Cheminformatic approaches to hit-prioritization and target prediction of potential anti-mrsa natural products
Abstract
The growing resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) to currently prescribed drugs has resulted in the failure of prevention and treatment of different infections caused by the superbug. Therefore, to keep pace with the resistance, there is a pressing need for novel antimicrobial agents, especially from non-conventional sources. Several natural products (NPs) have displayed varying in vitro activities against the pathogen but few of these natural compounds have been studied for their prospects to be potential antimicrobial drug candidates. This may be due to the high cost, tedious, and time-consuming process of conducting the important preclinical tests on these compounds. Hence, there is a need for cost-effective strategies for mining the available data on these natural compounds. This would help to get the knowledge that may guide rational prioritization of “likely to succeed” natural compounds to be developed into potential antimicrobial drug candidates.