however, might not be as

obvious or straightforward. Hochreiter and Schmidhuber addressed the issue of

constant error flow in [] by introducing a novel machine learning method they

dubbed long short-terrn memory (LSTM).

6.4.1. The Constant Brror Carrousel

Concentrating on a single unit 7 and looking at one time step, it follows from

Equation (36) that /'s local error back flow at time / is given by

5 j(t)= f)tnrr,(t))5iQ +l)w,,, with wlthe weight which connects the unit to itself.

It is evident from Equations (38) and (39) that, in order to enforce constant error flow

through unit7, we need to have

.f)@et,(t))w1 =1.

Integrating the equation above gives

laf j@et j(/)) = J

I

wjj
a nrt,

f 1
(net

1
(t)) =

net iQ)
wjj

We learn two things from the above equation:

l. f,has to be linear;and

2. unitT's activation has to remain constant, i.e.

t 1Q +1) = fi@et 1Q+l)) = .f1@11t 1QD = y i(t).

44

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networlrs 45

This is achieved by using the identity function f i,.f i(x) = x,Vx, and by setting

wii:l.Hochreiter and Schmidhuber refer to this as the constant error carrousel

(CEC). The CEC performs a memorising function, or to be more precise, it is the

device through which short-term memory storage is achieved for extended periods of

time in an LSTM network.

6.4.2. Input and Output Gates

The previous subsection introduced the CEC as an arbitrary unit 7 with a single

connection back to itself. Since this arbitrary unitT will also be connected to other

units in the network, the effect that weighted inputs have on the unit has to be taken

into account. Likewise, the effect that unitT's weighted outputs have on other units in

the network has to be closely scrutinised.

In the case of incoming weighted connections to unit7, it is quite possible for these

weights to receive conflicting update signals during training, which in turn makes

learning difficult because the same weight is used to store certain inputs and ignore

others [1a]. In the same way, output weights originating at unit j can receive

conflicting weight update signals because the same weights can be used to retrieveT's

contents sometimes, and preventT's output to flow forward through the network at

other times.

The problem of conflicting update signals for input and output weights is addressed

in the LSTM architecture with the introduction of multiplicative input and output

gates. The input gate of a memory cell is taught when to open and when to close,

thereby controlling when network inputs to a memory cell are allowed to adjust its

memory contents; an input gate therefore also helps to protect the memory cell

contents from being disturbed by irrelevant input from other network units or

memory cells. In the same way, an output gate is taught when to open and close,

thereby controlling access to the memory cell's contents. An output gate therefore

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networks 46

helps to protect the memory contents of other memory cells from being disturbed by

irrelevant output from its memory cell.

6.4.3. The LSTM Memory Block

An LSTM network unit containing a CEC, an input gate, and an output gate, is called

a memory cell. Figure 6-4 below depicts the standard architecture of an LSTM

memory cell.

y" = h(s")y*t

to
o
E

- tlo.n

w;1 -

Figure 6-4: An LSTM memory cell

One or more memory cells that share input and output gates between them are

grouped together in a unit called the memory block. Each cell in a memory block has

its own CEC at its core to ensure constant error flow through the cell in the absence

E

rl)c

dlNg.to

oll@t
sqreshrf,U

ircxr
sCueslmg

Sc=Sct
g(neL)Yr.

h(+)

hpdgde

9(net")

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networks 47

of input or error signals, thereby solving the vanishing gradient problem. The

activation of a CEC is called the internal cell state [1 I].

6.4.4. Forward Pass with LSTM

Borrowing from [11], we define the following indexes:7 indexes memory blocks; v

indexes memory cells in blockT such that c) denotes the v-th cell of theT-th memory

block; w7, denotes a weight connecting unit m to unit l; andn indexes source units as

applicable.

A memory cell has three major sets of inputs: standard cell input, input gate input and

output gate input. The cell input to arbitrary memory cell cj at time I is

net ,, (t) = 4r..i*t *(/ - l) . (40)

The input gate activation y'' is

y,,i = fir, (lwir,*! m(/ - l))

while output gate activation is computed as

! out i = .for,, (Zw out rml m(/ - 1))

(41)

(42)

The squashing function/used in the gates is a standard logistic sigmoid with output

range [0,1]:

f (*) =-f " . (43)
l+e-*

https://etd.uwc.ac.za/

Chapter 6 Methodolog II: Recurrent Neural Networks 48

Assuming that the internal state of a memory cell at time l:0 issr"(0) = 0, the

internal state of memory cell c at time r is calculated by adding the squashed, gated

input to the intemal cell state of the last time step, s.(f-l):

t r;(t) = s
ru

(t -1) + liri1t1g@et r"
(t)) for / > 0, (4)

where the input squashing function g is given by

g(x)= -
j--2.

(45)
l+e-'

The cell output 1f can then be calculated by squashing the internal state s" and

multiplying the result by the output gate activation,

Yr"(t)= !,ut,1t1h(sr",(t)), @6)

where the output squashing function ft is given by

h(x)=- 2--t'
(47)

l+e''

It was later suggested that the output squashing function h can be removed from

Equation (46) because no empirical evidence exists that it is needed [12]. Equation

(a6) is thus changed to

y
""

(t) = lout , (r)s", (/) . (4g)tl J "l

Finally, the activations of the output units (indexed by k) can be calculated as

y rQ) = f p(net 1,Q)), net 2Q) = Zw k*y *(r - l) . (4e)

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networlts 49

6.4.5. Forget Gates

The standard LSTM architecture described above, although powerful, has its

limitations. According to [11], the cell state s. often tends to grow linearly during

presentation of a time series, which might lead to saturation of the output squashing

function hif the network is presented with a continuous input stream. Saturation of ft

will reduce the LSTM memory cell to a regular BPTT unit, causing it to lose its

ability to memorise. Furthermore, saturation of h will cause its derivative to vanish,

which will in turn block any error signals from entering the cell during back

propagation. Cell state growth can be limited by manually resetting the state at the

start of each new sequence. This method, however, is not practical in cases where the

sequence has no discernable end, or where no external teacher exists for subdividing

the input sequence into sub sequences. A sequence ofcredit card transactions is one

such an example.

Gers, Schmidhuber and Cummins [11] solved the cell state saturation problem by

introducing a third gate into the LSTM memory block architecture. This third gate is

designed to learn to reset cell states when their content becomes useless to the

network. In a way it forces the cell to forget what it had memorised during earlier

time steps, and is therefore called aforget gate.Figure 6-5 on the next page shows the

extended LSTM memory cell with a forget gate.

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networks

lc = Sclcrut

50

5o - W6ut

wg- Jo

3o
-W6

neL

Figure 6-5: An LSTM memory cell with a forget gate.

The only change that the addition of a forget gate introduces to the forward pass of

LSTM is in Equation (44), where the squashed, gated cell input is now added to the

forget gated cell state of the previous time step, instead ofjust the basic cell state:

tr;(t)=yeisrj(r-l)+/in,1t)g(net",(t)) for/>0, (50)

where y, is the forget gate activation and is calculated (like the activations of the

other gates) by squashing the weighted input to the gate:

lri = tr,(lwe1*!^(r-l)). (51)

Once again, .f, is the standard logistic function of Equation (43).

T,\

S. = ScYO+
g(neL)yi

Yn

g(neL)

otllrigale

input gaae

htqt
squ8sring

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networl<s 5l

It was suggested in [11] to initialise input and output gate weights with negative

values, and forget gate weights with positive values, in order to ensure that a memory

cell behaves like a normal LSTM cell during the beginning phases of training, as not

to forget anything until it has learned to do so.

6.4.6. Peephole Connections

Another addition to the LSTM memory cell architecture is the notion of peephole

connections, first introduced by Gers, Schraudolph and Schmidhuber in 2002 ll2).

Peephole connections basically connect a memory cell CEC with the memory block

gates through additional waited connections. This was done to give the gates some

feedback on the internal cell states which they are suppose to control.

Peephole connections are not used in any of the learning tasks studied in this thesis;

their use in initial experiments did not show significant improvement in

generalisation performance and for the sake of simplicity further investigations with

peephole connections were therefore discontinued. The interested reader can get more

information on peephole connections and the resulting modified LSTM forward pass

in [12].

6.4.7. LSTM Training - A Hybrid Approach

The LSTM backward pass makes use of truncated versions of both the BPTT and

RTRL algorithms to calculate the weight deltas for a particular time step. This hybrid

approach to RNN learning was first suggested by Williams (1989) and later described

by Schmidhuber (1992). In the context of LSTM leaming and the BPTT and RTRL

algorithms, truncation means that errors are cut off once they leak out of a memory

cell or gate although they do serve to change incoming weights [1].

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networlrs 52

The standard BPTT algorithm is used to calculate the weight deltas for output unit

weights while truncated BPTT is used for output gate weights. A truncated version of

RTRL is used to calculate deltas for cell, input gate, and forget gate weights. The

rationale behind truncation is that it makes learning computationally feasible without

significantly decreasing network training and generalisation performance. The

remainder of this section describes the gradient-based learning algorithm for LSTM

networks with forget gates. More complete versions can be found in [1], [12] or

ll4l.

As is normal with gradient-based learning, the aim is to minimise the objective

function E by changing each connecting weight in the network by some value at each

time step. Once again the error generated at the output layer at time / is taken to be

the mean squared error,

E(r1=+It,o U)- yt (t))' (s2)
z.k

with lt the target output and yk the actual activation of output unit ft.

As mentioned earlier, truncated BPTT is used to calculate the weight change amounts

of output unit weights and output gate weights. Therefore, taking an arbitrary output

weight w6, (following the notation used in [2]) which connects unit m to output unit

t, the weight change is given by

Lwp*(t)--adr,Q)y*(t-l), 51,(t)=-
^u'.(').,

(53)
)net p (t)

where o is the leaming rate.

Differentiating Equation (52) and substituting into Equation (53) yields the externally

injected error

61,Q) = f p(ner1,QDltr,(t)- yr@l (54)

https://etd.uwc.ac.za/

Chopter 6 Methodologt II: Recurrent Neural Networl<s 53

Since standard BPTT is also used to calculate the weight changes for output gate

weights, the delta of a weight connecting an output gate of arbitrary memory blockT

to unit rn is given by

Lwour,m(t) = a5or,,(t)y*(t), (55)

5ou,,Q) 'l fJr,,(netout j (t)
s/

I
v=l

,I t,j(,)lw 0,,6p(t) (s6)

Again following the notation used in 112), r indicates that the error is being

truncated.

It is clear from Equations (33), (34) and (35) (Section6.2.2) that RTRL requires the

calculation of partial derivates at each time step in order to ultimately compute the

necessary weight update deltas for those time steps. Since, in the context of LSTM,

we use RTRL to calculate the weight deltas for cell input weights, input gate weights

and forget gate weights, the following partial derivates have to be updated at each

time step:

ds^, (l) 6s-, (r - l)

; "
,t -*

-yaj7)
+ g'(net,u(t)Dini?)ym?-1),

clfr cjm

(s7)

0s r" (t -1)

Aw
y aj Q) + g(net," (t)) f il, t (net in, QDy.(l - l), (58)

inrm

!8
fuir,*

tr

(se)

Following from Equation (35), the above partials are set to zero for the first time step

(r: o).

0s-, (t) ds^, (l - l)

;; ,L -*-r,_ tq(t) + s., (r -t).fii(net, (t))y*(/ - l).

https://etd.uwc.ac.za/

Chapter 6 Methodolog,, II: Recurrent Neurol Networl<s

The partials from Equations (57), (58) and (59) can now be used to calculate the

weight deltas for cell input weights, input gate weights and forget gate weights

respectively:

0s ,, (t)

54

(60)
Aw

Lw^,-(t) = ae^,(t)cim' sl

sj

IL',rrr(t) = a (t)
Aw

e,
sl

"i*

I w,.^,6pQ)
k

ntl

As

",
(t)

(61)

(63)

v=l inrm

(62)

The quantiO e ri represents the internal state error for each memory cell and is

calculated as follows

sj 6s", (/)
L'r,^(t) = a,I,'r; A) a-;

e-"(t) r you, (t
o) J

)(
)

Notice that for the input and forget gate weight deltas in Equations (61) and (62), the

effect of all memory cells in a memory block is taken into account by using the sum

of the internal state errors. This is done because the memory cells in a memory block

share the input, output and forget gates between them.

https://etd.uwc.ac.za/

Chapter 6 Methodologt II: Recurrent Neural Networlcs 55

6.5. Summary

This chapter dealt explicitly with recurrent neural networks as a possible solution to

the problem of detecting fraudulent credit card transactions. The motivation behind

this is that recurrent neural network training is a tried and tested technique for dealing

with sequence classification problems, of which the classification of chains of time

ordered credit card transactions is a perfect real world example. A serious

shortcoming of recurrent neural networks, namely the vanishing gradient problem,

was highlighted and a possible solution in the form of LSTM recurrent neural

networks was described. Here we are interested in modelling very long time series,

and in [4] and I l] it was shown that LSTM, in particular, is exceedingly good at

modelling long-term dependencies in sequence classification tasks.

Ultimately, this thesis will compare the performance of support vector machines with

that of long short-terrn memory recurrent neural networks as applied to the non-trivial

problem of fraud transaction detection. However, before this can be done a criteria for

evaluating the performance of each methodology needs to be selected. The next

chapter looks at the performance evaluation of these two machine learning techniques

as applied to a binary classification problem in more detail.

https://etd.uwc.ac.za/

Chapter 7

EVALUATING PERFORMANCE

7.1. Introduction

This chapter introduces two techniques that will be used to evaluate the generalisation

performance of the networks used in the experiments in this thesis. The popular mean

squared error is discussed first along with its advantages and disadvantages. It is also

shown why the mean squared error is not a good measure of performance when

dealing with skew data sets and binary classifiers. The discussion on mean squared

error is followed by a discussion of an alternative performance measure that is more

applicable to fraud detection and binary classifiers in general - the receiver operating

characteristic curve.

7.2. Mean Squared Error

The mean squared error (MSE) is probably the most common error measure used in

both the training of a wide range of neural networks, and the calculation of neural

network generalisation performance measures. The MSE of a neural network is

calculated by simply summing the sum of the square of the difference between the

actual output and expected output values, and dividing the result by the number of

outputs n and training exemplars z:

MSE-, =lt Z@r - t)' 64)mn? *

As usual, indices /r denotes output neurons.

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 57

When used for training, the factor lln in Equation (64) is often simplified to 112 in

order to make subsequent calculations more elegant2. The ease with which MSE's

derivative can be calculated is one of the reasons for its popularity in the machine

leaming field. Other reasons include the fact that MSE emphasise large errors more

than smaller ones. In contrast to the positive features of MSE, it remains a pure

mathematical construct which fails to take the cost of classification errors into

account. Furthermore, it also fails to clearly distinguish minor errors from serious

effors.

When dealing with skewed data sets which exhibit distributions heavily in favour of a

particular class, a performance measure obtained using MSE might be misleading or

even nonsensical. Take for example a credit card transaction data set containing data

divided into two classes: class A representing legitimate transactions and class B

representing fraudulent transactions. As is normal with transactional data sets, it is

expected that the occurrence of class A will be in the majority by a large margin,

possibly representing in excess of 99.9o/o of the data set with class B representing a

mere 0.010%. Let us further assume that we have a really simple classifier that

constantly labels input vectors as belonging to class A, regardless of the content of

the vectors. Also assume that the output squashing function always rounds the output

of the classifier to 0.9 (to represent class A). In such a case the success rate of the

classifier will be 99.9% and its MSE will be negligible; but in spite of this "brilliant"

generalisation performance, the classifier would not have identified one single

fraudulent transaction and will hence be completely useless. If we go further and

attach a cost to misclassifying fraudulent transactions, the shortcomings of MSE

becomes even more apparent. The next section introduces an alternative to MSE

which is particularly useful in measuring the performance of binary classifiers.

2 Recall that the error gradient information for weights are calculated by differentiating the error
measure with regards to the weights, which will ultimately make the factor 1/2 vanish.

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 58

7.3. Receiver Operating Characteristic

In the 1950's, a major theoretical advance was made by combining detection theory

with statistical decision theory, and the importance of measuring two aspects of

detection performance was realised. It was realised that one must measure the

conditional probability that the observer decides the condition is present, the so-called

hit rate, or that the observer decides the condition is present when it is actually not,

called the false alarm rate. This can be represented in the format shown in Table 7-1,

called the outcome probability table. This table is often used to visualise the

probability of the four possible classification outcomes of binary classifiers, or in our

case a fraud detection system. ln Table 7-l the rows represent the actual labels

flegitimate,fraud] that an arbitrary transaction might have, while the columns

represent the labels that a classifier might assign to such a transaction.

igned legitimate fraud
Actual

false alarm

fraud P(fraud not detected) P(correctlfraud)

Table 7-1: The outcome probability table [a].

According to [4], a high correct classification probability is represented by

P(correct) : P(correctl fraud)P(fraud) + P(correctl legal)P(legal). (65)

Put differently, Equation (65) simply states that the classifier will be at its best when

it succeeds in maximising both the number of correctly classified fraudulent

transactions and correctly classified legal transactions. This is obviously achieved by

minimising the number of misclassifications, or in other words minimising the

weighted sum

C : c1P(fraud not detected) + c2P(false alarmllegitimate). (66)

correct

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 59

Since it is difficult to determine c1 and c2 in practice, it makes more sense to attempt

to maximise the number of fraudulent transactions detected while minimising the

false alarm rate.

Table 7-2 shows a simplified version of the classification outcome matrix containing

descriptions and abbreviations of the four possible outcomes of a classification with a

binary target class. These abbreviations and terminology will be used in the

derivations to follow.

Actual
legitimate fraud

False Positive

fraud False Negative (FN) True Positive (TP)

Table 7-2: A simplified outcome/decision matrix.

In binary classification problems, a classifier simply attempts to predict whether a

given condition is present or not for each item in adata set. In our case, it attempts to

predict whether a transaction is genuine or fraudulent, or whether, given a range of

earlier transactions, the next transaction in a sequence is legitimate or not. Decisions

on whether a condition is present or absent are, in most cases, based on the activation

level that a single output neuron achieves during classification. A low activation

points towards the condition being absent, while a high activation level indicates that

the condition is indeed present. Two types of errors are possible with the decision

scheme set out in Table 7-2. A type I error, or false positive, is made when the

classifier decides that the condition is present when it is not, and a type II error, or

false negative, is made when the classifier decides that the condition is absent when it

is in fact present.

In order to distinguish between high and low activations in the continuous activation

spectrum of a single output neuron, a threshold is normally chosen and any activation

lower than the threshold is then perceived as an indication that the condition in

True N ve

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 60

question is absent, while any activation equal to or above the threshold suggests that

the condition is probably present. Figure 7-1 illustrates the high and low activation

probabilities of an arbitrary output neuron. In statistics, the curve on the left

representing the probability that the condition is absent is called the null hypothesis,

while the curve on the right measuring the probability of the condition being present

is called the alternative hypothesis [22]. It is important to note that Figure 7-1 shows

a significant overlap between the null and alternative output probabilities, i.e. a

somewhat grey decision area where the decision outcome is not certain beyond any

doubt. This is usually the case in real world problems where perfect performance is

unachievable.

0.2 0.4 0.6 0.8

Figure 7-1: Output neuron probability distributions under null and alternative
hypothesis.

More often than not, and for no apparent good reason, the threshold is set to exactly

0.5 in theoretical experiments. Square in the middle of neuron activation range is not

necessarily the optimum place for an output neuron's activation threshold, and better

generalisation performance might be achieved by shifting the threshold higher or

lower.

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 6l

Let us assume for argument's sake that a decision threshold has been set at 0.6 for our

fraud detection network, as shown by the dotted line in Figure 7-1. This means that if
an activation of at least 0.6 is achieved when propagating a previously unseen

transaction (or sequence of transactions) forward through the network, we will

assume that the condition is present (i.e. the transaction is fraudulent). If the neuron

only achieves an activation level lower than this threshold, we will assume that the

transaction is legitimate.

o a2 0.4 0.6 0a

Figure 7-2: Decision outcome error probability

The probability of making a type I error is given by the area under the left curve to

the right of the threshold, and is shown as the blue area in Figure 7-2. On the other

hand, the probability of making a type II error is given by the area under the right

curve to the left of the threshold, shown as the red area in Figure 7-2.It is obvious

from the above that the higher the threshold is set, the smaller the chance becomes of

making a type I error (false positive), but the bigger the chance of making a type II

error (false negative).

1

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 62

The probability of making a false positive decision is also called thefalse alarm rate:

FAR: P(false alarmllegitimate).ln terms of Table 7-2,the false alarm rate can be

derived as:

false alarms
FAR

allalarms
false alarms # all alarms

all alarms # all legals

false alarms

alllegals

FP
FP+TN

(67)

Another quantity of interest is the true positive rate (or hit rate), which is the

probability of making a true positive decision (i.e. 1 - P(fraud not detected)),andis

given by

TpR _ I _ # falsgnegatives' # allalarms
TP

TP+FN (68)

Together, these two quantities can give a good indication of a binary classifier's

generalisation performance. Plotting these two quantities against each other for

increasing thresholds from 0 to l, with the false alarm rate on the x-axis and the true

positive rate on the y-axis, yields a curve called the Receiver Operating

Characterisric (ROC) curve (see Figure 7-3) .

The ROC curve was first used in the Signal Detection Theory field as an indication of

a radar operator's ability to distinguish between noise, friendly ships, and enemy

ships when viewing blips on a radar screen. In the 1970's, the ROC curve found its

3 Ailowabre since I a ! allalarms '

Fr in most realistic cases [41

3

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 63

way into the medical sciences where it was found useful for interpreting medical test

results. Because of its success in describing binary classification performance, it was

bound to find its way into the machine learning field too.

t
o-
F

0.8

0.6

0.4

0.2

0

0.2 0.4 0.6 0.8

FAR

Figure 7-3: A typical ROC curve.

Originally, the classical concept of a detection threshold predicts a linear relationship

between the FAR and TPR [3]. This can be shown by defining a quantity that

captures the probability that the neuron activation will exceed a set threshold,

TPR _ FARp=

0

I_FAR (6e)

Rearranging (69) leads to the linear relationship between FAR and TPR predicted by

the high threshold model:

TPR= p+(r-p).FAR (70)

The bowed-shaped ROC curve of Figure 7-3 contradicts this linear relationship

predicted by the high threshold model, and this is one of the reasons why the high

threshold model was eventually abandoned and replaced with signal detection theory

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance

[3]. In signal detection theory, the sensory process has no threshold, but rather a

continuous output based on random Gaussian noise with which the signal combines

when it is present. The relationship between FAR and TPR can be expressed as z-

scores of the unit, normal Gaussian probability distribution

z(TPR) = H" .on * lt . z@AR)os os (71)

with p, the signal-plus-noise distribution, orits standard deviation, and orthe

standard deviation of the noise.

Signal detection theory as applied to detection sensitivity is outside the scope of this

thesis, but it is necessary to note a few points:

l. The ROC curve predicted by signal detection theory is anchored at the (0,0)

and (1,1) points (Figure 7-3);

2. When 72, is greater than zero, the ROC curve takes on a bowed-shape;

3. When p, is zero the ROC curve is a straight diagonal line connecting (0,0)

and (1,1).

For the purpose of measuring performance in this thesis we are only interested in the

total area under the ROC curve, called the area-under-curve (AUC). The area under

the ROC curve gives an indication of a classifier's ability to generalise and the bigger

this AUC value, the better the classifier. A perfect classifier will have a ROC curve

that resembles a right angle with an enclosed area of unity.

64

https://etd.uwc.ac.za/

Chapter 7 Evaluating Performance 65

7.4. Summary

This chapter discussed two widely used error measures, the mean squared error

(MSE) and the receiver operating characteristic (ROC). It was shown that the area

under the ROC curve is a more applicable performance measure when dealing with

binary classifiers and heavily skewed data sets. The results of experiments conducted

in Chapter 9 will include both the MSE and ROC curve area as performance

measures.

We now have two methods for fraud detection, and a perforrnance measure applicable

to our specific problem. The final step before our methodologies can be put to the test

is processing the data set to make it compatible with our learning algorithms. Feature

selection and pre-processing is discussed in the following chapter.

https://etd.uwc.ac.za/

Chapter 8

DATA SETS, FEATURE
SELECTION AND PRE-
PROCESSING

8.1. Introduction

This chapter deals with the tedious task of selecting appropriate features from a real

world data set and applying proper pre-processing techniques to them prior to their

presentation to a network for classification.

In the context of this thesis a feature represents a unit of data chosen from the list of

available data columns present in a data set, and will ultimately form one or more

dimensions of a network input vector after the feature has been sufficiently pre-

processed. Pre-processing is the task oftaking raw features and converting them into

values that are suitable for network presentation and classification. Each row in a data

set translates to a network input vector when feature selection and pre-processing

steps are applied to it.

The different features present in a data set can normally be categorised into four

classes according to the type and degree of information they contain [22). The

remainder of this chapter deals with the selection of features from a data set for fraud

detection purposes (Section 8.2), the different categories they can be divided into

according to their type (Sections 8.3 and 8.4), and the pre-processing techniques used

to convert the features in each category to numerical values that can be used as inputs

to neural networks.

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Festure Selection and Pre-processing 67

8.2. Feature Selection

Selecting a salient set of features from a data set and applying the correct pre-

processing techniques to them more often than not means the difference between

success and failure when building a neural network for classifying real world data.

Apart from obvious transaction features such as the amount, what other data features

should be selected ?

Available transaction information differs from card issuer to card issuer, and details

on this type of information is seen as proprietary and is therefore never published. An

even bigger problem inherent in data sets used for fraud detection is the high number

of symbolic fields present in the transactional data, while neural networks and other

classifier algorithms can only deal with numeric data. The reason for this is that

authorisation message exchange between point-of-sale terminals and card

management platforms were simply not designed with fraud detection in mind.

People might be tempted to simply ignore symbolic fields and only present the

numerical data present in the data set to the classifier, but the information contained

in symbolic fields can potentially be just as important in correctly classifying credit

card transactions as the information contained in the numeric fields. Take for example

the transaction date; most conventional fraud detection and expert systems will ignore

this field because it is seen as unimportant information [4]. However, a fraud system

that attempts to model a time series will obviously find this information very useful.

Another reason for using the transaction date might be to model the changes in

human shopping behaviour as time progresses. Conventional fraud detection systems

seem to have difficulty in coping with changing shopping profiles, especially during

holiday seasons.

Although the information contained in authorisation messages might be seen as

limited when attempting fraud classification, some statistical values can be calculated

to serve as additional features in the input vector. An example of such a statistical

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feature Selection and Pre-processing 68

value used in conventional fraud classifiers is the transaction velocity. In the context

of fraud detection, the velocity value of an account at any given point in time is

calculated by counting the number of transactions done on the account during a pre-

specified timeframe. The rationale behind this is that if a card is, for example, used to

buy five different flight tickets or do ten purchases at different jewellery stores in a

short period of time, the activity should be regarded as highly suspicious.

Different velocities can be calculated by including only transactions done at certain

types of merchants in one velocity calculation, and including all transactions in

another. Merchants can be grouped into industry for the above mentioned velocity

calculation by using the standard industry code (SIC) present in every authorisation

message. The SIC itself, although symbolic, can also be included in the input vector

as a feature. The use of time-based velocity statistics in the conventional fraud

detection systems in use today gives a clue to the importance of time when dealing

with credit card fraud. After all, the introduction of statistical velocity values

ultimately introduces a dynamic component into an otherwise static classification

methodology.

Unfortunately, due to reasons of confidentiality, the exact features selected and their

value ranges cannot be presented here. It will suffice to state, however, that the most

important features used here included the transaction date, transaction amount,

cardholder age, account age, months to card expiry, cardholder country, standard

industry code of merchant, and two velocity counts.

The following sections deal with identifying correct pre-processing methods for each

feature once the selection process is finished. Each feature is a variable with distinct

content and data ranges, and it is this information that is central to classifying each

feature into one of the four major variable classes.

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feature Selection and Pre-processing

8.3. Nominal and Ordinal Variables

Variables are considered nominal when they cannot be measured in a quantative way

and only contain information to whether they form part of a pre-specified category or

not. The only mathematical test that can be done on the nominal variables of a

specific category is whether they are equal or not. One nominal variable cannot be

considered greater or smaller than another nominal variable of the same type.

Nominal variables are usually presented to a neural network by using as many

neurons as the number of distinct values within the category to which the variable

belong. One of the neurons is then activated to present a specific value in the

category, while all the remaining neurons remain deactivated. This is called one-of-n

or one-hot encoding. This approach works well when the range of values the variable

can take on is small, like for instance gender that can only take on one of two values

(male or female). When the number of values increases though, this method runs into

some difficulties:

l. When the number of distinct values are large, the vectors obtained by

applying one-of-n encoding are so similar that a network might have difficulty

in learning the difference between different categories of the same nominal

vaiable 1221.

2. Most nominal variables in real world data can have an extremely large

number of categories, like for instance postal code, country code, standard

industry code, etc. Representing such variables using one-of-n encoding is

computationally infeasible most of the time.

An alternative approach that seems to work quite well is to compute a ranking score

for each category value a nominal variable of a specified type can have. The ranking

score can then be further pre-processed and used as input to a neural network.

69

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feature Selection and Pre-processing

The ranking scores for a particular nominal variable are computed by simply counting

the number of occurrences of each category within the data set and sorting the

resulting counts. The category with the least number of occurrences will then be

ranked first, while the category that occurs the most will be ranked last.

Variables that have a true implicit order between categories, but whose physical

categorical values have no meaning other than establishing order, are called ordinal

variables. Since computing ranking scores for nominal variables almost seems to turn

them into ordinal variables, one might be tempted to use the ranking score directly as

a dimension of the input vector by encoding the value into one neuron, which is

allowable for ordinal variables. The problem with this is that, by encoding the

ranking score into a single neuron, it is implied that an order relationship between

distinctive categories are present where there is in fact none. Therefore, the ranking

scores computed for experiments in this thesis are first converted to binary numbers

and then encoded into a fixed number of neurons for each variable. The number of

neurons required for binary encoding can be computed using Equation (72), where c

denotes the number of possible categories the nominal variable can take on.

70

Itoe"l
l"rrl (72)

8.4. Interval and Ratio Variables

Interval variables are numeric in nature, have definite values, and have order

relationships between different values of the same variable. Interval variables are

usually presented to a neural network using one neuron. Features such as transaction

velocity and date - when broken up into days, months and years - are nominal

variables. Ratio variables are the same as interval variables, except that a value of

n

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feqture Selection ond Pre-processing 71

zero in a ratio scale is a true zero, while it is arbitrary on an interval scale. The

transaction amount is an example of a ratio variable.

In order to present interval or ratio variables to a neural network, they must first be

normalised to prevent them from saturating the input neurons. In other words, they

must be scaled to adhere with the activation limits of the input neurons of a particular

network type. The simplest way to normalise interval or ratio variables is to calculate

the minimum (Xn..in) and maximum (X.u*) values that a variable x can take on in both

the test and training set, and then use Equation (73) to scale the value to fall within

the network input range, [[.in,lru*]. The network input range is arbitrarily chosen, and

is set to [- I ,l] for all the experiments in this thesis.

[** - I.m)* I.in (73)

Equation (74) shows an alternative approach for normalising a value. This statistical

approach can be used when the set of values of a feature has the tendency to cluster

around some particular value and therefore exhibits an approximately normal

distribution [25].

v (#')t

x- u
!=- o (74)

Equation (74) states that a value x can be normalised by subtracting its mean p and

dividing the result by its standard deviation o. The main reason why Equation (74) is

usually preferred over Equation (73), is because it removes all effects that offset and

measurement scale can have on a feature's values [22].

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feature Selection and Pre-processing 72

Equations (75) and (76) below show the formulae used to compute the mean and

standard deviation of a feature.

(75)

o l{*i - D'

rN
, =-LL'

^t
z-,/ Jtr i=l

(76)N

Figure 8-l shows an illustration of what a normal distribution might look like.

Figure 8-1: A normal distribution with mean l0 and

standard deviation 2.

The only downside to using Equations (73) or (74) for normalisation purposes is the

fact that they do not deal particularly well with outliers in a data set. Outliers will

cause the bigger part of the data to be scaled into a relatively small section of the

network input range, causing these values to have much less of an impact on training

and generalisation then they should.

https://etd.uwc.ac.za/

Chopter 8 Data Sets, Feature Selection and Pre-processing 73

Figure 8-2 shows a histogram of the transaction qmount feature. It is clear from the

histogram that the information content of the variable is completely distorted and

does not resemble anything even close to a normal distribution. Most neural networks

will have a hard time learning anything from a feature such as the one depicted here,

unless it is first transformed using a compression transformation to stabilise its

vanance.

oc
o
f

E
E

L
Amount

Figure 8-2: A histogram of the transaction amount
feature prior to pre-processing.

The logarithm is one of the more commonly used transformations and also the one

used in the pre-processing steps for the experiments in this thesis. Figure 8-3 shows

the histogram of the transaction amount feature after being passed through the

logarithmic compression transformation.

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feature Selection and Pre-processing 74

c
o
ag
o
E

Amounl

Figure 8-3: A histogram of the transaction amount
feature after applying a simple logarithmic compression
transformation.

Equation (77) shows an improved transform first suggested by J. Tukey (cited in Il]),
and Figure 8-4 shows the effect this transformation has on the distribution of the

tran saction amount feature.

(77)

The transform in Equation (77) did not seem to have much of an effect on the training

and generalisation performance in the experiments of this thesis, and was therefore

not used in the final version of the pre-processing algorithm.

, = arcsinlrtr) . ".".'"[,,H)

https://etd.uwc.ac.za/

Chapter 8 Data Sets, Feature Selection and Pre-processing 75

Arnount

Figure 8-4: A histogram of the transaction amount
feature after applying the transform in equation (77).

8.5. Summary

After transformation and normalisation, the transaction amount feature still does not

quite resemble a normal distribution, and from Figure 8-4 it is clear that its

distribution is plagued by a fair amount of skewness and kurtosis; the skewness

characterises the degree of asymmetry of a distribution around its mean, while the

kurtosis measures the peakedness or flatness of a distribution [25]. Nevertheless, the

methods discussed in this chapter had the desired effect on features and significantly

improved both the training and generalisation performance of the classification

algorithms used in the experiments in this thesis.

The next chapter puts the theory presented in the past five chapters to the test in a

series of experiments on our real world data set.

https://etd.uwc.ac.za/

Chapter 9

DETECTING CREDIT CARD
FRAUI)

9.1. Introduction

In this chapter, the machine learning methodologies discussed in Chapter 5 and

Chapter 6 are put to the test on a real world data set containing a mixture of legitimate

and fraudulent credit card transactions. In addition to using support vector machines

(SVM) and long short-term memory neural networks (LSTM), experiments are also

run using a normal static feedforward neural network (FFNN) to put the results into

perspective by providing a solid, well-known basis for comparison.

In the first experiment, we attempt to detect fraud using an FFNN and SVM. The data

set used for this experiment contains a total of 30876 transactions evened out over l2

months.

The second experiment is done with the same data, but with the transactions time-

ordered to test whether LSTM can manage to learn the time series inherent in the data

set. The resulting transaction sequences are of variable length; the sequence length

distributions of the training and test data sets are shown in Figure 9-1.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud

8

0 100 200

12

10

77

7

6

4

o
o
3
Eo
r J

2

0

300 400 500

Sequence Length

600 700 800

C)
co
=Eo
r

8

o

4

2

0

0 100 200 300 400 500 600 700 800

Sequence Length

Figure 9-1: Sequence length distributions for the training set (top) and test set (bottom).

ln each of the experiment subsections, the set up is explained and the results

presented, after which a discussion follows. The implementations of the machine

learning algorithms used in the experiments are also discussed at the start of each

subsection. The performance measurement tool PERF Release 5.10 l7l was used in

each case to calculate the various performance metrics reported.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 78

9.2. Experiment I: Fraud Detection with FFNN and SVM

9.2.1. Experimental Set Up

The origin al data set was manipulated by decreasing the number of legitimate

transactions to exhibit a class distribution of 99 to 1 (99% legitimate vs. 1o/o fraud).

This was done to reduce the overall size of the data set, making it more manageable

for use in our experiments. This is also the distribution used in other card fraud

detection literature [a]. The distribution of the original data set was of course even

more skewed, containing less than 0.1% fraud. The result of the manipulation was a

data set of 30876 transactions which was split into two equal parts, one for training

and another for testing. The transactions contained in these two sets are equally

spaced out over the 12 months of an arbitrary year, and were pre-processed using the

techniques described in Chapter 8 to finally obtain a 4l-dimensional input (feature)

vector and a corresponding class label for each transaction.

The training and generalisation test cycle is run a total of 30 times for the FFNN to

ensure that a statistically meaningful sample is obtained and to ensure that poor

performance due to local minima is ruled out. For SVM on the other hand, since its

performance depends on what values the kernel parameters and cost function are set

to (and since SVMs do not exhibit the randomness inherent in neural network

learning), time was rather spend estimating the best values for these parameters than

repeating the same experiment 30 times.

https://etd.uwc.ac.za/

Chopter 9 Detecting Credit Card Fraud 79

9.2.2. Feedforward Neural Network

The feedforward neural network machine learning algorithm used in this experiment

is a bespoke implementation in C++ which is executable in both the WN32 and

Linux environments. Nothing extra was done in an affempt to improve the

performance of the algorithm - it is a standard static feedforward neural network.

Network Topology, Parameters, and Training

With each individual problem that neural networks are applied to, a lot of thought

naturally goes into what network topology is the best to use and what values the

network parameters should be set to during training. Figure 9-2 shows the

feedforward neural network topology selected for this experiment. A fully connected

network was used containing 4l input neurons (a one-to-one mapping to the 4l

features representing each transaction), one hidden layer with 20 neurons and one

output neuron. During initial experiments the network topology in Figure 9-2

achieved the best results; it was therefore also the topology used in the final FFNN

experiments. High activation of the output neuron is an indication that the condition

we are looking for is present, which in this case means that the transaction is

fraudulent.

Only one hidden layer was used because no real improvement in generalisation

performance could be seen when using two. It is also stated inl22) that no theoretical

reason exists to ever use more than two hidden layers, while more than one hidden

layer is almost never beneficial. Note that Figure 9-2 only shows a subset of the

connections between the input and hidden layer because the diagram becomes

unintel I igible otherwise.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Cord Fraud

v(t)

t

u[[[[il0nInn[[nil"Jurt:lrttttttl:rtttrtt t t ttu t- [L] u il I I u il n x 0 [tl] [
ttt'!'ltttttttt'i:tt

input[0..401

Figure 9-2: FFNN topology for fraud detection.

Training of the network was done using standard backpropagation with both the

learning rate and momentum set to 0.3. Training was continued for only 100 epochs

and transactions were picked randomly from the training set for each iteration

through the network. In the context of this experiment, an epoch is equal to

presenting 15438 transactions to the network, i.e. the size of the training set. lt was

noted that the network achieved its best generalisation performance at roughly 100

epochs. lf training was continued past this mark, the network showed a tendency

towards overfitting the training data with a resulting decrease in generalisation

performance. After training, the test data set is presented to the network for

classification and the probability of fraud for each transaction is recorded in order to

compute the ROC curve, AUC and RMS.

80

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 8l

Results

Figure 9-3 shows the ROC curves of 30 trials with the feedforward neural network

algorithm. The shape of the curves, i.e. their deviation from a straight diagonal line

and tendency to bow towards the (0,1) corner of the graph, is a clear indication that

the network actually learned something. The spread of the 30 test set curves also

show the amount of randomness normally associated with neural network training.

1

O. !.

o.a

o.:

O.,5

E o.s

o..l

o.3

o

o.t

g
C,.5o.4o o.1 0.: o. -r

g. r g.: o.3

0_6 G.: O.E

0.6 g.: 0.6

o.9

aq

rAR

1

o.9

C,. E

o.:

O.ii

E o.s

o.4

o.3

o.1

o
o o.5o..t

FAR

Figure 9-3: 30 ROC curves measuring FFNN fraud detection performance

on the training set (top) and test set (bottom).

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 82

The ROC curves computed on the training set (top of Figure 9-3) are almost all

completely square. This tells us that near errorless separation of the two classes were

achieved during training. The curves computed on the test set (bottom of Figure 9-3)

show less of a tendency to bow towards the (0,1) corner resulting in a smaller AUC

value, which means the neural network performs somewhat worse on the test set as

expected.

Table 9-1 shows the top 5 area-under-curve (AUC) values recorded during the

training and test stages of the experiment respectively, including their corresponding

root mean squared error (MSE) values, the minimum and average, and 95%o AUC

confidence interval calculated using the results of all 30 trials. For the test set, the

maximum AUC recorded during the 30 repetitions of the experiment is 0.96745 and

the minimum 0.88609. Keeping in mind that the data set used is not conducive to

good machine learning performance, the FFNN actually performed quite well.

Training times were short and generalisation with the network extremely quick,

achieving a classification rate of approximately 46500 transactions/second.a

Rank #
Trainins Set Test Set

AUC MSE AUC MSE
I 1.00000 0. l 05s0 0.96745 0.1 1 543

2 0.99999 0. r 0093 0.95638 0.1 131 1

3 0.99998 0.10125 0.95615 0.r1265
4 0.99997 0.10094 0.9s6t2 0.1 1915

5 0.99997 0.101r3 0.95543 0.lL764
Minimum 0.97143 0.r0190 0.88609 0.12107

Average 0.99508 0.10145 0.93730 0.r1626
95'/,

Confidence
Interval

0.99280 - 0.99735 0.9301s -0.94444

Table 9-1: Summary of training and test results for FFNN

4 Classification rates reported here are indicative. Classification rates were calculated on an Intel
Celeron D 2.66 Ghz processor, and excluded pre-processing ofthe feature vectors.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 83

Table 9-3 lists all results over the 30 training and 30 test trails, in the order in which

they were recorded. As discussed in section 7.2, MSE is somewhat irrelevant when

used in the context of heavily skewed data sets, be we include it here nevertheless for

the sake of completeness.

Trail # Training Set Test Set
AUC MSE AUC MSE

I 0.99991 0.1 01 08 0.93743 0.11767

2 0.99987 0.10313 0.94426 0.11687

3 0.99999 0.1 0093 0.91333 0.11626

4 0.99313 0.1 0057 0.91402 0.11442

5 0.99361 0.10022 0.96745 0.11543

6 0.99992 0.09656 0.92031 0.11194

7 0.98633 0.1 0370 0.93755 0.1 1 949

8 0.99998 0.10125 0.95006 0.11650

9 0.99312 0.10131 0.95638 0.1131 1

10 0.99316 0.1 0054 0.93790 0.1 1 708

11 1.00000 0.1 0550 0.95001 0.1 1 945

t2 0.99317 0.10211 0.95543 0.11764

13 0.98645 0.1 0500 0.88609 0.12107

t4 0.99997 0.10080 0.94355 0.11604

15 0.99997 0.10113 0.93278 0.11619

t6 0.99315 0.10112 0.95026 0.11407

t7 0.99313 0.1 0093 0.90104 0.1 1 903

18 0.99989 0.09794 0.95481 0.11244
t9 0.99996 0.10113 0.95014 0.11435

20 0.99325 0.10247 0.94903 0.11672

2t 0.99938 0.1 01 00 0.93815 0.11456

22 0.99355 0.10252 0.93255 0.11680

23 0.99936 0.10288 0.94342 0.11755

24 0.99320 0.10248 0.91404 0.1 1 765

25 0.97143 0.1 01 90 0.89038 0.1 1 780

26 0.99997 0.1 0094 0.94929 0.11394

27 0.99994 0.1 0002 0.94903 0.11548

28 0.99382 0.1 0039 0.95615 0.11265

29 0.98384 0.1 0359 0.95612 0.11915

30 0.99981 0.1 0037 0.93792 0.11654

Table 9-2: Full list of training and test results for FFNN

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud

9.2.3. Support Vector Machines

The SVM has been around for a while and many tried and tested off-the-shelf

packages are freely available with which SVM researchers can experiment. In this

particular case, Chang and Lin's popular libSVM [8] implementation was used which

includes a wide variety of tools to make dealing with SVM classification much

simpler for the novice user.

Parameters and Training

To a great extent the performance of an SVM depends on what kernel is used and

what the values of the kernel parameters and cost are set to. Since SVM training

guarantees to always find the maximum margin achievable for a given set of

parameters, it is fruitless to conduct multiple trial runs with the same parameters and

time should rather be spent finding the most appropriate kernel and its parameters.

Unfortunately, no real satisfying heuristic exists with which to compute a kernel's

parameters and in most cases the best one can do is to guess. The search for the best

parameters, however, can be done in a structured manner. It was already mentioned in

Section 5.4 that a combination of cross-validation and grid-search is a popular

method for obtaining a best guess estimate of the cost parameter (C) and the kernel

parameter (7) when dealing with radial basis function (RBF) kernels. Cross-

validation can also help to prevent over fitting of the training set [5]. The cross-

validation and grid-search methods were utilised here to obtain a best guess estimate

of these parameters.

Cross-validation involves splitting the training set into two parts. Training is then

done on one part and testing on the other. In v-fold cross-validation, the training set is

divided into v parts and the classifier sequentially trained on v-l of the subsets, and

then tested on the remaining subset. This way, each subset is tested once and each

84

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 85

training instance is predicted once, and the cross-validation accuracy is therefore the

percentage of training examples correctly classified.

Grid-search is a straightforward and simple technique. To estimate the best

parameters for a given classification problem and kernel, a growing sequence of

parameter values are used for training and the ones giving the best cross-validation

accuracy is picked. In case of the RBF kernel, the parameter values consist of (C ,y)

pairs.

Cross-validation and grid-search were done using the parameter selection tool grid.py

that comes packaged with libSVM. Figure 9-4 shows the output of grid.py as applied

to fraud detection during one of the parameter selection runs.

Figure 9-4: Grid-search results for SVM parameter selection.

94.5
94

93.s
93

92.5
92

lg(gamma)

data.svm .trn

5

lg(c)

-L4

-t2

-10

-8

-6

-4

-2

0

2

-5 0 10 t5

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 86

Since the class distribution of the training set is skewed and biased towards the

legitimate transaction class, the cost of misclassification amongst the two classes are

different. On the one hand, one might want to cost the misclassification of fraudulent

transactions more because

1. not detecting them directly translates into monetary loss, and

2. fraud transactions in the data set are sparsely represented.

On the other hand, one might also want to cost the misclassification of a legitimate

transaction more since customer dissatisfaction can be more harmful than fraud in

some cases. In cases where appropriate cost parameters are not introduced for skewed

data sets, underfitting of the data is likely to occur. In such cases, the classifier will

assign the legal transaction label to all transactions, making it impossible to detect

any fraud. During the parameter grid-search for this experiment, different ratios of

cost for the two classes were tried and the best cost ratio was found to be I :10, with

mistakes on the fraud class being penalised 10 times more than mistakes on the

legitimate class.

The different kernel types tested included linear, polynomial, RBF, and sigmoid

kernels.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 87

Results

Figure 9-5 shows the ROC curves of various trial runs with different kernels, kernel

parameters and cost ratios. The best generalisation performance on the test set was

achieved by using an RBF kernel with y - I l, cost C = 0.05 and cost ratio 1:10 as

already mentioned.

t.o

0.9

0.E

0.;

0.6

E o.s
F

0.1

0.3

0.:

0.t

0.0
0.0 0.t 0.: 0.3 0.t u.c

FAF

0.6 0.; 0.6 0.s t.0

Figure 9-5: ROC curves for various SVM kernels, parameters, and cost.

The AUC for this curve was found to be 0.89322.The SVM achieved a classification

rate of roughly 213 transaction/second.s

s This was calculated in a WIN32 environment, and according to [8] the Windows version of libSVM
sometimes suffers inexplicable delays during training. This might also be true for classification.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 88

9.3. Experiment II: Time Series Modelling with LSTM

A bespoke CIC++ implementation of LSTM (called LSTMFraudl was used in this

experiment. The implementation is executable in both the WIN32 and Linux

environments and was benchmarked against the Extended Reber Grammar problem

I l] to ensure that it at least matches the performance of the original implementations

of Sepp Hochreiter and Felix Gers used in the initial LSTM experiments [1a][l].

The algorithm was implemented and customised rather than using one of the

downloadable implementations because we felt that a much better understanding of

the algorithm can be gained by actually implementing it.

All of the important parameters are customisable in LSTMFraud, for instance the

number of memory blocks, memory cells per block, hidden neurons, output neurons,

the learning rate, rate decay, and also whether input-output shortcuts and peephole

connections should be used. Various test runs were executed in order to find the best

combination of these parameters prior to executing the 30 trial runs of the

experiment.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 89

Network Topology, Parameters, and Training

The use of LSTM by nature results in a near fully connected network. Depending on

implementation preference and parameter settings, almost every single output signal

flows into the inputs of every single neuron entity present in the network. Figure 9-6

shows the LSTM topology used for this experiment. Two memory blocks with two

cells each were used. Once again, not all connections can be shown due to reasons of

intelligibility; for instance the below figure does not show feedback connections

between cell outputs and memory block and cell inputs.

v(t)

t

0D0u[[0000000000u DD00uDB0000B00Bu00
lnputl0..a0l

Figure 9-6: LSTM network topology for fraud detection.

Each trial run consisted of feeding pre-processed randomly selected transaction

sequences into the network for 100 epochs, where an epoch is the size of the training

set (in this case the training set contaned 16263 transactions). Once again, although

LSTM does not seem to suffer as much from problems with overfitting as FFNNs do,

100 epochs were chosen because this resulted in the best generalisation performance

during initial experimentation. The network was not manually reset between

sequences or epochs, and no learning rate decay, peephole connections or input-

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud

output shortcuts were used. The learning rate for this expirement was set to 0.3.

During training, whenever a misclassification occurred, training on the transaction

sequence was immediately restarted. This was repeated until all transactions of a

sequence were correctly classified, after which a new sequence was then randomly

selected from the training set for the next iteration.

At the end of each training sequence, the fraud probability for each transaction in

both the training and test set was recorded in order to draw the ROC curves and

calculate the AUC and MSE. During generalisation testing, the network is reset after

each transaction sequence. The transaction sequences used in both training and

testing were of variable length.

A hybrid network with one feedforward hidden layer was also tested, but no real

improvement in generalisation performance was noted (see Figure 9-7). The

motivation for its use was that FFNN performed well on the data set, and that a

combined FFNN-LSTM approach might lift the generalisation performance

somewhat. The problem with this approach is that static FFNN neurons learn much

quicker than their LSTM counterparts, and their weights will therefore start

overfitting the training data long before the LSTM memory cells are fully trained.

One possible solution to this problem is to have separate learning rates for the FFNN

and LSTM parts of the hybrid network; however, it remains difficult to obtain the

correct ratio between these two rates. The training method employed here, i.e.

stopping the presentation of a sequence once a misclassification occurs and then re-

presenting it, is not really applicable to FFNN training either, where it is better to

present as much of the data set as possible during each epoch.

90

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud

0008000u0u0800[D0E [00000000000008000

9l

v(tl
t
?

inPutlo../3Ol

f igure 9-72 Ahybrid LSTM with one hidden layer

Results

Figure 9-8 shows the generalisation ROC curves of the 30 trials with LSTM. Their

deviation from a straight diagonal between (0,0) and (l,l) and consequent tendency

to bow towards the (0,1) corner of the graph once again shows that the algorithm

actually learned something during training and that it performs far better than a

constant "not fraud" diagnosis would, despite the overwhelming bias towards the

legitimate transaction class in the test data set.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Froud 92

E o.s
F

I

0.9

0.E

0.:

0.6

0.1

0.3

0.:

0.t

0

0 0.1 0.: 0.3 0.1

0.t 0: 0.3 0.t

0.5

FAF

G.5

FAF

0.6 o.:

0.6 0.'l

0.8 0.9

0.8 0.9

I

0.9

0.8

0.i

0.6

E 0..

0.4

0.3

0.:

0.t

U

0

Figure 9-8: 30 ROC curves measuring LSTM fraud detection performance

on the training set (top) and test set (bottom).

The spread of the ROC curves again shows the level of randomness inherent in neural

network training where initial weight values are randomised leading to a different

gradient search start position in weight space each time the network is re-initialised

prior to training. In addition, the transaction sequences are also randomly picked from

the training set for each iteration through the network.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Cord Fraud 93

Table 9-3 below shows the top 5 AUC values recorded during the training and testing

stages of the LSTM time series experiment, including their corresponding MSE

values, and also the minimum, average, and 95%o AUC confidence interval calculated

using the results of all 30 trials.

Rank #
Training Set Test Set

AUC MSE AUC MSE
I 0.99524 0.12660 0.99216 0. I 2886
) 0.99397 0.12969 0.99t45 0.12802
3 0.99367 0.12749 0.991 t 5 0.1 0950

4 0.99359 0.12725 0.99091 0.12435
5 0.99333 0.13r07 0.99060 0.13729

Minimum 0.85868 0.12942 0.91903 0.12938

Average 0.97 57 | 0.12873 0.98221 0.13128

95"h
Confidence

Interval
0.96326 - 0.98817 0.977t6 - 0.98727

Table 9-3: Summary of training and test results for LSTM

The maximum AUC recorded on the test set during the 30 trails is an amazing

0.99216, and the minimum 0.91903. Training time for LSTM is the slowest of the

machine leaming methods tested here, but classification is fairly quick with a

recorded classi fi cation rate of approxim ately 2690 transactions/second.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud

Table 9-4 below lists all results for LSTM over the 30 training and 30 test trails, in

the order in which they were recorded.

Trail # Training Set Test Set
AUC MSE AUC MSE

1 0.99264 0.12684 0.99091 0.12435
) 0.99145 0.1 3085 0.98844 0.14216

3 0.99085 0.12265 0.98929 0.12163

4 0.99333 0.13107 0.98890 0.12571

5 0.94763 0.12837 0.96308 0.12674

6 0.98994 0.1 3235 0.98889 0.1 3450

7 0.92630 0.13210 0.97610 0.12552

8 0.98680 0.12702 0.98313 0.12830

9 0.99202 0.11228 0.991 15 0.1 0950

10 0.98512 0.12873 0.98993 0.13407

11 0.96602 0.13294 0.98687 0.12673

t2 0.99041 0.12514 0.97613 0.1 3880

13 0.99367 0.12749 0.98877 0.1 371 5

t4 0.95212 0.1 3233 0.98s96 0.12686

15 0.98996 0.1 2883 0.98380 0.14431

16 0.98638 0.13916 0.96679 0.1 391 0

t7 0.99183 0.13011 0.99216 0.12886

18 0.99266 0.1 3376 0.98144 0.1 3506

t9 0.85868 0.12942 0.91903 0.12938

20 0.86001 0.12564 0.97470 0.13521

2t 0.99141 0.12703 0.98910 0.12236
7'.' 0.99397 0.12969 0.99145 0.12802

23 0.99524 0.12660 0.98191 0.13336

24 0.98505 0.12755 0.98854 0.13442

25 0.98913 0.12851 0.99060 0.13729

26 0.99359 0.12725 0.98934 0.12809
'r1 0.97382 0.12941 0.96552 0.1 3253

28 0.98631 0.12788 0.98768 0.13090

29 0.99249 0.13030 0.98966 0.1 3696

30 0.99256 0.1 3066 0.98717 0.14065

Table 9-4: Full list of training and test results for LSTM.

94

https://etd.uwc.ac.za/

Chopter 9 Detecting Credit Card Fraud 95

9.4. Discussion

All three of the algorithms tested here achieved remarkably good separation between

the legitimate and fraud classes in the test data set. Figure 9-9 shows the ROC curves

of the best performing SVM, FFNN and LSTM instances and Table 9-5 lists the AUC

values of these ROC curves, along with the classification rates for each algorithm.

As postulated, LSTM on time-ordered data outperformed the other two methods, a

remarkable feat if one takes into account that both FFNN and SVM performed quite

well too, with FFNN getting AUC values in the upper 0.96 range. What is surprising

about the above results, though, is that FFNN actually outperformed SVM in this

case. It is quite possible that the optimum SVM kernel and kernel parameters were

not used for this particular data set; searching for these parameters is a time

consuming task and we did the best we could with cross-validation and grid-search in

the time available. Nevertheless, SVM still achieved a respectable AUC of 0.89322.

Training times were the shortest with FFNN, followed by SVM and LSTM.

Classification was also the quickest with FFNN (46500 transactions/second),

followed by LSTM (2690 transactions/second) and then SVM (213

tran sactions/second).

Method Max AUC Average AUC
Classification Rate

(transactions/sec)

SVM 0.89322 nla 213

FFNN 0.96745 0.93730 46500

LSTM 0.99216 0.9822r 2690

Table 9-5: Comparison of SVM, FFNN and LSTM

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 96

f o.sF

1

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5

FAR

0.6 0.7 0.8 0.9

-LSTIvl

----FFNN - - - SVM

Figure 9-9: ROC curves of best performing LSTM, FFNN and SVM classifiers.

It is interesting to note that the average AUC computed for LSTM on the test set was

actually higher than on the training set. Having a closer look at the full list of results

(Table 9-4) one sees that in most cases perforrnance was either better on the training

Set, or more or less the Same aS on the training set; for trails 7, 19 and 20, however,

performance on the test set were better by such a large margin that it had an

excessively positive effect on the average performance of the classifier. Significantly

better performance on the test set in some instances are certainly unusual, but we will

not investigate it here since we feel it will distract from the main objective of this

thesis.

https://etd.uwc.ac.za/

Chapter 9 Detecting Credit Card Fraud 97

Another question that might arise is whether the difference in classification

performance of the two closest competitors (FFNN and LSTM) are statistically

significant. Without delving too deep into this subject, one can make two

observations which certainly builds a case for statistical significance of the results

obtained here:

l. The two AUC 95o/o confidence intervals calculated on the 30 test trails for

FFNN and LSTM respectively, do not overlap.

2. Using the Student's t-test, we obtained I : -9.89380. The probability of

obtaining this value by pure chance, was calculated as p: 4.60989e-014 =

0. It is widely accepted that if this probability is less than 0.05, the

difference in results is significant. In our case p was so close to zero that

the observed difference between FFNN and LSTM classifier results can

only be deemed very significant.

9.5. Summary

In this chapter, the two main methodologies for fraud detection proposed in this thesis

were tested and compared using a data set containing real-world credit card

transactions. Experiments were also conducted with a well known machine learning

method, the feedforward neural network, to form a solid basis for comparison

between the various algorithms. In the next and final chapter we draw some

conclusions and discuss some possibilities for future research.

https://etd.uwc.ac.za/

Chapter 10

CONCLUSIONS AND FUTURE

RESEARCH

10.1. Conclusion

In this thesis, we set out to show what can be gained in generalisation performance by

modelling the time series inherent in sequences of credit card transactions as opposed

to dealing with individual transactions. To support these claims, we proposed two

fraud transaction modelling methodologies for analyical comparison: support vector

machines and long short-term memory recurrent neural networks. In addition, we also

ran experiments with the well known feedforward neural network in order to lay a

solid foundation for our comparative study.

The results of the experiments conducted in Chapter 9 largely confirmed our initial

hypothesis, and LSTM proved to be a highly successful method for modelling time

series. Our claim was further strengthened by the fact that the fraud detection systems

in use today, use statistics such as the transaction velocity l23l and distance mapping

techniques between successive transactions to aid them in discriminating legitimate

from fraudulent transactions, which in essence introduce a concept of time and

dynamics into otherwise static methodologies anyway. What makes the success of

LSTM more remarkable is that the time series modelled here are of variable length

and different for each card member. LSTM therefore modelled a set of completely

diverse time series and still managed to outperform two very popular machine

https://etd.uwc.ac.za/

BIBLIOGRAPHY

[] Acton, F.S. (1959). Analysis of straight-line data. Dover Publications (1994).

[2] Bolton, R.J. & Hand, D.J. (2002). Statistical Fraud Detection: A Review

Statistical Science, 17(3), 235 -255.

[3] Boser, B.E., Guyon, I.M. & Vapnik, V.N. (1992). A training .algorithm for
optimal margin classifiers. Haussler, D. (Ed). Proceedings of the 5'n Annual ACM
Worl<shop on Computational Learning Theory, 144-152.

[4] Brause, R., Langsdorf, T. & Hepp, M. (1999). Credit Card Fraud Detection by
Adaptive Neural Data Mining. http://Citeseer.ist.edu/brause99credit.html.

[5] Burges, C.J.C. (1998). A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discov€r!, 2, 121-167 .

[6] Card Fraud: The Facts. (2005). The definitive guide on plastic card fraud and
measures to prevent ir. APACS. http://wwrv.apacs.org.uk

[7] Caruana, R. (2004). The PERF Performance Evaluation Code,
http ://kod iak.cs.cornel l.edu/kddcu p/softrvare.htm l.

[8] Chang, C. & Lin, C. (2001). LIBSVM: a library for support vector machines,

200 I . Software available at http ://u'ww.cs ie. ntu.ed u.tw/-cj I i n/l i bsvrn.

[9] Cortes, C. & Vapnik, V. (1995). Support-Vector networks. Machine Learning,

20(3), 273-297.

tlO] Elman, J.L. (1990). Finding structure in time. Cognitive Science Journal,
t4(2),179-211.

tl ll Gers, F.A., Schmidhuber, J. & Cummins, F. (1999). Learning to Forget:

Continual Prediction with LSTM. Technical Report IDSIA-}1-99.

https://etd.uwc.ac.za/

Bibliography 102

U2l Gers, F.A., Schraudolph, N.N. & Schmidhuber, J. (2002). Learning Precise

Timing with LSTM Recurrent Networks. Journal of Machine Learning Research
(2002) 3, 1 15 - 143.

tl3l Harvey, L.O. Jr (2003). Detection Sensitivity and Response Bias. Psycholog,t

of Perception. Psychology 4165, Department of Psychology, University of
Colorado.

[14] Hochreiter, S. & Schmidhuber, J. (1996). Long Short-Term Memory.
Technical Report FKI-207-95, Version 3.0.

[5] Hsu, C., Chang, C. & Lin, C. (2003). A Practical Guide to Support Vector
Classification. Technical Report, Department of Computer Science and
Information Engineering, National Taiwan University.

[6] Jordan, M.l. (1986). Attractor dynamics and parallelism in a connectionist
sequential machine. Proceedings of the Eighth Annual Conference of the

C o gnit ive Sc ience So c iety, 53 1 -5 46.

ll7) Keerthi, S.S. & Lin, C. (2003). Asymptotic Behaviors of Support Vector
Machines with Gaussian Kernel. Neural Computation (2003) 15, 1667-1689.

[8] Kroon, S. & Omlin, C.W. (2003). Getting to grips with Support Vector
Machines: Application . South African Statistical Journal (2004) 28(2),93-114.

[9] Kroon, S. & Omlin, C.W. (2004). Getting to grips with Support Vector
Machines: Theory. South African Statistical Journal (2004) 28(2),159-172.

l20l Lee, Y., Lin, Y. & Wahba, G. (2001). Multicategory Support Vector
Machines. Technical Report TR1040, Department of Statistics, University of
Wisconsin.

l2ll Maes, S., Tuyls, K., Vanschoenwinkel, 8., & Manderick, B. (2002). Credit
Card Fraud Detection Using Bayesian and Neural Networks. Proceedings of the

I't International NAISO Congress on Neuro Fuzzy Technologies, Havana, Cuba,

2002.

l22l Masters, T. (1993). Practical neural network recipes in C++. Academic Press.

123) Mena, J. (2003). Investigative data mining for security and criminal detection.

Butte rw o rt h- He ine mann.

124) Mitchell, T.M. (1997). Machine learning. MIT Press and The McGraw-Hill
Companies, Inc.

https://etd.uwc.ac.za/

Bibliography

l25l Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1992).

Numerical recipes in C. Cambridge University Press.

126) Robinson A.J. & Fallside, F. (1998). Static and dynamic error propagation
networks with application to speech coding. Neural Information Processing
System,. Anderson, D.Z. (Ed). American lnstitute of Physics.

l27l Williams, R.J. & Zipser, D. (1995). Gradient-based learning algorithms for
recurrent networks and their computational complexity. Back-propagation:
Theory, Architectures and Applications.

103

https://etd.uwc.ac.za/

	Title page
	Keywords
	Abstract
	Declaration
	Contents
	List of Figures
	List of Tables
	Chapter one: Introduction
	1.1 Motivation
	1.2 Premises
	1.3 Problem Statement
	1.4 Research Hypothesis
	1.5 Technicall Goals
	Chapter two: Fraud and Fraud detection
	2.1 Introduction
	2.2 Fraud
	2.3 Fraud Detection
	Chapter three: Literature Review
	Chapter four: Perceptions and Neural networks: A brief overview
	4.1 Introduction
	4.2 The perceptron
	4.3 Linear Separability
	4.4 Gradient Descent
	Chapter five: Methodology 1: Support vector machines
	5.1 Introduction
	5.2 The Maximum Margin Hyperplane
	5.3 Direct Space versus Dual Space
	5.4 The Soft Margin Hyperplane
	5.5 Nonlinear Support Vector Machines
	5.6 Summary
	Chapter six: Methodology 11: Recurrent neural networks
	6.1 Introduction
	6.2 Recurrent Neural Networks
	6.3 The Vanishing Gradient Problem
	6.4 Long Short-Term Memory
	Chapter seven: Evaluating performance
	7.1 Introduction
	7.2 Mean Squared Error
	7.3 Receiver Operating Characteristic
	Chapter eight: Data sets, feature selection and pre-processing
	8.1 Introduction
	8.2 Feature Selection
	8.3 Nominal and Ordinal Variables
	Chapter nine: Detecting credit card fraud
	9.1 Introduction
	9.2 Experiment 1: Fraud Detection with FFNN and SVM
	9.3 Experiment 11: Time Series Modelling with LSTM
	9.4 Discussion
	Chapter ten: Conclusions and future research
	10.1 Conclusion
	Bibliography

