Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | Quick Submission Guide | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Physics and Astronomy
    • Magister Scientiae - MSc (Physics)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Physics and Astronomy
    • Magister Scientiae - MSc (Physics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Polarizability effects due to low-energy enhancement of the gamma-strength function

    Thumbnail
    View/Open
    Ngwetsheni_nsc_2019.pdf (4.324Mb)
    Date
    2018
    Author
    Ngwetsheni, Cebo
    Metadata
    Show full item record
    Abstract
    Physics is the study of natural phenomena. Nuclear physicists have since the discovery of the nucleus been working on understanding its dynamics. The nuclear chart, analogous to the periodic table of elements, is illustrated in Fig. 1.1 and color coded according to decay modes. Several theoretical models, based on various hypothesis, have been developed during the years in order to understand nuclear phenomena such as nucleon-nucleon (n-n) interactions, binding energies, radii, excited states, etc. Unfortunately, no-unique model is actually able to grasp all nuclear phenomena at the desired level of accuracy. Among the di erent models, we notice that two distinct hypotheses can be used to describe nuclear properties. Firstly, the independent particle shell model (IPSM) + the n-n residual interaction, which assumes that a nucleon moves independently in a potential generated by other nucleons. Secondly, the macroscopic models, where a nucleus is considered as a whole, i.e. neutrons and protons behave cooperatively and are mutually coupled to each other; highlighting the short-ranged character of the nuclear force. The liquid-drop model is an example of such macroscopic models. Re nement of these models is dependent on experimental observations that are better detailed for nuclei along the line of - stability, making up a small fraction of the known isotopes, as shown in Fig. 1.1. In practice, various techniques for studying exotic nuclei up to neutron and proton drip-lines have been devised, including the use of radioactive ion beams. However, the main challenges are the synthesization and short lived periods of these exotic nuclei resulting in insu cient data collection from which the characteristics and structural information are extracted. In general, nuclei have unique structures represented by a particular con guration as given by the shell model (SM). These structures impact a number of physical quantities, e.g. transition probabilities, cross sections and photon-strength functions. Experimental methods such as Coulomb excitation or electromagnetic radiation are used to probe these structures without invoking the nuclear force.
    URI
    http://hdl.handle.net/11394/6705
    Collections
    • Magister Scientiae - MSc (Physics) [121]

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV