Show simple item record

dc.contributor.advisorDube, Admire
dc.contributor.authorMhambi, Sinaye
dc.date.accessioned2023-01-09T08:00:12Z
dc.date.available2023-01-09T08:00:12Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/11394/9486
dc.description>Magister Scientiae - MScen_US
dc.description.abstractThe anatomical structure of the brain at the blood–brain barrier (BBB) creates a limitation for the movement of drugs into the central nervous system (CNS). Although anti-infective drugs effective against Mycobacterium tuberculosis are known, the effective delivery of such drugs across the BBB remains a major challenge. This is due in part to insufficient drug penetration across the BBB of some anti-TB drugs. Large hydrophilic drugs such as ethambutol have poor cerebrospinal fluid (CSF) penetration and cannot cross the BBB even when they are inflamed. Increasing the dose of ethambutol in order to obtain higher CNS penetration is pernicious as it may result in systemic toxicity. Drug delivery facilitated by magneto-electric nanoparticles (MENs) is a relatively new non-invasive approach for the delivery of drugs into the CNS. These nanoparticles (NPs) can create localized transient changes in the permeability of the cells of the BBB by inducing electroporation.en_US
dc.language.isoenen_US
dc.publisherUniversity of the Western Capeen_US
dc.subjectTuberculosisen_US
dc.subjectBioscienceen_US
dc.subjectBiologyen_US
dc.subjectNanoparticlesen_US
dc.titleSynthesis and characterization of magneto-electric nanoparticles for delivery of antituberculosis drugs across the blood-brain barrieren_US
dc.rights.holderUniversity of the Western Capeen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record