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Abstract: 

Limited literature is available on the effect of factors associated with the improvement in 

performance of Two Oceans Half Marathon (TOHM) runners. This study examined factors 

associated with the improvement in performance of a runner over a 4-year period for the 

Two Oceans Half Marathon through the application of a linear mixed model. 

A subset of data was identified that according to the literature had an impact on the 

performance of a half marathon runner. Univariate analysis was conducted to identify factors 

that had an impact on the performance of the runners and a linear mixed model was applied 

to the model adjusted for age, gender and body mass index (BMI) containing interaction 

effects to determine the extent to which these factors influence the change in performance 

of the runners.  

It was found that performance of runners improved from the first and second year the runner 

competed in the TOHM, but not from the second to the third or the third to the fourth year 

the runner participated in the TOHM. Furthermore, the study found that the training pace of 

a runner influences the improvement in performance of the runner. 

The linear mixed model was able to identify which factors (and to what extent) influence the 

change in performance of a Two Oceans Half Marathon runner over a 4-year period. 
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1 Introduction 

1.1 Background to the study 

The Two Oceans Marathon event is a series of running races held annually, typically during 

the month of April, in Cape Town, South Africa. The most popular event of the series is the 

Two Oceans Half Marathon (TOHM) race, which is 21.1km in length. Due to the 16 000 

participant entry limit, it is very common for the event to reach maximum capacity every year. 

The first Two Oceans Marathon race was held in 1970 and was intended as a training run in 

preparation for the Comrades marathon. However, it quickly grew in popularity and in 1977 

the race organisers changed the race into a ‘Pre-race entries only’ race. This meant that the 

participants had to register for the race in advance in order to compete due to the 

participation limit (Two Oceans Marathon, 2020). 

The Two Oceans Marathon hosts both an Ultra (56km) and Half (21.1km) marathon race. On 

average for the years 2012 to 2015 there were approximately 7500 participants and 11 500 

participants for the Ultra and Half marathon races respectively. Due to the nature of these 

types of events, the number of years a runner has been running recreationally, the intensity 

the runner trains at, the duration of their training sessions and the frequency of those 

sessions all have an impact on the performance of athletes (Foster, et al., 1996).  

In 2019, the International Olympic Committee (IOC) identified the prevention of injury and 

illness in sport as one of its top research goals. The Sports, Exercise and Lifestyle Medicine 

Institute (SEMLI) is one of 11 IOC centres globally and by extension is tasked to research and 

develop effective methods to prevent injuries and illness in sport (International Olympic, 

2019). SEMLI is a collaborative effort between the University of Pretoria, the University of 

Stellenbosch and the South African Medical Research Council (SAMRC). SEMLI is further 

closely involved with the Two Oceans Marathon event and is primarily concerned with the 

extent to which runners experience adverse medical effects during these marathon events. 

Data was collected by the University of Cape Town’s Sport Science department from 2008 to 

2011 in order to evaluate and analyse the extent of medical related problems runners face 

during the Half and Ultra Marathon events.  The reason for such data analyses was to better 
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understand the adverse medical events (e.g. collapsing, cramping, heart attacks) that runners 

experienced during the Two Oceans Marathon event (Schwellnus, et al., 2018).  

 

Figure 1. Data captured by SAMRC throughout the intervention period (Sewry, 2022) 

Analysis of the results of the adverse medical effects experienced (from the data collected 

from 2012 to 2015), led to a series of publications known as the SAFER (Strategies to reduce 

Adverse medical events For the Exerciser) studies. Figure 1 provides a better understanding 

on how the study population was analysed during the 4 years, e.g. some studies’ listed below 

only included athletes that finished the race (finishers) and excluded athletes that did not 

finish (DNF) the race. Similarly, for athletes that did not start (DNS) the respective races. 

Some of these studies’ goals included: 

• To determine the need for athletes to complete, according to international guidelines 

for pre-participation screening of masters/leisure athletes, a medical assessment 

before competing in a distance running event (Schwabe, et al., 2018); 

• To determine if pre-race screening and risk stratification (assigning of risk status) 

could predict adverse events during the Two Oceans Ultra Marathon (TOUM) running 

race and therefore, more broadly, in endurance running (Sewry, et al., 2020); 

POST PERIOD: 2012 - 2015
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• To identify risk factors that could contribute to the gradual onset running-related 

injuries (GORRIs) in ultramarathon runners that participate in a large community-

based event (Mokwena, et al., 2021);  

• To determine if analgesic/anti-inflammatory medication increases the risk of medical 

complications during the course of endurance races (Rotunno, et al., 2018); and 

• To determine if the intervention (in the form of a pre-race screening questionnaire) 

was successful in reducing medical complications (Schwellnus, et al., 2018) 

Based on the results of the aforementioned research, the research group determined the 

extent to which runners are impacted by the various factors (medical encounters) that were 

observed during the study period.  The study period results led to an intervention from 2012 

-2015 in the form of a pre-race medical screening questionnaire that had to be completed by 

entrants that now form part of the larger data set and SAFER studies.  

Apart from the information gathered through pre-race screening questionnaires, two other 

sources of data were also considered by the research group. Firstly, the data gathered from 

medical encounters when athletes visited the medical tent on race day and secondly, the 

performance related data gathered from each entrant’s race chip. Race chips are technology 

used to capture times from each runner when they cross a running mat. This information was 

used to identify the risk factors associated with illness’ and injuries participants experienced 

during the Two Oceans Half and Ultra marathon events (Schwellnus, et al., 2018).   

None of the studies mentioned previously focussed on research and/or analysis related to 

the performance of the athletes. The main focus has always been on the prevention of 

injuries and illness. The 16 000 runners taking part in the TOHM each year might be able to 

extract value from the information if results pertaining to performance related factors can be 

quantified. Such a quantification should include all available factors that might influence 

performance. This could lead to an understanding as to what extent performance relates to 

medical factors, history of illness and injury. A performance metric could also aid runners with 

the prevention of illness and injury. In this study, the focus will be on only the TOHM.  
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1.2 Statement of the problem 

From the SAFER studies it is clear that there exists a gap in the literature concerning factors 

that influence the performance of runners in the TOHM events. Furthermore, literature 

outside the scope of SAFER studies that focus on factors that influence the performance of 

runners in Half Marathon events, rarely includes comprehensive medical history data such as 

chronic diseases or injuries of the past year. 

 From the data gathered over the years it is also clear that missing information is common in 

studies of this nature due to various reasons. Part of these reasons include that although the 

completion of the questionnaire is compulsory, it is very lengthy, it relies on the memory of 

runners about their lifetime and past year running history, and the runner is able to skip 

certain parts of the questionnaire. Complications of handling missing observations will 

therefore be part of any analysis utilizing the pre-race screening data. 

1.3 Purpose and aim of the study 

In Section 1.2, it was established that no factors relating to the performance have been 

identified. Therefore, the following purpose and aims for this study were identified: 

• Assess whether athletes who took part in the Two Oceans 21.1km races more than 

once, i.e. 2, 3 or 4 years, improve their race time. 

•  Assess whether the improvement is sustained after the initial improvement. 

• Identify which factors (age, gender, training load, history of illness and injury, 

allergies), if any, contribute to or are associated with the improvement in race time. 

1.4 Research questions 

Given the objectives highlighted in the previous section, the following research questions 

have been identified: 

• Can a Linear Mixed Model (LMM) be successfully implemented to evaluate to what 

extent training load, illness and injury impact the performance of a TOHM runner? 
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• Which factors contribute to an improvement in performance? 

• Is a LMM robust enough to fit data with repeated measures within different factor 

levels? 

1.5 Conclusion 

Chapter 1 laid the foundation to this study by sketching the background to the study and 

alluded to the gap in the literature and the specific data set that will be used in this study and 

furthermore, specified the aforementioned through purpose, aims and research questions. 

Chapter 2 introduces the concept of models that act as the building blocks of the Linear Mixed 

Model (LMM). The LMM is the model of focus for this thesis and also the simplest form of 

the Mixed Model. The aforementioned models include the linear regression model, one-way 

ANOVA, repeated measures ANOVA, fixed effects model and finally, the random effects 

model. Thereafter the chapter details all the concepts of the LMM: when to use it, why to 

use it, the model structure, covariance structures utilised with regards to LMM and finally, 

the model selection tools for the LMM.  The chapter closes by defining the response variable 

i.e. improvement in performance. 

Chapter 3 explains how these aims will be answered. The chapter gives a background to the 

data by briefly stating how the data was collected via the questionnaire, as well as an 

overview of the research design of the study executed by SEMLI. Thereafter, the chapter 

considers any data management steps taken to assemble the final data set needed for the 

analysis.  The process of selecting variables for the analysis, includes any new variables that 

were created, if variables were selected to answer the specific research questions or if any 

variables were transformed during the pre-model analysis process. Finally, the chapter 

describes the models that will be generated in the subsequent chapter to address the stated 

aims and discusses the selection process for the most appropriate model that will answer the 

research questions. 

Chapter 4 discusses the results obtained. The chapter first discusses descriptive statistics of 

the response, confounding and predictor variables. Thereafter, the choice of covariance 
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structure with model fit indices are described. Finally, the chapter clarifies the results of 

models 1 to 4 as introduced in Chapter 3 through various statistics and figures. 

The concluding chapter, Chapter 5, lists all limitations of the study and elaborates on possible 

future studies that can be conducted on the data set or improvements that can be made to 

the current analysis. The chapter concludes by summarising the results of Chapter 4 and tying 

the findings in to the research questions of this thesis. 

The flow chart Figure 2 provides a broad overview of each chapter.   
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Figure 2. Flow chart break-down per section per chapter 

 

Chapter 1

• Background to study
• Statement of problem
• Purpose and aim of study
• Research questions
• Thesis outline

Chapter 2

• Linear modelling and ANOVA
• Fixed and random effects model
• Mixed modelling
• Performance

Chapter 3

• Everything related to how and where the data was collected
• Data preperation steps
• Variables selected and created for the analysis
• Steps undertaken before modelling
• Methodology related to modelling steps

Chapter 4

• Descriptive statistics for response, confounding, and predictor variables
• Covariance structures with fit indices
• Models 1 - 4 estimates, standard errors, f-statistics, p-values
• Model 4 assumptions checks

Chapter 5

• Limitation
• Future studies
• Findings

Appendices

• Summary of questionnaire
• Full questionnaire
• SAS code for model 1 to 4
• Additional figures and tables
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2 Literature review 

2.1 Introduction 

This chapter discusses the various modelling techniques in order to find an appropriate model 

to fit the data at hand. The chapters introduce basic modelling approaches, simple linear 

regression, one-way ANOVA, and then progressively builds towards the description of the 

Linear Mixed Model (LMM) used in this study. 

Section 2.2 describes the traditional multiple linear model, simple and repeated measures 

ANOVA, fixed and random effects model. Section 2.3 describes the LMM with the various 

components that can be used in the construction of a LMM, such as covariance structures 

and estimation. Section 2.4 discusses the model selection criteria that can be used to evaluate 

the model. Section 2.5 details more information regarding confounding variables. Finally, 

Section 2.6 details and discusses the measurements of performance. 

2.2 Modelling approaches 

Researchers often analyse data collected from multiple subjects across repeated trials, e.g. 

in the Two Oceans Half Marathon (TOHM) setting, repeated trials could be the different years 

the runners compete in. Various statistical differences might arise in these repeated trials 

that can be statistically explored in the modelling of this data.  

These statistical differences are differences: 

• between-subjects, and  

• within-subjects, for example (1) the difference between male and female runners or 

(2) performance differences of the same subject(s) (like runners) over the years that 

they competed (Larumbe-Zabala, et al., 2020).  

Repeated measures can be defined by more than one observation of the same variable over 

time, for example, when the effects of a training load on a runner are evaluated at different 

points in time (Kutner, et al., 2005). Data collected in this manner are known as longitudinal 

data (Brown & Prescott, 2015). Referring to the runner example, the longitudinal study would 
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be where the runners are observed over a period of time in order to track changes or effects 

of the training load on the runner’s performance.  

With this in mind, this section will aim to discuss models that will be able to detect statistical 

differences between- and within-subjects when dealing with repeated trials. 

2.2.1 Regression 

The multiple linear regression (MLR) model attempts to model the relationship between two 

or more independent variables and a response variable by fitting a linear function to the 

observed data. The MLR model can be expressed as (Kutner, et al., 2005): 

𝑦𝑦𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝑥𝑥𝑖𝑖1 +  𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+  𝛽𝛽 𝒑𝒑−𝟏𝟏𝑥𝑥𝑖𝑖,𝑝𝑝−1 +  𝜀𝜀𝑖𝑖 ,             (Equation 2.1) 

where 𝑦𝑦𝑖𝑖 is the value of the response variable in the 𝑖𝑖𝑡𝑡ℎ  trial where 𝑖𝑖 = 1, … , 𝑛𝑛 (𝑛𝑛 being the 

number of observations),  𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝−1 are parameters, 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖,𝑝𝑝−1  are the known 

constants, 𝜀𝜀𝑖𝑖 are the error terms that are independent, identically distributed as  𝑁𝑁(0,𝜎𝜎2) 

and 𝑝𝑝 − 1 the number of predictor variables. MLR is the preferred model to use when the 

goal is to model a statistical relationship between independent variables in order to predict 

the dependent variable.  

Some limitations to this model include: 

• Independent variables cannot be highly correlated. Correlation is the extent to which 

variables are related to each other. 

• Error terms or residuals must be normally distributed, meaning that the distribution 

must be symmetric around the mean. 

• It is not able to handle missing observations, unless done through some missing 

imputation method. Imputation methods refers to methods replacing missing data 

with plausible values (Chan, 2020). 

2.2.2  Single-factor Analysis of Variance (ANOVA)  

The Analysis of Variance (ANOVA) can be utilised when explaining the mean difference 

between 𝑘𝑘 different group responses, i.e. to test the variation in means between different 

factor levels (Qualtrics, 2022).  Factors can be seen as another way to describe a categorical 
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variable and factor levels refer the grouping of observations with certain values (Kutner, et 

al., 2005). ANOVA provides more information related to the levels of variability within a 

regression model (Barron, 1997).  

The basic single-factor model formula for ANOVA according to Kutner et al. (2005) is: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜇𝜇𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖,                                               (Equation 2.2) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 is the response variable value for the 𝑗𝑗th trial for the 𝑖𝑖th factor level, 𝜇𝜇𝑖𝑖 are 

population means, and 𝜀𝜀𝑖𝑖𝑖𝑖 are independent 𝑁𝑁(0,𝜎𝜎2),  𝑖𝑖 = 1, … , 𝑟𝑟; 𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖  where 𝑟𝑟 is the 

number of factors to be considered and 𝑛𝑛𝑖𝑖  the number of cases for the 𝑖𝑖𝑡𝑡ℎ factor. 

The ANOVA hypothesis aims to test the null hypothesis: 

𝐻𝐻𝑜𝑜: 𝜇𝜇1 = 𝜇𝜇2 = ⋯ = 𝜇𝜇𝑟𝑟 . 

In comparison to the alternative hypothesis: 

𝐻𝐻𝑎𝑎:𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑎𝑎 𝑎𝑎𝑡𝑡𝑡𝑡 𝑚𝑚𝑙𝑙𝑎𝑎𝑛𝑛𝑙𝑙 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑙𝑙𝑟𝑟 

In other words, the null hypothesis aims to prove that the factor level means 𝜇𝜇𝑖𝑖  are similar 

and the alternative hypothesis aims to prove that there are at least two means that are 

different. 

Some assumptions that need to be met in order to be able to use the ANOVA test are: 

• the variances between the groups should be approximately equal, 

• observations are independent, and 

• observations are randomly obtained from the population (Anwla, 2020) (Kutner, et 

al., 2005). 

The above assumptions pose a problem when dealing with values measured multiple times 

from the same subject as is often the case in longitudinal data. These values tend to be more 

similar than values obtained from different subjects (Zrenner, et al., 2021). Also, within-

subject data tend to have correlated errors that vary over time (i.e. they are nonstationary) 

(West, et al., 2004). Therefore, another model that is able to handle the aforementioned 

should be considered. 
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2.2.3 Repeated measures ANOVA 

An alternative approach is to use the extended standard ANOVA method, known as ANOVA 

with repeated measures. The ANOVA for repeated measures method can assess whether the 

means, on average, differ within-subjects significantly while controlling for the correlations 

of within-subject observations. Accordingly, when analysing data that are nested 

observations within-subjects, a repeated measures ANOVA model is more appropriate than 

one-way ANOVA and multiple regression models, which disregard data dependencies, to be 

discussed in Section 2.3, in the data (Brown & Prescott, 2015). Nested designs occur when a 

level of a factor is contained inside another factor level. 

The basic formula for the single-factor repeated measures ANOVA according to Kutner et al. 

(2005) is: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜇𝜇.. +  𝜌𝜌𝑖𝑖 +  𝜏𝜏𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖,                                  (Equation 2.3) 

where 𝜇𝜇.. is a constant or overall mean, 𝜌𝜌𝑖𝑖  the fixed factor effects are independent 𝑁𝑁(0,𝜎𝜎2), 

𝜏𝜏𝑖𝑖 the random factor effects are constants subject to ∑𝜏𝜏𝑖𝑖 = 0, 𝜀𝜀𝑖𝑖𝑖𝑖 are independent and 

identically distributed errors with 𝑁𝑁(0,𝜎𝜎2) , 𝜌𝜌𝑖𝑖  and 𝜀𝜀𝑖𝑖𝑖𝑖 are independent, and 𝑖𝑖 = 1, … , 𝑙𝑙; 𝑗𝑗 =

1, … , 𝑟𝑟.  

A repeated measures ANOVA is however not ideally suited for all data sets and analyses. It 

can handle within-subject correlations properly and is optimised to detect changes within-

subjects (Larumbe-Zabala, et al., 2020; Goulet & Cousineau, 2019;  Singh, et al., 2013). In an 

example where, multiple runners have run the same race over a period, repeated measures 

ANOVA is able is detect changes in the finish times of the runners over the period. However, 

repeated measures ANOVA is not able to accommodate for changes within subgroups of 

runners or missing data on the response variable if some runners did not participate in every 

race during that period. Repeated measures ANOVA is sensitive to within-subject variable 

changes, whereas one-way ANOVA is sensitive to between-subject changes (Brown & 

Prescott, 2015; Verbeke, et al., 2014).  

Due to the characteristics of the aforementioned modelling approaches, they might not be 

suitable to model longitudinal data that contains missing data or multiple clusters. Clusters 
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often arise in biomedical studies. A cluster in biostatistics is referred to as a group of subjects 

that contain similar characteristics. For example, runners that ran the same race repeatedly 

over 4 years are measured over this time period, but runners that ran the race once, twice or 

three times are also clustered into groups. Chapter 3 provides further elaboration on the 

clustering (Brown & Prescott, 2015). Furthermore, if data is missing on the response variable, 

because repeated measure ANOVA treats the measures separately, the entire subject will be 

deleted if one measure is missing (Grace-Martin, 2014). 

Other models to consider when analysing longitudinal data with multiple levels of repeated 

measures includes the fixed and random effects models. Both these models are able to 

accommodate for clustering in a dataset as well as varying dependence within and between 

clusters. Recall that models discussed up to now could not account for both dependencies 

(Bell, et al., 2019). The next sections detail these two approaches.  

2.2.4 Fixed effects model 

 A fixed effects model, also known as the restricted Mixed Model (MM) or the ANOVA model 

I with fixed factor levels, is an extended case of the single factor ANOVA model where more 

than one factor level is considered. In the simple one-way ANOVA, the 𝜇𝜇𝑖𝑖 are assumed to be 

the fixed effects (Demidenko, 2013). The fixed effects ANOVA model for a two-factor 

balanced (equal factor level sizes, 𝑛𝑛𝑖𝑖 = 𝑐𝑐𝑡𝑡𝑛𝑛𝑙𝑙𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎) study can be seen in Equation 2.4 (Kutner, 

et al., 2005): 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇.. +  𝛼𝛼𝑖𝑖 +  𝛽𝛽𝑖𝑖 + (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖  +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 ,            (Equation 2.4)                                           

where 𝜇𝜇.. is the overall mean,  𝛼𝛼𝑖𝑖 are constants subject to restriction ∑𝛼𝛼𝑖𝑖 = 0, 𝛽𝛽𝑖𝑖 are 

constants subject to restriction ∑𝛽𝛽𝑖𝑖 = 0, (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖 are constants subject to restrictions 

∑ (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖 = 0𝑖𝑖  where 𝑗𝑗 = 1, … , 𝑏𝑏 and ∑ (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖 = 0𝑖𝑖  where i= 1, … ,𝑎𝑎, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 are independent 

error terms distributed as 𝑁𝑁(0,𝜎𝜎2), and 𝑖𝑖 =  1, … 𝑎𝑎; 𝑗𝑗 = 1, … , 𝑏𝑏; 𝑘𝑘 = 1, … , 𝑛𝑛.  

To describe the fixed effects in terms of an example would be to say that the fixed effects are 

the primary effects that the researcher is interested in. These fixed effects would remain the 

same if the study was repeated (Group, 2021). For example, in the TOHM, some of the fixed 

effects in the model would be the training load, chronic illness and history of illness including 
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injury variables, because if a similar study was repeated, similar results would be obtained for 

these variables. Using the fixed effects model, however, would not accommodate for the 

correlation due to the repeated measures, e.g. runners entering the race more than once 

over a period, in the dataset (Brown & Prescott, 2015).  

2.2.5 Random Effects Model 

The Random Effects Models (REM) in Kutner et al. (2005) also refers to the fixed effects model 

as ANOVA model II. The random effects model stated by Kutner et al. (2005) assumes that in 

a study with one factor, both the factor A main effects, 𝛼𝛼𝑖𝑖, factor B main effects, 𝛽𝛽𝑖𝑖, and 

interaction effects, (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖, are independent random variables. The random variables can be 

viewed as the part of the model that causes changes in variance not explained by the fixed 

effects (Brown & Prescott, 2015). An assumption of a REM is that the explanatory variables 

have fixed relationships with the response variable over all observations, but that these fixed 

relationships can vary from one observation to the next (Kumar, 2021). 

The random effects model or ANOVA model II for a two-factor study with equal sample sizes 

n is given by (Kutner, et al., 2005): 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇.. +  𝛼𝛼𝑖𝑖 +  𝛽𝛽𝑖𝑖 + (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖  +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖,                   (Equation 2.5) 

where 𝜇𝜇.. is a constant, 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖 , (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖 are independent normal random variables with 

expectation zero and variances 𝜎𝜎𝛼𝛼2,𝜎𝜎𝛽𝛽2,𝜎𝜎𝛼𝛼𝛽𝛽2 , the independent error term, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, is distributed 

as 𝑁𝑁(0,𝜎𝜎2), 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑖𝑖 , (𝛼𝛼𝛽𝛽)𝑖𝑖𝑖𝑖, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 are also pairwise independent, and 𝑖𝑖 =  1, … 𝑎𝑎; 𝑗𝑗 =

1, … , 𝑏𝑏; 𝑘𝑘 = 1, … , 𝑛𝑛. 

In terms of an example in order to better explain the above, in the TOHM, one way to 

incorporate the random effects would be to consider the group of runners that take part in 

the race two, three or four times. This type of data causes a clustered effect and can be 

accounted for in the model by adding a random effect that takes the correlated data into 

account. In this example, the researcher would therefore not be interested in measuring this 

specific effect, but the effect of correlation would need to be factored into the model for the 
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analysis to be accurate. However, the random effects model should be used with caution if 

the factors are not randomly sampled from the population of interest (Kutner, et al., 2005). 

2.2.6 Conclusion 

Section 2.2 discussed the different modelling approaches. These models, however, have 

some limitations to them when addressing more complex data structures. In summary, a 

model that can handle the aforementioned complexities is needed. 

Models containing a mixture of fixed and random effects are referred to as Mixed Models 

(MM) (Brown & Prescott, 2015). MM is also known as mixed-effect models. The MM could 

serve as a solution to a data set containing both fixed and random effects as well as address 

the correlation introduced on various hierarchical levels when the data contains repeated 

measures over a period (Brown & Prescott, 2015).  

The next section will describe the LMM. From this section, the thesis departs from the 

formulation used by Kutner et al. (2005). The dataset utilised in this study is unbalanced, 

meaning that not all sample sizes are equal for all factor levels. Seeing as Kutner et al. (2005) 

does not focus on an unbalanced MM perspective, the formulae stipulated in subsequent 

sections will be given as in Demidenko (2013) and Brown and Prescott (2015) which is more 

suitable to explain the unbalanced dataset utilised in this study. 

2.3  Linear mixed models 

2.3.1 Introduction 

The Linear Mixed Model (LMM), the simplest form of the Mixed Model (MM), also known as 

the “model for repeated measures”, is utilised when measurements over a period of time 

(i.e. longitudinal, time-series data) are repeated more than once (Salkind, 2010).  

An example of where the LMM was utilised in Sport Science, is a study by Avalos et al. (2003). 

In this study, Avalos et al. (2003) used a LMM to evaluate the relationship between training 

and performance of a group of swimmers over a period of 3 swimming seasons (repeated 

measurements over a period of 3 years). The training load and time are therefore the main 

effects of this simple repeated measures study. The analysis included clustering the 
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swimmers into 4 groups based on their reaction to training. The study also evaluated 

individual and group responses as well as between-subject responses.  Although this study 

has a small sample size, the study is a good example of the application of a LMM when the 

data requires a model that allows variability within-subject and within-group, i.e. subject- and 

item-variability (Demidenko, 2013). 

A LMM is also able to handle missing data better than a fixed effects model by controlling for 

the imbalance caused by the missing observations. Note that the LMM carries the assumption 

that the observations are missing at random. Missing data often arises in studies where there 

is a follow up period involved with people (Brown & Prescott, 2015). A LMM offers a way to 

handle the missing observations that arise from the aforementioned cases without calling for 

imputation or deletion of these cases (Gabrio, et al., 2022). 

2.3.2 Model structure 

The MM expands the fixed effects model, by including random effects, random coefficients 

and covariance terms in the residual variance matrix.  

In general matrix notation, the LMM, the simplest of the MMs, is defined as (Demidenko, 

2013): 

𝒚𝒚𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜷𝜷 +  𝒁𝒁𝒊𝒊𝒃𝒃𝒊𝒊 + 𝜺𝜺𝒊𝒊                                        (Equation 2.6) 

where 𝒚𝒚𝒊𝒊 is a 𝑛𝑛𝑖𝑖 × 1 vector of responses for the 𝑖𝑖𝑡𝑡ℎ subject, 𝜷𝜷 is the vector of fixed effects 

coefficients with 𝑿𝑿𝒊𝒊 the design matrix**  𝑛𝑛 × 𝑝𝑝 for fixed effects or the first design matrix, 𝒃𝒃𝒊𝒊 

is a 𝑘𝑘 × 1 vector of random effects coefficients with 𝑐𝑐𝑡𝑡𝑐𝑐(𝑏𝑏𝑖𝑖) = 𝜎𝜎𝑖𝑖2 with 𝑖𝑖 = 1, … ,𝑛𝑛, 𝒁𝒁𝑖𝑖  is the 

design matrix 𝑛𝑛 × 𝑘𝑘 for the random effects, 𝜺𝜺𝒊𝒊 is the vector for the errors with 𝑖𝑖 = 1, … ,𝑛𝑛 and 

each having a zero mean and within-subject variance 𝜎𝜎2. In the above matrix notation, 𝒚𝒚𝒊𝒊, 

𝑿𝑿𝒊𝒊, 𝜷𝜷 and 𝜺𝜺𝒊𝒊 can be viewed ‘fixed effects model’ and 𝒃𝒃𝒊𝒊 the random effects part.  

*Note that symbols in bold indicate vectors and matrices. 

**A design matrix is also known as a model matrix. 

As mentioned above, an LMM can be viewed as an expansion of a multiple linear model that 

allows for both fixed and random effects in the model. The LMM accommodates the data to 
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be both correlated and have heteroskedasticity (where variance across observations is not 

constant) (Brown & Prescott, 2015). Some of the assumptions of a linear model include 

homoscedasticity (constant variance of residuals) and independence (observations need to 

be independent) (James, et al., 2013). Allowance for correlated and nonconstant variability 

therefore violates these assumptions and adjustments need to be made.  

The primary assumptions underlying the analyses performed by LMM are as follows: 

• The error terms are normally distributed, have constant variance, 𝜎𝜎2, and are 

independent. 

• The means (expected values) of the predictor variables are linear in terms of a certain 

set of regression parameters. 

• The variances and covariances of the predictor variables are in terms of a different 

set of regression parameters. 

• All random vectors for random effects, errors and interaction terms are mutually 

independent (Demidenko, 2013). 

2.3.3 Covariance structures 

As mentioned before, the LMM requires less stringent independence criteria for repeated 

measures data, thereby allowing the inclusion of random effects and an appropriate 

covariance structure in the model (Brown & Prescott, 2015; Wolfinger, 1993). Correlations 

between observations can be represented explicitly within a LMM. This can be done, for 

example, by fitting a covariance structure for repeated observations for a subject (Zhang & 

Chen, 2013). Assuming the random effects follow the Gaussian (normal) distribution, 

observations from the same subjects can then be correlated without violating the 

independence assumption (Brown and Prescott, 2015; Wolfinger, 1993; Zhang and Chen, 

2013). 

Covariance structures are patterns of covariance matrices where the covariance is an 

unstandardised form of correlation and a covariance matrix represents the covariance values 

between pairs of variables of a vector in a square matrix form. In LMM, the specification of a 

covariance structure allows the researcher to introduce modelling variation between-
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subjects as well as covariation between measures at different times on the same subject 

(Littell, et al., 2000). 

The variance-covariance of 𝒚𝒚, 𝑐𝑐𝑎𝑎𝑟𝑟(𝒚𝒚) = 𝑽𝑽 (defining 𝑽𝑽 as the variance-covariance matrix), can 

be represented by the equation in matrix notation (Brown & Prescott, 2015): 

𝑉𝑉 = 𝑐𝑐𝑎𝑎𝑟𝑟(𝑿𝑿𝜷𝜷 +  𝒁𝒁𝒃𝒃 + 𝜺𝜺),                                   (Equation 2.7) 

where 𝑿𝑿𝜷𝜷 +  𝒁𝒁𝒃𝒃 + 𝜺𝜺 are the same as in Equation 2.6. 

If it is assumed that the random effects and errors are uncorrelated, the variance of fixed 

effects, 𝑐𝑐𝑎𝑎𝑟𝑟(𝑿𝑿𝜷𝜷) = 𝟎𝟎, and 𝒁𝒁, is a matrix of constants, then Equation 2.7 can be rewritten as: 

𝑽𝑽 = 𝒁𝒁𝑐𝑐𝑎𝑎𝑟𝑟(𝒃𝒃)𝒁𝒁′ + 𝒗𝒗𝒗𝒗𝒗𝒗(𝜺𝜺),                                   (Equation 2.8) 

Now, letting 𝑮𝑮 = 𝑐𝑐𝑎𝑎𝑟𝑟(𝒃𝒃), with the random effects assumed to follow a normal distribution,  

𝒃𝒃 ~ 𝑁𝑁(𝟎𝟎,𝑮𝑮) and letting 𝒗𝒗𝒗𝒗𝒗𝒗(𝜺𝜺) = 𝑹𝑹 with 𝜺𝜺 ~ 𝑁𝑁(𝟎𝟎,𝑹𝑹), then the equation becomes 

𝑽𝑽 = 𝒁𝒁𝑮𝑮𝒁𝒁′ + 𝑹𝑹,                                   (Equation 2.9) 

where 𝑮𝑮 has the dimension 𝑞𝑞𝑥𝑥𝑞𝑞 and 𝑞𝑞 represents the total number of random effects. Note 

that 𝑮𝑮 is always diagonal because the random effects are assumed to not be correlated 

(Brown & Prescott, 2015). 

The 𝑹𝑹 matrix in Equation 2.9 represents the error terms that are uncorrelated in random 

effects models. 𝑹𝑹 =  𝜎𝜎2𝑰𝑰 and therefore in matrix form it is: 

𝑅𝑅 =  �
𝜎𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝜎2

�.                                           (Equation 2.10) 

If Equation 2.10 is considered for repeated measures, the covariance pattern is defined by 

random effects (Brown & Prescott, 2015). The observations within each subject (runners in 

the TOHM data set) are presumed to have a specific pattern of covariance (covariance 

structure) defined across the given time points (or 4-year period in the TOHM data set). 



http://etd.uwc.ac.za/

30 

Defining, for example a covariance pattern across a 4-year period for each runner, within the 

residual matrix R, the matrix can be written as: 

𝑹𝑹 =  �
𝑹𝑹𝟏𝟏 ⋯ 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 ⋯ 𝑹𝑹𝟒𝟒

� ,                                            (Equation 2.11) 

where each 𝑹𝑹𝒊𝒊 represents a submatrix of covariances corresponding to each runner.  

The covariance structure is defined by specifying a pattern for the covariance terms from the 

random design matrix. The pattern chosen is usually specified depending on the time 

component or the number of repeated trials (Brown & Prescott, 2015). The following 

discussion details four of these structures or patterns for 4 time points.  

1. First order auto-regressive 

𝑹𝑹𝒊𝒊 = 𝝈𝝈𝟐𝟐

⎣
⎢
⎢
⎢
⎡ 𝟏𝟏 𝝆𝝆 𝝆𝝆𝟐𝟐 𝝆𝝆𝟑𝟑

𝝆𝝆 𝟏𝟏 𝝆𝝆 𝝆𝝆𝟐𝟐

𝝆𝝆𝟐𝟐 𝝆𝝆 𝟏𝟏 𝝆𝝆
𝝆𝝆𝟑𝟑 𝝆𝝆𝟐𝟐 𝝆𝝆 𝟏𝟏 ⎦

⎥
⎥
⎥
⎤
,                            (Equation 2.12) 

where 𝑖𝑖 = 1, … ,𝑛𝑛. The variances of the auto-regressive (AR(1)) structure are homogeneous 

and decrease exponentially with distance between periods (|𝑗𝑗 − 𝑘𝑘|), with 𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜌𝜌|𝑖𝑖−𝑖𝑖|𝜎𝜎2 

where 𝜎𝜎2 is the variance of responses, 𝜃𝜃𝑖𝑖𝑖𝑖 the covariance, and 𝜌𝜌 indicates the correlation 

between elements. It also suggests that two observations measured at close intervals in time 

are likely to be highly correlated, but that as the samples grow further apart, they become 

less so (Kincaid, 2020). 

2. Compound symmetry 

𝑹𝑹𝒊𝒊 = �
𝝈𝝈𝟐𝟐 𝜽𝜽 𝜽𝜽 𝜽𝜽
𝜽𝜽 𝝈𝝈𝟐𝟐 𝜽𝜽 𝜽𝜽
𝜽𝜽 𝜽𝜽 𝝈𝝈𝟐𝟐 𝜽𝜽
𝜽𝜽 𝜽𝜽 𝜽𝜽 𝝈𝝈𝟐𝟐

�,                                    (Equation 2.13) 
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where 𝑖𝑖 = 1, … ,𝑛𝑛. The compound symmetry (CS) structure is one of the more simpler 

covariance structures where covariances are equal (Brown & Prescott, 2015) (Kincaid, 2020). 

3. Toeplitz 

𝑹𝑹𝒊𝒊 =

⎣
⎢
⎢
⎢
⎡𝝈𝝈

𝟐𝟐 𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑
𝜽𝜽𝟏𝟏 𝝈𝝈𝟐𝟐 𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐
𝜽𝜽𝟐𝟐 𝜽𝜽𝟏𝟏 𝝈𝝈𝟐𝟐 𝜽𝜽𝟏𝟏
𝜽𝜽𝟑𝟑 𝜽𝜽𝟐𝟐 𝜽𝜽𝟏𝟏 𝝈𝝈𝟐𝟐⎦

⎥
⎥
⎥
⎤
,                                       (Equation 2.14) 

where 𝑖𝑖 = 1, … ,𝑛𝑛. The Toeplitz (TOEP) structure uses a different covariance for every level 

between the 4 time points. The TOEP structure is analogous to the autoregressive structure. 

The correlations, on the other hand, do not always follow a similar pattern as in the AR (1) 

(Kincaid, 2020). 

4. Unstructured 

𝑹𝑹𝒊𝒊 =

⎣
⎢
⎢
⎢
⎡ 𝝈𝝈𝟏𝟏

𝟐𝟐 𝜽𝜽𝟏𝟏𝟐𝟐 𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟏𝟏𝟒𝟒
𝜽𝜽𝟏𝟏𝟐𝟐 𝝈𝝈𝟐𝟐𝟐𝟐 𝜽𝜽𝟐𝟐𝟑𝟑 𝜽𝜽𝟐𝟐𝟒𝟒
𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟐𝟐𝟑𝟑 𝝈𝝈𝟑𝟑𝟐𝟐 𝜽𝜽𝟑𝟑𝟒𝟒
𝜽𝜽𝟏𝟏𝟒𝟒 𝜽𝜽𝟐𝟐𝟒𝟒 𝜽𝜽𝟑𝟑𝟒𝟒 𝝈𝝈𝟒𝟒𝟐𝟐 ⎦

⎥
⎥
⎥
⎤
,                                   (Equation 2.15) 

where 𝑖𝑖 = 1, … ,𝑛𝑛. The unstructured structure (UN) is sometimes also referred to as the 

general structure. The unstructured covariance structure is the most 'tolerant' of the 

aforementioned structures, allowing each term to be unique. The variance of responses, 𝝈𝝈𝒊𝒊𝟐𝟐, 

are different for each time period 𝑖𝑖. The covariances,  𝜽𝜽𝒋𝒋𝒋𝒋, also differ between pairs of time 

period j and k (Brown & Prescott, 2015). 

5. Variance components 

𝑹𝑹𝒊𝒊 =

⎣
⎢
⎢
⎢
⎡𝝈𝝈𝟏𝟏

𝟐𝟐 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝈𝝈𝟐𝟐𝟐𝟐 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝝈𝝈𝟑𝟑𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝝈𝝈𝟒𝟒𝟐𝟐⎦

⎥
⎥
⎥
⎤
 ,                                           (Equation 2.16) 
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where 𝑖𝑖 = 1, … ,𝑛𝑛. The variance components (VC) is the simplest of all covariance matrices 

and is also used as the default matrix in SAS (Kincaid, 2020). The VC models unique variance 

components for every random or repeated effect (Kincaid, 2020). 

The above-mentioned versions of the covariance structures are straightforward expansions. 

That is, the variances of all the diagonals of the matrices don't have to be equal (Kincaid, 

2020). 

There are many more covariance patterns to choose from (e.g. heterogeneous CS, 

heterogeneous AR(1) etc.) that are not discussed in this section because they will not be 

applied  during the modelling procedure. Selecting the best fitting covariance pattern through 

fit statistics metrics, can provide additional information on the phenomenon being examined, 

in addition to providing suitable standard errors for fixed effect estimates. (Brown & Prescott, 

2015). 

2.3.4 Estimation for LMM 

Several methods exist in the literature for the estimation of parameters for the LMM. Two of 

the most common techniques to estimate the fixed effect parameters are the maximum 

likelihood (ML) and restricted maximum likelihood methods (REML) techniques (Hariharan & 

Rogers, 2008). 

The ML estimates are the maximized variance parameter estimates of the log-likelihood 

function (Kutner, et al., 2005). REML and ML differs based on how they estimate fixed effects 

and variance-covariance parameters (Kutner, et al., 2005). The REML results in a smaller bias 

for the variance parameter estimates in comparison to the estimates estimated with the ML.  

ML and REML provide estimates for 𝑮𝑮 and 𝑹𝑹 matrices, denoted by 𝐺𝐺� and 𝑅𝑅�, respectively. To 

obtain estimates of 𝑏𝑏 and 𝛽𝛽, the standard method is to solve the LMM equations (Henderson 

1984). The solutions can be written as 

𝑏𝑏� =  �𝑋𝑋′𝑉𝑉�−1𝑋𝑋�
−

 𝑋𝑋′𝑉𝑉�−1𝑦𝑦                                    (Equation 2.17) 

�̂�𝛽 =  �𝐺𝐺�𝑍𝑍𝑉𝑉�−1�
−

(𝑦𝑦 − 𝑋𝑋𝑏𝑏�)                                     (Equation 2.18) 
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These are extended normal equations from the linear model and assume that 𝐺𝐺� is non-

singular, meaning the matrix determinant is non-zero (Henderson, 1984). 

When the variance components (the statistic that measures random variation due to random 

effect only) are estimated using the ML technique, they are treated as a fixed but unknown 

quantity. However, the degrees of freedom lost due to estimating the fixed effects are not 

considered. As a result, ML estimates have smaller variances and are biased (McCulloch, et 

al., 2008). 

The ability to compare two models in terms of their fixed and random effects terms is one of 

the advantages of ML over REML. It is only possible to compare two models with the same 

fixed effects architecture that are nested in their random effects terms if you use REML to 

estimate the parameters (McCulloch, et al., 2008), i.e. the REML eliminates the 𝛽𝛽 parameter 

from the log-likelihood, so that the estimation of the variance is only defined in terms of the 

variance component (Brown & Prescott, 2015). 

Using the REML, the variance-covariance elements are estimated with the ML averaged over 

all possible values of the fixed effects. Using the REML generally results in less bias concerning 

the fixed effects in comparison to the ML estimates (Kutner, et al., 2005). 

2.3.5 Conclusion 

As stated, the standard ANOVA as well as the repeated measures ANOVA have limitations 

regarding the handling of within- and between-subject effects and are thus not the 

appropriate method to analyse repeated measures data. LMM resembles classical (M)ANOVA 

models by replacing a subset of the fixed effects parameters capturing subject effects with 

random variables. 

Adding random effects to classical linear models establishes MM or LMM. Mixed effects 

representations by definition, contain a subset of parameters associated with fixed and 

random effects (Brown and Prescott, 2015; Zhang and Chen, 2013). LMMs provide 

researchers with flexibility to capture correlations between successive measurements and 

the ability to analyse within-subject and between-subject variability simultaneously, 

facilitating results (Zhang and Chen, 2013). LMMs also remove the limitations of multiple 
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regression and ANOVAs for specific data sets  (Brown & Prescott, 2015). Another advantage 

is that LMMs can handle experimental design with unequal number of observations for 

groups/clusters as well as missing data. In ANOVA models, if a single observation is missing, 

none of the measurements from that subject’s trial are used in the analysis, unless an 

additional step is performed through imputation (Wolfinger, 1993). This can substantially 

reduce sample size which leads to increased estimates for standard errors and decreased 

statistical power (Brown and Prescott, 2015). 

As mentioned, missing data causes significant problems in conventional analyses based on 

ANOVA or ordinary linear regression models. For MM analyses, a complete data set for each 

subject is not needed, and thus results in more reliable estimates of the effects and 

corresponding standard errors than traditional methods because it utilises both within- and 

between-variance estimates (Demidenko, 2013). In LMMs, compared to ANOVA/MANOVA, 

subjects with more missing values will generally have less influence on estimates and extreme 

values typically will converge toward the mean (Brown & Prescott, 2015; Barker & Shaw, 

2015; Zhang & Chen, 2013). 

For example, in the TOHM, if an analysis was done on the runners that started the race in the 

years 2012 to 2015, the missing data of concern would be the runners that did not finish the 

race. Another structural missing data component would be runners that did not enter the 

race over the entirety of the period from 2012 to 2015. If a MM is not used, runners that did 

not participate in all four years, would simply be deleted from the analysis. This could lead to 

a reduced sample size and reduced statistical power (Button, et al., 2013). 

LMMs are the preferred option in many situations where ordinary linear regression, standard 

ANOVAs, and repeated measures ANOVAs are not recommended and will allow more 

sophisticated experimental designs with the capability to answer a richer set of research 

questions. For example, the ability to model data with multiple sources and variation and to 

model clustered, such as repeated measures on the same subject, or longitudinal data 

(Demidenko, 2013). Furthermore, unlike standard methods, mixed-effect models can provide 

estimates for model parameter coefficients that indicate the direction and strength of the 

effects (Christensen, et al., 1992; Demidenko, 2013). If the experiment design is simple (i.e. 
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with no missing data and normal distributions that govern the residuals) then a repeated 

measures ANOVA is equivalent to an LMM analysis (Brown & Prescott, 2015).  

2.4 Model selection 

An integral part of any modelling approach is model selection. This also is the case in LMM. 

The aim is often to choose the most parsimonious model which is simply choosing the 

simplest model that achieves the intended level of goodness from a larger set of proposed 

models. Since LMMs can be seen as an extension of linear regression models, many of the 

same methods can be used for model selection. However, in linear regression models, the 

observations are independent and in LMMs they are not independent (Demidenko, 2013). 

The data dependence impacts on model selection by reducing the effective sample size and 

should be considered in most model selection procedures (Schwarz, 1978). The LMM has 

parameters that describe the mean structure as well as variance parameters that describe 

the dependence structure. The selection of a LMM is therefore more complex than in linear 

regression models (Brown & Prescott, 2015).  

The inclusion of irrelevant random effects in a model, on the other hand, would lead to a 

singular variance–covariance matrix of random effects, producing instability in the model 

(Ahn, et al., 2012). 

A few points about model selection to consider: 

• The subject matter and aim of the study are decisive factors in model selection 

(Diggle, et al., 1994), 

• Graphical methods can be employed to assist in model selection (Christensen, et al., 

1992) 

• Various variable selection methods exist to assist model selection: Log-likelihood, 

information criteria, shrinkage methods (Tibshirani, 1996), fence method (Jiang, et al., 

2008), Bayesian methods, etc. 
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2.4.1 Information criteria 

Fit statistics exist to assist in model selection whereby the best model is the one that 

optimises some loss function. Some of the widely used criteria include the Akaike Information 

Criteria (AIC) (Akaike, 1973), conditional Akaike Information Criteria (cAIC) (Vaida & 

Blanchard, 2005)  and the Bayesian Information Criteria (BIC) (Schwarz, 1978).  

The aim is to minimise a function, that is the sum of a loss function plus a penalty that is 

usually dependent on number of parameters in the model. The criteria can be compared for 

models that fit the same fixed effects and where the covariance parameters are nested 

(Brown & Prescott, 2015). To define the loss function we can use the log likelihood function, 

the conditional log-likelihood or the REML.  

Log Likelihood function 

As mentioned, the AIC, cAIC and BIC incorporates the log-likelihood function with differences 

in how they utilise this penalty function. The likelihood function defines the likelihood of the 

model parameters given the data. The function can be used as a measure of goodness of fit 

with larger values indicating an improved model fit. 

The log likelihood function can be given by (Brown & Prescott, 2015): 

log(𝐿𝐿) = 𝐾𝐾 − 1
2

[log|𝑽𝑽| + (𝒀𝒀 − 𝑿𝑿𝑿𝑿)′𝑽𝑽−1(𝒀𝒀 − 𝑿𝑿𝑿𝑿),                (Equation 2.19) 

where 𝐾𝐾 = −1
2
𝑛𝑛𝑙𝑙𝑡𝑡𝑛𝑛(2𝜋𝜋) is a constant that can be ignored in the maximization process, 

𝑛𝑛 = number of observations, mean vector 𝑋𝑋𝛼𝛼, and covariance matrix 𝑉𝑉. 

Akaike Information Criterion (AIC) 

The penalty function indicates model complexity, meaning that the measure will become 

larger as more parameters are introduced in the model (Brown & Prescott, 2015). It is based 

on the Kullback–Leibler distance between the true density of the distribution generating the 

data, and the approximating model for fitting the data (Vaida & Blanchard, 2005). 

AIC can be represented by the following equation (Demidenko, 2013): 

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 + 2𝑘𝑘,                                  (Equation 2.20) 
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where 𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 is the log-likehood maximum and k the number of unknown parameters. 

The idea is to combine point estimation and hypothesis testing into a single measure, thus 

formalising the concept of finding a good approximation of the true model in a predictive 

view, i.e. the smaller the AIC, the better the model fit. As stated by Demidenko (2013) and 

Vaida et al. (2005), AIC introduces considerable bias in the case of multicollinearity (when 

several variables are correlated in the model).  

