Nanoparticles for use in imaging, catalysis and phthalocyanine synthesis
Abstract
Nanoscience and nanotechnology are known to be interdisciplinary, crossing and combining
various fields and disciplines in pursuit of desirable outcomes. This has brought about
applications of nanoscience and nanotechnology in multitudes of industries, spanning from the
health, pharmaceutical to industrial industry. Within the health industry, the medical field has
seen much advancement through nanoscience and nanotechnology. The importance of finding
cures to diseases is top priorities within the medical field, along with advancements in
understanding and diagnosing diseases. Due to these outcomes, we see the emergence of imaging
techniques playing a crucial role. The work covered in this thesis looks at a prospective
luminescent agent applicable in the medical field for bio-imaging, but also at a possible
phthalocyanine sensitizer for treatment of cancer through photodynamic therapy. Another area
where nanoscience and nanotechnology are found is in industry, where nanoparticles are utilised
as catalysts in many synthetic reactions. Highly desirable catalysts in industry are those involved
in oxidative reactions where we explore a metal nanoparticle catalyst within this work.