Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Education
    • Department of Comparative Education
    • Philosophiae Doctor - PhD (Education)
    • View Item
    •   ETD Home
    • Faculty of Education
    • Department of Comparative Education
    • Philosophiae Doctor - PhD (Education)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Epistemological obstacles in coming to understand the limit concept at undergraduate level: a case of the National University of Lesotho

    Thumbnail
    View/Open
    Moru_PHD_2006.pdf (945.5Kb)
    Date
    2006
    Author
    Moru, Eunice Kolitsoe
    Metadata
    Show full item record
    Abstract
    The purpose of this study was to investigate the epistemological obstacles that mathematics students at undergraduate level encounter in coming to understand the limit concept. The role played by language and symbolism in understanding the limit concept was also investigated. A group of mathematics students at undergraduate level at the National University of Lesotho (NUL) was used as the sample for the study. Empirical data were collected by using interviews and questionnaires. These data were analysed using both the APOS framework and a semiotic perspective. Within the APOS framework, the pieces of knowledge that have to be constructed in coming to understand the limit concept are actions, processes and objects. Actions are interiorised into processes and processes are encapsulated into objects. The conceptual structure is called a schema. In investigating the idea of limit within the context of a function some main epistemological obstacles that were encountered when actions were interiorised into processes are over-generalising and taking the limit value as the function value. For example, in finding the limit value L for f(x) as x tends to 0, 46 subjects out of 251 subjects said that they would calculate f(0) as the limit value. This method is appropriate for calculating the limit values for continuous functions. However, in this case, the method is generalised to all the functions. When these subjects encounter situations in which the functional value is equal to the limit value, they take the two to be the same. However, the two are different entities conceptually.
    URI
    http://hdl.handle.net/11394/1921
    Collections
    • Philosophiae Doctor - PhD (Education)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV