Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Chemistry
    • Magister Scientiae - MSc (Chemistry)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Chemistry
    • Magister Scientiae - MSc (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A modified Adams fusion method for the synthesis of binary metal oxide catalysts for the oxygen evolution reaction

    Thumbnail
    View/Open
    soudens_m_nsc_2020.pdf (5.098Mb)
    Date
    2020
    Author
    Soudens, Franschke A
    Metadata
    Show full item record
    Abstract
    The majority of the global energy is sourced from conventional fossil fuels. The high demand for energy is accelerating along with the depletion of these fossil fuels. Hence, the shift to renewable energy sources and technology becomes indispensable. Hydrogen is considered a promising alternative to fossil fuels. Polymer electrolyte membrane water electrolysers offer an environmentally friendly technique for the production of hydrogen from renewable energy sources. However, the high overpotential and acidic environment at the anode is one of the challenges faced by polymer electrolyte membrane water electrolysers. This harsh environment requires distinct electrocatalysts which currently consist of expensive precious metals such as Ir, Ru and their oxides.
    URI
    http://hdl.handle.net/11394/8231
    Collections
    • Magister Scientiae - MSc (Chemistry)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV