Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Medical BioSciences
    • Philosophiae Doctor - PhD (Medical BioScience)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Medical BioSciences
    • Philosophiae Doctor - PhD (Medical BioScience)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The development and implementation of biomarker assays for estrogenic endocrine disruptors

    Thumbnail
    View/Open
    Swart_PHD_2008.pdf (1.407Mb)
    Date
    2008
    Author
    Swart, Johannes Cornelius
    Metadata
    Show full item record
    Abstract
    Endocrine disrupting chemicals (EDCs) are compounds found in the environment that have the potential to disrupt normal endocrine function. Estrogenic EDCs (e-EDCs) is a subclass of EDCs and is defined as substances contaminating the environment that may mimic or inhibit the effect of endogenous estrogen and therefore may influence developmental and reproductive health in humans and animals. The aim of this study was to develop, validate and implement a battery of in vitro and in vivo screening assays for e-EDCs. The study was concluded by implementing this battery of assays to assess the Eerste River, South Africa at three sampling sites, namely Jonkershoek, Stellenbosch sewage treatment works (STW) effluent and Spier for e-EDCs. The control site, Jonkershoek contained very low levels of estrone. Water from this site showed no estrogenic activity when the E-screen and the ER_ induction in MCF-7 cells. Some of the water samples collected at this site tested positive for estrogenicity when analysed with the juvenile tilapia VTG assay, whereas the rest were negative. The estrone levels in the sewage effluent extracts as well as Spier were significantly higher. The assay using ER_ protein induction by the MCF-7 cell line, the MCF-7 proliferation assay and the tilapia in vivo screen for estrogenicity showed that these samples are estrogenic. Results obtained for estrogenicity at the three different sampling sites for each of the assays in the battery were comparable. In this study we developed, validated and also implemented a battery of assays encompassing both in vitro and in vivo assays, based on different biological mechanisms, to detect estrogenic EDCs. To our knowledge, this is the first study that has used a battery of bioassays to specifically assess a South Africa river for estrogenicity.
    URI
    http://hdl.handle.net/11394/2415
    Collections
    • Philosophiae Doctor - PhD (Medical BioScience)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV