

Risk factors for poor blood pressure control in hypertensive patients on treatment in Manzini, Eswatini

By

Dr Millicent Phumzile Bubu Buckham

Student number: 4002733

A mini thesis submitted in partial fulfilment of the requirements for the degree of Master's in Public Health in the School of Public Health of the University of the Western Cape

Supervisor: Dr Lungiswa Tsolekile

6 December 2022

KEYWORDS

Risk factors

Hypertension
Poor blood pressure control
Blood pressure
Patients on treatment

Manzini
Eswatini.

UNIVERSITY of the
WESTERN CAPE

Abstract

Background: There is an alarming number of uncontrolled hypertensive patients on treatment seen daily in out-patient clinics across Eswatini. Many have the avoidable complications of uncontrolled hypertension, such as renal failure and strokes. However, the health system is illequipped to manage all of these. Eswatini already has an enormous burden of non-communicable diseases (NCDs) and rising related morbidity and mortality, with complications of hypertension among the top five causes of death. The factors associated with poor blood pressure (BP) control in these hypertensive patients in Eswatini are poorly understood as not many studies have looked into this problem. This research assessed the prevalence of uncontrolled hypertension and identified factors associated with poor control in hypertensive patients aged 40 years and older on treatment at Raleigh Fitkin Memorial (RFM) hospital in the Manzini region, Eswatini.

Methods: A quantitative observational cross-sectional descriptive study was carried out among adult participants 40 years and older on treatment for hypertension at RFM Hospital, who met the inclusion criteria. Systematic samplingwas used to select 324 participants for the study. Data were collected through face-to-faceWinterviews Rusing Cpreviously validated questionnaires. Anthropometric measurements, namely weight and height were taken and used to calculate participants' body mass index (BMI). In addition, blood pressure was also measured. Data were cleaned, coded and entered into an excel spreadsheet. Stata 13.1. was the statistical software used to analyze the data. A Chi-squared test was used to conduct a bivariate analysis to determine associations between outcome and exposure variables. A T-test was utilized to compare averages between the two groups.

Results: The prevalence of poorly controlled hypertension in patients on anti-hypertensive treatment in Manzini Eswatini was 56.17 \%. The male gender was found to be an essential risk factor for poor BP control in hypertensive patients on treatment in Manzini, Eswatini (OR 1.76; CI: 1.01: 3.04; $\mathrm{p}=0.04$). The socio-demographic characteristics significantly associated with poor BP control status were level of education $(p=0.00)$ and gender $(p=0.04)$. Other factors that were significantly associated with poor BP control status were physical activity levels $(\mathrm{p}=0.03)$ and adherence score ($\mathrm{p}=0.005$). Adherence to BP medication was found to be very good, with 98.15% of the participants falling into the good adherence category (score $>75 \%$).

Conclusions: The prevalence of uncontrolled BP in patients on anti-hypertensive treatment in Manzini, Eswatini was high, with the odds of uncontrolled hypertension being 76\% higher in
 males. The study findings highlight the urgent need to prioritize interventions to improve BP control in Eswatini. It will be helpful to customize interventions to target males with hypertension, improve physical activity levels and enhance awareness of the dangers of poorly controlled BP. Moreover, improving adherence to pharmacological and non-pharmacological BP-lowering measures is critical in this setting.

DECLARATION

I declare that "Risk factors for poor blood pressure control in Hypertensive patients on treatment in Manzini, Eswatini" is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references.

Dr Millicent Phumzile Bubu Buckham.

Date: 30 November 2022

Signed

UNIVERSITY of the WESTERN CAPE

ACKNOWLEDGEMENTS

Firstly, I want to acknowledge my supervisor Dr Lungiswa Tsolekile; I am grateful for the leadership and support during the research. I am honored to have worked with you and have gained such valued knowledge.

I deeply appreciate God for keeping me going and leading me always throughout the many challenges of this degree.

My dearest hubby Mr. Malibongwe Lomahoza, I am grateful for the love, support, patience and encouragement throughout this degree. For the times you looked after our babies so I could get some extra hours of work done, for reading my drafts, helping me with the IT and for your amazing faith in me, I love you more than words can express.

Our wonderful children Zakithi, Melokuhle-Khumo, Melokuhle-Mehluli and Kuhlekwethu, you can achieve anything you put your hearts and minds to, no matter what trials you face. You babies have been my source of inspiration during these studies.

Lastly, my friend and colleague Knowledge Denhere, I am eternally grateful to you for being my unfailing support throughout this journey and to MPH study group 7; you have all been a pillar of strength and a source of much needed laughter and hope during this degree.

LIST OF ABBREVIATIONS

Abbreviation	Description
BP	Blood pressure
CO	Cardiac output
CVD	Cardiovascular disease
DM	Diabetes Mellitus
HCW	Health care workers
HICs	High-income countries
HL	Health literacy
HTN	Hypertension
IHD	Ischemic Heart Disease
LMICs	Low and middle-ineome countries
MoH	Ministry of Health
NCD	Non-Communicable Disease
OR	Odds ratio
PA	Physical activity
PR	Peripheral resistance S S Y of the
RFM	Raleigh Fitkin Memorian CAPE
SDG	Sustainable Development Goal
SES	Socioeconomic status
SSA	sub-Saharan Africa
UN	United Nations
WHO	World Health Organization

OPERATIONAL TERMS

Hypertension: Blood pressure of more than or equal to $140 / 90 \mathrm{mmHg}$ (Campbell et al., 2017).

Poor control: \quad Blood pressure above or equal to $140 / 90$ for non-diabetic patients.
(Upoyo, Setyopranoto and Pangastuti, 2021).
Risk factors: Factors that indicate a greater likelihood of developing the outcome.
(Bonita, Beaglehole and Kjellstrom, 2006).
Adherence: How well a patient cooperates with taking treatment the way they are supposed to and following the appropriate management interventions (Sarkodie et al., 2020).

UNIVERSITY of the WESTERN CAPE

TABLE OF CONTENTS

KEYWORDS ii
ABSTRACT iii
DECLARATION V
ACKNOWLEDGEMENTS vi
LIST OF ABBREVIATIONS vii
OPERATIONAL TERMS viii
LIST OF TABLES xiii
LIST OF FIGURES xiv
CHAPTER 1. INTRODUCTION 1
1.1 BACKGROUND 1
1.2 PROBLEM STATEMENT 3
1.3 RATIONALE 4
1.4 AIMS AND OBJECTIVES. 4
1.5 RESEARCH QUESTION 4
1.6 HYPOTHESIS OF THE STUDY 5
1.7 OUTLINE OF THE MINI THESIS 5
1.8 SUMMARY 5
CHAPTER 2. LITERATURE REVIEW 6
2.1 INTRODUCTION 6
2.2 THE BURDEN OF HYPERTENSION GLOBALLY, IN AFRICA AND LOCALLY 6
2.2.1 HYPERTENSION GLOBALLY 6
2.2.2 HYPERTENSION IN AFRICA 8
2.2.3 HYPERTENSION IN ESWATINI 8
2.3 RISK FACTORS FOR HYPERTENSION 9
FIGURE1: THE PATHOPHYSIOLOGY OF HT 10
2.4 RISK FACTORS FOR POOR BP CONTROL 10
2.4.1 PATIENT-RELATED FACTORS 11
2.4.1.1 PATIENT SOCIO-DEMOGRAPHIC FACTORS 11
2.4.1.2 CLINICAL PATIENT FACTORS 14
2.4.1.3 PATIENT LIFESTYLE FACTORS 16
2.4.2 HEALTH-SYSTEM RELATED FACTORS 18
2.4.2.1 ACCESS TO MEDICINE TREATMENT 18
2.5 CONSEQUENCES OF POOR BLOOD PRESSURE CONTROL 19
2.6 INTERVENTIONS TO CONTROL HTN GLOBALLY AND LOCALLY 20
2.7 SUMMARY 21
CHAPTER 3. METHODOLOGY 22
3.1 INTRODUCTION 22
3.2 STUDY DESIGN 22
3.3 STUDY SETTING 23
3.4 STUDY POPULATION 23
3.5 SAMPLING AND SAMPLE SIZE 23
3.6 DATA COLLECTION 24
3.7 DATA ANALYSIS 26
3.8 VALIDITY 26
3.9 RELIABILITY OF THE STUDY 27
3.10 GENERALIZABILITY OF THESTUDY 27
3.11 ETHICAL CONSIDERATIONS 27
3.12 SUMMARY 28
CHAPTER 4. RESULTS 29
4.1 INTRODUCTION 29
4.2 SOCIODEMOGRAPHIC PROFILE 29
TABLE 1: SOCIODEMOGRAPHIC PROFILE OF PARTICIPANTS 30
4.3 ANTHROPOMETRIC PROFILE 31
TABLE 2: PARTICIPANT'S BODY MASS INDEX 31
4.4 CLINICAL PROFILE OF PARTICIPANTS 31
TABLE 3: CLINICAL PROFILE OF PARTICIPANTS 32
4.5 LIFESTYLE PROFILE OF PARTICIPANTS 32
TABLE 4: LIFESTYLE PROFILE OF PARTICIPANTS 33
4.6 HEALTH SYSTEM-RELATED FACTORS 33
TABLE 5: HEALTH SYSTEM-RELATED FACTORS 34
4.7 BP TREATMENT AND ADHERENCE TO BP MANAGEMENT 34
TABLE 6: BP TREATMENT AND ADHERENCE TO BP MANAGEMENT 35
4.8 PREVALENCE OF UNCONTROLLED BP 38
4. 9 RELATIONSHIP BETWEEN BP CONTROL AND EXPOSURE VARIABLES 38
4.9.1 SOCIODEMOGRAPHIC CHARACTERISTICS OF UNCONTROLLED HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI. 38
TABLE 7: SOCIODEMOGRAPHIC CHARACTERISTICS OF CONTROLLED AND UNCONTROLLED HYPERTENSIVE PATIENTS ON TREATMENT 39
4.9.2 ASSOCIATION BETWEEN BP CONTROL AND BMI OF HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI. 41
TABLE 8: RELATIONSHIP BETWEEN BMI AND BP CONTROL 41
4.9.3 ASSOCIATION BETWEEN BP CONTROL AND CLINICAL CHARACTERISTICS OF HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI. 41
TABLE 9: RELATIONSHIP BETWEEN CLINICAL VARIABLES AND BP CONTROL 42
4.9.4 ASSOCIATION BETWEEN BP CONTROL AND LIFESTYLE CHARACTERISTICS OF HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI. 42
TABLE 10: RELATIONSHIP BETWEENLIFESTYLE VARIABLES AND BP CONTROL 43
4.9.5 AN ASSOCIATION BETWEEN BP CONTROE AND HEALTH SYSTEM RELATED FACTORS 44
TABLE 11: RELATIONSHIP BETWEEN BP CONTROL AND HEALTH SYSTEM VARIABLES 44
4.9.6 ASSOCIATION BETWEEN BP CONTROL AND BP TREATMENT AND ADHERENCE VARIABLES 45
TABLE 12: AN ASSOCIATION BETWEEN BP CONTROL AND BP TREATMENT AND ADHERENCE VARIABLES. 45
4.10 RISK FACTORS ASSOCIATED WITH POOR BP CONTROL IN HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI. 49
TABLE 13: UNIVARIATE LOGISTIC REGRESSION ANALYSIS OF FACTORS ASSOCIATED WITH POOR BP CONTROL IN HYPERTENSIVE PATIENTS ON TREATMENT 49
4.11 t-TEST COMPARING AVERAGES BETWEEN THE CONTROLLED AND UNCONTROLLED BP GROUPS. 51
TABLE 14: AVERAGES BETWEEN THE CONTROLLED AND UNCONTROLLED BP GROUPS. t-TEST ANALYSIS 51
4.12 SUMMARY 51
CHAPTER 5. DISCUSSION 53
5.1 INTRODUCTION 53
5.2 PREVALENCE OF POOR BP CONTROL IN HYPERTENSIVE PATIENTS ON TREATMENT 53
5.3 SOCIODEMOGRAPHIC CHARACTERISTICS OF HYPERTENSIVE PATIENTS WITH UNCONTROLLED BP ON TREATMENT 54
5. 4 RISK FACTORS ASSOCIATED WITH POOR BP CONTROL 57
5.5 BODY MASS INDEX 59
5.6 SUMMARY 60
CHAPTER 6. CONCLUSION AND RECOMMENDATIONS 61
6.1 INTRODUCTION 61
6.2 CONCLUSION 61
6.3 RECOMMENDATIONS 62
6.3.1 THE PREVALENCE OF POORLY CONTROLLED BP 62
6.3.2 SOCIODEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS 62
6.3.3 RISK FACTORS OF POOR BP CONTROL 63
6.3.4 FUTURE STUDY 65
6.3.5 UNAVAILABILITY OF DRUGS w........................the 65
6.4 STRENGTHS AND LIMITATIONS 66
REFERENCES 68
APPENDICES 84
APPENDIX 1: QUESTIONNAIRE 84
APPENDIX 2: CONSENT FORMS (ENGLISH AND SISWATI) 93
APPENDIX3: INFORMATION SHEETS (ENGLISH AND SISWATI) 96
APPENDIX 4 UNIVERSITY OF THE WESTERN CAPE ETHICAL CLEARANCE 107
APPENDIX 5: PERMISSION TO CONDUCT RESEARCH AT RALEIGH FITKIN MEMORIAL HOSPITAL 108
APPENDIX 6: ETHICAL CLEARANCE FROM THE ESWATINI HEALTH AND HUMAN RESEARCH REVIEW BOARD. 109

LIST OF TABLES

TABLE 1: SOCIODEMOGRAPHIC PROFILE OF PARTICIPANTS 30
TABLE 2: PARTICIPANT'S BODY MASS INDEX 31
TABLE 3: CLINICAL PROFILE OF PARTICIPANTS 32
TABLE 4: LIFESTYLE PROFILE OF PARTICIPANTS 33
TABLE 5: HEALTH SYSTEM-RELATED FACTORS 34
TABLE 6: BP TREATMENT AND ADHERENCE TO BP MANAGEMENT 35
TABLE 7: SOCIODEMOGRAPHIC CHARACTERISTICS OF CONTROLLED AND UNCONTROLLED HYPERTENSIVE PATIENTS ON TREATMENT 39
TABLE 8: RELATIONSHIP BETWEEN BMI AND BP CONTROL 41
TABLE 9: RELATIONSHIP BETWEEN CLINICAL VARIABLES AND BP CONTROL 42
TABLE 10: RELATIONSHIP BETWEEN LIFESTYLE VARIABLES AND BP CONTROL 43
TABLE 11: RELATIONSHIP BETWEEN BP CONTROL AND HEALTH SYSTEM VARIABLES 44
TABLE 12: AN ASSOCIATION BETWEEN BP CONTROL AND BP TREATMENT AND ADHERENCE VARIABLES 45TABLE 13: UNIVARIATE LOGISTIC REGRESSION ANALYSIS OF FACTORSASSOCIATED WITH POOR BP CONTROL IN HYPERTENSIVE PATIENTS ONTREATMENT.49
TABLE 14: AVERAGES BETWEEN THE CONTROLLED AND UNCONTROLLED BP GROUPS. t.TEST ANALYSIS 51
UNIVERSITY of the
WESTERN CAPE

LIST OF FIGURES

FIGURE1: THE PATHOPHYSIOLOGY OF HT .. 10

UNIVERSITY of the WESTERN CAPE

CHAPTER 1. INTRODUCTION

1.1 BACKGROUND

Hypertension (HTN) is an epidemic and impending public health disaster whose prevalence is estimated by the World Health Organization (WHO) to be the highest in Africa, where blood pressure control rates are also sub-optimal (Ferdinand, 2020). The WHO reported that only one in every five hypertensive adults globally has their BP controlled (WHO, 2021a). Jafar et al. (2018) reported that internationally an estimated one-third of hypertensive patients on treatment had controlled BPs. Even with the intensified public health strategies and efforts to upscale treatment, prevention and awareness of HT, BP control remains low, with a 93% prevalence of poor BP control reported in sub-Saharan Africa (SSA) (Mohhamed et al., 2021).

Hypertension or raised BP is defined as BP above or equal to $140 / 90 \mathrm{~mm} \mathrm{Hg}$ (Campbell et al., 2017). However, the American Heart Association describes it as a systolic BP of 130 mm Hg or more or a diastolic BP of 80 mm Hg or more (Tater, 2018). The recommendation is that hypertensive patients maintain a BP under $130 / 80 \mathrm{~mm} \mathrm{Hg}$ to reduce cardiovascular events (Lee et al., 2018). BP is uncontrolled when systolic blood pressure is greater than or equal to 140 mm Hg and/or diastolic BP is greater than or equal to 90 mm Hg (Upoyo, Setyopranoto \& Pangastuti, 2021). The WHO (2021) states this BP greater than $140 / 90 \mathrm{~mm} \mathrm{Hg}$ should occur on two separate days to diagnose HTN.

Guidelines from the European Society of CardiologistS grade hypertension as follows; Grade 1 being diastolic BP $90-99 \mathrm{~mm} \mathrm{Hg}$ and systolic BP $140-159 \mathrm{~mm} \mathrm{Hg}$, Grade 2 being diastolic BP $100-109 \mathrm{~mm} \mathrm{Hg}$ and systolic BP 160-179 mm Hg and Grade 3 being diastolic BP 110 mm Hg and above and systolic BP 180 mm Hg and above (Antignac et al., 2018). An increase in the BP grade is associated with an increased risk of cardiovascular disease (CVD) (Mancia et al., 2013).

The prevalence of hypertension is higher in low and middle-income countries (LMICs) compared to high-income countries (HICS) (Palafox et al., 2016). Poorly controlled BP is also seen more in LMICs like Eswatini, where up to three-quarters of deaths are due to CVD (WHO, 2020a). Hypertension is the leading cause of premature death, even more so in LMICs, where the lowest BP control rates are reported (Nugroho et al., 2022). Annually, HTN kills approximately 17.9
million people (WHO, 2020c). According to Sharp et al. (2020), 85\% of all untimely deaths (for ages 30 to 69) due to NCDs, including HTN, occurred in LMICs.

The modifiable risk factors for HTN included high alcohol and sodium intake, weight gain, smoking, a sedentary lifestyle and medications such as nonsteroidal anti-inflammatory Drugs (NSAIDs), stimulants and illicit drugs (Diancu, Dediu \& Lancu, 2018). There are also secondary causes, such as endocrine disease and a genetic predisposition to HTN (Taler, 2018).

Hypertension is the most common chronic NCD globally (Umemura et al., 2019). It is the largest contributor to the global disease burden (The Lancet, 2018a). More than being the biggest cause of untimely death, HTN worldwide also leads as the cause of disability and CVD (Boima et al., 2020; Mohamed et al., 2021). BP control is, therefore, a priority for public health globally (Tisdale et al., 2021).

Uncontrolled HTN causes damage to the brain resulting in strokes and dementia, and to the eye, where it causes retinopathy (Nadar et al., 2006). Moreover, it results in myocardial infarction and cardiomyopathy and in the kidneys and blood vessels; HTN causes kidney failure and atherosclerotic occlusive disease, respectively (Taler, 2018). These complications are avoidable through optimal BP control (Nadar et al., 2006). Reducing the prevalence of uncontrolled BP by 25% by 2025 is one of the 2011 sustainable development goals (SDGs) (Sacco et al., 2016). Eswatini is moving in the opposite direction, with NCDs not receiving adequate attention in the country in previous years (WHO, 2020b).

WESTERN CAPE

Reducing systolic BP by just 10 mm Hg is associated with a 13% drop in mortality, a 17% drop in coronary heart disease, a 27% drop in strokes and a 28% drop in heart failure (Sarfo et al., 2018). Hypertension and its poor control have significant social and fiscal consequences globally (Mills, Stefanescu \& He, 2016). It leads to the loss of life, disabilities and reduced quality of life from cardiovascular disease (Jafar et al., 2018). According to WHO (2020c), NCDs in LMICs spike household costs and drain incomes, thus contributing to poverty and repression of development. They also impede advancement towards sustainable development, which aims to decrease premature NCDS deaths by a third by 2030 (The Lancet, 2020).

1.2 PROBLEM STATEMENT

Despite the availability of local treatment guidelines for managing HTN and other NCDs, Eswatini has a dramatically growing NCDs burden with increasing related deaths and disabilities (MSF, 2017; Sharp et al., 2020). NCDs caused 37\% of Eswatini's mortalities in 2017, according to the World Bank (2019). Approximately 22% of adults in Eswatini were reported to be hypertensive (Sharp et al.,2020). Cardiovascular disease, a complication of HTN, was among the top five reasons for mortality in the country (WHO, 2018). Hypertension was classified as the number one disease among the top ten outpatient department (OPD) cases nationally in 2016 (Gbadamosi \& Tlou, 2020).

Despite being on treatment, several hypertensive patients, presented at RFM hospital daily with uncontrolled BP, and many already had the avoidable complications of HTN. In 2000, the prevalence of uncontrolled HTN in adults was about 30% in Eswatini (WHO, 2014). The burden of uncontrolled HTN negatively impacts the inadequate national healthcare budget (Tesfaye et al., 2017). This poor BP control could be due, ameng other reasons, to the misalignment between the population's healthcare needs and the available resources identified by the World Bank (2019). This misalignment causes a constant shortage of anti-hypertensive drugs in public hospitals and peripheral clinics (Shabangu \& Suleman, 2015). Poor BP control could also be due to the failure to decentralize NCDs care to more accessible peripheral clinics despite the national adoption of a CVD/ Diabetes care package managing NCDSs in community clinics in Eswatini (WHO, 2013). Disordered delivery of drugs from transportation challenges, inconsistent supervision from large hospitals and overwhelmed peripheral clinics impede this decentralization (Sharp et al., 2020). Little is known about the current prevalence of uncontrolled HT and the risk factors for poor BP control in Eswatini, as research on this problem appears scanty (WHO,2013).

It is imperative, therefore, to determine the risk factors for poor BP control in hypertensive patients on treatment in Eswatini. Determining the critical individual, health system and socio-economic factors associated with poor BP control in our setting will address this knowledge gap. It will further provide information that will support healthcare workers and the Health Ministry in Eswatini to plan improved, targeted and effective interventions to tackle the risk factors for poor BP control. Outcomes in our local hypertensive population will thus improve (Degli Esposti et al., 2004).