Conditional Akaike Information Criterion (cAIC) 

cAIC was developed by Vaida et al. (2005) in order to accommodate clustered data sets. The 

cAIC is derived from the AIC, but assumes that the random effects are known through the 

variance-covariance matrix or the scaled variance-covariance matrix (Liang, et al., 2008). 

The formula for the hypothesised case of the cAIC is given in Equation 2.21 (Burnham & 

Anderson, 2002), 

𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑐𝑐 ,                                   (Equation 2.21) 

 where 𝑐𝑐 = 2 𝐾𝐾(𝐾𝐾+𝑣𝑣)
𝑛𝑛𝑝𝑝−𝐾𝐾−𝑣𝑣

, 𝑐𝑐 is the number of distinct parameters with 1 ≤ 𝑐𝑐 ≤ 𝑝𝑝(𝑝𝑝 + 1)/2, 

𝐾𝐾 = (𝑘𝑘.𝑝𝑝) + 𝑝𝑝(𝑝𝑝 + 1)/2 with  𝑘𝑘 the number of independent variables and  𝑝𝑝(𝑝𝑝 + 1)/

2 unknown parameters. Similarly, to the AIC, a lower cAIC value indicates a better model fit. 

Note that with large sample sizes, cAIC and AIC will be nearly identical (Fernandez, 2006). 

Bayesian Information Criterion (BIC) 

On the other hand, the Bayesian information Criterion (BIC) (Schwarz, 1978) can be derived 

as an approximation to the Bayes factor for testing two hypotheses or from asymptotic 

arguments to construct criteria which lead to consistent model selection.  

The BIC has the formula (Profillidis & Botzoris, 2019):  

𝐵𝐵𝐴𝐴𝐴𝐴 =  𝑘𝑘 ln(𝑛𝑛) − 2 ln(𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚),                                (Equation 2.22) 

where 𝑘𝑘 is the number of unknown parameters to be estimated, 𝑛𝑛 is the sample size, and 

𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 is the log-likelihood maximum. 



http://etd.uwc.ac.za/

38 

Once again, a smaller BIC value is preferred and indicates a better model fit. Similarly, to AIC, 

the higher the number of parameters in the model, the larger the penalty is for the BIC. The 

BIC penalty is stronger than the penalty of the AIC (Wit, et al., 2012).  

2.5 Confounders  

Confounders are variables that affect the outcome variable. These are variables that are not 

of primary interest to the researcher but they can affect the response variable and therefore 

need to be accounted for in the model. If they are not accounted for there will be unexplained 

variation in the response variable and it can be more difficult to interpret the relationship 

between the response variable and the explanatory variables (the variables of interest) 

(Bobbitt, 2020). Figure 3 provides a visual representation of this relationship. 

 

Figure 3. Relationship between the explanatory/covariate variables and the response variable (Bobbitt, 2020) 

The majority of inferences such as generalized linear (mixed) regression models, assume that 

confounders have no explicit effects in the model. However, estimates may be skewed if the 

assumptions are incorrect and the confounders do correlate with other factors within the 

model (Erler, et al., 2019). 

As previously mentioned, LMMs allows for within- and between-subject variability.  It is 

important for the researcher to determine the variance in the response variable caused by 

confounders in the LMM. In the case of the LMM, the confounders’ impact on the variance 

Response variable

(Variable not of interest, but 
can affect response variable)

Confounder(s)

(Relationship of interest)

Explanatory 
variable(s)
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of within-subjects can be seen as level 1 variability and the confounders’ effect between-

subject variance as level 2 variability (Hu, et al., 2010). 

If performance (further discussed in Section 2.6) is measured in the TOHM data set through 

improvement in the entrants’ race times, confounders could include variables like age and 

gender. By including these variables as confounders in the model, the variability of the 

response variable is better explained, i.e. some of the variability in the outcome variable can 

be explained by age and gender.  

2.6  Performance 

The research question aims to explain the improvement in performance as well as the factors 

associated with that improvement such as training load variables, history of illness and injury, 

chronic diseases, allergies, etc. Performance is defined in terms of the time it took the runner 

to finish a race (Schubert & Astorino, 2013). Improvement in running performance can 

therefore be defined as an improvement in the finishing time that the runner acquired from 

one race to the next. It can also be defined as an improvement in the amount of time the 

runner took to finish the race given that the route and distance is the same from, e.g. 2012 

TOHM in comparison to 2013 TOHM. 

Various factors influence the performance of a runner of which some are measurable and 

some are less so. The factors less measurable include, for example, the psychological 

challenges a runner might face on the day of the race (Boullosa, et al., 2020). Some of the 

more measurable factors influencing performance include training load (measured in terms 

of intensity defined as the average weekly distance the runner trained, duration defined as 

the average pace the runner trains at, and frequency defined as average weekly training 

frequency of runner), chronic illness, injuries, age, sex, body mass index (BMI) and experience 

of runner (Venturini & Giallauria, 2022; Boullosa, et al., 2020). 

2.7 Conclusion 

Chapter 2 began by introducing different modelling concepts, such as the MLR, ANOVA, fixed 

and random effects models. Thereafter concepts such as estimation, covariance structures 

and model selection were discussed in the context of LMMs. The chapter concluded by 
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detailing what performance is in terms of the research question and how it’s defined in this 

study. Chapter 3 will discuss the data in more detail as well as the methodology that will be 

used in this study. This chapter will start by explaining the steps taken to clean the data. The 

data will then be described where after the process of applying the LMM and obtaining fit 

statistics will be discussed.   
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3 Methodology 

3.1 Introduction 

Chapter 3 details the approaches, formulae and designs used in the analysis. Section 3.2 

provides a recap of the research questions. Sections 3.3 – 3.6 offer a background to the data, 

including the study design, data collection process and questionnaire that was utilised by the 

research group (SEMLI). Section 3.7 provides an account of how the final data was created 

from the original data set provided by the SAMRC. Section 3.8 reports the variables that were 

used for analysis including the subset selection, new variable creation and any investigation 

that was done in the pre-model analysis. Section 3.9 details the modelling process to answer 

the aims as outlined in Chapter 1. Finally, Section 3.10 lists the model selection procedure. 

3.2 Research questions 

This study is based on the following research questions: 

• Can a Linear Mixed Model (LMM) be successfully implemented to evaluate if and to 

what extent training load, illness and injury impact the performance of a Two Oceans 

Half Marathon (TOHM) runner? 

• Which factors contribute to an improvement in performance? 

• Is a LMM robust enough to fit data containing repeated measures within different 

factor levels? 

The main aim of this study is to determine if a mixed modelling approach can be used to 

evaluate to which extent the number of races, training load, illness, injury and demographic 

factors influence the performance of the entrant. 

Applying a LMM, which allows for fitting a covariance structure to incorporate the correlated 

data, will provide a better model fit to the data and therefore more valid fixed effects, smaller 

standard errors and thus an improved power to assess the hypothesis set out in the aim. To 

recap, the main objective of this study is to determine possible significant differences in 

performance over the 4-year period and to identify the significant factors influencing 

improvement in performance over a 4-year period. The data collection, questionnaire, data 
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coding process, editing of the data and choice and encoding of variables are discussed in the 

following sections. 

3.3 Study design 

The design of the TOHM data is panelled data with a repeated measures component. Panelled 

data, according to Baltagi (2008) is longitudinal data or cross-sectional time-series data with 

observations about different cross sections, such as years across time. In the TOHM, the 

entities are the runners, the time period is 4 years and cross sections refers to the years. 

3.4 Data collection 

The data was collected between 2012 to 2015 (i.e. over 4 years). Runners used the same 

unique runner code from year to year so that runners participating over the 4 years could be 

followed up. 

Data used in this study, was gathered from 3 sources: 

1. A pre-race medical history questionnaire that was compulsory to complete on entry 

(Sewry, et al., 2020). Note that registration opened 3-5 months before the start of a race. 

2. Race day data that was collected on the day of the race such as demographic information, 

performance related data, etc. 

3. Medical complications and injury data was collected by an externally contracted team. This 

data was provided to SEMLI in an Excel format. 

Demographic data (height, weight, previous participation, and previously completed races), 

medically related and training related data was collected via a compulsory online pre-race 

screening questionnaire that all entrants, defined as a runner registering for a race, 

completed from 2012 to 2015. Data from the pre-race screening questionnaire is self-

reported data. 

Race day data includes demographic information such as gender and age, previous 

participation in races and performance related data (number of starters and finishers, and 



http://etd.uwc.ac.za/

43 

finishing times of runners). The demographic and race day data is also publicly available 

online.  

Medical complications and injuries data consist of the entrant’s name, surname, race number 

and all medical encounter details.  

Ethical clearance was approved by the Research Ethics Committees of the Faculty of Health 

Sciences of the University of Cape Town (REC 009/2011 and REC R030/2013) and the 

University of Pretoria (REC 433/2015). 

Data provided by the SAMRC are de-identified and excluded non-consenting entrants. All 3 

data sources detailed above were merged using the unique race number of each entrant. This 

data set is referred to as the “original long data set”. 

3.5 Questionnaire 

Overview of the questionnaire: 

• The training related portion of the questionnaire relates to years of recreational 

running, weekly running distance, and training running speed. 

• The medical portion of the pre-race screening questionnaire was sub divided into 

main categories namely cardiovascular disease (CVD), symptoms of CVD, risk factors 

for CVD, other chronic disease, general prescription medication use, medication use 

during racing, history of any allergies, injury and a past history of collapse during 

racing (Sewry, et al., 2020). 

• According to Schwabe, et al. (2018), the online pre-race screening questionnaire’s 

main elements consisted of 2 injury related questions and 13 questions relating to 

medical history of the entrant (cardiovascular disease (CVD), symptoms of CVD, risk 

factors for CVD, other chronic disease (respiratory disease, metabolic or hormonal 

disease, gastrointestinal disease, nervous system disease, renal or bladder disease, 

haematological or immune system disease, cancer, allergies). No questions were 

open-ended. All questions were either numerical or based upon the selection 

provided. Only when the entrant indicates “other” was there sometimes a space to 

elaborate on the response. 
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• A breakdown per section of the main elements of the medical screening questionnaire 

can be found in Appendix A.  

• The full questionnaire, as provided by SEMLI, is attached in Appendix B. 

3.6 Population and participants 

All runners who registered for the 21.1km Two Oceans race from 2012 to 2015 were included 

in the data provided. Furthermore, only data for runners who completed at least two 21.1km 

races (excluding the 56km Two Oceans race) were used in the analysis. Runners also needed 

to be a minimum age of 16 years to enter the TOHM. 

3.7 Data preparation 

The data set provided by the SAMRC was in the format of a SAS data set.  All editing and 

analysis were subsequently done in SAS 9.4.  

3.7.1 Data steps overview 

The data coding procedure is given as an overview in steps below: 

Step 1: Data set provided imported into SAS. 

Step 2: Data transformed from a long format to a wide format (see Step 2 for further 

details on formats). No cleaning or editing was conducted before this step as 

editing out any observations before Steps 2 - 4 could lead to the inclusion of 

runners that have entered for both the Two Oceans Ultra and Half Marathon. 

Step 3: Once all entries of runners were represented as one observation per runner in a 

wide format, runners that entered for the Two Oceans Ultra Marathon (TOUM) in 

any of the years over the 4-year period, were excluded. This was done by 

transforming the data into a long format by merging into the original data set that 

contains all the demographic, training history, past injury and chronic illness 

related information. 

Step 4: Years 2012 to 2015 were sorted by runner (“runnercode”) in ascending order. The 

year and order in which the runner entered the Two Oceans marathon was created 
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as variable “year_order”, with values ranging from 1 to 4 for this variable. Each 

entry/observation of a runner was therefore assigned a year_order value 

depending on if it was the first, second, third or fourth time the runner entered for 

the TOHM in the period. See Section 3.8.2 for more detail on how this variable was 

created. 

Step 5: Entrants that did not have finishing times were excluded. This included entrants 

that did not start or did not finish the TOHM. 

Step 6: Runners that only entered for one TOHM were excluded, i.e. runners were 

selected that have run the TOHM for at least 2 years between the years 2012 to 

2015. In other words, all runners were excluded who only entered for the TOHM 

only once over the 4-year period. This was done in order to answer the research 

question relating to the improvement in performance over the 4-year period. 

Step 7: The data set was provided by the SAMRC and required minimal cleaning. However, 

race day data and responses to the questionnaire were checked for any 

inconsistencies according to guidelines provided by the SAMRC and SEMLI. More 

details are described in Section 3.7.2 to ensure the responses are in the correct 

format. 

Step 8: The relevant variables relating to performance and outcome variable were 

investigated and described. 

Step 9: The “PROC MIXED” procedure was used in SAS to conduct all relevant analysis.  

The below section contains more detail on some of the above summarised steps. 
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3.7.2 Detailed break-down of each step of the process 

Step 1: Original data set contained 76654 observations from entrants of both the TOHM and 

TOUM (see Table 1).  

Table 1. Frequencies of entrants over the 4-year period in the original data set 

Race n (%) 

Ultra-marathon 29 585 (38.6%) 

Half marathon 47 069 (61.4%) 

Step 2: The original data set shows each entrant by year the runner has entered the TOHM. 

Once the data set is transformed from long to wide format, it is possible to view the amount 

of entries by runner over the 4 years (see Table 2). The value of 1 denotes the runners that 

ran a Two Oceans Ultra Marathon and the value of 2 denotes the runners that ran a Two 

Oceans Half Marathon in Table 2. The row of interest for this study, are the last four rows in 

the table.  

Table 2.  Frequencies of runners’ races for both the Ultra- and the TOHM from 2012 – 2015 

First entry Second entry Third entry Fourth entry n (%) 

1 . . . 10078 (21.9) 

1 1 . . 3455 (7.23) 

1 1 1 . 1918 (4.01) 

1 1 1 1 1056 (2.21) 

1 1 1 2 34 (0.07) 

1 1 2 . 81 (0.17) 

1 2 . . 320(0.67) 

1 2 1 . 29 (0.06) 
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1 2 1 1 1 (0.00) 

1 2 1 2 1 (0.00) 

1 2 2 . 52 (0.11) 

1 2 2 1 2 (0.00) 

1 2 2 2 21 (0.04) 

2 1 . . 831 (1.74) 

2 1 . 1 1 (0.00) 

2 1 1 . 150 (0.31) 

2 1 1 1 113 (0.24) 

2 1 1 2 19 (0.04) 

2 1 2 . 46 (0.10) 

2 1 2 2 1 (0.00) 

2 2 1 . 252 (0.53) 

2 2 1 1 5 (0.01) 

2 2 1 2 1 (0.00) 

2 2 2 1 75 (0.16) 

2 2 2 2 1232 (2.58) 

2 2 2 . 2723 (5.70) 

2 2 . . 6074 (12.71) 

2 . . . 19213 (40.21) 

1 = TOUM 2 = TOHM 
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Step 3: Only runners from TOHM and not TOUM were selected. This was done by merging 

the wide data set with the original long data set (see Section 3.4) in order to discard all 

runners that have entered for the TOUM, but still retain all information regarding 

performance, training and medical for the runners that have only taken part in the TOHM 

between 2012 and 2015. 

Table 3. Frequencies of runners for the TOHM between 2012 to 2015 

First entry Second entry Third entry Fourth entry n (%) 

2 . . . 19213 (65.7) 

2 2 . . 6074 (20.77) 

2 2 2 . 2723 (9.31) 

2 2 2 2 1232 (4.21) 

Total 29242 (100) 

2 = Entry for TOHM 

Note: Runners in the first row (19 213) who only entered once, were not included in the final 

data set (refer to step 7). 

Step 4: Entrants that did not finish (DNF) or did not start (DNS) the race, were 

excluded. Note that the below table refers to entrants and not runners. Each runner 

can have many entries. The long data set represents each entry of the runners by 

row, therefore the total n of the below Table 4 is larger than that of Table 3. Table 4 

represents the entrants that DNS and Table 5 represents the entrants that DNF the 

race. 
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Table 4. Entrants that did not start the race between 2012 – 2015 

Entrants DNS vs start n (%) 

Yes (entrants that did start) 36 548 (82.21) 

No (entrants that did not start) 7910 (17.79) 

 

Table 5. Entrants that did not finish the race between 2012 – 2015 

Entrant DNF vs finish n (%) 

No (entrants that did finish) 36 535 (99.96) 

Yes 13 (0.04) 

 

Step 5: Runners were disregarded that only entered the TOHM once. This study is only 

interested in the improvement in performance of the runners, therefore a minimum of two 

finish times per runner is needed. The numbers given in Table 6 are the numbers that will 

remain in terms of the type of race and the number of races the runners competed in, i.e. 

any further removal of observations will occur due to incorrect values given by the runner or 

the time mat. 

Table 6. Entrants with more than one race (n = 19 847) 

year_order n (%) 

1st race 7945 (40.03) 

2nd race 7945 (40.03) 

3rd race 3053 (15.38) 

4th race 904 (4.55) 
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Step 6: Checks were done on the times the entrants crossed race mats. A race mat tracks or 

records the time entrants cross specific points on the route. The “time-checks” were done to 

ensure that the (𝑎𝑎 + 1)𝑡𝑡ℎ  mat time was larger than the 𝑎𝑎𝑡𝑡ℎ  mat time. The finishing times 

(“time_f_min”) were checked to ensure that the minimum time is not smaller than the 

reported winner’s finishing time for the respective years and that the maximum finishing time 

is not greater than the official cut-off time (7 hours) for the event. One runnercode (177088) 

had a finishing time greater than 7 hours and was deleted from the data. 

Frequency tables were created of all categorical variables to be investigated. The gender 

codes recorded of runner codes 137146 and 143651 were not consistent throughout the 

years and were deleted from the data set. Descriptive statistics such as the mean, standard 

deviation, median, quartile 1, quartile 3, total number of observations, total number of 

missing observations, were obtained for all continuous variables and the results analysed. 

Two training load variables, “timestrainrace” and “trainingdistance”, contained 11.09% 

missing observations. If the number of missing observations in a variable is greater than 10%, 

bias could be introduced into the results of the analysis if the variable is included (Bennett, 

2001). Therefore, these two variables were not included in the study based on Bennett 

(2001). 

Step 7: Variables selected to include in the modelling procedure were further explored. More 

detail on this step is discussed in Section 3.9. The results are noted in Chapter 4. 

Step 8: After all variables were explored and adjusted, analysis was conducted on the final 

data set (see Section 2.8). Model selection took place in the form of various model fit indices 

(see Section 2.9). 

The next section details any variables that were created to assist the modelling process. 
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3.8 Variables selection and creation process 

3.8.1 Selecting predictor variables 

The following section outlines the selection of variables hypothesised to be related to running 

performance. These variables were chosen as a subset and will be used in the modelling 

procedure in order to evaluate the impact on performance. 

1. Training load factors pertaining to running can be described by the following variables 

(Foster, et al., 1996): 

• Intensity (average distance run per week), 

• Duration (average training pace in minutes per kilometre), and 

• Frequency (average times run per week). 

The assumption is that running performance will increase with an increase in training 

load (Foster, et al., 1996). The variables “recreationrunner”, “distancerunner” and 

“training_pace” relating to training load were therefore included in the model to 

assess these variables’ effect on running performance. As mentioned in Section 3.7.2, 

variables “trainingdistance” and “timestrainrace” were initially included in the final 

dataset but because of the amount of missing observations contained in each variable, 

these variables were excluded from the analysis. 

2. Running injuries lead to a decrease in training load of the runner and will influence 

the runner’s level of performance during races (van Mechelen, 1992). The variable 

“recent_run_injury”, included in the analysis, represents running injuries. 

3. According to Mokwena, et al. (2021), running related injuries are influenced by history 

of chronic disease and history of allergies. In the dataset, the variables “sc_chronic” 

and “allergies” represent these factors and are included in the model construction. 

4. According to Knechtle & Nikolaidis (2018) women tend to reach their fastest half 

marathon race times at a slightly younger age than men, but both groups tend to 
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reach peak performance for half marathon races between the ages of 35 and 39. 

Therefore, age and gender are included as confounders in the model. 

5. The variable “bmi” is used to describe the body mass index of an entrant and is 

calculated by using the variables length and weight (contained in the data). The 

formula used to calculate BMI is (Messiah, 2013): 

BMI = 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 (𝑖𝑖𝑤𝑤)
𝑙𝑙𝑤𝑤𝑛𝑛𝑤𝑤𝑡𝑡ℎ2 (𝑚𝑚)

 .                                          (Equation 3.1) 

The optimal BMI for peak performance for marathon racing for men is approximately 

19,8 𝑘𝑘𝑛𝑛 𝑥𝑥 𝑚𝑚2. For women, the optimal BMI range for peak performance is 18,28 𝑘𝑘𝑛𝑛 𝑥𝑥 𝑚𝑚2 

(Marc, et al., 2013). If a runner’s BMI changes and is then within these ranges while it was 

previously outside of these ranges, their performance can be influenced. The variable BMI is 

therefore also included in the model construction as a confounder as it could potentially 

influence the improvement in performance of the TOHM runner. 

Variables that were captured as part of the pre-race screening questionnaires from 2012 to 

2015 included training load, confounding- and chronic illness variables: 

• Training load variables are described in terms of the intensity (average weekly 

distance runner trained), duration (average pace the runner trains at) and frequency 

(average weekly training frequency of runner, i.e. how many times a week do they 

exercise). 

• Illness variables are described in terms of chronic disease variables. 

• Age, gender and BMI is often included in various models as potential confounding 

variables in Sport Science literature (Gomez-Molina, et al., 2017). Previous SAFER 

studies concerning Two Oceans marathons (Rotunno, et al., 2018) adjusted for age 

and gender in their analysis. Therefore, age, gender and BMI are included as 

confounding variables. 

Variables that were captured as part of the performance related data (from entrant’s timing 

chips on the race day) from 2012 to 2015 included all time related data from the entrant: 
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• The response variable to measure performance is the finishing time of the runner (in 

minutes). 

3.8.2 Variables created 

To answer the research questions, the following variables were created:  

• The variable for the order of years, “year_order”. That is the number of years (1st, 2nd, 

3rd, 4th) the runner entered the TOHM. This variable was created as a categorical 

variable where for example “year_order” has a value of 1 if it is the first time the 

runner has entered and “year_order” has a value of 2 if it is the second time the 

runner has entered for the TOHM, etc. 

• A chronic disease composite score, “sc_chronic”, was created as a numeric variable 

ranging from 0 to 10 in order to retain as much information about this variable as 

possible.  The composite score was based on the series of ongoing SAFER studies (see 

SAFER publications from 2021). The “sc_chronic” variable was created as a sum of the 

entrants answer out of 10 questions related to a history of chronic disease (risk factors 

for cardiovascular disease [CVD], history of CVD, symptoms of CVD, respiratory 

disease, gastrointestinal disease, nervous system/psychiatric disease, kidney/bladder 

disease, haematological/immune disease and cancer) (Sewry, et al., 2021). Thus the 

information contained in the “sc_chronic” variable encompasses a number of 

important chronic diseases possibly linked to the performance of runners. To include 

each of these chronic disease indicators separately in the model, would be a more 

complex analysis, therefore the variable is utilised as a numeric variable. Questions 

related to history of chronic diseases are questions 2 to 10 and can be found in 

Appendix B. 

• The variable “recent_run_injury” was created as a binary variable from the variables 

“injury1”, “injury2” and “injury3” to indicate if the entrant was injured in the past year 

or not. If the entrant indicated that they were injured in the past year, a value of 1 

was assigned to the variable “recent_run_injury” and if the entrant indicated that 
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they have not been injured in the past year, then a value of 0 was assigned to the 

variable. 

• The variable “train_pace” was created as a continuous variable from question 5 (see 

Appendix B). Some respondents listed a training pace of less than 2 minutes and 30 

seconds per kilometre. The World Record for 1 kilometre is 2 minutes and 11 seconds 

according to records kept by the World Athletics (World, 2021). Observations where 

the “train_pace” values were less than 2 minutes and 30 seconds, were thus deleted 

and assigned missing values. 

• The variable “maxrace” was created to describe the maximum number of times the 

entrant has entered for the TOHM in the 4-year period. An example of this variable is 

shown in Table 7. 

   Table 7. Example of “maxrace” variable values for runner_code 96 

Runner_code year_order Maximum times runner has entered (“maxrace”) 

96 1 4 

96 2 4 

96 3 4 

96 4 4 
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Further expanding on Table 7, to show groups of runners by number of entrants for the newly 

created “maxrace” variable, see below Table 8.   

Table 8. Groups of runners 

“maxrace” Number 
of 

entrants 

Number 
of 

runners 

2 9780 4890 

3 6444 2148 

4 3616 904 

In Table 8, the groups or clusters of runners are shown by the number of maximum races 

they have completed. Where “maxrace” = 4, 904 runners have completed the TOHM 4 times 

during the 4-year period. Where “maxrace” = 3, 2148 runners have completed the TOHM 3 

times. Where “maxrace” = 2, 4890 runners have completed the TOHM 2 times. 

• The response variable, “time_f_min”, was created to represent the finish time, of the 

entrant in minutes: 

  𝑎𝑎𝑖𝑖𝑚𝑚𝑙𝑙_𝑑𝑑_𝑚𝑚𝑖𝑖𝑛𝑛 =  �ℎ𝑡𝑡𝑜𝑜𝑟𝑟�𝑎𝑎𝑖𝑖𝑚𝑚𝑙𝑙𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ� ∗ 60� +  𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑎𝑎𝑙𝑙�𝑎𝑎𝑖𝑖𝑚𝑚𝑙𝑙𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ� 

+ (𝑙𝑙𝑙𝑙𝑐𝑐𝑡𝑡𝑛𝑛𝑑𝑑(𝑎𝑎𝑖𝑖𝑚𝑚𝑙𝑙𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑓𝑓ℎ)/60).                    (Equation 3.2) 

3.8.3 Final variables in data set 

Table 9 provides a detailed description of the variables that are included in the final data set. 

Table 9. Outline of variables included in the final data set to be analysed further 

Variable name Description Variable 
“theme” 

Possible outcomes of 
variables 

age Age of entrant Confounder Continuous variable 
with range of (16; 85)* 
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gender Gender of entrant Confounder 1 = male, 2 = female 

BMI Body mass index Confounder Continuous variable 
with range of (15; 37) 

recreationrunner Number of years 
entrant has been a 
recreational runner 

Training load 
variable 

Continuous variables 
with range of (0.5 ; 70) 

distancerunner Number of years 
entrant has 

participated in 
distance races 

Training load 
variable 

Continuous variable 
with range of (0.5 ; 60) 

Training_pace In the last 12 
months what is 

your average 
training speed 
(minutes per 
kilometre)? 

Training load 
variable 

Interval variable with 
range (2.5; 13) with 

step size of 0.25 

sc_chronic Chronic disease 
history score 

History of 
diseases 

Numeric variable with 
range of (0;10) 

Recent_run_injury Do you or did you 
suffer from any 
symptoms of a 
running injury 

(muscles tendons 
bones ligaments or 
joints) in the past 

12 months or 
currently? Note: 
Only if an injury 
is/was severe 

enough to interfere 
with running or 

require treatment 

History of injury Binary variable with 
value 

“1” = yes and value “0” 
= no 

 

allergies Do you suffer from 
any allergies 

including a past 
history of allergies 

to medication plant 

History of 
illness/disease 

Binary variable with 
value 

“1” = yes and value “0” 
= no 
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*note: age is truncated at age 16 due to the minimum age entry requirement. 

3.9 Pre-model analysis 

The pre-model analysis process includes examination of the predictor variables. This section 

will discuss the methodology used to examine descriptive statistics for continuous and 

categorical variables, thereafter correlation between variables will be described.  

3.9.1 Descriptive statistics 

As mentioned in the overview of steps, descriptive statistics was included for each variable. 

For continuous variables, the minimum, 1st quartile, mean, median, 3rd quartile, maximum and 

standard deviation as well as plots to better understand the distribution of each variable was 

included. Frequency tables (that included frequencies and percentages) were created for 

categorical variables.  These results are shown and discussed in Section 4.3. 

3.9.2 Correlation 

Correlation is a measure to indicate the degree of association or relation between variables. 

The correlation between two random variables 𝑥𝑥 and 𝑦𝑦 can be defined by the following 

equation (Kutner, et al., 2005): 

𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟(𝑥𝑥, 𝑦𝑦) =  𝑐𝑐𝑜𝑜𝑣𝑣(𝑚𝑚,𝑦𝑦)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

,−1 ≤ 𝑟𝑟 ≤ 1 ,                        (Equation 3.3) 

where 𝑥𝑥 and 𝑦𝑦 are two random variables, 𝜎𝜎𝑚𝑚 is the standard deviation of 𝑥𝑥, 𝜎𝜎𝑦𝑦 is the 

standard deviation of 𝑦𝑦 and 𝑟𝑟 the correlation coefficient. 

material or animal 
material? 

 

maxrace Maximum number 
of times entrant has 
entered for the race 

Random effect 
variable 

2, 3, 4 

time_f_min Time entrant took 
to complete the 
race in minutes 

Response 
variable 

Continuous variable in 
range of (66.6 ; 

517.83) 
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Various different measures exist for measuring the association between variables. To 

measure the linear association between continuous variables, the Pearson correlation 

coefficient is often the most popular choice. A Pearson correlation coefficient of greater than 

0.7, indicates a strong positive relationship between the variables (Sedgwick, 2012).  

Correlated variables explain similar information when highly correlated, therefore including 

only one in the model, will explain all necessary information needed (James, et al., 2013).  

Training load variables “distancerunner” and “recreationrunner” were found to be highly 

correlated (r = 0.8716). To choose the best fitting model, separate models will be analysed 

for the two training load variables. The fit statistics will then be utilised to choose the best 

fitting model and that model will be reported as the final model (see Section 4.6).  

3.10 Modelling and model selection 

To create the model that would be used in the construction of the mixed models, the 

procedure “PROC MIXED” in SAS was used.  

The following steps below outline the modelling procedure: 

Model 1: 

Conduct univariate LMMs with response variable “time_f_min” and “year_order” as fixed 

effect (MODEL time_f_min = year_order). Univariate analysis explores each variable 

separately in the data set (Tabachnick & Fidell, 2007). The model includes the random effects 

(“maxrace”), three clusters (or groups) of the maximum number of years’ the runner has run 

(2, 3 or 4 times), this is achieved using the RANDOM statement in the “PROC MIXED” 

procedure. 

 The REPEATED statement factors in the correlation of the entrants (“runnercode”) who ran 

the race more than once. The REPEATED and RANDOM statements as stated here, are 

repeated for the following steps.  

After this step, four covariance structures are applied separately, one by one, to the R side 

random effects (see Appendix C for SAS statements). The covariance structure that fits the 
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model the best according to the model selection criteria AIC, cAIC, and/or BIC, is chosen as 

the final model. The aim is to try and find a simpler covariance structure than the 

unstructured covariance structure with fewer parameters. For the G side random effect, the 

variance components (VC) structure is applied as this is the only structure for which the model 

converges. The model equations are shown in Section 4.5 and 4.6. 

Model 2: 

Includes confounders, in addition to those variables included in Model 1. The confounders 

are “gender”, “agecat” and “bmi”. If these variables “gender”, “agecat” and “bmi” are 

significant and improve the fit of the model, they are included in the model in order to adjust 

for their influence as confounders. The confounders are added to the model to eliminate 

their influence on the relationship between “time_f_min” and “year_order” so as to get the 

independent effect of “year_order” on “time_f_min”. 

Model 3: 

Includes predictor variables, in addition to those variables included in Model 2.  The predictor 

variables that were assessed are: “training_pace”, “recreation_runner”, “distance_runner”, 

“allergies”, “schronic”, and “recent_run_injury”. Significant predictor variables will be 

retained and a choice will be made for the two collinear variables, “recreation_runner” and 

“distance_runner” as mentioned previously. 

Model 4: 

Includes all interaction terms, in addition to those variables included in Model 3 to investigate 

which factors hypothesize the change in finish time. If these interaction terms are significant, 

they are retained in the model. The SAS statement for Model 4 can be seen in Appendix C. 

3.11 Conclusion 

The chapter started by revisiting the research questions. Thereafter, a short introduction was 

done on the study design, data collection, questionnaire and population of the study by the 
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research team in order to provide more background information to the reader before the 

start of the data preparation.  

Once the aforementioned subjects were discussed, the data preparation was discussed in 

Section 3.7. This included any data management or cleaning applied to the data before any 

descriptive statistics or modelling procedures were conducted. In the data preparation step, 

the thesis explains how the final data set for this thesis is selected from the original provided 

by the SAMRC, how relevant variables are selected to answer the research questions and how 

any new variables were created. 

Once the final dataset was determined, an investigation was conducted on all variables 

included in the model through various descriptive measures such as statistics and plots. 

Finally, Section 3.10, details the modelling procedure and selection conducted to answer the 

research questions. 

The next chapter will detail the results. 
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4 Results  

4.1 Introduction  

Chapter 4 details the results according to the methodology discussed in Chapter 3. Section 

4.2 describes the final data set used for analysis after data management was conducted. 

Section 4.3 details descriptive statistics for the response, confounding and predictor 

variables. Section 4.4 lists the choice of covariance matrix and how this was made for the 

various random effects. Section 4.5 details the results of the modelling procedure that was 

followed by starting with the simplest model, then including all significant predictor variables 

and finally detailing the results for the significant interaction terms. Section 4.6 provides a 

summary of the chapter. 

4.2 Final data set 

The final frequencies listed by “year_order”, after carrying out data management as 

mentioned in Chapter 3 are given by year in Table 10. 

Table 10. Number of entrants per year (N = 19840) 

year_order n % 

1 7942 40.03 

2 7942 40.03 

3 3052 15.38 

4 904 4.56 

Table 10 is interpreted as follows, 904 (4.56%) runners took part in the Two Oceans Half 

Marathon (TOHM) race 4 times, 3052 (15.38%) runners took part in the race 3 times, and 

7942 (40.03%) runners took part in the race twice.  

As the data set was selected to include only runners that entered for the TOHM more than 

once, the frequencies for “year_order” 1 and 2 would be the same. As mentioned in Section 
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3.7, the runners that only competed once, were excluded from the analysis, because the 

focus of the analysis was on the runners that had a change in performance over two, three 

and four years. To measure this change, runners that only entered for the TOHM once, could 

not be included. 

4.3 Descriptive statistics 

4.3.1 Response variable descriptive statistics 

Table 11. Finish time in minute per year order (N=19840) 

year_order n 
Range  

(min; max) 

Interquartile 

range (IQR)  

(Q1; Q3) 

Mean 
Standard 

deviation 

1 7942 (66.6; 212.53) (125.68; 160.15) 143.53 23.19 

2 7942 (67.72; 211.23) (123.3; 158.02) 140.98 23.64 

3 3052 (75.65; 200.77) (121.49; 158.78) 139.95 24.07 

4 904 (78.2; 201.48) (121.33; 156.18) 138.89 23.99 

 

Table 11 shows that finish time is the fastest (138.89 minutes) for runners that took part in 

the race 4 times (in comparison to runners that took part 3 times, twice and once). The range 

is the biggest for runners that only took part in the race once. 
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4.3.2 Confounder variables descriptive statistics 

Table 12. Age of entrant by year 

year_order n Mean Standard deviation 

1 7942 36.89 12.26 

2 7942 38.13 12.27 

3 3052 40.62 12.81 

4 904 43.05 12.96 

In Table 12, runners that took part in the race 4 times, had an average age of 43.05 years with 

a standard deviation of 12.96. Seeing as this is a subset of the group of runners that took part 

once, twice and three times, with age increasing by 1 year for every runner, the increase in 

age is an expected result due to the change in time. The standard deviation across 

“year_order” appears consistent. 

Table 13. Gender of entrant by year 

year_order Gender n % 

1 Male 3977 50.08 

Female 3965 49.92 

2 Male 3977 50.08 

Female 3965 49.92 

3 Male 1632 53.47 

Female 1420 46.53 

4 Male 512 56.64 

Female 392 43.36 

Table 13 shows that more males than females took part in the race every year, with the 

greatest disparity occurring in the group of runners that took part four times. 3977 (50.08%) 
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of male runners took part in the race once and twice, 1632 (53.47%) of male runners took 

part in the race three times, and 512 (56.64%) of male runners took part in the race four 

times. 

Table 14. Overall BMI, weight and height of entrant by year 

year_order Variable n n missing (%) Mean Standard deviation 

1 BMI 

7942 190 (2.99) 

24.18 3.39 

Height 171.72 10.17 

Weight 71.63 13.71 

2 BMI 

794 196 (2.47) 

24.19 3.34 

Height 171.50 10.37 

Weight 71.50 13.60 

3 BMI 

3052 63 (2.06) 

24.37 3.27 

Height 171.66 10.61 

Weight 72.15 13.45 

4 BMI 

904 16 (1.78) 

24.48 3.33 

Height 171.92 10.18 

Weight 72.72 13.73 

In Table 14, the variables BMI, height and weight contained some missing observations, but 

not more than 10%. The BMI remained fairly stable for runners that took part in the race 

once, twice, three or four times with an overall average of 24.23 𝑖𝑖𝑤𝑤
𝑚𝑚2 and overall standard 

deviation of 3.35. The runners that ran the race once, had the lowest average BMI score and 

the runners that ran the race four times had the highest average BMI score. All average BMI 

scores fall within the normal ranges of 18.5 to 24.9, albeit on the upper end of that range. 
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Table 15. BMI, weight and height of entrant by year and by gender 

year_order Gender Variable n Mean Standard deviation 

1 Male BMI 

3870 

 

25.42 3.09 

Height 178.20 8.16 

Weight 80.77 11.41 

Female BMI 3882 22.93 3.22 

Height 165.25 7.52 

Weight 62.52 8.90 

2 Male BMI 3857 25.40 3.05 

Height 178.21 8.19 

Weight 80.71 11.16 

Female BMI 3889 22.99 3.17 

Height 164.84 7.65 

Weight 62.37 8.81 

3 Male BMI 1594 25.44 2.99 

Height 178.07 8.27 

Weight 80.66 10.76 

Female BMI 1395 23.15 3.14 

Height 164.34 7.92 

Weight 62.43 8.81 

4 Male BMI 503 25.52 3.07 

Height 177.68 7.84 
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Weight 80.60 11.06 

Female BMI 385 23.11 3.16 

Height 164.38 7.65 

Weight 62.42 9.36 

Table 15 shows the results of BMI, weight and height by “year_order” and by gender. The 

highest mean BMI for men occurs in the fourth year of participation (23.11) and the highest 

mean BMI for women occurs in the third year of participation (23.15). 

4.3.3 Predictor variables descriptive statistics 

Table 16. Binary categorical variables descriptive statistics by year 

Variable year_order n % (of total year_order n) 

Allergies (yes) 1 974 12.26 

2 841 10.59 

3 356 11.66 

4 110 12.17 

Recent_run_injury (yes) 1 748 9.42 

2 637 8.02 

3 263 8.62 

4 95 10.51 

There are no missing data for the categorical variables “allergies” and “recent_run_injury” as 

shown in Table 16. All entrants indicated on the questionnaire if they had an allergy or 

running injury in the past 12 months. The percentage of allergies remained fairly stable over 

the four races the runners competed in, with the highest percentage (12.26%) of allergies 

reported in the first race the runners ran. The highest percentage (10.51%) of recent injuries 

occurred in the fourth race the runners ran.  
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Table 17. Chronic illness descriptive statistics by year_order for entrants that reported a chronic illness 

Variable year_order n** Mean* Standard 
deviation 

Range (minimum; 
maximum) 

Sc_chronic 

 

1 2539 1 0.78 (1; 8) 

2 2165 1 0.67 (1; 6) 

3 880 1 0.69 (1; 7) 

4 291 1 0.69 (1; 4) 

*rounded to nearest discrete value in range  

**n = number of people that reported a chronic illness 

Table 17 shows the descriptive statistics for entrants that reported a chronic illness. On 

average over the four races, approximately 70% of runners reported that they do not have 

any chronic illness.  The highest maximum (8) number of chronic illness’ occur in the first year 

the runners raced. The mean number (mean = 1) of chronic illnesses remained stable for 

entrants in the groups of runners that competed in their first, second, third or fourth race. 
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Table 18. Continuous variables descriptive statistics by year 

Variable year_order n Mean Standard deviation 

Training_pace 1 7808 6.15 1.13 

2 7835 6.03 1.05 

3 3018 6.04 1.03 

4 896 6.05 0.93 

Recreationrunner 1 7924 7.84 8.17 

2 7883 8.49 8.10 

3 3025 10.32 8.73 

4 896 11.80 9.01 

Distancerunner 1 7924 5.40 6.83 

2 7883 6.33 6.88 

3 3025 8.14 7.51 

4 896 9.74 7.72 

 

Table 18 shows that the variable “training_pace” contains missing observations (1.52%) due 

to removal of incorrect input by entrants. Other training load variables also contain some 

missing observations, but none more than 10% that would significantly influence the analysis. 

Training pace had the highest average (6 minutes and 9 seconds per kilometre) in a group of 

runners that competed in their first race and the lowest average (6 minutes and 2 seconds 

per kilometre) in the group of runners that competed in their second race. The highest 
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average for “how many years have you been a recreational runner” and “for how many years 

have you participated in distance races” (variables, “recreationrunner” and 

“distancerunner”), occurs in runners that have run the race 4 times, which is an expected 

result as the time increases between these periods.   

4.4 Checking model assumptions  

Figure 4. Residual plots and statistics 

The residual plots in Figure 4 indicate that the error terms for the response variable, 

“time_f_min”, are normally distributed and do not violate the assumptions of the LMM. 

Figure 4 does not indicate departure from normality, nor any extreme outliers. 

Another assumption for LMM, is that the predictor variables must be linearly related to the 

response variable. One method by which this assumption can be tested, is graphically. As 

previously mentioned, “sc_chronic” is represented as a numerical variable with 

approximately 70% of entrants reported no chronic illness’. Therefore, special attention is 
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given to ensure that representing this variable in a numerical manner does not violate any 

model assumptions. The below figures illustrate the linear relationship between “sc_chronic” 

and the response variable “time_f_min”.  

 

Figure 5. Response variable by sc_chronic variable for year_order = 1 

 

Figure 6. Response variable by sc_chronic variable for year_order = 2 



http://etd.uwc.ac.za/

71 

 

Figure 7. Response variable by sc_chronic variable for year_order = 3 

 

Figure 8. Response variable by sc_chronic variable for year_order = 4 

Figure 5 to Figure 8 depicts the relationship between the response variable (“time_f_min”) 

and “sc_chronic”. Furthermore, it is noted that a trend seems to exist between the number 

of chronic illness’ an entrant has and their respective finishing time for the TOHM. Therefore, 
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retaining the variable in its current form allows the aforementioned information and the 

variable’s possible influence on the response variable to be further investigated.  

4.5 Covariance structure (R and G side) 

In Section 2.3.3 Covariance structures were introduced. Recall that the choice of covariance 

structure can be guided by the correlation matrix of the response variable (Brown & Prescott, 

2015). 

Table 19. Lower triangular correlation matrix of Pearson correlation coefficients between “year_order”s  

year_order 1 2 3 4 

1 1    

2 0.808 1   

3 0.794 0.854 1  

4 0.788 0.837 0.860 1 

When investigating the correlation matrix of the response variable, “time_f_min”, shown by 

“year_order” in Table 19, it appears as if a simple Toeplitz covariance structure could be a 

good fit as the values remain relatively constant on the diagonal from left to right. However, 

because of the large sample size of the data set, and the complexity involved with 

multicollinearity, it would be worthwhile to also fit the unstructured covariance matrix as this 

type of matrix assumes that there is no reliable pattern. 

In Section 2.3.3, the equation 2.9 for the variance-covariance matrix in matrix notation was 

given as follows: 

𝑽𝑽 = 𝒁𝒁𝑮𝑮𝒁𝒁′ + 𝑹𝑹 

with 𝑮𝑮 defined as the random effect parameters and 𝑹𝑹 as the error terms. 

As mentioned in Section 3.10, Model 1 is created to: 
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1. Explore the effect of the fixed effect “year_order” and random effect “maxrace” on 

the response variable “time_f_min”, but also 

2. To find the most suitable covariance structures for the effects.  

In Section 4.2, four covariance structures (Unstructured, Toeplitz, Auto Regressive, 

Compound Symmetry) were first applied to the R matrix of the model containing only 

“year_order” as fixed effects and “maxrace” as random effect. As mentioned in Section 2.4, 

four model fit indices (Log likelihood, AIC, cAIC, BIC) are used to evaluate the performance of 

the covariance structures.  These results are summarised in Table 20. 

Table 20. R matrix covariance structures for Model 1 with fit indices  

Type covariance 
structure 

Number of 
covariance 
parameters 
estimated* 

'-2log(L)' AIC cAIC BIC 

Unstructured (UN) 9 167330.3 167352.3 167352.3 167330.3 

Toeplitz (TOEP) 3 167452.9 167462.9 167462.9 167452.9 

Compound symmetry 
(CS) 

1 167531.3 167537.3 167537.3 167531.3 

First order 
autoregressive (AR(1)) 

1 169268.4 169274.4 169274.4 169268.4 

*number of elements in covariance matrix to be estimated 

A comparison between covariance model structures for Model 1 (see Section 3.10) in Table 

20, shows that the unstructured covariance matrix provides the optimal fit based on the 

above indices in comparison to simpler covariance structures of Toeplitz, Compound 

symmetry and First order autoregressive. However, this covariance structure is the most 

complex out of the aforementioned with 9 estimated covariance parameters. The Toeplitz 
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covariance structure provides the second lowest fit indices with only 3 estimated covariance 

parameters. The Toeplitz covariance structure is therefore much less complex than the 

unstructured and would be a good alternative covariance structure. 

Recall from Section 2.3.3 that the unstructured covariance matrix for 4 time points can be 

represented as follows: 

𝑹𝑹𝒊𝒊 =

⎣
⎢
⎢
⎢
⎡ 𝝈𝝈𝟏𝟏

𝟐𝟐 𝜽𝜽𝟏𝟏𝟐𝟐 𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟏𝟏𝟒𝟒
𝜽𝜽𝟏𝟏𝟐𝟐 𝝈𝝈𝟐𝟐𝟐𝟐 𝜽𝜽𝟐𝟐𝟑𝟑 𝜽𝜽𝟐𝟐𝟒𝟒
𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟐𝟐𝟑𝟑 𝝈𝝈𝟑𝟑𝟐𝟐 𝜽𝜽𝟑𝟑𝟒𝟒
𝜽𝜽𝟏𝟏𝟒𝟒 𝜽𝜽𝟐𝟐𝟒𝟒 𝜽𝜽𝟑𝟑𝟒𝟒 𝝈𝝈𝟒𝟒𝟐𝟐 ⎦

⎥
⎥
⎥
⎤
 

The below matrix 𝑹𝑹𝟏𝟏 (where 𝑖𝑖 = 1 for the first runner for entire example below) illustrates 

an example of the R side matrix for the first runner (“runnercode” = 96) that participated in 

the TOHM for all 4 years. 

𝑹𝑹𝟏𝟏 = �

𝟓𝟓𝟑𝟑𝟓𝟓.𝟗𝟗𝟗𝟗 𝟒𝟒𝟒𝟒𝟗𝟗.𝟎𝟎𝟑𝟑 𝟒𝟒𝟑𝟑𝟓𝟓.𝟏𝟏𝟎𝟎 𝟒𝟒𝟑𝟑𝟒𝟒.𝟏𝟏𝟗𝟗
𝟒𝟒𝟒𝟒𝟗𝟗.𝟎𝟎𝟑𝟑 𝟓𝟓𝟓𝟓𝟗𝟗.𝟓𝟓𝟒𝟒 𝟒𝟒𝟒𝟒𝟒𝟒.𝟒𝟒𝟐𝟐 𝟒𝟒𝟗𝟗𝟒𝟒.𝟗𝟗𝟐𝟐
𝟓𝟓𝟑𝟑𝟓𝟓.𝟏𝟏𝟎𝟎 𝟒𝟒𝟒𝟒𝟒𝟒.𝟒𝟒𝟐𝟐 𝟓𝟓𝟗𝟗𝟗𝟗.𝟗𝟗𝟑𝟑 𝟓𝟓𝟎𝟎𝟓𝟓.𝟐𝟐𝟒𝟒
𝟒𝟒𝟑𝟑𝟒𝟒.𝟏𝟏𝟗𝟗 𝟒𝟒𝟗𝟗𝟒𝟒.𝟗𝟗𝟐𝟐 𝟓𝟓𝟎𝟎𝟓𝟓.𝟐𝟐𝟒𝟒 𝟓𝟓𝟗𝟗𝟒𝟒.𝟐𝟐𝟗𝟗

� 

After the unstructured covariance matrix has been chosen for the R side matrix, the same 

covariance structures were tested for the G side matrix. However, only the simplest 

covariance structure (variance components) could be fitted to the model.  

Recall from Section 2.3.3 that the variance components covariance matrix for 3 clusters (see 

Figure 4 as reminder of the 3 clusters) can be represented as follows: 

𝑮𝑮𝒊𝒊 = �
𝝈𝝈𝟏𝟏𝟐𝟐 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝝈𝝈𝟐𝟐𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝝈𝝈𝟑𝟑𝟐𝟐

� 

The G side variance components matrix can be seen below: 
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𝑮𝑮𝟏𝟏 = �
𝟏𝟏.𝟒𝟒𝟐𝟐 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏.𝟒𝟒𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏.𝟒𝟒𝟐𝟐

� 

As mentioned previously, the model only converged using the variance components 

covariance structure, therefore it was not possible to test other covariance structures for the 

G matrix as was done for the R matrix. 

Substitution of the above covariance structures in the variance of 𝒚𝒚𝟏𝟏  matrix notation formula 

of Equation 2.9 where 𝐺𝐺 has the dimension 𝑞𝑞𝑥𝑥𝑞𝑞 and represents the number of random effects 

parameters, results in: 

𝑽𝑽𝟏𝟏 = 𝒁𝒁𝟏𝟏 �
𝟏𝟏.𝟒𝟒𝟐𝟐 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟏𝟏.𝟒𝟒𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏.𝟒𝟒𝟐𝟐

�𝒁𝒁𝟏𝟏′ + �

𝟓𝟓𝟑𝟑𝟓𝟓.𝟗𝟗𝟗𝟗 𝟒𝟒𝟒𝟒𝟗𝟗.𝟎𝟎𝟑𝟑 𝟒𝟒𝟑𝟑𝟓𝟓.𝟏𝟏𝟎𝟎 𝟒𝟒𝟑𝟑𝟒𝟒.𝟏𝟏𝟗𝟗
𝟒𝟒𝟒𝟒𝟗𝟗.𝟎𝟎𝟑𝟑 𝟓𝟓𝟓𝟓𝟗𝟗.𝟓𝟓𝟒𝟒 𝟒𝟒𝟒𝟒𝟒𝟒.𝟒𝟒𝟐𝟐 𝟒𝟒𝟗𝟗𝟒𝟒.𝟗𝟗𝟐𝟐
𝟓𝟓𝟑𝟑𝟓𝟓.𝟏𝟏𝟎𝟎 𝟒𝟒𝟒𝟒𝟒𝟒.𝟒𝟒𝟐𝟐 𝟓𝟓𝟗𝟗𝟗𝟗.𝟗𝟗𝟑𝟑 𝟓𝟓𝟎𝟎𝟓𝟓.𝟐𝟐𝟒𝟒
𝟒𝟒𝟑𝟑𝟒𝟒.𝟏𝟏𝟗𝟗 𝟒𝟒𝟗𝟗𝟒𝟒.𝟗𝟗𝟐𝟐 𝟓𝟓𝟎𝟎𝟓𝟓.𝟐𝟐𝟒𝟒 𝟓𝟓𝟗𝟗𝟒𝟒.𝟐𝟐𝟗𝟗

� , 

where 𝒁𝒁𝟏𝟏 is a mx3 matrix and 𝒁𝒁𝟏𝟏′  is a 3xm matrix, with m=4 for this specific example. 

If the above 𝑹𝑹 matrix is expanded (as an example) to include the second (“runnercode” = 289 

that participated 4 times) and third runner (“runnercode” = 322 that participated twice), the 

unstructured covariance pattern is given below: 

𝑹𝑹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝝈𝝈𝟏𝟏

𝟐𝟐 𝜽𝜽𝟏𝟏𝟐𝟐 𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟏𝟏𝟒𝟒 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝜽𝜽𝟏𝟏𝟐𝟐 𝝈𝝈𝟐𝟐𝟐𝟐 𝜽𝜽𝟐𝟐𝟑𝟑 𝜽𝜽𝟐𝟐𝟒𝟒 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟐𝟐𝟑𝟑 𝝈𝝈𝟐𝟐𝟐𝟐 𝜽𝜽𝟑𝟑𝟒𝟒 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝜽𝜽𝟏𝟏𝟒𝟒 𝜽𝜽𝟐𝟐𝟒𝟒 𝜽𝜽𝟑𝟑𝟒𝟒 𝝈𝝈𝟒𝟒𝟐𝟐 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝝈𝝈𝟏𝟏𝟐𝟐 𝜽𝜽𝟏𝟏𝟐𝟐 𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟏𝟏𝟒𝟒 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝜽𝜽𝟏𝟏𝟐𝟐 𝝈𝝈𝟐𝟐𝟐𝟐 𝜽𝜽𝟐𝟐𝟑𝟑 𝜽𝜽𝟐𝟐𝟒𝟒 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝜽𝜽𝟏𝟏𝟑𝟑 𝜽𝜽𝟐𝟐𝟑𝟑 𝝈𝝈𝟐𝟐𝟐𝟐 𝜽𝜽𝟑𝟑𝟒𝟒 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝜽𝜽𝟏𝟏𝟒𝟒 𝜽𝜽𝟐𝟐𝟒𝟒 𝜽𝜽𝟑𝟑𝟒𝟒 𝝈𝝈𝟒𝟒𝟐𝟐 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝝈𝝈𝟏𝟏𝟐𝟐 𝜽𝜽𝟏𝟏𝟐𝟐
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝜽𝜽𝟏𝟏𝟐𝟐 𝝈𝝈𝟐𝟐𝟐𝟐 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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 4.6 Modelling 

The modelling results, as discussed in Section 3.10, will be shown below for the 4 models (or 

steps). Models are constructed in sequential order. The results are shown in this manner so 

as to highlight the effects of:  

1. The change in time of the runner over the 4-year period through the inclusion of the 

variable “year_order” in the model, 

2. The importance of the inclusion of confounding variables in the analysis and the 

effects of confounders on the response variable, 

3. The exclusion of non-significant variables from the subset of variables that could 

impact the change in performance of the runner according to literature, 

4. And finally, the illustration of the significant variables that impact the change in 

performance of the runner and the extent of the significant variables impact on the 

change in performance.  

4.6.1 Model 1 

Model 1 results show the univariate LMM analysis with “year_order” included as the fixed 

effect and “maxrace” as the random effect after the appropriate covariance structures (for R 

and G side random effects) were chosen based on the results given in Section 4.5. 

As seen in Section 2.3.2, the general matrix notation for the LMM, is represented as follows: 

𝒚𝒚𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜷𝜷 + 𝒁𝒁𝒊𝒊𝒃𝒃𝒊𝒊 + 𝜺𝜺𝒊𝒊 

For the model including only the “year_order” variable, the 𝑿𝑿 matrix can be represented as 

follows: 

𝑿𝑿 =  �

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

� 
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where 𝑿𝑿 is a 𝑛𝑛 × 5 matrix (in this case 4 × 5). 

The fixed effects coefficients of 𝜷𝜷, which are determined only after including fixed effects, is 

therefore represented as follows: 

𝜷𝜷 =  

⎣
⎢
⎢
⎢
⎡
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5⎦
⎥
⎥
⎥
⎤

 

where 𝜷𝜷 is a 5 × 1 matrix. The fixed effects will change from Model 1 to 4 as more fixed 

effects are included. 

The random effects are as described in Section 4.5 for Models 1 to 4. 

The vector for residuals is a  𝑛𝑛 × 1 vector.  

Table 21. Predicted response coefficients, F-value, p-value and difference for consecutive years 

Year_order Coefficient 
(Standard 
error ((SE) 

Fixed effects 
F-value 

Fixed effects 
p-value 

Difference between 
consecutive year 

Coefficient 
(SE) 

p-value 

1 145.83 (1.02) 54.29 <0.0001 - - 

2 143.81 (1.02) -2.02 (0.16)  0.004 

3 144.47 (1.06) 0.66 (0.23) <0.0001 

4 144.2 (1.13) -0.28 (0.39) 0.48 

 

The estimates given in Table 21, as well as standard errors and p-values represent those of 

the model without any confounders or predictor variables included, i.e. the model that only 

includes the dependent variable “year_order” and independent variable “time_f_min” in the 
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model statement. The type 3 test of fixed effects for “year_order” (p-value = <0.0001) is 

significant. The difference between year_order 1 and year_order 2 is also significant (p-value 

= 0.004) and difference between “year_order” 2 and 3 is significant (p-value = <0.0001). The 

estimated finish time (“time_f_min”) decreases between year_order 1 and 2, but increases 

slightly between years 2 and 3. The type 3 test tests the effect of excluding a term whilst 

retaining higher-order interactions  (SAS, 1999). 

4.6.2 Model 2 

As mentioned in Section 3.10, model 2 includes confounders “gender”, “agecat” and “bmi”. 

If these variables are significant in the analysis and improve the fit of the model, they are 

included in the model in order to adjust for their influence as confounders. 

Table 22.  Predicted response coefficients, F-value, p-value and difference between consecutive years adjusted 

for confounding variables age, gender, BMI 

Year_order Coefficients 
(SE) 

Fixed 
effects for 
year_order 

F-value 

Fixed 
effects for 
year_order 

p-value 

Difference between 
consecutive year 

Coefficient 
(SE) 

p-value 

1 (ref) 146.85 (0.83) 

93.14 <0.0001 

- - 

2 144.22 (0.83) -2.63 (0.17) <0.0001 

3 144.2 (0.87) -0.02 (0.23) 0.94 

4 143.49 (0.95) -0.71 (0.40) 0.08 

*p-value for age: <0.0001 , p-value for gender: <0.0001, p-value for BMI” <0.0001 

Table 22 represents the statistics for when the model includes significant confounding 

variables that therefore need to be accommodated for. The type 3 test for the fixed effects 

p-value is significant (<0.0001). The difference between years 1 and 2 is significant (p-value = 

<0.0001). When adjusted for age, gender and BMI, the estimates now decline between years 

2 and 3, where previously (in the unadjusted model), the estimates between years 2 and 3 

increased. The change between years 2 and 3 is also no longer significant. 
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4.6.3 Model 3 

In Model 3, all predictor variables are included after the construction of Model 2, but only 

significant predictor variables are retained. A choice is also made between the two collinear 

variables, “recreation_runner” and “distance_runner”. 

Table 23. Coefficients, standard error, F-value and p-value for all predictor variables excluding recreationrunner 

Variables Coefficients 
(SE) 

Fixed effects for 
year_order F-

value 

Fixed effects for 
year_order p-

value 

p-value 

Training_pace 4.34 (0.12) 

38.36 <0.0001 

<0.0001 

distancerunner -0.23 (0.03) <0.0001 

Allergies (yes) -0.41 (0.37) 0.26 

Sc_chronic 0.77 (0.17) <0.0001 

Recent_run_injury -1.46 (0.35) <0.0001 

Table 24. Coefficients, standard error, F-value and p-value for all predictor variables excluding distancerunner 

Variables Coefficients 
(SE) 

Fixed 
effects for 
year_order 

F-value 

Fixed 
effects for 
year_order 

p-value 

p-value 

Training_pace 4.42 (0.12) 42.18 <0.0001 <0.0001 

recreationrunner -0.22 (0.02) <0.0001 

Allergies (yes) -0.41 (0.37) 0.27 

Sc_chronic 0.78 (0.17) <0.0001 

Recent_run_injury -1.43 (0.35) <0.0001 

When comparing Table 23 and Table 24, the fit indices are slightly bigger for the model 

including “distancerunner” (Table 23)(AIC = 158467.0) in comparison to the model including 

“recreationrunner” (Table 24)(AIC = 158455.5). This indicates that the model containing 
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“recreationrunner” is a marginally better model. Furthermore, all predictor variables, 

excluding allergies, are significant in both models and will be included in the final model.  

Table 25. Multiple model coefficients, standard error, F-value, p value results (for all significant variables and 

“recreationrunner”) 

Variables Coefficients 
(SE) 

Fixed effects for 
year_order F-

value 

Fixed effects for 
year_order p-

value 

p-value 

Training_pace 4.42 (0.12) 42.08 <0.0001 <0.0001 

recreationrunner -0.22 (0.02) <0.0001 

Sc_chronic 0.75 (0.17) <0.0001 

Recent_run_injury 
(yes) 

-1.45 (0.35) <0.0001 

Excluding allergies from the model and only including “recreationrunner” in Model 3, 

produces the results contained in Table 23. This model also includes the significant predictor 

variables “training_pace”, “recreationrunner”, “sc_chronic” and “recent_run_injury”. All 

aforementioned variables have a p-value of <0.0001, therefore these variables are 

statistically significant in the prediction of improvement in performance. 

4.6.4 Model 4 

In the final Model 4, interaction terms with “year_order” (e.g. “training_pace”*”year_order”) 

are added to the Model 3. All significant variables were added as interaction action terms to 

Model 3, but only significant interaction terms are retained in the model. Interpreting the 

main effects of the model without consideration of statistically significant interaction effects, 

assumes that the effect of predictor variables on the response variable is independent of 

other predictor variables in the model (James, et al., 2013). 

The full SAS statements for Models 1 to 4 can be seen in Appendix C.  
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In Model 4, the 𝑋𝑋 matrix is expanded to include more fixed effects. The 𝑋𝑋 matrix now 

becomes a 𝑛𝑛 × 18 matrix. The 𝛽𝛽 expands to a 18 × 1 vector. These fixed effects include 1 

“training_pace” variable, 4 interaction variables for “training_pace” X “year_order”, 3 

confounding variables (“age”, “gender”, “BMI”), 1 “recreation_runner” variable, 1 

“recent_run_injury” variable and 1 chronic illness model variable (“sc_chronic”). 

The SAS representation of the various coefficients are provided in Appendix C. 

4.6.4.1 Model assumptions for Model 4 

As previously mentioned in Chapter 3, an assumption of the LMM is that residuals need to be 

normally distributed and residual variance need to be constant across observations 

(Demidenko, 2004).  

 

Figure 9.  Residuals plot for Model 4 
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From Figure 9, it is clear that the residuals are normally distributed. The distribution closely 

follows that of the normal distribution (blue line that is superimposed over the histogram). 

Therefore, the model assumptions are not violated. 

Table 26. Coefficients, standard error, F-value, p value for multiple model with significant interaction 

Variables Coefficients (SE) F-value p-value 

Recreationrunner -0.22 (0.02) 105.24 <0.0001 

Sc_chronic 0.74 (0.17) 19.83 <0.0001 

Recent_run_injury -1.44 (0.35) 17.29 <0.0001 

Year_order(1)*training_pace (reference) - 

4.58 

- 

Year_order(2)*training_pace -0.46 (0.17) 0.0062 

Year_order(3)*training_pace -0.82 (0.25) 0.0009 

Year_order(4)*training_pace -0.25 (0.44) 0.57 

Table 26 shows the significant interaction (year_order * training_pace) included in the model 

(reference is year_order 1). The interaction is significant between year_order 1 and 

year_order 2 (p-value = 0.0062) as well as between year_order 1 and year_order 3 (p-value 

= 0.0009).  