Improved BP control significantly decreases the complications of HTN, which place a massive burden on the health system and diminish patients' quality of life (Jafar et al., 2018). Measuring the proportion of hypertensive patients on treatment with uncontrolled BP and assessing the associations between individual factors, HTN treatment adherence, comorbid conditions, sociodemographic characteristics, and other variables of uncontrolled BP will aid in understanding the contributors to poor BP control.

1.3 RATIONALE

This study will provide new awareness and knowledge to empower and influence the practices of healthcare workers and the national NCDs committee managing HTN in Eswatini. This knowledge will assist in planning improved, tailored local strategies to improve BP control. The findings could inform policy and the allocation of resources to tackle the identified risk factors of poor BP control, thereby improving patient outcomes and reducing the prevalence of poor BP control in line with the 2011 Sustainable Development Goals (SDGs).

1.4 AIMS AND OBJECTIVES.

This study aimed to determine the prevalence of uncontrolled hypertension and the risk factors associated with poor BP control in hypertensive patients ontreatment in Manzini, Eswatini.

The objectives of the study were:

- To determine the prevalence of uncontrolled BP in hypertensive patients on treatment in Manzini, Eswatini
- To describe the sociodemographic characteristics of hypertensive patients with uncontrolled BP on treatment in Manzini, Eswatini.
- To determine the risk factors associated with poor BP control in hypertensive patients on treatment in Manzini, Eswatini.

1.5 RESEARCH QUESTION

What are the risk factors for poor BP control in hypertensive patients on treatment in Manzini, Eswatini?

1.6 HYPOTHESIS OF THE STUDY

Factors including physical activity, compliance to BP treatment and gender are not associated with BP control.

1.7 OUTLINE OF THE MINI THESIS

This thesis contains six chapters.
In Chapter 1, HTN is introduced and defined. Its trends globally and public health consequences, especially in LMICs like Eswatini, are outlined as well as the study's aim and objectives.

In Chapter 2, the literature on the burden of HTN internationally, in sub-Saharan Africa and locally is discussed. The causes of poorly controlled BP are focused on, as well as some of the risk factors in the literature and the consequences of poor BP control. Lastly, interventions globally, in SSA and locally to control HTN are discussed, and the chapter is summarized.

Chapter 3 outlines the methodology of the study. This section includes the study design, population, sampling methods and data collection process: data analysis, validity and reliability of the study instruments and techniques. The ethics considerations of the study conclude this chapter.

In Chapter 4, the study results are presented, including the prevalence of uncontrolled HTN, the sociodemographic characteristics Tof participants and the factors found to be associated with uncontrolled BP.

Chapter 5 discusses these results in relation to the available literature.
Chapter 6 presents the conclusion and recommendations.

1.8 SUMMARY

Hypertension is an increasingly important public health problem. Globally HT leads as a cause of disability and CVD, more so in LMICs like Eswatini, where BP control is the worst (WHO, 2020a). Understanding the risk factors of poor BP control is imperative to achieving SDG 3.4 (The Lancet, 2020).

CHAPTER 2. LITERATURE REVIEW

2.1 INTRODUCTION

The research aims to determine the prevalence of poorly controlled BP and determine the risk factors associated with poor BP control. This literature review will thus discuss the global, regional and local epidemiology and prevalence of HTN and poor BP control. It will further look at the risk factors for HTN and poor BP control reported in the literature and possible reasons for the problem of poor BP control in Eswatini. Patient-related sociodemographic, clinical and lifestyle risk factors for poorly controlled BP will be diseussed. Moreover, this chapter will focus on health systemrelated risk factors. Furthermore, it will look at the consequences of this epidemic and the interventions globally, regionally and locally aimed at controlling HTN.

Hypertension, the most critical risk factor for CVD, is a complex and multifactorial disease that usually does not cause noticeable symptoms (Sawicka et al., 2011). This allows it to go undetected for extended periods (Masilela et al., 2020; Cappuccio and Miller, 2016).

WESTERN CAPE

2.2 THE BURDEN OF HYPERTENSION GLOBALLY, IN AFRICA AND LOCALLY

Hypertension is a global health crisis (The Lancet, 2018a). Due to the demographic transition occurring globally, the elderly population has increased (The Lancet, 2016). This increase comes with an increase in the prevalence of NCDs (Oktaviyani et al., 2022). There are regional variances in the prevalence of raised BP (Mills, Stefanescu \& He, 2016). A decrease in uncontrolled BP was noted HICs from 1975 to 2015, whereas LMICs such as SSA saw an increase in BP (Zhou et al., 2021).

2.2.1 HYPERTENSION GLOBALLY

In 2000, 972 million people worldwide had HTN, with the most considerable burden carried by LMICs (Masilela et al., 2020). In 2008, nearly 1 billion people had uncontrolled hypertension
globally, with the highest prevalence of 46% in Africa (Cappuccio \& Miller, 2016). In 2015 it was reported that one in five people aged 18 years and over globally had HTN comprising 25% of men and 20% of women (Gbadamosi \& Tlou, 2020). It is projected that in the year 2025, up to 1.5 billion people worldwide will be living with HTN (Du et al., 2018). LMICs carry two-thirds of the burden of CVD, which is a consequence of poorly controlled HTN and two-thirds of CVD mortality (WHO, 2020a). Cardiovascular diseases, a complication of uncontrolled HTN, are a principal cause of mortality in LMICs (McKenzie et al., 2020). CVD also occurs at younger ages in LMICs (Berra et al., 2011). This is not in line with attaining SDG 3.4 of decreasing premature deaths from NCD by a third by 2030 (Salinas and Kones, 2018).

Literature from varying studies in differing settings, using different designs, methods and sample sizes, demonstrates high levels of poor BP control that vary within regions, countries and socioeconomic statuses. Besides the different methodologies, settings and populations, the variations can be attributed to the differing and evolving risk factor characteristics in the different regions over time (Mills, Stefanescu \& He, 2016). However, BP control is still noted to be worse in LMICs (Zhou et al., 2021).

An earlier systematic review of the differences in BP control between developing and developed countries reported no significant differences in BP control (Pereira et al., 2009). On the other hand, a more recent systematic review of 33 studies on the disparities in the prevalence of hypertension control globally, reported a prevalence of poor BP control ranging from 73.7% to 30.4% in HICs and 49.6% to 94.2% in LMICs (Elnaemetal, 2022). Similarly, a larger cross-sectional study on 163397 hypertensive adults across low-, middle-, and high-income countries including South Africa, reported the worst BP control in the poorest countries, with up to 90% of hypertensive patients in some LMICs uncontrolled (Palafox et al., 2016).

In a cross-sectional study on 999 hypertensive patients from four primary care centers in Chile, a LMIC, a 46.9% prevalence of poor BP control was reported, which was higher than a previous similar study reported in Chile. This study reported the low 38.5% adherence of the study participants to BP treatment as a significant risk factor for poor BP control. Researchers acknowledged however, that the tool used to measure adherence may have under estimated the actual adherence to BP treatment (Sandoval, Nazzal and Romero, 2018). A similar cross-sectional study in Botswana on 280 hypertensive patients from ambulatory care clinics in rural and semi-
urban communities reported a 55% prevalence of poor BP control and cited medication errors as a significant risk factor for poor BP control (Gala et al., 2020).

2.2.2 HYPERTENSION IN AFRICA

Hypertension was identified as the biggest priority to reduce stroke and heart disease in the African continent by the Pan African Society of Cardiology (PASCAR), as the WHO projected that Africa has the largest number of individuals affected by HTN (WHO, 2015). An estimated 46% HTN prevalence was reported in Africa, which is the highest globally (Dzudie et al., 2018). A study on HTN prevalence in Sub-Saharan Africa in 2017 showed low levels of well-controlled BP across the region and differing burdens between and within countries of this massive public health problem, the highest prevalence of poor BP control being in South Africa. The same study further reported that many countries lack data on HTN prevalence and the prevalence of poor BP control, which this study aimed to measure in Eswatini (Gómez-Olivé et al., 2017).

This high and rising uncontrolled BP prevalence is credited partly to demographic transitions such as the increasing ageing population (Wirtzet al., 2016). Urbanization associated with unhealthy diets and reduced physical activity potentially fuels poor BP control in SSA (Mills, Stefanescu \& He, 2016). The suboptimal and disorganized control rates in SSA are attributed to an amalgamation of factors such as poor healthcare systems that are short of resources, including maintainable drug treatment and non-existent population-level strategies to improve BP control (The Lancet, 2012). These are barriers to treatment compliance (Husain et dl., 2020). It is estimated that 250000 annual mortalities could be prevented in SSA if the BP was adequately controlled; therefore, BP control should be prioritized (Cappuccio \& Miller, 2016).

2.2.3 HYPERTENSION IN ESWATINI

Eswatini, formerly called Swaziland, is a LMIC in southern Africa with a high and rising CVD risk factors and burden (Sharp et al., 2020). CVD accounts for 11% of the annual mortality (Palma et al., 2018). CVD and chronic kidney disease, both complications of poor BP control, are among the top five causes of death in Eswatini (WHO, 2018; World Bank, 2019). In 2000, a 30\% uncontrolled BP prevalence was recorded in Eswatini (WHO, 2014). However, the current situation is unknown due to a dearth of data.

Hypertensive patients frequently present late and with complications of elevated BP, and thus attempts have been made to decentralize HTN care for accessibility to remote rural communities, improve health-care worker expertise and develop treatment guidelines (Sharp et al., 2020).

2.3 RISK FACTORS FOR HYPERTENSION

Hypertension is a progressing heterogeneous CVD caused by different but interrelated pathophysiological pathways as illustrated in Figure 1 (Vikrant \& Tiwari, 2001). Hereditary factors and environmental factors such as unhealthy diets, smoking, obesity and excessive intake of alcohol play various roles in the pathophysiology of HTN (Tasnim et al., 2020). BP is the pressure required to move blood through the circulatory system and is the result of peripheral resistance in the vascular system (PR) or the tone in the arteries, and the amount of pump action of the heart called the cardiac output (Jhanji, Dawson \& Pearse, 2008). Cardiac output and PR are, in turn, influenced by various factors such as sodium retention in the kidneys and stressors, which cause sympathetic over-activity and changes in cell membranes of blood vessels which cause vascular contraction or cardiac hypertrophy (Vikrant \& Tiwari, 2001).

FIGURE1: THE PATHOPHYSIOLQGOF HT
*Adopted from Vikrant \& Tiwari (2001).

2.4 RISK FACTORS FOR POOR BP CONTROL

Denison et al. (2007) grouped barriers to BP control (in ta conceptual framework into 1) predisposing factors (knowledge and attitude about HTN and its causes and complications; quality of life; perceived life threat and health as well as priorities), 2) enabling factors (healthcare resources such as medication shortages, health behaviour inadequacies and lack of patient involvement and participation in their management) and 3) reinforcing factors (lack of social support, which compounds stress and satisfaction with care). Dzudie et al. (2018), in developing a roadmap to control HTN in Africa by 2025, also grouped barriers to BP control as government or health system-related, health care professional related and patient-related.

2.4.1 PATIENT-RELATED FACTORS

2.4.1.1 PATIENT SOCIO-DEMOGRAPHIC FACTORS

GENDER

Literature reveals gender disparities in BP control across countries and studies for varying reasons. An American cross sectional survey on gender differences in BP control in hypertensive adults aged 18 and older, found that although women were more likely to adhere to treatment than men, men were significantly more likely to achieve BP control even when differences in age were adjusted for (Gu et al., 2008). This was not consistent with findings from a systematic review of the gender differences in mid-life HTN in the Arab region however, which showed that more middle-aged rather than younger women compared to men, had uncontrolled BP, possibly due to the associated menopause, decreasing physical activity and obesity (Akl et al., 2017). These findings could reflect the effect of age-associated-changes on BP control noted in some studies (Mohamed et al., 2021). Consistently, an international survey conducted in 26 countries, looking at BP control in males and females, Caueasian, Asian and Hispanic 18 years and older, reported poorer systolic BP control in women and that BP in women increased with advancing age which was not noted in males (Thoenes etal., 2010).

South African and Zimbabwean cross=sectional studies looking at determinants of uncontrolled HTN found no significant differences in BP control between the sexes (Masilela et al., 2020; Goverwa et al., 2014). Conversely, another African study in Botswana revealed better BP control in females than males attributing this to better awareness of the disease and treatment and healthier lifestyle choices in females (Tapela et al., 2020). Similarly, a 2017 survey in Jordan looking at HT prevalence and control among women and men aged 18 to 90 years showed that 30.7% of hypertensive males on treatment were controlled compared to 35% of hypertensive females (Khader et al., 2019). These findings in literature also highlight the possibility that different cultural and behavioral roles played by the different genders in the various countries at varying ages, influence activity levels, lifestyle and dietary patterns (Dressler, Bindon \& Neggers, 1998). Furthermore, different findings may mirror differing health-seeking behavior between males and females in different nations (Gu et al., 2008).

Abstract

ADVANCED AGE

Advanced age is consistently reported in the literature to be associated with other comorbidities, such as diabetes and obesity, due to reduced activity, which are important risk factors of poor BP control (Mohamed et al., 2021). Older age is also associated with forgetfulness and cognitive impairment, which impair treatment adherence and consequently lead to poor BP control (Goverwa et al., 2014b). A Korean study on elderly hypertensive patients confirmed this and found poor cognitive functioning in the elderly to be associated with unsatisfactory medication adherence levels (Cho et al., 2018). A study done in the USA assessing the patterns of hypertension across different ages similarly reported that more older hypertensive patients on treatment were uncontrolled than the patients younger than sixty years on treatment (Franklin et al., 2001).

In A Zimbabwean analytical cross-sectional study on uncontrolled HTN among hypertensive patients on anti-hypertensive treatment aged eighteen and above, the older age groups were found to have a higher prevalence of uncontrolled HT. This was attributed to the differing National hypertension treatment guidelines in Zimbabwe, where the systolic BP at which treatment is initiated in the elderly is 160 mmHg . (Goverwa et al., 2014b). In a similar South African study in the Mkhondvo Region, on patients aged eighteen and older, however, older age was not associated with uncontrolled BP (Masilela et al., 2020). This dissimilarity in findings could possibly reflect more effective, accessible and sustained HTN care being available to the elderly in the Mkhondvo region, with sufficient availability of anti-hypertensive hypertensive drugs.

HEALTH LITERACY (HL)

Du et al. (2018) define health literacy as the level reached by an individual to be aware of, understand, acquire and practice basic health care information necessary for healthy decisionmaking. Studies reported varying effects of good health literacy on BP control, as notably, various other complex factors influence disease outcomes even with good health literacy (Isa et al., 2021; Willens et al., 2013). Gomez-Olive et al. (2017), in a cross-sectional study conducted in four African countries, stated that low awareness levels of HTN and its consequences negatively impact BP control. This was also reported in a cross-sectional survey of HTN care in South Africa
(Dennison et al., 2007). Jongen et al. (2019), in a mixed methods cohort and qualitative study to understand the knowledge and perception of HTN in a rural South African community, also highlighted the importance of increasing HTN knowledge in improving BP control.

However, an integrative review of articles to gain an understanding of the effect of HL on health outcomes in HTN showed higher HL scores to be associated with a higher BP control rate in some studies and that some did not find an association between higher HL and achievement of improved BP control(Du et al., 2018). Although low HL may cause poor knowledge of HTN, there is not enough evidence in literature to associate poor health literacy with inadequate BP control (Willens et al., 2013).

SOCIO-ECONOMIC STATUS (SES)

Contrary to the historical belief of lower CVD risk factors in poorer settings due to heavy manual labor and largely plant-based diets, literature reports similar differing findings on the effects of SES on BP control as a consequence of caloric intake and lifestyle behavior (Shariq \&Mckenzie, 2020; Sung et al., 2018). An analysis of data from 105 household surveys, on CVD and thus elevated BP risk factors among 78 LMICs reported that higher levels of overweight and obesity, behavioral risk factors and a lesser likelihood of appropriate BP treatment were notable in low SES settings (Geldsetzer et al., 2022). This can be attributed to the increasing consumption of more affordable high-calorie foods and more sedentary lifestyles associated with industrialization in LMICs (Mills, Stefanescu \& He, 2016).

In a 2016 cross-sectional survey examining wealth-related inequalities in BP control in HICs and LICs, BP control was observed to be pro-rich and socio-economic status was reported to impact access to health care services and treatment and thus BP control (Palafox et al., 2016). Jongen et al. (2019), further pointed to poverty as a barrier to healthy lifestyle choices and access to health care, which both influence BP control.

In SSA, poverty is notably a major hindrance to hypertensive patient care and a driver of the poor control of this disease with fatal consequences (Ferdinand, 2020). A meta-analysis assessing access to CVD medicines in LMICs, reported that the effect of the poor economic level of a country on patients taking appropriate BP medicines surpassed that of factors such as age and gender
(Wirtz et al., 2016). The Multination EIGHT study conducted by Antignac et al. (2018) in 12 countries to measure the association between BP control and SES in SSA revealed a progressive rise in poor BP control with declining levels of individual affluence in LMICs. This study also reported a rising grade of HT with declining levels of hypertensive patients' wealth.

2.4.1.2 CLINICAL PATIENT FACTORS

CO-MORBIDITIES

In an American study assessing the role of co-morbidities in the management of HTN, Kressin et al. (2014) reported poor BP control in up to 70% of patients with co-morbidities, stating that polypharmacy and confusion regarding the information about the different illnesses led to an interruption in the proper adherence, management and control of HTN resulting in HTN not being prioritized. This is supported by other studies citing the complexity of medicines as a contributor to poor adherence (Benner et al.,2009). In contrast, Cho et al. (2018), in a Korean study, showed good BP medicine adherence in diabetic, stroke and dyslipidemia patients yet showed poor adherence to BP medicine in cancer patients. These findings raise the question of whether adherence to BP treatment could depend on the type of and possibly on the prognosis of the existing co-morbidities in hypertensive patients from differentregions (Shin et al., 2010).

Mohamed et al. (2021), in a systematic review and meta-analysis looking at the prevalence of poorly controlled BP in people with co-morbidities in SSA, reported an alarming prevalence of 78.6% of poorly controlled HTN in Sub-Saharan Africa (SSA) in people with co-morbidities. Of note, however, was that most of the studies analyzed by this review were hospital-based and did not use random sampling methods. A study in Indonesia on the risk factors of HTN found a significant association between a diabetes mellitus (DM) diagnosis and having a raised BP (Oktaviyani et al., 2022). It is estimated that up to 74% of adult diabetic patients have uncontrolled BP (Passarella et al., 2018). Literature shows that DM and other comorbidities contribute to the pathophysiology of elevated BP (Gu et al., 2022).

OBESITY

Obesity, defined as a BMI of 30 kg per square meter and above, is a global public health problem whose prevalence is escalating at pandemic rates in developing countries due to factors such as urbanization, sedentary lifestyles and unhealthy diets rich in calories (Boachie et al., 2022). Obesity accounts for up to 78% of HT cases (Shariq \& Mckenzie, 2020). Obesity is reported to cause HT through multifaceted mechanisms, including quickening the heart rate, increasing the cardiac output and water retention (Vikrant \& Tiwari, 2001). Increases in BMI are therefore linked to increased BP (Chu \& Singh, 2021). The obesity prevalence is nearly double what it was 30 years ago, and due to its reported expedition of the sequelae causing raised BP , improving its avoidance and control is considered critical in BP control (Leggio et al., 2017). A cross-sectional analytical study conducted in Zimbabwe on hypertensive patients on treatment found obesity to be an independent risk factor for poor BP control (Goverwa et al., 2014). In a similar cross-sectional study on hypertensive patients on treatment in Mkhondo, South Africa, obesity was also significantly associated with uncontrolled BP (Masiłela et at., 2020).

However, other literature reports what is called "The obesity paradox", where being obese is unexpectedly protective and obese patients have superior prognosis in certain scenarios in HT and CVD patients (Hainer \& Aldhoon-Hainerová, 2013). Examples include hypertensive patients with obesity having lower mortality rates and lower incidences of myocardial infarction when compared to hypertensive patients with normal weights (Banack \& Kaufman, 2013). A further example is the lower CVD deaths in the obese elderly than in the elderly with normal weight, which could be due to the possibility of a raised BMI, meaning better nutritional standing because BMI does not distinguish lean mass from fat mass (Elagizi et al., 2018).

2.4.1.3 PATIENT LIFESTYLE FACTORS

ALCOHOL USE

Tasnim et al. (2020) report that consuming more than the maximum amount of three alcoholic drinks for women and four drinks for men daily escalates the CVD risk. Consuming 3-4 alcoholic drinks a day was similarly reported to be associated with raised BP in a worldwide epidemiological study done in 32 countries on males and females of ages 20 to 59 looking at salt and various factors influencing BP control (Stambler et al., 1997). Alcohol has both acute and chronic effects on BP. It increases plasma rennin which initiates a cascade culminating in sodium and water retention (Kawano et al., 2004). It also leads to increased PR and stimulates the sympathetic nervous system culminating in responses such as increased heart rate (Tasnim et al., 2020).

In a systematic review and meta-analysis looking at the effects of reducing alcohol consumption on BP, a dose-dependent BP reduction in BP was reported in individuals who had more than two alcoholic drinks a day. However, the decrease in BP was noted to be larger in the individuals who had over six alcoholic beverages per day, with a 50% reduced alcohol intake resulting in a mean difference in systolic BP of -5 mm Hg (The Lancet, 2017). In another systematic review of the effects of alcohol on BP , it was reported that large doses of alcohol resulted in up to a 3.77 mm Hg rise in BP twelve hours after consumption compared to a placebo (Tasnim et al., 2020).

Another systematic review and mētä-analysis reportēd a protective effect of consuming moderate to low amounts of alcohol for CV; however, this study also reported lower mortality in middleaged males and females who consume low to moderate amounts of alcohol (Yoon et al., 2020).

SMOKING

The chemicals, including nicotine in smoke, are reported to cause an increase in BP by a myriad of mechanisms, including vasoconstriction and hindering the neurotransmitters involved in maintaining normal blood pressure, thus impairing BP control (Landini \& Leone, 2011; Park et al., 2018). An experimental study on the effects of smoking on HTN reported that oxidative stress from smoking causes damage to the vasculature and consequently weakens vascular function, further raising blood pressure (Dikalov et al., 2019). The chemicals in smoke metabolically interfere with the body's response to BP medicines which worsens BP control (Cohen \&

Townsend, 2009). Results from a cross-sectional survey of participants in over 100 countries worldwide supported these findings and reported a significantly raised BP in smokers (The Lancet, 2018a). Other studies, however reported no significant BP elevation in smokers and attributed this to the vasodilator effect of nicotine metabolites (Cohen \& Townsend, 2009).

PHYSICAL ACTIVITY (PA)

Studies report a positive effect of sufficient PA on BP control (Schroeder et al., 2019; Ng \& Popkin, 2013; Kokkinos et al., 2009). PA was defined as skeletal muscle contraction associated with body movement that raises energy usage beyond normal levels (Physical Activity Guidelines Advisory Committee, 2008). A systematic review of the effect of exercise on CVD risk factors reported that BP decrease due to exercise was greater in hypertensive patients than in normotensive patients (Wasfy \& Baggish, 2016). The Physical Activity Guidelines for Americans from the United States Health Department recommended a minimum of 150 to 300 minutes of moderateintensity PA a week or 75 to 150 minutes of vigorous-intensity PA per week to reduce BP and slow down CVD progression (Piercy \& Troiano, 2018). A systematic review examining the relationship between PA and BP also reported that PA reduces BP in hypertensive patients (Pescatello et al., 2019).

A study analyzing global survey data reporting the prevalence/of insufficient PA (less than 150 minutes per week of moderate-intensity PA or 75 minutes per week of vigorous-intensity PA) reported that SSA was among the three regions with the lowest levels of insufficient PA. Furthermore, this study reported a 16.2% prevalence of inadequate PA in LICs compared to a 36.8% prevalence in HICs (The Lancet, 2018b). The poor activity levels in HICs could be a consequence of the increasingly deskbound occupations in urbanized, first-world settings and the greater availability of motor-powered transportation (Ng \& Popkin, 2013).

Exercise is a critical non-pharmacological method of reducing BP as well as the risk of other factors that impair BP control, such as obesity and diabetes, by different mechanisms (Kokkinos et al., 2009; Pescatello et al., 2019). It is affordable in relation to drug treatment and has no adverse effects, yet it is reported to lower BP by up to 12 mm Hg (Awotidebe et al., 2014).

DIETARY INTAKE

Including vegetables and fruit in the diet and restricting salt intake are two major dietary measures consistently found to be associated with a reduction in BP (Filippou et al., 2021; Savica, Bellinghieri \& Kopple, 2010; Taler, 2018). The WHO recommended daily salt intake is less than 5 grams (Ghimire et al., 2021). This amount is supported by The International Society of Hypertension and The World Hypertension League (Campbell et al., 2015). The average salt intake in most countries is, however, reported to be 10 grams daily (Feng et al., 2020).

The intake of salt in excess leads to increases in fluid volume via its effect on the homeostasis of fluid, thus causing an increased cardiac output. It also increases PR as it affects vasculature reactivity through inflammatory and hormonal pathways (Feng et al., 2020). The INTERSALT worldwide study looking at the effect of sodium excretion on BP showed that reducing daily salt intake by just 100 mg could lower systolic BP by up to 3.4 mm Hg (Stambler, 1997). Goverwa et al. (2014), in their Zimbabwean analytical cross-sectional study on 354 hypertensive patients, reported that adding salt to prepared food was an independent risk factor for poor BP control.

Five portions of fruit and vegetables a day, or 400 grams a day, is recommended by the WHO to prevent CVD (Frank et al., 2019). These foods have a large potassium content which has a BPlowering effect (Stamler et al., 1989). Results from a meta-analysis of prospective cohorts looking at the relationship between CVD risk and fruit and vegetable intake showed improved fruit and vegetable intake to have an inverse association with CVD risk (Zurbau et al., 2020). A nutritional transition has followed the urbanization in LMICs, where consumption of processed and highcalorie foods has surpassed that of fruits, vegetables, whole grains and legumes, leading to an alarming rise in HTN and other NCDs (Frank et al., 2019).

2.4.2 HEALTH-SYSTEM RELATED FACTORS

2.4.2.1 ACCESS TO MEDICINE TREATMENT

Appropriate HTN medications are critical in BP control and CVD prevention (Wirtz et al., 2016). A meta-analysis assessing access to CVD medicines in LMICs found that essential BP medicines were only available in 26% of public hospitals (Wirtz et al., 2016). This finding highlights the
scarcity of BP medicines in LMICs (Shabangu \& Suleman, 2015), and the inequalities in access to appropriate healthcare across socio-economic groups (Jongen et al., 9019). A study by Husain et al. (2020), also assessing the accessibility of anti-hypertensive medicines in LMICs reported 30\% of hypertensive adults had access to treatment, and only 10% attained BP control. These findings were in keeping with literature that reported inadequate availability and unaffordability of antihypertensive medication as a barrier to treatment adherence and BP control (Elnaem et al., 2022). One of the nine global targets towards attaining the 25% reduction in untimely CVD deaths by 2025 is reaching 80% availability of essential NCDs medicines (Salinas \& Kones, 2018). The poor access to antihypertensive medicines hinders the achievement of this 25% reduction in mortality (Kishore et al., 2015).

2.5 CONSEQUENCES OF POOR BLOOD PRESSURE CONTROL

CVD, stroke and heart disease and premature death are major, preventable health consequences of uncontrolled HTN globally (Jafar et al., 2018; Dzudie et at., 2018). Uncontrolled HTN also results in chronic kidney disease, according to Tesfaye et al. (2017). Heart disease and cerebrovascular disease are the number 1 and 3 causes of death globally (WHO, 2020c). Approximately 49% of ischemic heart disease cases and 62% of cerebrovascular disease cases are attributed to uncontrolled BP (Wirtz et al., 2016). HTN is also one of the leading risk factors for dementia (Zhou et al., 2021).

Strokes and kidney failure require expensive extended treatment and may result in loss of jobs and income due to disability and absenteeism (Xiao et al., 2019). The effect of uncontrolled HTN and CVD on socio-economic development is massive (Skeete et al., 2020). Productive and fruitful years of life are lost due to disability (Cappuccio \& Miller, 2016b). The limited health resources in LMICs are usually diverted to tertiary care for the complications of HT, such as kidney failure (Schutte et al., 2021). This additionally worsens the economic impact (Cappuccio \& Miller, 2016). Millions are driven into poverty annually as healthcare costs of uncontrolled BP and its complications raise living expenses and drain resources in households, thus impairing poverty reduction (Sorato, Davari \& Kebriaeezadeh, 2022; Wang \& Zhou, 2020). The impact of
uncontrolled HTN is also more pronounced in disadvantaged groups with further restricted access to adequate healthcare and further worsening health inequalities (WHO, 2021b). Uncontrolled BP thus places a massive strain on the health system and diminishes patients' quality of life and economic status (Skeete et al., 2020).

2.6 INTERVENTIONS TO CONTROL HTN GLOBALLY AND LOCALLY

The World Health Organization supports countries in strengthening the control and prevention of CVD and HTN reduction (Husain et al., 2020). In 2013, the NCDs Global Action Plan 2013-2020 was released for NCD prevention and control to lower the global high BP prevalence by 25% (WHO, 2013). The UN SDG 3.4, aiming at reducing CVD-related mortality by a third, is being supported by The World Heart Federation and The Lancet Commission, which delivered a roadmap to achieving this goal (Gupta \& Xavier, 2018). The WHO created guidelines for managing BP specifically for LMICs use (WHO, 2021a). These target the unique problems faced by these LMICs, which include high rates of complications of HTN and scarce resources such as medicines (Nugroho et al., 2022).

The Global Hearts Initiative launched by the United States Centers for Disease Control and Prevention (U.S CDC), WHO and other partners in 2016 includes a package with six modules with approaches to cardiovascular health improvement globally. since this initiative's inception in 2017, three million hypertensive patients in LMICs have been started on treatment based on standardized HTN control protocols (WHO, 2021a).

Dzudie et al. (2018) reported that to lower the HTN burden in Africa, the Pan African Society of Cardiology implemented valuable and simple evidence-based clinical management guidelines and allocated resources for timely HTN detection and effectual treatment. In Eswatini, the government attempted a national approach to lower mortality from NCDs, which includes implementing a combined and comprehensive NCDs service in all community clinics and decentralizing NCDs care to clinics to improve access to care and facilitate the early presentation and management of NCDs patients (Sharp et al., 2020). Interventions targeting the risk factors of poor BP control are critical in Eswatini to improve BP control (Ministry of Health Swaziland Government, 2014).

2.7 SUMMARY

HTN is the biggest risk factor for CVD, leading to mortality and morbidity globally (Boima et al., 2020). Literature from different studies worldwide reports that the largest burden of HTN rests on LMICs such as Eswatini, which also have the most suboptimal levels of control (WHO, 2020a). Both innate and environmental factors cause HTN (Vikrant \& Tiwari, 2001). Some risk factors for poor control include excessive salt consumption, older age, obesity, a sedentary lifestyle, smoking and excessive alcohol use (Tasnim et al., 2020). BP control is crucial in preventing the alarming number of premature deaths caused by uncontrolled BP (Dzudie et al., 2018). To achieve the SDG of Reducing the prevalence of uncontrolled BP by 25% by 2025 and decreasing the premature deaths from NCDs by a third by 2030, the WHO supports countries by strengthening control and prevention strategies for HTN (Husain et al., 2020; The Lancet, 2020). Health systems orientation as well as public health and clinic-based interventions are necessary to increase HTN control and prevent the abysmal consequences of this epidemic (Masilela et al., 2020).

CHAPTER 3. METHODOLOGY

3.1 INTRODUCTION

This chapter outlines the study design used in the research and describes the study's setting and the study population. The sample size calculation is described, as well as the sampling method used. The data collection and analysis is then outlined, followed by a description of how validity, reliability and generalizability were ensured. The ethical considerations conclude the chapter.

3.2 STUDY DESIGN

An observational cross-sectional deseriptive survey study was used for this research because this study design observes and describes the state of things at a definite point in time (Zheng, 2015). The study aimed to determine the current prevalence of uncontrolled BP in hypertensive patients on treatment in Manzini, Eswatini. This design allowed the assessment of the prevalence of uncontrolled HTN and simultaneously assessed many exposures and the outcome of the study participants; the researcher did not follow up with participants. The cross-sectional study also allowed the researcher to calculate theiodds ratios. Limited timewas available to do the research, and cross-sectional studies can be done in a short time (Setia, 2016).

The study's objectives included the description of the demographic characteristics of hypertensive patients with uncontrolled BP on treatment and the determination of risk factors associated with poor BP control in hypertensive patients on treatment in Manzini, Eswatini. This design allowed the researcher to answer the research question and meet the study objectives by observing a population of hypertensive patients on treatment, comparing the controlled and uncontrolled patient groups and identifying statistically significant exposure variables in the analysis that were associated with the outcome of poor control in the uncontrolled BP patients (Hennekens \& Buring, 1987). Cross-sectional studies are also very low-cost, making them ideal for the researcher's resource-limited situation (Levin, 2006).

3.3 STUDY SETTING

The study was set at RFM hospital, the only regional and referral hospital in the Manzini region of Eswatini (formerly Swaziland). The hospital manages roughly 200000 patients yearly, and 40% of patients seen are NCDS patients (Shabangu \& Suleman, 2015). Manzini is the most populous of the four regions in the country, with 31% of the country's population (WHO, 2019b). Eswatini has a population of about 1.4 million (Dlamini et al., 2019) and is a LMIC in southern Africa, where high BP cases and the factors contributing to HTN and other NCDs are steadily rising (Tisdale et al., 2021; Sharp et al., 2020). An estimated 42.5% of the Eswatini population has raised BP (Ministry of Health Swaziland Government, 2014). The majority of the country's hypertensive patients are managed in hospitals like RFM rather than in primary health care clinics (Sharp et al., 2020).

3.4 STUDY POPULATION

The study population included hypertensive patients aged 40 years and older living in Manzini. These were patients on anti-hypertensive drug treatment at the hospital for at least six months prior to data collection. This limited age range was influenced by the observation that the vast majority of hypertensive patients on treatment in the studysetting were aged 40 and above. The exclusion criteria were patients presenting for the first time, pregnant women, severely ill patients, mentally disabled patients, patients with secondary HTN and patients who have not given informed consent.

3.5 SAMPLING AND SAMPLE SIZE

A probability sample was used to achieve representativeness, make all study population members equally likely to be in the sample and allow the results to be generalized. The sampling method was systematic. Patients were assigned numbers in order of arrival. Sampling started with every third patient coming into the clinic that day. Every third patient afterwards was invited to participate, was told the purpose of the study, and provided informed consent. When a chosen patient declined to participate, the next one in line was requested to participate. The sample size was calculated using this sample size formula for a descriptive study $\underline{\boldsymbol{n}=\mathbf{Z}^{2} \mathbf{p q} / \mathbf{e}^{\mathbf{2}} \text { (Kasiulevičius, }}$

Šapoka \& Filipavičiūte, 2006). In the formula, n is the minimum number of participants, Z is the test statistic, the level of significance corresponding to the 95% confidence interval $=1.96, p$ is the assumed population with the desired attribute, and according to literature, only a third of HT patients are controlled so 33% (0.33) are uncontrolled (Kumara et al., 2013; Jafar et al., 2018). The q is $1-\mathrm{p}(=67 \%$ or 0.67$)$, and e is the desired level of precision or sampling error which is the range where the true population value is estimated to lie at $=0.05(5 \%)$. Therefore, $\mathrm{n}=((1.96)$ (1.96) (0.67) (0.33))/ ((0.05) (0.05)) =339.8 (Naing, 2003).

3.6 DATA COLLECTION

Randomly selected participants meeting the inclusion criteria were requested to participate in the study after their informed consent was obtained. Participants were ensured confidentiality, and the purpose of the study was explained to them. Questions were asked of participants in a face-to-face interview, and the researcher administered the questionnaire. This made the data collection process quicker and reduced errors and incomplete data. All data were collected in the same way and in the same confidential quiet room to maintain consistency.

COVID-19 prevention regulations were adhered to by firstly screening all participants for symptoms and taking participants' temperatures to identify possibly infected patients and refer them for testing and treatment. Data was collected in a well-ventilated room with only one participant and the researcher inside at a time, and both wore protective masks. The hands of both participant and researcher were sanitized before data collection, and the equipment for measuring BP, weight and height were sanitized after each participant. The researcher washed hands with soap and water after each participant and disinfected all surfaces. A social distance of 1.5 meters was maintained during interviews (Ağalar \& Öztürk Engin, 2020).

A printed, interviewer-administered questionnaire (Appendix 1), was adapted from the Eswatini WHO and Ministry of Health 2014 Stepwise approach to surveillance survey (STEPS) and translated to SiSwati. The questionnaire was organized into sections collecting data on sociodemographic variables, treatment and medication adherence variables, clinical variables, lifestyle and behavioural variables, psychosocial variables, health literacy variables, provider-
related variables and health system-related variables, with a total of 23 variables (Ministry of Health Swaziland Government, 2014).

To quantify physical activity, the International Physical Activity Questionnaire (IPAQ), was used. This allowed the classification of participants into 1) inactive (less than 30 minutes per week of moderate physical activity (MVPA) such as carrying a bucket of water and walking for recreation or vigorous physical activity such as digging or lifting heavy weights), 2) insufficiently active (30 to149 minutes per week of MVPA) and 3) sufficiently active (150 or more minutes per week MVPA) (Stelmach, 2018). The CAGE questionnaire was utilized to measure alcohol abuse. This tool consists of four questions where two or more positive answers suggest alcoholism (CAGE positive) (Pang et al., 2020). The Hill-bone compliance scale, adopted from neighboring South Africa, measuring treatment compliance was also used (Faulkner, Cohn \& Remington, 2006). This consists of 10 questions with 6 Likert scale answers, giving a total score of 60 . A score of 75% and above was classified as good compliance, and a score below 75% was classified as poor compliance (Lambert et al., 2006).

Health literacy on HTN was measured by asking participants two multiple-choice questions to assess their knowledge of the risk factors for BP control and the complications of HTN adapted from the literature reviewed. A score of 0 was graded poor, a score of one was graded average, and a score of two graded as good. Household wealth was measured by the amount of Emalangeni earned in the household last year (I ISwazi Lilangeni equals 0.058 United States Dollars). Participants were categorized into six groups according to yearly household earnings.

The questionnaire was pre-tested for improved fluency, feasibility and for error identification and correction. The questionnaire had clearly worded, pre-determined, closed-ended, fixed-response questions, multiple-choice questions and categories of answers for scoring so that responses could be grouped for ease of coding and data analysis in numerical form (Kabir, 2016).

Blood pressures in mm Hg were measured using a manual mercury sphygmomanometer (checked daily) in a standardized way for all participants. For 30 minutes before measurement, participants were asked not to have tea, coffee or smoke and to sit still for an accurate reading. The average of three BP measurements taken 3 minutes apart was used (Jafar et al., 2018). One stadiometer was used to measure all participants' heights to the nearest 0.1 cm from the heel to the highest point of the head. The participants were positioned to stand upright, barefoot, with their feet parallel and
facing forward. The same weighing scale was used to measure all participants' body weight to the nearest 0.1 kg ; then, their BMIs were calculated using the formula weight in kilograms divided by height in meters squared. The scale was pre-calibrated daily. All collected data was written on each participant's questionnaire for later transfer to an excel spreadsheet.

3.7 DATA ANALYSIS

Data were checked for soundness and completeness, coded and entered into a Microsoft Excel spreadsheet. Data were then exported to Stata 13.1. software package for analysis. Participants were described by sociodemographic characteristics. The univariate analysis described the distribution of categorical variables such as sex using percentages and frequencies. The primary outcome or dependent variable was categorized into controlled and uncontrolled BP (WHO, 2019). Continuous variables such as age were summarized using descriptive statistics mean (standard deviation) and median (interquartile range) with a 95% confidence interval (Bonita, Beaglehole \& Kjellstrom, 2006). To test the strength of the association between the outcome and exposure variables, bivariate analysis was conducted using the Chi-square test. A T-test was utilized to compare averages between the two groups (Anderson \& Wilfert, 1999). Logistic regression was performed to identify significant variables associated with poor blood pressure control. Odds ratios with a 95% confidence interval were used to show associations between the dependent and independent variables. A p-value less than 0.05 was considered statistically significant (Degli Esposti et al., 2004).

3.8 VALIDITY

Random sampling was used, and only participants meeting the inclusion criteria were selected to participate in the study. In data collection, the same standardized questionnaire was used and it contained previously validated tools used in previous surveys. The researcher used a standard working procedure to collect data from all the participants to minimize measurement bias (Baigent et al., 2008). An appropriately large sample size was used, and the questionnaire was translated into the local SiSwati language (Collins, 2003). The questionnaire was straightforward in wording for ease of understanding and limited ambiguity (Del Greco, Walop \& McCarthy, 1987).

The questionnaire approved by the Eswatini National Health and Human Research Review Board (NHHRRB) for ease of understanding in the local Siswati language, lack of ambiguity and for complete coverage of all the risk factors that should be measured without lacking important questions. The assessor was trained and tested on the data collection tool, on the standard procedure and on remaining neutral (Filip, 2003). Characteristics of a cross-sectional study design were followed strictly, and the correct methodology and data analysis were used to ensure validity scientifically (Bonita, Beaglehole and Kjellstrom, 2006). Errors in collected data and missing data were minimized by only the researcher filling in all data into the questionnaire and Excel (Baigent et al., 2008).

3.9 RELIABILITY OF THE STUDY

A medical practitioner trained in the data collection tool and methods verified the data and did daily quality checks for consistency (Del Greco, Walop \& McCarthy, 1987). Data were collected in the same calm, private environment (room) for all participants in the mornings (Appelbaum et al., 2019). The same questionnaire was used to interview participants who took part in a pilot study twice over three months. This was done to ensure there were no deviations from the initial responses.

UNIVERSITY of the

3.10 GENERALIZABILITY OFTHESTUDR

Random sampling was used to provide a representative sample. The results obtained can therefore be generalized to the Eswatini population.

3.11 ETHICAL CONSIDERATIONS

The research proposal was submitted to The Higher Degrees Committee of the University of the Western Cape (UWC). Ethical clearance was obtained from the Biomedical Research Committee (Reference number: BM21/10/33) (Appendix 4). The Ministry of Health Eswatini's National Health and Human Research Review Board (NHHRRB) granted clearance to conduct the research in the country. (Reference number: EHHRRB112/2021) (Appendix 6)

Written permission to conduct research at the RFM hospital was granted by the hospital administrator (Appendix 5). Although the researcher was previously an employee at the institution where the research was conducted, the researcher declares that there is no conflict of interest. The importance, benefits and contributions of the study were discussed with participants, and an information sheet was provided (Appendix 3).

Written informed consent (Appendix 2) was obtained from each study participant after their participation in the study was requested. The study purpose, aims and objectives were clearly explained, and the confidentiality of participants' personal information was guaranteed. Instead of using their names, participants were all assigned a number. Questionnaires were securely transported by the researcher from the study site and kept locked up in the researcher's office for the duration of the research process. They will be destroyed after five years. Electronic data was password protected on the researcher's computer. Participants were told that they could refuse to participate or withdraw at any time as participation was strictly voluntary and that they would not be victimized or disadvantaged in any way if they did refuse. Questions on factors such as alcohol use may have caused some psychological discomfort in some participants. Access to emotional support was ensured by the researcher, who made arrangements to refer participants who required support to the psychologist in the hospital.

3.12 SUMMARY

UNIVERSITY of the

The study was a cross-sectional descriptive survey conducted in the only referral hospital in the most populous region of Eswatini, on hypertensive patients on treatment meeting the inclusion criteria. A probability sample was used after obtaining informed consent from participants, and a questionnaire adopted from previously validated measurement tools was used to conduct face-toface interviews to collect data. BP, weight and height were also measured. Stata 13.1 was used for data analysis. Approval to conduct research was obtained from the relevant bodies.

CHAPTER 4. RESULTS

4.1 INTRODUCTION

This chapter reports the results of the study. The descriptive socio-demographic characteristics and lifestyle habits of the participants are described. Shapiro-Wilk test of normality is used to test continuous data. Continuous data are described using means (standard deviation) and median (interquartile range). Categorical data are presented using frequencies (percentages). The prevalence of uncontrolled BP in hypertensive patients on treatment in Manzini, Eswatini, is presented. A chi-squared test analysis was used to identify statistically significant associations between the uncontrolled BP and the controlled BP groups for each of the variables assessed. Mann-Whitney test is used for continuous variables. T-test compared the average age, BMI, number of drugs and adherence scores between the uncontrolled and controlled BP groups. Logistic regression identified significant variables associated with poor BP control. Statistical significance was at $\mathrm{p}<0.05$.

4.2 SOCIODEMOGRAPHIC PROFILE

A total of 324 (95.3% response rate) hypertensive patients agfeed to participate in the study against a target of 340 participants. Participants who could not answer all the questions in the questionnaire were excluded from the study. Socio-demographic characteristics assessed were age, age groups, the distance of residence to the hospital, gender, education, household wealth and marital status. The majority of participants were females, 252 (77.78%), and the median (IQR) age of the participants was $62(53 ; 68)$ years. More than half of the participants, $171(52.78 \%)$, lived more than 10kilometers from the hospital. Only $30(9.26 \%)$ participants had no formal education, and 13 (4.01%) had a household income of less than E500 a year.

Table 1 is a summary of the sociodemographic findings.

TABLE 1: SOCIODEMOGRAPHIC PROFILE OF PARTICIPANTS

4.3 ANTHROPOMETRIC PROFILE

Participants' weight and height were used to calculate their Body Mass Index (BMI). The median (IQR) BMI was $31.45(27.70 ; 36.35) \mathrm{kg} / \mathrm{m}^{2}$. Only 32 (9.88%) participants had normal BMI. The majority, 290 (89.51%) participants, were either overweight, obese or morbidly obese. These findings are presented in table 2 below.

TABLE 2: PARTICIPANT'S BODY MASS INDEX

BMI categories (BMI) Frequency (\%)

Underweight (<18.5)	$2(0.62)$
Normal weight (18.5-24.9)	$32(9.88)$
Overweight (25-29.9)	$97(29.94)$
Obese (30-34.9)	$94(29.01)$
Morbidly obese (35 and above)	$99(30.56)$

4.4 CLINICAL PROFILE OF PARTICIPANTS

The clinical characteristics assessed were the presence of DM, the presence of other illnesses or comorbidities besides DM and HTN, and the patient's literacyeon the risk factors of poor BP control and the complications of HTN, Diabetes mellitus was a common co-morbid condition among the study participants, with $131(40.43 \%)$ participants confirming that they had DM. Overall, 218 (67.28%) participants had good literacy on risk factors of poor BP control and its complications. These findings are summarized in table 3 below.

TABLE 3: CLINICAL PROFILE OF PARTICIPANTS

Clinical variable	Frequency (\%)
DM	
\quad Yes	$131(40.43)$
No	$193(59.57)$
On treatment for other illnesses besides	

On treatment for other illnesses besides
DM and HTN
Yes
No

$$
\begin{equation*}
215 \text { (66.36) } \tag{33.64}
\end{equation*}
$$

Literacy on risk factors of poor BP control and complications

Poor (0/2)
Average (1/2)
Poor (0/2)
Average (1/2)
32 (9.88)

4.5 LIFESTYLE PROFILE OF PARTICIPANTS TY of the

Participants' lifestyle characteristics assessed were the presence of daily social support in their lives, whether or not they were smokers, physical activity levels, alcohol dependency/CAGE status and whether or not they add additional salt to prepared food. More than half, 220 (67.90%), reported sufficient physical activity levels equivalent to doing 150 or more minutes per week of moderate or vigorous-intensity physical activity (MVPA). Only 24 (7.41%) participants were CAGE positive, and 80 (24.69%) put additional salt into prepared food. These findings are summarized in table 4 below.

TABLE 4: LIFESTYLE PROFILE OF PARTICIPANTS

Variable		Frequency (\%)
Social support		
Yes		318 (98.15)
No		6 (1.85)
Smoker		
No		310 (95.68)
Yes		14 (4.32)
Physical activity levels		
Unsure		3 (0.93)
Inactive		38 (11.73)
Insufficient		63 (19.44)
Sufficient		220 (67.90)
CAGE/ alcohol dependency		
Negative	UNIVERSITY of the WESTERN CAPE	300 (92.59)
Positive		24 (7.41)

Adding additional salt to prepared food

Never
244 (75.31)
Yes
80 (24.69)

4.6 HEALTH SYSTEM-RELATED FACTORS

Health system-related factors assessed were the availability of all participants' HTN medicines at the hospital, whether participants had received advice on smoking, alcohol use, diet and exercise
from their health care provider in the hospital in the last year, and whether or not they are satisfied with the care they received at the hospital when they come for BP management. The availability of BP medicines was mainly erratic, with 216 (66.67%) participants reporting that they sometimes received all their BP medicines. More than half of the participants, 193 (59.57\%), reported receiving advice from their health care provider on smoking, alcohol use, diet and exercise in the last year. The majority, 307 (94.75%), were satisfied with the care received from their nurse/doctor at the facility when they attended BP management. Findings are summarized in table 5 below

TABLE 5: HEALTH SYSTEM-RELATED FACTORS

Variable		Frequency (\%)
Availability of HTN medicines at the hospital		
All the time		43 (13.27)
Sometimes		216 (66.67)
Never		65 (20.06)
Advice on smoking, alco healthcare provider in Yes No	use, diet and exercise from a st year	$\begin{aligned} & 193 \text { (59.57) } \\ & 131 \text { (40.43) } \end{aligned}$
Satisfaction with care received from doctor/nurse providing		
BP care at the hospital UNIVERSITY of the		
Yes	WESTERN CAPE	307 (94.75)
No		17 (5.25)

4.7 BP TREATMENT AND ADHERENCE TO BP MANAGEMENT

With respect to BP medication, the median [IQR] number of drugs taken was 2 [1; 3]. Slightly more than half of the participants, 166 (51.23%), were on a once daily medication regimen. Adherence to BP medication was also assessed, and a large proportion of participants reported that they never forget to take their BP medication and never choose to skip their medication 212 (65.43%) and $288(88.89 \%)$, respectively. The total adherence was calculated by taking the sum
of the scores for each of the ten adherence questions. The median (IQR) score was $56(54 ; 58)$. A percentage score was calculated to determine overall adherence and a cut-off value of 75% was used to signify good adherence, and less than 75% was poor adherence. Adherence was very good, with 318 (98.15%) participants falling into the good adherence category. Table 6 is a summary of these findings.

TABLE 6: BP TREATMENT AND ADHERENCE TO BP MANAGEMENT
Variable Frequency (\%)

Drug dosing

Once daily 166 (51.23)

More than once daily 158 (48.77)

Deciding not to take BP medicine

None of the time 288 (88.89)
Some of the time 22 (6.79)
Most of the time
1 (0.31)
All the time $2(0.62)$
None Applicable (N/A)
1 (0.31)

Don't know	10 (3.09)
Variable	Frequency (\%)
Frequency of eating salty food	
None of the time	46 (14.20)
Some of the time	135 (41.67)
Most of the time	23 (7.10)
All the time	108 (33.33)
None Applicable (N/A)	2 (0.62)
Don't know	10 (3.09)
Missing scheduled appointments for BP management	
None of the time	195 (60.19)
Some of the time	119 (36.73)
Most of the time	5 (1.54)
All the time	2 (0.62)
None Applicable (N/A)	1 (0.31)
Don't know	2 (0.62)
Running out of BP medicine	
None of the time	194 (59.88)
Some of the time	93 (28.70)
Most of the time	20 (6.17)
All the time	14 (4.32)
None Applicable (N/A)	2 (0.62)

Don't know	$1(0.31)$
Variable	Frequency (\%)
Skipping BP medicine 1-3 days before attending the clinic	
None of the time	$265(81.79)$
Some of the time	$47(14.51)$
Most of the time	$4(1.23)$
All the time	$3(0.93)$
None Applicable (N/A)	$1(0.31)$
Don't know	$4(1.23)$

Skipping BP medicine when feeling better
None of the time
Some of the time

Most of the time

All the time

Skipping BP medicine when feeling ill
None of the time 307 (94.75)
Some of the time
12 (3.70)
All the time $2(0.62)$
Don't know
3 (0.93)

Variable Frequency (\%)
Taking other people's BP medicine

None of the time	$313(96.60)$
Some of the time	$8(2.475)$
None Applicable (N/A)	$1(0.31)$
Don't know	$2(0.62)$

Skipping BP medicine when pre occupied

None of the time
261 (80.56)
Some of the time
Most of the time
All the time
None Applicable (N/A) 2 (0.62)

Don't know

4.8 PREVALENCE OF UNCONTROLLED BP

Objective 1 is to determine the prevalence of uncontrolled BP in hypertensive patients on treatment in Manzini, Eswatini. More than hatf of the participants182 (56.17\%) had uncontrolled HTN. Only $142(43.83 \%)$ of the participants had controlled BP.

4. 9 RELATIONSHIP BETWEEN BP CONTROL AND EXPOSURE VARIABLES.

4.9.1 SOCIODEMOGRAPHIC CHARACTERISTICS OF UNCONTROLLED HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI.

Objective 2 is to describe the sociodemographic characteristics of hypertensive patients with uncontrolled BP on treatment in Manzini, Eswatini. In order to achieve this objective, a specific analysis targeting 182 (56.17%) participants with poorly controlled BP was conducted, and this was compared to the 142 patients who had controlled HTN. The median age of participants with uncontrolled BP was 62.6 years (IQR 54;70), and 104 (57.14\%) participants with uncontrolled

BP were 60 and above. More than half of the participants, 94 (51.65\%), of the uncontrolled BP participants resided beyond 10 kilometers from the hospital, and 134 (73.63\%) were female. Regarding education, only 20 (10.99%) had no formal education. Only 7 (3.85\%) reported earning less than E500 (\$29) in the last year, while 118 (64.84\%) reported earning more than E3000 (\$174).

A chi-square test was performed to test for significant associations between BP control and the demographic variables. The Wilcoxon rank-sum (Mann-Whitney) test was used for continuous variables. In most of the variables, there were no significant relationships with BP control. Significant relationships to BP control were noted between the participant's gender, with a larger proportion of males being uncontrolled (Chi-square $=4.14 ; p=0.04)$ and level of education, with a larger proportion of the college educated participants and the participants with no formal education being in the uncontrolled BP group (Chi-square $=18.33 ; \mathrm{p}=0.00$). A summary of these findings is presented in table 7 below.

Age range				
$\mathbf{4 0} \boldsymbol{- 5 9}$ years	$78(42.86)$	$65(45.77)$	0.28	0.6
$\mathbf{6 0}$ years and above	$104(57.14)$	$77(54.23)$		
Level of Education				
No education	$20(10.99)$	$10(7.04)$	18.33	0.00
Primary school	$52(28.57)$	$54(38.03)$		
High school	$74(40.66)$	$71(50.00)$		

College/University $\quad 36(19.78) \quad 7(4.93)$
$\left.\begin{array}{lllll}\hline \text { Variable } & \begin{array}{l}\text { Uncontrolled } \\ \text { HT (n=182) } \\ \text { Frequency } \\ (\%)\end{array} & \begin{array}{l}\text { Controlled HT } \\ (\text { n=142 })\end{array} & \begin{array}{l}\text { Chi- } \\ \text { Frequency (\%) }\end{array} & \text { square }\end{array}\right]$

[^0]
4.9.2 ASSOCIATION BETWEEN BP CONTROL AND BMI OF HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI.

There was no significant association between BMI and BP control. Table 8 below is a summary of these findings.

TABLE 8: RELATIONSHIP BETWEEN BMI AND BP CONTROL

Variable	Uncontrolled HT $(\mathrm{n}=182)$ Frequency (\%)	Controlled HT $(n=142)$ Frequency (\%)	Chi- square	p- value
BMI (Median [IQR]) $\mathrm{kg} / \mathrm{m}^{2}$	$\begin{aligned} & 31.40(28.30 \\ & 37.60) \end{aligned}$	$\begin{aligned} & 31.50 \\ & (26.90 ; 35.80) \end{aligned}$	$\begin{aligned} & \mathrm{Z}=- \\ & 0.96 \end{aligned}$	0.36
BMI categories Normal weight (18.5-24.9)	15 (8.24)	17 (11.97)	2.22	0.69
Overweight (2529.9) Obese (30-34.9) Morbid obesity ($\mathbf{3 5}$ and above)				
Underweight (<18.5)	$1(0.55) \text { WEST1 } 0.70 \mathrm{~N} \text { CAPE }$			

4.9.3 ASSOCIATION BETWEEN BP CONTROL AND CLINICAL
 CHARACTERISTICS OF HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI.

There was no significant association between being diabetic, being on treatment for other illnesses and literacy on the risk factors of poor BP control and complications of HTN and BP control. Table 9 below is a summary of these findings.

TABLE 9: RELATIONSHIP BETWEEN CLINICAL VARIABLES AND BP CONTROL

4.9.4 ASSOCIATION BETWEEN BP CONTROL AND LIFESTYLE

CHARACTERISTICS OF HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI

A significant association was identified between activity levels and BP control ($\mathrm{p}=0.03$). Table 10 below is a summary of these findings.

TABLE 10: RELATIONSHIP BETWEEN LIFESTYLE VARIABLES AND BP CONTROL

Variable	Uncontrolled HT $(\mathrm{n}=182)$ frequency (\%)	Controlled HT $(\mathrm{n}=142)$ Frequency (\%)	Chi- square	$\mathbf{p}-$ value
Smoker			0.23	0.63
No	175 (96.15)	135 (95.07)		
Yes	7 (3.85)	7 (4.93)		
Physical activity				
levels			9.26	0.03
Unsure	2 (1.10)	1 (0.70)		
Inactive	25 (13.74)	13 (9.15)		
Insufficient Sufficient	$44 \text { (24.18) }$ 111 (60.99)	$\frac{19(13.38)}{109(76.76)}$		
Positive	15 (8.24) UNIT	9.(6.34) TY of		
Adding additional salt to prepared	WES'	TERN CAP		
food			0.06	0.81
Never	138 (75.82)	106 (74.65)		
Yes	44 (24.18)	36 (25.35)		

4.9.5 AN ASSOCIATION BETWEEN BP CONTROL AND HEALTH SYSTEM RELATED FACTORS

There was no significant association between reported BP medicine availability and receiving advice from a health care provider in the last year on smoking, alcohol use, diet and exercise and BP control. No significant relationship was noted in satisfaction with care received from the doctor/nurse at the hospital providing BP care and BP control. Table 11 below is a summary of these findings.

TABLE 11: RELATIONSHIP BETWEEN BP CONTROL AND HEALTH SYSTEM

VARIABLES

Satisfaction with care from

doctor/nurse

providing BP care
at the hospital

Yes	$172(94.51)$	$135(95.07)$	0.05	0.82
No	$10(5.49)$	$7(4.93)$		

4.9.6 ASSOCIATION BETWEEN BP CONTROL AND BP TREATMENT AND

ADHERENCE VARIABLES

With respect to adherence measures, significant relationships were noted between forgetting to take BP medicines $(\mathrm{p}=0.04)$ and skipping BP medicines 1-3 days before attending clinic $(\mathrm{p}=0.01)$ and BP control. A statistically significant relationship was also found between adherence scores and BP control. (chi-square $=7.84, \mathrm{p}=0.005$). These findings are summarized in table 12 below.

TABLE 12: AN ASSOCIATION BETWEEN BP CONTROL AND BP TREATMENT
AND ADHERENCE VARIABLES.

Deciding not to take BP

medicine	6.21	0.29

None of the time	$163(89.56 \%)$	$125(88.03 \%)$			
Some of the time	$14(7.69 \%)$	$8(5.63 \%)$			
Most of the time	$1(0.55 \%)$	$0(0.00 \%)$			
All the time	$0(0.00 \%)$	$2(1.41 \%)$			
Not applicable (N/A)	$0(0.00 \%)$	$1(0.70 \%)$			
Don't know	$4(2.20 \%)$	$6(4.23 \%)$			
Variable	Uncontrolled HT	Controlled HT	Chi-	p-	
	$($ n=182	(n=142)	square	value	
	Frequency (\%)	Frequency (\%)			

Frequency of eating		6.01	0.31
salty food			
None of the time	22 (12.0		
Some of the time	$79(43.41 \%)$		
Most of the time	$16(8.79 \%)$		
All the time	60 (32,97\%)		
Not applicable (N/A)	0 (0.00\%)		
Don't know	5 (2.75\%)		

Missing scheduled		
appointments for BP	4.55	0.47
management		

None of the time	$110(60.44 \%)$	$85(59.86 \%)$
Some of the time	$65(35.71 \%)$	$54(38.03 \%)$
Most of the time	$2(1.10 \%)$	$3(2.11 \%)$
All the time	$2(1.10 \%)$	$0(0.00 \%)$

Not applicable (N/A)	$1(0.55 \%)$	$0(0.00 \%)$
Don't know	$2(1.10 \%)$	$0(0.00 \%)$

Running out of BP medicines				6.07
None of the time	$10557.69 \%)$	$89(62.68 \%)$		0.30
Some of the time	$55(30.22 \%)$	$38(62.68)$		
Most of the time	$14(7.69)$	$6(4.23)$		
All the time	$8(4.40 \%)$	$6(4.23)$		
Not applicable (N/A)	$0(0.00 \%)$	$2(1.41 \%)$		
Don't know	$0(0.00 \%)$	$1(0.70 \%)$		

Skipping of BP			15.97	0.01
medicines 1-3 days				
before attending clinic				
None of the time	142 (78.02\%)	123 (86.62\%)		
Some of the time	36 (19.78\%)	11 (7.75\%)		
Most of the time	3 (1.65\%) I V	1 $1(0.70 \%)$ the		
All the time	0 (0.00\%) S T	(2.11% P E		
Not applicable (N/A)	0 (0.00\%)	1 (0.70\%)		
Don't know	1 (0.55\%)	3 (2.11\%)		

Skipping BP medicines when feeling better				
None of the time	$168(92.31)$	$134(94.73 \%)$		0.64
Some of the time	$11(6.04 \%)$	$5(3.525)$		
Most of the time	$4(0.55 \%)$	$0(0.00 \%)$		
All the time	$1(0.55 \%)$	$2(1.41 \%)$		
Don't know	$1(0.55 \%)$	$1(0.70 \%)$		

Variable	Uncontrolled HT	Controlled HT	Chi-	p-
$(\mathbf{n}=182)$	$(n=142)$	square	value	
	Frequency (\%)	Frequency (\%)		

Skipping medicines				
when feeling sick			3.47	0.33
None of the time	175 (96.15\%)	6 (1.32\%)		
Some of the time	6 (3.30\%)	6 (4.23\%)		
All the time	0 (0.00\%)	2 (1.41\%)		
Don't know	1 (0.55\%)	2 (1.41\%)		
Taking someone else's				
BP medicine			0.95	0.81
None of the time	175 (96.15\%) $\quad 138(97.18 \%)$			
Some of the time	$5(2.75 \%)$			
Not applicable (N/A) Don't know				
Skipping BP medicines when pre occupied			4.03	0.54
None of the time	$145 \text { (79.67\%) }$	$\begin{gathered} \text { NN CAPE } \\ 116(81.69 \%) \end{gathered}$		
Some of the time	28 (15.38\%)	17 (11.97\%)		
Most of the time	3 (1.65\%)	1 (0.70\%)		
All the time	0 (0.00\%)	2 (1.41\%)		
Not applicable (N/A)	1 (0.55\%)	1 (0.70\%)		
Don't know	5 (2.75\%)	5 (3.52\%)		

4.10 RISK FACTORS ASSOCIATED WITH POOR BP CONTROL IN HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI

Objective three determined the risk factors associated with poor BP control in hypertensive patients on treatment in Manzini, Eswatini. Logistic regression was used to identify risk factors associated with poor BP control in hypertensive patients on treatment in Manzini, Eswatini. The outcome variable was controlled BP which was coded as 0 (zero) when controlled and 1 (one) when uncontrolled. A univariate analysis was run with all the sociodemographic and clinical variables.

The odds of uncontrolled HTN were increased by 1% for a year increase in age (not statistically significant, $\mathrm{p}=0.23$). After categorizing age, the odds of uncontrolled HTN were found to be 13% higher amongst those patients aged 60 and above as compared to those patients in the 40 to 59 age group (not statistically significant, $\mathrm{p}=0.60$). The odds of uncontrolled HTN were 76% higher in males than females, and this finding was statistically significant ($\mathrm{p}=0.04$). Results from the univariate analysis are presented in table 13 below.

TABLE 13: UNIVARIATE LOGISTICREGRESSIONANALYSIS OF FACTORS ASSOCIATED WITH POOR BP CONTROLL IN HYPERTENSIVE PATIENTS ON TREATMENT

Variable	Odds Ratio UNIVERSITY of the	95\% CI	$\mathbf{p}-$ value
Gender	WESTERN CAPE		
Female $_{\text {(Ref) }}$	1.00	-	-
Male	1.76	1.02; 3.05	*0.04
Age	1.01	0.99; 1.03	0.23
Age range			
$40-59 \mathrm{yrs}_{(\text {Ref) }}$	1.00	-	-
$\geq 60 \mathrm{yrs}$	1.13	0.72; 1.75	0.60
Level of education			
No education ${ }_{\text {(Ref) }}$	1.00	-	-
Primary school	0.48	0.21; 1.13	0.09
High school	0.52	0.23; 1.19	0.12

College/University	2.57	0.85; 7.80	0.10
Variable	Odds Ratio	95\% CI	p- value
Marital status			
Never married (Ref)	1.00	-	-
Married	1.09	0.57; 2.07	0.79
Separated	0.83	0.28; 2.44	0.74
Divorced	1.00	0.15; 6.48	1.00
Widowed	0.63	0.32; 1.23	0.17
Cohabiting	0.33	0.09; 1.24	0.10
Household wealth (Earnings in the last year)			
$\leq \mathrm{E} 500$ (Ref)	1.00	-	-
$>$ E 500- \leq E1000	1.07	0.19; 5.91	0.94
$>$ E1000 - \leq E2000	0.55	0.13; 2.31	0.41
>E2000- \leq E3000	1.10	0.25; 4.80	0.90
>E3000	1.28	0.41; 3.95	0.67
Unsure	0.88	0.27; 2.89	0.84
Distance to hospital/ Residence			
Within 10km ${ }_{(\text {Ref) }}$	1.00	-	-
Beyond 10km	0.90	0.58; 1.40	0.65
BMI categories			
Normal (18.5-24.9) ${ }_{\text {(Ref) }}$	1.00	-	-
Overweight (25-29.9)	1.62	0.72; 3.60	0.24
Obese (30-34.9)	1.29	0.58; 2.88	0.54
Morbid obesity (35 and above)	1.67	0.75; 3.73	0.21
Underweight (<18.5)	1.13	0.07; 19.74	0.93
BMI	1.02	0.98; 1.05	0.32

4.11 t-TEST COMPARING AVERAGES BETWEEN THE CONTROLLED AND UNCONTROLLED BP GROUPS

An independent sample t-test was conducted to compare the mean ages, BMI and number of drugs taken and the adherence scores between the controlled and uncontrolled BP groups. There was no statistically significant difference in the mean age, BMI, number of drugs taken and adherence scores between the participants with uncontrolled BP and those with controlled BP on the T-test analysis. Findings are summarized in table 14 below.

TABLE 14: AVERAGES BETWEEN THE CONTROLLED AND UNCONTROLLED BP

 GROUPS. t-TEST ANALYSIS| Variable | Mean in PB uncontrolled | Mean in BP controlled | Mean difference | t-statistic | p |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\begin{array}{\|l} \hline 61.33 \\ (\text { SD 10.938) } \end{array}$ | $\begin{aligned} & 59.87 \\ & (\text { SD 10.839). } \end{aligned}$ | $\begin{array}{\|lr} \hline-1.456 & 95 \% \\ \text { (CI } & -3.856 \end{array} \text { to }$ | -1.194 | 0.233 |
| BMI | $\begin{aligned} & 32.609 \\ & (\mathrm{SD} 6.584), \end{aligned}$ | $\frac{31.866}{(\operatorname{SD} 6.714)!}$ | $\begin{array}{\|l\|} \hline-0.742 \\ \hline \mathrm{CI} \\ 0.721) \\ \hline \end{array}$ | -0.998 | 0.322 |
| Number of drugs | $\begin{aligned} & 2.35 \\ & (\mathrm{SD} 1.180) \end{aligned}$ | 2.25 W(SDIT1.164)RS WESTERT | $\begin{aligned} & -0.100 \\ & \text { CI- } 0.388 \text { the } \\ & 0.158 \mathrm{APE} \end{aligned}$ | -0.760 | 0.224 |
| Adherence scores | $\begin{aligned} & 55.753 / 60 \\ & (\text { SD } 2.939) \end{aligned}$ | $\begin{aligned} & 55.507 / 60 \\ & \text { (SD 4.392) } \end{aligned}$ | $\begin{aligned} & -0.246, \\ & \text { CI } \quad-1.089- \\ & 0.598 \end{aligned}$ | - 0.58 | 0.56 |

4.12 SUMMARY

The prevalence of uncontrolled BP in hypertensive patients on treatment in Manzini Eswatini was 56.17% ($\mathrm{n}=182$). The odds of uncontrolled HTN were 76% higher in males than females, and this finding was statistically significant $(\mathrm{p}=0.04)$. In most of the variables, there was no significant
difference in results between the controlled HTN group and the uncontrolled HTN group. Significant differences were noted in gender ($p=0.04$) and level of education $(p=0.00)$. A large proportion of 290 (89.51%) of study participants were overweight 97 (29.94\%), obese 94 (29.01%) and morbidly obese $99(30.56 \%)$. Only 32 (9.88%) of the study participants had normal BMIs. With respect to adherence measures, significant differences were noted in forgetting BP medicines ($\mathrm{p}=0.04$) and skipping BP medicines 1-3 days before attending clinic $(\mathrm{p}=0.01)$ between the BP controlled and uncontrolled groups. A significant difference was also noted in the adherence score between the two groups ($\mathrm{p}=0.005$). A significant difference was also identified in physical activity levels between the two groups ($\mathrm{p}=0.03$). A total of $65(20.06 \%)$ participants reported never receiving all their BP medicines at the hospital, and 216 (66.67%) reported only receiving all their BP medicines sometimes.

CHAPTER 5. DISCUSSION

5.1 INTRODUCTION

This chapter discusses the study findings based on the study objectives. Firstly, it examines the prevalence of poor BP control in hypertensive patients on treatment in Manzini, Eswatini. Secondly, the socio-demographic characteristics of hypertensive patients with uncontrolled BP on anti-hypertensive treatment are discussed. Lastly, it deliberates on the risk factors associated with poor BP control in hypertensive patients on treatment and discusses some notable findings from the research.

5.2 PREVALENCE OF POOR BP CONTROE IN HYPERTENSIVE PATIENTS ON TREATMENT

The study sought to determine the prevalence of poorly controlled HTN in hypertensive patients on treatment in Manzini, Eswatini. Results showed a high prevalence of 56.17% of uncontrolled BP . These findings on the prevalence of poor BP control are comparable with other findings in the southern African region, and this may be explained by similar cultural, lifestyle and behavioral risk factors for poor BP control (Folb et al., 2016; Mills, Stefanescu \& He, 2016; The Lancet, 2019). Masilela et al. (2020) in a cross-sectional study done in the Mkhondvo region in the neighbouring Mpumalanga Province, South Africa, reported a 56% prevalence of poor BP control among hypertensive patients on treatment. Similarly, Gala et al. (2020) in Kweneng, Botswana reported a 55% prevalence of poor BP control. According to Sharp et al. (2020), Eswatini's primary healthcare system is inadequate for managing NCDs, which hinders efforts to control BP among hypertensive patients. This significant prevalence of poor BP control in this study could further be explained by ongoing shortages of BP medications, which show a lack of governmental commitment to achieving BP control and SDG 3.4 (Sorato et al., 2021; Shabangu \& Suleman, 2015). Additionally, the clients who are mostly obese and overweight in this study travel long distances to the hospital, which may affect access to health services for BP control, thus possibly contributing to the high prevalence of poor BP control.

Higher prevalences of poorly controlled HTN were reported by other similar cross-sectional studies in the region conversely as noted in a study in Ghana, where a 76.2% prevalence was attributed to similar problems noted in this study including continuous drug shortages, long distances travelled by hypertensive patients for hypertensive care, but was additionally attributed to substandard counselling of patients by health care workers (Sanuade, Boatema and Kushitor, 2018). In Zimbabwe, Goverwa et al. (2014) ascribed a high 67% prevalence to less stringent national hypertensive treatment guidelines.

Differing findings have been reported in the literature on the prevalence of poor BP control in HICs compared to LMICs. In an earlier Systematic review of differences in PB control, no significant differences in BP control were reported (Pereira et al.,2009). In contrast, Campbel et al. (2019), later reported a higher control rate of 28.4 \% in HICs compared to 7.7% in LMICs, and Gala et al. (2020) also reported worse BP control in LMICs than HICs. This observation supports literature reporting on the rising effects of urbanization linked to rising risk factors of poor BP control in LMICs added to the predominant low SES in LMICs being a barrier to healthy lifestyle choices and access to medical treatment (Kandala et al., 2021; Jongen et al.,2019; Campbel et al., 2019). The differences in uncontrolled BP prevalence can also be explained by the lower capacity of health systems in LICs to handle the HTN and other NCDS compared to that of health systems in HICs (Mills, Stefanescu \& He, 2016).

UNIVERSITY of the
 WESTERN CAPE

5.3 SOCIODEMOGRAPHIC CHARACTERISTICS OF HYPERTENSIVE PATIENTS WITH UNCONTROLLED BP ON TREATMENT

More than half of the uncontrolled BP study participants were 60 years and above 104 (57.14%). A similar cross-sectional study in neighboring South Africa on the determinants of uncontrolled BP, which included hypertensive patients aged 18 and above, reported the majority, 116 (62.05\%), of the uncontrolled BP participants were aged 55 years and above (Masilela et al., 2020). This supports the literature arguing that older hypertensive patients on treatment achieve less BP control (Franklin et al., 2001; Cho et al.,2018; Goverwa et al.,2014).

The study results indicate that most participants (73.63\%) with uncontrolled BP were female. Due to the nature of the sample, more females appear to be suffering from uncontrolled HTN than males, and at the same time, more females appear to have their HTN under control. Noteworthy is that the high number of uncontrolled BP participants being females was due to the majority, 252 (77.78\%) of participants in this study being females. Furthermore, most clinic attendants were also noted to be females, thus explaining a higher proportion of females sampled. Correspondingly, a cross-sectional survey of the risk factors of poor BP control in Morocco found the male-to-female ratio in sampled participants to be 1:3 (Essayagh et al., 2019). This was also noted in a study in Botswana (Tapela et al., 2020). The higher numbers of sampled females could also reflect that the population in Eswatini is composed of more females than males (UN, 2021). Fewer males were sampled, possibly due to their poor health-seeking behaviour and lesser likelihood of visiting health-care facilities (Tapela et al., 2020).

More than half (51.65\%) of the uncontrolled BP participants resided beyond 10 kilometers from the hospital. It may be expected that patients in low socio-economic settings who live further from their health-care facility may face challenges with the scarcity of transportation and costs of travelling to receive anti-hypertensive treatment, which may impair their adherence to treatment and, consequently, their BP control. Distance to the hospital was, however, not found to be significantly associated with uncontrolled BP in this study. This absence of a significant association between distance to the hospital and BP control could be because most of the Eswatini population resides in more rural areas as they rely on subsistence farming as a source of revenue (The Worldbank, 2022). On the contrary, in Ghana and Botswana, the participants' residence was significantly associated with BP control (Sanuade, Boatemaa \& Kushitor, 2018; Tapela et al., 2020).

The majority of the study participants were educated, with only 30 (9.26%) having no formal education; these findings are in keeping with those reported in the 2014 Eswatini NCDs risk factor surveillance report (Ministry of Health Swaziland Government, 2014). In the region, similar studies in Mutare, Zimbabwe and Mwanza, Tanzania, 35 (10\%) of the participants and 28 (9.3%) of its hypertensive participants, respectively, never attained formal education (Maginga et al., 2016; Tozivepi et al., 2021). This reflects similar poor uptake of primary school education in this
region. In Eswatini, early childhood education was previously accessed by only 30\% of Eswatini's children (UNICEF, 2018).

Of note was that the poorly controlled BP group contained 20 (66%) of the study participants with no formal education, similar to the Zimbabwe study where more than half of the uneducated participants, 18 (51.43\%), were in the uncontrolled BP group (Tozivepi et al., 2021). Remarkable, however, is that in the poorly controlled BP group, 36 (19.78\%) participants were college/university educated compared to 7 (4.93\%) in the controlled BP group. This may be explained by tertiary education increasing rates of employment which is linked with a better income. This may increase risky behaviours such as buying and consuming more salty and processed fast foods and exercising less (Yosef, 2020). This is in agreement with the argument that higher educational status, although found in some studies to be associated with better outcomes in hypertensive patients, does not always mean better health literacy on HT or better BP control (Willens et al., 2013; Tavakoly Sany et al., 2020). Significant differences were noted in this study in the level of education between the controlled and uncontrolled BP groups. Education level was, however, not found to be a significant risk factor for poor BP control in the regression analysis.

In this study, more than half the uncontrolled BP participants, 118 (64.84%), reported household earnings of E3000 (\$174) and above in the last year compared to 79 (55.63%) in the controlled BP group. Only $7(3.85 \%)$ participants in the uncontrolled BP group reported earnings of less than E500 (\$29) in the last year, and 36 (19.78\%) Ewere unsure of how much they had earned in the previous year. There we no significant differences in earnings between the controlled and uncontrolled groups and household earnings in the last year were not a significant risk factor of poor BP control. This absence of a significant relationship could be due to the method used to classify participants in terms of their wealth (Egbujie, Igumbor \& Puoane, 2016).

More uncontrolled BP participants, 85 (46.70%), reported being married compared to 52 (36.62%) in the controlled BP group. About a quarter, 47 (25.83%) of the uncontrolled BP participants were widowed compared to $50(35.21 \%)$ in the controlled BP group. This study found non-significant associations between marital status and BP control. Studies report varying results on the effect of marital status, especially being married and being widowed, on BP control. Wilcox et al. (2003) and Trivedi et al. (2013) reported that being married positively impacts lifestyle risk factors such
as adherence to BP medication, smoking cessation, vegetable and fruit consumption and may have a negative impact on alcohol use and physical activity level.

5. 4 RISK FACTORS ASSOCIATED WITH POOR BP CONTROL GENDER

The male gender was the strongest risk factor for poor BP control in hypertensive patients on treatment in Manzini, Eswatini. The higher proportion of female attendance at the clinic where the study was conducted suggests that females attend HTN care more than males and have better health-seeking behaviour (Gu et al., 2008). These findings correspond with results in a study in Botswana by Tapela et al. (2020) and India by Prenissl et al. (2019), where males were less likely to have controlled BP. The greater levels of awareness of BP and treatment of BP in women reported in studies could be another reason females are more BP-controlled (Mills, Stefanescu \& He , 2016). The notable differences in gender as a risk factor for poor BP control could be further attributed to differing cultural and behavioural roles played by males and females in the various countries, which impact their respective activity levels, lifestyle and dietary patterns (Dressler, Bindon \& Neggers, 1998).

WESTERN CAPE

EDUCATION

Significant differences were noted in the level of education between the BP-controlled and uncontrolled groups. Nevertheless, it was not found to be a significant risk factor of poor control in the regression analysis of this study. Correspondingly, education did not significantly impact BP control in similar African cross-sectional studies in Cameroon and Tanzania (Menanga et al., 2016; Maginga et al., 2016). Interestingly, the literature reports differing effects of being educated on BP control. Tavakoly et al. (2020) in Iran related that higher educational levels were linked to improved adherence to BP medication and better control of BP because being educated led to better awareness of HT and its complications. Many other studies report similar findings (Willens et al., 2013; Cappuccio \& Miller, 2016).

ADHERENCE TO BP TREATMENT

Adherence to BP medication is critical in controlling BP. Adherence to BP medication was found to be very good, with 98.15% of the participants falling into the good adherence category (score > 75%). These high adherence level scores could be due to the fact that patients were reporting their adherence levels to the researcher with the possibility of recall bias and social desirability (Wang \& Vasan, 2005). Studies report that hypertensive patients generally have poorer medication adherence than noted in this study (Sarkodie et al., 2020; Cho et al., 2018). In contrast to the findings in this study, a cross-sectional survey in urban clinics assessing medication adherence in 12 SSA countries found that only 782 (35,6\%) participants had good adherence (Kramoh et al., 2019).

A statistically significant relationship was found to exist between adherence score and BP control status of patients. With respect to the individual adherence measures, significant differences were also noted between the two groups in this study in forgetting to take BP medication and skipping medication 1-3 days before attending elinie. These were similarly found to be associated with reduced BP control in a Tanzanian study (Maginga et al., 2016). Good adherence to treatment is clearly documented to be associated with better BP control in many studies. Goverwa et al. (2014), in a similar cross-sectional Zimbabwean study on HTN in patients on treatment, found adherence to drug treatment protective against poor BP control.

ACTIVITY LEVELS

UNIVERSITY of the

WESTERN CAPE

The study documented significant differences in activity levels between the BP-controlled and BP-uncontrolled groups. A greater percentage of the BP-controlled participants, 109 (76.76\%) reported being sufficiently active compared to the BP-uncontrolled participants 111 (60.99\%). This is congruent with studies that have reported an inverse relationship between elevated BP and adequate intensity, duration and amounts of PA (Kokkinos et al., 2009; Pascatello et al., 2019).

In a similar South African cross sectional study, where 231 (70.21\%) of the participants reported to be sedentary, physical activity was found to be a determinant of BP control and paradoxically the physically active participants were nearly five times more likely to have poor BP control than the physically inactive participants (Masilela et al., 2020). Likewise, in this study, despite the high prevalence of poorly controlled BP, an impressive proportion of 67.9% of the participants reported
being sufficiently active, which equates to doing 150 minutes or more per week of moderate to vigorous physical activity (Faulkner, Cohn \& Remington, 2006). A similar cross sectional Zimbabwean study reported a comparable proportion (62\%), of participants reporting moderate to vigorous physical activity to this study (Goverwa et al., 2014a). This demonstrates the possibility of social desirability in these self-reported PA levels, with participants presenting themselves to be more active than they are. It is a possibility that if the levels of PA were based on observations, findings would likely differ (Chung \& Monroe, 2007). It is also worth considering that other influences such as the high prevalence of overweight and obesity and unhealthy diets in the study participants may diminish the effects of the reported PA on BP control (Masilela et al., 2020).

A randomized control study comparing the effects of different exercise regimens on CVD risk factors including HTN, found that combined resistance and aerobic exercises had better BP lowering effects than a single type of activity. The reported PA levels by participants in this study may only include only a single activity such as gardening or walking (Schroeder et al., 2019). Another study on the other hand reported that moderate rather than vigorous intensity physical activity produces an antihypertensive effect (Kokkinos et al., 2009). These different findings raise the idea that the BP lowering effects of physical activity may differ with the type of physical activity.

5.5 BODY MASS INDEX

Noteworthy in the study findings was the high prevalence of obesity and overweight among hypertensive patients on treatment in Manzini, Eswatini. In this study, 290 (89.51\%) of study participants were either overweight 97 (29.94\%), obese 94 (29.01\%) or morbidly obese 99 (30.56%). Only 32 (9.88%) of the study participants had normal BMI. BMI was not found to be associated with BP control in this study, although literature has widely reported the rising public health problem of obesity and overweight causing poor BP control (Fantin et al., 2019; Tanaka, 2020; Hamid, Groot \& Pavlova, 2019). In Eswatini, similar to other African countries, having a heavy body weight is not seen as being unhealthy and is even desired, which is possibly a further contributing factor to the high prevalence of overweight and obesity found in this study (Maginga et al., 2016).

The prevalence of overweight and obesity in patients in this study is significantly higher than reported previously in a similar 2014 South African study by Duncan et al. (2014), where 140
(28%) hypertensive patients were overweight, and 171 (34%) were obese. Study findings support literature reporting that overweight and obesity is no longer just a public health problem in the affluent nations but it is a rising public health problem even in SSA (Boachie et al., 2022; Shariq \& Mckenzie, 2020). Urbanization and advances in technology in LMICs with associated lifestyle changes including inactivity and greater access to diets high in saturated fats can further explain these study findings (Sung et al., 2018; Berra et al., 2011). Public health preventative and management strategies to address this pandemic are critical to reducing overweight and obesity in Eswatini especially with its link to raised BP.

5.6 SUMMARY

The high prevalence of poor BP control in this study is comparable to findings from other studies in the region and attributed to similar risk factor characteristics (Masilela et al., 1 2020. The prevalence of poor BP control in LMHCs is rising and surpassing that in HICs and this was similarly noted with the prevalence of overweight and obesity (Gala et at., 2020; Shariq \& Mckenzie, 2020). The male gender was the strongest risk factor for poor BP control and this could be attributed to poor health seeking behavior and the different cultural roles males have which impact their behavioral and lifestyle risk factors for BP control (Gu et al., 2008; Tapela et al., 2020; Prenissl et al., 2019). Other risk factors associated with BP control were education level, compliance to treatment and level of physical activity.

CHAPTER 6. CONCLUSION AND RECOMMENDATIONS

6.1 INTRODUCTION

This study aimed to determine the prevalence of uncontrolled HTN and the risk factors associated with poor BP control in hypertensive patients on treatment in Manzini, Eswatini. This chapter concludes the study and suggests recommendations based on the study findings.

6.2 CONCLUSION

The odds of uncontrolled HTN were 76% higher in males than females; therefore, being male was a significant risk factor for poor BP control. This study found that 56.17% of the hypertensive patients on treatment in Manzini, Eswatini, had peorly-controlled BP. Of the participants with poorly controlled BP, more than half were above the age of sixty, and nearly three quarters of them were female, as mainly female patients attended the clinic. More than half of the participants with uncontrolled BP resided beyond ten kilometers from the hospital where they were managed for BP. Of the participants with no formal education, 66% had poorly controlled BP.

UNIVERSITY of the

Significant differences were noted in the level of education and physical activity levels between the BP-controlled and uncontrolled participants. A significant difference was also noted in the adherence score between the two groups. With respect to adherence measures, significant differences were noted in forgetting to take BP medicines and skipping medicines 1-3 days before attending clinic between the BP controlled and uncontrolled groups.

The findings from this study add to the evidence in the literature on the current magnitude of the problem of poor BP control in patients on hypertensive treatment in the Manzini region and point out the significant risk factors associated with poor BP control. Study results point to the unmet needs in the practice of caring for hypertensive patients that health care workers and the health care facility should improve on. It directs the planning of locally sensitive, evidence-based intervention aimed at improving BP control specifically targeting male hypertensive patients and
providing education on HTN to accommodate the many poorly controlled patients without education.

Furthermore, study findings can be used to inform policy-makers on the adequate allocation of resources for medicines and health promotion activities necessary to improve hypertensive patients' outcomes and prevent avoidable complications in the Manzini region.

6.3 RECOMMENDATIONS

The following recommendations are made based on the study findings that underlined areas requiring intervention to improve BP control and reduce CVD risk and, ultimately CVD related deaths in Manzini, Eswatini.

6.3.1 THE PREVALENCE OF POORLY CONTROLLED BP

This study found that more than half $(56.17 \%, \mathrm{n}=182)$ of hypertensive patients on treatment in Manzini, Eswatini, had poorly controlled BP. Interventions are necessary to educate the whole population of Eswatini on HTN and its dangers and how they can improve BP control. Interventions creating and promoting environments that support physical activity, healthy diets rich in fruit and vegetables and low in sodium and lower the harmful use of alcohol and tobacco need to be policy-driven and effected in multiple sectors nationally. Interventions need to be affordable, sustainable and encourage self-management by fifestyle actions such as growing and consuming more fruits and vegetables, reducing salt intake, increasing exercise levels as well as adhering to the prescribed BP medicines

6.3.2 SOCIODEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS

More than half the uncontrolled BP participants resided beyond ten kilometers from the hospital, and more than half were 60 years old and above. This points to the need to capacitate primary health care clinics in rural communities with sufficient BP medicines and health-care workers to manage hypertensive patients in their communities. Capacitating primary health care clinics will reduce the costs and strain of travelling long distances for HTN care, especially for elderly patients.

6.3.3 RISK FACTORS OF POOR BP CONTROL

MALE GENDER

The odds of poorly controlled HTN were 76% higher in males than in females. Beyond the health education and medicine treatment from the hospital, culturally sensitive health promotion intervention strategies are necessary. These interventions should be aimed at raising awareness among the male hypertensive population on the dangers of uncontrolled BP. Furthermore, interventions should positively influence the risk factors of poor BP control that are modifiable.

Interventions may involve coaching, empowering and educational sessions for males in their communities. These sessions must be conducted by other male health care workers and nonphysician providers such as community health workers and peer educators. Sessions should highlight the importance of BP self-management and improving health-seeking behaviour.

DIFFERENCES IN THE LEVEL OF EDUCATION

Education was significantly associated with BP control status, and 66% of the participants with no formal education had poor control of their HTN. This exposed the need for health care workers managing hypertensive patients tolevel the existing inequalities in patient's health literacy during their management of hypertensive patients by:

- Providing daily health talks and clear and comprehensible information and advice that is acceptable and practical to all hypertensive patients despite their educational level.
- Using every patient encounter as an opportunity to educate all patients on the risk factors and complications of poor BP control. Self-management using lifestyle and behavioural measures and how to improve adherence to BP treatment should also be taught to patients.

ADHERENCE TO HYPERTENSIVE MANAGEMENT

Study findings showed that adherence to BP management was associated with BP control; forgetting to take BP medicines and skipping BP medicines 1 to 3 days before attending the clinic were particularly associated with BP control status.

- Health-care workers managing BP must encourage patients on the importance of reminders to take their BP medication, including their relatives and alarm clocks. Healthcare workers must advise patients to come to the clinic earlier if they notice their medication running out before the given appointment date.
- Hospital pharmacists need to ensure an adequate supply of drugs is packaged for patients to last until the next review date written on the chronic care card.

PHYSICAL ACTIVITY LEVELS, OVERWEIGHT AND OBESITY

Physical activity was significantly associated with BP control status, and an alarmingly high proportion of study participants were overweight and obese. The finding from this study underlines the urgent necessity to implement sustainable, cost-effective and culturally-acceptable population level interventions to increase physieal activity levels and prevent and control overweight and obesity in Manzini, Eswatini. UNIVERSITY of the

- Interventions must be supported by the policy in line with SDG 3 (Safeguarding healthy lives and supporting wellbeing for everyone) and involve commitment and collaboration with the health sector from different sectors, including education, agriculture, sports and culture, the national media, and economic planning. Interventions must promote and enable healthier diets lower in cholesterol and sodium and rich in complex carbohydrates, fruits and vegetables. Furthermore, interventions must facilitate and encourage physical activity in the entire population.
- BMIs must be calculated at every clinic visit and discussed with patients to encourage commitment to controlling body weight.
- Primary health care centers in communities should conduct exercise sessions on certain days of the week for all community members and give health talks on maintaining a healthy BMI.

6.3.4 FUTURE STUDY

$>$ Study findings point to the need for a qualitative study focusing on the perspectives of male hypertensive patients in Eswatini. Understanding the following matters is critical in designing specific and suitable interventions aimed at improving male patients' treatment outcomes.

- What influences male hypertensive patients' health-seeking behaviour?
- What challenges are met by male hypertensive patients in Eswatini in adhering to BP treatment and lifestyle measures?
- What is male patients' understanding of and attitude towards HTN and its complications?

There is a need for larger studies examining a wider range of risk factors for poor BP control, such as different treatment regimens being managed in the private sector compared to the public sector, therapeutic inertia and health care worker related factors. Clinical variables such as cholesterol levels may also be examined. This study must be conducted in settings across the whole country to give a more holistic picture nationally of the risk factors for poor BP control. RS ITY of the
$>$ A more recent survey is needed to determine the proportion of the population with HTN in Eswatini, aware and unaware of their hypertensive status. This will present an opportunity to address the prevention of CVD, even in the population that is unaware of their hypertensive status.

6.3.5 UNAVAILABILITY OF DRUGS

The high proportion of participants that reported never receiving all their BP medicines or only receiving them sometimes highlights the need for interventions addressing the severe gaps in the hospital pharmacy's readiness to provide the necessary BP medication for all hypertensive patients
consistently. Interventions must evaluate drug procurement and inventory management practices with the aim of improving them.

6.4 STRENGTHS AND LIMITATIONS

This study provided important information on the current prevalence of uncontrolled BP in patients on treatment in Manzini, Eswatini and the risk factors associated with poor BP control in Manzini, Eswatini. However, it has some limitations. This was a cross-sectional study which does not allow the determination of causal links from the risk factors, and the measurement of BP, weight and height only once off by the researcher.

Furthermore, there are several other possible health systems, provider-related and clinical risk factors for poor BP control, which were not covered and assessed by this study as data was collected from patient interviews and measurements. Questions quantifying the level of physical activity, alcohol use and smoking were subject to recall bias, social desirability bias and underreporting. This is especially so because the researcher was a health-care worker in the facility where the study was conducted. The target sample size was not reached as only one researcher was doing interviews and some patients declined to participate in the study as they were reluctant to wait to be interviewed. Some participants did not answer all the questions and had to be excluded from the study. Having an assistant during data collection would have assisted in achieving the desired sample size more quickly.

WESTERN CAPE

UNIVERSITY of the WESTERN CAPE
https://etd.uwc.ac.za/

REFERENCES

Ağalar, C. and Öztürk, D. (2020) 'Protective measures for COVID-19 for healthcare providers and laboratory personnel', Turkish Journal of Medical Sciences, 50(1), pp. 578-584. doi: 10.3906/sag-2004-132.

Akl, C. et al. (2017) 'Gender disparities in midlife hypertension: a review of the evidence on the Arab region', Women's Midlife Health, 3 (1), pp. 1-11. doi: 10.1186/s40695-017-0020-z.

Anderson, M. and Wilfert, R. (1999) ‘Data Analysis : Simple Statistical Tests’, Focus, 3(6), pp. 1-7.

Antignac, M. et al. (2018) 'Socioeconomic status and hypertension control in sub-saharan Africa the multination EIGHT study (evaluation of hypertension in Sub-Saharan Africa)', Hypertension, 71(4), pp. 577-584. doi: 10.1161/HYPERTENSIONAHA.117.10512.

Appelbaum, N. P. et al. (2019) 'Threats to Reliabitity and Validity With Resident Wellness Surveying Efforts', Journal of Graduate Medical Education, 11(5), pp. 543-549. doi: 10.4300/JGME-D-19-00216.1.

Awotidebe, T. O. et al. (2014) 'Knowledge, Attitude and Practice of Exercise for Blood Pressure Control: a Cross-sectional Survey', Journal of Exercise Science and Physiotherapy, 10(1), p. 1. doi: $10.18376 / / 2014 / \mathrm{v} 10 \mathrm{i} 1 / 67243$.

WESTERN CAPE
Baigent, C. et al. (2008) 'Ensuring trial validity by data quality assurance and diversification of monitoring methods', Clinical Trials, 5(1), pp. 49-55. doi: 10.1177/1740774507087554.

Banack, H. R. and Kaufman, J. S. (2013) 'The "obesity paradox" explained', Epidemiology, 24(3), pp. 461-462. doi: 10.1097/EDE.0b013e31828c776c.

Berra, K. et al. (2011) 'Global cardiovascular disease prevention: A call to action for nursing The global burden of cardiovascular disease', European Journal of Cardiovascular Nursing, 10(2), pp. 1-68. doi: 10.1016/S1474-5151(11)00107-1.

Boachie, M. K. et al. (2022) 'Estimating the healthcare cost of overweight and obesity in South Africa', Global Health Action, 15(1), pp. 1-11. doi: 10.1080/16549716.2022.2045092.

Boima, V. et al. (2020) 'Older adults with hypertension have increased risk of depression compared to their younger counterparts: Evidence from the World Health Organization study of Global Ageing and Adult Health Wave 2 in Ghana', Journal of Affective Disorders, 277(5), pp. 329-336. doi: 10.1016/j.jad.2020.08.033.

Bonita, R., Beaglehole, R. and Kjellstrom, T. (2006) Basic epidemiology. 2nd edn. Geneva: World Health Organization.

Campbell, N. R. C. et al. (2015) 'Proposed nomenclature for salt intake and for reductions in dietary salt', Journal of Clinical Hypertension, 17(4), pp. 247-251. doi: 10.1111/jch. 12442.

Cappuccio, F. P. and Miller, M. A. (2016) 'Cardiovascular disease and hypertension in subSaharan Africa: burden, risk and interventions', Internal and Emergency Medicine, 11(3), pp. 299-305. doi: 10.1007/s11739-016-1423-9.

Cho, M. H. et al. (2018) 'Association between cognitive impairment and poor antihypertensive medication adherence in elderly hypertensive patients without dementia', Scientific Reports, 8(1), pp. 1-8. doi: 10.1038/s41598-018-29974-7. 피매맴

Chung, J. and Monroe, G. S. (2007) 'Exploring social Desirability Bias', Journal of Medical Internet Research, 9(4), pp. 291-302.

Cohen, D. L. and Townsend, R. R- (2009) 'Does cigarette use modify blood pressure measurement or the effectiveness of blood pressure medications?', Journal of Clinical Hypertension, 11(11), pp. 657-658. doi: 10.1111/j.1751-7176.2009.00180.x.

Collins, D. (2003) 'Pretesting survey instruments: An overview of cognitive methods', Quality of Life Research, 12(3), pp. 229-238. doi: 10.1023/A:1023254226592.

Degli Esposti, E. et al. (2004) 'Risk factors for uncontrolled hypertension in Italy', Journal of Human Hypertension, 18(3), pp. 207-213. doi: 10.1038/sj.jhh. 1001656.

Dennison, C. R. et al. (2007) 'Determinants of hypertension care and control among peri-urban Black South Africans: The HIHI study', Ethnicity and Disease, 17(3), pp. 484-491.

Dikalov, S. et al. (2019) ‘Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension', American Journal of

Physiology-Heart and Circulatory Physiology, 316 (3), pp. 639-646. doi:
10.1152/ajpheart.00595.2018.

Dlamini, T. A et al. (2019) 'The Characteristics, Management and Outcome of Patients Receiving Acute', International Journal of Nephrology and Kidney Failure, 5(2), pp. 1-5. doi:org/10.16966/2380-5498.180.

Du, S. et al. (2018) 'Health literacy and health outcomes in hypertension: An integrative review', International Journal of Nursing Sciences, 5(3), pp. 301-309. doi: 10.1016/j.ijnss.2018.06.001.

Duncan, P. R. et al. (2014) 'Determinants of obesity and perception of weight in hypertensive patients in rural South Africa', South African Journal of Clinical Nutrition, 27(2), pp. 56-62. doi: 10.1080/16070658.2014.11734488.

Dzudie, A. et al. (2018) 'Roadmap to Achieve 25\% Hypertension Control in Africa by 2025', Global Heart, 13(1), pp. 45-59. doi: 10.1016/j.gheart.2017.06.001.

Egbujie, B. A., Igumbor, E. U. and Puoane, T. (2016) ${ }^{\circ}$ A cross-sectional study of socioeconomic status and cardiovascular disease risk among participants in the prospective Urban Rural Epidemiological (PURE) study', South African Medical Journal, 106(9), pp. 900-906. doi: 10.7196/SAMJ.2016.v106i9.10456.

Elagizi, A. et al. (2018) 'An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases', Progress in Cardiovascular Diseases, 61(2), pp. 142-150. doi: 10.1016/j.pcad.2018.07.003.

Elnaem, M. H. et al. (2022) 'Disparities in Prevalence and Barriers to Hypertension Control: A Systematic Review', International Journal of Environmental Research and Public Health, 19(21), pp. 1-16. doi: 10.3390/ijerph192114571.

Essayagh, T. et al. (2019) 'Prevalence of uncontrolled blood pressure in Meknes, Morocco, and its associated risk factors in 2017', Public Library of Science, 14(8), pp. 1-16. doi:
10.1371/journal.pone. 0220710 .

Fantin, F. et al. (2019) 'Weight loss and hypertension in obese subjects', Nutrients, 11(7), pp. 113. doi: 10.3390/nu11071667.

Faulkner, G., Cohn, T. and Remington, G. (2006) 'Validation of a physical activity assessment tool for individuals with schizophrenia', Schizophrenia Research, 82(2-3), pp. 225-231. doi: 10.1016/j.schres.2005.10.020.

Ferdinand, K. C. (2020) 'Uncontrolled hypertension in sub-Saharan Africa: Now is the time to address a looming crisis', Journal of Clinical Hypertension, 22(11), pp. 2111-2113. doi: 10.1111/jch. 14046.

Filip, L. (2003) 'Assessor training Strategies and Their Effects on Accuracy,Interrater Reliability and Discriminant Validity', Journal of Applied Psychology, 86(2), pp. 185-204. doi: 10.4324/9781410609458.

Filippou, C. D. et al. (2021) 'Mediterranean diet and blood pressure reduction in adults with and without hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials', Clinical Nutrition, 40(5), pp. 3191-3200. doi: 10.1016/j.clnu.2021.01.030.

Frank, S. M. et al. (2019) 'Consumption of Fruits and Vegetables Among Individuals 15 Years and Older in 28 Low-And Middle-Income Countries', Journal of Nutrition, 149(7), pp. 12521259. doi: $10.1093 / \mathrm{jn} / \mathrm{nxz} 040$.

Franklin, S. S. et al. (2001) 'Predominance of isolated systolic hypertension among middle-aged and elderly US hypertensives: Analysis based on National Health and Nutrition Examination Survey (NHANES) III', Hypertension, 37(3), pp. 869-874. doi:' 10.1161/01.HYP.37.3.869.

Gala, P. et al. (2020) 'Medication Errors and Blood Pressure Control Among Patients Managed for Hypertension in Public Ambulatory Care Clinics in Botswana', Journal of the American Heart Association, 9(2), pp. 1-10. doi: 10.1161/JAHA.119.013766.

Gbadamosi M and Tlou B (2020) 'Modifiable risk factors associated with non-communicable diseases among adult outpatients in Manzini, Swaziland: A cross-sectional study', BioMed Central Public Health, 665(20), pp. 1-12.doi: 10.1186/s12889-020-08816-0.

Geldsetzer, P. et al. (2022) 'The prevalence of cardiovascular disease risk factors among adults living in extreme poverty: a cross-sectional analysis of 105 nationally representative surveys with 33 million participants', medArchive, 12(5), pp. 1-32.
doi:10.1101/2022.10.08.22280861v1https://www.medrxiv.org/content/10.1101/2022.10.08.2228

0861v1\%0Ahttps://www.medrxiv.org/content/10.1101/2022.10.08.22280861v1.abstract. (Accessed: 11 October 2022).

Ghimire, K. et al. (2021) 'Salt intake and salt-reduction strategies in South Asia: From evidence to action', Journal of Clinical Hypertension, 23(10), pp. 1815-1829. doi: 10.1111/jch.14365.

Gómez-Olivé, F. X. et al. (2017) 'Regional and Sex Differences in the Prevalence and Awareness of Hypertension: An H3Africa AWI-Gen Study Across 6 Sites in Sub-Saharan Africa', Global Heart, 12(2), pp. 81-90. doi: 10.1016/j.gheart.2017.01.007.

Goverwa, T. P. et al. (2014a) 'Uncontrolled hypertension among hypertensive patients on treatment in Lupane District, Zimbabwe, 2012’, BioMed Central Research Notes, 7(1), pp. 1-8. doi: 10.1186/1756-0500-7-703.

Del Greco, L., Walop, W. and McCarthy, R. H. (1987) 'Questionnaire development: 2. Validity and reliability', Canadian Medical Association Journal, 136(7), pp. 699-700.

Gu, Q. et al. (2008) 'Gender differences in hypertension treatment, drug utilization patterns, and blood pressure control among US adults with hypertension: Data from the National Health and Nutrition Examination Survey 1999-2004', American Journal of Hypertension, 21(7), pp. 789798. doi: 10.1038/ajh.2008.185.

Gu, Q. et al. (2022) 'Isolated systolic hypertension and insulin resistance assessment tools in young and middle-aged Chinese men with normal fasting glucose: a cross-sectional study', Scientific Reports, 12(1), pp. 1-10. doi: 10.1038/s41598-021-04763-x.

Gupta, R. and Xavier, D. (2018) 'Hypertension: The most important non communicable disease risk factor in India', Indian Heart Journal, 70(4), pp. 565-572. doi: 10.1016/j.ihj.2018.02.003.

Hainer, V. and Aldhoon-Hainerová, I. (2013) ‘Obesity paradox does exist', Diabetes Care, 36(2), pp.276-280. doi: 10.2337/dcS13-2023.

Hamid, S., Groot, W. and Pavlova, M. (2019) 'Trends in cardiovascular diseases and associated risks in sub-Saharan Africa: a review of the evidence for Ghana, Nigeria, South Africa, Sudan and Tanzania', Aging Male, 22(3), pp. 169-176. doi: 10.1080/13685538.2019.1582621.

He, Feng; Tan, Monique; Ma, Youan; MacGregor, G. (2020) 'Salt Reduction to Prevent

Hypertension', Journal of the American College of Cardiology, 75(6), pp. 632-647.
Husain, M. J. et al. (2020) 'Access to cardiovascular disease and hypertension medicines in developing countries: An analysis of essential medicine lists, price, availability, and affordability', Journal of the American Heart Association, 9(9).pp 1-13. doi:
10.1161/JAHA.119.015302.

Isa, D. M. et al. (2021) 'Associations of health literacy with blood pressure and dietary salt intake among adults: A systematic review', Nutrients, 13(12), pp. 1-19. doi: 10.3390/nu13124534.

Jafar, T. H. et al. (2018) 'Determinants of Uncontrolled Hypertension in Rural Communities in South Asia-Bangladesh, Pakistan, and Sri Lanka', American Journal of Hypertension, 31(11), pp. 1205-1214. doi: 10.1093/ajh/hpy071.

Jhanji, S., Dawson, J. and Pearse, R. M. (2008) 'Cardiac output monitoring: Basic science and clinical application', Anaesthesia, 63(2), pp. 172-181. doi: 10.1111/j.1365-2044.2007.05318.x.

Jongen, V. W. et al. (2019) 'Hypertension in a rural community in South Africa: What they know, what they think they know and what they recommend', BioMed Central Public Health, 19(1), pp. 1-10. doi: 10.1186/s12889-019-6642-3.

Kabir, S. (2016) 'Methods of Data Collection', Basic Guidelines for Research, pp. 201-276. doi: 10.1097/00006527-199406000-00014.

Kasiulevičius, V., Šapoka, V. and Filipavičiūté, R. (2006) 'Sample size calculation in epidemiological studies', Gerontologija, 7(4), pp. 225-231. doi: 013165/AIM.0010.

Kawano, Y. et al. (2004) 'Effects of repeated alcohol intake on blood pressure and sodium balance in Japanese males with hypertension', Hypertension Research, 27(3), pp. 167-172. doi: 10.1291/hypres.27.167.

Khader, Y. et al. (2019) 'Hypertension in Jordan: Prevalence, Awareness, Control, and Its Associated Factors', International Journal of Hypertension, 2019, pp.1-8.
doi:10.1155/2019/3210617.
Kishore, S. P. et al. (2015) 'Overcoming obstacles to enable access to medicines for
noncommunicable diseases in poor countries', Health Affairs, 34(9), pp. 1569-1577. doi: 10.1377/hlthaff.2015.0375.

Kokkinos, P. F. et al. (2009) 'Physical activity in the prevention and management of high blood pressure', Hellenic Journal of Cardiology, 50(1), pp. 52-59.

Kramoh, K. E. et al. (2019) 'Factors associated with poor adherence to medication among hypertensive patients in twelve low and middle income sub-Saharan countries', European Heart Journal, 40(1), pp. 1-14. doi: 10.1093/eurheartj/ehz745.0957.

Kressin, N. R. et al. (2014) 'The role of comorbidities in patients' hypertension selfmanagement', Chronic Illness, 10(2), pp. 81-92. doi: 10.1177/1742395313496591.The.

Kumara, W. A. N. et al. (2013) 'Prevalence and risk factors for resistant hypertension among hypertensive patients from a developing country', BioMed Central Research Notes, 6(1), pp. 28. doi: 10.1186/1756-0500-6-373.

Lambert, E. V. et al. (2006) 'Cross-culturat validation of the hill-bone compliance to high blood pressure therapy scale in a South African, primary healthcare setting', Ethnicity and Disease, 16(1), pp. 286-291. doi: 10.1016/s0895-7061(02)02817-0.

Landini, L. and Leone, A. (2011) 'Smoking and Hypertension: Effects on Clinical, Biochemical and Pathological Variables Due to Isolated or Combined Action on Cardiovascular System', Current Pharmaceutical Design, 17(28), pp. 2987-3001. doi: 10.2174/138161211798157694.

Lee, J. H. et al. (2018) 'Blood Pressure Control and Cardiovascular Outcomes: Real-world Implications of the 2017 ACC/AHA Hypertension Guideline', Scientific Reports, 8(1), pp. 1-8. doi: 10.1038/s41598-018-31549-5.

Leggio, M. et al. (2017) 'The relationship between obesity and hypertension: An updated comprehensive overview on vicious twins', Hypertension Research, 40(12), pp. 947-963. doi: 10.1038/hr.2017.75.

Levin, K. A. (2006) ‘Study design III: Cross-sectional studies’, Evidence-Based Dentistry, 7(1), pp. 24-25. doi: 10.1038/sj.ebd. 6400375.

Maginga, J. et al. (2016) 'Hypertension Control and Its Correlates Among Adults Attending a

Hypertension Clinic in Tanzania', Journal of Clinical Hypertension, 18(3), pp. 207-216. doi: 10.1111/jch. 12646.

Mancia, G. et al. (2013) '2013 Practice guidelines for the management of arterial hypertension of the European Society ofHypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESCTask Force for the Management of Arterial Hypertension', Journal of Hypertension, 31(10), pp. 1925-1938. doi: 10.1097/HJH.0b013e328364ca4c.

Masilela, C. et al. (2020) 'Cross-sectional study of prevalence and determinants of uncontrolled hypertension among South African adult residents of Mkhondo municipality', BioMed Central Public Health, 20(1), pp. 1-11. doi: 10.1186/s12889-020-09174-7.

McKenzie, B. L. et al. (2020) 'Evaluation of sex differences in dietary behaviours and their relationship with cardiovascular risk factors: A cross-sectional study of nationally representative surveys in seven low- And middle-income countries', Nutrition Journal, 19(1), pp. 1-15. doi: 10.1186/s12937-019-0517-4.

Menanga, A. et al. (2016) 'Factors associated with blood pressure control amongst adults with hypertension in Yaounde, Cameroon: A cross-sectional study', Cardiovascular Diagnosis and Therapy, 6(5), pp. 439-445. doi: 10.21037/cdt.2016.04.03.

Mills, K. T., Stefanescu, A. and He, J. (2016) 'The global epidemiology of hypertension Katherine', Physiology \& behavior, 176(1), pp.139-148. doi:10.1038/s41581-019-0244-2.The.

Mingying Zheng (2015) 'Conceptualization Of Cross-Sectional Mixed Methods Studies in Health Science: A Methodological Review Mingying Zheng University of Nebraska-Lincoln’, International Journal of Quantitative and Qualitative Research Methods, 3(2), pp. 66-87.

Ministry of Health Swaziland Government (2014) 'WHO STEPS Noncommunicable Disease Risk Factor Surveillance Report', pp. 1-43. Available at:
https://cdn.who.int/media/docs/defaultsource/ncds/ncd-surveillance/data-
reporting/eswatini/steps/2014-steps-swaziland-factsheet.pdf? (Accessed:15 July 2021)
Mohamed, S. F. et al. (2021) 'Prevalence of uncontrolled hypertension in people with comorbidities in sub-Saharan Africa: A systematic review and meta-Analysis', British Medical Journal Open, 11(12), pp. 1-10. doi: 10.1136/bmjopen-2020-045880.

MSF (2017) 'Evaluation of NCD service integrated into a general OPD and HIV service in Matsapha, Eswatini, 2017’. Available at: https://fieldresearch.msf.org/handle/10144/619308 (Accesed: 17 September 2022).

Ng, S. W. and Popkin, B. (2013) 'United States’, Obesity Reviews, 13(8), pp. 659-680. doi: 10.1111/j.1467-789X.2011.00982.x.Time.

Nugroho, P. et al. (2022) 'Comparison between the world health organization (WHO) and international society of hypertension (ISH) guidelines for hypertension', Annals of Medicine, 54(1), pp. 837-845. doi: 10.1080/07853890.2022.2044510.

Oktaviyani, P. et al. (2022) 'Prevalence and Risk Factors of Hypertension and Diabetes Mellitus among the Indonesian Elderly', Makara Journal of Health Research, 26 (1), pp. 26-33. doi: 10.7454/msk.v26i1.1329.

Palafox, B. et al. (2016) 'Wealth and cardiovascular health: A cross-sectional study of wealthrelated inequalities in the awareness, treatment and control of hypertension in high-, middle- and low-income countries', International Journal for Equity in Health, 15(1), pp. 15-17. doi: 10.1186/s12939-016-0478-6.

Pang, N. et al. (2020) 'Validation of the alcohol use disorders identification test (Audit) - dusun version in alcohol users in Sabahan Borneo', Archives of psychiatry research, 56(2), pp. 129142. doi: 10.20471/dec.2020.56.02.02.

Park, Y. S. et al. (2018) 'Association between secondhand smoke exposure and hypertension in never smokers: A cross-sectional survey using data from Korean National Health and Nutritional Examination Survey V, 2010-2012’, British Medical Journal Open, 8(5), pp. 1-7. doi:
10.1136/bmjopen-2017-021217.

Pasquale Passarella, 1 Tatiana A. Kiseleva, 2 Farida V. Valeeva, 2 and Aidar R. Gosmanov1, 3 (2018) 'Hypertension Management in Diabetes’, Spectrum Diabetes Journals, 31(3), pp. 218224. Available at: https://prescribeit.ca/update.

Pescatello, L. S. et al. (2019) 'Physical Activity to Prevent and Treat Hypertension: A Systematic Review', Medicine and Science in Sports and Exercise, 51(6), pp. 1314-1323. doi: 10.1249/MSS. 0000000000001943.

Piercy, K. L. and Troiano, R. P. (2018) 'Physical Activity Guidelines for Americans From the US Department of Health and Human Services', Circulation. Cardiovascular quality and outcomes, 11(11), pp. 1-4. doi: 10.1161/CIRCOUTCOMES.118.005263.

Ranak B. Trivedi, , Brian Ayotte, , David Edelman, H. B. B. (2013) ‘Treatment Adherence among Patients with Hypertension', Journal of Behavioural medicine, 31(6), pp. 489-497. doi: 10.1007/s10865-008-9173-4.The.

Sacco, R. L. et al. (2016) 'The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study From the American Heart Association and World Heart Federation', Circulation, 133(23), pp. e674e690. doi: 10.1161/CIR. 0000000000000395.

Salinas, A. M. and Kones, R. (2018) 'Barriers to Global Action Plan for the Prevention and Control of Noncommunicable Diseases: Proposal Modifications to the Voluntary Targets', Journal of Preventive Medicine, 03(01), pp. 1-6. doi: 10.21767/2572-5483.100022.

Sandoval, D., Nazzal, C. and Romero, T. (2018) 'Clinical, Socioeconomic, and Psychosocial Factors Associated with Blood Pressure Control and Adherence: Results from a Multidisciplinary Cardiovascular National Program Providing Universal Coverage in a Developing Country', International Journal of Hypertension, 2018. doi: 10.1155/2018/5634352.

Sanuade, O. A., Boatemaa, S. and Kushitor, M.K.(2018) Hypertension prevalence, awareness, treatment and control in Ghanaian popufation: Evidence from the Ghana demographic and health survey', The Public Library of Science One, 13(11), pp. 1-19. doi:
10.1371/journal.pone. 0205985.

Sarfo, F. S. et al. (2018) 'Factors associated with uncontrolled blood pressure among Ghanaians: Evidence from a multicenter hospital-based study', The Public Library of Sscience One, 13(3), pp. 1-19. doi: 10.1371/journal.pone. 0193494.

Sarkodie, E. et al. (2020) 'Adherence to drug therapy among hypertensive patients attending two district hospitals in Ghana', African Health Sciences, 20(3), pp. 1355-1367. doi:
10.4314/ahs.v20i3.42.

Savica, V., Bellinghieri, G. and Kopple, J. D. (2010) 'The the effect of nutrition on blood
pressure', Annual Review of Nutrition, 30, pp. 365-401. doi: 10.1146/annurev-nutr-010510103954.

Sawicka, K. et al. (2011) 'Hypertension - The Silent Killer’, Journal of Pre-Clinical and Clinical Research, 5(2), pp. 43-46.

Schroeder, E. C. et al. (2019) 'Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial', The Public Library of Science One, 14(1), pp. 1-14. doi: 10.1371/journal.pone. 0210292.

Schutte, A. E. et al. (2021) 'Hypertension in Low- And Middle-Income Countries', Circulation Research, 128, pp. 808-826. doi: 10.1161/CIRCRESAHA.120.318729.

Setia, M. S. (2016) 'Methodology series module 3: Cross-sectional studies’, Indian Journal of Dermatology, 61(3), pp. 261-264. doi: 10.4103/0019-5154.182410.

Shabangu, K. and Suleman, F. (2015) 'Medicines availability at a Swaziland hospital and impact on patients', African Journal of Primary Health Care and Family Medicine, 7(1), pp. 1-6. doi.org/10.4102/phcfm.v7i1.829.

Shariq, O. A. and Mckenzie, T. J. (2020) 'Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery', Gland Surgery, 9(1), pp. 8093. doi: 10.21037/gs.2019.12.03.

Sharp, A. et al. (2020) 'Decentralising NCD management in rural southern Africa: Evaluation of a pilot implementation study', BioMed Central Public Health, 20(1), pp. 1-8. doi: 10.1186/s12889-019-7994-4.

Skeete, J. et al. (2020) 'Approaches to the management of hypertension in resource-limited settings: Strategies to overcome the hypertension crisis in the post-COVID era’, Integrated Blood Pressure Control, 13, pp. 125-133. doi: 10.2147/IBPC.S261031.

Sorato, M. M., Davari, M. and Kebriaeezadeh, A. (2022) 'Societal economic burden of hypertension at selected hospitals in southern Ethiopia : a patient level analysis' British Medical Journal Open, 12(4),pp.1-14. doi.org/10.1136/bmjopen-2021-056627

Stamler, J. et al. (1989) ‘Special Feature INTERSALT Study Findings’, Hypertension, 14(5), pp.

570-577.
Stamler, J. (1997) 'The INTERSALT and implications Study : background, methods, findings, and implications', American Journal of clinical nutrition, 65(2), pp. 626S-642S.

Stelmach, M. (2018) 'Physical activity assessment tools in monitoring physical activity: the Global Physical Activity Questionnaire (GPAQ), the International Physical Activity Questionnaire (IPAQ) or accelerometers - choosing the best tools.', Health Problems of Civilization, 12(1), pp. 57-63. doi: 10.5114/hpc.2018.74189.

Sung, H. et al. (2018) 'Global patterns in excess body weight and the associated cancer burden', CA: A Cancer Journal for Clinicians, 69 pp. 88-112. doi: 10.3322/caac.21499.

Taler, S. J. (2018) 'Initial Treatment of Hypertension', New England Journal of Medicine, 378(7), pp. 636-644. doi: 10.1056/nejmcp1613481.

Tapela, N. M. et al. (2020) 'Prevalence and Determinants of Hypertension Awareness, Treatment, and Control in Botswana: A Nationally Representative Population-Based Survey', International Journal of Hypertension, 2020, pp.1-12. doi: 10.1155/2020/8082341.

Tasnim, S. et al. (2020) ‘Effect of alcohol on blood pressure’, Cochrane Database of Systematic Reviews, 2020(7). doi: 10.1002/14651858.CD012787.pub2.

Tavakoly Sany, S. B. et al. (2020) [Communicationskills training for physicians improves health literacy and medical outcomes among patients with hypertension: A randomized controlled trial', BioMed Centyral Health Services Research, 20(1), pp. 1-11. doi: 10.1186/s12913-020-4901-8.

Tesfaye, B. et al. (2017) 'Uncontrolled hypertension and associated factors among adult hypertensive patients on follow-up at Jimma University Teaching and Specialized Hospital: cross-sectional study', Research Reports in Clinical Cardiology, 8, pp. 21-29. doi:
10.2147/rrcc.s132126.

The Lancet (2012) 'A systemic analysis for the Global Burden of Disease Study 2010', The Lancet, 380(9859), pp. 2224-2260. doi: 10.1016/S0140-6736(12)61766-8.A.

The Lancet (2016) 'From epidemiological transition to modern cardiovascular epidemiology: hypertension in the 21st century', The Lancet, 388(10043), pp. 530-532. doi: 10.1016/S0140-

6736(16)00002-7.
The Lancet (2017) 'The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis’, The Lancet Public Health, 2(2), pp. e108-e120. doi: 10.1016/S2468-2667(17)30003-8.

The Lancet (2018 a) 'Articles May Measurement Month 2017 : an analysis of blood pressure screening results worldwide’, Lancet Global Health, 6, pp. 736-743. doi: 10.1016/S2214-109X(18)30259-6.

The Lancet (2018 b) 'Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants', The Lancet Global Health, 6(10), pp. e1077-e1086. doi: 10.1016/S2214-109X(18)30357-7.

The Lancet. (2019) 'Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys', The Lancet, 394(10199), pp. 639-651. doi: 10.1016/S0140-6736(19)31145-6.

The Lancet (2021) 'Obesity and hypertension in Asia: Current status and challenges', The Lancet Regional Health - Western Pacific, 15, pp. 0-2. doi: 10.1016/j.lanwpc.2021.100243.

Thoenes, M. et al. (2010) 'Antihypertensive drug therapy and blood pressure control in men and women: An international perspective',Journal of Human Hypertension, 24(5), pp. 336-344. doi: 10.1038/jhh.2009.76.

Tisdale, Rebecca Let al. (2021) 'Patient-Centered, Sustainable Hypertension Care : The Case for Adopting a Differentiated Service Delivery Model for Hypertension Services in Low- and Middle-Income Countries', Global Heart, 16(1), pp. 1-8. doi.org/10.5334/GH. 978

Tozivepi, S. N. et al. (2021) 'The nexus between adherence to recommended lifestyle behaviors and blood pressure control in hypertensive patients at mutare provincial hospital, zimbabwe: A cross-sectional study', Patient Preference and Adherence, 15, pp. 1027-1037. doi: 10.2147/PPA.S306885.

Umemura Satoshi, Hisatoshi Arima, Shuji Arima, Kei Asayama, Y. D. (2019)
'The_Japanese_Society_of_Hypertension_Guidelines_fo.pdf', Hypertension Research, 42(2019), pp. 1235-1481.

UNICEF (2018) Schools for africa -Investing in The children of Eswatini. Geneva. Available at: https://www.schoolsforafrica.org. (Accessed: 12 October 2022)

Upoyo, A. S., Setyopranoto, I. and Pangastuti, H. S. (2021) 'The Modifiable Risk Factors of Uncontrolled Hypertension in Stroke: A Systematic Review and Meta-Analysis', Stroke Research and Treatment, 2021, p.1-11. doi: 10.1155/2021/6683256.

Vikrant, S, Tiwari, S. (2001) 'Essential Hypertension - Pathogenesis and Pathophysiology’, Journal, Indian Academy of Clinical Medicine, 2(3), pp140-159.

Wang, T. J. and Vasan, R. S. (2005) 'Epidemiology of uncontrolled hypertension in the United States', Circulation, 112(11), pp. 1651-1662. doi: 10.1161/CIRCULATIONAHA.104.490599.

Wang, Y. and Zhou, X. (2020) 'The year 2020 , a milestone in breaking the vicious cycle of poverty and illness in China', Infectious Diseases of povertyl, 5, pp. 1-9. doi.org/10.1186/s40249-020-0626-5

Wasfy, M. M. and Baggish, A. L. (2016) Exercise Dose in Clinical Practice', Circulation, 133(23), pp. 2297-2313. doi: 10.1161/CIRCULATIONAHA.116.018093.

WHO (2013) 'Global action plan for the prevention and control of non communicable diseases'. Available at: https://www.who.int/publications/i/item/9789241506236 (Accessed: 9 august 2022).

UNIVERSITY of the

WHO (2014) 'Eswatini Hypertension Fact Sheet' pp. 3-4.Available
at:https://cdn.who.int>swn_. (Accessed: 30 July 2021).
WHO (2018) NCD Country profiles. Available at:
https://www.who.int/nmh/countries/swz_en.pdf?ua=1. (Accesed 28 June 2021).
WHO (2019) Epidemiological Data Analysis for the Early Warning Alert and Response Network (EWARN) in Humanitarian Emergencies - A Quick Reference Handbook. Available at: https://applications.emro.who.int/docs/EMROPUB_2019_EN_22341.pdf. (Accessed 19 September 2021).

WHO (2020a) Noncommunicable diseases : Mortality. Available at:
https://www.who.int/data/themes/topics-details/GHO/ncd-mortality. (Accessed 19 September
2021).

WHO (2020b) Risk-based CVD management. Available at:
https://www.paho.org/en/documents/hearts-technical-risk-based-cvd-management. (Accesed 19 September 2021).

WHO (2020c) 'WHO reveals leading causes of death and disability worldwide: 2000-2019', World Health Organization (WHO). Available at: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. (Accesed: 20 September 2021).

WHO (2021a) 'Hypertension'. Available at: https://www.who.int/news-room/factsheets/detail/hypertension. (Accessed: 20 September 2021).

WHO (2021b) Noncommunicable diseases. Available at: https://www.who.int/news-room/factsheets/detail/noncommunicablediseases. (Accessed 20 September 2021).

Wilcox, S. et al. (2003) 'The effects of widowhood on physical and mental health, health behaviors, and health outcomes: The women's health initiative', Health Psychology, 22(5), pp. 513-522. doi: 10.1037/0278-6133.22.5.513.

Willens, D. E. et al. (2013) 'Association of brief health literacy screening and blood pressure in primary care', Journal of Health Communication,18(1), pp. 129-142. doi:
10.1080/10810730.2013.825663.

WESTERN CAPE
Wirtz, V. J. et al. (2016) 'Access to medications for cardiovascular diseases in low- and middleincome countries', Circulation, 133(21), pp. 2076-2085. doi:
10.1161/CIRCULATIONAHA.115.008722.

Worldbank (2022) Creating Markets in Eswatini. Available at:
https://www.ifc.org/wps/wcm/connect/publications_ext_content/ifc_external_publications_site/p ublications_listing_page/cpsd-eswatini (Accessed 5 November 2021).

Xiao M et al. (2019) 'Health-related quality of life of hypertension patients: A population-based cross-sectional study in Chongqing, China'. International Journal of Environmental Research and Public Health, 16(13),pp 1-12. doi.org/10.3390/ijerph16132348.

Yoon, S. J. et al. (2020) 'The protective effect of alcohol consumption on the incidence of cardiovascular diseases: Is it real? A systematic review and meta-analysis of studies conducted in community settings', BioMed Central Public Health, 20(1), pp. 1-10. doi: 10.1186/s12889-019-7820-z.

Yosef, T. (2020) 'Prevalence and associated factors of chronic non-communicable diseases among cross-country truck drivers in Ethiopia', BioMed Central Public Health, 20(1), pp. 1-7. doi: 10.1186/s12889-020-09646-w.

Zhou, B. et al. (2021) 'Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension', Nature Reviews Cardiology, 18(11), pp. 785-802. doi: 10.1038/s41569-021-00559-8.

Zurbau, A. et al. (2020) 'Relation of different fruit and vegetable sources with incident cardiovascular outcomes: A systematic review and meta-analysis of prospective cohort studies', Journal of the American Heart Association, 9(19), pp.1-23. doi: 10.1161/JAHA.120.017728.

APPENDICES

APPENDIX 1: QUESTIONNAIRE
 OUESTIONNAIRE ON THE RISK FACTORS FOR POOR BP CONTROL IN
 HYPERTENSIVE PATIENTS ON TREATMENT IN MANZINI, ESWATINI.

A

PATIENT FACTORS

DEMOGRAPHIC VARIABLES

1. Age (Iminyaka yakho)
2. Address (uhlala kuphi)

UNIVERSITY of the
\square

Within 10km to the hospital \square Bevond 10km to the hospital
3. Gender (Ungumfati noma uyindvodza?)

Male (indvodza)	Female (umfati)

4. Level of education- How many years of school did you have? (excluding pre-school)

Mingakhi iminyaka lowayifundza eskolweni? (ngaphandle kwenkhulisa)

No formal	Primary school	High school	College/ university
education	1-7 YEARS	8-12 YEARS	>12 YEARS
(Angifundzanga	(Ngagcina	(ngagcina	(ngafundzela
nhlobo)	eskolweni	eskolweni	ekolishi/enyuvesi)
	lesincane()	lesikhulu)	

5. HOUSEHOLD WEALTH

In the last year can you give an estimate your household earnings? (Kulomunyaka lowengcile ungangibekisela kutsi imali lengene ekhaya nguyiphi kuleti?)

ANTHROPOMETRIC VARIABLES (TIKALO TAKHO)

1. weight: $($ sisindvo)
\square
2. height: (budze)

3. BMI: (Sisindvo nge budze bakho)
\square

Categories (Luhla lwetisindvo nge budzebemuntfu)

| Normal weight (BMI 18.5
 less than 25) (sisindvo | Overweight (BMI 25 to less
 ngebudze lesifanele) | Obese (BMI 30 and
 than 30) (sisindvo lesikhulu
 kunebudze) |
| :--- | :--- | :--- | | above)
 (Sisindvo lesikhulu
 kakhulu kunebudze) |
| :--- |

BP TREATMENT VARIABLES (KULAPHA KWAKHO I BP)

1. BP:
\square
2. Is the BP controlled? (Ikahle yini I BP yakho)? (less than 140/80)

YES	NO

1. Number of drugs taken for BP (Unatsa mangakhi emaphilisi e BP)

Daily (Kanye ngelilanga) UNIVERS	More than once daily(kwencga Kanye ngellilanga)e

WESTERN CAPE
3. Adherence to BP treatment (Sibuka kunatseka kwemaphilisi e BP ngendlela lengiyo)

Question	None of the time 1 (akwenteki)	Some of the (ime 2 (ngalamanye emahlandla)	Most of the time 3 (esikhatsini lesinyenti)	All the time 4 (sonkhe sikhatsi)	Not Applicable 8 (angifisi kuphendvula)	Don't know9 (ngite siciniseko)

How often do you forget to take your BP medicine (Uyakhohlwa yini kunatsa emitsi yakho?)						
How often do you decide not to take your BP medicine? (Utitjela kangakhi kutsi angeke unatse imitsi yakho?						
How often do you eat salty food?(Luswayi uludla kangakanani?)						
How often do you miss scheduled appointments? (kuvame kanganani kutsi ungayi emtfolamphilo ngelilanga lobekelwe lona?)						
how often do you run out of BP medicine? (Uvame kanganani kuphelelwa yimitsi?)						
How often do you skip your medicine 1-3 days before attending clinic? (Uvame kanganani kunganatsi imitsi yakho l-3						

CLINICAL VARIABLES (IMPHILO NALOKUNYE KUGULA LONAKO)

Have you ever been told by a health care provider that you have Diabetes? (Wake watjelwa ngulosebenta ngetemphilo kutsi unesifo sashukela na)?

Yes (yebo)	No (cha)

Are you on medical treatment for any other illness? (Kukhona lokunye kugula lowelashelwa

UNIVERSITY of the

PSYCHOSOCIAL VARIABLES (KUPHATSEKA KWAKHO EMOYENI NASEKHAYA)

Do you have present social support daily? (Kukhona yini lophilanaye onkhe malanga)?

Yes (yebo)	No(cha)

Marital status (simo semshado)

Never married (zange sengishade)	Married (ngishadile)	Separated (ngehlukene nalebengishade naye)	Divorced (sehlukene ngekwemtsetfo)	Widowed (washona lebengishadenaye)	Cohabitating (kukhona lengihlala naye)

HEALTH LITERACY VARIABLE ON BP (LWATI LWAKHO NGE BP)

1. Which of the following make BP poorly controlled? (chose the best answer)
1.(Khetsa kunye kuloku lokulandzelako lokubanga I BP ibesetulu)
a) salt in the diet, not exercising, drinking alcohol, smoking
(luswayi, kungashukumisi umtimbha, kunatsa tjwala, kubhema)
b) working hard, sleeping late, drinking coke
(kusebenta kakhulu, kulala selishone kakhulu, kunatsaicoca-cola)
2. Which one of the following are complications of hypertension? (chose the best answer)
(Khetsa kunye kuloku lokulandzelako lokuyingoti levela ngenca ye BP)
a) stroke, kidney failure, heart failure
(Sifo senhlitiyo, kulimala kwetinso, kufa luhlangotsi)
b) weight gain, joint pain, loss of hearing
(kukhuluphala, buhlungu bematsambo, kungeva emadlebeni)

Poor (0/2)	Partial(1/2)	Good (2/2)

LIFESTYLE HABITS VARIABLES (INDLELA YEKUPHILA)

Are you currently a smoker? (Uyabhema noma cha)

Yes (yebo)	No (cha)

Physical activity levels (Lizinga lakho lekushukumisa umtimba)

VIGOROUS ACTIVITY (KUSHUKUMA KAMATIMA)	
1. In the last week, on how many days did you do activities like digging or lifting heavy weights? (kuleliviki lesisuka kilo kushukuma kamatima lokufana nekuhlakula nekwetfwala lokusindzako ukwente kumangakhi emalanga?)days(Emalanga)
2. How much time did you spend doing vigorous activity on one of those days? (lokushukuma toku ukwente sikhatsi lesinganani?)	\qquad hours (emahora) \qquad minutes (imizuzu)
MODERATE PHYSICAL ACTIVITY (KUSHUKUMA LOKUNGAMATIMA KAKHULU)	
3. In the last week, how many days did you do moderate physical activity like carrying a water bucket or walking for recreation? (kuleliviki lesisuka kilo mangakhi ēmalangaE R lawu shukume khona ngekuhamba ulule tinyawo noma wetfwala libhakede lemanti?)days (emalanga) ITY of the CAPE
4. How much time did you spend doing this activity in one of those days? (lokushukuma loku ukwente sikhatsi lesinganani?)	\qquad Hours(emahora) \qquad minutes (imizuzu)
SEDENTARY TIME (KUHLALA NEKUPHUMULA)	
5. In the last week, how much time did you usually spend sitting, reading or watching TV? (kuleliviki lesisuka kilo ucitse lesinganani sikhatsi u hleli, ufundza incwadzi noma ubukela mabonakudze?)	\qquad Hours (emahora) \qquad minutes (imizuzu)

TOTAL Moderate and vigorous- intensity physical activity (MVPA)
SCORES	
1. INACTIVE (less than	
	30min/week MVPA)

Alcohol dependence (lizinga lekusebentisa tjwala)

1. Have you ever been told by a health care professional that you need to reduce the amount of alcohol you consume? (Wake wecwayiswa ngulosebenta ngetemphilo kutsi yehlisa lizinga lakho lekunatsa tjwala?)

Yes $($ yebo $)=1$	No $($ cha $)=0$

2. Has anyone expressed concern about your drinking? (Kukhona yini lowake wakhombisa kukhatsateka ngelizinga lekunatsa kwakho tjwala)

3. Has your drinking caused you any bad feelings? (kunatsa kwakho tjwala kuke kwakuphatsa kabi yini)

$$
\text { Yes (Yebo) }=1
$$

$$
\text { No }(\text { cha })=0
$$

4. Have you ever had to get a drink in order to function in the morning or heal a hangover? (kuyenteka yini udzinge kunatsa tjwala nawuvuka ekuseni kute utive sowukahle noma kute utawukhokha linyeva?)

Yes $($ yebo $)=1$	No $($ cha $)=0$

University of the Western Cape

Private Bag X 17, Bellville 7535, South Africa

Te1: +27 21-959 2809, Fax : 27 21-959 2872
E-mail: soph-comm@uwc.ac.za

Title of Research Project: Risk factors for poor blood pressure control in
Hypertensive patients on treatment in Manzini, Risk factors for poor blood pressure control in
Hypertensive patients on treatment in Manzini,

CONSENT FORM

 Risk factors for poor blood pressure control in
Eswatini.

 WESTERN CAPE

The study has been described to me in language that I understand. My questions about the study have been answered. I understand what my participation will involve and I agree to participate of my own choice and free will. I understand that my identity will not be disclosed to anyone. I understand that I may withdraw from the study at any time without giving a reason and without fear of negative consequences or loss of benefits.
\qquad I agree to be audiotaped during my participation in this study.
I do not agree to be audiotaped during my participation in this study.

Participant's name

\qquad
\qquad
Date \qquad

University of the Western Cape

Private Bag X 17, Bellville 7535, South Africa
Te1 : + 27 21-959 2809, Fax : 27 21-959 2872
E-mail: soph-comm@uwc.ac.za

LIPHEPHA LELIKHOMBA KUVUMA KUNGENELA LOLUCWANINGO

Libito Iwalolucwaningo:

Tintfo letibanga iBP ihlale isetulu kubantfu labalashelwa I BP kaManzini, Eswatini.

Ngichazelekile ngalolucwaningo ngelulwimi Iwami Iengiluvako. Imibuto yami mayelana nalolucwaningo iphendvulekile. Ngiyati kutsi kungenela kwami lolucwaningo kushokutsini futsi ngiyavuma kulungenela ngoba ngitikhetsele mine. Ngiyacondza kutsi libito lami ngeke litjelwe lomunye umuntfu litawhlala liyimfihlo. Ngiyacondza kutsi ngingayekela noma ngabe kunini kungenela lolucwaningo futsi akudzingeki ngibeke
sizatfu sekuyekela. Futsi nangiyekela kute lokubi lokutawenteka kimi noma lengitakweswela.
__ Ngiyavuma ku rekhodiwa ekungeneleni kwami lolucwaningo. Angivumi ku rekhodiwa ekungeneleni kwami lolucwaningo.

Libito lalongenela lolucwaningo.
Kusayina kwalongenela Iolucwaningo \qquad
\qquad

UNIVERSITY of the WESTERN CAPE

APPENDIX3: INFORMATION SHEETS (ENGLISH AND SISWATI)

University of the Western Cape

Private Bag X 17, Bellville 7535, South Africa
Te1: +27 21-959 2809, Fax : 27 21-959 2872
E-mail: soph-comm@uwc.ac.za

This study is being carried out by Dr Millicent Buckham, a student at the University of the Western Cape in Cape Town, South Africa, as part of her studies. It aims to measure how many hypertensive patients in Manzini, Eswatini, on drug treatment, have high BPs despite treatment. It also aims to find out the factors associated with BPs being high in these uncontrolled patients. We are inviting you to take part in this study because you are a patient with hypertension, and we want to learn from the information we get from you so that we improve our management of hypertensive patients and improve the number of controlled patients, thereby decreasing complications such as strokes and heart attacks. The findings from this research can be used to
make recommendations to the Ministry of health on what resources should be allocated to improve the management of hypertension.

What will I be asked to do if I agree to participate?

You will be asked to answer some questions for a few minutes and then have your blood pressure, weight and height measured. The interview will be audio recorded.

Examples of the types of questions you will be asked are:

1. How old are you and where do you live?
2. Have you ever been told by a health care worker that you are Diabetic?
3. How many types of BP pills do you take, and how many times do you take them a day?
4. Do you put salt in your food?
5. Do you smoke?
6. Are you satisfied with the treatment and care you receive at the clinic?

Would my participation in this study be kept confidential?
The researchers assure they will safeguard confidential information and identity.
WESTERN CAPE
For anonymity, participant names will not be involved in collected data, only assigned numbers and codes will be used.

To ensure confidentiality:
(1) All data collected will be locked up and transported by only the researcher. Electronic data retrieved from questionnaires will be saved on the researcher's password-locked laptop with only the researcher having access to it.
(2) Participants' data obtained from this study will be used to complete the researcher's minithesis and if an article or report is written about this research project, your identity will be protected.

What are the risks of this research?

Some of the discussed topics may make the participant feel uncomfortable. Each patient will be assigned a number for anonymity. If any participant experiences psychological discomfort during participation in this study, the researcher has arranged for referral to the hospital psychologist and will assist the participant in reaching it. If during the study any participant needs medical attention, the researcher will ensure they receive it at the NCD clinic or hospital emergency room.

What are the benefits of this research? VERSITY of the

The results of this research will inform the investigator and health care workers and improve understanding about the factors that cause BP to be uncontrolled despite treatment so that they can work on ways to address these in their treatment of BP. This will lead to better outcomes and quality of life in hypertensive patients and fewer deaths and complications. Knowing how many people have uncontrolled and why BP may assist with motivating for resources to ensure medicines and other resources used in managing BP are more available.

Do I have to be in this research and may I stop participating at any time?

Your participation in this study is completely voluntary; you can refuse to participate if you decide to. You are also free to decide to stop participating at any time if you want to or not to answer, and you do not have to explain why. To withdraw from the study, you can simply tell the researcher you are no longer participating, and any data we get from you will not be used in the study. Refusing to participate or deciding to withdraw will not cause you to be disadvantaged in any way. Before starting with the interview, I will require you to sign the included consent form to participate in this study. Please look at it and decide if you would want to be part of the research or not, and then sign it if you want to participate.

What if I have questions?

This research is being conducted Dr Millicent Buckham from the School of Public Health at the University of the Western Cape (UWC). If you have further questions or about the research study itself, please contact:

Student Name: Millicent Buckham
Student Number: 4002733
Mobile Number: 0026876074772 J NIVERSITY of the
Work Number: 0026825084000 W ES TERN CAPE
Email: 4002733@myuwc.ac.za
I am accountable to my supervisor: Dr Lungiswa Tsolekile
School of Public Health, UWC.
Tel:+27 823995428

Should you have any questions regarding this study and your rights as a research participant or if you wish to report any problems you have experienced related to the study please contact:

Prof Uta Lehmann
Head of Department: School of Public Health
University of the Western Cape
Private Bag X17
Bellville 7535
ulehmann@uwc.ac.za

Prof Anthea Rhoda
Dean: Faculty of Community and Health Sciences

University of the Western Cape
Private Bag X17
Bellville 7535
chs-deansoffice@uwc.ac.za

This research has been approved by the University of the Western Cape's Biomedical Research Ethics Committee.

Biomedical Research Ethics Committee
University of the Western Cape
Private Bag X17
Bellville

7535
Tel: 0219594111

University of the Western Cape

Private Bag X 17, Bellville 7535, South Africa Tel: +27 21-959 2809, Fax: 27 21-959 2872
II II E-mail: soph-comm@uwc.ac.za

UNIVERSITY of the

Libito lwalolucwaningo: Tintfo letibanga iBP inlale isetulu kubantfu labalashelwa I BP kaManzini, Eswatini.

Lungani lolucwaningo?

Lolucwaningo lolwentiwa ngu Dr Mlillicent Buckham lofundza enyuvesi yase Western Cape, eCape Town, South Africa, lufuna kubuka kutsi bangakhi bantfu labalashelwa iBP labachubeka kuba ne BP lesetulu noma banikiwe emaphilisisi alesifo. Lifuna nekubuka kutsi yini timbangela
talokuchubeka kukhuphuke iBP nomangabe ulashelwa yona ngemaphilisi kulabantfu labakhandzakala bane BP lesetulu

Siyakumema kutsi ubesekhatsi kulelucwaningo njengoba nawe ulashelwa i BP. Siyafisa kutfola lwati kuwe khona sitawkhona kunyusa lizinga letfo lekulapha bantfu labaphila ne BP khona sitawehlisa tinombolo tebantfu labane BP lesetulu. Loku kutawusita kuts kwehle lizinga lebantfu labagcina baphetfwe sifo senhlitiyo netiTrokhi ngenca ye BP lehlala isetulu. Lwati lolutfolakala kulolucwaningo lutawusita nekutsi sikhone kucela etikweni lwetemphilo kutsi basite ngetintfo lesitawkhandza tidzingeka noma tishoda kulolucwaningo letitawusita ekulapheni kancono bantfu labane BP.

Yini letawdzingeka kimi uma ngivuma kuba kulelucwaningo?

Utawcelwa kutsi usiphendvulele imibuto letsite bese sikukala ne BP, sisindvo Kanye nebudze.
Mambinnmamim
Kutawurekhodiwa lelesitabesikhuluma ngako.
Imibuto lotawubutwa yona ifana nanayi:
7. Uhlalaphi futsi iminyaka yakho mingakhi?

UNIVERSITY of the

8. Sifo sashukela unaso yini?
9. Tingakhi tinhlobo temaphilisi e BP lotinatsako futsi uninatsa kangkakhi ngelilanga?
10. Luswayi uyaludla yini ekudleni?
11. Uyabhema yini?
12. Uyanetiseka yini ngelusito lolutfola lamtfolamphilo nawutile?

Imininingwane yami lenginitjela yona kulocwaningo itawgcineka iyimfihlo yini?

Lowenta lolucwaningo uyatsembisa kugcina yonkhe imininingwane yalabalungenelako iyimfihlo. Angeke kwateke kubantfu kutsi ngubani losinike lwati.

Kugcina imininingwane ifihlekile:
(3) Emagama alabangenela lolucwaningo ngeke asetjentiswe, batawuniketwa tinombolo kuphela kuze kungatawateka kutsi babobani.
(4) Onkhe lamaphepha lesitawbhalela kuwo timphendvulo talabangenela lolocwaningo atawukhiyelwa ahanjiswe ngulolowenta lolucwaningo kuphela. Timphendvulo Titawufakwa kungcondvomshina titawgcineka tiyimfihlo tikhiyelwe kungcondvomshina. Titawubonwa ngulowenta lolucwaningo kuphela.
(5) Timphendvulo letitfolakala kulolocwaningo titawsebenta etifundvweni talowenta lolucwaningo kuphela.

Kukhona yini lokubi lokungangivelela nangingenela lolucwaningo?

Kungenteka kutsi mhlawumbe imibuto letsite kulolucwaningo ingabi ngulemunandzi kuyiphendvula kulabanye. Wonkhe lolungenelako utawunikwa inombolo, angasebentisi libito lakhe kute timphendvulo takhe titawugcineka tiyimfihlo. Lowenta lolocwaningo ulungisile nalowelulekanako khona lasbhedlēa kutsi asite labo lekūngenteka badzinge kwelulekwa. Uma kukhona lodzinga lusito lwadokotela noma lwemhlengikati kulabo labatabe bangenele lolwaningo, lusito lutawutfolakala khona lana emtfolamhilo kulosebenta ngekwelulekana.

Yini lokuhle lokutawuletfwa ngulolucwaningo?

Lwati lolutfolakala kulolucwaningo lutawatisa labalapha lesifo kutsi yini tintfo letibanga iBP ingehli noma seyilashwa ngemaphilisi. Loku kutawenta bakhone kwenta tindlela tekulungisa leto tintfo. Kulungisa letintfo letenta iBP ingehli kutawsita ekuyehliseni kute labaphila nalesifo bangatawuvelelwa tifo letibangwa kwenyuka kweBP. Futsi kutawunciphisa lizinga lekushona
kwebantfu ngenca ye BP. Kwati kutsi bangakhi labaneBP lehlala iphakeme kungasita nekutsi kugcugcuteleke litiko letemphilo kutsi lungete imitsi nalokunye kwekwelapha I BP lamitfolamphilo kute kutawuhlala kukhona.

Ngiphocelelekile yini kungenela lolucwaningo, futsi ngingaphuma yini kilo nangifisa?

Lolucwaningo ulingenela nawufisa kuphela, awukaphoceleleki. Futsi nasewulingenele unelilungelo lekuphuma kilo nawufisa. Nekungaphendvuli imibuto tsite uvumelelekile. Angeke ubutwe nekutsi sewuphumelani. Uma sewufuna kuphuma, utawvele usho bese uyaphuma. Timphendvulo takho ngeke sitisebentise nasewuphumile. Kungalungeneli lolucwaningo nekuphuma kilo kute lapho kutakulimata khona. Utawuchubeka usitakale lamtfolamphilo njengabo bonkhe bantfu ngoba kulilungelo lakho. Ngitakucela ungisayinele kutsi uyavuma kungenela lolucwaningo singakacali. Ngitaweela ubuke teliphepha lelishoko kutsi uyavuma kungenela lolocwaningo bese uyakhetsa kutsi uyalisayina noma cha.

Uma nginemibuto ngentanjani?

Uma unaleminye imibuto noma uftuna kwati kabanti ngaloluewaningo, ngiyatfolakala kunatimbolo:

Ligama lemfundzi: Millicent Buckham

Inombolo yemfundzi yasenyuvesi: 4002733
Inombolo yamahlalekhukhwini: 0026876074772
Inombolo yasesmsebentini: 0026825084000
Likheli le email: 4002733@myuwc.ac.za
Longelusako nalongiphetse kulolucwaningo: Dr Lungiswa Tsolekile
School of Public Health UWC:
Tel: +27-21-959 2809

Fax: +27-21-9592872
Umangabe unemibuto mayelana nalolucwaningo nemalungelo akho mayelana nekulingenela, noma umangabe uhlangana netinkinga usangenele lolucwaningo lofisa kutibika, ngicela utsintse naba baphatsi benyuvesi labalandzelako:

Prof Uta Lehmann
Head of Department: School of Public Health
University of the Western Cape
Private Bag X17
Bellville 7535
ulehmann@uwc.ac.za

Prof Anthea Rhoda
Dean: Faculty of Community and Health Sciences
University of the Western Cape UNIVERSITY of the
Private Bag X17
Bellville 7535
chs-deansoffice@uwc.ac.za

Lolucwaningo luvunyelwe li komidi le University of the Western Cape's Biomedical Research Ethics.

Biomedical Research Ethics Committee

University of the Western Cape
Private Bag X17
Bellville
7535
Tel: 0219594111
e-mail: research-ethics@uwc.ac.za

UNIVERSITY of the WESTERN CAPE

APPENDIX 4 UNIVERSITY OF THE WESTERN CAPE ETHICAL CLEARANCE

03 December 2021

Dr M Buckham
School of Public Health
Faculty of Community and Health Sciences

Ethics Reference Number: \quad BM21/10/33
Project Title: \quad Risk factors for poor blood pressure control in Hypertensive patients on treatment in Manzini, Eswatini.

Approval Period: 03 December 2021-03 December 2024

I hereby certify that the Biomedical Science Research Ethics Committee of the University of the Western Cape approved the scientific methodology and ethics of the above mentioned research project and the requested amendment to the project.

Any further amendments, extension or other modifications to the protocol must be submitted to the Ethics Committee for approval.

Please remember to submit a progress report annually by 30 -November for the duration of the project.

For permission to conduct research using student and/or staff data or to distribute research surveys/questionnaires please apply via: https://sites.google.com/uwc.ac.za/permissionresearch/home
The permission letter must then be submitted to BMREC for record keeping pupposes.
The Committee must be informed of any serious adverse event and/or termination of the study.

MEMORIAL HOSPITAL

17 November 2021
Dr. Millicent P Buckham
P O BOX 1277
Manzini, M200
Dear Doctor
RE: AUTHORIZATION TO DO RESEARCH IN THE HOSPITAL
Your request on the fore mentioned endeavors has been duly considered and permission granted on the following conditions please:
a). That confidentiality is strictly observed $\square \pi \square \square \square \pi$
b). That the hospital receives a copy of the report on the proposed research.

Yours Singerely

$\frac{\text { Leonard S. Dlamini (Mr.) }}{\text { HOSPITAL ADMINISTRATOR }}$ UNVERSITY of the
WESTERN CAPE
CC: Matron 1
SMO

$125812 \pi 084000$ O wwn entmanamerana																																																																																																																																																																																																																																															

APPENDIX 6: ETHICAL CLEARANCE FROM THE ESWATINI HEALTH AND

 HUMAN RESEARCH REVIEW BOARD.

```
ESWATINI
HEALTH AND HUMAN
RESEARCH REVIEW BOARD
MBANDZENI HOUSE, 30D FLOOR, CHURCH STREET
P.O. BOX S, MBABANE, ESWATINI
```

ONE YEAR RESEARCH PROTOCOL APPROVAL CERTIFICATE

APPROVAL CONDITIONS

Ref.	Conditions	Indication of conditions (tick appropriate box)				
1	Implementation of approved version of protocol					
2	Submission of progress reporting for multi-year studies	Yr 1	Yr 2	Yr 3	Yr 4	Yr 5
3	Submission of end of project report (Hard copy)	\checkmark				
4	Submission of end of project report (Soft copy)	\checkmark				
5	Submission of data sers	\checkmark				

List of reviewed documents

UNIVERSITY of the
WESTERN CAPE
$R 2$

UNIVERSITY of the WESTERN CAPE
https://etd.uwc.ac.za/

[^0]: *z is reported for continuous variables in place of chi-square