Table 26 shows that for every 1 unit increase in chronic illness (“sc_chronic”), the finish time 

of the entrant increases by 0.74 minutes (approximately 44 seconds). Therefore, for an 

increase of 2 units in “sc_chronic”, the finish time of the entrant will increase by 1.48 minutes 

(approximately 1 minutes 29 seconds). The importance of retaining all information of the 

variable “sc_chronic” is now evident as 30% of runners indicated that they have at least one 

chronic illness. Furthermore, Table 26 shows that for every 1 unit increase in the years an 
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entrant has been running recreationally (“recreationrunner”), the finish time of the entrant 

will decrease by 0.22 minutes.  

The coefficient for “recent_run_injury” is -1.44 (0.35) implying that the overall finish time 

decreases for runners reporting an injury. To further explore and understand this result, the 

difference of the yearly effect of this variable was obtained.  It was found that the difference 

in finish time was only significant when a runner reported an injury in their first and second 

race (coefficient = 1.70, SE = 0.67, p-value = 0.001). The difference between the second and 

third and third and fourth race was not significant (p-value > 0.05). 

Table 27 Predicted response variable coefficients, standard error and difference for consecutive years including 

confounders and all significant predictor variables 

Year_order Coefficients (SE) Difference between consecutive year 

Coefficient (SE) p-value 

1 (ref) 145.3 (0.75) - - 

2 143.3 (0.76) -1.86 (0.17) <0.0001 

3 143.6 (0.81) 0.18 (0.24) 0.455 

4 143.1 (0.90) -0.49 (0.41) 0.225 

Table 27 confirms the results found in Table 22, but unlike Model 2 that was just adjusted for 

confounding variables, Model 4 is also adjusted for all significant predictor variables 

associated with the response variable. Model 2 fit indices (AIC=160830.2, AICC=160830.2, 

BIC=160830.2) are higher than Model 4 fit indices (AIC=158425.3, AICC=158447.3, 

BIC=158447.3), indicating Model 4 to be an improved fit. Table 27 therefore confirms that 

there is a significant (p<0.0001) improvement in finish time between the first and second 

races. 
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Figure 10. Interaction with training pace and year order by gender 

Figure 10 indicates that if an entrant trains at an approximate pace of 6 minutes per kilometre 

for first year’s TOHM and then increases training pace to below 6 minutes per kilometre, the 

entrants performance will improve the second time they compete in the TOHM. Figure 10 

also shows the differentiation in gender where gender=1 is male and gender=2 is female. 

From this, it is clear that the intercept of the male runners are lower than for the female 

runners, but the slope is approximately the same for both genders. Originally, the model 

indicated that there is an improvement in performance between the first and the second 

time a runner competes in the TOHM. However, the interaction indicates that this 

improvement is only valid for the slower runners between their first and second race. 

Because the plots are difficult to read, below are a few estimates highlighted from the graph 

to make the result clearer (note that the choice of estimates in Figure 10 and below for 

variables “age”, “bmi”, and “recreationrunner” are at their respective overall averages. 
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Furthermore, the estimates are reported for the male gender, with 2 chronic illness’, and a 

runner that had a running injury in the past 12 months): 

• If a runner is male, had an injury in the past 12 months, has an age of 38.26 years, has 

2 chronic illness’s, has been a recreation runner for the past 8.7 years, has a BMI of 

24.2, and trains at a pace of 3 minutes/km, then they are estimated to run their first 

TOHM in 123.83 minutes with a standard error of 0.98, and their second TOHM in 

123.40 minutes with a standard error of 1.0. 

• With all criteria similar to the prior point but if they now train at a pace of 6 minutes 

per kilometre, they are estimated to run their first TOHM in 137.86 minutes with a 

standard error of 0.88, and their second TOHM in 136.03 minutes with a standard 

error of 0.88. 

• With all criteria similar to the first point but if they train at a pace of 10 minutes per 

kilometre, they are estimated to run their first TOHM in 156.56 minutes with a 

standard error of 1.06, and their second TOHM in 152.87 minutes with a standard 

error of 1.10.  

4.7 Conclusion 

Chapter 4 detailed all results for the methods discussed in Chapter 3. The chapter discussed 

descriptive statistics such as n, %, range, IQR, mean, and standard deviation of the response, 

confounding and predictor variables. Thereafter, the choice of covariance structure with 

model fit indices (AIC, cAIC, BIC) were described. The unstructured covariance structure was 

chosen as best choice because the goodness of fit statistics indicated that it fits the initial 

model best but also because of its flexibility. Finally, the chapter detailed the findings of the 

Models 1 to 4 through estimates such as standard errors, the F-values, and the p-values. The 

final model included significant variables “recreationrunner”, “sc_chronic”, 

“recent_run_injury” and “training_pace” and explored the interaction effect between 

“yea_order” and “training_pace” more in depth.  
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5 Conclusion and recommendations 

5.1 Introduction 

The study aimed to investigate whether runners taking part in the TOHM multiple times over 

four years improved their race time from year to year, and to assess which factors contributed 

to the improvement in race time. In summary, it was found that runners did improve their 

performance (race time), but only from their first race to their second race, on average by 1 

minute 52 seconds, and that 4 factors contributed to an improvement in race time namely, 

chronic illness, training pace, recent running injuries and for how many years runner has been 

running recreationally. 

Section 5.2 provides an account of the limitations to this thesis. Section 5.3 lists further 

studies or research opportunities that can be conducted on this data set. Section 5.4 

concludes the thesis with a short summary of the results. 

5.2 Limitations 

A few of the limitations to this study included: 

• No weather-related data was included in the analysis to see how that affected the 

entrant on the day of the race.  

• Only chronic illness variables were included in the analysis. No variables were included 

in the analysis about the health of the athlete on race day (illness on or prior to race 

day that could have affected performance).  

• The analysis did not investigate all possible simpler covariance structures for R side 

random effects matrix (such as Toeplitz) in order to fit other types of covariance 

structures to the G side random effects matrix. If a simpler covariance structure was 

found to be just as effective as the unstructured covariance matrix and was fitted to 

the R side random effects matrix, the model might have allowed other covariance 

structures to converge when fitted on the G side random effects matrix. 
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• The years that the runner took part in their first, second, and third race, does not 

necessarily indicate consecutive years of participation for the runners. The analysis 

did not investigate if the runner ‘skipping a year’ of racing influences the result. 

5.3 Further studies 

Further studies or research opportunities for this data can include: 

• Including more performance related factors (factors that according to literature will 

have an impact on the performance of the entrant). 

• Include more confounding variables that will have an impact on the performance of 

the entrant on race day, such as weather on the day of the race. Scores such as 

Universal Thermal Comfort Index (UTCI) can be incorporated as confounding variables 

to adjust for the impact on performance on race day. 

• Investigate the mat times runners crossed certain points in route. During the TOHM, 

the runners line up in blocks at the start of the race. Runners that stand at the back 

are influenced by the pace of the “pack” when they are at the start as there is often 

not space for them to run at their own speed from the “pack” as the front runners 

(that have more space) are able to do. Therefore, in order to eliminate the 

aforementioned, the entrants race pace between two mat times can be investigated 

as performance instead of the time across the entirety of the course.  

• In order to confirm the results attained in Chapter 4, the model can be applied to a 

different population, like 56km TOUM and 90km Comrades Ultra marathon. 

• The study included some time varying covariates, e.g. “recent_run_injury”, which 

needs to be further explored to fully understand the contribution of this variable on 

the improvement in finish time. 
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• If the focus of the “sc_chronic” variable is on the presence of chronic illness, the 

chronic illness variable can be investigated as a binary variable. 

5.4 Findings 

This study aimed to answer the following aims: 

• Do runners who took part in the Two Oceans 21.1km races more than once, i.e. 2, 3 

or 4 years, improve their race time? 

•  Assess whether the improvement is sustained after the initial improvement. 

• Which factors (age, gender, training load, history of illness and injury, allergies), if any, 

contribute to or are associated with the improvement in race time? 

The study has found that there is a significant improvement in performance for runners that 

took part in their second TOHM (in comparison to their first TOHM). Thereafter, there is no 

significant difference between runners taking part three or four times.  

Confounding factors that are related to performance includes gender, age and BMI. Predictor 

variables that influence performance include training load variables, training pace and 

recreation runner, as well as the chronic illness variable and recent running injuries.   

The modelled factors in the LMM reported training pace to have an association with increase 

in performance. Therefore, this study found that if an entrant has a training pace of 6 minutes 

per kilometre in the first year that they partake in the TOHM, and then increase the training 

pace to below 6 minutes per kilometre in the second year they partake in the TOHM, there is 

a significant difference in their performance between the first and second year the runner 

partook in the TOHM. Therefore, the pace the runner trains at is the most important factor 

when they are aiming to improve their performance in the TOHM between the first and 

second time they partake. 

Furthermore, the study confirmed an expected result, that male runners have a faster 

finishing time in comparison to female runners. However, in addition to this result and what 
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was perhaps not expected, is that both genders have the same approximate improvement in 

performance between their first and second year of competing in the TOHM. 

5.5 Conclusion 

Chapter 5 discussed further studies that could build upon and improve the results found in 

this thesis, limitations to this analysis that needs to be taken into consideration when viewing 

the results, and provided a summary of the results from the analysis outlines in Chapters 3 

and 4.  

As mentioned in Section 5.4, the main finding of this study, was that an increase in training 

pace (i.e. runner training at a faster pace) between the first and second year of competing in 

the TOHM, leads to an improvement in performance between the first and second year of 

competing in the TOHM. 

This result will not come as a surprise to most runners, as runners believe that their 10km 

training pace is an indicator of their Half Marathon pace and therefore finish time, i.e. runners 

prioritise speed workouts as they have long since realised the association between an 

increase in training speed and an increase in Half Marathon performance (Hamilton, 2017). 

This is however a novel finding in the literature with regards to accessing training pace to the 

improvement in performance instead of, as found in many other studies, training pace being 

associated to performance (not specifically improvement in performance) (Knechtle, et al., 

2010). 
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7 Appendix A: Main elements of questionnaire 

(1) Have you ever suffered from any heart or blood vessel conditions including heart attack, 

undiagnosed chest pain, coronary artery bypass operation, angioplasty (balloon), heart 

failure, heart transplant, cardiac arrhythmia (abnormal heart beat), rheumatic fever, heart 

murmur, cardiomyopathy, myocarditis, use of a pacemaker, or inherited heart defect? 

(2) Do you currently suffer from any symptoms of heart or blood vessel disease, including any 

of the following: shortness of breath when sitting or lying down, shortness of breath with 

mild exercise, waking up with shortness of breath at night, palpitations that make you dizzy, 

chest pain when sitting or performing exercise or when you are emotionally stressed, 

pain (or discomfort) in the neck jaw arms at rest or during exercise, dizziness during exercise 

or fainting spells)? 

(3) Are you aware or have you ever been diagnosed with any risk factors for heart or blood 

vessel disease including high blood cholesterol, a family member with heart disease, cigarette 

smoking, lack of physical activity, high blood pressure, being overweight, or having diabetes 

mellitus (sugar sickness)? 

(4) Do you currently suffer from any metabolic or hormonal disease including diabetes 

mellitus thyroid gland disorders hypoglycemia (low blood sugar) hyperglycemia (high blood 

sugar), or heat intolerance? 

(5) Do you suffer from any respiratory (lung) disease including asthma, emphysema (COPD), 

wheezing, cough, postnasal drip, hay fever, or repeated flu like illness? 

(6) Do you suffer from any gastrointestinal disease including heartburn, nausea, vomiting, 

abdominal pain, weight loss or gain (> 5kg), a change in bowel habits, chronic diarrhea, blood 

in the stools, or past history of liver or gallbladder disease? 

(7) Do you suffer from any diseases of the nervous system including past history of stroke or 

transient ischemic attack (TIA), frequent headaches, epilepsy, depression, anxiety attacks, 

muscle weakness, nerve tingling, loss of sensation, or chronic fatigue? 
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(8) Do you suffer from any disease of the kidney or bladder including past history of kidney 

or bladder disease, blood in the urine, loin pain, kidney stones, frequent urination, or burning 

during urination? 

(9) Do you suffer from any disease of the blood or immune system including anemia, 

recurrent infections, HIV/AIDS, leukemia, or are you using any immunosuppressive 

medication? 

(10) Do you suffer from any growths or cancer, including a past history of cancer? 

(11) Do you suffer from any allergies including a past history of allergies, to medication, plant 

material, or animal material? 

(12) At the moment do you use any prescribed medication on a daily weekly or monthly basis 

to treat chronic (long-term) medical conditions or injuries? 

(13) Have you ever collapsed (fell down not because of an accident needing medical 

attention) during at the finish or after a race or training session? 

(14) Do you, or did you suffer from any symptoms of a running injury (muscles tendons bones 

ligaments or joints) in the last 12 months? 

(15) Have you ever in your running career suffered from muscle cramping (painful 

spontaneous sustained spasm of a muscle) during or immediately (within 6 h) after running  

(in training or competition)? 

*: Once a participant answered “yes” to any of the main screening questions, 

further details were obtained using “dropdown” boxes with additional questions 

  



http://etd.uwc.ac.za/

100 

8 Appendix B: Questionnaire 

 

 

  

Page 1 questions (all compulsory fields) 
 

Please note that we require you to provide answers to all the questions 
 
 
 

General running and training information 
 

For how many years have you been a recreational runner* (Please select 
from the dropdown box) 
For how many years have you participated in distance running events > 2 
hours?* (Please select from the dropdown box) 
In the last 12 months, on average, how many times a week do you run 
(train and race) (Please select from the dropdown box)?* 
In the last 12 months, what is your average weekly running distance in 
km?* (Please select from the dropdown box) 
In the last 12 months, what is your average training speed? (Please select 
from the dropdown boxes – km box and hour box) * 

 
 
 

years 

years 

per week 

km/week 

min/km 

What is your current body weight (mass) to the nearest KILOGRAM?* kg 
 

What is your height in CENTIMETRES?* cm 
 
 
 

Page 2 questions (all compulsory fields) 
 

General running training information 
 

In the past 12 months, please indicate the average percentage 
time that you cycle on a treadmill? 
In the past 12 months, please indicate the average percentage 
time that you spent running on roads (tar/concrete/brick)? 
In the past 12 months, please indicate the average percentage 
time that you do trail/mountain running on gravel roads (e.g. 
jeep tracks)? 
In the past 12 months, please indicate the average percentage 
time that you do trail/mountain running on footpaths/single 
tracks? 

 
 
 
 
 

% time on treadmill 
 

% time on roads 
 

% time running on 
gravel roads 

% time running on 
footpaths / single 
tracks 
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9 Appendix C: SAS code for modelling procedures 

Model 1 

proc mixed data=c; 

class runnercode year_ORDER(ref="1"); 

model time_f_min=year_order/ s ddfm=kenwardroger e3 cl; 

repeated year_order/ type=un subject=runnercode r rcorr; 

lsmeans year_order/ diff=all; 

random maxrace/type=vc g gcorr; 

run; 

 

Model 2 

proc mixed data=c; 

class runnercode year_ORDER(ref="1") gender; 

model time_f_min=year_order age gender bmi/s ddfm=kenwardroger e3 cl; 

repeated year_order/ type=un subject=runnercode r rcorr; 

lsmeans year_order/ diff=all; 

random maxrace/type=vc g gcorr; 

run; 

 

Model 3 

proc mixed data=c; 

class runnercode year_ORDER(ref="1") gender recent_run_injury(ref='0') ; 
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model time_f_min=year_order age gender bmi training_pace recreationrunner 

recent_run_injury sc_chronic/ s ddfm=kenwardroger e3; 

repeated year_order/ type=un subject=runnercode; 

lsmeans year_order/ diff=all; 

random maxrace/ g gcorr; 

run; 

 

Model 4 

proc mixed data=c plots(maxpoints=none); 

class runnercode year_ORDER(ref='1') gender recent_run_injury(ref='0') ; 

model time_f_min=year_order|training_pace age bmi gender recreationrunner 

recent_run_injury sc_chronic/ s ddfm=kenwardroger e3 residual; 

repeated year_order/ type=un subject=runnercode; 

lsmeans year_order/ diff=all; 

random maxrace/ g gcorr solution; 

run; 
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